Diff for /imach/src/imach.c between versions 1.4 and 1.115

version 1.4, 2001/05/02 17:34:41 version 1.115, 2006/02/27 12:17:45
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.115  2006/02/27 12:17:45  brouard
   individuals from different ages are interviewed on their health status    (Module): One freematrix added in mlikeli! 0.98c
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.114  2006/02/26 12:57:58  brouard
   Health expectancies are computed from the transistions observed between    (Module): Some improvements in processing parameter
   waves and are computed for each degree of severity of disability (number    filename with strsep.
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.113  2006/02/24 14:20:24  brouard
   The simplest model is the multinomial logistic model where pij is    (Module): Memory leaks checks with valgrind and:
   the probabibility to be observed in state j at the second wave conditional    datafile was not closed, some imatrix were not freed and on matrix
   to be observed in state i at the first wave. Therefore the model is:    allocation too.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.112  2006/01/30 09:55:26  brouard
   age", you should modify the program where the markup    (Module): Back to gnuplot.exe instead of wgnuplot.exe
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   The advantage that this computer programme claims, comes from that if the    (Module): Comments can be added in data file. Missing date values
   delay between waves is not identical for each individual, or if some    can be a simple dot '.'.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.110  2006/01/25 00:51:50  brouard
   hPijx is the probability to be    (Module): Lots of cleaning and bugs added (Gompertz)
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.109  2006/01/24 19:37:15  brouard
   unobserved intermediate  states. This elementary transition (by month or    (Module): Comments (lines starting with a #) are allowed in data.
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.108  2006/01/19 18:05:42  lievre
   and the contribution of each individual to the likelihood is simply hPijx.    Gnuplot problem appeared...
     To be fixed
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.107  2006/01/19 16:20:37  brouard
      Test existence of gnuplot in imach path
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.106  2006/01/19 13:24:36  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Some cleaning and links added in html output
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.105  2006/01/05 20:23:19  lievre
   software can be distributed freely for non commercial use. Latest version    *** empty log message ***
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.104  2005/09/30 16:11:43  lievre
      (Module): sump fixed, loop imx fixed, and simplifications.
 #include <math.h>    (Module): If the status is missing at the last wave but we know
 #include <stdio.h>    that the person is alive, then we can code his/her status as -2
 #include <stdlib.h>    (instead of missing=-1 in earlier versions) and his/her
 #include <unistd.h>    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define MAXLINE 256    the healthy state at last known wave). Version is 0.98
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.103  2005/09/30 15:54:49  lievre
 #define windows    (Module): sump fixed, loop imx fixed, and simplifications.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.102  2004/09/15 17:31:30  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Add the possibility to read data file including tab characters.
   
 #define NINTERVMAX 8    Revision 1.101  2004/09/15 10:38:38  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Fix on curr_time
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.100  2004/07/12 18:29:06  brouard
 #define MAXN 20000    Add version for Mac OS X. Just define UNIX in Makefile
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.99  2004/06/05 08:57:40  brouard
 #define AGEBASE 40    *** empty log message ***
   
     Revision 1.98  2004/05/16 15:05:56  brouard
 int nvar;    New version 0.97 . First attempt to estimate force of mortality
 static int cptcov;    directly from the data i.e. without the need of knowing the health
 int cptcovn;    state at each age, but using a Gompertz model: log u =a + b*age .
 int npar=NPARMAX;    This is the basic analysis of mortality and should be done before any
 int nlstate=2; /* Number of live states */    other analysis, in order to test if the mortality estimated from the
 int ndeath=1; /* Number of dead states */    cross-longitudinal survey is different from the mortality estimated
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    from other sources like vital statistic data.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    The same imach parameter file can be used but the option for mle should be -3.
 int maxwav; /* Maxim number of waves */  
 int mle, weightopt;    Agnès, who wrote this part of the code, tried to keep most of the
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    former routines in order to include the new code within the former code.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    The output is very simple: only an estimate of the intercept and of
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    the slope with 95% confident intervals.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;  
 FILE *ficgp, *fichtm;    Current limitations:
 FILE *ficreseij;    A) Even if you enter covariates, i.e. with the
   char filerese[FILENAMELENGTH];    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  FILE  *ficresvij;    B) There is no computation of Life Expectancy nor Life Table.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.97  2004/02/20 13:25:42  lievre
   char fileresvpl[FILENAMELENGTH];    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   
     Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define NR_END 1    rewritten within the same printf. Workaround: many printfs.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 #define NRANSI    (Repository): Using imachwizard code to output a more meaningful covariance
 #define ITMAX 200    matrix (cov(a12,c31) instead of numbers.
   
 #define TOL 2.0e-4    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.93  2003/06/25 16:33:55  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 #define GOLD 1.618034    (Module): Version 0.96b
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 static double maxarg1,maxarg2;    exist so I changed back to asctime which exists.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.91  2003/06/25 15:30:29  brouard
      * imach.c (Repository): Duplicated warning errors corrected.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Repository): Elapsed time after each iteration is now output. It
 #define rint(a) floor(a+0.5)    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 static double sqrarg;    concerning matrix of covariance. It has extension -cov.htm.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 int imx;    mle=-1 a template is output in file "or"mypar.txt with the design
 int stepm;    of the covariance matrix to be input.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.89  2003/06/24 12:30:52  brouard
 int m,nb;    (Module): Some bugs corrected for windows. Also, when
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    mle=-1 a template is output in file "or"mypar.txt with the design
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    of the covariance matrix to be input.
 double **pmmij;  
     Revision 1.88  2003/06/23 17:54:56  brouard
 double *weight;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.87  2003/06/18 12:26:01  brouard
 int **nbcode, *Tcode, *Tvar, **codtab;    Version 0.96
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.86  2003/06/17 20:04:08  brouard
 double ftolhess; /* Tolerance for computing hessian */    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
   
 /******************************************/    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 void replace(char *s, char*t)    current date of interview. It may happen when the death was just
 {    prior to the death. In this case, dh was negative and likelihood
   int i;    was wrong (infinity). We still send an "Error" but patch by
   int lg=20;    assuming that the date of death was just one stepm after the
   i=0;    interview.
   lg=strlen(t);    (Repository): Because some people have very long ID (first column)
   for(i=0; i<= lg; i++) {    we changed int to long in num[] and we added a new lvector for
     (s[i] = t[i]);    memory allocation. But we also truncated to 8 characters (left
     if (t[i]== '\\') s[i]='/';    truncation)
   }    (Repository): No more line truncation errors.
 }  
     Revision 1.84  2003/06/13 21:44:43  brouard
 int nbocc(char *s, char occ)    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   int i,j=0;    many times. Probs is memory consuming and must be used with
   int lg=20;    parcimony.
   i=0;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.83  2003/06/10 13:39:11  lievre
   if  (s[i] == occ ) j++;    *** empty log message ***
   }  
   return j;    Revision 1.82  2003/06/05 15:57:20  brouard
 }    Add log in  imach.c and  fullversion number is now printed.
   
