Diff for /imach/src/imach.c between versions 1.14 and 1.115

version 1.14, 2002/02/20 17:05:44 version 1.115, 2006/02/27 12:17:45
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.115  2006/02/27 12:17:45  brouard
   individuals from different ages are interviewed on their health status    (Module): One freematrix added in mlikeli! 0.98c
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.114  2006/02/26 12:57:58  brouard
   Health expectancies are computed from the transistions observed between    (Module): Some improvements in processing parameter
   waves and are computed for each degree of severity of disability (number    filename with strsep.
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.113  2006/02/24 14:20:24  brouard
   The simplest model is the multinomial logistic model where pij is    (Module): Memory leaks checks with valgrind and:
   the probabibility to be observed in state j at the second wave conditional    datafile was not closed, some imatrix were not freed and on matrix
   to be observed in state i at the first wave. Therefore the model is:    allocation too.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.112  2006/01/30 09:55:26  brouard
   age", you should modify the program where the markup    (Module): Back to gnuplot.exe instead of wgnuplot.exe
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   The advantage that this computer programme claims, comes from that if the    (Module): Comments can be added in data file. Missing date values
   delay between waves is not identical for each individual, or if some    can be a simple dot '.'.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.110  2006/01/25 00:51:50  brouard
   hPijx is the probability to be    (Module): Lots of cleaning and bugs added (Gompertz)
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.109  2006/01/24 19:37:15  brouard
   unobserved intermediate  states. This elementary transition (by month or    (Module): Comments (lines starting with a #) are allowed in data.
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.108  2006/01/19 18:05:42  lievre
   and the contribution of each individual to the likelihood is simply hPijx.    Gnuplot problem appeared...
     To be fixed
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.107  2006/01/19 16:20:37  brouard
      Test existence of gnuplot in imach path
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.106  2006/01/19 13:24:36  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Some cleaning and links added in html output
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.105  2006/01/05 20:23:19  lievre
   software can be distributed freely for non commercial use. Latest version    *** empty log message ***
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.104  2005/09/30 16:11:43  lievre
      (Module): sump fixed, loop imx fixed, and simplifications.
 #include <math.h>    (Module): If the status is missing at the last wave but we know
 #include <stdio.h>    that the person is alive, then we can code his/her status as -2
 #include <stdlib.h>    (instead of missing=-1 in earlier versions) and his/her
 #include <unistd.h>    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define MAXLINE 256    the healthy state at last known wave). Version is 0.98
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.103  2005/09/30 15:54:49  lievre
 #define windows    (Module): sump fixed, loop imx fixed, and simplifications.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.100  2004/07/12 18:29:06  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Add version for Mac OS X. Just define UNIX in Makefile
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.99  2004/06/05 08:57:40  brouard
 #define YEARM 12. /* Number of months per year */    *** empty log message ***
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 int nvar;    state at each age, but using a Gompertz model: log u =a + b*age .
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    This is the basic analysis of mortality and should be done before any
 int npar=NPARMAX;    other analysis, in order to test if the mortality estimated from the
 int nlstate=2; /* Number of live states */    cross-longitudinal survey is different from the mortality estimated
 int ndeath=1; /* Number of dead states */    from other sources like vital statistic data.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0, fprev,lprev;    The same imach parameter file can be used but the option for mle should be -3.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Agnès, who wrote this part of the code, tried to keep most of the
 int maxwav; /* Maxim number of waves */    former routines in order to include the new code within the former code.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    The output is very simple: only an estimate of the intercept and of
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    the slope with 95% confident intervals.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Current limitations:
 double **oldm, **newm, **savm; /* Working pointers to matrices */    A) Even if you enter covariates, i.e. with the
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    B) There is no computation of Life Expectancy nor Life Table.
 FILE *ficgp, *fichtm,*ficresprob;  
 FILE *ficreseij;    Revision 1.97  2004/02/20 13:25:42  lievre
   char filerese[FILENAMELENGTH];    Version 0.96d. Population forecasting command line is (temporarily)
  FILE  *ficresvij;    suppressed.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.96  2003/07/15 15:38:55  brouard
   char fileresvpl[FILENAMELENGTH];    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.95  2003/07/08 07:54:34  brouard
 #define FTOL 1.0e-10    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 #define NRANSI    matrix (cov(a12,c31) instead of numbers.
 #define ITMAX 200  
     Revision 1.94  2003/06/27 13:00:02  brouard
 #define TOL 2.0e-4    Just cleaning
   
 #define CGOLD 0.3819660    Revision 1.93  2003/06/25 16:33:55  brouard
 #define ZEPS 1.0e-10    (Module): On windows (cygwin) function asctime_r doesn't
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.92  2003/06/25 16:30:45  brouard
 #define TINY 1.0e-20    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.91  2003/06/25 15:30:29  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Repository): Duplicated warning errors corrected.
      (Repository): Elapsed time after each iteration is now output. It
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    helps to forecast when convergence will be reached. Elapsed time
 #define rint(a) floor(a+0.5)    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.90  2003/06/24 12:34:15  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int imx;    of the covariance matrix to be input.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 int m,nb;    mle=-1 a template is output in file "or"mypar.txt with the design
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    of the covariance matrix to be input.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 double *weight;  
 int **s; /* Status */    Revision 1.87  2003/06/18 12:26:01  brouard
 double *agedc, **covar, idx;    Version 0.96
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.86  2003/06/17 20:04:08  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Module): Change position of html and gnuplot routines and added
 double ftolhess; /* Tolerance for computing hessian */    routine fileappend.
   
 /**************** split *************************/    Revision 1.85  2003/06/17 13:12:43  brouard
 static  int split( char *path, char *dirc, char *name )    * imach.c (Repository): Check when date of death was earlier that
 {    current date of interview. It may happen when the death was just
    char *s;                             /* pointer */    prior to the death. In this case, dh was negative and likelihood
    int  l1, l2;                         /* length counters */    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
    l1 = strlen( path );                 /* length of path */    interview.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Repository): Because some people have very long ID (first column)
    s = strrchr( path, '\\' );           /* find last / */    we changed int to long in num[] and we added a new lvector for
    if ( s == NULL ) {                   /* no directory, so use current */    memory allocation. But we also truncated to 8 characters (left
 #if     defined(__bsd__)                /* get current working directory */    truncation)
       extern char       *getwd( );    (Repository): No more line truncation errors.
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.84  2003/06/13 21:44:43  brouard
 #else    * imach.c (Repository): Replace "freqsummary" at a correct
       extern char       *getcwd( );    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    parcimony.
 #endif    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.83  2003/06/10 13:39:11  lievre
       strcpy( name, path );             /* we've got it */    *** empty log message ***
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.82  2003/06/05 15:57:20  brouard
       l2 = strlen( s );                 /* length of filename */    Add log in  imach.c and  fullversion number is now printed.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  /*
       dirc[l1-l2] = 0;                  /* add zero */     Interpolated Markov Chain
    }  
    l1 = strlen( dirc );                 /* length of directory */    Short summary of the programme:
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    
    return( 0 );                         /* we're done */    This program computes Healthy Life Expectancies from
 }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 /******************************************/    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 void replace(char *s, char*t)    (if any) in individual health status.  Health expectancies are
 {    computed from the time spent in each health state according to a
   int i;    model. More health states you consider, more time is necessary to reach the
   int lg=20;    Maximum Likelihood of the parameters involved in the model.  The
   i=0;    simplest model is the multinomial logistic model where pij is the
   lg=strlen(t);    probability to be observed in state j at the second wave
   for(i=0; i<= lg; i++) {    conditional to be observed in state i at the first wave. Therefore
     (s[i] = t[i]);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     if (t[i]== '\\') s[i]='/';    'age' is age and 'sex' is a covariate. If you want to have a more
   }    complex model than "constant and age", you should modify the program
 }    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 int nbocc(char *s, char occ)    convergence.
 {  
   int i,j=0;    The advantage of this computer programme, compared to a simple
   int lg=20;    multinomial logistic model, is clear when the delay between waves is not
   i=0;    identical for each individual. Also, if a individual missed an
   lg=strlen(s);    intermediate interview, the information is lost, but taken into
   for(i=0; i<= lg; i++) {    account using an interpolation or extrapolation.  
   if  (s[i] == occ ) j++;  
   }    hPijx is the probability to be observed in state i at age x+h
   return j;    conditional to the observed state i at age x. The delay 'h' can be
 }    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 void cutv(char *u,char *v, char*t, char occ)    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
   int i,lg,j,p=0;    and the contribution of each individual to the likelihood is simply
   i=0;    hPijx.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Also this programme outputs the covariance matrix of the parameters but also
   }    of the life expectancies. It also computes the stable prevalence. 
     
   lg=strlen(t);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   for(j=0; j<p; j++) {             Institut national d'études démographiques, Paris.
     (u[j] = t[j]);    This software have been partly granted by Euro-REVES, a concerted action
   }    from the European Union.
      u[p]='\0';    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
    for(j=0; j<= lg; j++) {    can be accessed at http://euroreves.ined.fr/imach .
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 /********************** nrerror ********************/    **********************************************************************/
   /*
 void nrerror(char error_text[])    main
 {    read parameterfile
   fprintf(stderr,"ERREUR ...\n");    read datafile
   fprintf(stderr,"%s\n",error_text);    concatwav
   exit(1);    freqsummary
 }    if (mle >= 1)
 /*********************** vector *******************/      mlikeli
 double *vector(int nl, int nh)    print results files
 {    if mle==1 
   double *v;       computes hessian
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    read end of parameter file: agemin, agemax, bage, fage, estepm
   if (!v) nrerror("allocation failure in vector");        begin-prev-date,...
   return v-nl+NR_END;    open gnuplot file
 }    open html file
     stable prevalence
 /************************ free vector ******************/     for age prevalim()
 void free_vector(double*v, int nl, int nh)    h Pij x
 {    variance of p varprob
   free((FREE_ARG)(v+nl-NR_END));    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
 /************************ivector *******************************/    prevalence()
 int *ivector(long nl,long nh)     movingaverage()
 {    varevsij() 
   int *v;    if popbased==1 varevsij(,popbased)
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    total life expectancies
   if (!v) nrerror("allocation failure in ivector");    Variance of stable prevalence
   return v-nl+NR_END;   end
 }  */
   
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  
 {   
   free((FREE_ARG)(v+nl-NR_END));  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 /******************* imatrix *******************************/  #include <string.h>
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #include <unistd.h>
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  #include <limits.h>
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #include <sys/types.h>
   int **m;  #include <sys/stat.h>
    #include <errno.h>
   /* allocate pointers to rows */  extern int errno;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /* #include <sys/time.h> */
   m += NR_END;  #include <time.h>
   m -= nrl;  #include "timeval.h"
    
    /* #include <libintl.h> */
   /* allocate rows and set pointers to them */  /* #define _(String) gettext (String) */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define MAXLINE 256
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define GNUPLOTPROGRAM "gnuplot"
    /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define FILENAMELENGTH 132
    
   /* return pointer to array of pointers to rows */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   return m;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /****************** free_imatrix *************************/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  #define NINTERVMAX 8
       long nch,ncl,nrh,nrl;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
      /* free an int matrix allocated by imatrix() */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 {  #define NCOVMAX 8 /* Maximum number of covariates */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define MAXN 20000
   free((FREE_ARG) (m+nrl-NR_END));  #define YEARM 12. /* Number of months per year */
 }  #define AGESUP 130
   #define AGEBASE 40
 /******************* matrix *******************************/  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 double **matrix(long nrl, long nrh, long ncl, long nch)  #ifdef UNIX
 {  #define DIRSEPARATOR '/'
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define CHARSEPARATOR "/"
   double **m;  #define ODIRSEPARATOR '\\'
   #else
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define DIRSEPARATOR '\\'
   if (!m) nrerror("allocation failure 1 in matrix()");  #define CHARSEPARATOR "\\"
   m += NR_END;  #define ODIRSEPARATOR '/'
   m -= nrl;  #endif
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /* $Id$ */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* $State$ */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  char version[]="Imach version 0.98c, February 2006, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   return m;  int nvar;
 }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 /*************************free matrix ************************/  int nlstate=2; /* Number of live states */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int ndeath=1; /* Number of dead states */
 {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int popbased=0;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /******************* ma3x *******************************/  int jmin, jmax; /* min, max spacing between 2 waves */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;                     to the likelihood and the sum of weights (done by funcone)*/
   double ***m;  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   if (!m) nrerror("allocation failure 1 in matrix()");  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m += NR_END;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m -= nrl;  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m[nrl] += NR_END;  FILE *ficlog, *ficrespow;
   m[nrl] -= ncl;  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char filerespow[FILENAMELENGTH];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m[nrl][ncl] += NR_END;  FILE *ficresilk;
   m[nrl][ncl] -= nll;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   for (j=ncl+1; j<=nch; j++)  FILE *ficresprobmorprev;
     m[nrl][j]=m[nrl][j-1]+nlay;  FILE *fichtm, *fichtmcov; /* Html File */
    FILE *ficreseij;
   for (i=nrl+1; i<=nrh; i++) {  char filerese[FILENAMELENGTH];
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  FILE  *ficresvij;
     for (j=ncl+1; j<=nch; j++)  char fileresv[FILENAMELENGTH];
       m[i][j]=m[i][j-1]+nlay;  FILE  *ficresvpl;
   }  char fileresvpl[FILENAMELENGTH];
   return m;  char title[MAXLINE];
 }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 /*************************free ma3x ************************/  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char command[FILENAMELENGTH];
 {  int  outcmd=0;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /***************** f1dim *************************/  char fileregp[FILENAMELENGTH];
 extern int ncom;  char popfile[FILENAMELENGTH];
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
    
