Diff for /imach/src/imach.c between versions 1.52 and 1.115

version 1.52, 2002/07/19 18:49:30 version 1.115, 2006/02/27 12:17:45
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.115  2006/02/27 12:17:45  brouard
      (Module): One freematrix added in mlikeli! 0.98c
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.114  2006/02/26 12:57:58  brouard
   first survey ("cross") where individuals from different ages are    (Module): Some improvements in processing parameter
   interviewed on their health status or degree of disability (in the    filename with strsep.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.113  2006/02/24 14:20:24  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Memory leaks checks with valgrind and:
   computed from the time spent in each health state according to a    datafile was not closed, some imatrix were not freed and on matrix
   model. More health states you consider, more time is necessary to reach the    allocation too.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.112  2006/01/30 09:55:26  brouard
   probability to be observed in state j at the second wave    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.111  2006/01/25 20:38:18  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Lots of cleaning and bugs added (Gompertz)
   complex model than "constant and age", you should modify the program    (Module): Comments can be added in data file. Missing date values
   where the markup *Covariates have to be included here again* invites    can be a simple dot '.'.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.109  2006/01/24 19:37:15  brouard
   identical for each individual. Also, if a individual missed an    (Module): Comments (lines starting with a #) are allowed in data.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
   hPijx is the probability to be observed in state i at age x+h    To be fixed
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.107  2006/01/19 16:20:37  brouard
   states. This elementary transition (by month or quarter trimester,    Test existence of gnuplot in imach path
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.106  2006/01/19 13:24:36  brouard
   and the contribution of each individual to the likelihood is simply    Some cleaning and links added in html output
   hPijx.  
     Revision 1.105  2006/01/05 20:23:19  lievre
   Also this programme outputs the covariance matrix of the parameters but also    *** empty log message ***
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.104  2005/09/30 16:11:43  lievre
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): sump fixed, loop imx fixed, and simplifications.
            Institut national d'études démographiques, Paris.    (Module): If the status is missing at the last wave but we know
   This software have been partly granted by Euro-REVES, a concerted action    that the person is alive, then we can code his/her status as -2
   from the European Union.    (instead of missing=-1 in earlier versions) and his/her
   It is copyrighted identically to a GNU software product, ie programme and    contributions to the likelihood is 1 - Prob of dying from last
   software can be distributed freely for non commercial use. Latest version    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   can be accessed at http://euroreves.ined.fr/imach .    the healthy state at last known wave). Version is 0.98
   **********************************************************************/  
      Revision 1.103  2005/09/30 15:54:49  lievre
 #include <math.h>    (Module): sump fixed, loop imx fixed, and simplifications.
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.102  2004/09/15 17:31:30  brouard
 #include <unistd.h>    Add the possibility to read data file including tab characters.
   
 #define MAXLINE 256    Revision 1.101  2004/09/15 10:38:38  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Fix on curr_time
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.100  2004/07/12 18:29:06  brouard
 /*#define DEBUG*/    Add version for Mac OS X. Just define UNIX in Makefile
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.99  2004/06/05 08:57:40  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    *** empty log message ***
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.98  2004/05/16 15:05:56  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 #define NINTERVMAX 8    state at each age, but using a Gompertz model: log u =a + b*age .
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    This is the basic analysis of mortality and should be done before any
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    other analysis, in order to test if the mortality estimated from the
 #define NCOVMAX 8 /* Maximum number of covariates */    cross-longitudinal survey is different from the mortality estimated
 #define MAXN 20000    from other sources like vital statistic data.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    The same imach parameter file can be used but the option for mle should be -3.
 #define AGEBASE 40  
 #ifdef windows    Agnès, who wrote this part of the code, tried to keep most of the
 #define DIRSEPARATOR '\\'    former routines in order to include the new code within the former code.
 #define ODIRSEPARATOR '/'  
 #else    The output is very simple: only an estimate of the intercept and of
 #define DIRSEPARATOR '/'    the slope with 95% confident intervals.
 #define ODIRSEPARATOR '\\'  
 #endif    Current limitations:
     A) Even if you enter covariates, i.e. with the
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int erreur; /* Error number */    B) There is no computation of Life Expectancy nor Life Table.
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.97  2004/02/20 13:25:42  lievre
 int npar=NPARMAX;    Version 0.96d. Population forecasting command line is (temporarily)
 int nlstate=2; /* Number of live states */    suppressed.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.96  2003/07/15 15:38:55  brouard
 int popbased=0;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.95  2003/07/08 07:54:34  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    * imach.c (Repository):
 int mle, weightopt;    (Repository): Using imachwizard code to output a more meaningful covariance
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    matrix (cov(a12,c31) instead of numbers.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.94  2003/06/27 13:00:02  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Just cleaning
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.93  2003/06/25 16:33:55  brouard
 FILE *ficlog;    (Module): On windows (cygwin) function asctime_r doesn't
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    exist so I changed back to asctime which exists.
 FILE *ficresprobmorprev;    (Module): Version 0.96b
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.92  2003/06/25 16:30:45  brouard
 char filerese[FILENAMELENGTH];    (Module): On windows (cygwin) function asctime_r doesn't
 FILE  *ficresvij;    exist so I changed back to asctime which exists.
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.91  2003/06/25 15:30:29  brouard
 char fileresvpl[FILENAMELENGTH];    * imach.c (Repository): Duplicated warning errors corrected.
 char title[MAXLINE];    (Repository): Elapsed time after each iteration is now output. It
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    helps to forecast when convergence will be reached. Elapsed time
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
 char filelog[FILENAMELENGTH]; /* Log file */    Revision 1.90  2003/06/24 12:34:15  brouard
 char filerest[FILENAMELENGTH];    (Module): Some bugs corrected for windows. Also, when
 char fileregp[FILENAMELENGTH];    mle=-1 a template is output in file "or"mypar.txt with the design
 char popfile[FILENAMELENGTH];    of the covariance matrix to be input.
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define NR_END 1    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FREE_ARG char*    of the covariance matrix to be input.
 #define FTOL 1.0e-10  
     Revision 1.88  2003/06/23 17:54:56  brouard
 #define NRANSI    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define ITMAX 200  
     Revision 1.87  2003/06/18 12:26:01  brouard
 #define TOL 2.0e-4    Version 0.96
   
 #define CGOLD 0.3819660    Revision 1.86  2003/06/17 20:04:08  brouard
 #define ZEPS 1.0e-10    (Module): Change position of html and gnuplot routines and added
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    routine fileappend.
   
 #define GOLD 1.618034    Revision 1.85  2003/06/17 13:12:43  brouard
 #define GLIMIT 100.0    * imach.c (Repository): Check when date of death was earlier that
 #define TINY 1.0e-20    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 static double maxarg1,maxarg2;    was wrong (infinity). We still send an "Error" but patch by
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    assuming that the date of death was just one stepm after the
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    interview.
      (Repository): Because some people have very long ID (first column)
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    we changed int to long in num[] and we added a new lvector for
 #define rint(a) floor(a+0.5)    memory allocation. But we also truncated to 8 characters (left
     truncation)
 static double sqrarg;    (Repository): No more line truncation errors.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 int imx;    place. It differs from routine "prevalence" which may be called
 int stepm;    many times. Probs is memory consuming and must be used with
 /* Stepm, step in month: minimum step interpolation*/    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.82  2003/06/05 15:57:20  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Add log in  imach.c and  fullversion number is now printed.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;  */
   /*
 double *weight;     Interpolated Markov Chain
 int **s; /* Status */  
 double *agedc, **covar, idx;    Short summary of the programme:
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    
     This program computes Healthy Life Expectancies from
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 double ftolhess; /* Tolerance for computing hessian */    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 /**************** split *************************/    case of a health survey which is our main interest) -2- at least a
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    second wave of interviews ("longitudinal") which measure each change
 {    (if any) in individual health status.  Health expectancies are
    char *s;                             /* pointer */    computed from the time spent in each health state according to a
    int  l1, l2;                         /* length counters */    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
    l1 = strlen( path );                 /* length of path */    simplest model is the multinomial logistic model where pij is the
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    probability to be observed in state j at the second wave
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    conditional to be observed in state i at the first wave. Therefore
    if ( s == NULL ) {                   /* no directory, so use current */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    'age' is age and 'sex' is a covariate. If you want to have a more
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    complex model than "constant and age", you should modify the program
 #if     defined(__bsd__)                /* get current working directory */    where the markup *Covariates have to be included here again* invites
       extern char       *getwd( );    you to do it.  More covariates you add, slower the
     convergence.
       if ( getwd( dirc ) == NULL ) {  
 #else    The advantage of this computer programme, compared to a simple
       extern char       *getcwd( );    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    intermediate interview, the information is lost, but taken into
 #endif    account using an interpolation or extrapolation.  
          return( GLOCK_ERROR_GETCWD );  
       }    hPijx is the probability to be observed in state i at age x+h
       strcpy( name, path );             /* we've got it */    conditional to the observed state i at age x. The delay 'h' can be
    } else {                             /* strip direcotry from path */    split into an exact number (nh*stepm) of unobserved intermediate
       s++;                              /* after this, the filename */    states. This elementary transition (by month, quarter,
       l2 = strlen( s );                 /* length of filename */    semester or year) is modelled as a multinomial logistic.  The hPx
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    matrix is simply the matrix product of nh*stepm elementary matrices
       strcpy( name, s );                /* save file name */    and the contribution of each individual to the likelihood is simply
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    hPijx.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Also this programme outputs the covariance matrix of the parameters but also
    l1 = strlen( dirc );                 /* length of directory */    of the life expectancies. It also computes the stable prevalence. 
 #ifdef windows    
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #else             Institut national d'études démographiques, Paris.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    This software have been partly granted by Euro-REVES, a concerted action
 #endif    from the European Union.
    s = strrchr( name, '.' );            /* find last / */    It is copyrighted identically to a GNU software product, ie programme and
    s++;    software can be distributed freely for non commercial use. Latest version
    strcpy(ext,s);                       /* save extension */    can be accessed at http://euroreves.ined.fr/imach .
    l1= strlen( name);  
    l2= strlen( s)+1;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
    strncpy( finame, name, l1-l2);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    finame[l1-l2]= 0;    
    return( 0 );                         /* we're done */    **********************************************************************/
 }  /*
     main
     read parameterfile
 /******************************************/    read datafile
     concatwav
 void replace(char *s, char*t)    freqsummary
 {    if (mle >= 1)
   int i;      mlikeli
   int lg=20;    print results files
   i=0;    if mle==1 
   lg=strlen(t);       computes hessian
   for(i=0; i<= lg; i++) {    read end of parameter file: agemin, agemax, bage, fage, estepm
     (s[i] = t[i]);        begin-prev-date,...
     if (t[i]== '\\') s[i]='/';    open gnuplot file
   }    open html file
 }    stable prevalence
      for age prevalim()
 int nbocc(char *s, char occ)    h Pij x
 {    variance of p varprob
   int i,j=0;    forecasting if prevfcast==1 prevforecast call prevalence()
   int lg=20;    health expectancies
   i=0;    Variance-covariance of DFLE
   lg=strlen(s);    prevalence()
   for(i=0; i<= lg; i++) {     movingaverage()
   if  (s[i] == occ ) j++;    varevsij() 
   }    if popbased==1 varevsij(,popbased)
   return j;    total life expectancies
 }    Variance of stable prevalence
    end
 void cutv(char *u,char *v, char*t, char occ)  */
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */   
   int i,lg,j,p=0;  #include <math.h>
   i=0;  #include <stdio.h>
   for(j=0; j<=strlen(t)-1; j++) {  #include <stdlib.h>
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #include <string.h>
   }  #include <unistd.h>
   
   lg=strlen(t);  #include <limits.h>
   for(j=0; j<p; j++) {  #include <sys/types.h>
     (u[j] = t[j]);  #include <sys/stat.h>
   }  #include <errno.h>
      u[p]='\0';  extern int errno;
   
    for(j=0; j<= lg; j++) {  /* #include <sys/time.h> */
     if (j>=(p+1))(v[j-p-1] = t[j]);  #include <time.h>
   }  #include "timeval.h"
 }  
   /* #include <libintl.h> */
 /********************** nrerror ********************/  /* #define _(String) gettext (String) */
   