 void cutv(char *u,char *v, char*t, char occ)  */
 {  /*
   int i,lg,j,p;     Interpolated Markov Chain
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Short summary of the programme:
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    
   }    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   lg=strlen(t);    first survey ("cross") where individuals from different ages are
   for(j=0; j<p; j++) {    interviewed on their health status or degree of disability (in the
     (u[j] = t[j]);    case of a health survey which is our main interest) -2- at least a
     u[p]='\0';    second wave of interviews ("longitudinal") which measure each change
   }    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
    for(j=0; j<= lg; j++) {    model. More health states you consider, more time is necessary to reach the
     if (j>=(p+1))(v[j-p-1] = t[j]);    Maximum Likelihood of the parameters involved in the model.  The
   }    simplest model is the multinomial logistic model where pij is the
 }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /********************** nrerror ********************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 void nrerror(char error_text[])    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   fprintf(stderr,"ERREUR ...\n");    you to do it.  More covariates you add, slower the
   fprintf(stderr,"%s\n",error_text);    convergence.
   exit(1);  
 }    The advantage of this computer programme, compared to a simple
 /*********************** vector *******************/    multinomial logistic model, is clear when the delay between waves is not
 double *vector(int nl, int nh)    identical for each individual. Also, if a individual missed an
 {    intermediate interview, the information is lost, but taken into
   double *v;    account using an interpolation or extrapolation.  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    hPijx is the probability to be observed in state i at age x+h
   return v-nl+NR_END;    conditional to the observed state i at age x. The delay 'h' can be
 }    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 /************************ free vector ******************/    semester or year) is modelled as a multinomial logistic.  The hPx
 void free_vector(double*v, int nl, int nh)    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
   free((FREE_ARG)(v+nl-NR_END));    hPijx.
 }  
     Also this programme outputs the covariance matrix of the parameters but also
 /************************ivector *******************************/    of the life expectancies. It also computes the stable prevalence. 
 int *ivector(long nl,long nh)    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   int *v;             Institut national d'études démographiques, Paris.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    This software have been partly granted by Euro-REVES, a concerted action
   if (!v) nrerror("allocation failure in ivector");    from the European Union.
   return v-nl+NR_END;    It is copyrighted identically to a GNU software product, ie programme and
 }    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   free((FREE_ARG)(v+nl-NR_END));    
 }    **********************************************************************/
   /*
 /******************* imatrix *******************************/    main
 int **imatrix(long nrl, long nrh, long ncl, long nch)    read parameterfile
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    read datafile
 {    concatwav
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    freqsummary
   int **m;    if (mle >= 1)
        mlikeli
   /* allocate pointers to rows */    print results files
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    if mle==1 
   if (!m) nrerror("allocation failure 1 in matrix()");       computes hessian
   m += NR_END;    read end of parameter file: agemin, agemax, bage, fage, estepm
   m -= nrl;        begin-prev-date,...
      open gnuplot file
      open html file
   /* allocate rows and set pointers to them */    stable prevalence
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));     for age prevalim()
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    h Pij x
   m[nrl] += NR_END;    variance of p varprob
   m[nrl] -= ncl;    forecasting if prevfcast==1 prevforecast call prevalence()
      health expectancies
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Variance-covariance of DFLE
      prevalence()
   /* return pointer to array of pointers to rows */     movingaverage()
   return m;    varevsij() 
 }    if popbased==1 varevsij(,popbased)
     total life expectancies
 /****************** free_imatrix *************************/    Variance of stable prevalence
 void free_imatrix(m,nrl,nrh,ncl,nch)   end
       int **m;  */
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   
   free((FREE_ARG) (m+nrl-NR_END));  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 /******************* matrix *******************************/  #include <string.h>
 double **matrix(long nrl, long nrh, long ncl, long nch)  #include <unistd.h>
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #include <limits.h>
   double **m;  #include <sys/types.h>
   #include <sys/stat.h>
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <errno.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  extern int errno;
   m += NR_END;  
   m -= nrl;  /* #include <sys/time.h> */
   #include <time.h>
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include "timeval.h"
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /* #include <libintl.h> */
   m[nrl] -= ncl;  /* #define _(String) gettext (String) */
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define MAXLINE 256
   return m;  
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /*************************free matrix ************************/  #define FILENAMELENGTH 132
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define NINTERVMAX 8
 {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   double ***m;  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define YEARM 12. /* Number of months per year */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define AGESUP 130
   m += NR_END;  #define AGEBASE 40
   m -= nrl;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define DIRSEPARATOR '/'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define CHARSEPARATOR "/"
   m[nrl] += NR_END;  #define ODIRSEPARATOR '\\'
   m[nrl] -= ncl;  #else
   #define DIRSEPARATOR '\\'
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #endif
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  /* $Id$ */
   m[nrl][ncl] -= nll;  /* $State$ */
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  char version[]="Imach version 0.98c, February 2006, INED-EUROREVES ";
    char fullversion[]="$Revision$ $Date$"; 
   for (i=nrl+1; i<=nrh; i++) {  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int nvar;
     for (j=ncl+1; j<=nch; j++)  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
       m[i][j]=m[i][j-1]+nlay;  int npar=NPARMAX;
   }  int nlstate=2; /* Number of live states */
   return m;  int ndeath=1; /* Number of dead states */
 }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int jmin, jmax; /* min, max spacing between 2 waves */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   free((FREE_ARG)(m+nrl-NR_END));  int gipmx, gsw; /* Global variables on the number of contributions 
 }                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 /***************** f1dim *************************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 extern int ncom;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 extern double *pcom,*xicom;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 extern double (*nrfunc)(double []);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
    double jmean; /* Mean space between 2 waves */
 double f1dim(double x)  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   int j;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   double f;  FILE *ficlog, *ficrespow;
   double *xt;  int globpr; /* Global variable for printing or not */
    double fretone; /* Only one call to likelihood */
   xt=vector(1,ncom);  long ipmx; /* Number of contributions */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double sw; /* Sum of weights */
   f=(*nrfunc)(xt);  char filerespow[FILENAMELENGTH];
   free_vector(xt,1,ncom);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   return f;  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /*****************brent *************************/  FILE *fichtm, *fichtmcov; /* Html File */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   int iter;  FILE  *ficresvij;
   double a,b,d,etemp;  char fileresv[FILENAMELENGTH];
   double fu,fv,fw,fx;  FILE  *ficresvpl;
   double ftemp;  char fileresvpl[FILENAMELENGTH];
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char title[MAXLINE];
   double e=0.0;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   a=(ax < cx ? ax : cx);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   b=(ax > cx ? ax : cx);  char command[FILENAMELENGTH];
   x=w=v=bx;  int  outcmd=0;
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  char filelog[FILENAMELENGTH]; /* Log file */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char filerest[FILENAMELENGTH];
     printf(".");fflush(stdout);  char fileregp[FILENAMELENGTH];
 #ifdef DEBUG  char popfile[FILENAMELENGTH];
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       *xmin=x;  struct timezone tzp;
       return fx;  extern int gettimeofday();
     }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     ftemp=fu;  long time_value;
     if (fabs(e) > tol1) {  extern long time();
       r=(x-w)*(fx-fv);  char strcurr[80], strfor[80];
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  char *endptr;
       q=2.0*(q-r);  long lval;
       if (q > 0.0) p = -p;  
       q=fabs(q);  #define NR_END 1
       etemp=e;  #define FREE_ARG char*
       e=d;  #define FTOL 1.0e-10
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define NRANSI 
       else {  #define ITMAX 200 
         d=p/q;  
         u=x+d;  #define TOL 2.0e-4 
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  #define CGOLD 0.3819660 
       }  #define ZEPS 1.0e-10 
     } else {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  #define GOLD 1.618034 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define GLIMIT 100.0 
     fu=(*f)(u);  #define TINY 1.0e-20 
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  static double maxarg1,maxarg2;
       SHFT(v,w,x,u)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
         SHFT(fv,fw,fx,fu)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         } else {    
           if (u < x) a=u; else b=u;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
           if (fu <= fw || w == x) {  #define rint(a) floor(a+0.5)
             v=w;  
             w=u;  static double sqrarg;
             fv=fw;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
             fw=fu;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
           } else if (fu <= fv || v == x || v == w) {  int agegomp= AGEGOMP;
             v=u;  
             fv=fu;  int imx; 
           }  int stepm=1;
         }  /* Stepm, step in month: minimum step interpolation*/
   }  
   nrerror("Too many iterations in brent");  int estepm;
   *xmin=x;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   return fx;  
 }  int m,nb;
   long *num;
 /****************** mnbrak ***********************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  double **pmmij, ***probs;
             double (*func)(double))  double *ageexmed,*agecens;
 {  double dateintmean=0;
   double ulim,u,r,q, dum;  
   double fu;  double *weight;
    int **s; /* Status */
   *fa=(*func)(*ax);  double *agedc, **covar, idx;
   *fb=(*func)(*bx);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   if (*fb > *fa) {  double *lsurv, *lpop, *tpop;
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       }  double ftolhess; /* Tolerance for computing hessian */
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /**************** split *************************/
   while (*fb > *fc) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     r=(*bx-*ax)*(*fb-*fc);  {
     q=(*bx-*cx)*(*fb-*fa);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    */ 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    char  *ss;                            /* pointer */
     if ((*bx-u)*(u-*cx) > 0.0) {    int   l1, l2;                         /* length counters */
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {    l1 = strlen(path );                   /* length of path */
       fu=(*func)(u);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       if (fu < *fc) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    if ( ss == NULL ) {                   /* no directory, so determine current directory */
           SHFT(*fb,*fc,fu,(*func)(u))      strcpy( name, path );               /* we got the fullname name because no directory */
           }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       u=ulim;      /* get current working directory */
       fu=(*func)(u);      /*    extern  char* getcwd ( char *buf , int len);*/
     } else {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       u=(*cx)+GOLD*(*cx-*bx);        return( GLOCK_ERROR_GETCWD );
       fu=(*func)(u);      }
     }      /* got dirc from getcwd*/
     SHFT(*ax,*bx,*cx,u)      printf(" DIRC = %s \n",dirc);
       SHFT(*fa,*fb,*fc,fu)    } else {                              /* strip direcotry from path */
       }      ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 /*************** linmin ************************/      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 int ncom;      dirc[l1-l2] = 0;                    /* add zero */
 double *pcom,*xicom;      printf(" DIRC2 = %s \n",dirc);
 double (*nrfunc)(double []);    }
      /* We add a separator at the end of dirc if not exists */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    l1 = strlen( dirc );                  /* length of directory */
 {    if( dirc[l1-1] != DIRSEPARATOR ){
   double brent(double ax, double bx, double cx,      dirc[l1] =  DIRSEPARATOR;
                double (*f)(double), double tol, double *xmin);      dirc[l1+1] = 0; 
   double f1dim(double x);      printf(" DIRC3 = %s \n",dirc);
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    }
               double *fc, double (*func)(double));    ss = strrchr( name, '.' );            /* find last / */
   int j;    if (ss >0){
   double xx,xmin,bx,ax;      ss++;
   double fx,fb,fa;      strcpy(ext,ss);                     /* save extension */
        l1= strlen( name);
   ncom=n;      l2= strlen(ss)+1;
   pcom=vector(1,n);      strncpy( finame, name, l1-l2);
   xicom=vector(1,n);      finame[l1-l2]= 0;
   nrfunc=func;    }
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];    return( 0 );                          /* we're done */
     xicom[j]=xi[j];  }
   }  
   ax=0.0;  
   xx=1.0;  /******************************************/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  void replace_back_to_slash(char *s, char*t)
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    int i;
 #endif    int lg=0;
   for (j=1;j<=n;j++) {    i=0;
     xi[j] *= xmin;    lg=strlen(t);
     p[j] += xi[j];    for(i=0; i<= lg; i++) {
   }      (s[i] = t[i]);
   free_vector(xicom,1,n);      if (t[i]== '\\') s[i]='/';
   free_vector(pcom,1,n);    }
 }  }
   
 /*************** powell ************************/  int nbocc(char *s, char occ)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    int i,j=0;
 {    int lg=20;
   void linmin(double p[], double xi[], int n, double *fret,    i=0;
               double (*func)(double []));    lg=strlen(s);
   int i,ibig,j;    for(i=0; i<= lg; i++) {
   double del,t,*pt,*ptt,*xit;    if  (s[i] == occ ) j++;
   double fp,fptt;    }
   double *xits;    return j;
   pt=vector(1,n);  }
   ptt=vector(1,n);  
   xit=vector(1,n);  void cutv(char *u,char *v, char*t, char occ)
   xits=vector(1,n);  {
   *fret=(*func)(p);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   for (j=1;j<=n;j++) pt[j]=p[j];       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   for (*iter=1;;++(*iter)) {       gives u="abcedf" and v="ghi2j" */
     fp=(*fret);    int i,lg,j,p=0;
     ibig=0;    i=0;
     del=0.0;    for(j=0; j<=strlen(t)-1; j++) {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     for (i=1;i<=n;i++)    }
       printf(" %d %.12f",i, p[i]);  
     printf("\n");    lg=strlen(t);
     for (i=1;i<=n;i++) {    for(j=0; j<p; j++) {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      (u[j] = t[j]);
       fptt=(*fret);    }
 #ifdef DEBUG       u[p]='\0';
       printf("fret=%lf \n",*fret);  
 #endif     for(j=0; j<= lg; j++) {
       printf("%d",i);fflush(stdout);      if (j>=(p+1))(v[j-p-1] = t[j]);
       linmin(p,xit,n,fret,func);    }
       if (fabs(fptt-(*fret)) > del) {  }
         del=fabs(fptt-(*fret));  
         ibig=i;  /********************** nrerror ********************/
       }  
 #ifdef DEBUG  void nrerror(char error_text[])
       printf("%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    fprintf(stderr,"ERREUR ...\n");
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    fprintf(stderr,"%s\n",error_text);
         printf(" x(%d)=%.12e",j,xit[j]);    exit(EXIT_FAILURE);
       }  }
       for(j=1;j<=n;j++)  /*********************** vector *******************/
         printf(" p=%.12e",p[j]);  double *vector(int nl, int nh)
       printf("\n");  {
 #endif    double *v;
     }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    if (!v) nrerror("allocation failure in vector");
 #ifdef DEBUG    return v-nl+NR_END;
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  /************************ free vector ******************/
       printf("Max: %.12e",(*func)(p));  void free_vector(double*v, int nl, int nh)
       for (j=1;j<=n;j++)  {
         printf(" %.12e",p[j]);    free((FREE_ARG)(v+nl-NR_END));
       printf("\n");  }
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /************************ivector *******************************/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  int *ivector(long nl,long nh)
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  {
         }    int *v;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       }    if (!v) nrerror("allocation failure in ivector");
 #endif    return v-nl+NR_END;
   }
   
       free_vector(xit,1,n);  /******************free ivector **************************/
       free_vector(xits,1,n);  void free_ivector(int *v, long nl, long nh)
       free_vector(ptt,1,n);  {
       free_vector(pt,1,n);    free((FREE_ARG)(v+nl-NR_END));
       return;  }
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /************************lvector *******************************/
     for (j=1;j<=n;j++) {  long *lvector(long nl,long nh)
       ptt[j]=2.0*p[j]-pt[j];  {
       xit[j]=p[j]-pt[j];    long *v;
       pt[j]=p[j];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     }    if (!v) nrerror("allocation failure in ivector");
     fptt=(*func)(ptt);    return v-nl+NR_END;
     if (fptt < fp) {  }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  /******************free lvector **************************/
         linmin(p,xit,n,fret,func);  void free_lvector(long *v, long nl, long nh)
         for (j=1;j<=n;j++) {  {
           xi[j][ibig]=xi[j][n];    free((FREE_ARG)(v+nl-NR_END));
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  /******************* imatrix *******************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         for(j=1;j<=n;j++)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
           printf(" %.12e",xit[j]);  { 
         printf("\n");    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 #endif    int **m; 
       }    
     }    /* allocate pointers to rows */ 
   }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
 /**** Prevalence limit ****************/    m -= nrl; 
     