 double f1dim(double x)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 {  struct timezone tzp;
   int j;  extern int gettimeofday();
   double f;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   double *xt;  long time_value;
    extern long time();
   xt=vector(1,ncom);  char strcurr[80], strfor[80];
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  char *endptr;
   free_vector(xt,1,ncom);  long lval;
   return f;  
 }  #define NR_END 1
   #define FREE_ARG char*
 /*****************brent *************************/  #define FTOL 1.0e-10
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  #define NRANSI 
   int iter;  #define ITMAX 200 
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  #define TOL 2.0e-4 
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define CGOLD 0.3819660 
   double e=0.0;  #define ZEPS 1.0e-10 
    #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  #define GOLD 1.618034 
   x=w=v=bx;  #define GLIMIT 100.0 
   fw=fv=fx=(*f)(x);  #define TINY 1.0e-20 
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  static double maxarg1,maxarg2;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     printf(".");fflush(stdout);    
 #ifdef DEBUG  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define rint(a) floor(a+0.5)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  static double sqrarg;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       *xmin=x;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       return fx;  int agegomp= AGEGOMP;
     }  
     ftemp=fu;  int imx; 
     if (fabs(e) > tol1) {  int stepm=1;
       r=(x-w)*(fx-fv);  /* Stepm, step in month: minimum step interpolation*/
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  int estepm;
       q=2.0*(q-r);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       if (q > 0.0) p = -p;  
       q=fabs(q);  int m,nb;
       etemp=e;  long *num;
       e=d;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  double **pmmij, ***probs;
       else {  double *ageexmed,*agecens;
         d=p/q;  double dateintmean=0;
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  double *weight;
           d=SIGN(tol1,xm-x);  int **s; /* Status */
       }  double *agedc, **covar, idx;
     } else {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  double *lsurv, *lpop, *tpop;
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     fu=(*f)(u);  double ftolhess; /* Tolerance for computing hessian */
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  /**************** split *************************/
       SHFT(v,w,x,u)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
         SHFT(fv,fw,fx,fu)  {
         } else {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
           if (u < x) a=u; else b=u;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
           if (fu <= fw || w == x) {    */ 
             v=w;    char  *ss;                            /* pointer */
             w=u;    int   l1, l2;                         /* length counters */
             fv=fw;  
             fw=fu;    l1 = strlen(path );                   /* length of path */
           } else if (fu <= fv || v == x || v == w) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
             v=u;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
             fv=fu;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
           }      strcpy( name, path );               /* we got the fullname name because no directory */
         }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   nrerror("Too many iterations in brent");      /* get current working directory */
   *xmin=x;      /*    extern  char* getcwd ( char *buf , int len);*/
   return fx;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 /****************** mnbrak ***********************/      /* got dirc from getcwd*/
       printf(" DIRC = %s \n",dirc);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    } else {                              /* strip direcotry from path */
             double (*func)(double))      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   double ulim,u,r,q, dum;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double fu;      strcpy( name, ss );         /* save file name */
        strncpy( dirc, path, l1 - l2 );     /* now the directory */
   *fa=(*func)(*ax);      dirc[l1-l2] = 0;                    /* add zero */
   *fb=(*func)(*bx);      printf(" DIRC2 = %s \n",dirc);
   if (*fb > *fa) {    }
     SHFT(dum,*ax,*bx,dum)    /* We add a separator at the end of dirc if not exists */
       SHFT(dum,*fb,*fa,dum)    l1 = strlen( dirc );                  /* length of directory */
       }    if( dirc[l1-1] != DIRSEPARATOR ){
   *cx=(*bx)+GOLD*(*bx-*ax);      dirc[l1] =  DIRSEPARATOR;
   *fc=(*func)(*cx);      dirc[l1+1] = 0; 
   while (*fb > *fc) {      printf(" DIRC3 = %s \n",dirc);
     r=(*bx-*ax)*(*fb-*fc);    }
     q=(*bx-*cx)*(*fb-*fa);    ss = strrchr( name, '.' );            /* find last / */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if (ss >0){
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      ss++;
     ulim=(*bx)+GLIMIT*(*cx-*bx);      strcpy(ext,ss);                     /* save extension */
     if ((*bx-u)*(u-*cx) > 0.0) {      l1= strlen( name);
       fu=(*func)(u);      l2= strlen(ss)+1;
     } else if ((*cx-u)*(u-ulim) > 0.0) {      strncpy( finame, name, l1-l2);
       fu=(*func)(u);      finame[l1-l2]= 0;
       if (fu < *fc) {    }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))    return( 0 );                          /* we're done */
           }  }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  
       fu=(*func)(u);  /******************************************/
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  void replace_back_to_slash(char *s, char*t)
       fu=(*func)(u);  {
     }    int i;
     SHFT(*ax,*bx,*cx,u)    int lg=0;
       SHFT(*fa,*fb,*fc,fu)    i=0;
       }    lg=strlen(t);
 }    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
 /*************** linmin ************************/      if (t[i]== '\\') s[i]='/';
     }
 int ncom;  }
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  int nbocc(char *s, char occ)
    {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    int i,j=0;
 {    int lg=20;
   double brent(double ax, double bx, double cx,    i=0;
                double (*f)(double), double tol, double *xmin);    lg=strlen(s);
   double f1dim(double x);    for(i=0; i<= lg; i++) {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    if  (s[i] == occ ) j++;
               double *fc, double (*func)(double));    }
   int j;    return j;
   double xx,xmin,bx,ax;  }
   double fx,fb,fa;  
    void cutv(char *u,char *v, char*t, char occ)
   ncom=n;  {
   pcom=vector(1,n);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   xicom=vector(1,n);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   nrfunc=func;       gives u="abcedf" and v="ghi2j" */
   for (j=1;j<=n;j++) {    int i,lg,j,p=0;
     pcom[j]=p[j];    i=0;
     xicom[j]=xi[j];    for(j=0; j<=strlen(t)-1; j++) {
   }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   ax=0.0;    }
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    lg=strlen(t);
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    for(j=0; j<p; j++) {
 #ifdef DEBUG      (u[j] = t[j]);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    }
 #endif       u[p]='\0';
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;     for(j=0; j<= lg; j++) {
     p[j] += xi[j];      if (j>=(p+1))(v[j-p-1] = t[j]);
   }    }
   free_vector(xicom,1,n);  }
   free_vector(pcom,1,n);  
 }  /********************** nrerror ********************/
   
 /*************** powell ************************/  void nrerror(char error_text[])
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    fprintf(stderr,"ERREUR ...\n");
 {    fprintf(stderr,"%s\n",error_text);
   void linmin(double p[], double xi[], int n, double *fret,    exit(EXIT_FAILURE);
               double (*func)(double []));  }
   int i,ibig,j;  /*********************** vector *******************/
   double del,t,*pt,*ptt,*xit;  double *vector(int nl, int nh)
   double fp,fptt;  {
   double *xits;    double *v;
   pt=vector(1,n);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   ptt=vector(1,n);    if (!v) nrerror("allocation failure in vector");
   xit=vector(1,n);    return v-nl+NR_END;
   xits=vector(1,n);  }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /************************ free vector ******************/
   for (*iter=1;;++(*iter)) {  void free_vector(double*v, int nl, int nh)
     fp=(*fret);  {
     ibig=0;    free((FREE_ARG)(v+nl-NR_END));
     del=0.0;  }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  /************************ivector *******************************/
       printf(" %d %.12f",i, p[i]);  int *ivector(long nl,long nh)
     printf("\n");  {
     for (i=1;i<=n;i++) {    int *v;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       fptt=(*fret);    if (!v) nrerror("allocation failure in ivector");
 #ifdef DEBUG    return v-nl+NR_END;
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /******************free ivector **************************/
       linmin(p,xit,n,fret,func);  void free_ivector(int *v, long nl, long nh)
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    free((FREE_ARG)(v+nl-NR_END));
         ibig=i;  }
       }  
 #ifdef DEBUG  /************************lvector *******************************/
       printf("%d %.12e",i,(*fret));  long *lvector(long nl,long nh)
       for (j=1;j<=n;j++) {  {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    long *v;
         printf(" x(%d)=%.12e",j,xit[j]);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       }    if (!v) nrerror("allocation failure in ivector");
       for(j=1;j<=n;j++)    return v-nl+NR_END;
         printf(" p=%.12e",p[j]);  }
       printf("\n");  
 #endif  /******************free lvector **************************/
     }  void free_lvector(long *v, long nl, long nh)
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  {
 #ifdef DEBUG    free((FREE_ARG)(v+nl-NR_END));
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  /******************* imatrix *******************************/
       printf("Max: %.12e",(*func)(p));  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       for (j=1;j<=n;j++)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         printf(" %.12e",p[j]);  { 
       printf("\n");    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       for(l=0;l<=1;l++) {    int **m; 
         for (j=1;j<=n;j++) {    
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    /* allocate pointers to rows */ 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         }    if (!m) nrerror("allocation failure 1 in matrix()"); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m += NR_END; 
       }    m -= nrl; 
 #endif    
     
     /* allocate rows and set pointers to them */ 
       free_vector(xit,1,n);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       free_vector(xits,1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       free_vector(ptt,1,n);    m[nrl] += NR_END; 
       free_vector(pt,1,n);    m[nrl] -= ncl; 
       return;    
     }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    
     for (j=1;j<=n;j++) {    /* return pointer to array of pointers to rows */ 
       ptt[j]=2.0*p[j]-pt[j];    return m; 
       xit[j]=p[j]-pt[j];  } 
       pt[j]=p[j];  
     }  /****************** free_imatrix *************************/
     fptt=(*func)(ptt);  void free_imatrix(m,nrl,nrh,ncl,nch)
     if (fptt < fp) {        int **m;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        long nch,ncl,nrh,nrl; 
       if (t < 0.0) {       /* free an int matrix allocated by imatrix() */ 
         linmin(p,xit,n,fret,func);  { 
         for (j=1;j<=n;j++) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
           xi[j][ibig]=xi[j][n];    free((FREE_ARG) (m+nrl-NR_END)); 
           xi[j][n]=xit[j];  } 
         }  
 #ifdef DEBUG  /******************* matrix *******************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  double **matrix(long nrl, long nrh, long ncl, long nch)
         for(j=1;j<=n;j++)  {
           printf(" %.12e",xit[j]);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         printf("\n");    double **m;
 #endif  
       }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
 }    m -= nrl;
   
 /**** Prevalence limit ****************/    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
   int i, ii,j,k;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   double min, max, maxmin, maxmax,sumnew=0.;     */
   double **matprod2();  }
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /*************************free matrix ************************/
   double agefin, delaymax=50 ; /* Max number of years to converge */  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
   for (ii=1;ii<=nlstate+ndeath;ii++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for (j=1;j<=nlstate+ndeath;j++){    free((FREE_ARG)(m+nrl-NR_END));
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
     }  
   /******************* ma3x *******************************/
    cov[1]=1.;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
    {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    double ***m;
     newm=savm;  
     /* Covariates have to be included here again */    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      cov[2]=agefin;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
       for (k=1; k<=cptcovn;k++) {    m -= nrl;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       for (k=1; k<=cptcovage;k++)    m[nrl] += NR_END;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m[nrl] -= ncl;
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
     savm=oldm;      m[nrl][j]=m[nrl][j-1]+nlay;
     oldm=newm;    
     maxmax=0.;    for (i=nrl+1; i<=nrh; i++) {
     for(j=1;j<=nlstate;j++){      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       min=1.;      for (j=ncl+1; j<=nch; j++) 
       max=0.;        m[i][j]=m[i][j-1]+nlay;
       for(i=1; i<=nlstate; i++) {    }
         sumnew=0;    return m; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         prlim[i][j]= newm[i][j]/(1-sumnew);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         max=FMAX(max,prlim[i][j]);    */
         min=FMIN(min,prlim[i][j]);  }
       }  
       maxmin=max-min;  /*************************free ma3x ************************/
       maxmax=FMAX(maxmax,maxmin);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     }  {
     if(maxmax < ftolpl){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       return prlim;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }  }
 }  
   /*************** function subdirf ***********/
 /*************** transition probabilities ***************/  char *subdirf(char fileres[])
   {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   double s1, s2;    strcat(tmpout,"/"); /* Add to the right */
   /*double t34;*/    strcat(tmpout,fileres);
   int i,j,j1, nc, ii, jj;    return tmpout;
   }
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  /*************** function subdirf2 ***********/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char *subdirf2(char fileres[], char *preop)
         /*s2 += param[i][j][nc]*cov[nc];*/  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
       ps[i][j]=s2;    strcat(tmpout,"/");
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
     for(j=i+1; j<=nlstate+ndeath;j++){    return tmpout;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /*************** function subdirf3 ***********/
       }  char *subdirf3(char fileres[], char *preop, char *preop2)
       ps[i][j]=(s2);  {
     }    
   }    /* Caution optionfilefiname is hidden */
     /*ps[3][2]=1;*/    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   for(i=1; i<= nlstate; i++){    strcat(tmpout,preop);
      s1=0;    strcat(tmpout,preop2);
     for(j=1; j<i; j++)    strcat(tmpout,fileres);
       s1+=exp(ps[i][j]);    return tmpout;
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  /***************** f1dim *************************/
     for(j=1; j<i; j++)  extern int ncom; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  extern double *pcom,*xicom;
     for(j=i+1; j<=nlstate+ndeath; j++)  extern double (*nrfunc)(double []); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];   
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  double f1dim(double x) 
   } /* end i */  { 
     int j; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    double f;
     for(jj=1; jj<= nlstate+ndeath; jj++){    double *xt; 
       ps[ii][jj]=0;   
       ps[ii][ii]=1;    xt=vector(1,ncom); 
     }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
     return f; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /*****************brent *************************/
    }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     printf("\n ");  { 
     }    int iter; 
     printf("\n ");printf("%lf ",cov[2]);*/    double a,b,d,etemp;
 /*    double fu,fv,fw,fx;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double ftemp;
   goto end;*/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     return ps;    double e=0.0; 
 }   
     a=(ax < cx ? ax : cx); 
 /**************** Product of 2 matrices ******************/    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    fw=fv=fx=(*f)(x); 
 {    for (iter=1;iter<=ITMAX;iter++) { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      xm=0.5*(a+b); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   /* in, b, out are matrice of pointers which should have been initialized      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
      before: only the contents of out is modified. The function returns      printf(".");fflush(stdout);
      a pointer to pointers identical to out */      fprintf(ficlog,".");fflush(ficlog);
   long i, j, k;  #ifdef DEBUG
   for(i=nrl; i<= nrh; i++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(k=ncolol; k<=ncoloh; k++)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         out[i][k] +=in[i][j]*b[j][k];  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   return out;        *xmin=x; 
 }        return fx; 
       } 
       ftemp=fu;
 /************* Higher Matrix Product ***************/      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        q=(x-v)*(fx-fw); 
 {        p=(x-v)*q-(x-w)*r; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        q=2.0*(q-r); 
      duration (i.e. until        if (q > 0.0) p = -p; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        q=fabs(q); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        etemp=e; 
      (typically every 2 years instead of every month which is too big).        e=d; 
      Model is determined by parameters x and covariates have to be        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
      included manually here.          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
      */          d=p/q; 
           u=x+d; 
   int i, j, d, h, k;          if (u-a < tol2 || b-u < tol2) 
   double **out, cov[NCOVMAX];            d=SIGN(tol1,xm-x); 
   double **newm;        } 
       } else { 
   /* Hstepm could be zero and should return the unit matrix */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (i=1;i<=nlstate+ndeath;i++)      } 
     for (j=1;j<=nlstate+ndeath;j++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      fu=(*f)(u); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      if (fu <= fx) { 
     }        if (u >= x) a=x; else b=x; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        SHFT(v,w,x,u) 
   for(h=1; h <=nhstepm; h++){          SHFT(fv,fw,fx,fu) 
     for(d=1; d <=hstepm; d++){          } else { 
       newm=savm;            if (u < x) a=u; else b=u; 
       /* Covariates have to be included here again */            if (fu <= fw || w == x) { 
       cov[1]=1.;              v=w; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;              w=u; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];              fv=fw; 
       for (k=1; k<=cptcovage;k++)              fw=fu; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            } else if (fu <= fv || v == x || v == w) { 
       for (k=1; k<=cptcovprod;k++)              v=u; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              fv=fu; 
             } 
           } 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    } 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    nrerror("Too many iterations in brent"); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    *xmin=x; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    return fx; 
       savm=oldm;  } 
       oldm=newm;  
     }  /****************** mnbrak ***********************/
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         po[i][j][h]=newm[i][j];              double (*func)(double)) 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  { 
          */    double ulim,u,r,q, dum;
       }    double fu; 
   } /* end h */   
   return po;    *fa=(*func)(*ax); 
 }    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
 /*************** log-likelihood *************/        SHFT(dum,*fb,*fa,dum) 
 double func( double *x)        } 
 {    *cx=(*bx)+GOLD*(*bx-*ax); 
   int i, ii, j, k, mi, d, kk;    *fc=(*func)(*cx); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    while (*fb > *fc) { 
   double **out;      r=(*bx-*ax)*(*fb-*fc); 
   double sw; /* Sum of weights */      q=(*bx-*cx)*(*fb-*fa); 
   double lli; /* Individual log likelihood */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   long ipmx;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   /*extern weight */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   /* We are differentiating ll according to initial status */      if ((*bx-u)*(u-*cx) > 0.0) { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        fu=(*func)(u); 
   /*for(i=1;i<imx;i++)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     printf(" %d\n",s[4][i]);        fu=(*func)(u); 
   */        if (fu < *fc) { 
   cov[1]=1.;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
   for(k=1; k<=nlstate; k++) ll[k]=0.;            } 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        u=ulim; 
     for(mi=1; mi<= wav[i]-1; mi++){        fu=(*func)(u); 
       for (ii=1;ii<=nlstate+ndeath;ii++)      } else { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        u=(*cx)+GOLD*(*cx-*bx); 
       for(d=0; d<dh[mi][i]; d++){        fu=(*func)(u); 
         newm=savm;      } 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      SHFT(*ax,*bx,*cx,u) 
         for (kk=1; kk<=cptcovage;kk++) {        SHFT(*fa,*fb,*fc,fu) 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        } 
         }  } 
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*************** linmin ************************/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;  int ncom; 
         oldm=newm;  double *pcom,*xicom;
          double (*nrfunc)(double []); 
           
