Diff for /imach/src/imach.c between versions 1.49 and 1.115

version 1.49, 2002/06/20 14:03:39 version 1.115, 2006/02/27 12:17:45
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.115  2006/02/27 12:17:45  brouard
      (Module): One freematrix added in mlikeli! 0.98c
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.114  2006/02/26 12:57:58  brouard
   first survey ("cross") where individuals from different ages are    (Module): Some improvements in processing parameter
   interviewed on their health status or degree of disability (in the    filename with strsep.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.113  2006/02/24 14:20:24  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Memory leaks checks with valgrind and:
   computed from the time spent in each health state according to a    datafile was not closed, some imatrix were not freed and on matrix
   model. More health states you consider, more time is necessary to reach the    allocation too.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.112  2006/01/30 09:55:26  brouard
   probability to be observed in state j at the second wave    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.111  2006/01/25 20:38:18  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Lots of cleaning and bugs added (Gompertz)
   complex model than "constant and age", you should modify the program    (Module): Comments can be added in data file. Missing date values
   where the markup *Covariates have to be included here again* invites    can be a simple dot '.'.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.109  2006/01/24 19:37:15  brouard
   identical for each individual. Also, if a individual missed an    (Module): Comments (lines starting with a #) are allowed in data.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
   hPijx is the probability to be observed in state i at age x+h    To be fixed
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.107  2006/01/19 16:20:37  brouard
   states. This elementary transition (by month or quarter trimester,    Test existence of gnuplot in imach path
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.106  2006/01/19 13:24:36  brouard
   and the contribution of each individual to the likelihood is simply    Some cleaning and links added in html output
   hPijx.  
     Revision 1.105  2006/01/05 20:23:19  lievre
   Also this programme outputs the covariance matrix of the parameters but also    *** empty log message ***
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.104  2005/09/30 16:11:43  lievre
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): sump fixed, loop imx fixed, and simplifications.
            Institut national d'études démographiques, Paris.    (Module): If the status is missing at the last wave but we know
   This software have been partly granted by Euro-REVES, a concerted action    that the person is alive, then we can code his/her status as -2
   from the European Union.    (instead of missing=-1 in earlier versions) and his/her
   It is copyrighted identically to a GNU software product, ie programme and    contributions to the likelihood is 1 - Prob of dying from last
   software can be distributed freely for non commercial use. Latest version    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   can be accessed at http://euroreves.ined.fr/imach .    the healthy state at last known wave). Version is 0.98
   **********************************************************************/  
      Revision 1.103  2005/09/30 15:54:49  lievre
 #include <math.h>    (Module): sump fixed, loop imx fixed, and simplifications.
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.102  2004/09/15 17:31:30  brouard
 #include <unistd.h>    Add the possibility to read data file including tab characters.
   
 #define MAXLINE 256    Revision 1.101  2004/09/15 10:38:38  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Fix on curr_time
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.100  2004/07/12 18:29:06  brouard
 /*#define DEBUG*/    Add version for Mac OS X. Just define UNIX in Makefile
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.99  2004/06/05 08:57:40  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    *** empty log message ***
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.98  2004/05/16 15:05:56  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 #define NINTERVMAX 8    state at each age, but using a Gompertz model: log u =a + b*age .
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    This is the basic analysis of mortality and should be done before any
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    other analysis, in order to test if the mortality estimated from the
 #define NCOVMAX 8 /* Maximum number of covariates */    cross-longitudinal survey is different from the mortality estimated
 #define MAXN 20000    from other sources like vital statistic data.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    The same imach parameter file can be used but the option for mle should be -3.
 #define AGEBASE 40  
 #ifdef windows    Agnès, who wrote this part of the code, tried to keep most of the
 #define DIRSEPARATOR '\\'    former routines in order to include the new code within the former code.
 #else  
 #define DIRSEPARATOR '/'    The output is very simple: only an estimate of the intercept and of
 #endif    the slope with 95% confident intervals.
   
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    Current limitations:
 int erreur; /* Error number */    A) Even if you enter covariates, i.e. with the
 int nvar;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    B) There is no computation of Life Expectancy nor Life Table.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.97  2004/02/20 13:25:42  lievre
 int ndeath=1; /* Number of dead states */    Version 0.96d. Population forecasting command line is (temporarily)
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    suppressed.
 int popbased=0;  
     Revision 1.96  2003/07/15 15:38:55  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int maxwav; /* Maxim number of waves */    rewritten within the same printf. Workaround: many printfs.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.95  2003/07/08 07:54:34  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    * imach.c (Repository):
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Repository): Using imachwizard code to output a more meaningful covariance
 double jmean; /* Mean space between 2 waves */    matrix (cov(a12,c31) instead of numbers.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.94  2003/06/27 13:00:02  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Just cleaning
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *fichtm; /* Html File */    Revision 1.93  2003/06/25 16:33:55  brouard
 FILE *ficreseij;    (Module): On windows (cygwin) function asctime_r doesn't
 char filerese[FILENAMELENGTH];    exist so I changed back to asctime which exists.
 FILE  *ficresvij;    (Module): Version 0.96b
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.92  2003/06/25 16:30:45  brouard
 char fileresvpl[FILENAMELENGTH];    (Module): On windows (cygwin) function asctime_r doesn't
 char title[MAXLINE];    exist so I changed back to asctime which exists.
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 char filerest[FILENAMELENGTH];    is stamped in powell.  We created a new html file for the graphs
 char fileregp[FILENAMELENGTH];    concerning matrix of covariance. It has extension -cov.htm.
 char popfile[FILENAMELENGTH];  
     Revision 1.90  2003/06/24 12:34:15  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 #define NR_END 1    of the covariance matrix to be input.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define NRANSI    mle=-1 a template is output in file "or"mypar.txt with the design
 #define ITMAX 200    of the covariance matrix to be input.
   
 #define TOL 2.0e-4    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.87  2003/06/18 12:26:01  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Version 0.96
   
 #define GOLD 1.618034    Revision 1.86  2003/06/17 20:04:08  brouard
 #define GLIMIT 100.0    (Module): Change position of html and gnuplot routines and added
 #define TINY 1.0e-20    routine fileappend.
   
 static double maxarg1,maxarg2;    Revision 1.85  2003/06/17 13:12:43  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Repository): Check when date of death was earlier that
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    current date of interview. It may happen when the death was just
      prior to the death. In this case, dh was negative and likelihood
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    was wrong (infinity). We still send an "Error" but patch by
 #define rint(a) floor(a+0.5)    assuming that the date of death was just one stepm after the
     interview.
 static double sqrarg;    (Repository): Because some people have very long ID (first column)
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    we changed int to long in num[] and we added a new lvector for
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    memory allocation. But we also truncated to 8 characters (left
     truncation)
 int imx;    (Repository): No more line truncation errors.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 int estepm;    place. It differs from routine "prevalence" which may be called
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    many times. Probs is memory consuming and must be used with
     parcimony.
 int m,nb;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.83  2003/06/10 13:39:11  lievre
 double **pmmij, ***probs, ***mobaverage;    *** empty log message ***
 double dateintmean=0;  
     Revision 1.82  2003/06/05 15:57:20  brouard
 double *weight;    Add log in  imach.c and  fullversion number is now printed.
 int **s; /* Status */  
 double *agedc, **covar, idx;  */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  /*
      Interpolated Markov Chain
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Short summary of the programme:
     
 /**************** split *************************/    This program computes Healthy Life Expectancies from
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 {    first survey ("cross") where individuals from different ages are
    char *s;                             /* pointer */    interviewed on their health status or degree of disability (in the
    int  l1, l2;                         /* length counters */    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
    l1 = strlen( path );                 /* length of path */    (if any) in individual health status.  Health expectancies are
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    computed from the time spent in each health state according to a
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    model. More health states you consider, more time is necessary to reach the
    if ( s == NULL ) {                   /* no directory, so use current */    Maximum Likelihood of the parameters involved in the model.  The
 #if     defined(__bsd__)                /* get current working directory */    simplest model is the multinomial logistic model where pij is the
       extern char       *getwd( );    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
       if ( getwd( dirc ) == NULL ) {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #else    'age' is age and 'sex' is a covariate. If you want to have a more
       extern char       *getcwd( );    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    you to do it.  More covariates you add, slower the
 #endif    convergence.
          return( GLOCK_ERROR_GETCWD );  
       }    The advantage of this computer programme, compared to a simple
       strcpy( name, path );             /* we've got it */    multinomial logistic model, is clear when the delay between waves is not
    } else {                             /* strip direcotry from path */    identical for each individual. Also, if a individual missed an
       s++;                              /* after this, the filename */    intermediate interview, the information is lost, but taken into
       l2 = strlen( s );                 /* length of filename */    account using an interpolation or extrapolation.  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    hPijx is the probability to be observed in state i at age x+h
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    conditional to the observed state i at age x. The delay 'h' can be
       dirc[l1-l2] = 0;                  /* add zero */    split into an exact number (nh*stepm) of unobserved intermediate
    }    states. This elementary transition (by month, quarter,
    l1 = strlen( dirc );                 /* length of directory */    semester or year) is modelled as a multinomial logistic.  The hPx
 #ifdef windows    matrix is simply the matrix product of nh*stepm elementary matrices
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    and the contribution of each individual to the likelihood is simply
 #else    hPijx.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Also this programme outputs the covariance matrix of the parameters but also
    s = strrchr( name, '.' );            /* find last / */    of the life expectancies. It also computes the stable prevalence. 
    s++;    
    strcpy(ext,s);                       /* save extension */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    l1= strlen( name);             Institut national d'études démographiques, Paris.
    l2= strlen( s)+1;    This software have been partly granted by Euro-REVES, a concerted action
    strncpy( finame, name, l1-l2);    from the European Union.
    finame[l1-l2]= 0;    It is copyrighted identically to a GNU software product, ie programme and
    return( 0 );                         /* we're done */    software can be distributed freely for non commercial use. Latest version
 }    can be accessed at http://euroreves.ined.fr/imach .
   
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /******************************************/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 void replace(char *s, char*t)    **********************************************************************/
 {  /*
   int i;    main
   int lg=20;    read parameterfile
   i=0;    read datafile
   lg=strlen(t);    concatwav
   for(i=0; i<= lg; i++) {    freqsummary
     (s[i] = t[i]);    if (mle >= 1)
     if (t[i]== '\\') s[i]='/';      mlikeli
   }    print results files
 }    if mle==1 
        computes hessian
 int nbocc(char *s, char occ)    read end of parameter file: agemin, agemax, bage, fage, estepm
 {        begin-prev-date,...
   int i,j=0;    open gnuplot file
   int lg=20;    open html file
   i=0;    stable prevalence
   lg=strlen(s);     for age prevalim()
   for(i=0; i<= lg; i++) {    h Pij x
   if  (s[i] == occ ) j++;    variance of p varprob
   }    forecasting if prevfcast==1 prevforecast call prevalence()
   return j;    health expectancies
 }    Variance-covariance of DFLE
     prevalence()
 void cutv(char *u,char *v, char*t, char occ)     movingaverage()
 {    varevsij() 
   int i,lg,j,p=0;    if popbased==1 varevsij(,popbased)
   i=0;    total life expectancies
   for(j=0; j<=strlen(t)-1; j++) {    Variance of stable prevalence
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;   end
   }  */
   
   lg=strlen(t);  
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);   
   }  #include <math.h>
      u[p]='\0';  #include <stdio.h>
   #include <stdlib.h>
    for(j=0; j<= lg; j++) {  #include <string.h>
     if (j>=(p+1))(v[j-p-1] = t[j]);  #include <unistd.h>
   }  
 }  #include <limits.h>
   #include <sys/types.h>
 /********************** nrerror ********************/  #include <sys/stat.h>
   #include <errno.h>
 void nrerror(char error_text[])  extern int errno;
 {  
   fprintf(stderr,"ERREUR ...\n");  /* #include <sys/time.h> */
   fprintf(stderr,"%s\n",error_text);  #include <time.h>
   exit(1);  #include "timeval.h"
 }  
 /*********************** vector *******************/  /* #include <libintl.h> */
 double *vector(int nl, int nh)  /* #define _(String) gettext (String) */
 {  
   double *v;  #define MAXLINE 256
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  #define GNUPLOTPROGRAM "gnuplot"
   return v-nl+NR_END;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   
 /************************ free vector ******************/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 void free_vector(double*v, int nl, int nh)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 /************************ivector *******************************/  #define NINTERVMAX 8
 int *ivector(long nl,long nh)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   int *v;  #define NCOVMAX 8 /* Maximum number of covariates */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define MAXN 20000
   if (!v) nrerror("allocation failure in ivector");  #define YEARM 12. /* Number of months per year */
   return v-nl+NR_END;  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /******************free ivector **************************/  #ifdef UNIX
 void free_ivector(int *v, long nl, long nh)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   free((FREE_ARG)(v+nl-NR_END));  #define ODIRSEPARATOR '\\'
 }  #else
   #define DIRSEPARATOR '\\'
 /******************* imatrix *******************************/  #define CHARSEPARATOR "\\"
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define ODIRSEPARATOR '/'
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #endif
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  /* $Id$ */
   int **m;  /* $State$ */
    