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    
 {    /* allocate rows and set pointers to them */ 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
      matrix by transitions matrix until convergence is reached */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
   int i, ii,j,k;    m[nrl] -= ncl; 
   double min, max, maxmin, maxmax,sumnew=0.;    
   double **matprod2();    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double **out, cov[NCOVMAX], **pmij();    
   double **newm;    /* return pointer to array of pointers to rows */ 
   double agefin, delaymax=50 ; /* Max number of years to converge */    return m; 
   } 
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /****************** free_imatrix *************************/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  void free_imatrix(m,nrl,nrh,ncl,nch)
     }        int **m;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        long nch,ncl,nrh,nrl; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){       /* free an int matrix allocated by imatrix() */ 
     newm=savm;  { 
     /* Covariates have to be included here again */    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     cov[1]=1.;    free((FREE_ARG) (m+nrl-NR_END)); 
     cov[2]=agefin;  } 
     if (cptcovn>0){  
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}  /******************* matrix *******************************/
     }  double **matrix(long nrl, long nrh, long ncl, long nch)
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     savm=oldm;    double **m;
     oldm=newm;  
     maxmax=0.;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(j=1;j<=nlstate;j++){    if (!m) nrerror("allocation failure 1 in matrix()");
       min=1.;    m += NR_END;
       max=0.;    m -= nrl;
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         prlim[i][j]= newm[i][j]/(1-sumnew);    m[nrl] += NR_END;
         max=FMAX(max,prlim[i][j]);    m[nrl] -= ncl;
         min=FMIN(min,prlim[i][j]);  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       maxmin=max-min;    return m;
       maxmax=FMAX(maxmax,maxmin);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     }     */
     if(maxmax < ftolpl){  }
       return prlim;  
     }  /*************************free matrix ************************/
   }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 }  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 /*************** transition probabilities **********/    free((FREE_ARG)(m+nrl-NR_END));
   }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  /******************* ma3x *******************************/
   double s1, s2;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   /*double t34;*/  {
   int i,j,j1, nc, ii, jj;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    if (!m) nrerror("allocation failure 1 in matrix()");
         /*s2 += param[i][j][nc]*cov[nc];*/    m += NR_END;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m -= nrl;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       ps[i][j]=s2;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       ps[i][j]=s2;    m[nrl][ncl] += NR_END;
     }    m[nrl][ncl] -= nll;
   }    for (j=ncl+1; j<=nch; j++) 
   for(i=1; i<= nlstate; i++){      m[nrl][j]=m[nrl][j-1]+nlay;
      s1=0;    
     for(j=1; j<i; j++)    for (i=nrl+1; i<=nrh; i++) {
       s1+=exp(ps[i][j]);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for(j=i+1; j<=nlstate+ndeath; j++)      for (j=ncl+1; j<=nch; j++) 
       s1+=exp(ps[i][j]);        m[i][j]=m[i][j-1]+nlay;
     ps[i][i]=1./(s1+1.);    }
     for(j=1; j<i; j++)    return m; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for(j=i+1; j<=nlstate+ndeath; j++)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       ps[i][j]= exp(ps[i][j])*ps[i][i];    */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  }
   } /* end i */  
   /*************************free ma3x ************************/
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
       ps[ii][jj]=0;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       ps[ii][ii]=1;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /*************** function subdirf ***********/
     for(jj=1; jj<= nlstate+ndeath; jj++){  char *subdirf(char fileres[])
      printf("%lf ",ps[ii][jj]);  {
    }    /* Caution optionfilefiname is hidden */
     printf("\n ");    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/"); /* Add to the right */
     printf("\n ");printf("%lf ",cov[2]);*/    strcat(tmpout,fileres);
 /*    return tmpout;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  }
   goto end;*/  
     return ps;  /*************** function subdirf2 ***********/
 }  char *subdirf2(char fileres[], char *preop)
   {
 /**************** Product of 2 matrices ******************/    
     /* Caution optionfilefiname is hidden */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    strcpy(tmpout,optionfilefiname);
 {    strcat(tmpout,"/");
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    strcat(tmpout,preop);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    strcat(tmpout,fileres);
   /* in, b, out are matrice of pointers which should have been initialized    return tmpout;
      before: only the contents of out is modified. The function returns  }
      a pointer to pointers identical to out */  
   long i, j, k;  /*************** function subdirf3 ***********/
   for(i=nrl; i<= nrh; i++)  char *subdirf3(char fileres[], char *preop, char *preop2)
     for(k=ncolol; k<=ncoloh; k++)  {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    
         out[i][k] +=in[i][j]*b[j][k];    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   return out;    strcat(tmpout,"/");
 }    strcat(tmpout,preop);
     strcat(tmpout,preop2);
     strcat(tmpout,fileres);
 /************* Higher Matrix Product ***************/    return tmpout;
   }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  /***************** f1dim *************************/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  extern int ncom; 
      duration (i.e. until  extern double *pcom,*xicom;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  extern double (*nrfunc)(double []); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   
      (typically every 2 years instead of every month which is too big).  double f1dim(double x) 
      Model is determined by parameters x and covariates have to be  { 
      included manually here.    int j; 
     double f;
      */    double *xt; 
    
   int i, j, d, h, k;    xt=vector(1,ncom); 
   double **out, cov[NCOVMAX];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double **newm;    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
   /* Hstepm could be zero and should return the unit matrix */    return f; 
   for (i=1;i<=nlstate+ndeath;i++)  } 
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /*****************brent *************************/
       po[i][j][0]=(i==j ? 1.0 : 0.0);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    int iter; 
   for(h=1; h <=nhstepm; h++){    double a,b,d,etemp;
     for(d=1; d <=hstepm; d++){    double fu,fv,fw,fx;
       newm=savm;    double ftemp;
       /* Covariates have to be included here again */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       cov[1]=1.;    double e=0.0; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;   
       if (cptcovn>0){    a=(ax < cx ? ax : cx); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    b=(ax > cx ? ax : cx); 
     }    x=w=v=bx; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    fw=fv=fx=(*f)(x); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    for (iter=1;iter<=ITMAX;iter++) { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      xm=0.5*(a+b); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       savm=oldm;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       oldm=newm;      printf(".");fflush(stdout);
     }      fprintf(ficlog,".");fflush(ficlog);
     for(i=1; i<=nlstate+ndeath; i++)  #ifdef DEBUG
       for(j=1;j<=nlstate+ndeath;j++) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         po[i][j][h]=newm[i][j];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
          */  #endif
       }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   } /* end h */        *xmin=x; 
   return po;        return fx; 
 }      } 
       ftemp=fu;
       if (fabs(e) > tol1) { 
 /*************** log-likelihood *************/        r=(x-w)*(fx-fv); 
 double func( double *x)        q=(x-v)*(fx-fw); 
 {        p=(x-v)*q-(x-w)*r; 
   int i, ii, j, k, mi, d;        q=2.0*(q-r); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        if (q > 0.0) p = -p; 
   double **out;        q=fabs(q); 
   double sw; /* Sum of weights */        etemp=e; 
   double lli; /* Individual log likelihood */        e=d; 
   long ipmx;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   /*extern weight */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /* We are differentiating ll according to initial status */        else { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          d=p/q; 
   /*for(i=1;i<imx;i++)          u=x+d; 
 printf(" %d\n",s[4][i]);          if (u-a < tol2 || b-u < tol2) 
   */            d=SIGN(tol1,xm-x); 
         } 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      } else { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
        for(mi=1; mi<= wav[i]-1; mi++){      } 
       for (ii=1;ii<=nlstate+ndeath;ii++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      fu=(*f)(u); 
             for(d=0; d<dh[mi][i]; d++){      if (fu <= fx) { 
         newm=savm;        if (u >= x) a=x; else b=x; 
           cov[1]=1.;        SHFT(v,w,x,u) 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          SHFT(fv,fw,fx,fu) 
           if (cptcovn>0){          } else { 
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];            if (u < x) a=u; else b=u; 
             }            if (fu <= fw || w == x) { 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,              v=w; 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              w=u; 
           savm=oldm;              fv=fw; 
           oldm=newm;              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
               v=u; 
       } /* end mult */              fv=fu; 
                } 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    } 
       ipmx +=1;    nrerror("Too many iterations in brent"); 
       sw += weight[i];    *xmin=x; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    return fx; 
     } /* end of wave */  } 
   } /* end of individual */  
   /****************** mnbrak ***********************/
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */              double (*func)(double)) 
   return -l;  { 
 }    double ulim,u,r,q, dum;
     double fu; 
    