       } /* end mult */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
        { 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    double brent(double ax, double bx, double cx, 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/                 double (*f)(double), double tol, double *xmin); 
       ipmx +=1;    double f1dim(double x); 
       sw += weight[i];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;                double *fc, double (*func)(double)); 
     } /* end of wave */    int j; 
   } /* end of individual */    double xx,xmin,bx,ax; 
     double fx,fb,fa;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];   
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    ncom=n; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    pcom=vector(1,n); 
   return -l;    xicom=vector(1,n); 
 }    nrfunc=func; 
     for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
 /*********** Maximum Likelihood Estimation ***************/      xicom[j]=xi[j]; 
     } 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    ax=0.0; 
 {    xx=1.0; 
   int i,j, iter;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double **xi,*delti;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   double fret;  #ifdef DEBUG
   xi=matrix(1,npar,1,npar);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (i=1;i<=npar;i++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (j=1;j<=npar;j++)  #endif
       xi[i][j]=(i==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) { 
   printf("Powell\n");      xi[j] *= xmin; 
   powell(p,xi,npar,ftol,&iter,&fret,func);      p[j] += xi[j]; 
     } 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    free_vector(xicom,1,n); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    free_vector(pcom,1,n); 
   } 
 }  
   char *asc_diff_time(long time_sec, char ascdiff[])
 /**** Computes Hessian and covariance matrix ***/  {
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    long sec_left, days, hours, minutes;
 {    days = (time_sec) / (60*60*24);
   double  **a,**y,*x,pd;    sec_left = (time_sec) % (60*60*24);
   double **hess;    hours = (sec_left) / (60*60) ;
   int i, j,jk;    sec_left = (sec_left) %(60*60);
   int *indx;    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
   double hessii(double p[], double delta, int theta, double delti[]);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   double hessij(double p[], double delti[], int i, int j);    return ascdiff;
   void lubksb(double **a, int npar, int *indx, double b[]) ;  }
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   /*************** powell ************************/
   hess=matrix(1,npar,1,npar);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   printf("\nCalculation of the hessian matrix. Wait...\n");  { 
   for (i=1;i<=npar;i++){    void linmin(double p[], double xi[], int n, double *fret, 
     printf("%d",i);fflush(stdout);                double (*func)(double [])); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    int i,ibig,j; 
     /*printf(" %f ",p[i]);*/    double del,t,*pt,*ptt,*xit;
     /*printf(" %lf ",hess[i][i]);*/    double fp,fptt;
   }    double *xits;
      int niterf, itmp;
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {    pt=vector(1,n); 
       if (j>i) {    ptt=vector(1,n); 
         printf(".%d%d",i,j);fflush(stdout);    xit=vector(1,n); 
         hess[i][j]=hessij(p,delti,i,j);    xits=vector(1,n); 
         hess[j][i]=hess[i][j];        *fret=(*func)(p); 
         /*printf(" %lf ",hess[i][j]);*/    for (j=1;j<=n;j++) pt[j]=p[j]; 
       }    for (*iter=1;;++(*iter)) { 
     }      fp=(*fret); 
   }      ibig=0; 
   printf("\n");      del=0.0; 
       last_time=curr_time;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      (void) gettimeofday(&curr_time,&tzp);
        printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   a=matrix(1,npar,1,npar);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   y=matrix(1,npar,1,npar);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   x=vector(1,npar);      */
   indx=ivector(1,npar);     for (i=1;i<=n;i++) {
   for (i=1;i<=npar;i++)        printf(" %d %.12f",i, p[i]);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        fprintf(ficlog," %d %.12lf",i, p[i]);
   ludcmp(a,npar,indx,&pd);        fprintf(ficrespow," %.12lf", p[i]);
       }
   for (j=1;j<=npar;j++) {      printf("\n");
     for (i=1;i<=npar;i++) x[i]=0;      fprintf(ficlog,"\n");
     x[j]=1;      fprintf(ficrespow,"\n");fflush(ficrespow);
     lubksb(a,npar,indx,x);      if(*iter <=3){
     for (i=1;i<=npar;i++){        tm = *localtime(&curr_time.tv_sec);
       matcov[i][j]=x[i];        strcpy(strcurr,asctime(&tm));
     }  /*       asctime_r(&tm,strcurr); */
   }        forecast_time=curr_time; 
         itmp = strlen(strcurr);
   printf("\n#Hessian matrix#\n");        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   for (i=1;i<=npar;i++) {          strcurr[itmp-1]='\0';
     for (j=1;j<=npar;j++) {        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       printf("%.3e ",hess[i][j]);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     }        for(niterf=10;niterf<=30;niterf+=10){
     printf("\n");          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   }          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
   /* Recompute Inverse */          strcpy(strfor,asctime(&tmf));
   for (i=1;i<=npar;i++)          itmp = strlen(strfor);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          if(strfor[itmp-1]=='\n')
   ludcmp(a,npar,indx,&pd);          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   /*  printf("\n#Hessian matrix recomputed#\n");          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;      for (i=1;i<=n;i++) { 
     x[j]=1;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     lubksb(a,npar,indx,x);        fptt=(*fret); 
     for (i=1;i<=npar;i++){  #ifdef DEBUG
       y[i][j]=x[i];        printf("fret=%lf \n",*fret);
       printf("%.3e ",y[i][j]);        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
     printf("\n");        printf("%d",i);fflush(stdout);
   }        fprintf(ficlog,"%d",i);fflush(ficlog);
   */        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
   free_matrix(a,1,npar,1,npar);          del=fabs(fptt-(*fret)); 
   free_matrix(y,1,npar,1,npar);          ibig=i; 
   free_vector(x,1,npar);        } 
   free_ivector(indx,1,npar);  #ifdef DEBUG
   free_matrix(hess,1,npar,1,npar);        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
 }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
 /*************** hessian matrix ****************/          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 double hessii( double x[], double delta, int theta, double delti[])        }
 {        for(j=1;j<=n;j++) {
   int i;          printf(" p=%.12e",p[j]);
   int l=1, lmax=20;          fprintf(ficlog," p=%.12e",p[j]);
   double k1,k2;        }
   double p2[NPARMAX+1];        printf("\n");
   double res;        fprintf(ficlog,"\n");
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  #endif
   double fx;      } 
   int k=0,kmax=10;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double l1;  #ifdef DEBUG
         int k[2],l;
   fx=func(x);        k[0]=1;
   for (i=1;i<=npar;i++) p2[i]=x[i];        k[1]=-1;
   for(l=0 ; l <=lmax; l++){        printf("Max: %.12e",(*func)(p));
     l1=pow(10,l);        fprintf(ficlog,"Max: %.12e",(*func)(p));
     delts=delt;        for (j=1;j<=n;j++) {
     for(k=1 ; k <kmax; k=k+1){          printf(" %.12e",p[j]);
       delt = delta*(l1*k);          fprintf(ficlog," %.12e",p[j]);
       p2[theta]=x[theta] +delt;        }
       k1=func(p2)-fx;        printf("\n");
       p2[theta]=x[theta]-delt;        fprintf(ficlog,"\n");
       k2=func(p2)-fx;        for(l=0;l<=1;l++) {
       /*res= (k1-2.0*fx+k2)/delt/delt; */          for (j=1;j<=n;j++) {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 #ifdef DEBUG            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          }
 #endif          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        }
         k=kmax;  #endif
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;        free_vector(xit,1,n); 
       }        free_vector(xits,1,n); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        free_vector(ptt,1,n); 
         delts=delt;        free_vector(pt,1,n); 
       }        return; 
     }      } 
   }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   delti[theta]=delts;      for (j=1;j<=n;j++) { 
   return res;        ptt[j]=2.0*p[j]-pt[j]; 
          xit[j]=p[j]-pt[j]; 
 }        pt[j]=p[j]; 
       } 
 double hessij( double x[], double delti[], int thetai,int thetaj)      fptt=(*func)(ptt); 
 {      if (fptt < fp) { 
   int i;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   int l=1, l1, lmax=20;        if (t < 0.0) { 
   double k1,k2,k3,k4,res,fx;          linmin(p,xit,n,fret,func); 
   double p2[NPARMAX+1];          for (j=1;j<=n;j++) { 
   int k;            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
   fx=func(x);          }
   for (k=1; k<=2; k++) {  #ifdef DEBUG
     for (i=1;i<=npar;i++) p2[i]=x[i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     p2[thetai]=x[thetai]+delti[thetai]/k;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          for(j=1;j<=n;j++){
     k1=func(p2)-fx;            printf(" %.12e",xit[j]);
              fprintf(ficlog," %.12e",xit[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;          }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          printf("\n");
     k2=func(p2)-fx;          fprintf(ficlog,"\n");
    #endif
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      } 
     k3=func(p2)-fx;    } 
    } 
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /**** Prevalence limit (stable prevalence)  ****************/
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 #ifdef DEBUG  {
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 #endif       matrix by transitions matrix until convergence is reached */
   }  
   return res;    int i, ii,j,k;
 }    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
 /************** Inverse of matrix **************/    double **out, cov[NCOVMAX], **pmij();
 void ludcmp(double **a, int n, int *indx, double *d)    double **newm;
 {    double agefin, delaymax=50 ; /* Max number of years to converge */
   int i,imax,j,k;  
   double big,dum,sum,temp;    for (ii=1;ii<=nlstate+ndeath;ii++)
   double *vv;      for (j=1;j<=nlstate+ndeath;j++){
          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   vv=vector(1,n);      }
   *d=1.0;  
   for (i=1;i<=n;i++) {     cov[1]=1.;
     big=0.0;   
     for (j=1;j<=n;j++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       if ((temp=fabs(a[i][j])) > big) big=temp;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      newm=savm;
     vv[i]=1.0/big;      /* Covariates have to be included here again */
   }       cov[2]=agefin;
   for (j=1;j<=n;j++) {    
     for (i=1;i<j;i++) {        for (k=1; k<=cptcovn;k++) {
       sum=a[i][j];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       a[i][j]=sum;        }
     }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     big=0.0;        for (k=1; k<=cptcovprod;k++)
     for (i=j;i<=n;i++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       sum=a[i][j];  
       for (k=1;k<j;k++)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         sum -= a[i][k]*a[k][j];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       a[i][j]=sum;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       if ( (dum=vv[i]*fabs(sum)) >= big) {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         big=dum;  
         imax=i;      savm=oldm;
       }      oldm=newm;
     }      maxmax=0.;
     if (j != imax) {      for(j=1;j<=nlstate;j++){
       for (k=1;k<=n;k++) {        min=1.;
         dum=a[imax][k];        max=0.;
         a[imax][k]=a[j][k];        for(i=1; i<=nlstate; i++) {
         a[j][k]=dum;          sumnew=0;
       }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       *d = -(*d);          prlim[i][j]= newm[i][j]/(1-sumnew);
       vv[imax]=vv[j];          max=FMAX(max,prlim[i][j]);
     }          min=FMIN(min,prlim[i][j]);
     indx[j]=imax;        }
     if (a[j][j] == 0.0) a[j][j]=TINY;        maxmin=max-min;
     if (j != n) {        maxmax=FMAX(maxmax,maxmin);
       dum=1.0/(a[j][j]);      }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      if(maxmax < ftolpl){
     }        return prlim;
   }      }
   free_vector(vv,1,n);  /* Doesn't work */    }
 ;  }
 }  
   /*************** transition probabilities ***************/ 
 void lubksb(double **a, int n, int *indx, double b[])  
 {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   int i,ii=0,ip,j;  {
   double sum;    double s1, s2;
      /*double t34;*/
   for (i=1;i<=n;i++) {    int i,j,j1, nc, ii, jj;
     ip=indx[i];  
     sum=b[ip];      for(i=1; i<= nlstate; i++){
     b[ip]=b[i];        for(j=1; j<i;j++){
     if (ii)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            /*s2 += param[i][j][nc]*cov[nc];*/
     else if (sum) ii=i;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     b[i]=sum;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   }          }
   for (i=n;i>=1;i--) {          ps[i][j]=s2;
     sum=b[i];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        }
     b[i]=sum/a[i][i];        for(j=i+1; j<=nlstate+ndeath;j++){
   }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 /************ Frequencies ********************/          }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          ps[i][j]=s2;
 {  /* Some frequencies */        }
        }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      /*ps[3][2]=1;*/
   double ***freq; /* Frequencies */      
   double *pp;      for(i=1; i<= nlstate; i++){
   double pos;        s1=0;
   FILE *ficresp;        for(j=1; j<i; j++)
   char fileresp[FILENAMELENGTH];          s1+=exp(ps[i][j]);
         for(j=i+1; j<=nlstate+ndeath; j++)
   pp=vector(1,nlstate);          s1+=exp(ps[i][j]);
  probs= ma3x(1,130 ,1,8, 1,8);        ps[i][i]=1./(s1+1.);
   strcpy(fileresp,"p");        for(j=1; j<i; j++)
   strcat(fileresp,fileres);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for(j=i+1; j<=nlstate+ndeath; j++)
     printf("Problem with prevalence resultfile: %s\n", fileresp);          ps[i][j]= exp(ps[i][j])*ps[i][i];
     exit(0);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   }      } /* end i */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      
   j1=0;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
   j=cptcoveff;          ps[ii][jj]=0;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ps[ii][ii]=1;
         }
   for(k1=1; k1<=j;k1++){      }
    for(i1=1; i1<=ncodemax[k1];i1++){      
        j1++;  
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
          scanf("%d", i);*/  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         for (i=-1; i<=nlstate+ndeath; i++)    /*         printf("ddd %lf ",ps[ii][jj]); */
          for (jk=-1; jk<=nlstate+ndeath; jk++)    /*       } */
            for(m=agemin; m <= agemax+3; m++)  /*       printf("\n "); */
              freq[i][jk][m]=0;  /*        } */
          /*        printf("\n ");printf("%lf ",cov[2]); */
        for (i=1; i<=imx; i++) {         /*
          bool=1;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
          if  (cptcovn>0) {        goto end;*/
            for (z1=1; z1<=cptcoveff; z1++)      return ps;
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  }
                bool=0;  
          }  /**************** Product of 2 matrices ******************/
           if (bool==1) {  
            for(m=fprev; m<=lprev; m++){  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
              if(agev[m][i]==0) agev[m][i]=agemax+1;  {
              if(agev[m][i]==1) agev[m][i]=agemax+2;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    /* in, b, out are matrice of pointers which should have been initialized 
            }       before: only the contents of out is modified. The function returns
          }       a pointer to pointers identical to out */
        }    long i, j, k;
         if  (cptcovn>0) {    for(i=nrl; i<= nrh; i++)
          fprintf(ficresp, "\n#********** Variable ");      for(k=ncolol; k<=ncoloh; k++)
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
        fprintf(ficresp, "**********\n#");          out[i][k] +=in[i][j]*b[j][k];
         }  
        for(i=1; i<=nlstate;i++)    return out;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  }
        fprintf(ficresp, "\n");  
          