 void nrerror(char error_text[])  #define MAXLINE 256
 {  
   fprintf(stderr,"ERREUR ...\n");  #define GNUPLOTPROGRAM "gnuplot"
   fprintf(stderr,"%s\n",error_text);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   exit(1);  #define FILENAMELENGTH 132
 }  
 /*********************** vector *******************/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double *vector(int nl, int nh)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   double *v;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 /************************ free vector ******************/  #define NCOVMAX 8 /* Maximum number of covariates */
 void free_vector(double*v, int nl, int nh)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   free((FREE_ARG)(v+nl-NR_END));  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /************************ivector *******************************/  #ifdef UNIX
 int *ivector(long nl,long nh)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   int *v;  #define ODIRSEPARATOR '\\'
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #else
   if (!v) nrerror("allocation failure in ivector");  #define DIRSEPARATOR '\\'
   return v-nl+NR_END;  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
   #endif
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  /* $Id$ */
 {  /* $State$ */
   free((FREE_ARG)(v+nl-NR_END));  
 }  char version[]="Imach version 0.98c, February 2006, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 /******************* imatrix *******************************/  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int nvar;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 {  int npar=NPARMAX;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int nlstate=2; /* Number of live states */
   int **m;  int ndeath=1; /* Number of dead states */
    int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   /* allocate pointers to rows */  int popbased=0;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  int *wav; /* Number of waves for this individuual 0 is possible */
   m += NR_END;  int maxwav; /* Maxim number of waves */
   m -= nrl;  int jmin, jmax; /* min, max spacing between 2 waves */
    int ijmin, ijmax; /* Individuals having jmin and jmax */ 
    int gipmx, gsw; /* Global variables on the number of contributions 
   /* allocate rows and set pointers to them */                     to the likelihood and the sum of weights (done by funcone)*/
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int mle, weightopt;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m[nrl] += NR_END;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m[nrl] -= ncl;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
               * wave mi and wave mi+1 is not an exact multiple of stepm. */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  double jmean; /* Mean space between 2 waves */
    double **oldm, **newm, **savm; /* Working pointers to matrices */
   /* return pointer to array of pointers to rows */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   return m;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 /****************** free_imatrix *************************/  double fretone; /* Only one call to likelihood */
 void free_imatrix(m,nrl,nrh,ncl,nch)  long ipmx; /* Number of contributions */
       int **m;  double sw; /* Sum of weights */
       long nch,ncl,nrh,nrl;  char filerespow[FILENAMELENGTH];
      /* free an int matrix allocated by imatrix() */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 {  FILE *ficresilk;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   free((FREE_ARG) (m+nrl-NR_END));  FILE *ficresprobmorprev;
 }  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 /******************* matrix *******************************/  char filerese[FILENAMELENGTH];
 double **matrix(long nrl, long nrh, long ncl, long nch)  FILE  *ficresvij;
 {  char fileresv[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  FILE  *ficresvpl;
   double **m;  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   m += NR_END;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   m -= nrl;  char command[FILENAMELENGTH];
   int  outcmd=0;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char fileregp[FILENAMELENGTH];
   return m;  char popfile[FILENAMELENGTH];
 }  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 {  struct timezone tzp;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  extern int gettimeofday();
   free((FREE_ARG)(m+nrl-NR_END));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 }  long time_value;
   extern long time();
 /******************* ma3x *******************************/  char strcurr[80], strfor[80];
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  char *endptr;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  long lval;
   double ***m;  
   #define NR_END 1
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define FREE_ARG char*
   if (!m) nrerror("allocation failure 1 in matrix()");  #define FTOL 1.0e-10
   m += NR_END;  
   m -= nrl;  #define NRANSI 
   #define ITMAX 200 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define TOL 2.0e-4 
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define GOLD 1.618034 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define GLIMIT 100.0 
   m[nrl][ncl] += NR_END;  #define TINY 1.0e-20 
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  static double maxarg1,maxarg2;
     m[nrl][j]=m[nrl][j-1]+nlay;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   for (i=nrl+1; i<=nrh; i++) {    
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     for (j=ncl+1; j<=nch; j++)  #define rint(a) floor(a+0.5)
       m[i][j]=m[i][j-1]+nlay;  
   }  static double sqrarg;
   return m;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int imx; 
 {  int stepm=1;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /* Stepm, step in month: minimum step interpolation*/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  int estepm;
 }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 /***************** f1dim *************************/  int m,nb;
 extern int ncom;  long *num;
 extern double *pcom,*xicom;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 extern double (*nrfunc)(double []);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    double **pmmij, ***probs;
 double f1dim(double x)  double *ageexmed,*agecens;
 {  double dateintmean=0;
   int j;  
   double f;  double *weight;
   double *xt;  int **s; /* Status */
    double *agedc, **covar, idx;
   xt=vector(1,ncom);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double *lsurv, *lpop, *tpop;
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   return f;  double ftolhess; /* Tolerance for computing hessian */
 }  
   /**************** split *************************/
 /*****************brent *************************/  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  {
 {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   int iter;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double a,b,d,etemp;    */ 
   double fu,fv,fw,fx;    char  *ss;                            /* pointer */
   double ftemp;    int   l1, l2;                         /* length counters */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   a=(ax < cx ? ax : cx);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   b=(ax > cx ? ax : cx);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   x=w=v=bx;      strcpy( name, path );               /* we got the fullname name because no directory */
   fw=fv=fx=(*f)(x);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   for (iter=1;iter<=ITMAX;iter++) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     xm=0.5*(a+b);      /* get current working directory */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      /*    extern  char* getcwd ( char *buf , int len);*/
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     printf(".");fflush(stdout);        return( GLOCK_ERROR_GETCWD );
     fprintf(ficlog,".");fflush(ficlog);      }
 #ifdef DEBUG      /* got dirc from getcwd*/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      printf(" DIRC = %s \n",dirc);
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    } else {                              /* strip direcotry from path */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      ss++;                               /* after this, the filename */
 #endif      l2 = strlen( ss );                  /* length of filename */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       *xmin=x;      strcpy( name, ss );         /* save file name */
       return fx;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     }      dirc[l1-l2] = 0;                    /* add zero */
     ftemp=fu;      printf(" DIRC2 = %s \n",dirc);
     if (fabs(e) > tol1) {    }
       r=(x-w)*(fx-fv);    /* We add a separator at the end of dirc if not exists */
       q=(x-v)*(fx-fw);    l1 = strlen( dirc );                  /* length of directory */
       p=(x-v)*q-(x-w)*r;    if( dirc[l1-1] != DIRSEPARATOR ){
       q=2.0*(q-r);      dirc[l1] =  DIRSEPARATOR;
       if (q > 0.0) p = -p;      dirc[l1+1] = 0; 
       q=fabs(q);      printf(" DIRC3 = %s \n",dirc);
       etemp=e;    }
       e=d;    ss = strrchr( name, '.' );            /* find last / */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    if (ss >0){
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      ss++;
       else {      strcpy(ext,ss);                     /* save extension */
         d=p/q;      l1= strlen( name);
         u=x+d;      l2= strlen(ss)+1;
         if (u-a < tol2 || b-u < tol2)      strncpy( finame, name, l1-l2);
           d=SIGN(tol1,xm-x);      finame[l1-l2]= 0;
       }    }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    return( 0 );                          /* we're done */
     }  }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  
     if (fu <= fx) {  /******************************************/
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  void replace_back_to_slash(char *s, char*t)
         SHFT(fv,fw,fx,fu)  {
         } else {    int i;
           if (u < x) a=u; else b=u;    int lg=0;
           if (fu <= fw || w == x) {    i=0;
             v=w;    lg=strlen(t);
             w=u;    for(i=0; i<= lg; i++) {
             fv=fw;      (s[i] = t[i]);
             fw=fu;      if (t[i]== '\\') s[i]='/';
           } else if (fu <= fv || v == x || v == w) {    }
             v=u;  }
             fv=fu;  
           }  int nbocc(char *s, char occ)
         }  {
   }    int i,j=0;
   nrerror("Too many iterations in brent");    int lg=20;
   *xmin=x;    i=0;
   return fx;    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /****************** mnbrak ***********************/    }
     return j;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  }
             double (*func)(double))  
 {  void cutv(char *u,char *v, char*t, char occ)
   double ulim,u,r,q, dum;  {
   double fu;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   *fa=(*func)(*ax);       gives u="abcedf" and v="ghi2j" */
   *fb=(*func)(*bx);    int i,lg,j,p=0;
   if (*fb > *fa) {    i=0;
     SHFT(dum,*ax,*bx,dum)    for(j=0; j<=strlen(t)-1; j++) {
       SHFT(dum,*fb,*fa,dum)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       }    }
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    lg=strlen(t);
   while (*fb > *fc) {    for(j=0; j<p; j++) {
     r=(*bx-*ax)*(*fb-*fc);      (u[j] = t[j]);
     q=(*bx-*cx)*(*fb-*fa);    }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       u[p]='\0';
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);     for(j=0; j<= lg; j++) {
     if ((*bx-u)*(u-*cx) > 0.0) {      if (j>=(p+1))(v[j-p-1] = t[j]);
       fu=(*func)(u);    }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  }
       fu=(*func)(u);  
       if (fu < *fc) {  /********************** nrerror ********************/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  void nrerror(char error_text[])
           }  {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    fprintf(stderr,"ERREUR ...\n");
       u=ulim;    fprintf(stderr,"%s\n",error_text);
       fu=(*func)(u);    exit(EXIT_FAILURE);
     } else {  }
       u=(*cx)+GOLD*(*cx-*bx);  /*********************** vector *******************/
       fu=(*func)(u);  double *vector(int nl, int nh)
     }  {
     SHFT(*ax,*bx,*cx,u)    double *v;
       SHFT(*fa,*fb,*fc,fu)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       }    if (!v) nrerror("allocation failure in vector");
 }    return v-nl+NR_END;
   }
 /*************** linmin ************************/  
   /************************ free vector ******************/
 int ncom;  void free_vector(double*v, int nl, int nh)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);    free((FREE_ARG)(v+nl-NR_END));
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /************************ivector *******************************/
   double brent(double ax, double bx, double cx,  int *ivector(long nl,long nh)
                double (*f)(double), double tol, double *xmin);  {
   double f1dim(double x);    int *v;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
               double *fc, double (*func)(double));    if (!v) nrerror("allocation failure in ivector");
   int j;    return v-nl+NR_END;
   double xx,xmin,bx,ax;  }
   double fx,fb,fa;  
    /******************free ivector **************************/
   ncom=n;  void free_ivector(int *v, long nl, long nh)
   pcom=vector(1,n);  {
   xicom=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   nrfunc=func;  }
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  /************************lvector *******************************/
     xicom[j]=xi[j];  long *lvector(long nl,long nh)
   }  {
   ax=0.0;    long *v;
   xx=1.0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    if (!v) nrerror("allocation failure in ivector");
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    return v-nl+NR_END;
 #ifdef DEBUG  }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /******************free lvector **************************/
 #endif  void free_lvector(long *v, long nl, long nh)
   for (j=1;j<=n;j++) {  {
     xi[j] *= xmin;    free((FREE_ARG)(v+nl-NR_END));
     p[j] += xi[j];  }
   }  
   free_vector(xicom,1,n);  /******************* imatrix *******************************/
   free_vector(pcom,1,n);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 /*************** powell ************************/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    int **m; 
             double (*func)(double []))    
 {    /* allocate pointers to rows */ 
   void linmin(double p[], double xi[], int n, double *fret,    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
               double (*func)(double []));    if (!m) nrerror("allocation failure 1 in matrix()"); 
   int i,ibig,j;    m += NR_END; 
   double del,t,*pt,*ptt,*xit;    m -= nrl; 
   double fp,fptt;    
   double *xits;    
   pt=vector(1,n);    /* allocate rows and set pointers to them */ 
   ptt=vector(1,n);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   xit=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   xits=vector(1,n);    m[nrl] += NR_END; 
   *fret=(*func)(p);    m[nrl] -= ncl; 
   for (j=1;j<=n;j++) pt[j]=p[j];    
   for (*iter=1;;++(*iter)) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     fp=(*fret);    
     ibig=0;    /* return pointer to array of pointers to rows */ 
     del=0.0;    return m; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  } 
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  /****************** free_imatrix *************************/
       printf(" %d %.12f",i, p[i]);  void free_imatrix(m,nrl,nrh,ncl,nch)
     fprintf(ficlog," %d %.12f",i, p[i]);        int **m;
     printf("\n");        long nch,ncl,nrh,nrl; 
     fprintf(ficlog,"\n");       /* free an int matrix allocated by imatrix() */ 
     for (i=1;i<=n;i++) {  { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       fptt=(*fret);    free((FREE_ARG) (m+nrl-NR_END)); 
 #ifdef DEBUG  } 
       printf("fret=%lf \n",*fret);  
       fprintf(ficlog,"fret=%lf \n",*fret);  /******************* matrix *******************************/
 #endif  double **matrix(long nrl, long nrh, long ncl, long nch)
       printf("%d",i);fflush(stdout);  {
       fprintf(ficlog,"%d",i);fflush(ficlog);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       linmin(p,xit,n,fret,func);    double **m;
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         ibig=i;    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
 #ifdef DEBUG    m -= nrl;
       printf("%d %.12e",i,(*fret));  
       fprintf(ficlog,"%d %.12e",i,(*fret));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m[nrl] += NR_END;
         printf(" x(%d)=%.12e",j,xit[j]);    m[nrl] -= ncl;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for(j=1;j<=n;j++) {    return m;
         printf(" p=%.12e",p[j]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         fprintf(ficlog," p=%.12e",p[j]);     */
       }  }
       printf("\n");  
       fprintf(ficlog,"\n");  /*************************free matrix ************************/
 #endif  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     }  {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  /******************* ma3x *******************************/
       printf("Max: %.12e",(*func)(p));  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       fprintf(ficlog,"Max: %.12e",(*func)(p));  {
       for (j=1;j<=n;j++) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         printf(" %.12e",p[j]);    double ***m;
         fprintf(ficlog," %.12e",p[j]);  
       }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()");
       fprintf(ficlog,"\n");    m += NR_END;
       for(l=0;l<=1;l++) {    m -= nrl;
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl] += NR_END;
         }    m[nrl] -= ncl;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }  
 #endif    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
       free_vector(xit,1,n);    m[nrl][ncl] -= nll;
       free_vector(xits,1,n);    for (j=ncl+1; j<=nch; j++) 
       free_vector(ptt,1,n);      m[nrl][j]=m[nrl][j-1]+nlay;
       free_vector(pt,1,n);    
       return;    for (i=nrl+1; i<=nrh; i++) {
     }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      for (j=ncl+1; j<=nch; j++) 
     for (j=1;j<=n;j++) {        m[i][j]=m[i][j-1]+nlay;
       ptt[j]=2.0*p[j]-pt[j];    }
       xit[j]=p[j]-pt[j];    return m; 
       pt[j]=p[j];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     fptt=(*func)(ptt);    */
     if (fptt < fp) {  }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  /*************************free ma3x ************************/
         linmin(p,xit,n,fret,func);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         for (j=1;j<=n;j++) {  {
           xi[j][ibig]=xi[j][n];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
           xi[j][n]=xit[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         }    free((FREE_ARG)(m+nrl-NR_END));
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /*************** function subdirf ***********/
         for(j=1;j<=n;j++){  char *subdirf(char fileres[])
           printf(" %.12e",xit[j]);  {
           fprintf(ficlog," %.12e",xit[j]);    /* Caution optionfilefiname is hidden */
         }    strcpy(tmpout,optionfilefiname);
         printf("\n");    strcat(tmpout,"/"); /* Add to the right */
         fprintf(ficlog,"\n");    strcat(tmpout,fileres);
 #endif    return tmpout;
       }  }
     }  
   }  /*************** function subdirf2 ***********/
 }  char *subdirf2(char fileres[], char *preop)
   {
 /**** Prevalence limit ****************/    
     /* Caution optionfilefiname is hidden */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    strcpy(tmpout,optionfilefiname);
 {    strcat(tmpout,"/");
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    strcat(tmpout,preop);
      matrix by transitions matrix until convergence is reached */    strcat(tmpout,fileres);
     return tmpout;
   int i, ii,j,k;  }
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  /*************** function subdirf3 ***********/
   double **out, cov[NCOVMAX], **pmij();  char *subdirf3(char fileres[], char *preop, char *preop2)
   double **newm;  {
   double agefin, delaymax=50 ; /* Max number of years to converge */    
     /* Caution optionfilefiname is hidden */
   for (ii=1;ii<=nlstate+ndeath;ii++)    strcpy(tmpout,optionfilefiname);
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,"/");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    strcat(tmpout,preop);
     }    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
    cov[1]=1.;    return tmpout;
    }
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /***************** f1dim *************************/
     newm=savm;  extern int ncom; 
     /* Covariates have to be included here again */  extern double *pcom,*xicom;
      cov[2]=agefin;  extern double (*nrfunc)(double []); 
     
       for (k=1; k<=cptcovn;k++) {  double f1dim(double x) 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  { 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    int j; 
       }    double f;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double *xt; 
       for (k=1; k<=cptcovprod;k++)   
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    f=(*nrfunc)(xt); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    free_vector(xt,1,ncom); 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    return f; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  } 
   
     savm=oldm;  /*****************brent *************************/
     oldm=newm;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     maxmax=0.;  { 
     for(j=1;j<=nlstate;j++){    int iter; 
       min=1.;    double a,b,d,etemp;
       max=0.;    double fu,fv,fw,fx;
       for(i=1; i<=nlstate; i++) {    double ftemp;
         sumnew=0;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double e=0.0; 
         prlim[i][j]= newm[i][j]/(1-sumnew);   
         max=FMAX(max,prlim[i][j]);    a=(ax < cx ? ax : cx); 
         min=FMIN(min,prlim[i][j]);    b=(ax > cx ? ax : cx); 
       }    x=w=v=bx; 
       maxmin=max-min;    fw=fv=fx=(*f)(x); 
       maxmax=FMAX(maxmax,maxmin);    for (iter=1;iter<=ITMAX;iter++) { 
     }      xm=0.5*(a+b); 
     if(maxmax < ftolpl){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       return prlim;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
   }      fprintf(ficlog,".");fflush(ficlog);
 }  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 /*************** transition probabilities ***************/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #endif
 {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double s1, s2;        *xmin=x; 
   /*double t34;*/        return fx; 
   int i,j,j1, nc, ii, jj;      } 
       ftemp=fu;
     for(i=1; i<= nlstate; i++){      if (fabs(e) > tol1) { 
     for(j=1; j<i;j++){        r=(x-w)*(fx-fv); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        q=(x-v)*(fx-fw); 
         /*s2 += param[i][j][nc]*cov[nc];*/        p=(x-v)*q-(x-w)*r; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        q=2.0*(q-r); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
       ps[i][j]=s2;        etemp=e; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(j=i+1; j<=nlstate+ndeath;j++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        else { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          d=p/q; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          u=x+d; 
       }          if (u-a < tol2 || b-u < tol2) 
       ps[i][j]=s2;            d=SIGN(tol1,xm-x); 
     }        } 
   }      } else { 
     /*ps[3][2]=1;*/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
   for(i=1; i<= nlstate; i++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
      s1=0;      fu=(*f)(u); 
     for(j=1; j<i; j++)      if (fu <= fx) { 
       s1+=exp(ps[i][j]);        if (u >= x) a=x; else b=x; 
     for(j=i+1; j<=nlstate+ndeath; j++)        SHFT(v,w,x,u) 
       s1+=exp(ps[i][j]);          SHFT(fv,fw,fx,fu) 
     ps[i][i]=1./(s1+1.);          } else { 
     for(j=1; j<i; j++)            if (u < x) a=u; else b=u; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            if (fu <= fw || w == x) { 
     for(j=i+1; j<=nlstate+ndeath; j++)              v=w; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];              w=u; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */              fv=fw; 
   } /* end i */              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){              v=u; 
     for(jj=1; jj<= nlstate+ndeath; jj++){              fv=fu; 
       ps[ii][jj]=0;            } 
       ps[ii][ii]=1;          } 
     }    } 
   }    nrerror("Too many iterations in brent"); 
     *xmin=x; 
     return fx; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /****************** mnbrak ***********************/
    }  
     printf("\n ");  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     }              double (*func)(double)) 
     printf("\n ");printf("%lf ",cov[2]);*/  { 
 /*    double ulim,u,r,q, dum;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double fu; 
   goto end;*/   
     return ps;    *fa=(*func)(*ax); 
 }    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
 /**************** Product of 2 matrices ******************/      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        } 
 {    *cx=(*bx)+GOLD*(*bx-*ax); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    *fc=(*func)(*cx); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    while (*fb > *fc) { 
   /* in, b, out are matrice of pointers which should have been initialized      r=(*bx-*ax)*(*fb-*fc); 
      before: only the contents of out is modified. The function returns      q=(*bx-*cx)*(*fb-*fa); 
      a pointer to pointers identical to out */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   long i, j, k;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   for(i=nrl; i<= nrh; i++)      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     for(k=ncolol; k<=ncoloh; k++)      if ((*bx-u)*(u-*cx) > 0.0) { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        fu=(*func)(u); 
         out[i][k] +=in[i][j]*b[j][k];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
   return out;        if (fu < *fc) { 
 }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
 /************* Higher Matrix Product ***************/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        fu=(*func)(u); 
 {      } else { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        u=(*cx)+GOLD*(*cx-*bx); 
      duration (i.e. until        fu=(*func)(u); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      } 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      SHFT(*ax,*bx,*cx,u) 
      (typically every 2 years instead of every month which is too big).        SHFT(*fa,*fb,*fc,fu) 
      Model is determined by parameters x and covariates have to be        } 
      included manually here.  } 
   