 /*********** Maximum Likelihood Estimation ***************/    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    if (*fb > *fa) { 
 {      SHFT(dum,*ax,*bx,dum) 
   int i,j, iter;        SHFT(dum,*fb,*fa,dum) 
   double **xi,*delti;        } 
   double fret;    *cx=(*bx)+GOLD*(*bx-*ax); 
   xi=matrix(1,npar,1,npar);    *fc=(*func)(*cx); 
   for (i=1;i<=npar;i++)    while (*fb > *fc) { 
     for (j=1;j<=npar;j++)      r=(*bx-*ax)*(*fb-*fc); 
       xi[i][j]=(i==j ? 1.0 : 0.0);      q=(*bx-*cx)*(*fb-*fa); 
   printf("Powell\n");      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   powell(p,xi,npar,ftol,&iter,&fret,func);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      if ((*bx-u)*(u-*cx) > 0.0) { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
 }        fu=(*func)(u); 
         if (fu < *fc) { 
 /**** Computes Hessian and covariance matrix ***/          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            SHFT(*fb,*fc,fu,(*func)(u)) 
 {            } 
   double  **a,**y,*x,pd;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double **hess;        u=ulim; 
   int i, j,jk;        fu=(*func)(u); 
   int *indx;      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
   double hessii(double p[], double delta, int theta, double delti[]);        fu=(*func)(u); 
   double hessij(double p[], double delti[], int i, int j);      } 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      SHFT(*ax,*bx,*cx,u) 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        SHFT(*fa,*fb,*fc,fu) 
         } 
   } 
   hess=matrix(1,npar,1,npar);  
   /*************** linmin ************************/
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  int ncom; 
     printf("%d",i);fflush(stdout);  double *pcom,*xicom;
     hess[i][i]=hessii(p,ftolhess,i,delti);  double (*nrfunc)(double []); 
     /*printf(" %f ",p[i]);*/   
   }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   for (i=1;i<=npar;i++) {    double brent(double ax, double bx, double cx, 
     for (j=1;j<=npar;j++)  {                 double (*f)(double), double tol, double *xmin); 
       if (j>i) {    double f1dim(double x); 
         printf(".%d%d",i,j);fflush(stdout);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         hess[i][j]=hessij(p,delti,i,j);                double *fc, double (*func)(double)); 
         hess[j][i]=hess[i][j];    int j; 
       }    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
   }   
   printf("\n");    ncom=n; 
     pcom=vector(1,n); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    xicom=vector(1,n); 
      nrfunc=func; 
   a=matrix(1,npar,1,npar);    for (j=1;j<=n;j++) { 
   y=matrix(1,npar,1,npar);      pcom[j]=p[j]; 
   x=vector(1,npar);      xicom[j]=xi[j]; 
   indx=ivector(1,npar);    } 
   for (i=1;i<=npar;i++)    ax=0.0; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    xx=1.0; 
   ludcmp(a,npar,indx,&pd);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   for (j=1;j<=npar;j++) {  #ifdef DEBUG
     for (i=1;i<=npar;i++) x[i]=0;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     x[j]=1;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     lubksb(a,npar,indx,x);  #endif
     for (i=1;i<=npar;i++){    for (j=1;j<=n;j++) { 
       matcov[i][j]=x[i];      xi[j] *= xmin; 
     }      p[j] += xi[j]; 
   }    } 
     free_vector(xicom,1,n); 
   printf("\n#Hessian matrix#\n");    free_vector(pcom,1,n); 
   for (i=1;i<=npar;i++) {  } 
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);  char *asc_diff_time(long time_sec, char ascdiff[])
     }  {
     printf("\n");    long sec_left, days, hours, minutes;
   }    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
   /* Recompute Inverse */    hours = (sec_left) / (60*60) ;
   for (i=1;i<=npar;i++)    sec_left = (sec_left) %(60*60);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    minutes = (sec_left) /60;
   ludcmp(a,npar,indx,&pd);    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   /*  printf("\n#Hessian matrix recomputed#\n");    return ascdiff;
   }
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /*************** powell ************************/
     x[j]=1;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     lubksb(a,npar,indx,x);              double (*func)(double [])) 
     for (i=1;i<=npar;i++){  { 
       y[i][j]=x[i];    void linmin(double p[], double xi[], int n, double *fret, 
       printf("%.3e ",y[i][j]);                double (*func)(double [])); 
     }    int i,ibig,j; 
     printf("\n");    double del,t,*pt,*ptt,*xit;
   }    double fp,fptt;
   */    double *xits;
     int niterf, itmp;
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);    pt=vector(1,n); 
   free_vector(x,1,npar);    ptt=vector(1,n); 
   free_ivector(indx,1,npar);    xit=vector(1,n); 
   free_matrix(hess,1,npar,1,npar);    xits=vector(1,n); 
     *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
 }    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
 /*************** hessian matrix ****************/      ibig=0; 
 double hessii( double x[], double delta, int theta, double delti[])      del=0.0; 
 {      last_time=curr_time;
   int i;      (void) gettimeofday(&curr_time,&tzp);
   int l=1, lmax=20;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double k1,k2;      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   double p2[NPARMAX+1];      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   double res;      */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;     for (i=1;i<=n;i++) {
   double fx;        printf(" %d %.12f",i, p[i]);
   int k=0,kmax=10;        fprintf(ficlog," %d %.12lf",i, p[i]);
   double l1;        fprintf(ficrespow," %.12lf", p[i]);
       }
   fx=func(x);      printf("\n");
   for (i=1;i<=npar;i++) p2[i]=x[i];      fprintf(ficlog,"\n");
   for(l=0 ; l <=lmax; l++){      fprintf(ficrespow,"\n");fflush(ficrespow);
     l1=pow(10,l);      if(*iter <=3){
     delts=delt;        tm = *localtime(&curr_time.tv_sec);
     for(k=1 ; k <kmax; k=k+1){        strcpy(strcurr,asctime(&tm));
       delt = delta*(l1*k);  /*       asctime_r(&tm,strcurr); */
       p2[theta]=x[theta] +delt;        forecast_time=curr_time; 
       k1=func(p2)-fx;        itmp = strlen(strcurr);
       p2[theta]=x[theta]-delt;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       k2=func(p2)-fx;          strcurr[itmp-1]='\0';
       /*res= (k1-2.0*fx+k2)/delt/delt; */        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
              for(niterf=10;niterf<=30;niterf+=10){
 #ifdef DEBUG          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          tmf = *localtime(&forecast_time.tv_sec);
 #endif  /*      asctime_r(&tmf,strfor); */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          strcpy(strfor,asctime(&tmf));
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          itmp = strlen(strfor);
         k=kmax;          if(strfor[itmp-1]=='\n')
       }          strfor[itmp-1]='\0';
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         k=kmax; l=lmax*10.;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }        }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      }
         delts=delt;      for (i=1;i<=n;i++) { 
       }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }        fptt=(*fret); 
   }  #ifdef DEBUG
   delti[theta]=delts;        printf("fret=%lf \n",*fret);
   return res;        fprintf(ficlog,"fret=%lf \n",*fret);
    #endif
 }        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 double hessij( double x[], double delti[], int thetai,int thetaj)        linmin(p,xit,n,fret,func); 
 {        if (fabs(fptt-(*fret)) > del) { 
   int i;          del=fabs(fptt-(*fret)); 
   int l=1, l1, lmax=20;          ibig=i; 
   double k1,k2,k3,k4,res,fx;        } 
   double p2[NPARMAX+1];  #ifdef DEBUG
   int k;        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   fx=func(x);        for (j=1;j<=n;j++) {
   for (k=1; k<=2; k++) {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for (i=1;i<=npar;i++) p2[i]=x[i];          printf(" x(%d)=%.12e",j,xit[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k1=func(p2)-fx;        for(j=1;j<=n;j++) {
            printf(" p=%.12e",p[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;          fprintf(ficlog," p=%.12e",p[j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        }
     k2=func(p2)-fx;        printf("\n");
          fprintf(ficlog,"\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;  #endif
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      } 
     k3=func(p2)-fx;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
    #ifdef DEBUG
     p2[thetai]=x[thetai]-delti[thetai]/k;        int k[2],l;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        k[0]=1;
     k4=func(p2)-fx;        k[1]=-1;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        printf("Max: %.12e",(*func)(p));
 #ifdef DEBUG        fprintf(ficlog,"Max: %.12e",(*func)(p));
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for (j=1;j<=n;j++) {
 #endif          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
   return res;        }
 }        printf("\n");
         fprintf(ficlog,"\n");
 /************** Inverse of matrix **************/        for(l=0;l<=1;l++) {
 void ludcmp(double **a, int n, int *indx, double *d)          for (j=1;j<=n;j++) {
 {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   int i,imax,j,k;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double big,dum,sum,temp;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double *vv;          }
            printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   vv=vector(1,n);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   *d=1.0;        }
   for (i=1;i<=n;i++) {  #endif
     big=0.0;  
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;        free_vector(xit,1,n); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        free_vector(xits,1,n); 
     vv[i]=1.0/big;        free_vector(ptt,1,n); 
   }        free_vector(pt,1,n); 
   for (j=1;j<=n;j++) {        return; 
     for (i=1;i<j;i++) {      } 
       sum=a[i][j];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      for (j=1;j<=n;j++) { 
       a[i][j]=sum;        ptt[j]=2.0*p[j]-pt[j]; 
     }        xit[j]=p[j]-pt[j]; 
     big=0.0;        pt[j]=p[j]; 
     for (i=j;i<=n;i++) {      } 
       sum=a[i][j];      fptt=(*func)(ptt); 
       for (k=1;k<j;k++)      if (fptt < fp) { 
         sum -= a[i][k]*a[k][j];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       a[i][j]=sum;        if (t < 0.0) { 
       if ( (dum=vv[i]*fabs(sum)) >= big) {          linmin(p,xit,n,fret,func); 
         big=dum;          for (j=1;j<=n;j++) { 
         imax=i;            xi[j][ibig]=xi[j][n]; 
       }            xi[j][n]=xit[j]; 
     }          }
     if (j != imax) {  #ifdef DEBUG
       for (k=1;k<=n;k++) {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         dum=a[imax][k];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         a[imax][k]=a[j][k];          for(j=1;j<=n;j++){
         a[j][k]=dum;            printf(" %.12e",xit[j]);
       }            fprintf(ficlog," %.12e",xit[j]);
       *d = -(*d);          }
       vv[imax]=vv[j];          printf("\n");
     }          fprintf(ficlog,"\n");
     indx[j]=imax;  #endif
     if (a[j][j] == 0.0) a[j][j]=TINY;        }
     if (j != n) {      } 
       dum=1.0/(a[j][j]);    } 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  } 
     }  
   }  /**** Prevalence limit (stable prevalence)  ****************/
   free_vector(vv,1,n);  /* Doesn't work */  
 ;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 }  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 void lubksb(double **a, int n, int *indx, double b[])       matrix by transitions matrix until convergence is reached */
 {  
   int i,ii=0,ip,j;    int i, ii,j,k;
   double sum;    double min, max, maxmin, maxmax,sumnew=0.;
      double **matprod2();
   for (i=1;i<=n;i++) {    double **out, cov[NCOVMAX], **pmij();
     ip=indx[i];    double **newm;
     sum=b[ip];    double agefin, delaymax=50 ; /* Max number of years to converge */
     b[ip]=b[i];  
     if (ii)    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      for (j=1;j<=nlstate+ndeath;j++){
     else if (sum) ii=i;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[i]=sum;      }
   }  
   for (i=n;i>=1;i--) {     cov[1]=1.;
     sum=b[i];   
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     b[i]=sum/a[i][i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   }      newm=savm;
 }      /* Covariates have to be included here again */
        cov[2]=agefin;
 /************ Frequencies ********************/    
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)        for (k=1; k<=cptcovn;k++) {
 {  /* Some frequencies */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
            /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        }
   double ***freq; /* Frequencies */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double *pp;        for (k=1; k<=cptcovprod;k++)
   double pos;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   pp=vector(1,nlstate);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);      savm=oldm;
   if((ficresp=fopen(fileresp,"w"))==NULL) {      oldm=newm;
     printf("Problem with prevalence resultfile: %s\n", fileresp);      maxmax=0.;
     exit(0);      for(j=1;j<=nlstate;j++){
   }        min=1.;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        max=0.;
   j1=0;        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   j=cptcovn;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   for(k1=1; k1<=j;k1++){          min=FMIN(min,prlim[i][j]);
    for(i1=1; i1<=ncodemax[k1];i1++){        }
        j1++;        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
         for (i=-1; i<=nlstate+ndeath; i++)        }
          for (jk=-1; jk<=nlstate+ndeath; jk++)        if(maxmax < ftolpl){
            for(m=agemin; m <= agemax+3; m++)        return prlim;
              freq[i][jk][m]=0;      }
            }
        for (i=1; i<=imx; i++) {  }
          bool=1;  
          if  (cptcovn>0) {  /*************** transition probabilities ***************/ 
            for (z1=1; z1<=cptcovn; z1++)  
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
          }  {
           if (bool==1) {    double s1, s2;
            for(m=firstpass; m<=lastpass-1; m++){    /*double t34;*/
              if(agev[m][i]==0) agev[m][i]=agemax+1;    int i,j,j1, nc, ii, jj;
              if(agev[m][i]==1) agev[m][i]=agemax+2;  
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for(i=1; i<= nlstate; i++){
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for(j=1; j<i;j++){
            }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
          }            /*s2 += param[i][j][nc]*cov[nc];*/
        }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         if  (cptcovn>0) {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
          fprintf(ficresp, "\n#Variable");          }
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);          ps[i][j]=s2;
        }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
        fprintf(ficresp, "\n#");        }
        for(i=1; i<=nlstate;i++)        for(j=i+1; j<=nlstate+ndeath;j++){
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
        fprintf(ficresp, "\n");            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
          /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   for(i=(int)agemin; i <= (int)agemax+3; i++){          }
     if(i==(int)agemax+3)          ps[i][j]=s2;
       printf("Total");        }
     else      }
       printf("Age %d", i);      /*ps[3][2]=1;*/
     for(jk=1; jk <=nlstate ; jk++){      
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for(i=1; i<= nlstate; i++){
         pp[jk] += freq[jk][m][i];        s1=0;
     }        for(j=1; j<i; j++)
     for(jk=1; jk <=nlstate ; jk++){          s1+=exp(ps[i][j]);
       for(m=-1, pos=0; m <=0 ; m++)        for(j=i+1; j<=nlstate+ndeath; j++)
         pos += freq[jk][m][i];          s1+=exp(ps[i][j]);
       if(pp[jk]>=1.e-10)        ps[i][i]=1./(s1+1.);
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for(j=1; j<i; j++)
       else          ps[i][j]= exp(ps[i][j])*ps[i][i];
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for(j=i+1; j<=nlstate+ndeath; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(jk=1; jk <=nlstate ; jk++){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)      } /* end i */
         pp[jk] += freq[jk][m][i];      
     }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for(jk=1,pos=0; jk <=nlstate ; jk++)        for(jj=1; jj<= nlstate+ndeath; jj++){
       pos += pp[jk];          ps[ii][jj]=0;
     for(jk=1; jk <=nlstate ; jk++){          ps[ii][ii]=1;
       if(pos>=1.e-5)        }
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      }
       else      
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
       if( i <= (int) agemax){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         if(pos>=1.e-5)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  /*         printf("ddd %lf ",ps[ii][jj]); */
       else  /*       } */
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  /*       printf("\n "); */
       }  /*        } */
     }  /*        printf("\n ");printf("%lf ",cov[2]); */
     for(jk=-1; jk <=nlstate+ndeath; jk++)         /*
       for(m=-1; m <=nlstate+ndeath; m++)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        goto end;*/
     if(i <= (int) agemax)      return ps;
       fprintf(ficresp,"\n");  }
     printf("\n");  
     }  /**************** Product of 2 matrices ******************/
     }  
  }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
    {
   fclose(ficresp);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   free_vector(pp,1,nlstate);    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
 }  /* End of Freq */       a pointer to pointers identical to out */
     long i, j, k;
 /************* Waves Concatenation ***************/    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
 {          out[i][k] +=in[i][j]*b[j][k];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  
      Death is a valid wave (if date is known).    return out;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.  
      */  /************* Higher Matrix Product ***************/
   