   /* allocate pointers to rows */  char version[]="Imach version 0.98c, February 2006, INED-EUROREVES ";
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  char fullversion[]="$Revision$ $Date$"; 
   if (!m) nrerror("allocation failure 1 in matrix()");  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m += NR_END;  int nvar;
   m -= nrl;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    int npar=NPARMAX;
    int nlstate=2; /* Number of live states */
   /* allocate rows and set pointers to them */  int ndeath=1; /* Number of dead states */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int popbased=0;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int *wav; /* Number of waves for this individuual 0 is possible */
    int maxwav; /* Maxim number of waves */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int jmin, jmax; /* min, max spacing between 2 waves */
    int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   /* return pointer to array of pointers to rows */  int gipmx, gsw; /* Global variables on the number of contributions 
   return m;                     to the likelihood and the sum of weights (done by funcone)*/
 }  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 /****************** free_imatrix *************************/  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 void free_imatrix(m,nrl,nrh,ncl,nch)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       int **m;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       long nch,ncl,nrh,nrl;  double jmean; /* Mean space between 2 waves */
      /* free an int matrix allocated by imatrix() */  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   free((FREE_ARG) (m+nrl-NR_END));  FILE *ficlog, *ficrespow;
 }  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /******************* matrix *******************************/  long ipmx; /* Number of contributions */
 double **matrix(long nrl, long nrh, long ncl, long nch)  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   double **m;  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *ficresprobmorprev;
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *fichtm, *fichtmcov; /* Html File */
   m += NR_END;  FILE *ficreseij;
   m -= nrl;  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char fileresv[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE  *ficresvpl;
   m[nrl] += NR_END;  char fileresvpl[FILENAMELENGTH];
   m[nrl] -= ncl;  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   return m;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char filelog[FILENAMELENGTH]; /* Log file */
   free((FREE_ARG)(m+nrl-NR_END));  char filerest[FILENAMELENGTH];
 }  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   double ***m;  struct timezone tzp;
   extern int gettimeofday();
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   if (!m) nrerror("allocation failure 1 in matrix()");  long time_value;
   m += NR_END;  extern long time();
   m -= nrl;  char strcurr[80], strfor[80];
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char *endptr;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  long lval;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define NR_END 1
   #define FREE_ARG char*
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define FTOL 1.0e-10
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define NRANSI 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define ITMAX 200 
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  #define TOL 2.0e-4 
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  #define CGOLD 0.3819660 
    #define ZEPS 1.0e-10 
   for (i=nrl+1; i<=nrh; i++) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #define GOLD 1.618034 
       m[i][j]=m[i][j-1]+nlay;  #define GLIMIT 100.0 
   }  #define TINY 1.0e-20 
   return m;  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /*************************free ma3x ************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define rint(a) floor(a+0.5)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 /***************** f1dim *************************/  int agegomp= AGEGOMP;
 extern int ncom;  
 extern double *pcom,*xicom;  int imx; 
 extern double (*nrfunc)(double []);  int stepm=1;
    /* Stepm, step in month: minimum step interpolation*/
 double f1dim(double x)  
 {  int estepm;
   int j;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   double f;  
   double *xt;  int m,nb;
    long *num;
   xt=vector(1,ncom);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   f=(*nrfunc)(xt);  double **pmmij, ***probs;
   free_vector(xt,1,ncom);  double *ageexmed,*agecens;
   return f;  double dateintmean=0;
 }  
   double *weight;
 /*****************brent *************************/  int **s; /* Status */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double *agedc, **covar, idx;
 {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   int iter;  double *lsurv, *lpop, *tpop;
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftemp;  double ftolhess; /* Tolerance for computing hessian */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  /**************** split *************************/
    static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   a=(ax < cx ? ax : cx);  {
   b=(ax > cx ? ax : cx);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   x=w=v=bx;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   fw=fv=fx=(*f)(x);    */ 
   for (iter=1;iter<=ITMAX;iter++) {    char  *ss;                            /* pointer */
     xm=0.5*(a+b);    int   l1, l2;                         /* length counters */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    l1 = strlen(path );                   /* length of path */
     printf(".");fflush(stdout);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 #ifdef DEBUG    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      strcpy( name, path );               /* we got the fullname name because no directory */
 #endif      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       *xmin=x;      /* get current working directory */
       return fx;      /*    extern  char* getcwd ( char *buf , int len);*/
     }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     ftemp=fu;        return( GLOCK_ERROR_GETCWD );
     if (fabs(e) > tol1) {      }
       r=(x-w)*(fx-fv);      /* got dirc from getcwd*/
       q=(x-v)*(fx-fw);      printf(" DIRC = %s \n",dirc);
       p=(x-v)*q-(x-w)*r;    } else {                              /* strip direcotry from path */
       q=2.0*(q-r);      ss++;                               /* after this, the filename */
       if (q > 0.0) p = -p;      l2 = strlen( ss );                  /* length of filename */
       q=fabs(q);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       etemp=e;      strcpy( name, ss );         /* save file name */
       e=d;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      dirc[l1-l2] = 0;                    /* add zero */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      printf(" DIRC2 = %s \n",dirc);
       else {    }
         d=p/q;    /* We add a separator at the end of dirc if not exists */
         u=x+d;    l1 = strlen( dirc );                  /* length of directory */
         if (u-a < tol2 || b-u < tol2)    if( dirc[l1-1] != DIRSEPARATOR ){
           d=SIGN(tol1,xm-x);      dirc[l1] =  DIRSEPARATOR;
       }      dirc[l1+1] = 0; 
     } else {      printf(" DIRC3 = %s \n",dirc);
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    }
     }    ss = strrchr( name, '.' );            /* find last / */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    if (ss >0){
     fu=(*f)(u);      ss++;
     if (fu <= fx) {      strcpy(ext,ss);                     /* save extension */
       if (u >= x) a=x; else b=x;      l1= strlen( name);
       SHFT(v,w,x,u)      l2= strlen(ss)+1;
         SHFT(fv,fw,fx,fu)      strncpy( finame, name, l1-l2);
         } else {      finame[l1-l2]= 0;
           if (u < x) a=u; else b=u;    }
           if (fu <= fw || w == x) {  
             v=w;    return( 0 );                          /* we're done */
             w=u;  }
             fv=fw;  
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /******************************************/
             v=u;  
             fv=fu;  void replace_back_to_slash(char *s, char*t)
           }  {
         }    int i;
   }    int lg=0;
   nrerror("Too many iterations in brent");    i=0;
   *xmin=x;    lg=strlen(t);
   return fx;    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /****************** mnbrak ***********************/    }
   }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  int nbocc(char *s, char occ)
 {  {
   double ulim,u,r,q, dum;    int i,j=0;
   double fu;    int lg=20;
      i=0;
   *fa=(*func)(*ax);    lg=strlen(s);
   *fb=(*func)(*bx);    for(i=0; i<= lg; i++) {
   if (*fb > *fa) {    if  (s[i] == occ ) j++;
     SHFT(dum,*ax,*bx,dum)    }
       SHFT(dum,*fb,*fa,dum)    return j;
       }  }
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  void cutv(char *u,char *v, char*t, char occ)
   while (*fb > *fc) {  {
     r=(*bx-*ax)*(*fb-*fc);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     q=(*bx-*cx)*(*fb-*fa);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       gives u="abcedf" and v="ghi2j" */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    int i,lg,j,p=0;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    i=0;
     if ((*bx-u)*(u-*cx) > 0.0) {    for(j=0; j<=strlen(t)-1; j++) {
       fu=(*func)(u);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    }
       fu=(*func)(u);  
       if (fu < *fc) {    lg=strlen(t);
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    for(j=0; j<p; j++) {
           SHFT(*fb,*fc,fu,(*func)(u))      (u[j] = t[j]);
           }    }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {       u[p]='\0';
       u=ulim;  
       fu=(*func)(u);     for(j=0; j<= lg; j++) {
     } else {      if (j>=(p+1))(v[j-p-1] = t[j]);
       u=(*cx)+GOLD*(*cx-*bx);    }
       fu=(*func)(u);  }
     }  
     SHFT(*ax,*bx,*cx,u)  /********************** nrerror ********************/
       SHFT(*fa,*fb,*fc,fu)  
       }  void nrerror(char error_text[])
 }  {
     fprintf(stderr,"ERREUR ...\n");
 /*************** linmin ************************/    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
 int ncom;  }
 double *pcom,*xicom;  /*********************** vector *******************/
 double (*nrfunc)(double []);  double *vector(int nl, int nh)
    {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    double *v;
 {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double brent(double ax, double bx, double cx,    if (!v) nrerror("allocation failure in vector");
                double (*f)(double), double tol, double *xmin);    return v-nl+NR_END;
   double f1dim(double x);  }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  /************************ free vector ******************/
   int j;  void free_vector(double*v, int nl, int nh)
   double xx,xmin,bx,ax;  {
   double fx,fb,fa;    free((FREE_ARG)(v+nl-NR_END));
    }
   ncom=n;  
   pcom=vector(1,n);  /************************ivector *******************************/
   xicom=vector(1,n);  int *ivector(long nl,long nh)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    int *v;
     pcom[j]=p[j];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     xicom[j]=xi[j];    if (!v) nrerror("allocation failure in ivector");
   }    return v-nl+NR_END;
   ax=0.0;  }
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /******************free ivector **************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  void free_ivector(int *v, long nl, long nh)
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /************************lvector *******************************/
     p[j] += xi[j];  long *lvector(long nl,long nh)
   }  {
   free_vector(xicom,1,n);    long *v;
   free_vector(pcom,1,n);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /*************** powell ************************/  }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  /******************free lvector **************************/
 {  void free_lvector(long *v, long nl, long nh)
   void linmin(double p[], double xi[], int n, double *fret,  {
               double (*func)(double []));    free((FREE_ARG)(v+nl-NR_END));
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /******************* imatrix *******************************/
   double *xits;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   pt=vector(1,n);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   ptt=vector(1,n);  { 
   xit=vector(1,n);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   xits=vector(1,n);    int **m; 
   *fret=(*func)(p);    
   for (j=1;j<=n;j++) pt[j]=p[j];    /* allocate pointers to rows */ 
   for (*iter=1;;++(*iter)) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     fp=(*fret);    if (!m) nrerror("allocation failure 1 in matrix()"); 
     ibig=0;    m += NR_END; 
     del=0.0;    m -= nrl; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    
     for (i=1;i<=n;i++)    
       printf(" %d %.12f",i, p[i]);    /* allocate rows and set pointers to them */ 
     printf("\n");    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     for (i=1;i<=n;i++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m[nrl] += NR_END; 
       fptt=(*fret);    m[nrl] -= ncl; 
 #ifdef DEBUG    
       printf("fret=%lf \n",*fret);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 #endif    
       printf("%d",i);fflush(stdout);    /* return pointer to array of pointers to rows */ 
       linmin(p,xit,n,fret,func);    return m; 
       if (fabs(fptt-(*fret)) > del) {  } 
         del=fabs(fptt-(*fret));  
         ibig=i;  /****************** free_imatrix *************************/
       }  void free_imatrix(m,nrl,nrh,ncl,nch)
 #ifdef DEBUG        int **m;
       printf("%d %.12e",i,(*fret));        long nch,ncl,nrh,nrl; 
       for (j=1;j<=n;j++) {       /* free an int matrix allocated by imatrix() */ 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  { 
         printf(" x(%d)=%.12e",j,xit[j]);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       }    free((FREE_ARG) (m+nrl-NR_END)); 
       for(j=1;j<=n;j++)  } 
         printf(" p=%.12e",p[j]);  
       printf("\n");  /******************* matrix *******************************/
 #endif  double **matrix(long nrl, long nrh, long ncl, long nch)
     }  {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 #ifdef DEBUG    double **m;
       int k[2],l;  
       k[0]=1;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       k[1]=-1;    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("Max: %.12e",(*func)(p));    m += NR_END;
       for (j=1;j<=n;j++)    m -= nrl;
         printf(" %.12e",p[j]);  
       printf("\n");    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for(l=0;l<=1;l++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         for (j=1;j<=n;j++) {    m[nrl] += NR_END;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m[nrl] -= ncl;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    return m;
       }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 #endif     */
   }
   
       free_vector(xit,1,n);  /*************************free matrix ************************/
       free_vector(xits,1,n);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       free_vector(ptt,1,n);  {
       free_vector(pt,1,n);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       return;    free((FREE_ARG)(m+nrl-NR_END));
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /******************* ma3x *******************************/
       ptt[j]=2.0*p[j]-pt[j];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     }    double ***m;
     fptt=(*func)(ptt);  
     if (fptt < fp) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    if (!m) nrerror("allocation failure 1 in matrix()");
       if (t < 0.0) {    m += NR_END;
         linmin(p,xit,n,fret,func);    m -= nrl;
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           xi[j][n]=xit[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         }    m[nrl] += NR_END;
 #ifdef DEBUG    m[nrl] -= ncl;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           printf(" %.12e",xit[j]);  
         printf("\n");    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 #endif    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       }    m[nrl][ncl] += NR_END;
     }    m[nrl][ncl] -= nll;
   }    for (j=ncl+1; j<=nch; j++) 
 }      m[nrl][j]=m[nrl][j-1]+nlay;
     
 /**** Prevalence limit ****************/    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      for (j=ncl+1; j<=nch; j++) 
 {        m[i][j]=m[i][j-1]+nlay;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    }
      matrix by transitions matrix until convergence is reached */    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   int i, ii,j,k;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double min, max, maxmin, maxmax,sumnew=0.;    */
   double **matprod2();  }
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /*************************free ma3x ************************/
   double agefin, delaymax=50 ; /* Max number of years to converge */  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
   for (ii=1;ii<=nlstate+ndeath;ii++)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     for (j=1;j<=nlstate+ndeath;j++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG)(m+nrl-NR_END));
     }  }
   