      */  /*************** linmin ************************/
   
   int i, j, d, h, k;  int ncom; 
   double **out, cov[NCOVMAX];  double *pcom,*xicom;
   double **newm;  double (*nrfunc)(double []); 
    
   /* Hstepm could be zero and should return the unit matrix */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   for (i=1;i<=nlstate+ndeath;i++)  { 
     for (j=1;j<=nlstate+ndeath;j++){    double brent(double ax, double bx, double cx, 
       oldm[i][j]=(i==j ? 1.0 : 0.0);                 double (*f)(double), double tol, double *xmin); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double f1dim(double x); 
     }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */                double *fc, double (*func)(double)); 
   for(h=1; h <=nhstepm; h++){    int j; 
     for(d=1; d <=hstepm; d++){    double xx,xmin,bx,ax; 
       newm=savm;    double fx,fb,fa;
       /* Covariates have to be included here again */   
       cov[1]=1.;    ncom=n; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    pcom=vector(1,n); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    xicom=vector(1,n); 
       for (k=1; k<=cptcovage;k++)    nrfunc=func; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (j=1;j<=n;j++) { 
       for (k=1; k<=cptcovprod;k++)      pcom[j]=p[j]; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      xicom[j]=xi[j]; 
     } 
     ax=0.0; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    xx=1.0; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  #ifdef DEBUG
       savm=oldm;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       oldm=newm;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }  #endif
     for(i=1; i<=nlstate+ndeath; i++)    for (j=1;j<=n;j++) { 
       for(j=1;j<=nlstate+ndeath;j++) {      xi[j] *= xmin; 
         po[i][j][h]=newm[i][j];      p[j] += xi[j]; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    } 
          */    free_vector(xicom,1,n); 
       }    free_vector(pcom,1,n); 
   } /* end h */  } 
   return po;  
 }  char *asc_diff_time(long time_sec, char ascdiff[])
   {
     long sec_left, days, hours, minutes;
 /*************** log-likelihood *************/    days = (time_sec) / (60*60*24);
 double func( double *x)    sec_left = (time_sec) % (60*60*24);
 {    hours = (sec_left) / (60*60) ;
   int i, ii, j, k, mi, d, kk;    sec_left = (sec_left) %(60*60);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    minutes = (sec_left) /60;
   double **out;    sec_left = (sec_left) % (60);
   double sw; /* Sum of weights */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   double lli; /* Individual log likelihood */    return ascdiff;
   long ipmx;  }
   /*extern weight */  
   /* We are differentiating ll according to initial status */  /*************** powell ************************/
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   /*for(i=1;i<imx;i++)              double (*func)(double [])) 
     printf(" %d\n",s[4][i]);  { 
   */    void linmin(double p[], double xi[], int n, double *fret, 
   cov[1]=1.;                double (*func)(double [])); 
     int i,ibig,j; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    double del,t,*pt,*ptt,*xit;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double fp,fptt;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    double *xits;
     for(mi=1; mi<= wav[i]-1; mi++){    int niterf, itmp;
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    pt=vector(1,n); 
       for(d=0; d<dh[mi][i]; d++){    ptt=vector(1,n); 
         newm=savm;    xit=vector(1,n); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    xits=vector(1,n); 
         for (kk=1; kk<=cptcovage;kk++) {    *fret=(*func)(p); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    for (j=1;j<=n;j++) pt[j]=p[j]; 
         }    for (*iter=1;;++(*iter)) { 
              fp=(*fret); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      ibig=0; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      del=0.0; 
         savm=oldm;      last_time=curr_time;
         oldm=newm;      (void) gettimeofday(&curr_time,&tzp);
              printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
              /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       } /* end mult */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
            */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);     for (i=1;i<=n;i++) {
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        printf(" %d %.12f",i, p[i]);
       ipmx +=1;        fprintf(ficlog," %d %.12lf",i, p[i]);
       sw += weight[i];        fprintf(ficrespow," %.12lf", p[i]);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      }
     } /* end of wave */      printf("\n");
   } /* end of individual */      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      if(*iter <=3){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        tm = *localtime(&curr_time.tv_sec);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        strcpy(strcurr,asctime(&tm));
   return -l;  /*       asctime_r(&tm,strcurr); */
 }        forecast_time=curr_time; 
         itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 /*********** Maximum Likelihood Estimation ***************/          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 {        for(niterf=10;niterf<=30;niterf+=10){
   int i,j, iter;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   double **xi,*delti;          tmf = *localtime(&forecast_time.tv_sec);
   double fret;  /*      asctime_r(&tmf,strfor); */
   xi=matrix(1,npar,1,npar);          strcpy(strfor,asctime(&tmf));
   for (i=1;i<=npar;i++)          itmp = strlen(strfor);
     for (j=1;j<=npar;j++)          if(strfor[itmp-1]=='\n')
       xi[i][j]=(i==j ? 1.0 : 0.0);          strfor[itmp-1]='\0';
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   powell(p,xi,npar,ftol,&iter,&fret,func);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      }
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      for (i=1;i<=n;i++) { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
 }  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
 /**** Computes Hessian and covariance matrix ***/        fprintf(ficlog,"fret=%lf \n",*fret);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  #endif
 {        printf("%d",i);fflush(stdout);
   double  **a,**y,*x,pd;        fprintf(ficlog,"%d",i);fflush(ficlog);
   double **hess;        linmin(p,xit,n,fret,func); 
   int i, j,jk;        if (fabs(fptt-(*fret)) > del) { 
   int *indx;          del=fabs(fptt-(*fret)); 
           ibig=i; 
   double hessii(double p[], double delta, int theta, double delti[]);        } 
   double hessij(double p[], double delti[], int i, int j);  #ifdef DEBUG
   void lubksb(double **a, int npar, int *indx, double b[]) ;        printf("%d %.12e",i,(*fret));
   void ludcmp(double **a, int npar, int *indx, double *d) ;        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   hess=matrix(1,npar,1,npar);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   printf("\nCalculation of the hessian matrix. Wait...\n");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");        }
   for (i=1;i<=npar;i++){        for(j=1;j<=n;j++) {
     printf("%d",i);fflush(stdout);          printf(" p=%.12e",p[j]);
     fprintf(ficlog,"%d",i);fflush(ficlog);          fprintf(ficlog," p=%.12e",p[j]);
     hess[i][i]=hessii(p,ftolhess,i,delti);        }
     /*printf(" %f ",p[i]);*/        printf("\n");
     /*printf(" %lf ",hess[i][i]);*/        fprintf(ficlog,"\n");
   }  #endif
        } 
   for (i=1;i<=npar;i++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (j=1;j<=npar;j++)  {  #ifdef DEBUG
       if (j>i) {        int k[2],l;
         printf(".%d%d",i,j);fflush(stdout);        k[0]=1;
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        k[1]=-1;
         hess[i][j]=hessij(p,delti,i,j);        printf("Max: %.12e",(*func)(p));
         hess[j][i]=hess[i][j];            fprintf(ficlog,"Max: %.12e",(*func)(p));
         /*printf(" %lf ",hess[i][j]);*/        for (j=1;j<=n;j++) {
       }          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
   }        }
   printf("\n");        printf("\n");
   fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          for (j=1;j<=n;j++) {
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
              printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   a=matrix(1,npar,1,npar);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   y=matrix(1,npar,1,npar);          }
   x=vector(1,npar);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   indx=ivector(1,npar);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  #endif
   ludcmp(a,npar,indx,&pd);  
   
   for (j=1;j<=npar;j++) {        free_vector(xit,1,n); 
     for (i=1;i<=npar;i++) x[i]=0;        free_vector(xits,1,n); 
     x[j]=1;        free_vector(ptt,1,n); 
     lubksb(a,npar,indx,x);        free_vector(pt,1,n); 
     for (i=1;i<=npar;i++){        return; 
       matcov[i][j]=x[i];      } 
     }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   }      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
   printf("\n#Hessian matrix#\n");        xit[j]=p[j]-pt[j]; 
   fprintf(ficlog,"\n#Hessian matrix#\n");        pt[j]=p[j]; 
   for (i=1;i<=npar;i++) {      } 
     for (j=1;j<=npar;j++) {      fptt=(*func)(ptt); 
       printf("%.3e ",hess[i][j]);      if (fptt < fp) { 
       fprintf(ficlog,"%.3e ",hess[i][j]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     }        if (t < 0.0) { 
     printf("\n");          linmin(p,xit,n,fret,func); 
     fprintf(ficlog,"\n");          for (j=1;j<=n;j++) { 
   }            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
   /* Recompute Inverse */          }
   for (i=1;i<=npar;i++)  #ifdef DEBUG
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   /*  printf("\n#Hessian matrix recomputed#\n");            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   for (j=1;j<=npar;j++) {          }
     for (i=1;i<=npar;i++) x[i]=0;          printf("\n");
     x[j]=1;          fprintf(ficlog,"\n");
     lubksb(a,npar,indx,x);  #endif
     for (i=1;i<=npar;i++){        }
       y[i][j]=x[i];      } 
       printf("%.3e ",y[i][j]);    } 
       fprintf(ficlog,"%.3e ",y[i][j]);  } 
     }  
     printf("\n");  /**** Prevalence limit (stable prevalence)  ****************/
     fprintf(ficlog,"\n");  
   }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   */  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   free_matrix(a,1,npar,1,npar);       matrix by transitions matrix until convergence is reached */
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);    int i, ii,j,k;
   free_ivector(indx,1,npar);    double min, max, maxmin, maxmax,sumnew=0.;
   free_matrix(hess,1,npar,1,npar);    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
     double **newm;
 }    double agefin, delaymax=50 ; /* Max number of years to converge */
   
 /*************** hessian matrix ****************/    for (ii=1;ii<=nlstate+ndeath;ii++)
 double hessii( double x[], double delta, int theta, double delti[])      for (j=1;j<=nlstate+ndeath;j++){
 {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i;      }
   int l=1, lmax=20;  
   double k1,k2;     cov[1]=1.;
   double p2[NPARMAX+1];   
   double res;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   double fx;      newm=savm;
   int k=0,kmax=10;      /* Covariates have to be included here again */
   double l1;       cov[2]=agefin;
     
   fx=func(x);        for (k=1; k<=cptcovn;k++) {
   for (i=1;i<=npar;i++) p2[i]=x[i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for(l=0 ; l <=lmax; l++){          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     l1=pow(10,l);        }
     delts=delt;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(k=1 ; k <kmax; k=k+1){        for (k=1; k<=cptcovprod;k++)
       delt = delta*(l1*k);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       p2[theta]=x[theta]-delt;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       k2=func(p2)-fx;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /*res= (k1-2.0*fx+k2)/delt/delt; */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
            savm=oldm;
 #ifdef DEBUG      oldm=newm;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      maxmax=0.;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for(j=1;j<=nlstate;j++){
 #endif        min=1.;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        max=0.;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        for(i=1; i<=nlstate; i++) {
         k=kmax;          sumnew=0;
       }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          prlim[i][j]= newm[i][j]/(1-sumnew);
         k=kmax; l=lmax*10.;          max=FMAX(max,prlim[i][j]);
       }          min=FMIN(min,prlim[i][j]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        }
         delts=delt;        maxmin=max-min;
       }        maxmax=FMAX(maxmax,maxmin);
     }      }
   }      if(maxmax < ftolpl){
   delti[theta]=delts;        return prlim;
   return res;      }
      }
 }  }
   
 double hessij( double x[], double delti[], int thetai,int thetaj)  /*************** transition probabilities ***************/ 
 {  
   int i;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   int l=1, l1, lmax=20;  {
   double k1,k2,k3,k4,res,fx;    double s1, s2;
   double p2[NPARMAX+1];    /*double t34;*/
   int k;    int i,j,j1, nc, ii, jj;
   
   fx=func(x);      for(i=1; i<= nlstate; i++){
   for (k=1; k<=2; k++) {        for(j=1; j<i;j++){
     for (i=1;i<=npar;i++) p2[i]=x[i];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     p2[thetai]=x[thetai]+delti[thetai]/k;            /*s2 += param[i][j][nc]*cov[nc];*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     k1=func(p2)-fx;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
            }
     p2[thetai]=x[thetai]+delti[thetai]/k;          ps[i][j]=s2;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     k2=func(p2)-fx;        }
          for(j=i+1; j<=nlstate+ndeath;j++){
     p2[thetai]=x[thetai]-delti[thetai]/k;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     k3=func(p2)-fx;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
            }
     p2[thetai]=x[thetai]-delti[thetai]/k;          ps[i][j]=s2;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        }
     k4=func(p2)-fx;      }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      /*ps[3][2]=1;*/
 #ifdef DEBUG      
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      for(i=1; i<= nlstate; i++){
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        s1=0;
 #endif        for(j=1; j<i; j++)
   }          s1+=exp(ps[i][j]);
   return res;        for(j=i+1; j<=nlstate+ndeath; j++)
 }          s1+=exp(ps[i][j]);
         ps[i][i]=1./(s1+1.);
 /************** Inverse of matrix **************/        for(j=1; j<i; j++)
 void ludcmp(double **a, int n, int *indx, double *d)          ps[i][j]= exp(ps[i][j])*ps[i][i];
 {        for(j=i+1; j<=nlstate+ndeath; j++)
   int i,imax,j,k;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double big,dum,sum,temp;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   double *vv;      } /* end i */
        