   int i, mi, m;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  {
 float sum=0.;    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
   for(i=1; i<=imx; i++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     mi=0;       nhstepm*hstepm matrices. 
     m=firstpass;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     while(s[m][i] <= nlstate){       (typically every 2 years instead of every month which is too big 
       if(s[m][i]>=1)       for the memory).
         mw[++mi][i]=m;       Model is determined by parameters x and covariates have to be 
       if(m >=lastpass)       included manually here. 
         break;  
       else       */
         m++;  
     }/* end while */    int i, j, d, h, k;
     if (s[m][i] > nlstate){    double **out, cov[NCOVMAX];
       mi++;     /* Death is another wave */    double **newm;
       /* if(mi==0)  never been interviewed correctly before death */  
          /* Only death is a correct wave */    /* Hstepm could be zero and should return the unit matrix */
       mw[mi][i]=m;    for (i=1;i<=nlstate+ndeath;i++)
     }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
     wav[i]=mi;        po[i][j][0]=(i==j ? 1.0 : 0.0);
     if(mi==0)      }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
   for(i=1; i<=imx; i++){        newm=savm;
     for(mi=1; mi<wav[i];mi++){        /* Covariates have to be included here again */
       if (stepm <=0)        cov[1]=1.;
         dh[mi][i]=1;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       else{        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         if (s[mw[mi+1][i]][i] > nlstate) {        for (k=1; k<=cptcovage;k++)
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           if(j=0) j=1;  /* Survives at least one month after exam */        for (k=1; k<=cptcovprod;k++)
         }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           if (j >= jmax) jmax=j;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           else if (j <= jmin)jmin=j;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           sum=sum+j;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         }        savm=oldm;
         jk= j/stepm;        oldm=newm;
         jl= j -jk*stepm;      }
         ju= j -(jk+1)*stepm;      for(i=1; i<=nlstate+ndeath; i++)
         if(jl <= -ju)        for(j=1;j<=nlstate+ndeath;j++) {
           dh[mi][i]=jk;          po[i][j][h]=newm[i][j];
         else          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           dh[mi][i]=jk+1;           */
         if(dh[mi][i]==0)        }
           dh[mi][i]=1; /* At least one step */    } /* end h */
       }    return po;
     }  }
   }  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);  
 }  /*************** log-likelihood *************/
 /*********** Tricode ****************************/  double func( double *x)
 void tricode(int *Tvar, int **nbcode, int imx)  {
 {    int i, ii, j, k, mi, d, kk;
   int Ndum[80],ij, k, j, i;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   int cptcode=0;    double **out;
   for (k=0; k<79; k++) Ndum[k]=0;    double sw; /* Sum of weights */
   for (k=1; k<=7; k++) ncodemax[k]=0;    double lli; /* Individual log likelihood */
      int s1, s2;
   for (j=1; j<=cptcovn; j++) {    double bbh, survp;
     for (i=1; i<=imx; i++) {    long ipmx;
       ij=(int)(covar[Tvar[j]][i]);    /*extern weight */
       Ndum[ij]++;    /* We are differentiating ll according to initial status */
       if (ij > cptcode) cptcode=ij;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     }    /*for(i=1;i<imx;i++) 
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/      printf(" %d\n",s[4][i]);
     for (i=0; i<=cptcode; i++) {    */
       if(Ndum[i]!=0) ncodemax[j]++;    cov[1]=1.;
     }  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
     ij=1;  
     for (i=1; i<=ncodemax[j]; i++) {    if(mle==1){
       for (k=0; k<=79; k++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if (Ndum[k] != 0) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           nbcode[Tvar[j]][ij]=k;        for(mi=1; mi<= wav[i]-1; mi++){
           ij++;          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         if (ij > ncodemax[j]) break;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }                savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
   }            for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /*********** Health Expectancies ****************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* Health expectancies */            savm=oldm;
   int i, j, nhstepm, hstepm, h;            oldm=newm;
   double age, agelim,hf;          } /* end mult */
   double ***p3mat;        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   fprintf(ficreseij,"# Health expectancies\n");          /* But now since version 0.9 we anticipate for bias at large stepm.
   fprintf(ficreseij,"# Age");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   for(i=1; i<=nlstate;i++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
     for(j=1; j<=nlstate;j++)           * the nearest (and in case of equal distance, to the lowest) interval but now
       fprintf(ficreseij," %1d-%1d",i,j);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   fprintf(ficreseij,"\n");           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   hstepm=1*YEARM; /*  Every j years of age (in month) */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
   agelim=AGESUP;           * For stepm > 1 the results are less biased than in previous versions. 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */           */
     /* nhstepm age range expressed in number of stepm */          s1=s[mw[mi][i]][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          s2=s[mw[mi+1][i]][i];
     /* Typically if 20 years = 20*12/6=40 stepm */          bbh=(double)bh[mi][i]/(double)stepm; 
     if (stepm >= YEARM) hstepm=1;          /* bias bh is positive if real duration
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */           * is higher than the multiple of stepm and negative otherwise.
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          if( s2 > nlstate){ 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
                die between last step unit time and current  step unit time, 
     for(i=1; i<=nlstate;i++)               which is also equal to probability to die before dh 
       for(j=1; j<=nlstate;j++)               minus probability to die before dh-stepm . 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){               In version up to 0.92 likelihood was computed
           eij[i][j][(int)age] +=p3mat[i][j][h];          as if date of death was unknown. Death was treated as any other
         }          health state: the date of the interview describes the actual state
              and not the date of a change in health state. The former idea was
     hf=1;          to consider that at each interview the state was recorded
     if (stepm >= YEARM) hf=stepm/YEARM;          (healthy, disable or death) and IMaCh was corrected; but when we
     fprintf(ficreseij,"%.0f",age );          introduced the exact date of death then we should have modified
     for(i=1; i<=nlstate;i++)          the contribution of an exact death to the likelihood. This new
       for(j=1; j<=nlstate;j++){          contribution is smaller and very dependent of the step unit
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          stepm. It is no more the probability to die between last interview
       }          and month of death but the probability to survive from last
     fprintf(ficreseij,"\n");          interview up to one month before death multiplied by the
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          probability to die within a month. Thanks to Chris
   }          Jackson for correcting this bug.  Former versions increased
 }          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
 /************ Variance ******************/          lower mortality.
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            */
 {            lli=log(out[s1][s2] - savm[s1][s2]);
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;          } else if  (s2==-2) {
   double **dnewm,**doldm;            for (j=1,survp=0. ; j<=nlstate; j++) 
   int i, j, nhstepm, hstepm, h;              survp += out[s1][j];
   int k, cptcode;            lli= survp;
    double *xp;          }
   double **gp, **gm;          
   double ***gradg, ***trgradg;          else if  (s2==-4) {
   double ***p3mat;            for (j=3,survp=0. ; j<=nlstate; j++) 
   double age,agelim;              survp += out[s1][j];
   int theta;            lli= survp;
           }
    fprintf(ficresvij,"# Covariances of life expectancies\n");          
   fprintf(ficresvij,"# Age");          else if  (s2==-5) {
   for(i=1; i<=nlstate;i++)            for (j=1,survp=0. ; j<=2; j++) 
     for(j=1; j<=nlstate;j++)              survp += out[s1][j];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            lli= survp;
   fprintf(ficresvij,"\n");          }
   
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);          else{
   doldm=matrix(1,nlstate,1,nlstate);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   hstepm=1*YEARM; /* Every year of age */          } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   agelim = AGESUP;          /*if(lli ==000.0)*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          ipmx +=1;
     if (stepm >= YEARM) hstepm=1;          sw += weight[i];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } /* end of wave */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      } /* end of individual */
     gp=matrix(0,nhstepm,1,nlstate);    }  else if(mle==2){
     gm=matrix(0,nhstepm,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(theta=1; theta <=npar; theta++){        for(mi=1; mi<= wav[i]-1; mi++){
       for(i=1; i<=npar; i++){ /* Computes gradient */          for (ii=1;ii<=nlstate+ndeath;ii++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                savm[ii][j]=(ii==j ? 1.0 : 0.0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
       for(j=1; j<= nlstate; j++){          for(d=0; d<=dh[mi][i]; d++){
         for(h=0; h<=nhstepm; h++){            newm=savm;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=npar; i++) /* Computes gradient */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            savm=oldm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              oldm=newm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          } /* end mult */
       for(j=1; j<= nlstate; j++){        
         for(h=0; h<=nhstepm; h++){          s1=s[mw[mi][i]][i];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       }          ipmx +=1;
       for(j=1; j<= nlstate; j++)          sw += weight[i];
         for(h=0; h<=nhstepm; h++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        } /* end of wave */
         }      } /* end of individual */
     } /* End theta */    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     for(h=0; h<=nhstepm; h++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<=nlstate;j++)            for (j=1;j<=nlstate+ndeath;j++){
         for(theta=1; theta <=npar; theta++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           trgradg[h][j][theta]=gradg[h][theta][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for(i=1;i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
       for(j=1;j<=nlstate;j++)            newm=savm;
         vareij[i][j][(int)age] =0.;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(h=0;h<=nhstepm;h++){            for (kk=1; kk<=cptcovage;kk++) {
       for(k=0;k<=nhstepm;k++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(i=1;i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(j=1;j<=nlstate;j++)            savm=oldm;
             vareij[i][j][(int)age] += doldm[i][j];            oldm=newm;
       }          } /* end mult */
     }        
     h=1;          s1=s[mw[mi][i]][i];
     if (stepm >= YEARM) h=stepm/YEARM;          s2=s[mw[mi+1][i]][i];
     fprintf(ficresvij,"%.0f ",age );          bbh=(double)bh[mi][i]/(double)stepm; 
     for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(j=1; j<=nlstate;j++){          ipmx +=1;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficresvij,"\n");        } /* end of wave */
     free_matrix(gp,0,nhstepm,1,nlstate);      } /* end of individual */
     free_matrix(gm,0,nhstepm,1,nlstate);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(mi=1; mi<= wav[i]-1; mi++){
   } /* End age */          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   free_vector(xp,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(doldm,1,nlstate,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(dnewm,1,nlstate,1,nlstate);            }
           for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /************ Variance of prevlim ******************/            for (kk=1; kk<=cptcovage;kk++) {
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   /* Variance of prevalence limit */          
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **newm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **dnewm,**doldm;            savm=oldm;
   int i, j, nhstepm, hstepm;            oldm=newm;
   int k, cptcode;          } /* end mult */
   double *xp;        
   double *gp, *gm;          s1=s[mw[mi][i]][i];
   double **gradg, **trgradg;          s2=s[mw[mi+1][i]][i];
   double age,agelim;          if( s2 > nlstate){ 
   int theta;            lli=log(out[s1][s2] - savm[s1][s2]);
              }else{
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   fprintf(ficresvpl,"# Age");          }
   for(i=1; i<=nlstate;i++)          ipmx +=1;
       fprintf(ficresvpl," %1d-%1d",i,i);          sw += weight[i];
   fprintf(ficresvpl,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   xp=vector(1,npar);        } /* end of wave */
   dnewm=matrix(1,nlstate,1,npar);      } /* end of individual */
   doldm=matrix(1,nlstate,1,nlstate);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   hstepm=1*YEARM; /* Every year of age */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for(mi=1; mi<= wav[i]-1; mi++){
   agelim = AGESUP;          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for (j=1;j<=nlstate+ndeath;j++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) hstepm=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
     gradg=matrix(1,npar,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
     gp=vector(1,nlstate);            newm=savm;
     gm=vector(1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     for(theta=1; theta <=npar; theta++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1; i<=npar; i++){ /* Computes gradient */            }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1;i<=nlstate;i++)            savm=oldm;
         gp[i] = prlim[i][i];            oldm=newm;
              } /* end mult */
       for(i=1; i<=npar; i++) /* Computes gradient */        
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          s1=s[mw[mi][i]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          s2=s[mw[mi+1][i]][i];
       for(i=1;i<=nlstate;i++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         gm[i] = prlim[i][i];          ipmx +=1;
           sw += weight[i];
       for(i=1;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     } /* End theta */        } /* end of wave */
       } /* end of individual */
     trgradg =matrix(1,nlstate,1,npar);    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for(j=1; j<=nlstate;j++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(theta=1; theta <=npar; theta++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         trgradg[j][theta]=gradg[theta][j];    return -l;
   }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;  /*************** log-likelihood *************/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  double funcone( double *x)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  {
     for(i=1;i<=nlstate;i++)    /* Same as likeli but slower because of a lot of printf and if */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
     fprintf(ficresvpl,"%.0f ",age );    double **out;
     for(i=1; i<=nlstate;i++)    double lli; /* Individual log likelihood */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double llt;
     fprintf(ficresvpl,"\n");    int s1, s2;
     free_vector(gp,1,nlstate);    double bbh, survp;
     free_vector(gm,1,nlstate);    /*extern weight */
     free_matrix(gradg,1,npar,1,nlstate);    /* We are differentiating ll according to initial status */
     free_matrix(trgradg,1,nlstate,1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   } /* End age */    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   free_vector(xp,1,npar);    */
   free_matrix(doldm,1,nlstate,1,npar);    cov[1]=1.;
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
 }  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
 /***********************************************/        for (ii=1;ii<=nlstate+ndeath;ii++)
 /**************** Main Program *****************/          for (j=1;j<=nlstate+ndeath;j++){
 /***********************************************/            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*int main(int argc, char *argv[])*/          }
 int main()        for(d=0; d<dh[mi][i]; d++){
 {          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;          for (kk=1; kk<=cptcovage;kk++) {
   double agedeb, agefin,hf;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double agemin=1.e20, agemax=-1.e20;          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double fret;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **xi,tmp,delta;          savm=oldm;
           oldm=newm;
   double dum; /* Dummy variable */        } /* end mult */
   double ***p3mat;        
   int *indx;        s1=s[mw[mi][i]][i];
   char line[MAXLINE], linepar[MAXLINE];        s2=s[mw[mi+1][i]][i];
   char title[MAXLINE];        bbh=(double)bh[mi][i]/(double)stepm; 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        /* bias is positive if real duration
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];         * is higher than the multiple of stepm and negative otherwise.
   char filerest[FILENAMELENGTH];         */
   char fileregp[FILENAMELENGTH];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          lli=log(out[s1][s2] - savm[s1][s2]);
   int firstobs=1, lastobs=10;        } else if (mle==1){
   int sdeb, sfin; /* Status at beginning and end */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int c,  h , cpt,l;        } else if(mle==2){
   int ju,jl, mi;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int i1,j1, k1,jk,aa,bb, stepsize;        } else if(mle==3){  /* exponential inter-extrapolation */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
          } else if (mle==4){  /* mle=4 no inter-extrapolation */
   int hstepm, nhstepm;          lli=log(out[s1][s2]); /* Original formula */
   double bage, fage, age, agelim, agebase;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   double ftolpl=FTOL;          lli=log(out[s1][s2]); /* Original formula */
   double **prlim;        } /* End of if */
   double *severity;        ipmx +=1;
   double ***param; /* Matrix of parameters */        sw += weight[i];
   double  *p;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **matcov; /* Matrix of covariance */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double ***delti3; /* Scale */        if(globpr){
   double *delti; /* Scale */          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   double ***eij, ***vareij;   %10.6f %10.6f %10.6f ", \
   double **varpl; /* Variances of prevalence limits by age */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   double *epj, vepp;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   char version[80]="Imach version 0.64, May 2000, INED-EUROREVES ";          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];            llt +=ll[k]*gipmx/gsw;
   char z[1]="c", occ;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 #include <sys/time.h>          }
 #include <time.h>          fprintf(ficresilk," %10.6f\n", -llt);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        }
   /* long total_usecs;      } /* end of wave */
   struct timeval start_time, end_time;    } /* end of individual */
      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
   printf("\nIMACH, Version 0.64a");      gipmx=ipmx;
   printf("\nEnter the parameter file name: ");      gsw=sw;
     }
 #ifdef windows    return -l;
   scanf("%s",pathtot);  }
   cygwin_split_path(pathtot,path,optionfile);  
      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);  
      chdir(path);  /*************** function likelione ***********/
    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   /*size=30;  {
   getcwd(pathcd, size);      /* This routine should help understanding what is done with 
   printf("pathcd=%s, path=%s, optionfile=%s\n",pathcd,path,optionfile);       the selection of individuals/waves and
   cutv(path,optionfile,pathtot,'\\');       to check the exact contribution to the likelihood.
   chdir(path);       Plotting could be done.
   replace(pathc,path);     */
   printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);    int k;
   */  
 #endif    if(*globpri !=0){ /* Just counts and sums, no printings */
 #ifdef unix      strcpy(fileresilk,"ilk"); 
   scanf("%s",optionfile);      strcat(fileresilk,fileres);
 #endif      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
 /*-------- arguments in the command line --------*/        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
   strcpy(fileres,"r");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   strcat(fileres, optionfile);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   /*---------arguments file --------*/      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     printf("Problem with optionfile %s\n",optionfile);    }
     goto end;  
   }    *fretone=(*funcone)(p);
     if(*globpri !=0){
   strcpy(filereso,"o");      fclose(ficresilk);
   strcat(filereso,fileres);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   if((ficparo=fopen(filereso,"w"))==NULL) {      fflush(fichtm); 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    } 
   }    return;
   }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /*********** Maximum Likelihood Estimation ***************/
     fgets(line, MAXLINE, ficpar);  
     puts(line);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     fputs(line,ficparo);  {
   }    int i,j, iter;
   ungetc(c,ficpar);    double **xi;
     double fret;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double fretone; /* Only one call to likelihood */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    /*  char filerespow[FILENAMELENGTH];*/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   covar=matrix(1,NCOVMAX,1,n);          for (j=1;j<=npar;j++)
   if (strlen(model)<=1) cptcovn=0;        xi[i][j]=(i==j ? 1.0 : 0.0);
   else {    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     j=0;    strcpy(filerespow,"pow"); 
     j=nbocc(model,'+');    strcat(filerespow,fileres);
     cptcovn=j+1;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   ncovmodel=2+cptcovn;    }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
      for (i=1;i<=nlstate;i++)
   /* Read guess parameters */      for(j=1;j<=nlstate+ndeath;j++)
   /* Reads comments: lines beginning with '#' */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficrespow,"\n");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    powell(p,xi,npar,ftol,&iter,&fret,func);
     puts(line);  
     fputs(line,ficparo);    free_matrix(xi,1,npar,1,npar);
   }    fclose(ficrespow);
   ungetc(c,ficpar);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){  }
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);  /**** Computes Hessian and covariance matrix ***/
       printf("%1d%1d",i,j);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(k=1; k<=ncovmodel;k++){  {
         fscanf(ficpar," %lf",&param[i][j][k]);    double  **a,**y,*x,pd;
         printf(" %lf",param[i][j][k]);    double **hess;
         fprintf(ficparo," %lf",param[i][j][k]);    int i, j,jk;
       }    int *indx;
       fscanf(ficpar,"\n");  
       printf("\n");    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       fprintf(ficparo,"\n");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     }    void lubksb(double **a, int npar, int *indx, double b[]) ;
      void ludcmp(double **a, int npar, int *indx, double *d) ;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    double gompertz(double p[]);
   p=param[1][1];    hess=matrix(1,npar,1,npar);
    