    cov[1]=1.;  /*************** function subdirf ***********/
    char *subdirf(char fileres[])
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  {
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    /* Caution optionfilefiname is hidden */
     newm=savm;    strcpy(tmpout,optionfilefiname);
     /* Covariates have to be included here again */    strcat(tmpout,"/"); /* Add to the right */
      cov[2]=agefin;    strcat(tmpout,fileres);
      return tmpout;
       for (k=1; k<=cptcovn;k++) {  }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  /*************** function subdirf2 ***********/
       }  char *subdirf2(char fileres[], char *preop)
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    strcat(tmpout,"/");
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    strcat(tmpout,preop);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    strcat(tmpout,fileres);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    return tmpout;
   }
     savm=oldm;  
     oldm=newm;  /*************** function subdirf3 ***********/
     maxmax=0.;  char *subdirf3(char fileres[], char *preop, char *preop2)
     for(j=1;j<=nlstate;j++){  {
       min=1.;    
       max=0.;    /* Caution optionfilefiname is hidden */
       for(i=1; i<=nlstate; i++) {    strcpy(tmpout,optionfilefiname);
         sumnew=0;    strcat(tmpout,"/");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    strcat(tmpout,preop);
         prlim[i][j]= newm[i][j]/(1-sumnew);    strcat(tmpout,preop2);
         max=FMAX(max,prlim[i][j]);    strcat(tmpout,fileres);
         min=FMIN(min,prlim[i][j]);    return tmpout;
       }  }
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  /***************** f1dim *************************/
     }  extern int ncom; 
     if(maxmax < ftolpl){  extern double *pcom,*xicom;
       return prlim;  extern double (*nrfunc)(double []); 
     }   
   }  double f1dim(double x) 
 }  { 
     int j; 
 /*************** transition probabilities ***************/    double f;
     double *xt; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )   
 {    xt=vector(1,ncom); 
   double s1, s2;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   /*double t34;*/    f=(*nrfunc)(xt); 
   int i,j,j1, nc, ii, jj;    free_vector(xt,1,ncom); 
     return f; 
     for(i=1; i<= nlstate; i++){  } 
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*****************brent *************************/
         /*s2 += param[i][j][nc]*cov[nc];*/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    int iter; 
       }    double a,b,d,etemp;
       ps[i][j]=s2;    double fu,fv,fw,fx;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double ftemp;
     }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for(j=i+1; j<=nlstate+ndeath;j++){    double e=0.0; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){   
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    a=(ax < cx ? ax : cx); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    b=(ax > cx ? ax : cx); 
       }    x=w=v=bx; 
       ps[i][j]=s2;    fw=fv=fx=(*f)(x); 
     }    for (iter=1;iter<=ITMAX;iter++) { 
   }      xm=0.5*(a+b); 
     /*ps[3][2]=1;*/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for(i=1; i<= nlstate; i++){      printf(".");fflush(stdout);
      s1=0;      fprintf(ficlog,".");fflush(ficlog);
     for(j=1; j<i; j++)  #ifdef DEBUG
       s1+=exp(ps[i][j]);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(j=i+1; j<=nlstate+ndeath; j++)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       s1+=exp(ps[i][j]);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     ps[i][i]=1./(s1+1.);  #endif
     for(j=1; j<i; j++)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        *xmin=x; 
     for(j=i+1; j<=nlstate+ndeath; j++)        return fx; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      } 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      ftemp=fu;
   } /* end i */      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        q=(x-v)*(fx-fw); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        p=(x-v)*q-(x-w)*r; 
       ps[ii][jj]=0;        q=2.0*(q-r); 
       ps[ii][ii]=1;        if (q > 0.0) p = -p; 
     }        q=fabs(q); 
   }        etemp=e; 
         e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        else { 
      printf("%lf ",ps[ii][jj]);          d=p/q; 
    }          u=x+d; 
     printf("\n ");          if (u-a < tol2 || b-u < tol2) 
     }            d=SIGN(tol1,xm-x); 
     printf("\n ");printf("%lf ",cov[2]);*/        } 
 /*      } else { 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   goto end;*/      } 
     return ps;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 }      fu=(*f)(u); 
       if (fu <= fx) { 
 /**************** Product of 2 matrices ******************/        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          SHFT(fv,fw,fx,fu) 
 {          } else { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times            if (u < x) a=u; else b=u; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */            if (fu <= fw || w == x) { 
   /* in, b, out are matrice of pointers which should have been initialized              v=w; 
      before: only the contents of out is modified. The function returns              w=u; 
      a pointer to pointers identical to out */              fv=fw; 
   long i, j, k;              fw=fu; 
   for(i=nrl; i<= nrh; i++)            } else if (fu <= fv || v == x || v == w) { 
     for(k=ncolol; k<=ncoloh; k++)              v=u; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)              fv=fu; 
         out[i][k] +=in[i][j]*b[j][k];            } 
           } 
   return out;    } 
 }    nrerror("Too many iterations in brent"); 
     *xmin=x; 
     return fx; 
 /************* Higher Matrix Product ***************/  } 
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /****************** mnbrak ***********************/
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
      duration (i.e. until              double (*func)(double)) 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    double ulim,u,r,q, dum;
      (typically every 2 years instead of every month which is too big).    double fu; 
      Model is determined by parameters x and covariates have to be   
      included manually here.    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
      */    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
   int i, j, d, h, k;        SHFT(dum,*fb,*fa,dum) 
   double **out, cov[NCOVMAX];        } 
   double **newm;    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
   /* Hstepm could be zero and should return the unit matrix */    while (*fb > *fc) { 
   for (i=1;i<=nlstate+ndeath;i++)      r=(*bx-*ax)*(*fb-*fc); 
     for (j=1;j<=nlstate+ndeath;j++){      q=(*bx-*cx)*(*fb-*fa); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      if ((*bx-u)*(u-*cx) > 0.0) { 
   for(h=1; h <=nhstepm; h++){        fu=(*func)(u); 
     for(d=1; d <=hstepm; d++){      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       newm=savm;        fu=(*func)(u); 
       /* Covariates have to be included here again */        if (fu < *fc) { 
       cov[1]=1.;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;            SHFT(*fb,*fc,fu,(*func)(u)) 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];            } 
       for (k=1; k<=cptcovage;k++)      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        u=ulim; 
       for (k=1; k<=cptcovprod;k++)        fu=(*func)(u); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      } 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      SHFT(*ax,*bx,*cx,u) 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        SHFT(*fa,*fb,*fc,fu) 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        } 
       savm=oldm;  } 
       oldm=newm;  
     }  /*************** linmin ************************/
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  int ncom; 
         po[i][j][h]=newm[i][j];  double *pcom,*xicom;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  double (*nrfunc)(double []); 
          */   
       }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   } /* end h */  { 
   return po;    double brent(double ax, double bx, double cx, 
 }                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 /*************** log-likelihood *************/                double *fc, double (*func)(double)); 
 double func( double *x)    int j; 
 {    double xx,xmin,bx,ax; 
   int i, ii, j, k, mi, d, kk;    double fx,fb,fa;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];   
   double **out;    ncom=n; 
   double sw; /* Sum of weights */    pcom=vector(1,n); 
   double lli; /* Individual log likelihood */    xicom=vector(1,n); 
   long ipmx;    nrfunc=func; 
   /*extern weight */    for (j=1;j<=n;j++) { 
   /* We are differentiating ll according to initial status */      pcom[j]=p[j]; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      xicom[j]=xi[j]; 
   /*for(i=1;i<imx;i++)    } 
     printf(" %d\n",s[4][i]);    ax=0.0; 
   */    xx=1.0; 
   cov[1]=1.;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;  #ifdef DEBUG
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(mi=1; mi<= wav[i]-1; mi++){  #endif
       for (ii=1;ii<=nlstate+ndeath;ii++)    for (j=1;j<=n;j++) { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      xi[j] *= xmin; 
       for(d=0; d<dh[mi][i]; d++){      p[j] += xi[j]; 
         newm=savm;    } 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    free_vector(xicom,1,n); 
         for (kk=1; kk<=cptcovage;kk++) {    free_vector(pcom,1,n); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  } 
         }  
          char *asc_diff_time(long time_sec, char ascdiff[])
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  {
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    long sec_left, days, hours, minutes;
         savm=oldm;    days = (time_sec) / (60*60*24);
         oldm=newm;    sec_left = (time_sec) % (60*60*24);
            hours = (sec_left) / (60*60) ;
            sec_left = (sec_left) %(60*60);
       } /* end mult */    minutes = (sec_left) /60;
          sec_left = (sec_left) % (60);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    return ascdiff;
       ipmx +=1;  }
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*************** powell ************************/
     } /* end of wave */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   } /* end of individual */              double (*func)(double [])) 
   { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    void linmin(double p[], double xi[], int n, double *fret, 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */                double (*func)(double [])); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    int i,ibig,j; 
   return -l;    double del,t,*pt,*ptt,*xit;
 }    double fp,fptt;
     double *xits;
     int niterf, itmp;
 /*********** Maximum Likelihood Estimation ***************/  
     pt=vector(1,n); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    ptt=vector(1,n); 
 {    xit=vector(1,n); 
   int i,j, iter;    xits=vector(1,n); 
   double **xi,*delti;    *fret=(*func)(p); 
   double fret;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   xi=matrix(1,npar,1,npar);    for (*iter=1;;++(*iter)) { 
   for (i=1;i<=npar;i++)      fp=(*fret); 
     for (j=1;j<=npar;j++)      ibig=0; 
       xi[i][j]=(i==j ? 1.0 : 0.0);      del=0.0; 
   printf("Powell\n");      last_time=curr_time;
   powell(p,xi,npar,ftol,&iter,&fret,func);      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
 }     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 /**** Computes Hessian and covariance matrix ***/        fprintf(ficlog," %d %.12lf",i, p[i]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        fprintf(ficrespow," %.12lf", p[i]);
 {      }
   double  **a,**y,*x,pd;      printf("\n");
   double **hess;      fprintf(ficlog,"\n");
   int i, j,jk;      fprintf(ficrespow,"\n");fflush(ficrespow);
   int *indx;      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   double hessii(double p[], double delta, int theta, double delti[]);        strcpy(strcurr,asctime(&tm));
   double hessij(double p[], double delti[], int i, int j);  /*       asctime_r(&tm,strcurr); */
   void lubksb(double **a, int npar, int *indx, double b[]) ;        forecast_time=curr_time; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   hess=matrix(1,npar,1,npar);          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   printf("\nCalculation of the hessian matrix. Wait...\n");        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++){        for(niterf=10;niterf<=30;niterf+=10){
     printf("%d",i);fflush(stdout);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     hess[i][i]=hessii(p,ftolhess,i,delti);          tmf = *localtime(&forecast_time.tv_sec);
     /*printf(" %f ",p[i]);*/  /*      asctime_r(&tmf,strfor); */
     /*printf(" %lf ",hess[i][i]);*/          strcpy(strfor,asctime(&tmf));
   }          itmp = strlen(strfor);
            if(strfor[itmp-1]=='\n')
   for (i=1;i<=npar;i++) {          strfor[itmp-1]='\0';
     for (j=1;j<=npar;j++)  {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       if (j>i) {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         printf(".%d%d",i,j);fflush(stdout);        }
         hess[i][j]=hessij(p,delti,i,j);      }
         hess[j][i]=hess[i][j];          for (i=1;i<=n;i++) { 
         /*printf(" %lf ",hess[i][j]);*/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       }        fptt=(*fret); 
     }  #ifdef DEBUG
   }        printf("fret=%lf \n",*fret);
   printf("\n");        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        printf("%d",i);fflush(stdout);
          fprintf(ficlog,"%d",i);fflush(ficlog);
   a=matrix(1,npar,1,npar);        linmin(p,xit,n,fret,func); 
   y=matrix(1,npar,1,npar);        if (fabs(fptt-(*fret)) > del) { 
   x=vector(1,npar);          del=fabs(fptt-(*fret)); 
   indx=ivector(1,npar);          ibig=i; 
   for (i=1;i<=npar;i++)        } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  #ifdef DEBUG
   ludcmp(a,npar,indx,&pd);        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   for (j=1;j<=npar;j++) {        for (j=1;j<=n;j++) {
     for (i=1;i<=npar;i++) x[i]=0;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     x[j]=1;          printf(" x(%d)=%.12e",j,xit[j]);
     lubksb(a,npar,indx,x);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for (i=1;i<=npar;i++){        }
       matcov[i][j]=x[i];        for(j=1;j<=n;j++) {
     }          printf(" p=%.12e",p[j]);
   }          fprintf(ficlog," p=%.12e",p[j]);
         }
   printf("\n#Hessian matrix#\n");        printf("\n");
   for (i=1;i<=npar;i++) {        fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++) {  #endif
       printf("%.3e ",hess[i][j]);      } 
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     printf("\n");  #ifdef DEBUG
   }        int k[2],l;
         k[0]=1;
   /* Recompute Inverse */        k[1]=-1;
   for (i=1;i<=npar;i++)        printf("Max: %.12e",(*func)(p));
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        fprintf(ficlog,"Max: %.12e",(*func)(p));
   ludcmp(a,npar,indx,&pd);        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
   /*  printf("\n#Hessian matrix recomputed#\n");          fprintf(ficlog," %.12e",p[j]);
         }
   for (j=1;j<=npar;j++) {        printf("\n");
     for (i=1;i<=npar;i++) x[i]=0;        fprintf(ficlog,"\n");
     x[j]=1;        for(l=0;l<=1;l++) {
     lubksb(a,npar,indx,x);          for (j=1;j<=n;j++) {
     for (i=1;i<=npar;i++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       y[i][j]=x[i];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       printf("%.3e ",y[i][j]);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }          }
     printf("\n");          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   */        }
   #endif
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);        free_vector(xit,1,n); 
   free_ivector(indx,1,npar);        free_vector(xits,1,n); 
   free_matrix(hess,1,npar,1,npar);        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
         return; 
 }      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 /*************** hessian matrix ****************/      for (j=1;j<=n;j++) { 
 double hessii( double x[], double delta, int theta, double delti[])        ptt[j]=2.0*p[j]-pt[j]; 
 {        xit[j]=p[j]-pt[j]; 
   int i;        pt[j]=p[j]; 
   int l=1, lmax=20;      } 
   double k1,k2;      fptt=(*func)(ptt); 
   double p2[NPARMAX+1];      if (fptt < fp) { 
   double res;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        if (t < 0.0) { 
   double fx;          linmin(p,xit,n,fret,func); 
   int k=0,kmax=10;          for (j=1;j<=n;j++) { 
   double l1;            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
   fx=func(x);          }
   for (i=1;i<=npar;i++) p2[i]=x[i];  #ifdef DEBUG
   for(l=0 ; l <=lmax; l++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     l1=pow(10,l);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     delts=delt;          for(j=1;j<=n;j++){
     for(k=1 ; k <kmax; k=k+1){            printf(" %.12e",xit[j]);
       delt = delta*(l1*k);            fprintf(ficlog," %.12e",xit[j]);
       p2[theta]=x[theta] +delt;          }
       k1=func(p2)-fx;          printf("\n");
       p2[theta]=x[theta]-delt;          fprintf(ficlog,"\n");
       k2=func(p2)-fx;  #endif
       /*res= (k1-2.0*fx+k2)/delt/delt; */        }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      } 
          } 
 #ifdef DEBUG  } 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif  /**** Prevalence limit (stable prevalence)  ****************/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         k=kmax;  {
       }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */       matrix by transitions matrix until convergence is reached */
         k=kmax; l=lmax*10.;  
       }    int i, ii,j,k;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    double min, max, maxmin, maxmax,sumnew=0.;
         delts=delt;    double **matprod2();
       }    double **out, cov[NCOVMAX], **pmij();
     }    double **newm;
   }    double agefin, delaymax=50 ; /* Max number of years to converge */
   delti[theta]=delts;  
   return res;    for (ii=1;ii<=nlstate+ndeath;ii++)
        for (j=1;j<=nlstate+ndeath;j++){
 }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {     cov[1]=1.;
   int i;   
   int l=1, l1, lmax=20;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double k1,k2,k3,k4,res,fx;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   double p2[NPARMAX+1];      newm=savm;
   int k;      /* Covariates have to be included here again */
        cov[2]=agefin;
   fx=func(x);    
   for (k=1; k<=2; k++) {        for (k=1; k<=cptcovn;k++) {
     for (i=1;i<=npar;i++) p2[i]=x[i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     p2[thetai]=x[thetai]+delti[thetai]/k;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k1=func(p2)-fx;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++)
     p2[thetai]=x[thetai]+delti[thetai]/k;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
          /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     p2[thetai]=x[thetai]-delti[thetai]/k;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     k3=func(p2)-fx;  
        savm=oldm;
     p2[thetai]=x[thetai]-delti[thetai]/k;      oldm=newm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      maxmax=0.;
     k4=func(p2)-fx;      for(j=1;j<=nlstate;j++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        min=1.;
 #ifdef DEBUG        max=0.;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for(i=1; i<=nlstate; i++) {
 #endif          sumnew=0;
   }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   return res;          prlim[i][j]= newm[i][j]/(1-sumnew);
 }          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
 /************** Inverse of matrix **************/        }
 void ludcmp(double **a, int n, int *indx, double *d)        maxmin=max-min;
 {        maxmax=FMAX(maxmax,maxmin);
   int i,imax,j,k;      }
   double big,dum,sum,temp;      if(maxmax < ftolpl){
   double *vv;        return prlim;
        }
   vv=vector(1,n);    }
   *d=1.0;  }
   for (i=1;i<=n;i++) {  
     big=0.0;  /*************** transition probabilities ***************/ 
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  {
     vv[i]=1.0/big;    double s1, s2;
   }    /*double t34;*/
   for (j=1;j<=n;j++) {    int i,j,j1, nc, ii, jj;
     for (i=1;i<j;i++) {  
       sum=a[i][j];      for(i=1; i<= nlstate; i++){
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for(j=1; j<i;j++){
       a[i][j]=sum;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     }            /*s2 += param[i][j][nc]*cov[nc];*/
     big=0.0;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (i=j;i<=n;i++) {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       sum=a[i][j];          }
       for (k=1;k<j;k++)          ps[i][j]=s2;
         sum -= a[i][k]*a[k][j];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       a[i][j]=sum;        }
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for(j=i+1; j<=nlstate+ndeath;j++){
         big=dum;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         imax=i;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     }          }
     if (j != imax) {          ps[i][j]=s2;
       for (k=1;k<=n;k++) {        }
         dum=a[imax][k];      }
         a[imax][k]=a[j][k];      /*ps[3][2]=1;*/
         a[j][k]=dum;      
       }      for(i=1; i<= nlstate; i++){
       *d = -(*d);        s1=0;
       vv[imax]=vv[j];        for(j=1; j<i; j++)
     }          s1+=exp(ps[i][j]);
     indx[j]=imax;        for(j=i+1; j<=nlstate+ndeath; j++)
     if (a[j][j] == 0.0) a[j][j]=TINY;          s1+=exp(ps[i][j]);
     if (j != n) {        ps[i][i]=1./(s1+1.);
       dum=1.0/(a[j][j]);        for(j=1; j<i; j++)
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        for(j=i+1; j<=nlstate+ndeath; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   free_vector(vv,1,n);  /* Doesn't work */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 ;      } /* end i */
 }      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 void lubksb(double **a, int n, int *indx, double b[])        for(jj=1; jj<= nlstate+ndeath; jj++){
 {          ps[ii][jj]=0;
   int i,ii=0,ip,j;          ps[ii][ii]=1;
   double sum;        }
        }
   for (i=1;i<=n;i++) {      
     ip=indx[i];  
     sum=b[ip];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     b[ip]=b[i];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     if (ii)  /*         printf("ddd %lf ",ps[ii][jj]); */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /*       } */
     else if (sum) ii=i;  /*       printf("\n "); */
     b[i]=sum;  /*        } */
   }  /*        printf("\n ");printf("%lf ",cov[2]); */
   for (i=n;i>=1;i--) {         /*
     sum=b[i];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        goto end;*/
     b[i]=sum/a[i][i];      return ps;
   }  }
 }  
   /**************** Product of 2 matrices ******************/
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 {  /* Some frequencies */  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   double ***freq; /* Frequencies */    /* in, b, out are matrice of pointers which should have been initialized 
   double *pp;       before: only the contents of out is modified. The function returns
   double pos, k2, dateintsum=0,k2cpt=0;       a pointer to pointers identical to out */
   FILE *ficresp;    long i, j, k;
   char fileresp[FILENAMELENGTH];    for(i=nrl; i<= nrh; i++)
        for(k=ncolol; k<=ncoloh; k++)
   pp=vector(1,nlstate);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          out[i][k] +=in[i][j]*b[j][k];
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);    return out;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  }
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  
   }  /************* Higher Matrix Product ***************/
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
    {
   j=cptcoveff;    /* Computes the transition matrix starting at age 'age' over 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       'nhstepm*hstepm*stepm' months (i.e. until
         age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   for(k1=1; k1<=j;k1++){       nhstepm*hstepm matrices. 
     for(i1=1; i1<=ncodemax[k1];i1++){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       j1++;       (typically every 2 years instead of every month which is too big 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);       for the memory).
         scanf("%d", i);*/       Model is determined by parameters x and covariates have to be 
       for (i=-1; i<=nlstate+ndeath; i++)         included manually here. 
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)       */
             freq[i][jk][m]=0;  
          int i, j, d, h, k;
       dateintsum=0;    double **out, cov[NCOVMAX];
       k2cpt=0;    double **newm;
       for (i=1; i<=imx; i++) {  
         bool=1;    /* Hstepm could be zero and should return the unit matrix */
         if  (cptcovn>0) {    for (i=1;i<=nlstate+ndeath;i++)
           for (z1=1; z1<=cptcoveff; z1++)      for (j=1;j<=nlstate+ndeath;j++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        oldm[i][j]=(i==j ? 1.0 : 0.0);
               bool=0;        po[i][j][0]=(i==j ? 1.0 : 0.0);
         }      }
         if (bool==1) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           for(m=firstpass; m<=lastpass; m++){    for(h=1; h <=nhstepm; h++){
             k2=anint[m][i]+(mint[m][i]/12.);      for(d=1; d <=hstepm; d++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        newm=savm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;        /* Covariates have to be included here again */
               if(agev[m][i]==1) agev[m][i]=agemax+2;        cov[1]=1.;
               if (m<lastpass) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for (k=1; k<=cptcovage;k++)
               }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                      for (k=1; k<=cptcovprod;k++)
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                 dateintsum=dateintsum+k2;  
                 k2cpt++;  
               }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
             }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       }        savm=oldm;
                oldm=newm;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      }
       for(i=1; i<=nlstate+ndeath; i++)
       if  (cptcovn>0) {        for(j=1;j<=nlstate+ndeath;j++) {
         fprintf(ficresp, "\n#********** Variable ");          po[i][j][h]=newm[i][j];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         fprintf(ficresp, "**********\n#");           */
       }        }
       for(i=1; i<=nlstate;i++)    } /* end h */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    return po;
       fprintf(ficresp, "\n");  }
        