   vv=vector(1,n);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   *d=1.0;        for(jj=1; jj<= nlstate+ndeath; jj++){
   for (i=1;i<=n;i++) {          ps[ii][jj]=0;
     big=0.0;          ps[ii][ii]=1;
     for (j=1;j<=n;j++)        }
       if ((temp=fabs(a[i][j])) > big) big=temp;      }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      
     vv[i]=1.0/big;  
   }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   for (j=1;j<=n;j++) {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     for (i=1;i<j;i++) {  /*         printf("ddd %lf ",ps[ii][jj]); */
       sum=a[i][j];  /*       } */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /*       printf("\n "); */
       a[i][j]=sum;  /*        } */
     }  /*        printf("\n ");printf("%lf ",cov[2]); */
     big=0.0;         /*
     for (i=j;i<=n;i++) {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       sum=a[i][j];        goto end;*/
       for (k=1;k<j;k++)      return ps;
         sum -= a[i][k]*a[k][j];  }
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /**************** Product of 2 matrices ******************/
         big=dum;  
         imax=i;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       }  {
     }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     if (j != imax) {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       for (k=1;k<=n;k++) {    /* in, b, out are matrice of pointers which should have been initialized 
         dum=a[imax][k];       before: only the contents of out is modified. The function returns
         a[imax][k]=a[j][k];       a pointer to pointers identical to out */
         a[j][k]=dum;    long i, j, k;
       }    for(i=nrl; i<= nrh; i++)
       *d = -(*d);      for(k=ncolol; k<=ncoloh; k++)
       vv[imax]=vv[j];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     }          out[i][k] +=in[i][j]*b[j][k];
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;    return out;
     if (j != n) {  }
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }  /************* Higher Matrix Product ***************/
   }  
   free_vector(vv,1,n);  /* Doesn't work */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 ;  {
 }    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
 void lubksb(double **a, int n, int *indx, double b[])       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 {       nhstepm*hstepm matrices. 
   int i,ii=0,ip,j;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double sum;       (typically every 2 years instead of every month which is too big 
         for the memory).
   for (i=1;i<=n;i++) {       Model is determined by parameters x and covariates have to be 
     ip=indx[i];       included manually here. 
     sum=b[ip];  
     b[ip]=b[i];       */
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    int i, j, d, h, k;
     else if (sum) ii=i;    double **out, cov[NCOVMAX];
     b[i]=sum;    double **newm;
   }  
   for (i=n;i>=1;i--) {    /* Hstepm could be zero and should return the unit matrix */
     sum=b[i];    for (i=1;i<=nlstate+ndeath;i++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      for (j=1;j<=nlstate+ndeath;j++){
     b[i]=sum/a[i][i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
   }        po[i][j][0]=(i==j ? 1.0 : 0.0);
 }      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 /************ Frequencies ********************/    for(h=1; h <=nhstepm; h++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      for(d=1; d <=hstepm; d++){
 {  /* Some frequencies */        newm=savm;
          /* Covariates have to be included here again */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        cov[1]=1.;
   int first;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double ***freq; /* Frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double *pp;        for (k=1; k<=cptcovage;k++)
   double pos, k2, dateintsum=0,k2cpt=0;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   FILE *ficresp;        for (k=1; k<=cptcovprod;k++)
   char fileresp[FILENAMELENGTH];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   strcpy(fileresp,"p");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   strcat(fileresp,fileres);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   if((ficresp=fopen(fileresp,"w"))==NULL) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("Problem with prevalence resultfile: %s\n", fileresp);        savm=oldm;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);        oldm=newm;
     exit(0);      }
   }      for(i=1; i<=nlstate+ndeath; i++)
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(j=1;j<=nlstate+ndeath;j++) {
   j1=0;          po[i][j][h]=newm[i][j];
            /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   j=cptcoveff;           */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        }
     } /* end h */
   first=1;    return po;
   }
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  /*************** log-likelihood *************/
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  double func( double *x)
         scanf("%d", i);*/  {
       for (i=-1; i<=nlstate+ndeath; i++)      int i, ii, j, k, mi, d, kk;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double l, ll[NLSTATEMAX], cov[NCOVMAX];
           for(m=agemin; m <= agemax+3; m++)    double **out;
             freq[i][jk][m]=0;    double sw; /* Sum of weights */
          double lli; /* Individual log likelihood */
       dateintsum=0;    int s1, s2;
       k2cpt=0;    double bbh, survp;
       for (i=1; i<=imx; i++) {    long ipmx;
         bool=1;    /*extern weight */
         if  (cptcovn>0) {    /* We are differentiating ll according to initial status */
           for (z1=1; z1<=cptcoveff; z1++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    /*for(i=1;i<imx;i++) 
               bool=0;      printf(" %d\n",s[4][i]);
         }    */
         if (bool==1) {    cov[1]=1.;
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);    for(k=1; k<=nlstate; k++) ll[k]=0.;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;    if(mle==1){
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if (m<lastpass) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
               }            for (j=1;j<=nlstate+ndeath;j++){
                            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                 dateintsum=dateintsum+k2;            }
                 k2cpt++;          for(d=0; d<dh[mi][i]; d++){
               }            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
       if  (cptcovn>0) {            oldm=newm;
         fprintf(ficresp, "\n#********** Variable ");          } /* end mult */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        
         fprintf(ficresp, "**********\n#");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       }          /* But now since version 0.9 we anticipate for bias at large stepm.
       for(i=1; i<=nlstate;i++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           * (in months) between two waves is not a multiple of stepm, we rounded to 
       fprintf(ficresp, "\n");           * the nearest (and in case of equal distance, to the lowest) interval but now
                 * we keep into memory the bias bh[mi][i] and also the previous matrix product
       for(i=(int)agemin; i <= (int)agemax+3; i++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         if(i==(int)agemax+3){           * probability in order to take into account the bias as a fraction of the way
           fprintf(ficlog,"Total");           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         }else{           * -stepm/2 to stepm/2 .
           if(first==1){           * For stepm=1 the results are the same as for previous versions of Imach.
             first=0;           * For stepm > 1 the results are less biased than in previous versions. 
             printf("See log file for details...\n");           */
           }          s1=s[mw[mi][i]][i];
           fprintf(ficlog,"Age %d", i);          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
         for(jk=1; jk <=nlstate ; jk++){          /* bias bh is positive if real duration
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * is higher than the multiple of stepm and negative otherwise.
             pp[jk] += freq[jk][m][i];           */
         }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         for(jk=1; jk <=nlstate ; jk++){          if( s2 > nlstate){ 
           for(m=-1, pos=0; m <=0 ; m++)            /* i.e. if s2 is a death state and if the date of death is known 
             pos += freq[jk][m][i];               then the contribution to the likelihood is the probability to 
           if(pp[jk]>=1.e-10){               die between last step unit time and current  step unit time, 
             if(first==1){               which is also equal to probability to die before dh 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);               minus probability to die before dh-stepm . 
             }               In version up to 0.92 likelihood was computed
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          as if date of death was unknown. Death was treated as any other
           }else{          health state: the date of the interview describes the actual state
             if(first==1)          and not the date of a change in health state. The former idea was
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          to consider that at each interview the state was recorded
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          (healthy, disable or death) and IMaCh was corrected; but when we
           }          introduced the exact date of death then we should have modified
         }          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
         for(jk=1; jk <=nlstate ; jk++){          stepm. It is no more the probability to die between last interview
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          and month of death but the probability to survive from last
             pp[jk] += freq[jk][m][i];          interview up to one month before death multiplied by the
         }          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
         for(jk=1,pos=0; jk <=nlstate ; jk++)          mortality artificially. The bad side is that we add another loop
           pos += pp[jk];          which slows down the processing. The difference can be up to 10%
         for(jk=1; jk <=nlstate ; jk++){          lower mortality.
           if(pos>=1.e-5){            */
             if(first==1)            lli=log(out[s1][s2] - savm[s1][s2]);
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
           }else{          } else if  (s2==-2) {
             if(first==1)            for (j=1,survp=0. ; j<=nlstate; j++) 
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              survp += out[s1][j];
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            lli= survp;
           }          }
           if( i <= (int) agemax){          
             if(pos>=1.e-5){          else if  (s2==-4) {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            for (j=3,survp=0. ; j<=nlstate; j++) 
               probs[i][jk][j1]= pp[jk]/pos;              survp += out[s1][j];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            lli= survp;
             }          }
             else          
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          else if  (s2==-5) {
           }            for (j=1,survp=0. ; j<=2; j++) 
         }              survp += out[s1][j];
                    lli= survp;
         for(jk=-1; jk <=nlstate+ndeath; jk++)          }
           for(m=-1; m <=nlstate+ndeath; m++)  
             if(freq[jk][m][i] !=0 ) {  
             if(first==1)          else{
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
             }          } 
         if(i <= (int) agemax)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           fprintf(ficresp,"\n");          /*if(lli ==000.0)*/
         if(first==1)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           printf("Others in log...\n");          ipmx +=1;
         fprintf(ficlog,"\n");          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
   }      } /* end of individual */
   dateintmean=dateintsum/k2cpt;    }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fclose(ficresp);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for(mi=1; mi<= wav[i]-1; mi++){
   free_vector(pp,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   /* End of Freq */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 /************ Prevalence ********************/          for(d=0; d<=dh[mi][i]; d++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            newm=savm;
 {  /* Some frequencies */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double ***freq; /* Frequencies */            }
   double *pp;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double pos, k2;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   pp=vector(1,nlstate);            oldm=newm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          } /* end mult */
          
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          s1=s[mw[mi][i]][i];
   j1=0;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   j=cptcoveff;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ipmx +=1;
            sw += weight[i];
   for(k1=1; k1<=j;k1++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(i1=1; i1<=ncodemax[k1];i1++){        } /* end of wave */
       j1++;      } /* end of individual */
          }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=-1; i<=nlstate+ndeath; i++)        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=agemin; m <= agemax+3; m++)        for(mi=1; mi<= wav[i]-1; mi++){
             freq[i][jk][m]=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
                  for (j=1;j<=nlstate+ndeath;j++){
       for (i=1; i<=imx; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         bool=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {            }
           for (z1=1; z1<=cptcoveff; z1++)          for(d=0; d<dh[mi][i]; d++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            newm=savm;
               bool=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         if (bool==1) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=firstpass; m<=lastpass; m++){            }
             k2=anint[m][i]+(mint[m][i]/12.);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             if ((k2>=dateprev1) && (k2<=dateprev2)) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if(agev[m][i]==0) agev[m][i]=agemax+1;            savm=oldm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;            oldm=newm;
               if (m<lastpass) {          } /* end mult */
                 if (calagedate>0)        
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          s1=s[mw[mi][i]][i];
                 else          s2=s[mw[mi+1][i]][i];
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          bbh=(double)bh[mi][i]/(double)stepm; 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               }          ipmx +=1;
             }          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
       }      } /* end of individual */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pp[jk] += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1, pos=0; m <=0 ; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pos += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
                  for(d=0; d<dh[mi][i]; d++){
         for(jk=1; jk <=nlstate ; jk++){            newm=savm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             pp[jk] += freq[jk][m][i];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                    }
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                             1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if( i <= (int) agemax){            savm=oldm;
             if(pos>=1.e-5){            oldm=newm;
               probs[i][jk][j1]= pp[jk]/pos;          } /* end mult */
             }        
           }          s1=s[mw[mi][i]][i];
         }/* end jk */          s2=s[mw[mi+1][i]][i];
       }/* end i */          if( s2 > nlstate){ 
     } /* end i1 */            lli=log(out[s1][s2] - savm[s1][s2]);
   } /* end k1 */          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ipmx +=1;
   free_vector(pp,1,nlstate);          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }  /* End of Freq */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
 /************* Waves Concatenation ***************/      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for(mi=1; mi<= wav[i]-1; mi++){
      Death is a valid wave (if date is known).          for (ii=1;ii<=nlstate+ndeath;ii++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            for (j=1;j<=nlstate+ndeath;j++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      and mw[mi+1][i]. dh depends on stepm.              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      */            }
           for(d=0; d<dh[mi][i]; d++){
   int i, mi, m;            newm=savm;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      double sum=0., jmean=0.;*/            for (kk=1; kk<=cptcovage;kk++) {
   int first;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int j, k=0,jk, ju, jl;            }
   double sum=0.;          
   first=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   jmin=1e+5;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   jmax=-1;            savm=oldm;
   jmean=0.;            oldm=newm;
   for(i=1; i<=imx; i++){          } /* end mult */
     mi=0;        
     m=firstpass;          s1=s[mw[mi][i]][i];
     while(s[m][i] <= nlstate){          s2=s[mw[mi+1][i]][i];
       if(s[m][i]>=1)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         mw[++mi][i]=m;          ipmx +=1;
       if(m >=lastpass)          sw += weight[i];
         break;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       else          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         m++;        } /* end of wave */
     }/* end while */      } /* end of individual */
     if (s[m][i] > nlstate){    } /* End of if */
       mi++;     /* Death is another wave */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       /* if(mi==0)  never been interviewed correctly before death */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
          /* Only death is a correct wave */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       mw[mi][i]=m;    return -l;
     }  }
   
     wav[i]=mi;  /*************** log-likelihood *************/
     if(mi==0){  double funcone( double *x)
       if(first==0){  {
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    /* Same as likeli but slower because of a lot of printf and if */
         first=1;    int i, ii, j, k, mi, d, kk;
       }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       if(first==1){    double **out;
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    double lli; /* Individual log likelihood */
       }    double llt;
     } /* end mi==0 */    int s1, s2;
   }    double bbh, survp;
     /*extern weight */
   for(i=1; i<=imx; i++){    /* We are differentiating ll according to initial status */
     for(mi=1; mi<wav[i];mi++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if (stepm <=0)    /*for(i=1;i<imx;i++) 
         dh[mi][i]=1;      printf(" %d\n",s[4][i]);
       else{    */
         if (s[mw[mi+1][i]][i] > nlstate) {    cov[1]=1.;
           if (agedc[i] < 2*AGESUP) {  
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    for(k=1; k<=nlstate; k++) ll[k]=0.;
           if(j==0) j=1;  /* Survives at least one month after exam */  
           k=k+1;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (j >= jmax) jmax=j;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (j <= jmin) jmin=j;      for(mi=1; mi<= wav[i]-1; mi++){
           sum=sum+j;        for (ii=1;ii<=nlstate+ndeath;ii++)
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          for (j=1;j<=nlstate+ndeath;j++){
           }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         else{          }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for(d=0; d<dh[mi][i]; d++){
           k=k+1;          newm=savm;
           if (j >= jmax) jmax=j;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           else if (j <= jmin)jmin=j;          for (kk=1; kk<=cptcovage;kk++) {
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           sum=sum+j;          }
         }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         jk= j/stepm;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         jl= j -jk*stepm;          savm=oldm;
         ju= j -(jk+1)*stepm;          oldm=newm;
         if(jl <= -ju)        } /* end mult */
           dh[mi][i]=jk;        
         else        s1=s[mw[mi][i]][i];
           dh[mi][i]=jk+1;        s2=s[mw[mi+1][i]][i];
         if(dh[mi][i]==0)        bbh=(double)bh[mi][i]/(double)stepm; 
           dh[mi][i]=1; /* At least one step */        /* bias is positive if real duration
       }         * is higher than the multiple of stepm and negative otherwise.
     }         */
   }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   jmean=sum/k;          lli=log(out[s1][s2] - savm[s1][s2]);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        } else if (mle==1){
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
  }        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 /*********** Tricode ****************************/        } else if(mle==3){  /* exponential inter-extrapolation */
 void tricode(int *Tvar, int **nbcode, int imx)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   int Ndum[20],ij=1, k, j, i;          lli=log(out[s1][s2]); /* Original formula */
   int cptcode=0;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   cptcoveff=0;          lli=log(out[s1][s2]); /* Original formula */
          } /* End of if */
   for (k=0; k<19; k++) Ndum[k]=0;        ipmx +=1;
   for (k=1; k<=7; k++) ncodemax[k]=0;        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for (i=1; i<=imx; i++) {        if(globpr){
       ij=(int)(covar[Tvar[j]][i]);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       Ndum[ij]++;   %10.6f %10.6f %10.6f ", \
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       if (ij > cptcode) cptcode=ij;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
     for (i=0; i<=cptcode; i++) {            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       if(Ndum[i]!=0) ncodemax[j]++;          }
     }          fprintf(ficresilk," %10.6f\n", -llt);
     ij=1;        }
       } /* end of wave */
     } /* end of individual */
     for (i=1; i<=ncodemax[j]; i++) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for (k=0; k<=19; k++) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         if (Ndum[k] != 0) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           nbcode[Tvar[j]][ij]=k;    if(globpr==0){ /* First time we count the contributions and weights */
                gipmx=ipmx;
           ij++;      gsw=sw;
         }    }
         if (ij > ncodemax[j]) break;    return -l;
       }    }
     }  
   }    
   /*************** function likelione ***********/
  for (k=0; k<19; k++) Ndum[k]=0;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
  for (i=1; i<=ncovmodel-2; i++) {    /* This routine should help understanding what is done with 
    ij=Tvar[i];       the selection of individuals/waves and
    Ndum[ij]++;       to check the exact contribution to the likelihood.
  }       Plotting could be done.
      */
  ij=1;    int k;
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){    if(*globpri !=0){ /* Just counts and sums, no printings */
      Tvaraff[ij]=i;      strcpy(fileresilk,"ilk"); 
      ij++;      strcat(fileresilk,fileres);
    }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
  }        printf("Problem with resultfile: %s\n", fileresilk);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
  cptcoveff=ij-1;      }
 }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 /*********** Health Expectancies ****************/      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 {    }
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    *fretone=(*funcone)(p);
   double age, agelim, hf;    if(*globpri !=0){
   double ***p3mat,***varhe;      fclose(ficresilk);
   double **dnewm,**doldm;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   double *xp;      fflush(fichtm); 
   double **gp, **gm;    } 
   double ***gradg, ***trgradg;    return;
   int theta;  }
   