   /* Reads comments: lines beginning with '#' */    printf("\nCalculation of the hessian matrix. Wait...\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     ungetc(c,ficpar);    for (i=1;i<=npar;i++){
     fgets(line, MAXLINE, ficpar);      printf("%d",i);fflush(stdout);
     puts(line);      fprintf(ficlog,"%d",i);fflush(ficlog);
     fputs(line,ficparo);     
   }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   ungetc(c,ficpar);      
       /*  printf(" %f ",p[i]);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    }
   for(i=1; i <=nlstate; i++){    
     for(j=1; j <=nlstate+ndeath-1; j++){    for (i=1;i<=npar;i++) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for (j=1;j<=npar;j++)  {
       printf("%1d%1d",i,j);        if (j>i) { 
       fprintf(ficparo,"%1d%1d",i1,j1);          printf(".%d%d",i,j);fflush(stdout);
       for(k=1; k<=ncovmodel;k++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         fscanf(ficpar,"%le",&delti3[i][j][k]);          hess[i][j]=hessij(p,delti,i,j,func,npar);
         printf(" %le",delti3[i][j][k]);          
         fprintf(ficparo," %le",delti3[i][j][k]);          hess[j][i]=hess[i][j];    
       }          /*printf(" %lf ",hess[i][j]);*/
       fscanf(ficpar,"\n");        }
       printf("\n");      }
       fprintf(ficparo,"\n");    }
     }    printf("\n");
   }    fprintf(ficlog,"\n");
   delti=delti3[1][1];  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    a=matrix(1,npar,1,npar);
     fgets(line, MAXLINE, ficpar);    y=matrix(1,npar,1,npar);
     puts(line);    x=vector(1,npar);
     fputs(line,ficparo);    indx=ivector(1,npar);
   }    for (i=1;i<=npar;i++)
   ungetc(c,ficpar);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      ludcmp(a,npar,indx,&pd);
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){    for (j=1;j<=npar;j++) {
     fscanf(ficpar,"%s",&str);      for (i=1;i<=npar;i++) x[i]=0;
     printf("%s",str);      x[j]=1;
     fprintf(ficparo,"%s",str);      lubksb(a,npar,indx,x);
     for(j=1; j <=i; j++){      for (i=1;i<=npar;i++){ 
       fscanf(ficpar," %le",&matcov[i][j]);        matcov[i][j]=x[i];
       printf(" %.5le",matcov[i][j]);      }
       fprintf(ficparo," %.5le",matcov[i][j]);    }
     }  
     fscanf(ficpar,"\n");    printf("\n#Hessian matrix#\n");
     printf("\n");    fprintf(ficlog,"\n#Hessian matrix#\n");
     fprintf(ficparo,"\n");    for (i=1;i<=npar;i++) { 
   }      for (j=1;j<=npar;j++) { 
   for(i=1; i <=npar; i++)        printf("%.3e ",hess[i][j]);
     for(j=i+1;j<=npar;j++)        fprintf(ficlog,"%.3e ",hess[i][j]);
       matcov[i][j]=matcov[j][i];      }
          printf("\n");
   printf("\n");      fprintf(ficlog,"\n");
     }
   
    if(mle==1){    /* Recompute Inverse */
     /*-------- data file ----------*/    for (i=1;i<=npar;i++)
     if((ficres =fopen(fileres,"w"))==NULL) {      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       printf("Problem with resultfile: %s\n", fileres);goto end;    ludcmp(a,npar,indx,&pd);
     }  
     fprintf(ficres,"#%s\n",version);    /*  printf("\n#Hessian matrix recomputed#\n");
      
     if((fic=fopen(datafile,"r"))==NULL)    {    for (j=1;j<=npar;j++) {
       printf("Problem with datafile: %s\n", datafile);goto end;      for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
       lubksb(a,npar,indx,x);
     n= lastobs;      for (i=1;i<=npar;i++){ 
     severity = vector(1,maxwav);        y[i][j]=x[i];
     outcome=imatrix(1,maxwav+1,1,n);        printf("%.3e ",y[i][j]);
     num=ivector(1,n);        fprintf(ficlog,"%.3e ",y[i][j]);
     moisnais=vector(1,n);      }
     annais=vector(1,n);      printf("\n");
     moisdc=vector(1,n);      fprintf(ficlog,"\n");
     andc=vector(1,n);    }
     agedc=vector(1,n);    */
     cod=ivector(1,n);  
     weight=vector(1,n);    free_matrix(a,1,npar,1,npar);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    free_matrix(y,1,npar,1,npar);
     mint=matrix(1,maxwav,1,n);    free_vector(x,1,npar);
     anint=matrix(1,maxwav,1,n);    free_ivector(indx,1,npar);
     s=imatrix(1,maxwav+1,1,n);    free_matrix(hess,1,npar,1,npar);
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);  }
   
     i=1;  /*************** hessian matrix ****************/
     while (fgets(line, MAXLINE, fic) != NULL)    {  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       if ((i >= firstobs) && (i <=lastobs)) {  {
            int i;
         for (j=maxwav;j>=1;j--){    int l=1, lmax=20;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    double k1,k2;
           strcpy(line,stra);    double p2[NPARMAX+1];
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double res;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         }    double fx;
            int k=0,kmax=10;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    double l1;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
     fx=func(x);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1;i<=npar;i++) p2[i]=x[i];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      delts=delt;
         for (j=ncov;j>=1;j--){      for(k=1 ; k <kmax; k=k+1){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        delt = delta*(l1*k);
         }        p2[theta]=x[theta] +delt;
         num[i]=atol(stra);        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]),  (mint[5][i]), (anint[5][i]), (s[5][i]),  (mint[6][i]), (anint[6][i]), (s[6][i]));*/        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
         i=i+1;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }        
     }  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     /*scanf("%d",i);*/        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   imx=i-1; /* Number of individuals */  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   /* Calculation of the number of parameter from char model*/        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   Tvar=ivector(1,8);              k=kmax;
            }
   if (strlen(model) >1){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     j=0;          k=kmax; l=lmax*10.;
     j=nbocc(model,'+');        }
     cptcovn=j+1;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
              delts=delt;
     strcpy(modelsav,model);        }
     if (j==0) {      }
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);    }
     }    delti[theta]=delts;
     else {    return res; 
       for(i=j; i>=1;i--){    
         cutv(stra,strb,modelsav,'+');  }
         if (strchr(strb,'*')) {  
           cutv(strd,strc,strb,'*');  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;  {
           cutv(strb,strc,strd,'V');    int i;
           for (k=1; k<=lastobs;k++)    int l=1, l1, lmax=20;
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double k1,k2,k3,k4,res,fx;
         }    double p2[NPARMAX+1];
         else {cutv(strd,strc,strb,'V');    int k;
         Tvar[i+1]=atoi(strc);  
         }    fx=func(x);
         strcpy(modelsav,stra);      for (k=1; k<=2; k++) {
       }      for (i=1;i<=npar;i++) p2[i]=x[i];
       cutv(strd,strc,stra,'V');      p2[thetai]=x[thetai]+delti[thetai]/k;
       Tvar[1]=atoi(strc);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     }      k1=func(p2)-fx;
   }    
   /*printf("tvar=%d ",Tvar[1]);      p2[thetai]=x[thetai]+delti[thetai]/k;
   scanf("%d ",i);*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     fclose(fic);      k2=func(p2)-fx;
     
     if (weightopt != 1) { /* Maximisation without weights*/      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(i=1;i<=n;i++) weight[i]=1.0;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     }      k3=func(p2)-fx;
     /*-calculation of age at interview from date of interview and age at death -*/    
     agev=matrix(1,maxwav,1,imx);      p2[thetai]=x[thetai]-delti[thetai]/k;
          p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for (i=1; i<=imx; i++)  {      k4=func(p2)-fx;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for(m=1; (m<= maxwav); m++){  #ifdef DEBUG
         if(s[m][i] >0){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           if (s[m][i] == nlstate+1) {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             if(agedc[i]>0)  #endif
               if(moisdc[i]!=99 && andc[i]!=9999)    }
               agev[m][i]=agedc[i];    return res;
             else{  }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;  /************** Inverse of matrix **************/
             }  void ludcmp(double **a, int n, int *indx, double *d) 
           }  { 
           else if(s[m][i] !=9){ /* Should no more exist */    int i,imax,j,k; 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    double big,dum,sum,temp; 
             if(mint[m][i]==99 || anint[m][i]==9999)    double *vv; 
               agev[m][i]=1;   
             else if(agev[m][i] <agemin){    vv=vector(1,n); 
               agemin=agev[m][i];    *d=1.0; 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    for (i=1;i<=n;i++) { 
             }      big=0.0; 
             else if(agev[m][i] >agemax){      for (j=1;j<=n;j++) 
               agemax=agev[m][i];        if ((temp=fabs(a[i][j])) > big) big=temp; 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
             }      vv[i]=1.0/big; 
             /*agev[m][i]=anint[m][i]-annais[i];*/    } 
             /*   agev[m][i] = age[i]+2*m;*/    for (j=1;j<=n;j++) { 
           }      for (i=1;i<j;i++) { 
           else { /* =9 */        sum=a[i][j]; 
             agev[m][i]=1;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
             s[m][i]=-1;        a[i][j]=sum; 
           }      } 
         }      big=0.0; 
         else /*= 0 Unknown */      for (i=j;i<=n;i++) { 
           agev[m][i]=1;        sum=a[i][j]; 
       }        for (k=1;k<j;k++) 
              sum -= a[i][k]*a[k][j]; 
     }        a[i][j]=sum; 
     for (i=1; i<=imx; i++)  {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       for(m=1; (m<= maxwav); m++){          big=dum; 
         if (s[m][i] > (nlstate+ndeath)) {          imax=i; 
           printf("Error: Wrong value in nlstate or ndeath\n");          } 
           goto end;      } 
         }      if (j != imax) { 
       }        for (k=1;k<=n;k++) { 
     }          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          a[j][k]=dum; 
         } 
     free_vector(severity,1,maxwav);        *d = -(*d); 
     free_imatrix(outcome,1,maxwav+1,1,n);        vv[imax]=vv[j]; 
     free_vector(moisnais,1,n);      } 
     free_vector(annais,1,n);      indx[j]=imax; 
     free_matrix(mint,1,maxwav,1,n);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     free_matrix(anint,1,maxwav,1,n);      if (j != n) { 
     free_vector(moisdc,1,n);        dum=1.0/(a[j][j]); 
     free_vector(andc,1,n);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
        } 
     wav=ivector(1,imx);    free_vector(vv,1,n);  /* Doesn't work */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  ;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  } 
      