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         if(i==(int)agemax+3)  /*************** log-likelihood *************/
           printf("Total");  double func( double *x)
         else  {
           printf("Age %d", i);    int i, ii, j, k, mi, d, kk;
         for(jk=1; jk <=nlstate ; jk++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double **out;
             pp[jk] += freq[jk][m][i];    double sw; /* Sum of weights */
         }    double lli; /* Individual log likelihood */
         for(jk=1; jk <=nlstate ; jk++){    int s1, s2;
           for(m=-1, pos=0; m <=0 ; m++)    double bbh, survp;
             pos += freq[jk][m][i];    long ipmx;
           if(pp[jk]>=1.e-10)    /*extern weight */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    /* We are differentiating ll according to initial status */
           else    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
     */
         for(jk=1; jk <=nlstate ; jk++){    cov[1]=1.;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
     if(mle==1){
         for(jk=1,pos=0; jk <=nlstate ; jk++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           pos += pp[jk];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
           if(pos>=1.e-5)          for (ii=1;ii<=nlstate+ndeath;ii++)
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            for (j=1;j<=nlstate+ndeath;j++){
           else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           if( i <= (int) agemax){            }
             if(pos>=1.e-5){          for(d=0; d<dh[mi][i]; d++){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            newm=savm;
               probs[i][jk][j1]= pp[jk]/pos;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            for (kk=1; kk<=cptcovage;kk++) {
             }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             else            }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
                    oldm=newm;
         for(jk=-1; jk <=nlstate+ndeath; jk++)          } /* end mult */
           for(m=-1; m <=nlstate+ndeath; m++)        
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         if(i <= (int) agemax)          /* But now since version 0.9 we anticipate for bias at large stepm.
           fprintf(ficresp,"\n");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         printf("\n");           * (in months) between two waves is not a multiple of stepm, we rounded to 
       }           * the nearest (and in case of equal distance, to the lowest) interval but now
     }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   dateintmean=dateintsum/k2cpt;           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   fclose(ficresp);           * -stepm/2 to stepm/2 .
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           * For stepm=1 the results are the same as for previous versions of Imach.
   free_vector(pp,1,nlstate);           * For stepm > 1 the results are less biased than in previous versions. 
             */
   /* End of Freq */          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 /************ Prevalence ********************/          /* bias bh is positive if real duration
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)           * is higher than the multiple of stepm and negative otherwise.
 {  /* Some frequencies */           */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          if( s2 > nlstate){ 
   double ***freq; /* Frequencies */            /* i.e. if s2 is a death state and if the date of death is known 
   double *pp;               then the contribution to the likelihood is the probability to 
   double pos, k2;               die between last step unit time and current  step unit time, 
                which is also equal to probability to die before dh 
   pp=vector(1,nlstate);               minus probability to die before dh-stepm . 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);               In version up to 0.92 likelihood was computed
            as if date of death was unknown. Death was treated as any other
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          health state: the date of the interview describes the actual state
   j1=0;          and not the date of a change in health state. The former idea was
            to consider that at each interview the state was recorded
   j=cptcoveff;          (healthy, disable or death) and IMaCh was corrected; but when we
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          introduced the exact date of death then we should have modified
            the contribution of an exact death to the likelihood. This new
   for(k1=1; k1<=j;k1++){          contribution is smaller and very dependent of the step unit
     for(i1=1; i1<=ncodemax[k1];i1++){          stepm. It is no more the probability to die between last interview
       j1++;          and month of death but the probability to survive from last
                interview up to one month before death multiplied by the
       for (i=-1; i<=nlstate+ndeath; i++)            probability to die within a month. Thanks to Chris
         for (jk=-1; jk<=nlstate+ndeath; jk++)            Jackson for correcting this bug.  Former versions increased
           for(m=agemin; m <= agemax+3; m++)          mortality artificially. The bad side is that we add another loop
             freq[i][jk][m]=0;          which slows down the processing. The difference can be up to 10%
                lower mortality.
       for (i=1; i<=imx; i++) {            */
         bool=1;            lli=log(out[s1][s2] - savm[s1][s2]);
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          } else if  (s2==-2) {
               bool=0;            for (j=1,survp=0. ; j<=nlstate; j++) 
         }              survp += out[s1][j];
         if (bool==1) {            lli= survp;
           for(m=firstpass; m<=lastpass; m++){          }
             k2=anint[m][i]+(mint[m][i]/12.);          
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          else if  (s2==-4) {
               if(agev[m][i]==0) agev[m][i]=agemax+1;            for (j=3,survp=0. ; j<=nlstate; j++) 
               if(agev[m][i]==1) agev[m][i]=agemax+2;              survp += out[s1][j];
               if (m<lastpass) {            lli= survp;
                 if (calagedate>0)          }
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          
                 else          else if  (s2==-5) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            for (j=1,survp=0. ; j<=2; j++) 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];              survp += out[s1][j];
               }            lli= survp;
             }          }
           }  
         }  
       }          else{
       for(i=(int)agemin; i <= (int)agemax+3; i++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(jk=1; jk <=nlstate ; jk++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          } 
             pp[jk] += freq[jk][m][i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
         for(jk=1; jk <=nlstate ; jk++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           for(m=-1, pos=0; m <=0 ; m++)          ipmx +=1;
             pos += freq[jk][m][i];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    }  else if(mle==2){
             pp[jk] += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if( i <= (int) agemax){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(pos>=1.e-5){            }
               probs[i][jk][j1]= pp[jk]/pos;          for(d=0; d<=dh[mi][i]; d++){
             }            newm=savm;
           }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
              oldm=newm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          } /* end mult */
   free_vector(pp,1,nlstate);        
            s1=s[mw[mi][i]][i];
 }  /* End of Freq */          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 /************* Waves Concatenation ***************/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        } /* end of wave */
      Death is a valid wave (if date is known).      } /* end of individual */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    }  else if(mle==3){  /* exponential inter-extrapolation */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      and mw[mi+1][i]. dh depends on stepm.        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, mi, m;            for (j=1;j<=nlstate+ndeath;j++){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      double sum=0., jmean=0.;*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   int j, k=0,jk, ju, jl;          for(d=0; d<dh[mi][i]; d++){
   double sum=0.;            newm=savm;
   jmin=1e+5;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   jmax=-1;            for (kk=1; kk<=cptcovage;kk++) {
   jmean=0.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=1; i<=imx; i++){            }
     mi=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     m=firstpass;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     while(s[m][i] <= nlstate){            savm=oldm;
       if(s[m][i]>=1)            oldm=newm;
         mw[++mi][i]=m;          } /* end mult */
       if(m >=lastpass)        
         break;          s1=s[mw[mi][i]][i];
       else          s2=s[mw[mi+1][i]][i];
         m++;          bbh=(double)bh[mi][i]/(double)stepm; 
     }/* end while */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     if (s[m][i] > nlstate){          ipmx +=1;
       mi++;     /* Death is another wave */          sw += weight[i];
       /* if(mi==0)  never been interviewed correctly before death */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          /* Only death is a correct wave */        } /* end of wave */
       mw[mi][i]=m;      } /* end of individual */
     }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     wav[i]=mi;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if(mi==0)        for(mi=1; mi<= wav[i]-1; mi++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(mi=1; mi<wav[i];mi++){            }
       if (stepm <=0)          for(d=0; d<dh[mi][i]; d++){
         dh[mi][i]=1;            newm=savm;
       else{            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (s[mw[mi+1][i]][i] > nlstate) {            for (kk=1; kk<=cptcovage;kk++) {
           if (agedc[i] < 2*AGESUP) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            }
           if(j==0) j=1;  /* Survives at least one month after exam */          
           k=k+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (j >= jmax) jmax=j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (j <= jmin) jmin=j;            savm=oldm;
           sum=sum+j;            oldm=newm;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          } /* end mult */
           }        
         }          s1=s[mw[mi][i]][i];
         else{          s2=s[mw[mi+1][i]][i];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          if( s2 > nlstate){ 
           k=k+1;            lli=log(out[s1][s2] - savm[s1][s2]);
           if (j >= jmax) jmax=j;          }else{
           else if (j <= jmin)jmin=j;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          }
           sum=sum+j;          ipmx +=1;
         }          sw += weight[i];
         jk= j/stepm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         jl= j -jk*stepm;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         ju= j -(jk+1)*stepm;        } /* end of wave */
         if(jl <= -ju)      } /* end of individual */
           dh[mi][i]=jk;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         else      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           dh[mi][i]=jk+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(dh[mi][i]==0)        for(mi=1; mi<= wav[i]-1; mi++){
           dh[mi][i]=1; /* At least one step */          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmean=sum/k;            }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          for(d=0; d<dh[mi][i]; d++){
  }            newm=savm;
 /*********** Tricode ****************************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void tricode(int *Tvar, int **nbcode, int imx)            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int Ndum[20],ij=1, k, j, i;            }
   int cptcode=0;          
   cptcoveff=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (k=0; k<19; k++) Ndum[k]=0;            savm=oldm;
   for (k=1; k<=7; k++) ncodemax[k]=0;            oldm=newm;
           } /* end mult */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        
     for (i=1; i<=imx; i++) {          s1=s[mw[mi][i]][i];
       ij=(int)(covar[Tvar[j]][i]);          s2=s[mw[mi+1][i]][i];
       Ndum[ij]++;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          ipmx +=1;
       if (ij > cptcode) cptcode=ij;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     for (i=0; i<=cptcode; i++) {        } /* end of wave */
       if(Ndum[i]!=0) ncodemax[j]++;      } /* end of individual */
     }    } /* End of if */
     ij=1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for (i=1; i<=ncodemax[j]; i++) {    return -l;
       for (k=0; k<=19; k++) {  }
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;  /*************** log-likelihood *************/
            double funcone( double *x)
           ij++;  {
         }    /* Same as likeli but slower because of a lot of printf and if */
         if (ij > ncodemax[j]) break;    int i, ii, j, k, mi, d, kk;
       }      double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
   }      double lli; /* Individual log likelihood */
     double llt;
  for (k=0; k<19; k++) Ndum[k]=0;    int s1, s2;
     double bbh, survp;
  for (i=1; i<=ncovmodel-2; i++) {    /*extern weight */
       ij=Tvar[i];    /* We are differentiating ll according to initial status */
       Ndum[ij]++;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
  ij=1;    */
  for (i=1; i<=10; i++) {    cov[1]=1.;
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i;    for(k=1; k<=nlstate; k++) ll[k]=0.;
      ij++;  
    }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        for(mi=1; mi<= wav[i]-1; mi++){
     cptcoveff=ij-1;        for (ii=1;ii<=nlstate+ndeath;ii++)
 }          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*********** Health Expectancies ****************/            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
 {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* Health expectancies */          for (kk=1; kk<=cptcovage;kk++) {
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double age, agelim, hf;          }
   double ***p3mat,***varhe;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **dnewm,**doldm;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *xp;          savm=oldm;
   double **gp, **gm;          oldm=newm;
   double ***gradg, ***trgradg;        } /* end mult */
   int theta;        
         s1=s[mw[mi][i]][i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        s2=s[mw[mi+1][i]][i];
   xp=vector(1,npar);        bbh=(double)bh[mi][i]/(double)stepm; 
   dnewm=matrix(1,nlstate*2,1,npar);        /* bias is positive if real duration
   doldm=matrix(1,nlstate*2,1,nlstate*2);         * is higher than the multiple of stepm and negative otherwise.
           */
   fprintf(ficreseij,"# Health expectancies\n");        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   fprintf(ficreseij,"# Age");          lli=log(out[s1][s2] - savm[s1][s2]);
   for(i=1; i<=nlstate;i++)        } else if (mle==1){
     for(j=1; j<=nlstate;j++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        } else if(mle==2){
   fprintf(ficreseij,"\n");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
   if(estepm < stepm){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     printf ("Problem %d lower than %d\n",estepm, stepm);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   }          lli=log(out[s1][s2]); /* Original formula */
   else  hstepm=estepm;          } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   /* We compute the life expectancy from trapezoids spaced every estepm months          lli=log(out[s1][s2]); /* Original formula */
    * This is mainly to measure the difference between two models: for example        } /* End of if */
    * if stepm=24 months pijx are given only every 2 years and by summing them        ipmx +=1;
    * we are calculating an estimate of the Life Expectancy assuming a linear        sw += weight[i];
    * progression inbetween and thus overestimating or underestimating according        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    * to the curvature of the survival function. If, for the same date, we  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        if(globpr){
    * to compare the new estimate of Life expectancy with the same linear          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    * hypothesis. A more precise result, taking into account a more precise   %10.6f %10.6f %10.6f ", \
    * curvature will be obtained if estepm is as small as stepm. */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   /* For example we decided to compute the life expectancy with the smallest unit */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            llt +=ll[k]*gipmx/gsw;
      nhstepm is the number of hstepm from age to agelim            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
      nstepm is the number of stepm from age to agelin.          }
      Look at hpijx to understand the reason of that which relies in memory size          fprintf(ficresilk," %10.6f\n", -llt);
      and note for a fixed period like estepm months */        }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      } /* end of wave */
      survival function given by stepm (the optimization length). Unfortunately it    } /* end of individual */
      means that if the survival funtion is printed only each two years of age and if    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      results. So we changed our mind and took the option of the best precision.    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   */    if(globpr==0){ /* First time we count the contributions and weights */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      gipmx=ipmx;
       gsw=sw;
   agelim=AGESUP;    }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    return -l;
     /* nhstepm age range expressed in number of stepm */  }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  
     /* if (stepm >= YEARM) hstepm=1;*/  /*************** function likelione ***********/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    /* This routine should help understanding what is done with 
     gp=matrix(0,nhstepm,1,nlstate*2);       the selection of individuals/waves and
     gm=matrix(0,nhstepm,1,nlstate*2);       to check the exact contribution to the likelihood.
        Plotting could be done.
     /* Computed by stepm unit matrices, product of hstepm matrices, stored     */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    int k;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
      if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     /* Computing Variances of health expectancies */        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
      for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(k=1; k<=nlstate; k++) 
          fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       cptj=0;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       for(j=1; j<= nlstate; j++){    }
         for(i=1; i<=nlstate; i++){  
           cptj=cptj+1;    *fretone=(*funcone)(p);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    if(*globpri !=0){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      fclose(ficresilk);
           }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         }      fflush(fichtm); 
       }    } 
          return;
        }
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /*********** Maximum Likelihood Estimation ***************/
        
       cptj=0;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for(j=1; j<= nlstate; j++){  {
         for(i=1;i<=nlstate;i++){    int i,j, iter;
           cptj=cptj+1;    double **xi;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    double fret;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double fretone; /* Only one call to likelihood */
           }    /*  char filerespow[FILENAMELENGTH];*/
         }    xi=matrix(1,npar,1,npar);
       }    for (i=1;i<=npar;i++)
       for(j=1; j<= nlstate*2; j++)      for (j=1;j<=npar;j++)
         for(h=0; h<=nhstepm-1; h++){        xi[i][j]=(i==j ? 1.0 : 0.0);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         }    strcpy(filerespow,"pow"); 
      }    strcat(filerespow,fileres);
        if((ficrespow=fopen(filerespow,"w"))==NULL) {
 /* End theta */      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
      for(h=0; h<=nhstepm-1; h++)    for (i=1;i<=nlstate;i++)
       for(j=1; j<=nlstate*2;j++)      for(j=1;j<=nlstate+ndeath;j++)
         for(theta=1; theta <=npar; theta++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           trgradg[h][j][theta]=gradg[h][theta][j];    fprintf(ficrespow,"\n");
        
     powell(p,xi,npar,ftol,&iter,&fret,func);
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)    free_matrix(xi,1,npar,1,npar);
         varhe[i][j][(int)age] =0.;    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      printf("%d|",(int)age);fflush(stdout);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      for(h=0;h<=nhstepm-1;h++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(k=0;k<=nhstepm-1;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  
         for(i=1;i<=nlstate*2;i++)  /**** Computes Hessian and covariance matrix ***/
           for(j=1;j<=nlstate*2;j++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  {
       }    double  **a,**y,*x,pd;
     }    double **hess;
     /* Computing expectancies */    int i, j,jk;
     for(i=1; i<=nlstate;i++)    int *indx;
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
              void lubksb(double **a, int npar, int *indx, double b[]) ;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
         }    hess=matrix(1,npar,1,npar);
   
     fprintf(ficreseij,"%3.0f",age );    printf("\nCalculation of the hessian matrix. Wait...\n");
     cptj=0;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++){
       for(j=1; j<=nlstate;j++){      printf("%d",i);fflush(stdout);
         cptj++;      fprintf(ficlog,"%d",i);fflush(ficlog);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );     
       }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     fprintf(ficreseij,"\n");      
          /*  printf(" %f ",p[i]);
     free_matrix(gm,0,nhstepm,1,nlstate*2);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     free_matrix(gp,0,nhstepm,1,nlstate*2);    }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    for (i=1;i<=npar;i++) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=npar;j++)  {
   }        if (j>i) { 
   printf("\n");          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   free_vector(xp,1,npar);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   free_matrix(dnewm,1,nlstate*2,1,npar);          
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          hess[j][i]=hess[i][j];    
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          /*printf(" %lf ",hess[i][j]);*/
 }        }
       }
 /************ Variance ******************/    }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    printf("\n");
 {    fprintf(ficlog,"\n");
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   double **newm;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   double **dnewm,**doldm;    
   int i, j, nhstepm, hstepm, h, nstepm ;    a=matrix(1,npar,1,npar);
   int k, cptcode;    y=matrix(1,npar,1,npar);
   double *xp;    x=vector(1,npar);
   double **gp, **gm;    indx=ivector(1,npar);
   double ***gradg, ***trgradg;    for (i=1;i<=npar;i++)
   double ***p3mat;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double age,agelim, hf;    ludcmp(a,npar,indx,&pd);
   int theta;  
     for (j=1;j<=npar;j++) {
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      for (i=1;i<=npar;i++) x[i]=0;
   fprintf(ficresvij,"# Age");      x[j]=1;
   for(i=1; i<=nlstate;i++)      lubksb(a,npar,indx,x);
     for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++){ 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        matcov[i][j]=x[i];
   fprintf(ficresvij,"\n");      }
     }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    printf("\n#Hessian matrix#\n");
   doldm=matrix(1,nlstate,1,nlstate);    fprintf(ficlog,"\n#Hessian matrix#\n");
      for (i=1;i<=npar;i++) { 
   if(estepm < stepm){      for (j=1;j<=npar;j++) { 
     printf ("Problem %d lower than %d\n",estepm, stepm);        printf("%.3e ",hess[i][j]);
   }        fprintf(ficlog,"%.3e ",hess[i][j]);
   else  hstepm=estepm;        }
   /* For example we decided to compute the life expectancy with the smallest unit */      printf("\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      fprintf(ficlog,"\n");
      nhstepm is the number of hstepm from age to agelim    }
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    /* Recompute Inverse */
      and note for a fixed period like k years */    for (i=1;i<=npar;i++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      survival function given by stepm (the optimization length). Unfortunately it    ludcmp(a,npar,indx,&pd);
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    /*  printf("\n#Hessian matrix recomputed#\n");
      results. So we changed our mind and took the option of the best precision.  
   */    for (j=1;j<=npar;j++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for (i=1;i<=npar;i++) x[i]=0;
   agelim = AGESUP;      x[j]=1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      lubksb(a,npar,indx,x);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=1;i<=npar;i++){ 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        y[i][j]=x[i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("%.3e ",y[i][j]);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        fprintf(ficlog,"%.3e ",y[i][j]);
     gp=matrix(0,nhstepm,1,nlstate);      }
     gm=matrix(0,nhstepm,1,nlstate);      printf("\n");
       fprintf(ficlog,"\n");
     for(theta=1; theta <=npar; theta++){    }
       for(i=1; i<=npar; i++){ /* Computes gradient */    */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    free_matrix(a,1,npar,1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_matrix(y,1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
       if (popbased==1) {    free_matrix(hess,1,npar,1,npar);
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];  
       }  }
    
       for(j=1; j<= nlstate; j++){  /*************** hessian matrix ****************/
         for(h=0; h<=nhstepm; h++){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  {
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    int i;
         }    int l=1, lmax=20;
       }    double k1,k2;
        double p2[NPARMAX+1];
       for(i=1; i<=npar; i++) /* Computes gradient */    double res;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double fx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int k=0,kmax=10;
      double l1;
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    fx=func(x);
           prlim[i][i]=probs[(int)age][i][ij];    for (i=1;i<=npar;i++) p2[i]=x[i];
       }    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
       for(j=1; j<= nlstate; j++){      delts=delt;
         for(h=0; h<=nhstepm; h++){      for(k=1 ; k <kmax; k=k+1){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        delt = delta*(l1*k);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        p2[theta]=x[theta] +delt;
         }        k1=func(p2)-fx;
       }        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
       for(j=1; j<= nlstate; j++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
         for(h=0; h<=nhstepm; h++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        
         }  #ifdef DEBUG
     } /* End theta */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     for(h=0; h<=nhstepm; h++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for(j=1; j<=nlstate;j++)          k=kmax;
         for(theta=1; theta <=npar; theta++)        }
           trgradg[h][j][theta]=gradg[h][theta][j];        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        }
     for(i=1;i<=nlstate;i++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for(j=1;j<=nlstate;j++)          delts=delt;
         vareij[i][j][(int)age] =0.;        }
       }
     for(h=0;h<=nhstepm;h++){    }
       for(k=0;k<=nhstepm;k++){    delti[theta]=delts;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    return res; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    
         for(i=1;i<=nlstate;i++)  }
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       }  {
     }    int i;
     int l=1, l1, lmax=20;
     fprintf(ficresvij,"%.0f ",age );    double k1,k2,k3,k4,res,fx;
     for(i=1; i<=nlstate;i++)    double p2[NPARMAX+1];
       for(j=1; j<=nlstate;j++){    int k;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }    fx=func(x);
     fprintf(ficresvij,"\n");    for (k=1; k<=2; k++) {
     free_matrix(gp,0,nhstepm,1,nlstate);      for (i=1;i<=npar;i++) p2[i]=x[i];
     free_matrix(gm,0,nhstepm,1,nlstate);      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      k1=func(p2)-fx;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
   } /* End age */      p2[thetai]=x[thetai]+delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   free_vector(xp,1,npar);      k2=func(p2)-fx;
   free_matrix(doldm,1,nlstate,1,npar);    
   free_matrix(dnewm,1,nlstate,1,nlstate);      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 }      k3=func(p2)-fx;
     