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  
   xp=vector(1,npar);  /*********** Maximum Likelihood Estimation ***************/
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
    {
   fprintf(ficreseij,"# Health expectancies\n");    int i,j, iter;
   fprintf(ficreseij,"# Age");    double **xi;
   for(i=1; i<=nlstate;i++)    double fret;
     for(j=1; j<=nlstate;j++)    double fretone; /* Only one call to likelihood */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    /*  char filerespow[FILENAMELENGTH];*/
   fprintf(ficreseij,"\n");    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   if(estepm < stepm){      for (j=1;j<=npar;j++)
     printf ("Problem %d lower than %d\n",estepm, stepm);        xi[i][j]=(i==j ? 1.0 : 0.0);
   }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   else  hstepm=estepm;      strcpy(filerespow,"pow"); 
   /* We compute the life expectancy from trapezoids spaced every estepm months    strcat(filerespow,fileres);
    * This is mainly to measure the difference between two models: for example    if((ficrespow=fopen(filerespow,"w"))==NULL) {
    * if stepm=24 months pijx are given only every 2 years and by summing them      printf("Problem with resultfile: %s\n", filerespow);
    * we are calculating an estimate of the Life Expectancy assuming a linear      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
    * progression inbetween and thus overestimating or underestimating according    }
    * to the curvature of the survival function. If, for the same date, we    fprintf(ficrespow,"# Powell\n# iter -2*LL");
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    for (i=1;i<=nlstate;i++)
    * to compare the new estimate of Life expectancy with the same linear      for(j=1;j<=nlstate+ndeath;j++)
    * hypothesis. A more precise result, taking into account a more precise        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
    * curvature will be obtained if estepm is as small as stepm. */    fprintf(ficrespow,"\n");
   
   /* For example we decided to compute the life expectancy with the smallest unit */    powell(p,xi,npar,ftol,&iter,&fret,func);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    free_matrix(xi,1,npar,1,npar);
      nstepm is the number of stepm from age to agelin.    fclose(ficrespow);
      Look at hpijx to understand the reason of that which relies in memory size    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      and note for a fixed period like estepm months */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if  }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  /**** Computes Hessian and covariance matrix ***/
   */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  {
     double  **a,**y,*x,pd;
   agelim=AGESUP;    double **hess;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i, j,jk;
     /* nhstepm age range expressed in number of stepm */    int *indx;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     /* if (stepm >= YEARM) hstepm=1;*/    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    void lubksb(double **a, int npar, int *indx, double b[]) ;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    double gompertz(double p[]);
     gp=matrix(0,nhstepm,1,nlstate*2);    hess=matrix(1,npar,1,npar);
     gm=matrix(0,nhstepm,1,nlstate*2);  
     printf("\nCalculation of the hessian matrix. Wait...\n");
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for (i=1;i<=npar;i++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        printf("%d",i);fflush(stdout);
        fprintf(ficlog,"%d",i);fflush(ficlog);
      
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
     /* Computing Variances of health expectancies */      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      for(theta=1; theta <=npar; theta++){    }
       for(i=1; i<=npar; i++){    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++) {
       }      for (j=1;j<=npar;j++)  {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          if (j>i) { 
            printf(".%d%d",i,j);fflush(stdout);
       cptj=0;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(j=1; j<= nlstate; j++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
         for(i=1; i<=nlstate; i++){          
           cptj=cptj+1;          hess[j][i]=hess[i][j];    
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          /*printf(" %lf ",hess[i][j]);*/
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        }
           }      }
         }    }
       }    printf("\n");
          fprintf(ficlog,"\n");
        
       for(i=1; i<=npar; i++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
          a=matrix(1,npar,1,npar);
       cptj=0;    y=matrix(1,npar,1,npar);
       for(j=1; j<= nlstate; j++){    x=vector(1,npar);
         for(i=1;i<=nlstate;i++){    indx=ivector(1,npar);
           cptj=cptj+1;    for (i=1;i<=npar;i++)
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    ludcmp(a,npar,indx,&pd);
           }  
         }    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
       for(j=1; j<= nlstate*2; j++)      x[j]=1;
         for(h=0; h<=nhstepm-1; h++){      lubksb(a,npar,indx,x);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (i=1;i<=npar;i++){ 
         }        matcov[i][j]=x[i];
      }      }
        }
 /* End theta */  
     printf("\n#Hessian matrix#\n");
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
      for(h=0; h<=nhstepm-1; h++)      for (j=1;j<=npar;j++) { 
       for(j=1; j<=nlstate*2;j++)        printf("%.3e ",hess[i][j]);
         for(theta=1; theta <=npar; theta++)        fprintf(ficlog,"%.3e ",hess[i][j]);
           trgradg[h][j][theta]=gradg[h][theta][j];      }
            printf("\n");
       fprintf(ficlog,"\n");
      for(i=1;i<=nlstate*2;i++)    }
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
      printf("%d|",(int)age);fflush(stdout);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    ludcmp(a,npar,indx,&pd);
      for(h=0;h<=nhstepm-1;h++){  
       for(k=0;k<=nhstepm-1;k++){    /*  printf("\n#Hessian matrix recomputed#\n");
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    for (j=1;j<=npar;j++) {
         for(i=1;i<=nlstate*2;i++)      for (i=1;i<=npar;i++) x[i]=0;
           for(j=1;j<=nlstate*2;j++)      x[j]=1;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
     }        y[i][j]=x[i];
     /* Computing expectancies */        printf("%.3e ",y[i][j]);
     for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%.3e ",y[i][j]);
       for(j=1; j<=nlstate;j++)      }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      printf("\n");
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      fprintf(ficlog,"\n");
              }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    */
   
         }    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
     fprintf(ficreseij,"%3.0f",age );    free_vector(x,1,npar);
     cptj=0;    free_ivector(indx,1,npar);
     for(i=1; i<=nlstate;i++)    free_matrix(hess,1,npar,1,npar);
       for(j=1; j<=nlstate;j++){  
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  }
       }  
     fprintf(ficreseij,"\n");  /*************** hessian matrix ****************/
      double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     free_matrix(gm,0,nhstepm,1,nlstate*2);  {
     free_matrix(gp,0,nhstepm,1,nlstate*2);    int i;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    int l=1, lmax=20;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    double k1,k2;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double p2[NPARMAX+1];
   }    double res;
   printf("\n");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   fprintf(ficlog,"\n");    double fx;
     int k=0,kmax=10;
   free_vector(xp,1,npar);    double l1;
   free_matrix(dnewm,1,nlstate*2,1,npar);  
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    fx=func(x);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    for (i=1;i<=npar;i++) p2[i]=x[i];
 }    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
 /************ Variance ******************/      delts=delt;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)      for(k=1 ; k <kmax; k=k+1){
 {        delt = delta*(l1*k);
   /* Variance of health expectancies */        p2[theta]=x[theta] +delt;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        k1=func(p2)-fx;
   /* double **newm;*/        p2[theta]=x[theta]-delt;
   double **dnewm,**doldm;        k2=func(p2)-fx;
   double **dnewmp,**doldmp;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   int i, j, nhstepm, hstepm, h, nstepm ;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   int k, cptcode;        
   double *xp;  #ifdef DEBUG
   double **gp, **gm;  /* for var eij */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double ***gradg, ***trgradg; /*for var eij */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double **gradgp, **trgradgp; /* for var p point j */  #endif
   double *gpp, *gmp; /* for var p point j */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double ***p3mat;          k=kmax;
   double age,agelim, hf;        }
   int theta;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   char digit[4];          k=kmax; l=lmax*10.;
   char digitp[16];        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   char fileresprobmorprev[FILENAMELENGTH];          delts=delt;
         }
   if(popbased==1)      }
     strcpy(digitp,"-populbased-");    }
   else    delti[theta]=delts;
     strcpy(digitp,"-stablbased-");    return res; 
     
   strcpy(fileresprobmorprev,"prmorprev");  }
   sprintf(digit,"%-d",ij);  
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   strcat(fileresprobmorprev,digit); /* Tvar to be done */  {
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    int i;
   strcat(fileresprobmorprev,fileres);    int l=1, l1, lmax=20;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    double k1,k2,k3,k4,res,fx;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    double p2[NPARMAX+1];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    int k;
   }  
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    fx=func(x);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    for (k=1; k<=2; k++) {
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");      for (i=1;i<=npar;i++) p2[i]=x[i];
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      p2[thetai]=x[thetai]+delti[thetai]/k;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fprintf(ficresprobmorprev," p.%-d SE",j);      k1=func(p2)-fx;
     for(i=1; i<=nlstate;i++)    
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);      p2[thetai]=x[thetai]+delti[thetai]/k;
   }        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresprobmorprev,"\n");      k2=func(p2)-fx;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      p2[thetai]=x[thetai]-delti[thetai]/k;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     exit(0);      k3=func(p2)-fx;
   }    
   else{      p2[thetai]=x[thetai]-delti[thetai]/k;
     fprintf(ficgp,"\n# Routine varevsij");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k4=func(p2)-fx;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     printf("Problem with html file: %s\n", optionfilehtm);  #ifdef DEBUG
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     exit(0);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }  #endif
   else{    }
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    return res;
   }  }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   /************** Inverse of matrix **************/
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  void ludcmp(double **a, int n, int *indx, double *d) 
   fprintf(ficresvij,"# Age");  { 
   for(i=1; i<=nlstate;i++)    int i,imax,j,k; 
     for(j=1; j<=nlstate;j++)    double big,dum,sum,temp; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double *vv; 
   fprintf(ficresvij,"\n");   
     vv=vector(1,n); 
   xp=vector(1,npar);    *d=1.0; 
   dnewm=matrix(1,nlstate,1,npar);    for (i=1;i<=n;i++) { 
   doldm=matrix(1,nlstate,1,nlstate);      big=0.0; 
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      for (j=1;j<=n;j++) 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);      vv[i]=1.0/big; 
   gpp=vector(nlstate+1,nlstate+ndeath);    } 
   gmp=vector(nlstate+1,nlstate+ndeath);    for (j=1;j<=n;j++) { 
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      for (i=1;i<j;i++) { 
          sum=a[i][j]; 
   if(estepm < stepm){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     printf ("Problem %d lower than %d\n",estepm, stepm);        a[i][j]=sum; 
   }      } 
   else  hstepm=estepm;        big=0.0; 
   /* For example we decided to compute the life expectancy with the smallest unit */      for (i=j;i<=n;i++) { 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        sum=a[i][j]; 
      nhstepm is the number of hstepm from age to agelim        for (k=1;k<j;k++) 
      nstepm is the number of stepm from age to agelin.          sum -= a[i][k]*a[k][j]; 
      Look at hpijx to understand the reason of that which relies in memory size        a[i][j]=sum; 
      and note for a fixed period like k years */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          big=dum; 
      survival function given by stepm (the optimization length). Unfortunately it          imax=i; 
      means that if the survival funtion is printed only each two years of age and if        } 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      } 
      results. So we changed our mind and took the option of the best precision.      if (j != imax) { 
   */        for (k=1;k<=n;k++) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          dum=a[imax][k]; 
   agelim = AGESUP;          a[imax][k]=a[j][k]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          a[j][k]=dum; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        } 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        *d = -(*d); 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        vv[imax]=vv[j]; 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      } 
     gp=matrix(0,nhstepm,1,nlstate);      indx[j]=imax; 
     gm=matrix(0,nhstepm,1,nlstate);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
         dum=1.0/(a[j][j]); 
     for(theta=1; theta <=npar; theta++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    } 
       }    free_vector(vv,1,n);  /* Doesn't work */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    ;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  } 
   
       if (popbased==1) {  void lubksb(double **a, int n, int *indx, double b[]) 
         for(i=1; i<=nlstate;i++)  { 
           prlim[i][i]=probs[(int)age][i][ij];    int i,ii=0,ip,j; 
       }    double sum; 
     
       for(j=1; j<= nlstate; j++){    for (i=1;i<=n;i++) { 
         for(h=0; h<=nhstepm; h++){      ip=indx[i]; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      sum=b[ip]; 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      b[ip]=b[i]; 
         }      if (ii) 
       }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       /* This for computing forces of mortality (h=1)as a weighted average */      else if (sum) ii=i; 
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){      b[i]=sum; 
         for(i=1; i<= nlstate; i++)    } 
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    for (i=n;i>=1;i--) { 
       }          sum=b[i]; 
       /* end force of mortality */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
       for(i=1; i<=npar; i++) /* Computes gradient */    } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /************ Frequencies ********************/
    void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       if (popbased==1) {  {  /* Some frequencies */
         for(i=1; i<=nlstate;i++)    
           prlim[i][i]=probs[(int)age][i][ij];    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       }    int first;
     double ***freq; /* Frequencies */
       for(j=1; j<= nlstate; j++){    double *pp, **prop;
         for(h=0; h<=nhstepm; h++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    FILE *ficresp;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    char fileresp[FILENAMELENGTH];
         }    
       }    pp=vector(1,nlstate);
       /* This for computing force of mortality (h=1)as a weighted average */    prop=matrix(1,nlstate,iagemin,iagemax+3);
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    strcpy(fileresp,"p");
         for(i=1; i<= nlstate; i++)    strcat(fileresp,fileres);
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    if((ficresp=fopen(fileresp,"w"))==NULL) {
       }          printf("Problem with prevalence resultfile: %s\n", fileresp);
       /* end force of mortality */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
       for(j=1; j<= nlstate; j++) /* vareij */    }
         for(h=0; h<=nhstepm; h++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    j1=0;
         }    
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    j=cptcoveff;
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       }  
     first=1;
     } /* End theta */  
     for(k1=1; k1<=j;k1++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
     for(h=0; h<=nhstepm; h++) /* veij */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for(j=1; j<=nlstate;j++)          scanf("%d", i);*/
         for(theta=1; theta <=npar; theta++)        for (i=-5; i<=nlstate+ndeath; i++)  
           trgradg[h][j][theta]=gradg[h][theta][j];          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */              freq[i][jk][m]=0;
       for(theta=1; theta <=npar; theta++)  
         trgradgp[j][theta]=gradgp[theta][j];      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          prop[i][m]=0;
     for(i=1;i<=nlstate;i++)        
       for(j=1;j<=nlstate;j++)        dateintsum=0;
         vareij[i][j][(int)age] =0.;        k2cpt=0;
         for (i=1; i<=imx; i++) {
     for(h=0;h<=nhstepm;h++){          bool=1;
       for(k=0;k<=nhstepm;k++){          if  (cptcovn>0) {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            for (z1=1; z1<=cptcoveff; z1++) 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for(i=1;i<=nlstate;i++)                bool=0;
           for(j=1;j<=nlstate;j++)          }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          if (bool==1){
       }            for(m=firstpass; m<=lastpass; m++){
     }              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     /* pptj */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(j=nlstate+1;j<=nlstate+ndeath;j++)                if (m<lastpass) {
       for(i=nlstate+1;i<=nlstate+ndeath;i++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         varppt[j][i]=doldmp[j][i];                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     /* end ppptj */                }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);                  
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                    dateintsum=dateintsum+k2;
     if (popbased==1) {                  k2cpt++;
       for(i=1; i<=nlstate;i++)                }
         prlim[i][i]=probs[(int)age][i][ij];                /*}*/
     }            }
              }
     /* This for computing force of mortality (h=1)as a weighted average */        }
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){         
       for(i=1; i<= nlstate; i++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         gmp[j] += prlim[i][i]*p3mat[i][j][1];  fprintf(ficresp, "#Local time at start: %s", strstart);
     }            if  (cptcovn>0) {
     /* end force of mortality */          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);          fprintf(ficresp, "**********\n#");
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        }
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        for(i=1; i<=nlstate;i++) 
       for(i=1; i<=nlstate;i++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        fprintf(ficresp, "\n");
       }        
     }        for(i=iagemin; i <= iagemax+3; i++){
     fprintf(ficresprobmorprev,"\n");          if(i==iagemax+3){
             fprintf(ficlog,"Total");
     fprintf(ficresvij,"%.0f ",age );          }else{
     for(i=1; i<=nlstate;i++)            if(first==1){
       for(j=1; j<=nlstate;j++){              first=0;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              printf("See log file for details...\n");
       }            }
     fprintf(ficresvij,"\n");            fprintf(ficlog,"Age %d", i);
     free_matrix(gp,0,nhstepm,1,nlstate);          }
     free_matrix(gm,0,nhstepm,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              pp[jk] += freq[jk][m][i]; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
   } /* End age */          for(jk=1; jk <=nlstate ; jk++){
   free_vector(gpp,nlstate+1,nlstate+ndeath);            for(m=-1, pos=0; m <=0 ; m++)
   free_vector(gmp,nlstate+1,nlstate+ndeath);              pos += freq[jk][m][i];
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);            if(pp[jk]>=1.e-10){
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/              if(first==1){
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */              }
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);            }else{
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);              if(first==1)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);            }
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);          }
 */  
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   free_vector(xp,1,npar);              pp[jk] += freq[jk][m][i];
   free_matrix(doldm,1,nlstate,1,nlstate);          }       
   free_matrix(dnewm,1,nlstate,1,npar);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            pos += pp[jk];
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);            posprop += prop[jk][i];
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          }
   fclose(ficresprobmorprev);          for(jk=1; jk <=nlstate ; jk++){
   fclose(ficgp);            if(pos>=1.e-5){
   fclose(fichtm);              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
 /************ Variance of prevlim ******************/              if(first==1)
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   /* Variance of prevalence limit */            }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            if( i <= iagemax){
   double **newm;              if(pos>=1.e-5){
   double **dnewm,**doldm;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   int i, j, nhstepm, hstepm;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   int k, cptcode;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   double *xp;              }
   double *gp, *gm;              else
   double **gradg, **trgradg;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   double age,agelim;            }
   int theta;          }
              