   for(i=(int)agemin; i <= (int)agemax+3; i++){  /************* Higher Matrix Product ***************/
     if(i==(int)agemax+3)  
       printf("Total");  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     else  {
       printf("Age %d", i);    /* Computes the transition matrix starting at age 'age' over 
     for(jk=1; jk <=nlstate ; jk++){       'nhstepm*hstepm*stepm' months (i.e. until
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         pp[jk] += freq[jk][m][i];       nhstepm*hstepm matrices. 
     }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for(jk=1; jk <=nlstate ; jk++){       (typically every 2 years instead of every month which is too big 
       for(m=-1, pos=0; m <=0 ; m++)       for the memory).
         pos += freq[jk][m][i];       Model is determined by parameters x and covariates have to be 
       if(pp[jk]>=1.e-10)       included manually here. 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
       else       */
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
     }    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
      for(jk=1; jk <=nlstate ; jk++){    double **newm;
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
         pp[jk] += freq[jk][m][i];    /* Hstepm could be zero and should return the unit matrix */
      }    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
     for(jk=1,pos=0; jk <=nlstate ; jk++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
       pos += pp[jk];        po[i][j][0]=(i==j ? 1.0 : 0.0);
     for(jk=1; jk <=nlstate ; jk++){      }
       if(pos>=1.e-5)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    for(h=1; h <=nhstepm; h++){
       else      for(d=1; d <=hstepm; d++){
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        newm=savm;
       if( i <= (int) agemax){        /* Covariates have to be included here again */
         if(pos>=1.e-5){        cov[1]=1.;
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           probs[i][jk][j1]= pp[jk]/pos;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        for (k=1; k<=cptcovage;k++)
         }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       else        for (k=1; k<=cptcovprod;k++)
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }  
     }  
     for(jk=-1; jk <=nlstate+ndeath; jk++)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for(m=-1; m <=nlstate+ndeath; m++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     if(i <= (int) agemax)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresp,"\n");        savm=oldm;
     printf("\n");        oldm=newm;
     }      }
     }      for(i=1; i<=nlstate+ndeath; i++)
  }        for(j=1;j<=nlstate+ndeath;j++) {
            po[i][j][h]=newm[i][j];
   fclose(ficresp);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           */
   free_vector(pp,1,nlstate);        }
     } /* end h */
 }  /* End of Freq */    return po;
   }
 /************* Waves Concatenation ***************/  
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  /*************** log-likelihood *************/
 {  double func( double *x)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  {
      Death is a valid wave (if date is known).    int i, ii, j, k, mi, d, kk;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    double **out;
      and mw[mi+1][i]. dh depends on stepm.    double sw; /* Sum of weights */
      */    double lli; /* Individual log likelihood */
     int s1, s2;
   int i, mi, m;    double bbh, survp;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    long ipmx;
      double sum=0., jmean=0.;*/    /*extern weight */
     /* We are differentiating ll according to initial status */
   int j, k=0,jk, ju, jl;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double sum=0.;    /*for(i=1;i<imx;i++) 
   jmin=1e+5;      printf(" %d\n",s[4][i]);
   jmax=-1;    */
   jmean=0.;    cov[1]=1.;
   for(i=1; i<=imx; i++){  
     mi=0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     m=firstpass;  
     while(s[m][i] <= nlstate){    if(mle==1){
       if(s[m][i]>=1)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         mw[++mi][i]=m;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if(m >=lastpass)        for(mi=1; mi<= wav[i]-1; mi++){
         break;          for (ii=1;ii<=nlstate+ndeath;ii++)
       else            for (j=1;j<=nlstate+ndeath;j++){
         m++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }/* end while */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (s[m][i] > nlstate){            }
       mi++;     /* Death is another wave */          for(d=0; d<dh[mi][i]; d++){
       /* if(mi==0)  never been interviewed correctly before death */            newm=savm;
          /* Only death is a correct wave */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       mw[mi][i]=m;            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     wav[i]=mi;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if(mi==0)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            savm=oldm;
   }            oldm=newm;
           } /* end mult */
   for(i=1; i<=imx; i++){        
     for(mi=1; mi<wav[i];mi++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       if (stepm <=0)          /* But now since version 0.9 we anticipate for bias at large stepm.
         dh[mi][i]=1;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       else{           * (in months) between two waves is not a multiple of stepm, we rounded to 
         if (s[mw[mi+1][i]][i] > nlstate) {           * the nearest (and in case of equal distance, to the lowest) interval but now
           if (agedc[i] < 2*AGESUP) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           if(j==0) j=1;  /* Survives at least one month after exam */           * probability in order to take into account the bias as a fraction of the way
           k=k+1;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           if (j >= jmax) jmax=j;           * -stepm/2 to stepm/2 .
           if (j <= jmin) jmin=j;           * For stepm=1 the results are the same as for previous versions of Imach.
           sum=sum+j;           * For stepm > 1 the results are less biased than in previous versions. 
           /* if (j<10) printf("j=%d num=%d ",j,i); */           */
           }          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
         else{          bbh=(double)bh[mi][i]/(double)stepm; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          /* bias bh is positive if real duration
           k=k+1;           * is higher than the multiple of stepm and negative otherwise.
           if (j >= jmax) jmax=j;           */
           else if (j <= jmin)jmin=j;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          if( s2 > nlstate){ 
           sum=sum+j;            /* i.e. if s2 is a death state and if the date of death is known 
         }               then the contribution to the likelihood is the probability to 
         jk= j/stepm;               die between last step unit time and current  step unit time, 
         jl= j -jk*stepm;               which is also equal to probability to die before dh 
         ju= j -(jk+1)*stepm;               minus probability to die before dh-stepm . 
         if(jl <= -ju)               In version up to 0.92 likelihood was computed
           dh[mi][i]=jk;          as if date of death was unknown. Death was treated as any other
         else          health state: the date of the interview describes the actual state
           dh[mi][i]=jk+1;          and not the date of a change in health state. The former idea was
         if(dh[mi][i]==0)          to consider that at each interview the state was recorded
           dh[mi][i]=1; /* At least one step */          (healthy, disable or death) and IMaCh was corrected; but when we
       }          introduced the exact date of death then we should have modified
     }          the contribution of an exact death to the likelihood. This new
   }          contribution is smaller and very dependent of the step unit
   jmean=sum/k;          stepm. It is no more the probability to die between last interview
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          and month of death but the probability to survive from last
  }          interview up to one month before death multiplied by the
 /*********** Tricode ****************************/          probability to die within a month. Thanks to Chris
 void tricode(int *Tvar, int **nbcode, int imx)          Jackson for correcting this bug.  Former versions increased
 {          mortality artificially. The bad side is that we add another loop
   int Ndum[20],ij=1, k, j, i;          which slows down the processing. The difference can be up to 10%
   int cptcode=0;          lower mortality.
   cptcoveff=0;            */
              lli=log(out[s1][s2] - savm[s1][s2]);
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;  
           } else if  (s2==-2) {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            for (j=1,survp=0. ; j<=nlstate; j++) 
     for (i=1; i<=imx; i++) {              survp += out[s1][j];
       ij=(int)(covar[Tvar[j]][i]);            lli= survp;
       Ndum[ij]++;          }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          
       if (ij > cptcode) cptcode=ij;          else if  (s2==-4) {
     }            for (j=3,survp=0. ; j<=nlstate; j++) 
               survp += out[s1][j];
     for (i=0; i<=cptcode; i++) {            lli= survp;
       if(Ndum[i]!=0) ncodemax[j]++;          }
     }          
     ij=1;          else if  (s2==-5) {
             for (j=1,survp=0. ; j<=2; j++) 
               survp += out[s1][j];
     for (i=1; i<=ncodemax[j]; i++) {            lli= survp;
       for (k=0; k<=19; k++) {          }
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;  
           ij++;          else{
         }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         if (ij > ncodemax[j]) break;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       }            } 
     }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }            /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
  for (k=0; k<19; k++) Ndum[k]=0;          ipmx +=1;
           sw += weight[i];
  for (i=1; i<=ncovmodel-2; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       ij=Tvar[i];        } /* end of wave */
       Ndum[ij]++;      } /* end of individual */
     }    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  ij=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  for (i=1; i<=10; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
    if((Ndum[i]!=0) && (i<=ncov)){          for (ii=1;ii<=nlstate+ndeath;ii++)
      Tvaraff[ij]=i;            for (j=1;j<=nlstate+ndeath;j++){
      ij++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
  }            }
            for(d=0; d<=dh[mi][i]; d++){
     cptcoveff=ij-1;            newm=savm;
 }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /*********** Health Expectancies ****************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* Health expectancies */            savm=oldm;
   int i, j, nhstepm, hstepm, h;            oldm=newm;
   double age, agelim,hf;          } /* end mult */
   double ***p3mat;        
            s1=s[mw[mi][i]][i];
   fprintf(ficreseij,"# Health expectancies\n");          s2=s[mw[mi+1][i]][i];
   fprintf(ficreseij,"# Age");          bbh=(double)bh[mi][i]/(double)stepm; 
   for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(j=1; j<=nlstate;j++)          ipmx +=1;
       fprintf(ficreseij," %1d-%1d",i,j);          sw += weight[i];
   fprintf(ficreseij,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   hstepm=1*YEARM; /*  Every j years of age (in month) */      } /* end of individual */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   agelim=AGESUP;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(mi=1; mi<= wav[i]-1; mi++){
     /* nhstepm age range expressed in number of stepm */          for (ii=1;ii<=nlstate+ndeath;ii++)
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);            for (j=1;j<=nlstate+ndeath;j++){
     /* Typically if 20 years = 20*12/6=40 stepm */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) hstepm=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */            }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(d=0; d<dh[mi][i]; d++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            newm=savm;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){            savm=oldm;
           eij[i][j][(int)age] +=p3mat[i][j][h];            oldm=newm;
         }          } /* end mult */
            