 /************ Variance of prevlim ******************/      p2[thetai]=x[thetai]-delti[thetai]/k;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 {      k4=func(p2)-fx;
   /* Variance of prevalence limit */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  #ifdef DEBUG
   double **newm;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double **dnewm,**doldm;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int i, j, nhstepm, hstepm;  #endif
   int k, cptcode;    }
   double *xp;    return res;
   double *gp, *gm;  }
   double **gradg, **trgradg;  
   double age,agelim;  /************** Inverse of matrix **************/
   int theta;  void ludcmp(double **a, int n, int *indx, double *d) 
      { 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    int i,imax,j,k; 
   fprintf(ficresvpl,"# Age");    double big,dum,sum,temp; 
   for(i=1; i<=nlstate;i++)    double *vv; 
       fprintf(ficresvpl," %1d-%1d",i,i);   
   fprintf(ficresvpl,"\n");    vv=vector(1,n); 
     *d=1.0; 
   xp=vector(1,npar);    for (i=1;i<=n;i++) { 
   dnewm=matrix(1,nlstate,1,npar);      big=0.0; 
   doldm=matrix(1,nlstate,1,nlstate);      for (j=1;j<=n;j++) 
          if ((temp=fabs(a[i][j])) > big) big=temp; 
   hstepm=1*YEARM; /* Every year of age */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      vv[i]=1.0/big; 
   agelim = AGESUP;    } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (j=1;j<=n;j++) { 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=1;i<j;i++) { 
     if (stepm >= YEARM) hstepm=1;        sum=a[i][j]; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     gradg=matrix(1,npar,1,nlstate);        a[i][j]=sum; 
     gp=vector(1,nlstate);      } 
     gm=vector(1,nlstate);      big=0.0; 
       for (i=j;i<=n;i++) { 
     for(theta=1; theta <=npar; theta++){        sum=a[i][j]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */        for (k=1;k<j;k++) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          sum -= a[i][k]*a[k][j]; 
       }        a[i][j]=sum; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       for(i=1;i<=nlstate;i++)          big=dum; 
         gp[i] = prlim[i][i];          imax=i; 
            } 
       for(i=1; i<=npar; i++) /* Computes gradient */      } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      if (j != imax) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1;k<=n;k++) { 
       for(i=1;i<=nlstate;i++)          dum=a[imax][k]; 
         gm[i] = prlim[i][i];          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
       for(i=1;i<=nlstate;i++)        } 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        *d = -(*d); 
     } /* End theta */        vv[imax]=vv[j]; 
       } 
     trgradg =matrix(1,nlstate,1,npar);      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
     for(j=1; j<=nlstate;j++)      if (j != n) { 
       for(theta=1; theta <=npar; theta++)        dum=1.0/(a[j][j]); 
         trgradg[j][theta]=gradg[theta][j];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     for(i=1;i<=nlstate;i++)    } 
       varpl[i][(int)age] =0.;    free_vector(vv,1,n);  /* Doesn't work */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  ;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  } 
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
     fprintf(ficresvpl,"%.0f ",age );    int i,ii=0,ip,j; 
     for(i=1; i<=nlstate;i++)    double sum; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));   
     fprintf(ficresvpl,"\n");    for (i=1;i<=n;i++) { 
     free_vector(gp,1,nlstate);      ip=indx[i]; 
     free_vector(gm,1,nlstate);      sum=b[ip]; 
     free_matrix(gradg,1,npar,1,nlstate);      b[ip]=b[i]; 
     free_matrix(trgradg,1,nlstate,1,npar);      if (ii) 
   } /* End age */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
   free_vector(xp,1,npar);      b[i]=sum; 
   free_matrix(doldm,1,nlstate,1,npar);    } 
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (i=n;i>=1;i--) { 
       sum=b[i]; 
 }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
 /************ Variance of one-step probabilities  ******************/    } 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  } 
 {  
   int i, j=0,  i1, k1, l1, t, tj;  /************ Frequencies ********************/
   int k2, l2, j1,  z1;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   int k=0,l, cptcode;  {  /* Some frequencies */
   int first=1;    
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   double **dnewm,**doldm;    int first;
   double *xp;    double ***freq; /* Frequencies */
   double *gp, *gm;    double *pp, **prop;
   double **gradg, **trgradg;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double **mu;    FILE *ficresp;
   double age,agelim, cov[NCOVMAX];    char fileresp[FILENAMELENGTH];
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    
   int theta;    pp=vector(1,nlstate);
   char fileresprob[FILENAMELENGTH];    prop=matrix(1,nlstate,iagemin,iagemax+3);
   char fileresprobcov[FILENAMELENGTH];    strcpy(fileresp,"p");
   char fileresprobcor[FILENAMELENGTH];    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
   double ***varpij;      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   strcpy(fileresprob,"prob");      exit(0);
   strcat(fileresprob,fileres);    }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     printf("Problem with resultfile: %s\n", fileresprob);    j1=0;
   }    
   strcpy(fileresprobcov,"probcov");    j=cptcoveff;
   strcat(fileresprobcov,fileres);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcov);    first=1;
   }  
   strcpy(fileresprobcor,"probcor");    for(k1=1; k1<=j;k1++){
   strcat(fileresprobcor,fileres);      for(i1=1; i1<=ncodemax[k1];i1++){
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        j1++;
     printf("Problem with resultfile: %s\n", fileresprobcor);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   }          scanf("%d", i);*/
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        for (i=-5; i<=nlstate+ndeath; i++)  
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            for(m=iagemin; m <= iagemax+3; m++)
                freq[i][jk][m]=0;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  
   fprintf(ficresprob,"# Age");      for (i=1; i<=nlstate; i++)  
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresprobcov,"# Age");          prop[i][m]=0;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        
   fprintf(ficresprobcov,"# Age");        dateintsum=0;
         k2cpt=0;
         for (i=1; i<=imx; i++) {
   for(i=1; i<=nlstate;i++)          bool=1;
     for(j=1; j<=(nlstate+ndeath);j++){          if  (cptcovn>0) {
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);            for (z1=1; z1<=cptcoveff; z1++) 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);                bool=0;
     }            }
   fprintf(ficresprob,"\n");          if (bool==1){
   fprintf(ficresprobcov,"\n");            for(m=firstpass; m<=lastpass; m++){
   fprintf(ficresprobcor,"\n");              k2=anint[m][i]+(mint[m][i]/12.);
   xp=vector(1,npar);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);                if (m<lastpass) {
   first=1;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);                }
     exit(0);                
   }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   else{                  dateintsum=dateintsum+k2;
     fprintf(ficgp,"\n# Routine varprob");                  k2cpt++;
   }                }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {                /*}*/
     printf("Problem with html file: %s\n", optionfilehtm);            }
     exit(0);          }
   }        }
   else{         
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  fprintf(ficresp, "#Local time at start: %s", strstart);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
          }
   cov[1]=1;        for(i=1; i<=nlstate;i++) 
   tj=cptcoveff;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        fprintf(ficresp, "\n");
   j1=0;        
   for(t=1; t<=tj;t++){        for(i=iagemin; i <= iagemax+3; i++){
     for(i1=1; i1<=ncodemax[t];i1++){          if(i==iagemax+3){
       j1++;            fprintf(ficlog,"Total");
                }else{
       if  (cptcovn>0) {            if(first==1){
         fprintf(ficresprob, "\n#********** Variable ");              first=0;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              printf("See log file for details...\n");
         fprintf(ficresprob, "**********\n#");            }
         fprintf(ficresprobcov, "\n#********** Variable ");            fprintf(ficlog,"Age %d", i);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
         fprintf(ficresprobcov, "**********\n#");          for(jk=1; jk <=nlstate ; jk++){
                    for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         fprintf(ficgp, "\n#********** Variable ");              pp[jk] += freq[jk][m][i]; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
         fprintf(ficgp, "**********\n#");          for(jk=1; jk <=nlstate ; jk++){
                    for(m=-1, pos=0; m <=0 ; m++)
                      pos += freq[jk][m][i];
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");            if(pp[jk]>=1.e-10){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              if(first==1){
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                      }
         fprintf(ficresprobcor, "\n#********** Variable ");                  fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }else{
         fprintf(ficgp, "**********\n#");                  if(first==1)
       }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                    fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for (age=bage; age<=fage; age ++){            }
         cov[2]=age;          }
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              pp[jk] += freq[jk][m][i];
         for (k=1; k<=cptcovprod;k++)          }       
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                    pos += pp[jk];
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));            posprop += prop[jk][i];
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          }
         gp=vector(1,(nlstate)*(nlstate+ndeath));          for(jk=1; jk <=nlstate ; jk++){
         gm=vector(1,(nlstate)*(nlstate+ndeath));            if(pos>=1.e-5){
                  if(first==1)
         for(theta=1; theta <=npar; theta++){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           for(i=1; i<=npar; i++)              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            }else{
                        if(first==1)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                        fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           k=0;            }
           for(i=1; i<= (nlstate); i++){            if( i <= iagemax){
             for(j=1; j<=(nlstate+ndeath);j++){              if(pos>=1.e-5){
               k=k+1;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
               gp[k]=pmmij[i][j];                /*probs[i][jk][j1]= pp[jk]/pos;*/
             }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           }              }
                        else
           for(i=1; i<=npar; i++)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
              }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          
           k=0;          for(jk=-1; jk <=nlstate+ndeath; jk++)
           for(i=1; i<=(nlstate); i++){            for(m=-1; m <=nlstate+ndeath; m++)
             for(j=1; j<=(nlstate+ndeath);j++){              if(freq[jk][m][i] !=0 ) {
               k=k+1;              if(first==1)
               gm[k]=pmmij[i][j];                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           }              }
                if(i <= iagemax)
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)            fprintf(ficresp,"\n");
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            if(first==1)
         }            printf("Others in log...\n");
           fprintf(ficlog,"\n");
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        }
           for(theta=1; theta <=npar; theta++)      }
             trgradg[j][theta]=gradg[theta][j];    }
            dateintmean=dateintsum/k2cpt; 
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    fclose(ficresp);
            free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
         pmij(pmmij,cov,ncovmodel,x,nlstate);    free_vector(pp,1,nlstate);
            free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         k=0;    /* End of Freq */
         for(i=1; i<=(nlstate); i++){  }
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;  /************ Prevalence ********************/
             mu[k][(int) age]=pmmij[i][j];  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           }  {  
         }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)       in each health status at the date of interview (if between dateprev1 and dateprev2).
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)       We still use firstpass and lastpass as another selection.
             varpij[i][j][(int)age] = doldm[i][j];    */
    
         /*printf("\n%d ",(int)age);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double ***freq; /* Frequencies */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    double *pp, **prop;
      }*/    double pos,posprop; 
     double  y2; /* in fractional years */
         fprintf(ficresprob,"\n%d ",(int)age);    int iagemin, iagemax;
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);    iagemin= (int) agemin;
     iagemax= (int) agemax;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    /*pp=vector(1,nlstate);*/
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    j1=0;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    
         }    j=cptcoveff;
         i=0;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for (k=1; k<=(nlstate);k++){    
           for (l=1; l<=(nlstate+ndeath);l++){    for(k1=1; k1<=j;k1++){
             i=i++;      for(i1=1; i1<=ncodemax[k1];i1++){
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        j1++;
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        
             for (j=1; j<=i;j++){        for (i=1; i<=nlstate; i++)  
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          for(m=iagemin; m <= iagemax+3; m++)
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            prop[i][m]=0.0;
             }       
           }        for (i=1; i<=imx; i++) { /* Each individual */
         }/* end of loop for state */          bool=1;
       } /* end of loop for age */          if  (cptcovn>0) {
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            for (z1=1; z1<=cptcoveff; z1++) 
       for (k1=1; k1<=(nlstate);k1++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for (l1=1; l1<=(nlstate+ndeath);l1++){                bool=0;
           if(l1==k1) continue;          } 
           i=(k1-1)*(nlstate+ndeath)+l1;          if (bool==1) { 
           for (k2=1; k2<=(nlstate);k2++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             for (l2=1; l2<=(nlstate+ndeath);l2++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if(l2==k2) continue;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
               j=(k2-1)*(nlstate+ndeath)+l2;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               if(j<=i) continue;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               for (age=bage; age<=fage; age ++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if ((int)age %5==0){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;                  prop[s[m][i]][iagemax+3] += weight[i]; 
                   mu1=mu[i][(int) age]/stepm*YEARM ;                } 
                   mu2=mu[j][(int) age]/stepm*YEARM;              }
                   /* Computing eigen value of matrix of covariance */            } /* end selection of waves */
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));          }
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));        }
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);        for(i=iagemin; i <= iagemax+3; i++){  
                   /* Eigen vectors */          
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   v21=sqrt(1.-v11*v11);            posprop += prop[jk][i]; 
                   v12=-v21;          } 
                   v22=v11;  
                   /*printf(fignu*/          for(jk=1; jk <=nlstate ; jk++){     
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            if( i <=  iagemax){ 
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */              if(posprop>=1.e-5){ 
                   if(first==1){                probs[i][jk][j1]= prop[jk][i]/posprop;
                     first=0;              } 
                     fprintf(ficgp,"\nset parametric;set nolabel");            } 
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);          }/* end jk */ 
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        }/* end i */ 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);      } /* end i1 */
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);    } /* end k1 */
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);    
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    /*free_vector(pp,1,nlstate);*/
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  }  /* End of prevalence */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  
                   }else{  /************* Waves Concatenation ***************/
                     first=0;  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  {
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \       Death is a valid wave (if date is known).
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                   }/* if first */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                 } /* age mod 5 */       and mw[mi+1][i]. dh depends on stepm.
               } /* end loop age */       */
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);  
               first=1;    int i, mi, m;
             } /*l12 */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           } /* k12 */       double sum=0., jmean=0.;*/
         } /*l1 */    int first;
       }/* k1 */    int j, k=0,jk, ju, jl;
     } /* loop covariates */    double sum=0.;
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    first=0;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    jmin=1e+5;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    jmax=-1;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    jmean=0.;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for(i=1; i<=imx; i++){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      mi=0;
   }      m=firstpass;
   free_vector(xp,1,npar);      while(s[m][i] <= nlstate){
   fclose(ficresprob);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   fclose(ficresprobcov);          mw[++mi][i]=m;
   fclose(ficresprobcor);        if(m >=lastpass)
   fclose(ficgp);          break;
   fclose(fichtm);        else
 }          m++;
       }/* end while */
       if (s[m][i] > nlstate){
 /******************* Printing html file ***********/        mi++;     /* Death is another wave */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        /* if(mi==0)  never been interviewed correctly before death */
                   int lastpass, int stepm, int weightopt, char model[],\           /* Only death is a correct wave */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        mw[mi][i]=m;
                   int popforecast, int estepm ,\      }
                   double jprev1, double mprev1,double anprev1, \  
                   double jprev2, double mprev2,double anprev2){      wav[i]=mi;
   int jj1, k1, i1, cpt;      if(mi==0){
   /*char optionfilehtm[FILENAMELENGTH];*/        nbwarn++;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {        if(first==0){
     printf("Problem with %s \n",optionfilehtm), exit(0);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   }          first=1;
         }
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n        if(first==1){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        }
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      } /* end mi==0 */
  - Life expectancies by age and initial health status (estepm=%2d months):    } /* End individuals */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n        if (stepm <=0)
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          dh[mi][i]=1;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        else{
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n            if (agedc[i] < 2*AGESUP) {
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n              if(j==0) j=1;  /* Survives at least one month after exam */
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              else if(j<0){
                 nberr++;
  if(popforecast==1) fprintf(fichtm,"\n                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                j=1; /* Temporary Dangerous patch */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         <br>",fileres,fileres,fileres,fileres);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  else                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              }
 fprintf(fichtm," <li><b>Graphs</b></li><p>");              k=k+1;
               if (j >= jmax){
  m=cptcoveff;                jmax=j;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                ijmax=i;
               }
  jj1=0;              if (j <= jmin){
  for(k1=1; k1<=m;k1++){                jmin=j;
    for(i1=1; i1<=ncodemax[k1];i1++){                ijmin=i;
      jj1++;              }
      if (cptcovn > 0) {              sum=sum+j;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
        for (cpt=1; cpt<=cptcoveff;cpt++)              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          }
      }          else{
      /* Pij */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
      /* Quasi-incidences */            k=k+1;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>            if (j >= jmax) {
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              jmax=j;
        /* Stable prevalence in each health state */              ijmax=i;
        for(cpt=1; cpt<nlstate;cpt++){            }
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>            else if (j <= jmin){
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              jmin=j;
        }              ijmin=i;
     for(cpt=1; cpt<=nlstate;cpt++) {            }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 interval) in state (%d): v%s%d%d.png <br>            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              if(j<0){
      }              nberr++;
      for(cpt=1; cpt<=nlstate;cpt++) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }
      }            sum=sum+j;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          }
 health expectancies in states (1) and (2): e%s%d.png<br>          jk= j/stepm;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          jl= j -jk*stepm;
    }          ju= j -(jk+1)*stepm;
  }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 fclose(fichtm);            if(jl==0){
 }              dh[mi][i]=jk;
               bh[mi][i]=0;
 /******************* Gnuplot file **************/            }else{ /* We want a negative bias in order to only have interpolation ie
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              bh[mi][i]=ju;
   int ng;            }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          }else{
     printf("Problem with file %s",optionfilegnuplot);            if(jl <= -ju){
   }              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
 #ifdef windows                                   * is higher than the multiple of stepm and negative otherwise.
     fprintf(ficgp,"cd \"%s\" \n",pathc);                                   */
 #endif            }
 m=pow(2,cptcoveff);            else{
                dh[mi][i]=jk+1;
  /* 1eme*/              bh[mi][i]=ju;
   for (cpt=1; cpt<= nlstate ; cpt ++) {            }
    for (k1=1; k1<= m ; k1 ++) {            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
 #ifdef windows              bh[mi][i]=ju; /* At least one step */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            }
 #endif          } /* end if mle */
 #ifdef unix        }
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      } /* end wave */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    }
 #endif    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 for (i=1; i<= nlstate ; i ++) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }  /*********** Tricode ****************************/
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  void tricode(int *Tvar, int **nbcode, int imx)
     for (i=1; i<= nlstate ; i ++) {  {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int Ndum[20],ij=1, k, j, i, maxncov=19;
 }    int cptcode=0;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    cptcoveff=0; 
      for (i=1; i<= nlstate ; i ++) {   
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (k=0; k<maxncov; k++) Ndum[k]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (k=1; k<=7; k++) ncodemax[k]=0;
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 #ifdef unix      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");                                 modality*/ 
 #endif        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
    }        Ndum[ij]++; /*store the modality */
   }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   /*2 eme*/        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
   for (k1=1; k1<= m ; k1 ++) {                                         female is 1, then  cptcode=1.*/
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  
          for (i=0; i<=cptcode; i++) {
     for (i=1; i<= nlstate+1 ; i ++) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       k=2*i;      }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {      ij=1; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for (i=1; i<=ncodemax[j]; i++) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for (k=0; k<= maxncov; k++) {
 }            if (Ndum[k] != 0) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            nbcode[Tvar[j]][ij]=k; 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            
       for (j=1; j<= nlstate+1 ; j ++) {            ij++;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
         else fprintf(ficgp," \%%*lf (\%%*lf)");          if (ij > ncodemax[j]) break; 
 }          }  
       fprintf(ficgp,"\" t\"\" w l 0,");      } 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    }  
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   for (k=0; k< maxncov; k++) Ndum[k]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }     for (i=1; i<=ncovmodel-2; i++) { 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       else fprintf(ficgp,"\" t\"\" w l 0,");     ij=Tvar[i];
     }     Ndum[ij]++;
   }   }
    