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          for(jk=-1; jk <=nlstate+ndeath; jk++)
   fprintf(ficresvpl,"# Age");            for(m=-1; m <=nlstate+ndeath; m++)
   for(i=1; i<=nlstate;i++)              if(freq[jk][m][i] !=0 ) {
       fprintf(ficresvpl," %1d-%1d",i,i);              if(first==1)
   fprintf(ficresvpl,"\n");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   xp=vector(1,npar);              }
   dnewm=matrix(1,nlstate,1,npar);          if(i <= iagemax)
   doldm=matrix(1,nlstate,1,nlstate);            fprintf(ficresp,"\n");
            if(first==1)
   hstepm=1*YEARM; /* Every year of age */            printf("Others in log...\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          fprintf(ficlog,"\n");
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     if (stepm >= YEARM) hstepm=1;    dateintmean=dateintsum/k2cpt; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */   
     gradg=matrix(1,npar,1,nlstate);    fclose(ficresp);
     gp=vector(1,nlstate);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     gm=vector(1,nlstate);    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     for(theta=1; theta <=npar; theta++){    /* End of Freq */
       for(i=1; i<=npar; i++){ /* Computes gradient */  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  /************ Prevalence ********************/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       for(i=1;i<=nlstate;i++)  {  
         gp[i] = prlim[i][i];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           in each health status at the date of interview (if between dateprev1 and dateprev2).
       for(i=1; i<=npar; i++) /* Computes gradient */       We still use firstpass and lastpass as another selection.
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);   
       for(i=1;i<=nlstate;i++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         gm[i] = prlim[i][i];    double ***freq; /* Frequencies */
     double *pp, **prop;
       for(i=1;i<=nlstate;i++)    double pos,posprop; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double  y2; /* in fractional years */
     } /* End theta */    int iagemin, iagemax;
   
     trgradg =matrix(1,nlstate,1,npar);    iagemin= (int) agemin;
     iagemax= (int) agemax;
     for(j=1; j<=nlstate;j++)    /*pp=vector(1,nlstate);*/
       for(theta=1; theta <=npar; theta++)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         trgradg[j][theta]=gradg[theta][j];    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
     for(i=1;i<=nlstate;i++)    
       varpl[i][(int)age] =0.;    j=cptcoveff;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    
     for(i=1;i<=nlstate;i++)    for(k1=1; k1<=j;k1++){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
     fprintf(ficresvpl,"%.0f ",age );        
     for(i=1; i<=nlstate;i++)        for (i=1; i<=nlstate; i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficresvpl,"\n");            prop[i][m]=0.0;
     free_vector(gp,1,nlstate);       
     free_vector(gm,1,nlstate);        for (i=1; i<=imx; i++) { /* Each individual */
     free_matrix(gradg,1,npar,1,nlstate);          bool=1;
     free_matrix(trgradg,1,nlstate,1,npar);          if  (cptcovn>0) {
   } /* End age */            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   free_vector(xp,1,npar);                bool=0;
   free_matrix(doldm,1,nlstate,1,npar);          } 
   free_matrix(dnewm,1,nlstate,1,nlstate);          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 /************ Variance of one-step probabilities  ******************/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   int i, j=0,  i1, k1, l1, t, tj;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   int k2, l2, j1,  z1;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   int k=0,l, cptcode;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   int first=1, first1;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;                } 
   double **dnewm,**doldm;              }
   double *xp;            } /* end selection of waves */
   double *gp, *gm;          }
   double **gradg, **trgradg;        }
   double **mu;        for(i=iagemin; i <= iagemax+3; i++){  
   double age,agelim, cov[NCOVMAX];          
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   int theta;            posprop += prop[jk][i]; 
   char fileresprob[FILENAMELENGTH];          } 
   char fileresprobcov[FILENAMELENGTH];  
   char fileresprobcor[FILENAMELENGTH];          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
   double ***varpij;              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
   strcpy(fileresprob,"prob");              } 
   strcat(fileresprob,fileres);            } 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          }/* end jk */ 
     printf("Problem with resultfile: %s\n", fileresprob);        }/* end i */ 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      } /* end i1 */
   }    } /* end k1 */
   strcpy(fileresprobcov,"probcov");    
   strcat(fileresprobcov,fileres);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    /*free_vector(pp,1,nlstate);*/
     printf("Problem with resultfile: %s\n", fileresprobcov);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  }  /* End of prevalence */
   }  
   strcpy(fileresprobcor,"probcor");  /************* Waves Concatenation ***************/
   strcat(fileresprobcor,fileres);  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     printf("Problem with resultfile: %s\n", fileresprobcor);  {
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   }       Death is a valid wave (if date is known).
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);       and mw[mi+1][i]. dh depends on stepm.
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);       */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    int i, mi, m;
      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");       double sum=0., jmean=0.;*/
   fprintf(ficresprob,"# Age");    int first;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    int j, k=0,jk, ju, jl;
   fprintf(ficresprobcov,"# Age");    double sum=0.;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    first=0;
   fprintf(ficresprobcov,"# Age");    jmin=1e+5;
     jmax=-1;
     jmean=0.;
   for(i=1; i<=nlstate;i++)    for(i=1; i<=imx; i++){
     for(j=1; j<=(nlstate+ndeath);j++){      mi=0;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      m=firstpass;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      while(s[m][i] <= nlstate){
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     }            mw[++mi][i]=m;
   fprintf(ficresprob,"\n");        if(m >=lastpass)
   fprintf(ficresprobcov,"\n");          break;
   fprintf(ficresprobcor,"\n");        else
   xp=vector(1,npar);          m++;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      }/* end while */
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      if (s[m][i] > nlstate){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        mi++;     /* Death is another wave */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        /* if(mi==0)  never been interviewed correctly before death */
   first=1;           /* Only death is a correct wave */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        mw[mi][i]=m;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      }
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  
     exit(0);      wav[i]=mi;
   }      if(mi==0){
   else{        nbwarn++;
     fprintf(ficgp,"\n# Routine varprob");        if(first==0){
   }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          first=1;
     printf("Problem with html file: %s\n", optionfilehtm);        }
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);        if(first==1){
     exit(0);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   }        }
   else{      } /* end mi==0 */
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    } /* End individuals */
     fprintf(fichtm,"\n");  
     for(i=1; i<=imx; i++){
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      for(mi=1; mi<wav[i];mi++){
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        if (stepm <=0)
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");          dh[mi][i]=1;
         else{
   }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   cov[1]=1;              if(j==0) j=1;  /* Survives at least one month after exam */
   tj=cptcoveff;              else if(j<0){
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}                nberr++;
   j1=0;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for(t=1; t<=tj;t++){                j=1; /* Temporary Dangerous patch */
     for(i1=1; i1<=ncodemax[t];i1++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       j1++;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       if  (cptcovn>0) {              }
         fprintf(ficresprob, "\n#********** Variable ");              k=k+1;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              if (j >= jmax){
         fprintf(ficresprob, "**********\n#");                jmax=j;
         fprintf(ficresprobcov, "\n#********** Variable ");                ijmax=i;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              }
         fprintf(ficresprobcov, "**********\n#");              if (j <= jmin){
                        jmin=j;
         fprintf(ficgp, "\n#********** Variable ");                ijmin=i;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              }
         fprintf(ficgp, "**********\n#");              sum=sum+j;
                      /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                      /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");            }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");          else{
                    j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         fprintf(ficresprobcor, "\n#********** Variable ");      /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficgp, "**********\n#");                k=k+1;
       }            if (j >= jmax) {
                    jmax=j;
       for (age=bage; age<=fage; age ++){              ijmax=i;
         cov[2]=age;            }
         for (k=1; k<=cptcovn;k++) {            else if (j <= jmin){
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];              jmin=j;
         }              ijmin=i;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            }
         for (k=1; k<=cptcovprod;k++)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                    if(j<0){
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));              nberr++;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         gp=vector(1,(nlstate)*(nlstate+ndeath));              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         gm=vector(1,(nlstate)*(nlstate+ndeath));            }
                sum=sum+j;
         for(theta=1; theta <=npar; theta++){          }
           for(i=1; i<=npar; i++)          jk= j/stepm;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          jl= j -jk*stepm;
                    ju= j -(jk+1)*stepm;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                      if(jl==0){
           k=0;              dh[mi][i]=jk;
           for(i=1; i<= (nlstate); i++){              bh[mi][i]=0;
             for(j=1; j<=(nlstate+ndeath);j++){            }else{ /* We want a negative bias in order to only have interpolation ie
               k=k+1;                    * at the price of an extra matrix product in likelihood */
               gp[k]=pmmij[i][j];              dh[mi][i]=jk+1;
             }              bh[mi][i]=ju;
           }            }
                    }else{
           for(i=1; i<=npar; i++)            if(jl <= -ju){
             xp[i] = x[i] - (i==theta ?delti[theta]:0);              dh[mi][i]=jk;
                  bh[mi][i]=jl;       /* bias is positive if real duration
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                                   * is higher than the multiple of stepm and negative otherwise.
           k=0;                                   */
           for(i=1; i<=(nlstate); i++){            }
             for(j=1; j<=(nlstate+ndeath);j++){            else{
               k=k+1;              dh[mi][i]=jk+1;
               gm[k]=pmmij[i][j];              bh[mi][i]=ju;
             }            }
           }            if(dh[mi][i]==0){
                    dh[mi][i]=1; /* At least one step */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)              bh[mi][i]=ju; /* At least one step */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         }            }
           } /* end if mle */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        }
           for(theta=1; theta <=npar; theta++)      } /* end wave */
             trgradg[j][theta]=gradg[theta][j];    }
            jmean=sum/k;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
           }
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
          /*********** Tricode ****************************/
         k=0;  void tricode(int *Tvar, int **nbcode, int imx)
         for(i=1; i<=(nlstate); i++){  {
           for(j=1; j<=(nlstate+ndeath);j++){    
             k=k+1;    int Ndum[20],ij=1, k, j, i, maxncov=19;
             mu[k][(int) age]=pmmij[i][j];    int cptcode=0;
           }    cptcoveff=0; 
         }   
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    for (k=0; k<maxncov; k++) Ndum[k]=0;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    for (k=1; k<=7; k++) ncodemax[k]=0;
             varpij[i][j][(int)age] = doldm[i][j];  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         /*printf("\n%d ",(int)age);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                                 modality*/ 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        Ndum[ij]++; /*store the modality */
      }*/        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
         fprintf(ficresprob,"\n%d ",(int)age);                                         Tvar[j]. If V=sex and male is 0 and 
         fprintf(ficresprobcov,"\n%d ",(int)age);                                         female is 1, then  cptcode=1.*/
         fprintf(ficresprobcor,"\n%d ",(int)age);      }
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      for (i=0; i<=cptcode; i++) {
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      ij=1; 
         }      for (i=1; i<=ncodemax[j]; i++) {
         i=0;        for (k=0; k<= maxncov; k++) {
         for (k=1; k<=(nlstate);k++){          if (Ndum[k] != 0) {
           for (l=1; l<=(nlstate+ndeath);l++){            nbcode[Tvar[j]][ij]=k; 
             i=i++;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            ij++;
             for (j=1; j<=i;j++){          }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          if (ij > ncodemax[j]) break; 
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        }  
             }      } 
           }    }  
         }/* end of loop for state */  
       } /* end of loop for age */   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
       /* Confidence intervalle of pij  */   for (i=1; i<=ncovmodel-2; i++) { 
       /*     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       fprintf(ficgp,"\nset noparametric;unset label");     ij=Tvar[i];
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");     Ndum[ij]++;
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");   }
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);   ij=1;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);   for (i=1; i<= maxncov; i++) {
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);     if((Ndum[i]!=0) && (i<=ncovcol)){
       */       Tvaraff[ij]=i; /*For printing */
        ij++;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/     }
       first1=1;   }
       for (k2=1; k2<=(nlstate);k2++){   
         for (l2=1; l2<=(nlstate+ndeath);l2++){   cptcoveff=ij-1; /*Number of simple covariates*/
           if(l2==k2) continue;  }
           j=(k2-1)*(nlstate+ndeath)+l2;  
           for (k1=1; k1<=(nlstate);k1++){  /*********** Health Expectancies ****************/
             for (l1=1; l1<=(nlstate+ndeath);l1++){  
               if(l1==k1) continue;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
               i=(k1-1)*(nlstate+ndeath)+l1;  
               if(i<=j) continue;  {
               for (age=bage; age<=fage; age ++){    /* Health expectancies */
                 if ((int)age %5==0){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    double age, agelim, hf;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    double ***p3mat,***varhe;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    double **dnewm,**doldm;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    double *xp;
                   mu2=mu[j][(int) age]/stepm*YEARM;    double **gp, **gm;
                   c12=cv12/sqrt(v1*v2);    double ***gradg, ***trgradg;
                   /* Computing eigen value of matrix of covariance */    int theta;
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
                   /* Eigen vectors */    xp=vector(1,npar);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    dnewm=matrix(1,nlstate*nlstate,1,npar);
                   /*v21=sqrt(1.-v11*v11); *//* error */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                   v21=(lc1-v1)/cv12*v11;    
                   v12=-v21;    fprintf(ficreseij,"# Local time at start: %s", strstart);
                   v22=v11;    fprintf(ficreseij,"# Health expectancies\n");
                   tnalp=v21/v11;    fprintf(ficreseij,"# Age");
                   if(first1==1){    for(i=1; i<=nlstate;i++)
                     first1=0;      for(j=1; j<=nlstate;j++)
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
                   }    fprintf(ficreseij,"\n");
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  
                   /*printf(fignu*/    if(estepm < stepm){
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      printf ("Problem %d lower than %d\n",estepm, stepm);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    }
                   if(first==1){    else  hstepm=estepm;   
                     first=0;    /* We compute the life expectancy from trapezoids spaced every estepm months
                     fprintf(ficgp,"\nset parametric;unset label");     * This is mainly to measure the difference between two models: for example
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);     * if stepm=24 months pijx are given only every 2 years and by summing them
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");     * we are calculating an estimate of the Life Expectancy assuming a linear 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);     * progression in between and thus overestimating or underestimating according
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);     * to the curvature of the survival function. If, for the same date, we 
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);     * to compare the new estimate of Life expectancy with the same linear 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);     * hypothesis. A more precise result, taking into account a more precise
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);     * curvature will be obtained if estepm is as small as stepm. */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    /* For example we decided to compute the life expectancy with the smallest unit */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   }else{       nhstepm is the number of hstepm from age to agelim 
                     first=0;       nstepm is the number of stepm from age to agelin. 
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);       Look at hpijx to understand the reason of that which relies in memory size
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);       and note for a fixed period like estepm months */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\       survival function given by stepm (the optimization length). Unfortunately it
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\       means that if the survival funtion is printed only each two years of age and if
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   }/* if first */       results. So we changed our mind and took the option of the best precision.
                 } /* age mod 5 */    */
               } /* end loop age */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);  
               first=1;    agelim=AGESUP;
             } /*l12 */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           } /* k12 */      /* nhstepm age range expressed in number of stepm */
         } /*l1 */      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       }/* k1 */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     } /* loop covariates */      /* if (stepm >= YEARM) hstepm=1;*/
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   free_vector(xp,1,npar);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   fclose(ficresprob);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   fclose(ficresprobcov);   
   fclose(ficresprobcor);  
   fclose(ficgp);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fclose(fichtm);  
 }      /* Computing  Variances of health expectancies */
   