     hf=1;          s1=s[mw[mi][i]][i];
     if (stepm >= YEARM) hf=stepm/YEARM;          s2=s[mw[mi+1][i]][i];
     fprintf(ficreseij,"%.0f",age );          bbh=(double)bh[mi][i]/(double)stepm; 
     for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(j=1; j<=nlstate;j++){          ipmx +=1;
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficreseij,"\n");        } /* end of wave */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } /* end of individual */
   }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /************ Variance ******************/        for(mi=1; mi<= wav[i]-1; mi++){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Variance of health expectancies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **newm;            }
   double **dnewm,**doldm;          for(d=0; d<dh[mi][i]; d++){
   int i, j, nhstepm, hstepm, h;            newm=savm;
   int k, cptcode;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double *xp;            for (kk=1; kk<=cptcovage;kk++) {
   double **gp, **gm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double ***gradg, ***trgradg;            }
   double ***p3mat;          
   double age,agelim;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int theta;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
    fprintf(ficresvij,"# Covariances of life expectancies\n");            oldm=newm;
   fprintf(ficresvij,"# Age");          } /* end mult */
   for(i=1; i<=nlstate;i++)        
     for(j=1; j<=nlstate;j++)          s1=s[mw[mi][i]][i];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          s2=s[mw[mi+1][i]][i];
   fprintf(ficresvij,"\n");          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
   xp=vector(1,npar);          }else{
   dnewm=matrix(1,nlstate,1,npar);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   doldm=matrix(1,nlstate,1,nlstate);          }
            ipmx +=1;
   hstepm=1*YEARM; /* Every year of age */          sw += weight[i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   agelim = AGESUP;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        } /* end of wave */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      } /* end of individual */
     if (stepm >= YEARM) hstepm=1;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
     gp=matrix(0,nhstepm,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
     gm=matrix(0,nhstepm,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(theta=1; theta <=npar; theta++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++){ /* Computes gradient */            }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if (popbased==1) {            }
         for(i=1; i<=nlstate;i++)          
           prlim[i][i]=probs[(int)age][i][ij];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                  savm=oldm;
       for(j=1; j<= nlstate; j++){            oldm=newm;
         for(h=0; h<=nhstepm; h++){          } /* end mult */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
       }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
              ipmx +=1;
       for(i=1; i<=npar; i++) /* Computes gradient */          sw += weight[i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } /* end of wave */
       } /* end of individual */
       if (popbased==1) {    } /* End of if */
         for(i=1; i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           prlim[i][i]=probs[(int)age][i][ij];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
       for(j=1; j<= nlstate; j++){  }
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  /*************** log-likelihood *************/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  double funcone( double *x)
         }  {
       }    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
       for(j=1; j<= nlstate; j++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         for(h=0; h<=nhstepm; h++){    double **out;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double lli; /* Individual log likelihood */
         }    double llt;
     } /* End theta */    int s1, s2;
     double bbh, survp;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    /*extern weight */
     /* We are differentiating ll according to initial status */
     for(h=0; h<=nhstepm; h++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(j=1; j<=nlstate;j++)    /*for(i=1;i<imx;i++) 
         for(theta=1; theta <=npar; theta++)      printf(" %d\n",s[4][i]);
           trgradg[h][j][theta]=gradg[h][theta][j];    */
     cov[1]=1.;
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
         vareij[i][j][(int)age] =0.;  
     for(h=0;h<=nhstepm;h++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(k=0;k<=nhstepm;k++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      for(mi=1; mi<= wav[i]-1; mi++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        for (ii=1;ii<=nlstate+ndeath;ii++)
         for(i=1;i<=nlstate;i++)          for (j=1;j<=nlstate+ndeath;j++){
           for(j=1;j<=nlstate;j++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             vareij[i][j][(int)age] += doldm[i][j];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }          }
     }        for(d=0; d<dh[mi][i]; d++){
     h=1;          newm=savm;
     if (stepm >= YEARM) h=stepm/YEARM;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficresvij,"%.0f ",age );          for (kk=1; kk<=cptcovage;kk++) {
     for(i=1; i<=nlstate;i++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<=nlstate;j++){          }
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficresvij,"\n");          savm=oldm;
     free_matrix(gp,0,nhstepm,1,nlstate);          oldm=newm;
     free_matrix(gm,0,nhstepm,1,nlstate);        } /* end mult */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        s1=s[mw[mi][i]][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        s2=s[mw[mi+1][i]][i];
   } /* End age */        bbh=(double)bh[mi][i]/(double)stepm; 
          /* bias is positive if real duration
   free_vector(xp,1,npar);         * is higher than the multiple of stepm and negative otherwise.
   free_matrix(doldm,1,nlstate,1,npar);         */
   free_matrix(dnewm,1,nlstate,1,nlstate);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
 }        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 /************ Variance of prevlim ******************/        } else if(mle==2){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 {        } else if(mle==3){  /* exponential inter-extrapolation */
   /* Variance of prevalence limit */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double **newm;          lli=log(out[s1][s2]); /* Original formula */
   double **dnewm,**doldm;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   int i, j, nhstepm, hstepm;          lli=log(out[s1][s2]); /* Original formula */
   int k, cptcode;        } /* End of if */
   double *xp;        ipmx +=1;
   double *gp, *gm;        sw += weight[i];
   double **gradg, **trgradg;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double age,agelim;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   int theta;        if(globpr){
              fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");   %10.6f %10.6f %10.6f ", \
   fprintf(ficresvpl,"# Age");                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   for(i=1; i<=nlstate;i++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       fprintf(ficresvpl," %1d-%1d",i,i);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   fprintf(ficresvpl,"\n");            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   xp=vector(1,npar);          }
   dnewm=matrix(1,nlstate,1,npar);          fprintf(ficresilk," %10.6f\n", -llt);
   doldm=matrix(1,nlstate,1,nlstate);        }
        } /* end of wave */
   hstepm=1*YEARM; /* Every year of age */    } /* end of individual */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   agelim = AGESUP;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    if(globpr==0){ /* First time we count the contributions and weights */
     if (stepm >= YEARM) hstepm=1;      gipmx=ipmx;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      gsw=sw;
     gradg=matrix(1,npar,1,nlstate);    }
     gp=vector(1,nlstate);    return -l;
     gm=vector(1,nlstate);  }
   
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  /*************** function likelione ***********/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       }  {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* This routine should help understanding what is done with 
       for(i=1;i<=nlstate;i++)       the selection of individuals/waves and
         gp[i] = prlim[i][i];       to check the exact contribution to the likelihood.
           Plotting could be done.
       for(i=1; i<=npar; i++) /* Computes gradient */     */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    if(*globpri !=0){ /* Just counts and sums, no printings */
         gm[i] = prlim[i][i];      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
       for(i=1;i<=nlstate;i++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        printf("Problem with resultfile: %s\n", fileresilk);
     } /* End theta */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
     trgradg =matrix(1,nlstate,1,npar);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     for(j=1; j<=nlstate;j++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(theta=1; theta <=npar; theta++)      for(k=1; k<=nlstate; k++) 
         trgradg[j][theta]=gradg[theta][j];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    *fretone=(*funcone)(p);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    if(*globpri !=0){
     for(i=1;i<=nlstate;i++)      fclose(ficresilk);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
     fprintf(ficresvpl,"%.0f ",age );    } 
     for(i=1; i<=nlstate;i++)    return;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  }
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);  /*********** Maximum Likelihood Estimation ***************/
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   } /* End age */  {
     int i,j, iter;
   free_vector(xp,1,npar);    double **xi;
   free_matrix(doldm,1,nlstate,1,npar);    double fret;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
 }    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
 /************ Variance of one-step probabilities  ******************/      for (j=1;j<=npar;j++)
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)        xi[i][j]=(i==j ? 1.0 : 0.0);
 {    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   int i, j;    strcpy(filerespow,"pow"); 
   int k=0, cptcode;    strcat(filerespow,fileres);
   double **dnewm,**doldm;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   double *xp;      printf("Problem with resultfile: %s\n", filerespow);
   double *gp, *gm;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double **gradg, **trgradg;    }
   double age,agelim, cov[NCOVMAX];    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   int theta;    for (i=1;i<=nlstate;i++)
   char fileresprob[FILENAMELENGTH];      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   strcpy(fileresprob,"prob");    fprintf(ficrespow,"\n");
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    powell(p,xi,npar,ftol,&iter,&fret,func);
     printf("Problem with resultfile: %s\n", fileresprob);  
   }    free_matrix(xi,1,npar,1,npar);
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    fclose(ficrespow);
      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   xp=vector(1,npar);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  }
    
   cov[1]=1;  /**** Computes Hessian and covariance matrix ***/
   for (age=bage; age<=fage; age ++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     cov[2]=age;  {
     gradg=matrix(1,npar,1,9);    double  **a,**y,*x,pd;
     trgradg=matrix(1,9,1,npar);    double **hess;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    int i, j,jk;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    int *indx;
      
     for(theta=1; theta <=npar; theta++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       for(i=1; i<=npar; i++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    void lubksb(double **a, int npar, int *indx, double b[]) ;
          void ludcmp(double **a, int npar, int *indx, double *d) ;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    double gompertz(double p[]);
        hess=matrix(1,npar,1,npar);
       k=0;  
       for(i=1; i<= (nlstate+ndeath); i++){    printf("\nCalculation of the hessian matrix. Wait...\n");
         for(j=1; j<=(nlstate+ndeath);j++){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
            k=k+1;    for (i=1;i<=npar;i++){
           gp[k]=pmmij[i][j];      printf("%d",i);fflush(stdout);
         }      fprintf(ficlog,"%d",i);fflush(ficlog);
       }     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       for(i=1; i<=npar; i++)      
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      /*  printf(" %f ",p[i]);
              printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    
       k=0;    for (i=1;i<=npar;i++) {
       for(i=1; i<=(nlstate+ndeath); i++){      for (j=1;j<=npar;j++)  {
         for(j=1; j<=(nlstate+ndeath);j++){        if (j>i) { 
           k=k+1;          printf(".%d%d",i,j);fflush(stdout);
           gm[k]=pmmij[i][j];          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         }          hess[i][j]=hessij(p,delti,i,j,func,npar);
       }          
                hess[j][i]=hess[i][j];    
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          /*printf(" %lf ",hess[i][j]);*/
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          }
     }      }
     }
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    printf("\n");
       for(theta=1; theta <=npar; theta++)    fprintf(ficlog,"\n");
       trgradg[j][theta]=gradg[theta][j];  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    
     a=matrix(1,npar,1,npar);
      pmij(pmmij,cov,ncovmodel,x,nlstate);    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
      k=0;    indx=ivector(1,npar);
      for(i=1; i<=(nlstate+ndeath); i++){    for (i=1;i<=npar;i++)
        for(j=1; j<=(nlstate+ndeath);j++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
          k=k+1;    ludcmp(a,npar,indx,&pd);
          gm[k]=pmmij[i][j];  
         }    for (j=1;j<=npar;j++) {
      }      for (i=1;i<=npar;i++) x[i]=0;
            x[j]=1;
      /*printf("\n%d ",(int)age);      lubksb(a,npar,indx,x);
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      for (i=1;i<=npar;i++){ 
                matcov[i][j]=x[i];
       }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    }
      }*/  
     printf("\n#Hessian matrix#\n");
   fprintf(ficresprob,"\n%d ",(int)age);    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      for (j=1;j<=npar;j++) { 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        printf("%.3e ",hess[i][j]);
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        fprintf(ficlog,"%.3e ",hess[i][j]);
   }      }
       printf("\n");
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      fprintf(ficlog,"\n");
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /* Recompute Inverse */
 }    for (i=1;i<=npar;i++)
  free_vector(xp,1,npar);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 fclose(ficresprob);    ludcmp(a,npar,indx,&pd);
  exit(0);  
 }    /*  printf("\n#Hessian matrix recomputed#\n");
   
 /***********************************************/    for (j=1;j<=npar;j++) {
 /**************** Main Program *****************/      for (i=1;i<=npar;i++) x[i]=0;
 /***********************************************/      x[j]=1;
       lubksb(a,npar,indx,x);
 /*int main(int argc, char *argv[])*/      for (i=1;i<=npar;i++){ 
 int main()        y[i][j]=x[i];
 {        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      }
   double agedeb, agefin,hf;      printf("\n");
   double agemin=1.e20, agemax=-1.e20;      fprintf(ficlog,"\n");
     }
   double fret;    */
   double **xi,tmp,delta;  
     free_matrix(a,1,npar,1,npar);
   double dum; /* Dummy variable */    free_matrix(y,1,npar,1,npar);
   double ***p3mat;    free_vector(x,1,npar);
   int *indx;    free_ivector(indx,1,npar);
   char line[MAXLINE], linepar[MAXLINE];    free_matrix(hess,1,npar,1,npar);
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];  }
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];  /*************** hessian matrix ****************/
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   int firstobs=1, lastobs=10;  {
   int sdeb, sfin; /* Status at beginning and end */    int i;
   int c,  h , cpt,l;    int l=1, lmax=20;
   int ju,jl, mi;    double k1,k2;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    double p2[NPARMAX+1];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    double res;
   int mobilav=0, fprevfore=1, lprevfore=1;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   int hstepm, nhstepm;    double fx;
     int k=0,kmax=10;
   double bage, fage, age, agelim, agebase;    double l1;
   double ftolpl=FTOL;  
   double **prlim;    fx=func(x);
   double *severity;    for (i=1;i<=npar;i++) p2[i]=x[i];
   double ***param; /* Matrix of parameters */    for(l=0 ; l <=lmax; l++){
   double  *p;      l1=pow(10,l);
   double **matcov; /* Matrix of covariance */      delts=delt;
   double ***delti3; /* Scale */      for(k=1 ; k <kmax; k=k+1){
   double *delti; /* Scale */        delt = delta*(l1*k);
   double ***eij, ***vareij;        p2[theta]=x[theta] +delt;
   double **varpl; /* Variances of prevalence limits by age */        k1=func(p2)-fx;
   double *epj, vepp;        p2[theta]=x[theta]-delt;
   double kk1;        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   char *alph[]={"a","a","b","c","d","e"}, str[4];        
   #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   char z[1]="c", occ;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 #include <sys/time.h>  #endif
 #include <time.h>        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   /* long total_usecs;          k=kmax;
   struct timeval start_time, end_time;        }
          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          k=kmax; l=lmax*10.;
         }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   printf("\nIMACH, Version 0.64b");          delts=delt;
   printf("\nEnter the parameter file name: ");        }
       }
 #ifdef windows    }
   scanf("%s",pathtot);    delti[theta]=delts;
   getcwd(pathcd, size);    return res; 
   /*cygwin_split_path(pathtot,path,optionfile);    
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  }
   /* cutv(path,optionfile,pathtot,'\\');*/  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 split(pathtot, path,optionfile);  {
   chdir(path);    int i;
   replace(pathc,path);    int l=1, l1, lmax=20;
 #endif    double k1,k2,k3,k4,res,fx;
 #ifdef unix    double p2[NPARMAX+1];
   scanf("%s",optionfile);    int k;
 #endif  
     fx=func(x);
 /*-------- arguments in the command line --------*/    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
   strcpy(fileres,"r");      p2[thetai]=x[thetai]+delti[thetai]/k;
   strcat(fileres, optionfile);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   /*---------arguments file --------*/    
       p2[thetai]=x[thetai]+delti[thetai]/k;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     printf("Problem with optionfile %s\n",optionfile);      k2=func(p2)-fx;
     goto end;    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   strcpy(filereso,"o");      k3=func(p2)-fx;
   strcat(filereso,fileres);    
   if((ficparo=fopen(filereso,"w"))==NULL) {      p2[thetai]=x[thetai]-delti[thetai]/k;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   /* Reads comments: lines beginning with '#' */  #ifdef DEBUG
   while((c=getc(ficpar))=='#' && c!= EOF){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     ungetc(c,ficpar);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fgets(line, MAXLINE, ficpar);  #endif
     puts(line);    }
     fputs(line,ficparo);    return res;
   }  }
   ungetc(c,ficpar);  
   /************** Inverse of matrix **************/
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  void ludcmp(double **a, int n, int *indx, double *d) 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  { 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    int i,imax,j,k; 
 while((c=getc(ficpar))=='#' && c!= EOF){    double big,dum,sum,temp; 
     ungetc(c,ficpar);    double *vv; 
     fgets(line, MAXLINE, ficpar);   
     puts(line);    vv=vector(1,n); 
     fputs(line,ficparo);    *d=1.0; 
   }    for (i=1;i<=n;i++) { 
   ungetc(c,ficpar);      big=0.0; 
        for (j=1;j<=n;j++) 
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);        if ((temp=fabs(a[i][j])) > big) big=temp; 
  while((c=getc(ficpar))=='#' && c!= EOF){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     ungetc(c,ficpar);      vv[i]=1.0/big; 
     fgets(line, MAXLINE, ficpar);    } 
     puts(line);    for (j=1;j<=n;j++) { 
     fputs(line,ficparo);      for (i=1;i<j;i++) { 
   }        sum=a[i][j]; 
   ungetc(c,ficpar);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
   fscanf(ficpar,"fprevalence=%d lprevalence=%d mob_average=%d\n",&fprevfore,&lprevfore,&mobilav);      } 
        big=0.0; 
   covar=matrix(0,NCOVMAX,1,n);      for (i=j;i<=n;i++) { 
   cptcovn=0;        sum=a[i][j]; 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   ncovmodel=2+cptcovn;        a[i][j]=sum; 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
            big=dum; 
   /* Read guess parameters */          imax=i; 
   /* Reads comments: lines beginning with '#' */        } 
   while((c=getc(ficpar))=='#' && c!= EOF){      } 
     ungetc(c,ficpar);      if (j != imax) { 
     fgets(line, MAXLINE, ficpar);        for (k=1;k<=n;k++) { 
     puts(line);          dum=a[imax][k]; 
     fputs(line,ficparo);          a[imax][k]=a[j][k]; 
   }          a[j][k]=dum; 
   ungetc(c,ficpar);        } 
          *d = -(*d); 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        vv[imax]=vv[j]; 
     for(i=1; i <=nlstate; i++)      } 
     for(j=1; j <=nlstate+ndeath-1; j++){      indx[j]=imax; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       fprintf(ficparo,"%1d%1d",i1,j1);      if (j != n) { 
       printf("%1d%1d",i,j);        dum=1.0/(a[j][j]); 
       for(k=1; k<=ncovmodel;k++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         fscanf(ficpar," %lf",&param[i][j][k]);      } 
         printf(" %lf",param[i][j][k]);    } 
         fprintf(ficparo," %lf",param[i][j][k]);    free_vector(vv,1,n);  /* Doesn't work */
       }  ;
       fscanf(ficpar,"\n");  } 
       printf("\n");  
       fprintf(ficparo,"\n");  void lubksb(double **a, int n, int *indx, double b[]) 
     }  { 
      int i,ii=0,ip,j; 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    double sum; 
    