   /*3eme*/   ij=1;
    for (i=1; i<= maxncov; i++) {
   for (k1=1; k1<= m ; k1 ++) {     if((Ndum[i]!=0) && (i<=ncovcol)){
     for (cpt=1; cpt<= nlstate ; cpt ++) {       Tvaraff[ij]=i; /*For printing */
       k=2+nlstate*(2*cpt-2);       ij++;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     }
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);   }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");   cptcoveff=ij-1; /*Number of simple covariates*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  }
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  /*********** Health Expectancies ****************/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
   void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
 */  
       for (i=1; i< nlstate ; i ++) {  {
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       }    double age, agelim, hf;
     }    double ***p3mat,***varhe;
   }    double **dnewm,**doldm;
      double *xp;
   /* CV preval stat */    double **gp, **gm;
     for (k1=1; k1<= m ; k1 ++) {    double ***gradg, ***trgradg;
     for (cpt=1; cpt<nlstate ; cpt ++) {    int theta;
       k=3;  
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
       for (i=1; i< nlstate ; i ++)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficgp,"+$%d",k+i+1);    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    fprintf(ficreseij,"# Local time at start: %s", strstart);
          fprintf(ficreseij,"# Health expectancies\n");
       l=3+(nlstate+ndeath)*cpt;    fprintf(ficreseij,"# Age");
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    for(i=1; i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++) {      for(j=1; j<=nlstate;j++)
         l=3+(nlstate+ndeath)*cpt;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
         fprintf(ficgp,"+$%d",l+i+1);    fprintf(ficreseij,"\n");
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
   }      }
      else  hstepm=estepm;   
   /* proba elementaires */    /* We compute the life expectancy from trapezoids spaced every estepm months
    for(i=1,jk=1; i <=nlstate; i++){     * This is mainly to measure the difference between two models: for example
     for(k=1; k <=(nlstate+ndeath); k++){     * if stepm=24 months pijx are given only every 2 years and by summing them
       if (k != i) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
         for(j=1; j <=ncovmodel; j++){     * progression in between and thus overestimating or underestimating according
             * to the curvature of the survival function. If, for the same date, we 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           jk++;     * to compare the new estimate of Life expectancy with the same linear 
           fprintf(ficgp,"\n");     * hypothesis. A more precise result, taking into account a more precise
         }     * curvature will be obtained if estepm is as small as stepm. */
       }  
     }    /* For example we decided to compute the life expectancy with the smallest unit */
    }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/       nstepm is the number of stepm from age to agelin. 
      for(jk=1; jk <=m; jk++) {       Look at hpijx to understand the reason of that which relies in memory size
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);       and note for a fixed period like estepm months */
        if (ng==2)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");       survival function given by stepm (the optimization length). Unfortunately it
        else       means that if the survival funtion is printed only each two years of age and if
          fprintf(ficgp,"\nset title \"Probability\"\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);       results. So we changed our mind and took the option of the best precision.
        i=1;    */
        for(k2=1; k2<=nlstate; k2++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
          k3=i;  
          for(k=1; k<=(nlstate+ndeath); k++) {    agelim=AGESUP;
            if (k != k2){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
              if(ng==2)      /* nhstepm age range expressed in number of stepm */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
              else      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      /* if (stepm >= YEARM) hstepm=1;*/
              ij=1;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
              for(j=3; j <=ncovmodel; j++) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
                  ij++;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
                }  
                else      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
              }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
              fprintf(ficgp,")/(1");   
                
              for(k1=1; k1 <=nlstate; k1++){        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
                ij=1;      /* Computing  Variances of health expectancies */
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       for(theta=1; theta <=npar; theta++){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for(i=1; i<=npar; i++){ 
                    ij++;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                  }        }
                  else        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    
                }        cptj=0;
                fprintf(ficgp,")");        for(j=1; j<= nlstate; j++){
              }          for(i=1; i<=nlstate; i++){
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);            cptj=cptj+1;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
              i=i+ncovmodel;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
            }            }
          }          }
        }        }
      }       
    }       
    fclose(ficgp);        for(i=1; i<=npar; i++) 
 }  /* end gnuplot */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         
 /*************** Moving average **************/        cptj=0;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        for(j=1; j<= nlstate; j++){
           for(i=1;i<=nlstate;i++){
   int i, cpt, cptcod;            cptj=cptj+1;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           mobaverage[(int)agedeb][i][cptcod]=0.;            }
              }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        }
       for (i=1; i<=nlstate;i++){        for(j=1; j<= nlstate*nlstate; j++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for(h=0; h<=nhstepm-1; h++){
           for (cpt=0;cpt<=4;cpt++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          }
           }       } 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;     
         }  /* End theta */
       }  
     }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      
 }       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
 /************** Forecasting ******************/            trgradg[h][j][theta]=gradg[h][theta][j];
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){       
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       for(i=1;i<=nlstate*nlstate;i++)
   int *popage;        for(j=1;j<=nlstate*nlstate;j++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          varhe[i][j][(int)age] =0.;
   double *popeffectif,*popcount;  
   double ***p3mat;       printf("%d|",(int)age);fflush(stdout);
   char fileresf[FILENAMELENGTH];       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
  agelim=AGESUP;        for(k=0;k<=nhstepm-1;k++){
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for(i=1;i<=nlstate*nlstate;i++)
              for(j=1;j<=nlstate*nlstate;j++)
                varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   strcpy(fileresf,"f");        }
   strcat(fileresf,fileres);      }
   if((ficresf=fopen(fileresf,"w"))==NULL) {      /* Computing expectancies */
     printf("Problem with forecast resultfile: %s\n", fileresf);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
   printf("Computing forecasting: result on file '%s' \n", fileresf);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            
   /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(i=1; i<=nlstate;i++)
   if (stepm<=12) stepsize=1;        for(j=1; j<=nlstate;j++){
            cptj++;
   agelim=AGESUP;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
          }
   hstepm=1;      fprintf(ficreseij,"\n");
   hstepm=hstepm/stepm;     
   yp1=modf(dateintmean,&yp);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   anprojmean=yp;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   yp2=modf((yp1*12),&yp);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   mprojmean=yp;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   yp1=modf((yp2*30.5),&yp);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   jprojmean=yp;    }
   if(jprojmean==0) jprojmean=1;    printf("\n");
   if(mprojmean==0) jprojmean=1;    fprintf(ficlog,"\n");
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    free_vector(xp,1,npar);
      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   for(cptcov=1;cptcov<=i2;cptcov++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       k=k+1;  }
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {  /************ Variance ******************/
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       }  {
       fprintf(ficresf,"******\n");    /* Variance of health expectancies */
       fprintf(ficresf,"# StartingAge FinalAge");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    /* double **newm;*/
          double **dnewm,**doldm;
          double **dnewmp,**doldmp;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    int i, j, nhstepm, hstepm, h, nstepm ;
         fprintf(ficresf,"\n");    int k, cptcode;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      double *xp;
     double **gp, **gm;  /* for var eij */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double ***gradg, ***trgradg; /*for var eij */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double **gradgp, **trgradgp; /* for var p point j */
           nhstepm = nhstepm/hstepm;    double *gpp, *gmp; /* for var p point j */
              double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***p3mat;
           oldm=oldms;savm=savms;    double age,agelim, hf;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double ***mobaverage;
            int theta;
           for (h=0; h<=nhstepm; h++){    char digit[4];
             if (h==(int) (calagedate+YEARM*cpt)) {    char digitp[25];
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }    char fileresprobmorprev[FILENAMELENGTH];
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    if(popbased==1){
               for(i=1; i<=nlstate;i++) {                    if(mobilav!=0)
                 if (mobilav==1)        strcpy(digitp,"-populbased-mobilav-");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      else strcpy(digitp,"-populbased-nomobil-");
                 else {    }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    else 
                 }      strcpy(digitp,"-stablbased-");
                  
               }    if (mobilav!=0) {
               if (h==(int)(calagedate+12*cpt)){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 fprintf(ficresf," %.3f", kk1);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                                fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             }      }
           }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    strcpy(fileresprobmorprev,"prmorprev"); 
       }    sprintf(digit,"%-d",ij);
     }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
            strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   fclose(ficresf);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 /************** Forecasting ******************/    }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   int *popage;    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   double *popeffectif,*popcount;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   double ***p3mat,***tabpop,***tabpopprev;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   char filerespop[FILENAMELENGTH];      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }  
   agelim=AGESUP;    fprintf(ficresprobmorprev,"\n");
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    fprintf(ficgp,"\n# Routine varevsij");
      /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    /*   } */
   strcpy(filerespop,"pop");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcat(filerespop,fileres);   fprintf(ficresvij, "#Local time at start: %s", strstart);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     printf("Problem with forecast resultfile: %s\n", filerespop);    fprintf(ficresvij,"# Age");
   }    for(i=1; i<=nlstate;i++)
   printf("Computing forecasting: result on file '%s' \n", filerespop);      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(ficresvij,"\n");
   
   if (mobilav==1) {    xp=vector(1,npar);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    dnewm=matrix(1,nlstate,1,npar);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    doldm=matrix(1,nlstate,1,nlstate);
   }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
   agelim=AGESUP;    gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   hstepm=1;    
   hstepm=hstepm/stepm;    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   if (popforecast==1) {    }
     if((ficpop=fopen(popfile,"r"))==NULL) {    else  hstepm=estepm;   
       printf("Problem with population file : %s\n",popfile);exit(0);    /* For example we decided to compute the life expectancy with the smallest unit */
     }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     popage=ivector(0,AGESUP);       nhstepm is the number of hstepm from age to agelim 
     popeffectif=vector(0,AGESUP);       nstepm is the number of stepm from age to agelin. 
     popcount=vector(0,AGESUP);       Look at hpijx to understand the reason of that which relies in memory size
           and note for a fixed period like k years */
     i=1;      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;       survival function given by stepm (the optimization length). Unfortunately it
           means that if the survival funtion is printed every two years of age and if
     imx=i;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];       results. So we changed our mind and took the option of the best precision.
   }    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   for(cptcov=1;cptcov<=i2;cptcov++){    agelim = AGESUP;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       k=k+1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fprintf(ficrespop,"\n#******");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(j=1;j<=cptcoveff;j++) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       }      gp=matrix(0,nhstepm,1,nlstate);
       fprintf(ficrespop,"******\n");      gm=matrix(0,nhstepm,1,nlstate);
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");      for(theta=1; theta <=npar; theta++){
              for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       for (cpt=0; cpt<=0;cpt++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }
                hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;        if (popbased==1) {
                    if(mobilav ==0){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1; i<=nlstate;i++)
           oldm=oldms;savm=savms;              prlim[i][i]=probs[(int)age][i][ij];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }else{ /* mobilav */ 
                    for(i=1; i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){              prlim[i][i]=mobaverage[(int)age][i][ij];
             if (h==(int) (calagedate+YEARM*cpt)) {          }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }
             }    
             for(j=1; j<=nlstate+ndeath;j++) {        for(j=1; j<= nlstate; j++){
               kk1=0.;kk2=0;          for(h=0; h<=nhstepm; h++){
               for(i=1; i<=nlstate;i++) {                          for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                 if (mobilav==1)              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          }
                 else {        }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        /* This for computing probability of death (h=1 means
                 }           computed over hstepm matrices product = hstepm*stepm months) 
               }           as a weighted average of prlim.
               if (h==(int)(calagedate+12*cpt)){        */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   /*fprintf(ficrespop," %.3f", kk1);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            gpp[j] += prlim[i][i]*p3mat[i][j][1];
               }        }    
             }        /* end probability of death */
             for(i=1; i<=nlstate;i++){  
               kk1=0.;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                 for(j=1; j<=nlstate;j++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                 }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];   
             }        if (popbased==1) {
           if(mobilav ==0){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            for(i=1; i<=nlstate;i++)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              prlim[i][i]=probs[(int)age][i][ij];
           }          }else{ /* mobilav */ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1; i<=nlstate;i++)
         }              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
          }
   /******/  
         for(j=1; j<= nlstate; j++){
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          for(h=0; h<=nhstepm; h++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          }
           nhstepm = nhstepm/hstepm;        }
                  /* This for computing probability of death (h=1 means
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           computed over hstepm matrices product = hstepm*stepm months) 
           oldm=oldms;savm=savms;           as a weighted average of prlim.
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          */
           for (h=0; h<=nhstepm; h++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             if (h==(int) (calagedate+YEARM*cpt)) {          for(i=1,gmp[j]=0.; i<= nlstate; i++)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
             }        }    
             for(j=1; j<=nlstate+ndeath;j++) {        /* end probability of death */
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                      for(j=1; j<= nlstate; j++) /* vareij */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              for(h=0; h<=nhstepm; h++){
               }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          }
             }  
           }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }        }
       }  
    }      } /* End theta */
   }  
        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
       for(h=0; h<=nhstepm; h++) /* veij */
   if (popforecast==1) {        for(j=1; j<=nlstate;j++)
     free_ivector(popage,0,AGESUP);          for(theta=1; theta <=npar; theta++)
     free_vector(popeffectif,0,AGESUP);            trgradg[h][j][theta]=gradg[h][theta][j];
     free_vector(popcount,0,AGESUP);  
   }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(theta=1; theta <=npar; theta++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          trgradgp[j][theta]=gradgp[theta][j];
   fclose(ficrespop);    
 }  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 /***********************************************/      for(i=1;i<=nlstate;i++)
 /**************** Main Program *****************/        for(j=1;j<=nlstate;j++)
 /***********************************************/          vareij[i][j][(int)age] =0.;
   
 int main(int argc, char *argv[])      for(h=0;h<=nhstepm;h++){
 {        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   double agedeb, agefin,hf;          for(i=1;i<=nlstate;i++)
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   double fret;        }
   double **xi,tmp,delta;      }
     