        for(theta=1; theta <=npar; theta++){
 /******************* Printing html file ***********/        for(i=1; i<=npar; i++){ 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   int lastpass, int stepm, int weightopt, char model[],\        }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   int popforecast, int estepm ,\    
                   double jprev1, double mprev1,double anprev1, \        cptj=0;
                   double jprev2, double mprev2,double anprev2){        for(j=1; j<= nlstate; j++){
   int jj1, k1, i1, cpt;          for(i=1; i<=nlstate; i++){
   /*char optionfilehtm[FILENAMELENGTH];*/            cptj=cptj+1;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     printf("Problem with %s \n",optionfilehtm), exit(0);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);            }
   }          }
         }
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n       
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n       
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        for(i=1; i<=npar; i++) 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  - Life expectancies by age and initial health status (estepm=%2d months):        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        cptj=0;
         for(j=1; j<= nlstate; j++){
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          for(i=1;i<=nlstate;i++){
             cptj=cptj+1;
  m=cptcoveff;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
  jj1=0;            }
  for(k1=1; k1<=m;k1++){          }
    for(i1=1; i1<=ncodemax[k1];i1++){        }
      jj1++;        for(j=1; j<= nlstate*nlstate; j++)
      if (cptcovn > 0) {          for(h=0; h<=nhstepm-1; h++){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
        for (cpt=1; cpt<=cptcoveff;cpt++)          }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       } 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");     
      }  /* End theta */
      /* Pij */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
      /* Quasi-incidences */       for(h=0; h<=nhstepm-1; h++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        for(j=1; j<=nlstate*nlstate;j++)
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          for(theta=1; theta <=npar; theta++)
        /* Stable prevalence in each health state */            trgradg[h][j][theta]=gradg[h][theta][j];
        for(cpt=1; cpt<nlstate;cpt++){       
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       for(i=1;i<=nlstate*nlstate;i++)
        }        for(j=1;j<=nlstate*nlstate;j++)
      for(cpt=1; cpt<=nlstate;cpt++) {          varhe[i][j][(int)age] =0.;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       printf("%d|",(int)age);fflush(stdout);
      }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and       for(h=0;h<=nhstepm-1;h++){
 health expectancies in states (1) and (2): e%s%d.png<br>        for(k=0;k<=nhstepm-1;k++){
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
    } /* end i1 */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
  }/* End k1 */          for(i=1;i<=nlstate*nlstate;i++)
  fprintf(fichtm,"</ul>");            for(j=1;j<=nlstate*nlstate;j++)
               varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n      }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n      /* Computing expectancies */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      for(i=1; i<=nlstate;i++)
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n        for(j=1; j<=nlstate;j++)
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n            
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
  if(popforecast==1) fprintf(fichtm,"\n          }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      fprintf(ficreseij,"%3.0f",age );
         <br>",fileres,fileres,fileres,fileres);      cptj=0;
  else      for(i=1; i<=nlstate;i++)
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        for(j=1; j<=nlstate;j++){
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
  m=cptcoveff;        }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      fprintf(ficreseij,"\n");
      
  jj1=0;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
  for(k1=1; k1<=m;k1++){      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
    for(i1=1; i1<=ncodemax[k1];i1++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      jj1++;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
      if (cptcovn > 0) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    }
        for (cpt=1; cpt<=cptcoveff;cpt++)    printf("\n");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fprintf(ficlog,"\n");
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }    free_vector(xp,1,npar);
      for(cpt=1; cpt<=nlstate;cpt++) {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 interval) in state (%d): v%s%d%d.png <br>    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    }
      }  
    } /* end i1 */  /************ Variance ******************/
  }/* End k1 */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
  fprintf(fichtm,"</ul>");  {
 fclose(fichtm);    /* Variance of health expectancies */
 }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
 /******************* Gnuplot file **************/    double **dnewm,**doldm;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    int k, cptcode;
   int ng;    double *xp;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    double **gp, **gm;  /* for var eij */
     printf("Problem with file %s",optionfilegnuplot);    double ***gradg, ***trgradg; /*for var eij */
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    double **gradgp, **trgradgp; /* for var p point j */
   }    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 #ifdef windows    double ***p3mat;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    double age,agelim, hf;
 #endif    double ***mobaverage;
 m=pow(2,cptcoveff);    int theta;
      char digit[4];
  /* 1eme*/    char digitp[25];
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {    char fileresprobmorprev[FILENAMELENGTH];
   
 #ifdef windows    if(popbased==1){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      if(mobilav!=0)
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        strcpy(digitp,"-populbased-mobilav-");
 #endif      else strcpy(digitp,"-populbased-nomobil-");
 #ifdef unix    }
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    else 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      strcpy(digitp,"-stablbased-");
 #endif  
     if (mobilav!=0) {
 for (i=1; i<= nlstate ; i ++) {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      }
     for (i=1; i<= nlstate ; i ++) {    }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcpy(fileresprobmorprev,"prmorprev"); 
 }    sprintf(digit,"%-d",ij);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      for (i=1; i<= nlstate ; i ++) {    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcat(fileresprobmorprev,fileres);
 }      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 #ifdef unix      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    }
 #endif    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    }   
   }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /*2 eme*/    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   for (k1=1; k1<= m ; k1 ++) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      fprintf(ficresprobmorprev," p.%-d SE",j);
          for(i=1; i<=nlstate;i++)
     for (i=1; i<= nlstate+1 ; i ++) {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       k=2*i;    }  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresprobmorprev,"\n");
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficgp,"\n# Routine varevsij");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 }      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  /*   } */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);   fprintf(ficresvij, "#Local time at start: %s", strstart);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresvij,"# Age");
         else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"\" t\"\" w l 0,");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresvij,"\n");
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    xp=vector(1,npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    dnewm=matrix(1,nlstate,1,npar);
 }      doldm=matrix(1,nlstate,1,nlstate);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       else fprintf(ficgp,"\" t\"\" w l 0,");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }  
   }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
   /*3eme*/    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {    if(estepm < stepm){
       k=2+nlstate*(2*cpt-2);      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    }
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    else  hstepm=estepm;   
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /* For example we decided to compute the life expectancy with the smallest unit */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       nhstepm is the number of hstepm from age to agelim 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       nstepm is the number of stepm from age to agelin. 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       Look at hpijx to understand the reason of that which relies in memory size
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 */       survival function given by stepm (the optimization length). Unfortunately it
       for (i=1; i< nlstate ; i ++) {       means that if the survival funtion is printed every two years of age and if
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
       }    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /* CV preval stat */      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     for (k1=1; k1<= m ; k1 ++) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for (cpt=1; cpt<nlstate ; cpt ++) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       k=3;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      gp=matrix(0,nhstepm,1,nlstate);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      gm=matrix(0,nhstepm,1,nlstate);
   
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);      for(theta=1; theta <=npar; theta++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                xp[i] = x[i] + (i==theta ?delti[theta]:0);
       l=3+(nlstate+ndeath)*cpt;        }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for (i=1; i< nlstate ; i ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);        if (popbased==1) {
       }          if(mobilav ==0){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
   }            }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   /* proba elementaires */              prlim[i][i]=mobaverage[(int)age][i][ij];
    for(i=1,jk=1; i <=nlstate; i++){          }
     for(k=1; k <=(nlstate+ndeath); k++){        }
       if (k != i) {    
         for(j=1; j <=ncovmodel; j++){        for(j=1; j<= nlstate; j++){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for(h=0; h<=nhstepm; h++){
           jk++;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           fprintf(ficgp,"\n");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
       }        }
     }        /* This for computing probability of death (h=1 means
    }           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        */
      for(jk=1; jk <=m; jk++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
        if (ng==2)            gpp[j] += prlim[i][i]*p3mat[i][j][1];
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        }    
        else        /* end probability of death */
          fprintf(ficgp,"\nset title \"Probability\"\n");  
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
        i=1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        for(k2=1; k2<=nlstate; k2++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          k3=i;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(k=1; k<=(nlstate+ndeath); k++) {   
            if (k != k2){        if (popbased==1) {
              if(ng==2)          if(mobilav ==0){
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);            for(i=1; i<=nlstate;i++)
              else              prlim[i][i]=probs[(int)age][i][ij];
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          }else{ /* mobilav */ 
              ij=1;            for(i=1; i<=nlstate;i++)
              for(j=3; j <=ncovmodel; j++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
                  ij++;  
                }        for(j=1; j<= nlstate; j++){
                else          for(h=0; h<=nhstepm; h++){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
              }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
              fprintf(ficgp,")/(1");          }
                      }
              for(k1=1; k1 <=nlstate; k1++){          /* This for computing probability of death (h=1 means
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);           computed over hstepm matrices product = hstepm*stepm months) 
                ij=1;           as a weighted average of prlim.
                for(j=3; j <=ncovmodel; j++){        */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                    ij++;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                  }        }    
                  else        /* end probability of death */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
                }        for(j=1; j<= nlstate; j++) /* vareij */
                fprintf(ficgp,")");          for(h=0; h<=nhstepm; h++){
              }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);          }
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          } /* end k */        }
        } /* end k2 */  
      } /* end jk */      } /* End theta */
    } /* end ng */  
    fclose(ficgp);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 }  /* end gnuplot */  
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
 /*************** Moving average **************/          for(theta=1; theta <=npar; theta++)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            trgradg[h][j][theta]=gradg[h][theta][j];
   
   int i, cpt, cptcod;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        for(theta=1; theta <=npar; theta++)
       for (i=1; i<=nlstate;i++)          trgradgp[j][theta]=gradgp[theta][j];
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    
           mobaverage[(int)agedeb][i][cptcod]=0.;  
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      for(i=1;i<=nlstate;i++)
       for (i=1; i<=nlstate;i++){        for(j=1;j<=nlstate;j++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          vareij[i][j][(int)age] =0.;
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      for(h=0;h<=nhstepm;h++){
           }        for(k=0;k<=nhstepm;k++){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       }          for(i=1;i<=nlstate;i++)
     }            for(j=1;j<=nlstate;j++)
                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 }        }
       }
     