   p=param[1][1];    for (i=1;i<=n;i++) { 
        ip=indx[i]; 
   /* Reads comments: lines beginning with '#' */      sum=b[ip]; 
   while((c=getc(ficpar))=='#' && c!= EOF){      b[ip]=b[i]; 
     ungetc(c,ficpar);      if (ii) 
     fgets(line, MAXLINE, ficpar);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     puts(line);      else if (sum) ii=i; 
     fputs(line,ficparo);      b[i]=sum; 
   }    } 
   ungetc(c,ficpar);    for (i=n;i>=1;i--) { 
       sum=b[i]; 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      b[i]=sum/a[i][i]; 
   for(i=1; i <=nlstate; i++){    } 
     for(j=1; j <=nlstate+ndeath-1; j++){  } 
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);  /************ Frequencies ********************/
       fprintf(ficparo,"%1d%1d",i1,j1);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       for(k=1; k<=ncovmodel;k++){  {  /* Some frequencies */
         fscanf(ficpar,"%le",&delti3[i][j][k]);    
         printf(" %le",delti3[i][j][k]);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         fprintf(ficparo," %le",delti3[i][j][k]);    int first;
       }    double ***freq; /* Frequencies */
       fscanf(ficpar,"\n");    double *pp, **prop;
       printf("\n");    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       fprintf(ficparo,"\n");    FILE *ficresp;
     }    char fileresp[FILENAMELENGTH];
   }    
   delti=delti3[1][1];    pp=vector(1,nlstate);
      prop=matrix(1,nlstate,iagemin,iagemax+3);
   /* Reads comments: lines beginning with '#' */    strcpy(fileresp,"p");
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileresp,fileres);
     ungetc(c,ficpar);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fgets(line, MAXLINE, ficpar);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     puts(line);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     fputs(line,ficparo);      exit(0);
   }    }
   ungetc(c,ficpar);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
      j1=0;
   matcov=matrix(1,npar,1,npar);    
   for(i=1; i <=npar; i++){    j=cptcoveff;
     fscanf(ficpar,"%s",&str);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     printf("%s",str);  
     fprintf(ficparo,"%s",str);    first=1;
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);    for(k1=1; k1<=j;k1++){
       printf(" %.5le",matcov[i][j]);      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficparo," %.5le",matcov[i][j]);        j1++;
     }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     fscanf(ficpar,"\n");          scanf("%d", i);*/
     printf("\n");        for (i=-5; i<=nlstate+ndeath; i++)  
     fprintf(ficparo,"\n");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   }            for(m=iagemin; m <= iagemax+3; m++)
   for(i=1; i <=npar; i++)              freq[i][jk][m]=0;
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];      for (i=1; i<=nlstate; i++)  
            for(m=iagemin; m <= iagemax+3; m++)
   printf("\n");          prop[i][m]=0;
         
         dateintsum=0;
     /*-------- data file ----------*/        k2cpt=0;
     if((ficres =fopen(fileres,"w"))==NULL) {        for (i=1; i<=imx; i++) {
       printf("Problem with resultfile: %s\n", fileres);goto end;          bool=1;
     }          if  (cptcovn>0) {
     fprintf(ficres,"#%s\n",version);            for (z1=1; z1<=cptcoveff; z1++) 
                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     if((fic=fopen(datafile,"r"))==NULL)    {                bool=0;
       printf("Problem with datafile: %s\n", datafile);goto end;          }
     }          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
     n= lastobs;              k2=anint[m][i]+(mint[m][i]/12.);
     severity = vector(1,maxwav);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     outcome=imatrix(1,maxwav+1,1,n);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     num=ivector(1,n);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     moisnais=vector(1,n);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     annais=vector(1,n);                if (m<lastpass) {
     moisdc=vector(1,n);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     andc=vector(1,n);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     agedc=vector(1,n);                }
     cod=ivector(1,n);                
     weight=vector(1,n);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                  dateintsum=dateintsum+k2;
     mint=matrix(1,maxwav,1,n);                  k2cpt++;
     anint=matrix(1,maxwav,1,n);                }
     s=imatrix(1,maxwav+1,1,n);                /*}*/
     adl=imatrix(1,maxwav+1,1,n);                }
     tab=ivector(1,NCOVMAX);          }
     ncodemax=ivector(1,8);        }
          
     i=1;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     while (fgets(line, MAXLINE, fic) != NULL)    {  fprintf(ficresp, "#Local time at start: %s", strstart);
       if ((i >= firstobs) && (i <=lastobs)) {        if  (cptcovn>0) {
                  fprintf(ficresp, "\n#********** Variable "); 
         for (j=maxwav;j>=1;j--){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          fprintf(ficresp, "**********\n#");
           strcpy(line,stra);        }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1; i<=nlstate;i++) 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         }        fprintf(ficresp, "\n");
                
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=iagemin; i <= iagemax+3; i++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          if(i==iagemax+3){
             fprintf(ficlog,"Total");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          }else{
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            if(first==1){
               first=0;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              printf("See log file for details...\n");
         for (j=ncov;j>=1;j--){            }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficlog,"Age %d", i);
         }          }
         num[i]=atol(stra);          for(jk=1; jk <=nlstate ; jk++){
                    for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){              pp[jk] += freq[jk][m][i]; 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          }
           for(jk=1; jk <=nlstate ; jk++){
         i=i+1;            for(m=-1, pos=0; m <=0 ; m++)
       }              pos += freq[jk][m][i];
     }            if(pp[jk]>=1.e-10){
     /* printf("ii=%d", ij);              if(first==1){
        scanf("%d",i);*/              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   imx=i-1; /* Number of individuals */              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /* for (i=1; i<=imx; i++){            }else{
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              if(first==1)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }            }
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/          }
   
   /* Calculation of the number of parameter from char model*/          for(jk=1; jk <=nlstate ; jk++){
   Tvar=ivector(1,15);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   Tprod=ivector(1,15);              pp[jk] += freq[jk][m][i];
   Tvaraff=ivector(1,15);          }       
   Tvard=imatrix(1,15,1,2);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   Tage=ivector(1,15);                  pos += pp[jk];
                posprop += prop[jk][i];
   if (strlen(model) >1){          }
     j=0, j1=0, k1=1, k2=1;          for(jk=1; jk <=nlstate ; jk++){
     j=nbocc(model,'+');            if(pos>=1.e-5){
     j1=nbocc(model,'*');              if(first==1)
     cptcovn=j+1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     cptcovprod=j1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                }else{
                  if(first==1)
     strcpy(modelsav,model);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       printf("Error. Non available option model=%s ",model);            }
       goto end;            if( i <= iagemax){
     }              if(pos>=1.e-5){
                    fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for(i=(j+1); i>=1;i--){                /*probs[i][jk][j1]= pp[jk]/pos;*/
       cutv(stra,strb,modelsav,'+');                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);              }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              else
       /*scanf("%d",i);*/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       if (strchr(strb,'*')) {            }
         cutv(strd,strc,strb,'*');          }
         if (strcmp(strc,"age")==0) {          
           cptcovprod--;          for(jk=-1; jk <=nlstate+ndeath; jk++)
           cutv(strb,stre,strd,'V');            for(m=-1; m <=nlstate+ndeath; m++)
           Tvar[i]=atoi(stre);              if(freq[jk][m][i] !=0 ) {
           cptcovage++;              if(first==1)
             Tage[cptcovage]=i;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             /*printf("stre=%s ", stre);*/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         }              }
         else if (strcmp(strd,"age")==0) {          if(i <= iagemax)
           cptcovprod--;            fprintf(ficresp,"\n");
           cutv(strb,stre,strc,'V');          if(first==1)
           Tvar[i]=atoi(stre);            printf("Others in log...\n");
           cptcovage++;          fprintf(ficlog,"\n");
           Tage[cptcovage]=i;        }
         }      }
         else {    }
           cutv(strb,stre,strc,'V');    dateintmean=dateintsum/k2cpt; 
           Tvar[i]=ncov+k1;   
           cutv(strb,strc,strd,'V');    fclose(ficresp);
           Tprod[k1]=i;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           Tvard[k1][1]=atoi(strc);    free_vector(pp,1,nlstate);
           Tvard[k1][2]=atoi(stre);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           Tvar[cptcovn+k2]=Tvard[k1][1];    /* End of Freq */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  }
           for (k=1; k<=lastobs;k++)  
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  /************ Prevalence ********************/
           k1++;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           k2=k2+2;  {  
         }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       }       in each health status at the date of interview (if between dateprev1 and dateprev2).
       else {       We still use firstpass and lastpass as another selection.
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    */
        /*  scanf("%d",i);*/   
       cutv(strd,strc,strb,'V');    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       Tvar[i]=atoi(strc);    double ***freq; /* Frequencies */
       }    double *pp, **prop;
       strcpy(modelsav,stra);      double pos,posprop; 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    double  y2; /* in fractional years */
         scanf("%d",i);*/    int iagemin, iagemax;
     }  
 }    iagemin= (int) agemin;
      iagemax= (int) agemax;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /*pp=vector(1,nlstate);*/
   printf("cptcovprod=%d ", cptcovprod);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   scanf("%d ",i);*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     fclose(fic);    j1=0;
     
     /*  if(mle==1){*/    j=cptcoveff;
     if (weightopt != 1) { /* Maximisation without weights*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for(i=1;i<=n;i++) weight[i]=1.0;    
     }    for(k1=1; k1<=j;k1++){
     /*-calculation of age at interview from date of interview and age at death -*/      for(i1=1; i1<=ncodemax[k1];i1++){
     agev=matrix(1,maxwav,1,imx);        j1++;
         