     /* Concatenates waves */  void lubksb(double **a, int n, int *indx, double b[]) 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  { 
     int i,ii=0,ip,j; 
     double sum; 
 Tcode=ivector(1,100);   
    nbcode=imatrix(1,nvar,1,8);      for (i=1;i<=n;i++) { 
    ncodemax[1]=1;      ip=indx[i]; 
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);      sum=b[ip]; 
        b[ip]=b[i]; 
    codtab=imatrix(1,100,1,10);      if (ii) 
    h=0;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
    m=pow(2,cptcovn);      else if (sum) ii=i; 
        b[i]=sum; 
    for(k=1;k<=cptcovn; k++){    } 
      for(i=1; i <=(m/pow(2,k));i++){    for (i=n;i>=1;i--) { 
        for(j=1; j <= ncodemax[k]; j++){      sum=b[i]; 
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
            h++;      b[i]=sum/a[i][i]; 
            if (h>m) h=1;codtab[h][k]=j;    } 
          }  } 
        }  
      }  /************ Frequencies ********************/
    }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
    /*for(i=1; i <=m ;i++){    
      for(k=1; k <=cptcovn; k++){    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);    int first;
      }    double ***freq; /* Frequencies */
      printf("\n");    double *pp, **prop;
    }*/    double pos,posprop, k2, dateintsum=0,k2cpt=0;
    /*scanf("%d",i);*/    FILE *ficresp;
        char fileresp[FILENAMELENGTH];
    /* Calculates basic frequencies. Computes observed prevalence at single age    
        and prints on file fileres'p'. */    pp=vector(1,nlstate);
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
     strcat(fileresp,fileres);
   /*scanf("%d ",i);*/    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      exit(0);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    j1=0;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    
        j=cptcoveff;
     /* For Powell, parameters are in a vector p[] starting at p[1]    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    first=1;
      
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
     /*--------- results files --------------*/        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);          scanf("%d", i);*/
            for (i=-5; i<=nlstate+ndeath; i++)  
    jk=1;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
    fprintf(ficres,"# Parameters\n");            for(m=iagemin; m <= iagemax+3; m++)
    printf("# Parameters\n");              freq[i][jk][m]=0;
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){      for (i=1; i<=nlstate; i++)  
        if (k != i)        for(m=iagemin; m <= iagemax+3; m++)
          {          prop[i][m]=0;
            printf("%d%d ",i,k);        
            fprintf(ficres,"%1d%1d ",i,k);        dateintsum=0;
            for(j=1; j <=ncovmodel; j++){        k2cpt=0;
              printf("%f ",p[jk]);        for (i=1; i<=imx; i++) {
              fprintf(ficres,"%f ",p[jk]);          bool=1;
              jk++;          if  (cptcovn>0) {
            }            for (z1=1; z1<=cptcoveff; z1++) 
            printf("\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
            fprintf(ficres,"\n");                bool=0;
          }          }
      }          if (bool==1){
    }            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
     /* Computing hessian and covariance matrix */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     ftolhess=ftol; /* Usually correct */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     hesscov(matcov, p, npar, delti, ftolhess, func);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficres,"# Scales\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     printf("# Scales\n");                if (m<lastpass) {
      for(i=1,jk=1; i <=nlstate; i++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       for(j=1; j <=nlstate+ndeath; j++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         if (j!=i) {                }
           fprintf(ficres,"%1d%1d",i,j);                
           printf("%1d%1d",i,j);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           for(k=1; k<=ncovmodel;k++){                  dateintsum=dateintsum+k2;
             printf(" %.5e",delti[jk]);                  k2cpt++;
             fprintf(ficres," %.5e",delti[jk]);                }
             jk++;                /*}*/
           }            }
           printf("\n");          }
           fprintf(ficres,"\n");        }
         }         
       }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       }  fprintf(ficresp, "#Local time at start: %s", strstart);
            if  (cptcovn>0) {
     k=1;          fprintf(ficresp, "\n#********** Variable "); 
     fprintf(ficres,"# Covariance\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     printf("# Covariance\n");          fprintf(ficresp, "**********\n#");
     for(i=1;i<=npar;i++){        }
       /*  if (k>nlstate) k=1;        for(i=1; i<=nlstate;i++) 
       i1=(i-1)/(ncovmodel*nlstate)+1;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        fprintf(ficresp, "\n");
       printf("%s%d%d",alph[k],i1,tab[i]);*/        
       fprintf(ficres,"%3d",i);        for(i=iagemin; i <= iagemax+3; i++){
       printf("%3d",i);          if(i==iagemax+3){
       for(j=1; j<=i;j++){            fprintf(ficlog,"Total");
         fprintf(ficres," %.5e",matcov[i][j]);          }else{
         printf(" %.5e",matcov[i][j]);            if(first==1){
       }              first=0;
       fprintf(ficres,"\n");              printf("See log file for details...\n");
       printf("\n");            }
       k++;            fprintf(ficlog,"Age %d", i);
     }          }
              for(jk=1; jk <=nlstate ; jk++){
     while((c=getc(ficpar))=='#' && c!= EOF){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       ungetc(c,ficpar);              pp[jk] += freq[jk][m][i]; 
       fgets(line, MAXLINE, ficpar);          }
       puts(line);          for(jk=1; jk <=nlstate ; jk++){
       fputs(line,ficparo);            for(m=-1, pos=0; m <=0 ; m++)
     }              pos += freq[jk][m][i];
     ungetc(c,ficpar);            if(pp[jk]>=1.e-10){
                if(first==1){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                  }
     if (fage <= 2) {              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       bage = agemin;            }else{
       fage = agemax;              if(first==1)
     }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          }
 /*------------ gnuplot -------------*/  
 chdir(pathcd);          for(jk=1; jk <=nlstate ; jk++){
   if((ficgp=fopen("graph.plt","w"))==NULL) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     printf("Problem with file graph.plt");goto end;              pp[jk] += freq[jk][m][i];
   }          }       
 #ifdef windows          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   fprintf(ficgp,"cd \"%s\" \n",pathc);            pos += pp[jk];
 #endif            posprop += prop[jk][i];
 m=pow(2,cptcovn);          }
            for(jk=1; jk <=nlstate ; jk++){
  /* 1eme*/            if(pos>=1.e-5){
   for (cpt=1; cpt<= nlstate ; cpt ++) {              if(first==1)
    for (k1=1; k1<= m ; k1 ++) {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 #ifdef windows            }else{
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);              if(first==1)
 #endif                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 #ifdef unix              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);            }
 #endif            if( i <= iagemax){
               if(pos>=1.e-5){
 for (i=1; i<= nlstate ; i ++) {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                /*probs[i][jk][j1]= pp[jk]/pos;*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 }              }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              else
     for (i=1; i<= nlstate ; i ++) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }          
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(jk=-1; jk <=nlstate+ndeath; jk++)
      for (i=1; i<= nlstate ; i ++) {            for(m=-1; m <=nlstate+ndeath; m++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if(freq[jk][m][i] !=0 ) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if(first==1)
 }                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 #ifdef unix              }
 fprintf(ficgp,"\nset ter gif small size 400,300");          if(i <= iagemax)
 #endif            fprintf(ficresp,"\n");
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          if(first==1)
    }            printf("Others in log...\n");
   }          fprintf(ficlog,"\n");
   /*2 eme*/        }
       }
   for (k1=1; k1<= m ; k1 ++) {    }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    dateintmean=dateintsum/k2cpt; 
       
     for (i=1; i<= nlstate+1 ; i ++) {    fclose(ficresp);
       k=2*i;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    free_vector(pp,1,nlstate);
       for (j=1; j<= nlstate+1 ; j ++) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* End of Freq */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  /************ Prevalence ********************/
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  {  
       for (j=1; j<= nlstate+1 ; j ++) {    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       in each health status at the date of interview (if between dateprev1 and dateprev2).
         else fprintf(ficgp," \%%*lf (\%%*lf)");       We still use firstpass and lastpass as another selection.
 }      */
       fprintf(ficgp,"\" t\"\" w l 0,");   
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       for (j=1; j<= nlstate+1 ; j ++) {    double ***freq; /* Frequencies */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double *pp, **prop;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double pos,posprop; 
 }      double  y2; /* in fractional years */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    int iagemin, iagemax;
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }    iagemin= (int) agemin;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    iagemax= (int) agemax;
   }    /*pp=vector(1,nlstate);*/
      prop=matrix(1,nlstate,iagemin,iagemax+3); 
   /*3eme*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
    for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {    j=cptcoveff;
       k=2+nlstate*(cpt-1);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    
       for (i=1; i< nlstate ; i ++) {    for(k1=1; k1<=j;k1++){
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      for(i1=1; i1<=ncodemax[k1];i1++){
       }        j1++;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        
     }        for (i=1; i<=nlstate; i++)  
    }          for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0.0;
   /* CV preval stat */       
     for (k1=1; k1<= m ; k1 ++) {        for (i=1; i<=imx; i++) { /* Each individual */
     for (cpt=1; cpt<nlstate ; cpt ++) {          bool=1;
       k=3;          if  (cptcovn>0) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);            for (z1=1; z1<=cptcoveff; z1++) 
       for (i=1; i< nlstate ; i ++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         fprintf(ficgp,"+$%d",k+i+1);                bool=0;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          } 
                if (bool==1) { 
       l=3+(nlstate+ndeath)*cpt;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       for (i=1; i< nlstate ; i ++) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         l=3+(nlstate+ndeath)*cpt;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         fprintf(ficgp,"+$%d",l+i+1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                  if (s[m][i]>0 && s[m][i]<=nlstate) { 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                  prop[s[m][i]][iagemax+3] += weight[i]; 
                  } 
   /* proba elementaires */              }
   for(i=1,jk=1; i <=nlstate; i++){            } /* end selection of waves */
     for(k=1; k <=(nlstate+ndeath); k++){          }
       if (k != i) {        }
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/        for(i=iagemin; i <= iagemax+3; i++){  
         for(j=1; j <=ncovmodel; j++){          
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           jk++;            posprop += prop[jk][i]; 
           fprintf(ficgp,"\n");          } 
         }  
       }          for(jk=1; jk <=nlstate ; jk++){     
     }            if( i <=  iagemax){ 
   }              if(posprop>=1.e-5){ 
   for(jk=1; jk <=m; jk++) {                probs[i][jk][j1]= prop[jk][i]/posprop;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);              } 
   for(i=1; i <=nlstate; i++) {            } 
     for(k=1; k <=(nlstate+ndeath); k++){          }/* end jk */ 
       if (k != i) {        }/* end i */ 
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);      } /* end i1 */
         for(j=3; j <=ncovmodel; j++)    } /* end k1 */
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    
         fprintf(ficgp,")/(1");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         for(k1=1; k1 <=(nlstate+ndeath); k1++)    /*free_vector(pp,1,nlstate);*/
           if (k1 != i) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);  }  /* End of prevalence */
             for(j=3; j <=ncovmodel; j++)  
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  /************* Waves Concatenation ***************/
             fprintf(ficgp,")");  
           }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         fprintf(ficgp,") t \"p%d%d\" ", i,k);  {
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       }       Death is a valid wave (if date is known).
     }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);         and mw[mi+1][i]. dh depends on stepm.
   }       */
    