   double dum; /* Dummy variable */      /* pptj */
   double ***p3mat;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   int *indx;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   char line[MAXLINE], linepar[MAXLINE];      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   int firstobs=1, lastobs=10;          varppt[j][i]=doldmp[j][i];
   int sdeb, sfin; /* Status at beginning and end */      /* end ppptj */
   int c,  h , cpt,l;      /*  x centered again */
   int ju,jl, mi;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;   
   int mobilav=0,popforecast=0;      if (popbased==1) {
   int hstepm, nhstepm;        if(mobilav ==0){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
   double bage, fage, age, agelim, agebase;        }else{ /* mobilav */ 
   double ftolpl=FTOL;          for(i=1; i<=nlstate;i++)
   double **prlim;            prlim[i][i]=mobaverage[(int)age][i][ij];
   double *severity;        }
   double ***param; /* Matrix of parameters */      }
   double  *p;               
   double **matcov; /* Matrix of covariance */      /* This for computing probability of death (h=1 means
   double ***delti3; /* Scale */         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   double *delti; /* Scale */         as a weighted average of prlim.
   double ***eij, ***vareij;      */
   double **varpl; /* Variances of prevalence limits by age */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double *epj, vepp;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   double kk1, kk2;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      }    
        /* end probability of death */
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   char z[1]="c", occ;        for(i=1; i<=nlstate;i++){
 #include <sys/time.h>          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 #include <time.h>        }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      } 
        fprintf(ficresprobmorprev,"\n");
   /* long total_usecs;  
   struct timeval start_time, end_time;      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        for(j=1; j<=nlstate;j++){
   getcwd(pathcd, size);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
   printf("\n%s",version);      fprintf(ficresvij,"\n");
   if(argc <=1){      free_matrix(gp,0,nhstepm,1,nlstate);
     printf("\nEnter the parameter file name: ");      free_matrix(gm,0,nhstepm,1,nlstate);
     scanf("%s",pathtot);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   else{      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     strcpy(pathtot,argv[1]);    } /* End age */
   }    free_vector(gpp,nlstate+1,nlstate+ndeath);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
   /*cygwin_split_path(pathtot,path,optionfile);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   /* cutv(path,optionfile,pathtot,'\\');*/    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   chdir(path);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   replace(pathc,path);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 /*-------- arguments in the command line --------*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   strcpy(fileres,"r");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   strcat(fileres, optionfilefiname);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   strcat(fileres,".txt");    /* Other files have txt extension */    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*---------arguments file --------*/  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);    free_vector(xp,1,npar);
     goto end;    free_matrix(doldm,1,nlstate,1,nlstate);
   }    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcpy(filereso,"o");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   strcat(filereso,fileres);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficparo=fopen(filereso,"w"))==NULL) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    fclose(ficresprobmorprev);
   }    fflush(ficgp);
     fflush(fichtm); 
   /* Reads comments: lines beginning with '#' */  }  /* end varevsij */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************ Variance of prevlim ******************/
     fgets(line, MAXLINE, ficpar);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     puts(line);  {
     fputs(line,ficparo);    /* Variance of prevalence limit */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   ungetc(c,ficpar);    double **newm;
     double **dnewm,**doldm;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    int i, j, nhstepm, hstepm;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    int k, cptcode;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double *xp;
 while((c=getc(ficpar))=='#' && c!= EOF){    double *gp, *gm;
     ungetc(c,ficpar);    double **gradg, **trgradg;
     fgets(line, MAXLINE, ficpar);    double age,agelim;
     puts(line);    int theta;
     fputs(line,ficparo);    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
   }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   ungetc(c,ficpar);    fprintf(ficresvpl,"# Age");
      for(i=1; i<=nlstate;i++)
            fprintf(ficresvpl," %1d-%1d",i,i);
   covar=matrix(0,NCOVMAX,1,n);    fprintf(ficresvpl,"\n");
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   ncovmodel=2+cptcovn;    doldm=matrix(1,nlstate,1,nlstate);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    
      hstepm=1*YEARM; /* Every year of age */
   /* Read guess parameters */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   /* Reads comments: lines beginning with '#' */    agelim = AGESUP;
   while((c=getc(ficpar))=='#' && c!= EOF){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     ungetc(c,ficpar);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fgets(line, MAXLINE, ficpar);      if (stepm >= YEARM) hstepm=1;
     puts(line);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     fputs(line,ficparo);      gradg=matrix(1,npar,1,nlstate);
   }      gp=vector(1,nlstate);
   ungetc(c,ficpar);      gm=vector(1,nlstate);
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for(theta=1; theta <=npar; theta++){
     for(i=1; i <=nlstate; i++)        for(i=1; i<=npar; i++){ /* Computes gradient */
     for(j=1; j <=nlstate+ndeath-1; j++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }
       fprintf(ficparo,"%1d%1d",i1,j1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("%1d%1d",i,j);        for(i=1;i<=nlstate;i++)
       for(k=1; k<=ncovmodel;k++){          gp[i] = prlim[i][i];
         fscanf(ficpar," %lf",&param[i][j][k]);      
         printf(" %lf",param[i][j][k]);        for(i=1; i<=npar; i++) /* Computes gradient */
         fprintf(ficparo," %lf",param[i][j][k]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fscanf(ficpar,"\n");        for(i=1;i<=nlstate;i++)
       printf("\n");          gm[i] = prlim[i][i];
       fprintf(ficparo,"\n");  
     }        for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      } /* End theta */
   
   p=param[1][1];      trgradg =matrix(1,nlstate,1,npar);
    
   /* Reads comments: lines beginning with '#' */      for(j=1; j<=nlstate;j++)
   while((c=getc(ficpar))=='#' && c!= EOF){        for(theta=1; theta <=npar; theta++)
     ungetc(c,ficpar);          trgradg[j][theta]=gradg[theta][j];
     fgets(line, MAXLINE, ficpar);  
     puts(line);      for(i=1;i<=nlstate;i++)
     fputs(line,ficparo);        varpl[i][(int)age] =0.;
   }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   ungetc(c,ficpar);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){      fprintf(ficresvpl,"%.0f ",age );
     for(j=1; j <=nlstate+ndeath-1; j++){      for(i=1; i<=nlstate;i++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       printf("%1d%1d",i,j);      fprintf(ficresvpl,"\n");
       fprintf(ficparo,"%1d%1d",i1,j1);      free_vector(gp,1,nlstate);
       for(k=1; k<=ncovmodel;k++){      free_vector(gm,1,nlstate);
         fscanf(ficpar,"%le",&delti3[i][j][k]);      free_matrix(gradg,1,npar,1,nlstate);
         printf(" %le",delti3[i][j][k]);      free_matrix(trgradg,1,nlstate,1,npar);
         fprintf(ficparo," %le",delti3[i][j][k]);    } /* End age */
       }  
       fscanf(ficpar,"\n");    free_vector(xp,1,npar);
       printf("\n");    free_matrix(doldm,1,nlstate,1,npar);
       fprintf(ficparo,"\n");    free_matrix(dnewm,1,nlstate,1,nlstate);
     }  
   }  }
   delti=delti3[1][1];  
    /************ Variance of one-step probabilities  ******************/
   /* Reads comments: lines beginning with '#' */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   while((c=getc(ficpar))=='#' && c!= EOF){  {
     ungetc(c,ficpar);    int i, j=0,  i1, k1, l1, t, tj;
     fgets(line, MAXLINE, ficpar);    int k2, l2, j1,  z1;
     puts(line);    int k=0,l, cptcode;
     fputs(line,ficparo);    int first=1, first1;
   }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   ungetc(c,ficpar);    double **dnewm,**doldm;
      double *xp;
   matcov=matrix(1,npar,1,npar);    double *gp, *gm;
   for(i=1; i <=npar; i++){    double **gradg, **trgradg;
     fscanf(ficpar,"%s",&str);    double **mu;
     printf("%s",str);    double age,agelim, cov[NCOVMAX];
     fprintf(ficparo,"%s",str);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     for(j=1; j <=i; j++){    int theta;
       fscanf(ficpar," %le",&matcov[i][j]);    char fileresprob[FILENAMELENGTH];
       printf(" %.5le",matcov[i][j]);    char fileresprobcov[FILENAMELENGTH];
       fprintf(ficparo," %.5le",matcov[i][j]);    char fileresprobcor[FILENAMELENGTH];
     }  
     fscanf(ficpar,"\n");    double ***varpij;
     printf("\n");  
     fprintf(ficparo,"\n");    strcpy(fileresprob,"prob"); 
   }    strcat(fileresprob,fileres);
   for(i=1; i <=npar; i++)    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     for(j=i+1;j<=npar;j++)      printf("Problem with resultfile: %s\n", fileresprob);
       matcov[i][j]=matcov[j][i];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
        }
   printf("\n");    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     /*-------- Rewriting paramater file ----------*/      printf("Problem with resultfile: %s\n", fileresprobcov);
      strcpy(rfileres,"r");    /* "Rparameterfile */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    }
      strcat(rfileres,".");    /* */    strcpy(fileresprobcor,"probcor"); 
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    strcat(fileresprobcor,fileres);
     if((ficres =fopen(rfileres,"w"))==NULL) {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      printf("Problem with resultfile: %s\n", fileresprobcor);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     fprintf(ficres,"#%s\n",version);    }
        printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     /*-------- data file ----------*/    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     if((fic=fopen(datafile,"r"))==NULL)    {    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       printf("Problem with datafile: %s\n", datafile);goto end;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     n= lastobs;    fprintf(ficresprob, "#Local time at start: %s", strstart);
     severity = vector(1,maxwav);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     outcome=imatrix(1,maxwav+1,1,n);    fprintf(ficresprob,"# Age");
     num=ivector(1,n);    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     moisnais=vector(1,n);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     annais=vector(1,n);    fprintf(ficresprobcov,"# Age");
     moisdc=vector(1,n);    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     andc=vector(1,n);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     agedc=vector(1,n);    fprintf(ficresprobcov,"# Age");
     cod=ivector(1,n);  
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    for(i=1; i<=nlstate;i++)
     mint=matrix(1,maxwav,1,n);      for(j=1; j<=(nlstate+ndeath);j++){
     anint=matrix(1,maxwav,1,n);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     s=imatrix(1,maxwav+1,1,n);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     adl=imatrix(1,maxwav+1,1,n);            fprintf(ficresprobcor," p%1d-%1d ",i,j);
     tab=ivector(1,NCOVMAX);      }  
     ncodemax=ivector(1,8);   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     i=1;    fprintf(ficresprobcor,"\n");
     while (fgets(line, MAXLINE, fic) != NULL)    {   */
       if ((i >= firstobs) && (i <=lastobs)) {   xp=vector(1,npar);
            dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         for (j=maxwav;j>=1;j--){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           strcpy(line,stra);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    first=1;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficgp,"\n# Routine varprob");
         }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
            fprintf(fichtm,"\n");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    file %s<br>\n",optionfilehtmcov);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         for (j=ncovcol;j>=1;j--){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         num[i]=atol(stra);  standard deviations wide on each axis. <br>\
           Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
         i=i+1;    cov[1]=1;
       }    tj=cptcoveff;
     }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     /* printf("ii=%d", ij);    j1=0;
        scanf("%d",i);*/    for(t=1; t<=tj;t++){
   imx=i-1; /* Number of individuals */      for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
   /* for (i=1; i<=imx; i++){        if  (cptcovn>0) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          fprintf(ficresprob, "\n#********** Variable "); 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          fprintf(ficresprob, "**********\n#\n");
     }*/          fprintf(ficresprobcov, "\n#********** Variable "); 
    /*  for (i=1; i<=imx; i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      if (s[4][i]==9)  s[4][i]=-1;          fprintf(ficresprobcov, "**********\n#\n");
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          
            fprintf(ficgp, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* Calculation of the number of parameter from char model*/          fprintf(ficgp, "**********\n#\n");
   Tvar=ivector(1,15);          
   Tprod=ivector(1,15);          
   Tvaraff=ivector(1,15);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   Tvard=imatrix(1,15,1,2);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   Tage=ivector(1,15);                fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
              
   if (strlen(model) >1){          fprintf(ficresprobcor, "\n#********** Variable ");    
     j=0, j1=0, k1=1, k2=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     j=nbocc(model,'+');          fprintf(ficresprobcor, "**********\n#");    
     j1=nbocc(model,'*');        }
     cptcovn=j+1;        
     cptcovprod=j1;        for (age=bage; age<=fage; age ++){ 
              cov[2]=age;
     strcpy(modelsav,model);          for (k=1; k<=cptcovn;k++) {
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       printf("Error. Non available option model=%s ",model);          }
       goto end;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     }          for (k=1; k<=cptcovprod;k++)
                cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for(i=(j+1); i>=1;i--){          
       cutv(stra,strb,modelsav,'+');          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          gp=vector(1,(nlstate)*(nlstate+ndeath));
       /*scanf("%d",i);*/          gm=vector(1,(nlstate)*(nlstate+ndeath));
       if (strchr(strb,'*')) {      
         cutv(strd,strc,strb,'*');          for(theta=1; theta <=npar; theta++){
         if (strcmp(strc,"age")==0) {            for(i=1; i<=npar; i++)
           cptcovprod--;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           cutv(strb,stre,strd,'V');            
           Tvar[i]=atoi(stre);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           cptcovage++;            
             Tage[cptcovage]=i;            k=0;
             /*printf("stre=%s ", stre);*/            for(i=1; i<= (nlstate); i++){
         }              for(j=1; j<=(nlstate+ndeath);j++){
         else if (strcmp(strd,"age")==0) {                k=k+1;
           cptcovprod--;                gp[k]=pmmij[i][j];
           cutv(strb,stre,strc,'V');              }
           Tvar[i]=atoi(stre);            }
           cptcovage++;            
           Tage[cptcovage]=i;            for(i=1; i<=npar; i++)
         }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         else {      
           cutv(strb,stre,strc,'V');            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           Tvar[i]=ncovcol+k1;            k=0;
           cutv(strb,strc,strd,'V');            for(i=1; i<=(nlstate); i++){
           Tprod[k1]=i;              for(j=1; j<=(nlstate+ndeath);j++){
           Tvard[k1][1]=atoi(strc);                k=k+1;
           Tvard[k1][2]=atoi(stre);                gm[k]=pmmij[i][j];
           Tvar[cptcovn+k2]=Tvard[k1][1];              }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            }
           for (k=1; k<=lastobs;k++)       
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           k1++;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           k2=k2+2;          }
         }  
       }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       else {            for(theta=1; theta <=npar; theta++)
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/              trgradg[j][theta]=gradg[theta][j];
        /*  scanf("%d",i);*/          
       cutv(strd,strc,strb,'V');          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       Tvar[i]=atoi(strc);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       strcpy(modelsav,stra);            free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         scanf("%d",i);*/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     }  
 }          pmij(pmmij,cov,ncovmodel,x,nlstate);
            