    for (i=1; i<=imx; i++)        for (i=1; i<=nlstate; i++)  
      for(m=2; (m<= maxwav); m++)          for(m=iagemin; m <= iagemax+3; m++)
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            prop[i][m]=0.0;
          anint[m][i]=9999;       
          s[m][i]=-1;        for (i=1; i<=imx; i++) { /* Each individual */
        }          bool=1;
              if  (cptcovn>0) {
     for (i=1; i<=imx; i++)  {            for (z1=1; z1<=cptcoveff; z1++) 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       for(m=1; (m<= maxwav); m++){                bool=0;
         if(s[m][i] >0){          } 
           if (s[m][i] == nlstate+1) {          if (bool==1) { 
             if(agedc[i]>0)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               if(moisdc[i]!=99 && andc[i]!=9999)              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               agev[m][i]=agedc[i];              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
             else {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               if (andc[i]!=9999){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
               agev[m][i]=-1;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
               }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           }                  prop[s[m][i]][iagemax+3] += weight[i]; 
           else if(s[m][i] !=9){ /* Should no more exist */                } 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              }
             if(mint[m][i]==99 || anint[m][i]==9999)            } /* end selection of waves */
               agev[m][i]=1;          }
             else if(agev[m][i] <agemin){        }
               agemin=agev[m][i];        for(i=iagemin; i <= iagemax+3; i++){  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          
             }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             else if(agev[m][i] >agemax){            posprop += prop[jk][i]; 
               agemax=agev[m][i];          } 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }          for(jk=1; jk <=nlstate ; jk++){     
             /*agev[m][i]=anint[m][i]-annais[i];*/            if( i <=  iagemax){ 
             /*   agev[m][i] = age[i]+2*m;*/              if(posprop>=1.e-5){ 
           }                probs[i][jk][j1]= prop[jk][i]/posprop;
           else { /* =9 */              } 
             agev[m][i]=1;            } 
             s[m][i]=-1;          }/* end jk */ 
           }        }/* end i */ 
         }      } /* end i1 */
         else /*= 0 Unknown */    } /* end k1 */
           agev[m][i]=1;    
       }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
        /*free_vector(pp,1,nlstate);*/
     }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     for (i=1; i<=imx; i++)  {  }  /* End of prevalence */
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {  /************* Waves Concatenation ***************/
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         }  {
       }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     }       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     free_vector(severity,1,maxwav);       */
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);    int i, mi, m;
     free_vector(annais,1,n);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     free_matrix(mint,1,maxwav,1,n);       double sum=0., jmean=0.;*/
     free_matrix(anint,1,maxwav,1,n);    int first;
     free_vector(moisdc,1,n);    int j, k=0,jk, ju, jl;
     free_vector(andc,1,n);    double sum=0.;
     first=0;
        jmin=1e+5;
     wav=ivector(1,imx);    jmax=-1;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    jmean=0.;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    for(i=1; i<=imx; i++){
          mi=0;
     /* Concatenates waves */      m=firstpass;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
       Tcode=ivector(1,100);        if(m >=lastpass)
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          break;
       ncodemax[1]=1;        else
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          m++;
            }/* end while */
    codtab=imatrix(1,100,1,10);      if (s[m][i] > nlstate){
    h=0;        mi++;     /* Death is another wave */
    m=pow(2,cptcoveff);        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
    for(k=1;k<=cptcoveff; k++){        mw[mi][i]=m;
      for(i=1; i <=(m/pow(2,k));i++){      }
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      wav[i]=mi;
            h++;      if(mi==0){
            if (h>m) h=1;codtab[h][k]=j;        nbwarn++;
          }        if(first==0){
        }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
      }          first=1;
    }        }
         if(first==1){
           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
    /*for(i=1; i <=m ;i++){        }
      for(k=1; k <=cptcovn; k++){      } /* end mi==0 */
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);    } /* End individuals */
      }  
      printf("\n");    for(i=1; i<=imx; i++){
    }      for(mi=1; mi<wav[i];mi++){
    scanf("%d",i);*/        if (stepm <=0)
              dh[mi][i]=1;
    /* Calculates basic frequencies. Computes observed prevalence at single age        else{
        and prints on file fileres'p'. */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if(j==0) j=1;  /* Survives at least one month after exam */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              else if(j<0){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                nberr++;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                j=1; /* Temporary Dangerous patch */
                      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     /* For Powell, parameters are in a vector p[] starting at p[1]                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              }
               k=k+1;
     if(mle==1){              if (j >= jmax){
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                jmax=j;
     }                ijmax=i;
                  }
     /*--------- results files --------------*/              if (j <= jmin){
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);                jmin=j;
                    ijmin=i;
    jk=1;              }
    fprintf(ficres,"# Parameters\n");              sum=sum+j;
    printf("# Parameters\n");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
    for(i=1,jk=1; i <=nlstate; i++){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      for(k=1; k <=(nlstate+ndeath); k++){            }
        if (k != i)          }
          {          else{
            printf("%d%d ",i,k);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
            fprintf(ficres,"%1d%1d ",i,k);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);            k=k+1;
              fprintf(ficres,"%f ",p[jk]);            if (j >= jmax) {
              jk++;              jmax=j;
            }              ijmax=i;
            printf("\n");            }
            fprintf(ficres,"\n");            else if (j <= jmin){
          }              jmin=j;
      }              ijmin=i;
    }            }
  if(mle==1){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     /* Computing hessian and covariance matrix */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     ftolhess=ftol; /* Usually correct */            if(j<0){
     hesscov(matcov, p, npar, delti, ftolhess, func);              nberr++;
  }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficres,"# Scales\n");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     printf("# Scales\n");            }
      for(i=1,jk=1; i <=nlstate; i++){            sum=sum+j;
       for(j=1; j <=nlstate+ndeath; j++){          }
         if (j!=i) {          jk= j/stepm;
           fprintf(ficres,"%1d%1d",i,j);          jl= j -jk*stepm;
           printf("%1d%1d",i,j);          ju= j -(jk+1)*stepm;
           for(k=1; k<=ncovmodel;k++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             printf(" %.5e",delti[jk]);            if(jl==0){
             fprintf(ficres," %.5e",delti[jk]);              dh[mi][i]=jk;
             jk++;              bh[mi][i]=0;
           }            }else{ /* We want a negative bias in order to only have interpolation ie
           printf("\n");                    * at the price of an extra matrix product in likelihood */
           fprintf(ficres,"\n");              dh[mi][i]=jk+1;
         }              bh[mi][i]=ju;
       }            }
       }          }else{
                if(jl <= -ju){
     k=1;              dh[mi][i]=jk;
     fprintf(ficres,"# Covariance\n");              bh[mi][i]=jl;       /* bias is positive if real duration
     printf("# Covariance\n");                                   * is higher than the multiple of stepm and negative otherwise.
     for(i=1;i<=npar;i++){                                   */
       /*  if (k>nlstate) k=1;            }
       i1=(i-1)/(ncovmodel*nlstate)+1;            else{
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              dh[mi][i]=jk+1;
       printf("%s%d%d",alph[k],i1,tab[i]);*/              bh[mi][i]=ju;
       fprintf(ficres,"%3d",i);            }
       printf("%3d",i);            if(dh[mi][i]==0){
       for(j=1; j<=i;j++){              dh[mi][i]=1; /* At least one step */
         fprintf(ficres," %.5e",matcov[i][j]);              bh[mi][i]=ju; /* At least one step */
         printf(" %.5e",matcov[i][j]);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       }            }
       fprintf(ficres,"\n");          } /* end if mle */
       printf("\n");        }
       k++;      } /* end wave */
     }    }
        jmean=sum/k;
     while((c=getc(ficpar))=='#' && c!= EOF){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       ungetc(c,ficpar);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       fgets(line, MAXLINE, ficpar);   }
       puts(line);  
       fputs(line,ficparo);  /*********** Tricode ****************************/
     }  void tricode(int *Tvar, int **nbcode, int imx)
     ungetc(c,ficpar);  {
      
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    int Ndum[20],ij=1, k, j, i, maxncov=19;
        int cptcode=0;
     if (fage <= 2) {    cptcoveff=0; 
       bage = agemin;   
       fage = agemax;    for (k=0; k<maxncov; k++) Ndum[k]=0;
     }    for (k=1; k<=7; k++) ncodemax[k]=0;
   
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
            ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 /*------------ gnuplot -------------*/        Ndum[ij]++; /*store the modality */
 chdir(pathcd);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   if((ficgp=fopen("graph.plt","w"))==NULL) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     printf("Problem with file graph.gp");goto end;                                         Tvar[j]. If V=sex and male is 0 and 
   }                                         female is 1, then  cptcode=1.*/
 #ifdef windows      }
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif      for (i=0; i<=cptcode; i++) {
 m=pow(2,cptcoveff);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
        }
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {      ij=1; 
    for (k1=1; k1<= m ; k1 ++) {      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
 #ifdef windows          if (Ndum[k] != 0) {
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);            nbcode[Tvar[j]][ij]=k; 
 #endif            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 #ifdef unix            
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);            ij++;
 #endif          }
           if (ij > ncodemax[j]) break; 
 for (i=1; i<= nlstate ; i ++) {        }  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }  
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);   for (k=0; k< maxncov; k++) Ndum[k]=0;
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   for (i=1; i<=ncovmodel-2; i++) { 
   else fprintf(ficgp," \%%*lf (\%%*lf)");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 }     ij=Tvar[i];
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);     Ndum[ij]++;
      for (i=1; i<= nlstate ; i ++) {   }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");   ij=1;
 }     for (i=1; i<= maxncov; i++) {
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));     if((Ndum[i]!=0) && (i<=ncovcol)){
 #ifdef unix       Tvaraff[ij]=i; /*For printing */
 fprintf(ficgp,"\nset ter gif small size 400,300");       ij++;
 #endif     }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);   }
    }   
   }   cptcoveff=ij-1; /*Number of simple covariates*/
   /*2 eme*/  }
   
   for (k1=1; k1<= m ; k1 ++) {  /*********** Health Expectancies ****************/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  
      void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;  {
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    /* Health expectancies */
       for (j=1; j<= nlstate+1 ; j ++) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double age, agelim, hf;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double ***p3mat,***varhe;
 }      double **dnewm,**doldm;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    double *xp;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    double **gp, **gm;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    double ***gradg, ***trgradg;
       for (j=1; j<= nlstate+1 ; j ++) {    int theta;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 }      xp=vector(1,npar);
       fprintf(ficgp,"\" t\"\" w l 0,");    dnewm=matrix(1,nlstate*nlstate,1,npar);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       for (j=1; j<= nlstate+1 ; j ++) {    
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficreseij,"# Local time at start: %s", strstart);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficreseij,"# Health expectancies\n");
 }      fprintf(ficreseij,"# Age");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    for(i=1; i<=nlstate;i++)
       else fprintf(ficgp,"\" t\"\" w l 0,");      for(j=1; j<=nlstate;j++)
     }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    fprintf(ficreseij,"\n");
   }  
      if(estepm < stepm){
   /*3eme*/      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   for (k1=1; k1<= m ; k1 ++) {    else  hstepm=estepm;   
     for (cpt=1; cpt<= nlstate ; cpt ++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
       k=2+nlstate*(cpt-1);     * This is mainly to measure the difference between two models: for example
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);     * if stepm=24 months pijx are given only every 2 years and by summing them
       for (i=1; i< nlstate ; i ++) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);     * progression in between and thus overestimating or underestimating according
       }     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     }     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   /* CV preval stat */  
   for (k1=1; k1<= m ; k1 ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
     for (cpt=1; cpt<nlstate ; cpt ++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       k=3;       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);       nstepm is the number of stepm from age to agelin. 
       for (i=1; i< nlstate ; i ++)       Look at hpijx to understand the reason of that which relies in memory size
         fprintf(ficgp,"+$%d",k+i+1);       and note for a fixed period like estepm months */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             survival function given by stepm (the optimization length). Unfortunately it
       l=3+(nlstate+ndeath)*cpt;       means that if the survival funtion is printed only each two years of age and if
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for (i=1; i< nlstate ; i ++) {       results. So we changed our mind and took the option of the best precision.
         l=3+(nlstate+ndeath)*cpt;    */
         fprintf(ficgp,"+$%d",l+i+1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      agelim=AGESUP;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     }      /* nhstepm age range expressed in number of stepm */
   }        nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   /* proba elementaires */      /* if (stepm >= YEARM) hstepm=1;*/
    for(i=1,jk=1; i <=nlstate; i++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(k=1; k <=(nlstate+ndeath); k++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       if (k != i) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         for(j=1; j <=ncovmodel; j++){      gp=matrix(0,nhstepm,1,nlstate*nlstate);
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/      gm=matrix(0,nhstepm,1,nlstate*nlstate);
           /*fprintf(ficgp,"%s",alph[1]);*/  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           jk++;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           fprintf(ficgp,"\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         }   
       }  
     }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     }  
       /* Computing  Variances of health expectancies */
   for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);       for(theta=1; theta <=npar; theta++){
    i=1;        for(i=1; i<=npar; i++){ 
    for(k2=1; k2<=nlstate; k2++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      k3=i;        }
      for(k=1; k<=(nlstate+ndeath); k++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        if (k != k2){    
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        cptj=0;
 ij=1;        for(j=1; j<= nlstate; j++){
         for(j=3; j <=ncovmodel; j++) {          for(i=1; i<=nlstate; i++){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            cptj=cptj+1;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
             ij++;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           }            }
           else          }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }
         }       
           fprintf(ficgp,")/(1");       
                for(i=1; i<=npar; i++) 
         for(k1=1; k1 <=nlstate; k1++){            xp[i] = x[i] - (i==theta ?delti[theta]:0);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 ij=1;        
           for(j=3; j <=ncovmodel; j++){        cptj=0;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(j=1; j<= nlstate; j++){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(i=1;i<=nlstate;i++){
             ij++;            cptj=cptj+1;
           }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
           else  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           }            }
           fprintf(ficgp,")");          }
         }        }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        for(j=1; j<= nlstate*nlstate; j++)
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          for(h=0; h<=nhstepm-1; h++){
         i=i+ncovmodel;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
        }          }
      }       } 
    }     
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  /* End theta */
   }  
           trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   fclose(ficgp);  
           for(h=0; h<=nhstepm-1; h++)
 chdir(path);        for(j=1; j<=nlstate*nlstate;j++)
     free_matrix(agev,1,maxwav,1,imx);          for(theta=1; theta <=npar; theta++)
     free_ivector(wav,1,imx);            trgradg[h][j][theta]=gradg[h][theta][j];
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
           for(i=1;i<=nlstate*nlstate;i++)
     free_imatrix(s,1,maxwav+1,1,n);        for(j=1;j<=nlstate*nlstate;j++)
              varhe[i][j][(int)age] =0.;
      