  fclose(ficgp);    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     chdir(path);       double sum=0., jmean=0.;*/
     free_matrix(agev,1,maxwav,1,imx);    int first;
     free_ivector(wav,1,imx);    int j, k=0,jk, ju, jl;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double sum=0.;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    first=0;
        jmin=1e+5;
     free_imatrix(s,1,maxwav+1,1,n);    jmax=-1;
        jmean=0.;
        for(i=1; i<=imx; i++){
     free_ivector(num,1,n);      mi=0;
     free_vector(agedc,1,n);      m=firstpass;
     free_vector(weight,1,n);      while(s[m][i] <= nlstate){
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     fclose(ficparo);          mw[++mi][i]=m;
     fclose(ficres);        if(m >=lastpass)
    }          break;
            else
    /*________fin mle=1_________*/          m++;
          }/* end while */
       if (s[m][i] > nlstate){
          mi++;     /* Death is another wave */
     /* No more information from the sample is required now */        /* if(mi==0)  never been interviewed correctly before death */
   /* Reads comments: lines beginning with '#' */           /* Only death is a correct wave */
   while((c=getc(ficpar))=='#' && c!= EOF){        mw[mi][i]=m;
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);  
     puts(line);      wav[i]=mi;
     fputs(line,ficparo);      if(mi==0){
   }        nbwarn++;
   ungetc(c,ficpar);        if(first==0){
            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        }
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);        if(first==1){
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 /*--------- index.htm --------*/        }
       } /* end mi==0 */
   if((fichtm=fopen("index.htm","w"))==NULL)    {    } /* End individuals */
     printf("Problem with index.htm \n");goto end;  
   }    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n        if (stepm <=0)
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          dh[mi][i]=1;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>        else{
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>            if (agedc[i] < 2*AGESUP) {
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>              if(j==0) j=1;  /* Survives at least one month after exam */
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>              else if(j<0){
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>                nberr++;
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
  fprintf(fichtm," <li>Graphs</li>\n<p>");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  m=cptcovn;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              }
               k=k+1;
  j1=0;              if (j >= jmax){
  for(k1=1; k1<=m;k1++){                jmax=j;
    for(i1=1; i1<=ncodemax[k1];i1++){                ijmax=i;
        j1++;              }
        if (cptcovn > 0) {              if (j <= jmin){
          fprintf(fichtm,"<hr>************ Results for covariates");                jmin=j;
          for (cpt=1; cpt<=cptcovn;cpt++)                ijmin=i;
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);              }
          fprintf(fichtm," ************\n<hr>");              sum=sum+j;
        }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                }
        for(cpt=1; cpt<nlstate;cpt++){          }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          else{
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
        }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            k=k+1;
 interval) in state (%d): v%s%d%d.gif <br>            if (j >= jmax) {
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);                jmax=j;
      }              ijmax=i;
      for(cpt=1; cpt<=nlstate;cpt++) {            }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            else if (j <= jmin){
 <img src=\"ex%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              jmin=j;
      }              ijmin=i;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            }
 health expectancies in states (1) and (2): e%s%d.gif<br>            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 fprintf(fichtm,"\n</body>");            if(j<0){
    }              nberr++;
  }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fclose(fichtm);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
   /*--------------- Prevalence limit --------------*/            sum=sum+j;
            }
   strcpy(filerespl,"pl");          jk= j/stepm;
   strcat(filerespl,fileres);          jl= j -jk*stepm;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          ju= j -(jk+1)*stepm;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   }            if(jl==0){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              dh[mi][i]=jk;
   fprintf(ficrespl,"#Prevalence limit\n");              bh[mi][i]=0;
   fprintf(ficrespl,"#Age ");            }else{ /* We want a negative bias in order to only have interpolation ie
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                    * at the price of an extra matrix product in likelihood */
   fprintf(ficrespl,"\n");              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
   prlim=matrix(1,nlstate,1,nlstate);            }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }else{
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if(jl <= -ju){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              dh[mi][i]=jk;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              bh[mi][i]=jl;       /* bias is positive if real duration
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                                   * is higher than the multiple of stepm and negative otherwise.
   k=0;                                   */
   agebase=agemin;            }
   agelim=agemax;            else{
   ftolpl=1.e-10;              dh[mi][i]=jk+1;
   i1=cptcovn;              bh[mi][i]=ju;
   if (cptcovn < 1){i1=1;}            }
             if(dh[mi][i]==0){
   for(cptcov=1;cptcov<=i1;cptcov++){              dh[mi][i]=1; /* At least one step */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              bh[mi][i]=ju; /* At least one step */
         k=k+1;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            }
         fprintf(ficrespl,"\n#****** ");          } /* end if mle */
         for(j=1;j<=cptcovn;j++)        }
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      } /* end wave */
         fprintf(ficrespl,"******\n");    }
            jmean=sum/k;
         for (age=agebase; age<=agelim; age++){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
           fprintf(ficrespl,"%.0f",age );   }
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);  /*********** Tricode ****************************/
           fprintf(ficrespl,"\n");  void tricode(int *Tvar, int **nbcode, int imx)
         }  {
       }    
     }    int Ndum[20],ij=1, k, j, i, maxncov=19;
   fclose(ficrespl);    int cptcode=0;
   /*------------- h Pij x at various ages ------------*/    cptcoveff=0; 
     
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    for (k=1; k<=7; k++) ncodemax[k]=0;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   printf("Computing pij: result on file '%s' \n", filerespij);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                   modality*/ 
   stepsize=(int) (stepm+YEARM-1)/YEARM;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   if (stepm<=24) stepsize=2;        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   agelim=AGESUP;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   hstepm=stepsize*YEARM; /* Every year of age */                                         Tvar[j]. If V=sex and male is 0 and 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                                         female is 1, then  cptcode=1.*/
        }
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){      for (i=0; i<=cptcode; i++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       k=k+1;      }
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcovn;j++)      ij=1; 
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      for (i=1; i<=ncodemax[j]; i++) {
         fprintf(ficrespij,"******\n");        for (k=0; k<= maxncov; k++) {
                  if (Ndum[k] != 0) {
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            nbcode[Tvar[j]][ij]=k; 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            ij++;
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            if (ij > ncodemax[j]) break; 
           fprintf(ficrespij,"# Age");        }  
           for(i=1; i<=nlstate;i++)      } 
             for(j=1; j<=nlstate+ndeath;j++)    }  
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");   for (k=0; k< maxncov; k++) Ndum[k]=0;
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   for (i=1; i<=ncovmodel-2; i++) { 
             for(i=1; i<=nlstate;i++)     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
               for(j=1; j<=nlstate+ndeath;j++)     ij=Tvar[i];
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);     Ndum[ij]++;
             fprintf(ficrespij,"\n");   }
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   ij=1;
           fprintf(ficrespij,"\n");   for (i=1; i<= maxncov; i++) {
         }     if((Ndum[i]!=0) && (i<=ncovcol)){
     }       Tvaraff[ij]=i; /*For printing */
   }       ij++;
      }
   fclose(ficrespij);   }
    
   /*---------- Health expectancies and variances ------------*/   cptcoveff=ij-1; /*Number of simple covariates*/
   }
   strcpy(filerest,"t");  
   strcat(filerest,fileres);  /*********** Health Expectancies ****************/
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  {
     /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   strcpy(filerese,"e");    double age, agelim, hf;
   strcat(filerese,fileres);    double ***p3mat,***varhe;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    double **dnewm,**doldm;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double *xp;
   }    double **gp, **gm;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double ***gradg, ***trgradg;
     int theta;
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    xp=vector(1,npar);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    
     fprintf(ficreseij,"# Local time at start: %s", strstart);
   k=0;    fprintf(ficreseij,"# Health expectancies\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficreseij,"# Age");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(i=1; i<=nlstate;i++)
       k=k+1;      for(j=1; j<=nlstate;j++)
       fprintf(ficrest,"\n#****** ");        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       for(j=1;j<=cptcovn;j++)    fprintf(ficreseij,"\n");
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficreseij,"\n#****** ");    }
       for(j=1;j<=cptcovn;j++)    else  hstepm=estepm;   
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficreseij,"******\n");     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficresvij,"\n#****** ");     * we are calculating an estimate of the Life Expectancy assuming a linear 
       for(j=1;j<=cptcovn;j++)     * progression in between and thus overestimating or underestimating according
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficresvij,"******\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     * hypothesis. A more precise result, taking into account a more precise
       oldm=oldms;savm=savms;     * curvature will be obtained if estepm is as small as stepm. */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /* For example we decided to compute the life expectancy with the smallest unit */
       oldm=oldms;savm=savms;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       nhstepm is the number of hstepm from age to agelim 
             nstepm is the number of stepm from age to agelin. 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");       Look at hpijx to understand the reason of that which relies in memory size
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);       and note for a fixed period like estepm months */
       fprintf(ficrest,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               survival function given by stepm (the optimization length). Unfortunately it
       hf=1;       means that if the survival funtion is printed only each two years of age and if
       if (stepm >= YEARM) hf=stepm/YEARM;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       epj=vector(1,nlstate+1);       results. So we changed our mind and took the option of the best precision.
       for(age=bage; age <=fage ;age++){    */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficrest," %.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    agelim=AGESUP;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];      /* nhstepm age range expressed in number of stepm */
           }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           epj[nlstate+1] +=epj[j];      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         }      /* if (stepm >= YEARM) hstepm=1;*/
         for(i=1, vepp=0.;i <=nlstate;i++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           for(j=1;j <=nlstate;j++)      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             vepp += vareij[i][j][(int)age];      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));      gp=matrix(0,nhstepm,1,nlstate*nlstate);
         for(j=1;j <=nlstate;j++){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  
         }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         fprintf(ficrest,"\n");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     }   
   }  
              hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  fclose(ficreseij);  
  fclose(ficresvij);      /* Computing  Variances of health expectancies */
   fclose(ficrest);  
   fclose(ficpar);       for(theta=1; theta <=npar; theta++){
   free_vector(epj,1,nlstate+1);        for(i=1; i<=npar; i++){ 
   /*scanf("%d ",i); */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   /*------- Variance limit prevalence------*/          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     
 strcpy(fileresvpl,"vpl");        cptj=0;
   strcat(fileresvpl,fileres);        for(j=1; j<= nlstate; j++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          for(i=1; i<=nlstate; i++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            cptj=cptj+1;
     exit(0);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            }
           }
  k=0;        }
  for(cptcov=1;cptcov<=i1;cptcov++){       
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       
      k=k+1;        for(i=1; i<=npar; i++) 
      fprintf(ficresvpl,"\n#****** ");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      for(j=1;j<=cptcovn;j++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        
      fprintf(ficresvpl,"******\n");        cptj=0;
              for(j=1; j<= nlstate; j++){
      varpl=matrix(1,nlstate,(int) bage, (int) fage);          for(i=1;i<=nlstate;i++){
      oldm=oldms;savm=savms;            cptj=cptj+1;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
    }  
  }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
   fclose(ficresvpl);          }
         }
   /*---------- End : free ----------------*/        for(j=1; j<= nlstate*nlstate; j++)
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          for(h=0; h<=nhstepm-1; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       } 
       
    /* End theta */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       for(h=0; h<=nhstepm-1; h++)
          for(j=1; j<=nlstate*nlstate;j++)
   free_matrix(matcov,1,npar,1,npar);          for(theta=1; theta <=npar; theta++)
   free_vector(delti,1,npar);            trgradg[h][j][theta]=gradg[h][theta][j];
         
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
        for(i=1;i<=nlstate*nlstate;i++)
   printf("End of Imach\n");        for(j=1;j<=nlstate*nlstate;j++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          varhe[i][j][(int)age] =0.;
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/       printf("%d|",(int)age);fflush(stdout);
   /*printf("Total time was %d uSec.\n", total_usecs);*/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /*------ End -----------*/       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
  end:          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 #ifdef windows          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
  chdir(pathcd);          for(i=1;i<=nlstate*nlstate;i++)
 #endif            for(j=1;j<=nlstate*nlstate;j++)
  system("wgnuplot graph.plt");              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
 #ifdef windows      }
   while (z[0] != 'q') {      /* Computing expectancies */
     chdir(pathcd);      for(i=1; i<=nlstate;i++)
     printf("\nType e to edit output files, c to start again, and q for exiting: ");        for(j=1; j<=nlstate;j++)
     scanf("%s",z);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     if (z[0] == 'c') system("./imach");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     else if (z[0] == 'e') {            
       chdir(path);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       system("index.htm");  
     }          }
     else if (z[0] == 'q') exit(0);  
   }      fprintf(ficreseij,"%3.0f",age );
 #endif      cptj=0;
 }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         }
       fprintf(ficreseij,"\n");
      
       free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    fprintf(ficresvij, "#Local time at start: %s", strstart);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficresprob, "#Local time at start: %s", strstart);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.4  
changed lines
  Added in v.1.115


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>