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          k=0;
   printf("cptcovprod=%d ", cptcovprod);          for(i=1; i<=(nlstate); i++){
   scanf("%d ",i);*/            for(j=1; j<=(nlstate+ndeath);j++){
     fclose(fic);              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
     /*  if(mle==1){*/            }
     if (weightopt != 1) { /* Maximisation without weights*/          }
       for(i=1;i<=n;i++) weight[i]=1.0;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     /*-calculation of age at interview from date of interview and age at death -*/              varpij[i][j][(int)age] = doldm[i][j];
     agev=matrix(1,maxwav,1,imx);  
           /*printf("\n%d ",(int)age);
     for (i=1; i<=imx; i++) {            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       for(m=2; (m<= maxwav); m++) {            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
          anint[m][i]=9999;            }*/
          s[m][i]=-1;  
        }          fprintf(ficresprob,"\n%d ",(int)age);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          fprintf(ficresprobcov,"\n%d ",(int)age);
       }          fprintf(ficresprobcor,"\n%d ",(int)age);
     }  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     for (i=1; i<=imx; i++)  {            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       for(m=1; (m<= maxwav); m++){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         if(s[m][i] >0){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           if (s[m][i] >= nlstate+1) {          }
             if(agedc[i]>0)          i=0;
               if(moisdc[i]!=99 && andc[i]!=9999)          for (k=1; k<=(nlstate);k++){
                 agev[m][i]=agedc[i];            for (l=1; l<=(nlstate+ndeath);l++){ 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/              i=i++;
            else {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               if (andc[i]!=9999){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              for (j=1; j<=i;j++){
               agev[m][i]=-1;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
               }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
             }              }
           }            }
           else if(s[m][i] !=9){ /* Should no more exist */          }/* end of loop for state */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        } /* end of loop for age */
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;        /* Confidence intervalle of pij  */
             else if(agev[m][i] <agemin){        /*
               agemin=agev[m][i];          fprintf(ficgp,"\nset noparametric;unset label");
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
             }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             else if(agev[m][i] >agemax){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
               agemax=agev[m][i];          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
             }          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
             /*agev[m][i]=anint[m][i]-annais[i];*/        */
             /*   agev[m][i] = age[i]+2*m;*/  
           }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
           else { /* =9 */        first1=1;
             agev[m][i]=1;        for (k2=1; k2<=(nlstate);k2++){
             s[m][i]=-1;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           }            if(l2==k2) continue;
         }            j=(k2-1)*(nlstate+ndeath)+l2;
         else /*= 0 Unknown */            for (k1=1; k1<=(nlstate);k1++){
           agev[m][i]=1;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       }                if(l1==k1) continue;
                    i=(k1-1)*(nlstate+ndeath)+l1;
     }                if(i<=j) continue;
     for (i=1; i<=imx; i++)  {                for (age=bage; age<=fage; age ++){ 
       for(m=1; (m<= maxwav); m++){                  if ((int)age %5==0){
         if (s[m][i] > (nlstate+ndeath)) {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           printf("Error: Wrong value in nlstate or ndeath\n");                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           goto end;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         }                    mu1=mu[i][(int) age]/stepm*YEARM ;
       }                    mu2=mu[j][(int) age]/stepm*YEARM;
     }                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     free_vector(severity,1,maxwav);                    /* Eigen vectors */
     free_imatrix(outcome,1,maxwav+1,1,n);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     free_vector(moisnais,1,n);                    /*v21=sqrt(1.-v11*v11); *//* error */
     free_vector(annais,1,n);                    v21=(lc1-v1)/cv12*v11;
     /* free_matrix(mint,1,maxwav,1,n);                    v12=-v21;
        free_matrix(anint,1,maxwav,1,n);*/                    v22=v11;
     free_vector(moisdc,1,n);                    tnalp=v21/v11;
     free_vector(andc,1,n);                    if(first1==1){
                       first1=0;
                          printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     wav=ivector(1,imx);                    }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                    /*printf(fignu*/
                        /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     /* Concatenates waves */                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                    if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
       Tcode=ivector(1,100);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       ncodemax[1]=1;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
        %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
    codtab=imatrix(1,100,1,10);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
    h=0;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    m=pow(2,cptcoveff);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
    for(k=1;k<=cptcoveff; k++){                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
      for(i=1; i <=(m/pow(2,k));i++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
        for(j=1; j <= ncodemax[k]; j++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
            h++;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                    }else{
          }                      first=0;
        }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
      }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
    }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       codtab[1][2]=1;codtab[2][2]=2; */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
    /* for(i=1; i <=m ;i++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       for(k=1; k <=cptcovn; k++){                    }/* if first */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                  } /* age mod 5 */
       }                } /* end loop age */
       printf("\n");                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                first=1;
       scanf("%d",i);*/              } /*l12 */
                } /* k12 */
    /* Calculates basic frequencies. Computes observed prevalence at single age          } /*l1 */
        and prints on file fileres'p'. */        }/* k1 */
       } /* loop covariates */
        }
        free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_vector(xp,1,npar);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fclose(ficresprob);
          fclose(ficresprobcov);
     /* For Powell, parameters are in a vector p[] starting at p[1]    fclose(ficresprobcor);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    fflush(ficgp);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fflush(fichtmcov);
   }
     if(mle==1){  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }  /******************* Printing html file ***********/
      void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     /*--------- results files --------------*/                    int lastpass, int stepm, int weightopt, char model[],\
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                      int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
    jk=1;                    double jprev2, double mprev2,double anprev2){
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int jj1, k1, i1, cpt;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      for(k=1; k <=(nlstate+ndeath); k++){     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
        if (k != i)  </ul>");
          {     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
            printf("%d%d ",i,k);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
            fprintf(ficres,"%1d%1d ",i,k);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
            for(j=1; j <=ncovmodel; j++){     fprintf(fichtm,"\
              printf("%f ",p[jk]);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              fprintf(ficres,"%f ",p[jk]);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
              jk++;     fprintf(fichtm,"\
            }   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
            printf("\n");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
            fprintf(ficres,"\n");     fprintf(fichtm,"\
          }   - Life expectancies by age and initial health status (estepm=%2d months): \
      }     <a href=\"%s\">%s</a> <br>\n</li>",
    }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
  if(mle==1){  
     /* Computing hessian and covariance matrix */  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);   m=cptcoveff;
  }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");   jj1=0;
      for(i=1,jk=1; i <=nlstate; i++){   for(k1=1; k1<=m;k1++){
       for(j=1; j <=nlstate+ndeath; j++){     for(i1=1; i1<=ncodemax[k1];i1++){
         if (j!=i) {       jj1++;
           fprintf(ficres,"%1d%1d",i,j);       if (cptcovn > 0) {
           printf("%1d%1d",i,j);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for(k=1; k<=ncovmodel;k++){         for (cpt=1; cpt<=cptcoveff;cpt++) 
             printf(" %.5e",delti[jk]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             fprintf(ficres," %.5e",delti[jk]);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
             jk++;       }
           }       /* Pij */
           printf("\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
           fprintf(ficres,"\n");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         }       /* Quasi-incidences */
       }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
      }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
      <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     k=1;         /* Stable prevalence in each health state */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         for(cpt=1; cpt<nlstate;cpt++){
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     for(i=1;i<=npar;i++){  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       /*  if (k>nlstate) k=1;         }
       i1=(i-1)/(ncovmodel*nlstate)+1;       for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
       printf("%s%d%d",alph[k],i1,tab[i]);*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       fprintf(ficres,"%3d",i);       }
       printf("%3d",i);     } /* end i1 */
       for(j=1; j<=i;j++){   }/* End k1 */
         fprintf(ficres," %.5e",matcov[i][j]);   fprintf(fichtm,"</ul>");
         printf(" %.5e",matcov[i][j]);  
       }  
       fprintf(ficres,"\n");   fprintf(fichtm,"\
       printf("\n");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       k++;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     }  
       fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     while((c=getc(ficpar))=='#' && c!= EOF){           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       ungetc(c,ficpar);   fprintf(fichtm,"\
       fgets(line, MAXLINE, ficpar);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       puts(line);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
       fputs(line,ficparo);  
     }   fprintf(fichtm,"\
     ungetc(c,ficpar);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     estepm=0;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   fprintf(fichtm,"\
     if (estepm==0 || estepm < stepm) estepm=stepm;   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     if (fage <= 2) {           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       bage = ageminpar;   fprintf(fichtm,"\
       fage = agemaxpar;   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       fprintf(fichtm,"\
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
    /*  if(popforecast==1) fprintf(fichtm,"\n */
     while((c=getc(ficpar))=='#' && c!= EOF){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     ungetc(c,ficpar);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     fgets(line, MAXLINE, ficpar);  /*      <br>",fileres,fileres,fileres,fileres); */
     puts(line);  /*  else  */
     fputs(line,ficparo);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   }   fflush(fichtm);
   ungetc(c,ficpar);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);   m=cptcoveff;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
         jj1=0;
   while((c=getc(ficpar))=='#' && c!= EOF){   for(k1=1; k1<=m;k1++){
     ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
     fgets(line, MAXLINE, ficpar);       jj1++;
     puts(line);       if (cptcovn > 0) {
     fputs(line,ficparo);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   }         for (cpt=1; cpt<=cptcoveff;cpt++) 
   ungetc(c,ficpar);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;       for(cpt=1; cpt<=nlstate;cpt++) {
    dateprev2=anprev2+mprev2/12.+jprev2/365.;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   fscanf(ficpar,"pop_based=%d\n",&popbased);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   fprintf(ficparo,"pop_based=%d\n",popbased);         }
   fprintf(ficres,"pop_based=%d\n",popbased);         fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    health expectancies in states (1) and (2): %s%d.png<br>\
   while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     ungetc(c,ficpar);     } /* end i1 */
     fgets(line, MAXLINE, ficpar);   }/* End k1 */
     puts(line);   fprintf(fichtm,"</ul>");
     fputs(line,ficparo);   fflush(fichtm);
   }  }
   ungetc(c,ficpar);  
   /******************* Gnuplot file **************/
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
 while((c=getc(ficpar))=='#' && c!= EOF){  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     ungetc(c,ficpar);  /*     printf("Problem with file %s",optionfilegnuplot); */
     fgets(line, MAXLINE, ficpar);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     puts(line);  /*   } */
     fputs(line,ficparo);  
   }    /*#ifdef windows */
   ungetc(c,ficpar);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    m=pow(2,cptcoveff);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
 /*------------ gnuplot -------------*/     for (k1=1; k1<= m ; k1 ++) {
   strcpy(optionfilegnuplot,optionfilefiname);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   strcat(optionfilegnuplot,".gp");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       fprintf(ficgp,"set xlabel \"Age\" \n\
     printf("Problem with file %s",optionfilegnuplot);  set ylabel \"Probability\" \n\
   }  set ter png small\n\
   fclose(ficgp);  set size 0.65,0.65\n\
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
 /*--------- index.htm --------*/  
        for (i=1; i<= nlstate ; i ++) {
   strcpy(optionfilehtm,optionfile);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   strcat(optionfilehtm,".htm");         else fprintf(ficgp," \%%*lf (\%%*lf)");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {       }
     printf("Problem with %s \n",optionfilehtm), exit(0);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   }       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n         else fprintf(ficgp," \%%*lf (\%%*lf)");
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n       } 
 \n       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 Total number of observations=%d <br>\n       for (i=1; i<= nlstate ; i ++) {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 <hr  size=\"2\" color=\"#EC5E5E\">         else fprintf(ficgp," \%%*lf (\%%*lf)");
  <ul><li><h4>Parameter files</h4>\n       }  
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);     }
   fclose(fichtm);    }
     /*2 eme*/
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    
      for (k1=1; k1<= m ; k1 ++) { 
 /*------------ free_vector  -------------*/      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
  chdir(path);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
        
  free_ivector(wav,1,imx);      for (i=1; i<= nlstate+1 ; i ++) {
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        k=2*i;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  free_ivector(num,1,n);        for (j=1; j<= nlstate+1 ; j ++) {
  free_vector(agedc,1,n);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
  fclose(ficparo);        }   
  fclose(ficres);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   /*--------------- Prevalence limit --------------*/        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   strcpy(filerespl,"pl");          else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcat(filerespl,fileres);        }   
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        fprintf(ficgp,"\" t\"\" w l 0,");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fprintf(ficrespl,"#Prevalence limit\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficrespl,"#Age ");        }   
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   fprintf(ficrespl,"\n");        else fprintf(ficgp,"\" t\"\" w l 0,");
        }
   prlim=matrix(1,nlstate,1,nlstate);    }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*3eme*/
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (k1=1; k1<= m ; k1 ++) { 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      for (cpt=1; cpt<= nlstate ; cpt ++) {
   k=0;        k=2+nlstate*(2*cpt-2);
   agebase=ageminpar;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   agelim=agemaxpar;        fprintf(ficgp,"set ter png small\n\
   ftolpl=1.e-10;  set size 0.65,0.65\n\
   i1=cptcoveff;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   if (cptcovn < 1){i1=1;}        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         k=k+1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         fprintf(ficrespl,"\n#******");          
         for(j=1;j<=cptcoveff;j++)        */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (i=1; i< nlstate ; i ++) {
         fprintf(ficrespl,"******\n");          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
                  
         for (age=agebase; age<=agelim; age++){        } 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      }
           fprintf(ficrespl,"%.0f",age );    }
           for(i=1; i<=nlstate;i++)    
           fprintf(ficrespl," %.5f", prlim[i][i]);    /* CV preval stable (period) */
           fprintf(ficrespl,"\n");    for (k1=1; k1<= m ; k1 ++) { 
         }      for (cpt=1; cpt<=nlstate ; cpt ++) {
       }        k=3;
     }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   fclose(ficrespl);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   /*------------- h Pij x at various ages ------------*/  unset log y\n\
    plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        for (i=1; i< nlstate ; i ++)
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          fprintf(ficgp,"+$%d",k+i+1);
   }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   printf("Computing pij: result on file '%s' \n", filerespij);        
          l=3+(nlstate+ndeath)*cpt;
   stepsize=(int) (stepm+YEARM-1)/YEARM;        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   /*if (stepm<=24) stepsize=2;*/        for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
   agelim=AGESUP;          fprintf(ficgp,"+$%d",l+i+1);
   hstepm=stepsize*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
   /* hstepm=1;   aff par mois*/    }  
     
   k=0;    /* proba elementaires */
   for(cptcov=1;cptcov<=i1;cptcov++){    for(i=1,jk=1; i <=nlstate; i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(k=1; k <=(nlstate+ndeath); k++){
       k=k+1;        if (k != i) {
         fprintf(ficrespij,"\n#****** ");          for(j=1; j <=ncovmodel; j++){
         for(j=1;j<=cptcoveff;j++)            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            jk++; 
         fprintf(ficrespij,"******\n");            fprintf(ficgp,"\n");
                  }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */     }
   
           /*      nhstepm=nhstepm*YEARM; aff par mois*/     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           oldm=oldms;savm=savms;         if (ng==2)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           fprintf(ficrespij,"# Age");         else
           for(i=1; i<=nlstate;i++)           fprintf(ficgp,"\nset title \"Probability\"\n");
             for(j=1; j<=nlstate+ndeath;j++)         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
               fprintf(ficrespij," %1d-%1d",i,j);         i=1;
           fprintf(ficrespij,"\n");         for(k2=1; k2<=nlstate; k2++) {
            for (h=0; h<=nhstepm; h++){           k3=i;
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );           for(k=1; k<=(nlstate+ndeath); k++) {
             for(i=1; i<=nlstate;i++)             if (k != k2){
               for(j=1; j<=nlstate+ndeath;j++)               if(ng==2)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
             fprintf(ficrespij,"\n");               else
              }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               ij=1;
           fprintf(ficrespij,"\n");               for(j=3; j <=ncovmodel; j++) {
         }                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   }                   ij++;
                  }
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   fclose(ficrespij);               }
                fprintf(ficgp,")/(1");
                
   /*---------- Forecasting ------------------*/               for(k1=1; k1 <=nlstate; k1++){   
   if((stepm == 1) && (strcmp(model,".")==0)){                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                 ij=1;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                 for(j=3; j <=ncovmodel; j++){
   }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   else{                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     erreur=108;                     ij++;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                   }
   }                   else
                       fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
   /*---------- Health expectancies and variances ------------*/                 fprintf(ficgp,")");
                }
   strcpy(filerest,"t");               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   strcat(filerest,fileres);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   if((ficrest=fopen(filerest,"w"))==NULL) {               i=i+ncovmodel;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;             }
   }           } /* end k */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);         } /* end k2 */
        } /* end jk */
      } /* end ng */
   strcpy(filerese,"e");     fflush(ficgp); 
   strcat(filerese,fileres);  }  /* end gnuplot */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }  /*************** Moving average **************/
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
  strcpy(fileresv,"v");    int i, cpt, cptcod;
   strcat(fileresv,fileres);    int modcovmax =1;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    int mobilavrange, mob;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double age;
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   calagedate=-1;                             a covariate has 2 modalities */
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
   k=0;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   for(cptcov=1;cptcov<=i1;cptcov++){      if(mobilav==1) mobilavrange=5; /* default */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      else mobilavrange=mobilav;
       k=k+1;      for (age=bage; age<=fage; age++)
       fprintf(ficrest,"\n#****** ");        for (i=1; i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++)          for (cptcod=1;cptcod<=modcovmax;cptcod++)
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       fprintf(ficrest,"******\n");      /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       fprintf(ficreseij,"\n#****** ");         we use a 5 terms etc. until the borders are no more concerned. 
       for(j=1;j<=cptcoveff;j++)      */ 
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (mob=3;mob <=mobilavrange;mob=mob+2){
       fprintf(ficreseij,"******\n");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
       fprintf(ficresvij,"\n#****** ");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
       for(j=1;j<=cptcoveff;j++)              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       fprintf(ficresvij,"******\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                }
       oldm=oldms;savm=savms;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);              }
            }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }/* end age */
       oldm=oldms;savm=savms;      }/* end mob */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    }else return -1;
        return 0;
   }/* End movingaverage */
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  /************** Forecasting ******************/
       fprintf(ficrest,"\n");  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
       epj=vector(1,nlstate+1);       agemin, agemax range of age
       for(age=bage; age <=fage ;age++){       dateprev1 dateprev2 range of dates during which prevalence is computed
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       anproj2 year of en of projection (same day and month as proj1).
         if (popbased==1) {    */
           for(i=1; i<=nlstate;i++)    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
             prlim[i][i]=probs[(int)age][i][k];    int *popage;
         }    double agec; /* generic age */
            double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
         fprintf(ficrest," %4.0f",age);    double *popeffectif,*popcount;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    double ***p3mat;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    double ***mobaverage;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    char fileresf[FILENAMELENGTH];
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }    agelim=AGESUP;
           epj[nlstate+1] +=epj[j];    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         }   
     strcpy(fileresf,"f"); 
         for(i=1, vepp=0.;i <=nlstate;i++)    strcat(fileresf,fileres);
           for(j=1;j <=nlstate;j++)    if((ficresf=fopen(fileresf,"w"))==NULL) {
             vepp += vareij[i][j][(int)age];      printf("Problem with forecast resultfile: %s\n", fileresf);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         for(j=1;j <=nlstate;j++){    }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    printf("Computing forecasting: result on file '%s' \n", fileresf);
         }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         fprintf(ficrest,"\n");  
       }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     }  
   }    if (mobilav!=0) {
 free_matrix(mint,1,maxwav,1,n);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     free_vector(weight,1,n);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficreseij);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficresvij);      }
   fclose(ficrest);    }
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);    stepsize=(int) (stepm+YEARM-1)/YEARM;
      if (stepm<=12) stepsize=1;
   /*------- Variance limit prevalence------*/      if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   strcpy(fileresvpl,"vpl");    }
   strcat(fileresvpl,fileres);    else  hstepm=estepm;   
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    hstepm=hstepm/stepm; 
     exit(0);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   }                                 fractional in yp1 */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    anprojmean=yp;
     yp2=modf((yp1*12),&yp);
   k=0;    mprojmean=yp;
   for(cptcov=1;cptcov<=i1;cptcov++){    yp1=modf((yp2*30.5),&yp);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    jprojmean=yp;
       k=k+1;    if(jprojmean==0) jprojmean=1;
       fprintf(ficresvpl,"\n#****** ");    if(mprojmean==0) jprojmean=1;
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    i1=cptcoveff;
       fprintf(ficresvpl,"******\n");    if (cptcovn < 1){i1=1;}
          
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       oldm=oldms;savm=savms;    
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficresf,"#****** Routine prevforecast **\n");
     }  
  }  /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   fclose(ficresvpl);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   /*---------- End : free ----------------*/        fprintf(ficresf,"\n#******");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        for(j=1;j<=cptcoveff;j++) {
            fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficresf,"******\n");
          fprintf(ficresf,"# Covariate valuofcovar yearproj age");
          for(j=1; j<=nlstate+ndeath;j++){ 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          for(i=1; i<=nlstate;i++)              
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            fprintf(ficresf," p%d%d",i,j);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficresf," p.%d",j);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
          for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   free_matrix(matcov,1,npar,1,npar);          fprintf(ficresf,"\n");
   free_vector(delti,1,npar);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   fprintf(fichtm,"\n</body>");            nhstepm = nhstepm/hstepm; 
   fclose(fichtm);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficgp);            oldm=oldms;savm=savms;
              hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
   if(erreur >0)            for (h=0; h<=nhstepm; h++){
     printf("End of Imach with error or warning %d\n",erreur);              if (h*hstepm/YEARM*stepm ==yearp) {
   else   printf("End of Imach\n");                fprintf(ficresf,"\n");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                for(j=1;j<=cptcoveff;j++) 
                    fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   /*printf("Total time was %d uSec.\n", total_usecs);*/              } 
   /*------ End -----------*/              for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
  end:                  if (mobilav==1) 
 #ifdef windows                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   /* chdir(pathcd);*/                  else {
 #endif                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
  /*system("wgnuplot graph.plt");*/                  }
  /*system("../gp37mgw/wgnuplot graph.plt");*/                  if (h*hstepm/YEARM*stepm== yearp) {
  /*system("cd ../gp37mgw");*/                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                  }
  strcpy(plotcmd,GNUPLOTPROGRAM);                } /* end i */
  strcat(plotcmd," ");                if (h*hstepm/YEARM*stepm==yearp) {
  strcat(plotcmd,optionfilegnuplot);                  fprintf(ficresf," %.3f", ppij);
  system(plotcmd);                }
               }/* end j */
 #ifdef windows            } /* end h */
   while (z[0] != 'q') {            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* chdir(path); */          } /* end agec */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        } /* end yearp */
     scanf("%s",z);      } /* end cptcod */
     if (z[0] == 'c') system("./imach");    } /* end  cptcov */
     else if (z[0] == 'e') system(optionfilehtm);         
     else if (z[0] == 'g') system(plotcmd);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     else if (z[0] == 'q') exit(0);  
   }    fclose(ficresf);
 #endif  }
 }  
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.49  
changed lines
  Added in v.1.115


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>