     free_ivector(num,1,n);       printf("%d|",(int)age);fflush(stdout);
     free_vector(agedc,1,n);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     free_vector(weight,1,n);       for(h=0;h<=nhstepm-1;h++){
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        for(k=0;k<=nhstepm-1;k++){
     fclose(ficparo);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     fclose(ficres);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     /*  }*/          for(i=1;i<=nlstate*nlstate;i++)
                for(j=1;j<=nlstate*nlstate;j++)
    /*________fin mle=1_________*/              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
            }
       }
        /* Computing expectancies */
     /* No more information from the sample is required now */      for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */        for(j=1; j<=nlstate;j++)
   while((c=getc(ficpar))=='#' && c!= EOF){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     ungetc(c,ficpar);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     fgets(line, MAXLINE, ficpar);            
     puts(line);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fputs(line,ficparo);  
   }          }
   ungetc(c,ficpar);  
        fprintf(ficreseij,"%3.0f",age );
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      cptj=0;
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);      for(i=1; i<=nlstate;i++)
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        for(j=1; j<=nlstate;j++){
 /*--------- index.htm --------*/          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   strcpy(optionfilehtm,optionfile);        }
   strcat(optionfilehtm,".htm");      fprintf(ficreseij,"\n");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {     
     printf("Problem with %s \n",optionfilehtm);goto end;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64b </font> <hr size=\"2\" color=\"#EC5E5E\">      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 Total number of observations=%d <br>    }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>    printf("\n");
 <hr  size=\"2\" color=\"#EC5E5E\">    fprintf(ficlog,"\n");
 <li>Outputs files<br><br>\n  
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    free_vector(xp,1,npar);
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>  }
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>  
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  /************ Variance ******************/
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>  {
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>    /* Variance of health expectancies */
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
  fprintf(fichtm," <li>Graphs</li><p>");    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
  m=cptcoveff;    int i, j, nhstepm, hstepm, h, nstepm ;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    int k, cptcode;
     double *xp;
  j1=0;    double **gp, **gm;  /* for var eij */
  for(k1=1; k1<=m;k1++){    double ***gradg, ***trgradg; /*for var eij */
    for(i1=1; i1<=ncodemax[k1];i1++){    double **gradgp, **trgradgp; /* for var p point j */
        j1++;    double *gpp, *gmp; /* for var p point j */
        if (cptcovn > 0) {    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double ***p3mat;
          for (cpt=1; cpt<=cptcoveff;cpt++)    double age,agelim, hf;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);    double ***mobaverage;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    int theta;
        }    char digit[4];
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    char digitp[25];
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      
        for(cpt=1; cpt<nlstate;cpt++){    char fileresprobmorprev[FILENAMELENGTH];
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    if(popbased==1){
        }      if(mobilav!=0)
     for(cpt=1; cpt<=nlstate;cpt++) {        strcpy(digitp,"-populbased-mobilav-");
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      else strcpy(digitp,"-populbased-nomobil-");
 interval) in state (%d): v%s%d%d.gif <br>    }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      else 
      }      strcpy(digitp,"-stablbased-");
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    if (mobilav!=0) {
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 health expectancies in states (1) and (2): e%s%d.gif<br>        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      }
 fprintf(fichtm,"\n</body>");    }
    }  
  }    strcpy(fileresprobmorprev,"prmorprev"); 
 fclose(fichtm);    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   /*--------------- Prevalence limit --------------*/    strcat(fileresprobmorprev,digit); /* Tvar to be done */
      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   strcpy(filerespl,"pl");    strcat(fileresprobmorprev,fileres);
   strcat(filerespl,fileres);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   }    }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(ficrespl,"#Prevalence limit\n");   
   fprintf(ficrespl,"#Age ");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
   fprintf(ficrespl,"\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   prlim=matrix(1,nlstate,1,nlstate);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficresprobmorprev," p.%-d SE",j);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1; i<=nlstate;i++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficresprobmorprev,"\n");
   k=0;    fprintf(ficgp,"\n# Routine varevsij");
   agebase=agemin;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   agelim=agemax;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   ftolpl=1.e-10;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   i1=cptcoveff;  /*   } */
   if (cptcovn < 1){i1=1;}    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    fprintf(ficresvij, "#Local time at start: %s", strstart);
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficresvij,"# Age");
         k=k+1;    for(i=1; i<=nlstate;i++)
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      for(j=1; j<=nlstate;j++)
         fprintf(ficrespl,"\n#******");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
         for(j=1;j<=cptcoveff;j++)    fprintf(ficresvij,"\n");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");    xp=vector(1,npar);
            dnewm=matrix(1,nlstate,1,npar);
         for (age=agebase; age<=agelim; age++){    doldm=matrix(1,nlstate,1,nlstate);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           fprintf(ficrespl,"%.0f",age );    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           fprintf(ficrespl,"\n");    gpp=vector(nlstate+1,nlstate+ndeath);
         }    gmp=vector(nlstate+1,nlstate+ndeath);
       }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     }    
   fclose(ficrespl);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   /*------------- h Pij x at various ages ------------*/    }
      else  hstepm=estepm;   
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    /* For example we decided to compute the life expectancy with the smallest unit */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
   printf("Computing pij: result on file '%s' \n", filerespij);       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like k years */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /*if (stepm<=24) stepsize=2;*/       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
   agelim=AGESUP;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   hstepm=stepsize*YEARM; /* Every year of age */       results. So we changed our mind and took the option of the best precision.
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   k=0;    agelim = AGESUP;
   for(cptcov=1;cptcov<=i1;cptcov++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       k=k+1;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(ficrespij,"\n#****** ");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(j=1;j<=cptcoveff;j++)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      gp=matrix(0,nhstepm,1,nlstate);
         fprintf(ficrespij,"******\n");      gm=matrix(0,nhstepm,1,nlstate);
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for(theta=1; theta <=npar; theta++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           fprintf(ficrespij,"# Age");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)        if (popbased==1) {
               fprintf(ficrespij," %1d-%1d",i,j);          if(mobilav ==0){
           fprintf(ficrespij,"\n");            for(i=1; i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){              prlim[i][i]=probs[(int)age][i][ij];
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)            for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          }
             fprintf(ficrespij,"\n");        }
           }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<= nlstate; j++){
           fprintf(ficrespij,"\n");          for(h=0; h<=nhstepm; h++){
         }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   }          }
         }
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   fclose(ficrespij);           as a weighted average of prlim.
         */
   /*---------- Forecasting ------------------*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   strcpy(fileresf,"f");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   strcat(fileresf,fileres);        }    
   if((ficresf=fopen(fileresf,"w"))==NULL) {        /* end probability of death */
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;  
   }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   printf("Computing forecasting: result on file '%s' \n", fileresf);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /* Mobile average */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   /* for (agedeb=bage; agedeb<=fage; agedeb++)        if (popbased==1) {
     for (i=1; i<=nlstate;i++)          if(mobilav ==0){
       for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++)            for(i=1; i<=nlstate;i++)
       printf("%f %d i=%d j1=%d\n", probs[(int)agedeb][i][cptcod],(int) agedeb,i,cptcod);*/              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   if (mobilav==1) {          }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)  
       for (i=1; i<=nlstate;i++)        for(j=1; j<= nlstate; j++){
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          for(h=0; h<=nhstepm; h++){
           mobaverage[(int)agedeb][i][cptcod]=0.;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                  gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     for (agedeb=bage+4; agedeb<=fage; agedeb++){          }
       for (i=1; i<=nlstate;i++){        }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        /* This for computing probability of death (h=1 means
           for (cpt=0;cpt<=4;cpt++){           computed over hstepm matrices product = hstepm*stepm months) 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];           as a weighted average of prlim.
           }        */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     }          }    
   }        /* end probability of death */
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(j=1; j<= nlstate; j++) /* vareij */
   if (stepm<=24) stepsize=2;          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   agelim=AGESUP;          }
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   hstepm=12;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
    k=0;        }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      } /* End theta */
       k=k+1;  
       fprintf(ficresf,"\n#****** ");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(h=0; h<=nhstepm; h++) /* veij */
       }        for(j=1; j<=nlstate;j++)
                for(theta=1; theta <=npar; theta++)
       fprintf(ficresf,"******\n");            trgradg[h][j][theta]=gradg[h][theta][j];
   
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
       for (agedeb=fage; agedeb>=bage; agedeb--){    
         fprintf(ficresf,"\n%d %.f %.f 0 ",k,agedeb, agedeb);  
        if (mobilav==1) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for(j=1; j<=nlstate;j++)      for(i=1;i<=nlstate;i++)
           fprintf(ficresf,"%.5f ",mobaverage[(int)agedeb][j][cptcod]);        for(j=1;j<=nlstate;j++)
         }          vareij[i][j][(int)age] =0.;
         else {  
           for(j=1; j<=nlstate;j++)      for(h=0;h<=nhstepm;h++){
           fprintf(ficresf,"%.5f ",probs[(int)agedeb][j][cptcod]);        for(k=0;k<=nhstepm;k++){
         }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                  matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       for(j=1; j<=ndeath;j++) fprintf(ficresf,"0.");          for(i=1;i<=nlstate;i++)
       }            for(j=1;j<=nlstate;j++)
       for (cpt=1; cpt<=NCOVMAX;cpt++)                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        }
              }
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      /* pptj */
         /*printf("stepm=%d hstepm=%d nhstepm=%d \n",stepm,hstepm,nhstepm);*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         oldm=oldms;savm=savms;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            varppt[j][i]=doldmp[j][i];
                      /* end ppptj */
         for (h=0; h<=nhstepm; h++){      /*  x centered again */
              hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           if (h*hstepm/YEARM*stepm==cpt)      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
  fprintf(ficresf,"\n%d %.f %.f %.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);   
                if (popbased==1) {
           for(j=1; j<=nlstate+ndeath;j++) {        if(mobilav ==0){
             kk1=0.;          for(i=1; i<=nlstate;i++)
             for(i=1; i<=nlstate;i++) {                    prlim[i][i]=probs[(int)age][i][ij];
               if (mobilav==1)        }else{ /* mobilav */ 
               kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];          for(i=1; i<=nlstate;i++)
               else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];            prlim[i][i]=mobaverage[(int)age][i][ij];
             }            }
             if (h*hstepm/YEARM*stepm==cpt) fprintf(ficresf," %.5f ", kk1);      }
           }               
         }      /* This for computing probability of death (h=1 means
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       }         as a weighted average of prlim.
     }      */
   }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   fclose(ficresf);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   /*---------- Health expectancies and variances ------------*/      }    
       /* end probability of death */
   strcpy(filerest,"t");  
   strcat(filerest,fileres);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   if((ficrest=fopen(filerest,"w"))==NULL) {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   }        for(i=1; i<=nlstate;i++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
   strcpy(filerese,"e");      fprintf(ficresprobmorprev,"\n");
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {      fprintf(ficresvij,"%.0f ",age );
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
  strcpy(fileresv,"v");      fprintf(ficresvij,"\n");
   strcat(fileresv,fileres);      free_matrix(gp,0,nhstepm,1,nlstate);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      free_matrix(gm,0,nhstepm,1,nlstate);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
   k=0;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   for(cptcov=1;cptcov<=i1;cptcov++){    free_vector(gmp,nlstate+1,nlstate+ndeath);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       k=k+1;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficrest,"\n#****** ");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       for(j=1;j<=cptcoveff;j++)    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       fprintf(ficrest,"******\n");  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficreseij,"\n#****** ");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for(j=1;j<=cptcoveff;j++)    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       fprintf(ficreseij,"******\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       fprintf(ficresvij,"\n#****** ");    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       for(j=1;j<=cptcoveff;j++)    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  */
       fprintf(ficresvij,"******\n");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    free_vector(xp,1,npar);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      free_matrix(doldm,1,nlstate,1,nlstate);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    free_matrix(dnewm,1,nlstate,1,npar);
       oldm=oldms;savm=savms;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
          free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fclose(ficresprobmorprev);
       fprintf(ficrest,"\n");    fflush(ficgp);
            fflush(fichtm); 
       hf=1;  }  /* end varevsij */
       if (stepm >= YEARM) hf=stepm/YEARM;  
       epj=vector(1,nlstate+1);  /************ Variance of prevlim ******************/
       for(age=bage; age <=fage ;age++){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  {
         if (popbased==1) {    /* Variance of prevalence limit */
           for(i=1; i<=nlstate;i++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
             prlim[i][i]=probs[(int)age][i][k];    double **newm;
         }    double **dnewm,**doldm;
            int i, j, nhstepm, hstepm;
         fprintf(ficrest," %.0f",age);    int k, cptcode;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    double *xp;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    double *gp, *gm;
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    double **gradg, **trgradg;
           }    double age,agelim;
           epj[nlstate+1] +=epj[j];    int theta;
         }    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
         for(i=1, vepp=0.;i <=nlstate;i++)    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
           for(j=1;j <=nlstate;j++)    fprintf(ficresvpl,"# Age");
             vepp += vareij[i][j][(int)age];    for(i=1; i<=nlstate;i++)
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        fprintf(ficresvpl," %1d-%1d",i,i);
         for(j=1;j <=nlstate;j++){    fprintf(ficresvpl,"\n");
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  
         }    xp=vector(1,npar);
         fprintf(ficrest,"\n");    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
     }    
   }    hstepm=1*YEARM; /* Every year of age */
            hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
            agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
  fclose(ficreseij);      if (stepm >= YEARM) hstepm=1;
  fclose(ficresvij);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   fclose(ficrest);      gradg=matrix(1,npar,1,nlstate);
   fclose(ficpar);      gp=vector(1,nlstate);
   free_vector(epj,1,nlstate+1);      gm=vector(1,nlstate);
   /*  scanf("%d ",i); */  
       for(theta=1; theta <=npar; theta++){
   /*------- Variance limit prevalence------*/          for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
 strcpy(fileresvpl,"vpl");        }
   strcat(fileresvpl,fileres);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        for(i=1;i<=nlstate;i++)
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          gp[i] = prlim[i][i];
     exit(0);      
   }        for(i=1; i<=npar; i++) /* Computes gradient */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  k=0;        for(i=1;i<=nlstate;i++)
  for(cptcov=1;cptcov<=i1;cptcov++){          gm[i] = prlim[i][i];
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
      k=k+1;        for(i=1;i<=nlstate;i++)
      fprintf(ficresvpl,"\n#****** ");          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
      for(j=1;j<=cptcoveff;j++)      } /* End theta */
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
      fprintf(ficresvpl,"******\n");      trgradg =matrix(1,nlstate,1,npar);
        
      varpl=matrix(1,nlstate,(int) bage, (int) fage);      for(j=1; j<=nlstate;j++)
      oldm=oldms;savm=savms;        for(theta=1; theta <=npar; theta++)
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          trgradg[j][theta]=gradg[theta][j];
    }  
  }      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
   fclose(ficresvpl);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   /*---------- End : free ----------------*/      for(i=1;i<=nlstate;i++)
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      fprintf(ficresvpl,"%.0f ",age );
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      free_vector(gp,1,nlstate);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_vector(gm,1,nlstate);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_matrix(gradg,1,npar,1,nlstate);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_matrix(trgradg,1,nlstate,1,npar);
      } /* End age */
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    free_matrix(dnewm,1,nlstate,1,nlstate);
   
   printf("End of Imach\n");  }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
    /************ Variance of one-step probabilities  ******************/
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   /*printf("Total time was %d uSec.\n", total_usecs);*/  {
   /*------ End -----------*/    int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
  end:    int first=1, first1;
 #ifdef windows    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
  chdir(pathcd);    double **dnewm,**doldm;
 #endif    double *xp;
      double *gp, *gm;
  system("..\\gp37mgw\\wgnuplot graph.plt");    double **gradg, **trgradg;
     double **mu;
 #ifdef windows    double age,agelim, cov[NCOVMAX];
   while (z[0] != 'q') {    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     chdir(pathcd);    int theta;
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    char fileresprob[FILENAMELENGTH];
     scanf("%s",z);    char fileresprobcov[FILENAMELENGTH];
     if (z[0] == 'c') system("./imach");    char fileresprobcor[FILENAMELENGTH];
     else if (z[0] == 'e') {  
       chdir(path);    double ***varpij;
       system(optionfilehtm);  
     }    strcpy(fileresprob,"prob"); 
     else if (z[0] == 'q') exit(0);    strcat(fileresprob,fileres);
   }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 #endif      printf("Problem with resultfile: %s\n", fileresprob);
 }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficresprob, "#Local time at start: %s", strstart);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.14  
changed lines
  Added in v.1.115


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>