 /************** Forecasting ******************/      /* pptj */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   int *popage;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          varppt[j][i]=doldmp[j][i];
   double *popeffectif,*popcount;      /* end ppptj */
   double ***p3mat;      /*  x centered again */
   char fileresf[FILENAMELENGTH];      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
  agelim=AGESUP;   
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      if (popbased==1) {
         if(mobilav ==0){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for(i=1; i<=nlstate;i++)
              prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
   strcpy(fileresf,"f");          for(i=1; i<=nlstate;i++)
   strcat(fileresf,fileres);            prlim[i][i]=mobaverage[(int)age][i][ij];
   if((ficresf=fopen(fileresf,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", fileresf);      }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);               
   }      /* This for computing probability of death (h=1 means
   printf("Computing forecasting: result on file '%s' \n", fileresf);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);         as a weighted average of prlim.
       */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   if (mobilav==1) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }    
     movingaverage(agedeb, fage, ageminpar, mobaverage);      /* end probability of death */
   }  
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   if (stepm<=12) stepsize=1;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          for(i=1; i<=nlstate;i++){
   agelim=AGESUP;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
   hstepm=1;      } 
   hstepm=hstepm/stepm;      fprintf(ficresprobmorprev,"\n");
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;      fprintf(ficresvij,"%.0f ",age );
   yp2=modf((yp1*12),&yp);      for(i=1; i<=nlstate;i++)
   mprojmean=yp;        for(j=1; j<=nlstate;j++){
   yp1=modf((yp2*30.5),&yp);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   jprojmean=yp;        }
   if(jprojmean==0) jprojmean=1;      fprintf(ficresvij,"\n");
   if(mprojmean==0) jprojmean=1;      free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   for(cptcov=1;cptcov<=i2;cptcov++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    } /* End age */
       k=k+1;    free_vector(gpp,nlstate+1,nlstate+ndeath);
       fprintf(ficresf,"\n#******");    free_vector(gmp,nlstate+1,nlstate+ndeath);
       for(j=1;j<=cptcoveff;j++) {    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       fprintf(ficresf,"******\n");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       fprintf(ficresf,"# StartingAge FinalAge");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
        /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
        /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         fprintf(ficresf,"\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           nhstepm = nhstepm/hstepm;  */
            /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_vector(xp,1,npar);
            free_matrix(doldm,1,nlstate,1,nlstate);
           for (h=0; h<=nhstepm; h++){    free_matrix(dnewm,1,nlstate,1,npar);
             if (h==(int) (calagedate+YEARM*cpt)) {    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             for(j=1; j<=nlstate+ndeath;j++) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               kk1=0.;kk2=0;    fclose(ficresprobmorprev);
               for(i=1; i<=nlstate;i++) {                  fflush(ficgp);
                 if (mobilav==1)    fflush(fichtm); 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  }  /* end varevsij */
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  /************ Variance of prevlim ******************/
                 }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
                  {
               }    /* Variance of prevalence limit */
               if (h==(int)(calagedate+12*cpt)){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                 fprintf(ficresf," %.3f", kk1);    double **newm;
                            double **dnewm,**doldm;
               }    int i, j, nhstepm, hstepm;
             }    int k, cptcode;
           }    double *xp;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double *gp, *gm;
         }    double **gradg, **trgradg;
       }    double age,agelim;
     }    int theta;
   }    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
            fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
   fclose(ficresf);        fprintf(ficresvpl," %1d-%1d",i,i);
 }    fprintf(ficresvpl,"\n");
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    doldm=matrix(1,nlstate,1,nlstate);
   int *popage;    
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    hstepm=1*YEARM; /* Every year of age */
   double *popeffectif,*popcount;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   double ***p3mat,***tabpop,***tabpopprev;    agelim = AGESUP;
   char filerespop[FILENAMELENGTH];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if (stepm >= YEARM) hstepm=1;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   agelim=AGESUP;      gradg=matrix(1,npar,1,nlstate);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      gp=vector(1,nlstate);
        gm=vector(1,nlstate);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
        for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient */
   strcpy(filerespop,"pop");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   strcat(filerespop,fileres);        }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     printf("Problem with forecast resultfile: %s\n", filerespop);        for(i=1;i<=nlstate;i++)
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          gp[i] = prlim[i][i];
   }      
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for(i=1; i<=npar; i++) /* Computes gradient */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1;i<=nlstate;i++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   }      } /* End theta */
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;      trgradg =matrix(1,nlstate,1,npar);
   if (stepm<=12) stepsize=1;  
        for(j=1; j<=nlstate;j++)
   agelim=AGESUP;        for(theta=1; theta <=npar; theta++)
            trgradg[j][theta]=gradg[theta][j];
   hstepm=1;  
   hstepm=hstepm/stepm;      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
   if (popforecast==1) {      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     if((ficpop=fopen(popfile,"r"))==NULL) {      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       printf("Problem with population file : %s\n",popfile);exit(0);      for(i=1;i<=nlstate;i++)
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     }  
     popage=ivector(0,AGESUP);      fprintf(ficresvpl,"%.0f ",age );
     popeffectif=vector(0,AGESUP);      for(i=1; i<=nlstate;i++)
     popcount=vector(0,AGESUP);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
          fprintf(ficresvpl,"\n");
     i=1;        free_vector(gp,1,nlstate);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      free_vector(gm,1,nlstate);
          free_matrix(gradg,1,npar,1,nlstate);
     imx=i;      free_matrix(trgradg,1,nlstate,1,npar);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    } /* End age */
   }  
     free_vector(xp,1,npar);
   for(cptcov=1;cptcov<=i2;cptcov++){    free_matrix(doldm,1,nlstate,1,npar);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_matrix(dnewm,1,nlstate,1,nlstate);
       k=k+1;  
       fprintf(ficrespop,"\n#******");  }
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /************ Variance of one-step probabilities  ******************/
       }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       fprintf(ficrespop,"******\n");  {
       fprintf(ficrespop,"# Age");    int i, j=0,  i1, k1, l1, t, tj;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    int k2, l2, j1,  z1;
       if (popforecast==1)  fprintf(ficrespop," [Population]");    int k=0,l, cptcode;
          int first=1, first1;
       for (cpt=0; cpt<=0;cpt++) {    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      double **dnewm,**doldm;
            double *xp;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double *gp, *gm;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double **gradg, **trgradg;
           nhstepm = nhstepm/hstepm;    double **mu;
              double age,agelim, cov[NCOVMAX];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
           oldm=oldms;savm=savms;    int theta;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      char fileresprob[FILENAMELENGTH];
            char fileresprobcov[FILENAMELENGTH];
           for (h=0; h<=nhstepm; h++){    char fileresprobcor[FILENAMELENGTH];
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double ***varpij;
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    strcpy(fileresprob,"prob"); 
               kk1=0.;kk2=0;    strcat(fileresprob,fileres);
               for(i=1; i<=nlstate;i++) {                  if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                 if (mobilav==1)      printf("Problem with resultfile: %s\n", fileresprob);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                 else {    }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    strcpy(fileresprobcov,"probcov"); 
                 }    strcat(fileresprobcov,fileres);
               }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
               if (h==(int)(calagedate+12*cpt)){      printf("Problem with resultfile: %s\n", fileresprobcov);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   /*fprintf(ficrespop," %.3f", kk1);    }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    strcpy(fileresprobcor,"probcor"); 
               }    strcat(fileresprobcor,fileres);
             }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
             for(i=1; i<=nlstate;i++){      printf("Problem with resultfile: %s\n", fileresprobcor);
               kk1=0.;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                 for(j=1; j<=nlstate;j++){    }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                 }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    fprintf(ficresprob, "#Local time at start: %s", strstart);
           }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprob,"# Age");
         }    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
       }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      fprintf(ficresprobcov,"# Age");
   /******/    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fprintf(ficresprobcov,"# Age");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    for(i=1; i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;      for(j=1; j<=(nlstate+ndeath);j++){
                  fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           oldm=oldms;savm=savms;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }  
           for (h=0; h<=nhstepm; h++){   /* fprintf(ficresprob,"\n");
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficresprobcov,"\n");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresprobcor,"\n");
             }   */
             for(j=1; j<=nlstate+ndeath;j++) {   xp=vector(1,npar);
               kk1=0.;kk2=0;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               for(i=1; i<=nlstate;i++) {                  doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
               }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    first=1;
             }    fprintf(ficgp,"\n# Routine varprob");
           }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtm,"\n");
         }  
       }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
    }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   }    file %s<br>\n",optionfilehtmcov);
      fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   if (popforecast==1) {    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     free_ivector(popage,0,AGESUP);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     free_vector(popeffectif,0,AGESUP);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     free_vector(popcount,0,AGESUP);  standard deviations wide on each axis. <br>\
   }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   fclose(ficrespop);  
 }    cov[1]=1;
     tj=cptcoveff;
 /***********************************************/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 /**************** Main Program *****************/    j1=0;
 /***********************************************/    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
 int main(int argc, char *argv[])        j1++;
 {        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double agedeb, agefin,hf;          fprintf(ficresprob, "**********\n#\n");
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double fret;          fprintf(ficresprobcov, "**********\n#\n");
   double **xi,tmp,delta;          
           fprintf(ficgp, "\n#********** Variable "); 
   double dum; /* Dummy variable */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double ***p3mat;          fprintf(ficgp, "**********\n#\n");
   int *indx;          
   char line[MAXLINE], linepar[MAXLINE];          
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   int firstobs=1, lastobs=10;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int sdeb, sfin; /* Status at beginning and end */          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   int c,  h , cpt,l;          
   int ju,jl, mi;          fprintf(ficresprobcor, "\n#********** Variable ");    
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          fprintf(ficresprobcor, "**********\n#");    
   int mobilav=0,popforecast=0;        }
   int hstepm, nhstepm;        
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
   double bage, fage, age, agelim, agebase;          for (k=1; k<=cptcovn;k++) {
   double ftolpl=FTOL;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   double **prlim;          }
   double *severity;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double ***param; /* Matrix of parameters */          for (k=1; k<=cptcovprod;k++)
   double  *p;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double **matcov; /* Matrix of covariance */          
   double ***delti3; /* Scale */          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   double *delti; /* Scale */          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   double ***eij, ***vareij;          gp=vector(1,(nlstate)*(nlstate+ndeath));
   double **varpl; /* Variances of prevalence limits by age */          gm=vector(1,(nlstate)*(nlstate+ndeath));
   double *epj, vepp;      
   double kk1, kk2;          for(theta=1; theta <=npar; theta++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            for(i=1; i<=npar; i++)
                xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
   char *alph[]={"a","a","b","c","d","e"}, str[4];            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
   char z[1]="c", occ;            for(i=1; i<= (nlstate); i++){
 #include <sys/time.h>              for(j=1; j<=(nlstate+ndeath);j++){
 #include <time.h>                k=k+1;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                gp[k]=pmmij[i][j];
                }
   /* long total_usecs;            }
   struct timeval start_time, end_time;            
              for(i=1; i<=npar; i++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   getcwd(pathcd, size);      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   printf("\n%s",version);            k=0;
   if(argc <=1){            for(i=1; i<=(nlstate); i++){
     printf("\nEnter the parameter file name: ");              for(j=1; j<=(nlstate+ndeath);j++){
     scanf("%s",pathtot);                k=k+1;
   }                gm[k]=pmmij[i][j];
   else{              }
     strcpy(pathtot,argv[1]);            }
   }       
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   /*cygwin_split_path(pathtot,path,optionfile);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          }
   /* cutv(path,optionfile,pathtot,'\\');*/  
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            for(theta=1; theta <=npar; theta++)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);              trgradg[j][theta]=gradg[theta][j];
   chdir(path);          
   replace(pathc,path);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 /*-------- arguments in the command line --------*/          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   /* Log file */          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   strcat(filelog, optionfilefiname);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {          pmij(pmmij,cov,ncovmodel,x,nlstate);
     printf("Problem with logfile %s\n",filelog);          
     goto end;          k=0;
   }          for(i=1; i<=(nlstate); i++){
   fprintf(ficlog,"Log filename:%s\n",filelog);            for(j=1; j<=(nlstate+ndeath);j++){
   fprintf(ficlog,"\n%s",version);              k=k+1;
   fprintf(ficlog,"\nEnter the parameter file name: ");              mu[k][(int) age]=pmmij[i][j];
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            }
   fflush(ficlog);          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   /* */            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   strcpy(fileres,"r");              varpij[i][j][(int)age] = doldm[i][j];
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   /*---------arguments file --------*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            }*/
     printf("Problem with optionfile %s\n",optionfile);  
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);          fprintf(ficresprob,"\n%d ",(int)age);
     goto end;          fprintf(ficresprobcov,"\n%d ",(int)age);
   }          fprintf(ficresprobcor,"\n%d ",(int)age);
   
   strcpy(filereso,"o");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   strcat(filereso,fileres);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   if((ficparo=fopen(filereso,"w"))==NULL) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     printf("Problem with Output resultfile: %s\n", filereso);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     goto end;          }
   }          i=0;
           for (k=1; k<=(nlstate);k++){
   /* Reads comments: lines beginning with '#' */            for (l=1; l<=(nlstate+ndeath);l++){ 
   while((c=getc(ficpar))=='#' && c!= EOF){              i=i++;
     ungetc(c,ficpar);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     fgets(line, MAXLINE, ficpar);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     puts(line);              for (j=1; j<=i;j++){
     fputs(line,ficparo);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   ungetc(c,ficpar);              }
             }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          }/* end of loop for state */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        } /* end of loop for age */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){        /* Confidence intervalle of pij  */
     ungetc(c,ficpar);        /*
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp,"\nset noparametric;unset label");
     puts(line);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     fputs(line,ficparo);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   ungetc(c,ficpar);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
            fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
              fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   covar=matrix(0,NCOVMAX,1,n);        */
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
   ncovmodel=2+cptcovn;        for (k2=1; k2<=(nlstate);k2++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
              if(l2==k2) continue;
   /* Read guess parameters */            j=(k2-1)*(nlstate+ndeath)+l2;
   /* Reads comments: lines beginning with '#' */            for (k1=1; k1<=(nlstate);k1++){
   while((c=getc(ficpar))=='#' && c!= EOF){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     ungetc(c,ficpar);                if(l1==k1) continue;
     fgets(line, MAXLINE, ficpar);                i=(k1-1)*(nlstate+ndeath)+l1;
     puts(line);                if(i<=j) continue;
     fputs(line,ficparo);                for (age=bage; age<=fage; age ++){ 
   }                  if ((int)age %5==0){
   ungetc(c,ficpar);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     for(i=1; i <=nlstate; i++)                    mu1=mu[i][(int) age]/stepm*YEARM ;
     for(j=1; j <=nlstate+ndeath-1; j++){                    mu2=mu[j][(int) age]/stepm*YEARM;
       fscanf(ficpar,"%1d%1d",&i1,&j1);                    c12=cv12/sqrt(v1*v2);
       fprintf(ficparo,"%1d%1d",i1,j1);                    /* Computing eigen value of matrix of covariance */
       if(mle==1)                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         printf("%1d%1d",i,j);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       fprintf(ficlog,"%1d%1d",i,j);                    /* Eigen vectors */
       for(k=1; k<=ncovmodel;k++){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
         fscanf(ficpar," %lf",&param[i][j][k]);                    /*v21=sqrt(1.-v11*v11); *//* error */
         if(mle==1){                    v21=(lc1-v1)/cv12*v11;
           printf(" %lf",param[i][j][k]);                    v12=-v21;
           fprintf(ficlog," %lf",param[i][j][k]);                    v22=v11;
         }                    tnalp=v21/v11;
         else                    if(first1==1){
           fprintf(ficlog," %lf",param[i][j][k]);                      first1=0;
         fprintf(ficparo," %lf",param[i][j][k]);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       }                    }
       fscanf(ficpar,"\n");                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       if(mle==1)                    /*printf(fignu*/
         printf("\n");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       fprintf(ficlog,"\n");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       fprintf(ficparo,"\n");                    if(first==1){
     }                      first=0;
                        fprintf(ficgp,"\nset parametric;unset label");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   p=param[1][1];                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   /* Reads comments: lines beginning with '#' */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   while((c=getc(ficpar))=='#' && c!= EOF){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     ungetc(c,ficpar);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fgets(line, MAXLINE, ficpar);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     puts(line);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     fputs(line,ficparo);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   ungetc(c,ficpar);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   for(i=1; i <=nlstate; i++){                    }else{
     for(j=1; j <=nlstate+ndeath-1; j++){                      first=0;
       fscanf(ficpar,"%1d%1d",&i1,&j1);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       printf("%1d%1d",i,j);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fprintf(ficparo,"%1d%1d",i1,j1);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for(k=1; k<=ncovmodel;k++){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         fscanf(ficpar,"%le",&delti3[i][j][k]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         printf(" %le",delti3[i][j][k]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         fprintf(ficparo," %le",delti3[i][j][k]);                    }/* if first */
       }                  } /* age mod 5 */
       fscanf(ficpar,"\n");                } /* end loop age */
       printf("\n");                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficparo,"\n");                first=1;
     }              } /*l12 */
   }            } /* k12 */
   delti=delti3[1][1];          } /*l1 */
          }/* k1 */
   /* Reads comments: lines beginning with '#' */      } /* loop covariates */
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     fgets(line, MAXLINE, ficpar);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     puts(line);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     fputs(line,ficparo);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   }    free_vector(xp,1,npar);
   ungetc(c,ficpar);    fclose(ficresprob);
      fclose(ficresprobcov);
   matcov=matrix(1,npar,1,npar);    fclose(ficresprobcor);
   for(i=1; i <=npar; i++){    fflush(ficgp);
     fscanf(ficpar,"%s",&str);    fflush(fichtmcov);
     if(mle==1)  }
       printf("%s",str);  
     fprintf(ficlog,"%s",str);  
     fprintf(ficparo,"%s",str);  /******************* Printing html file ***********/
     for(j=1; j <=i; j++){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       fscanf(ficpar," %le",&matcov[i][j]);                    int lastpass, int stepm, int weightopt, char model[],\
       if(mle==1){                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         printf(" %.5le",matcov[i][j]);                    int popforecast, int estepm ,\
         fprintf(ficlog," %.5le",matcov[i][j]);                    double jprev1, double mprev1,double anprev1, \
       }                    double jprev2, double mprev2,double anprev2){
       else    int jj1, k1, i1, cpt;
         fprintf(ficlog," %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     fscanf(ficpar,"\n");  </ul>");
     if(mle==1)     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
       printf("\n");   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     fprintf(ficlog,"\n");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     fprintf(ficparo,"\n");     fprintf(fichtm,"\
   }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   for(i=1; i <=npar; i++)             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     for(j=i+1;j<=npar;j++)     fprintf(fichtm,"\
       matcov[i][j]=matcov[j][i];   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
                 subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   if(mle==1)     fprintf(fichtm,"\
     printf("\n");   - Life expectancies by age and initial health status (estepm=%2d months): \
   fprintf(ficlog,"\n");     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
     /*-------- Rewriting paramater file ----------*/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      strcpy(rfileres,"r");    /* "Rparameterfile */  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/   m=cptcoveff;
      strcat(rfileres,".");    /* */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {   jj1=0;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;   for(k1=1; k1<=m;k1++){
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;     for(i1=1; i1<=ncodemax[k1];i1++){
     }       jj1++;
     fprintf(ficres,"#%s\n",version);       if (cptcovn > 0) {
             fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     /*-------- data file ----------*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
     if((fic=fopen(datafile,"r"))==NULL)    {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       printf("Problem with datafile: %s\n", datafile);goto end;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;       }
     }       /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     n= lastobs;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     severity = vector(1,maxwav);       /* Quasi-incidences */
     outcome=imatrix(1,maxwav+1,1,n);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     num=ivector(1,n);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     moisnais=vector(1,n);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     annais=vector(1,n);         /* Stable prevalence in each health state */
     moisdc=vector(1,n);         for(cpt=1; cpt<nlstate;cpt++){
     andc=vector(1,n);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     agedc=vector(1,n);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     cod=ivector(1,n);         }
     weight=vector(1,n);       for(cpt=1; cpt<=nlstate;cpt++) {
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     mint=matrix(1,maxwav,1,n);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     anint=matrix(1,maxwav,1,n);       }
     s=imatrix(1,maxwav+1,1,n);     } /* end i1 */
     adl=imatrix(1,maxwav+1,1,n);       }/* End k1 */
     tab=ivector(1,NCOVMAX);   fprintf(fichtm,"</ul>");
     ncodemax=ivector(1,8);  
   
     i=1;   fprintf(fichtm,"\
     while (fgets(line, MAXLINE, fic) != NULL)    {  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       if ((i >= firstobs) && (i <=lastobs)) {   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
          
         for (j=maxwav;j>=1;j--){   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
           strcpy(line,stra);   fprintf(fichtm,"\
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
         }  
           fprintf(fichtm,"\
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
         for (j=ncovcol;j>=1;j--){           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);   fprintf(fichtm,"\
         }   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
         num[i]=atol(stra);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
          
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  /*  if(popforecast==1) fprintf(fichtm,"\n */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         i=i+1;  /*      <br>",fileres,fileres,fileres,fileres); */
       }  /*  else  */
     }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     /* printf("ii=%d", ij);   fflush(fichtm);
        scanf("%d",i);*/   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   imx=i-1; /* Number of individuals */  
    m=cptcoveff;
   /* for (i=1; i<=imx; i++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;   jj1=0;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;   for(k1=1; k1<=m;k1++){
     }*/     for(i1=1; i1<=ncodemax[k1];i1++){
    /*  for (i=1; i<=imx; i++){       jj1++;
      if (s[4][i]==9)  s[4][i]=-1;       if (cptcovn > 0) {
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   /* Calculation of the number of parameter from char model*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */       }
   Tprod=ivector(1,15);       for(cpt=1; cpt<=nlstate;cpt++) {
   Tvaraff=ivector(1,15);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   Tvard=imatrix(1,15,1,2);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   Tage=ivector(1,15);        <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
           }
   if (strlen(model) >1){       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     j=0, j1=0, k1=1, k2=1;  health expectancies in states (1) and (2): %s%d.png<br>\
     j=nbocc(model,'+');  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     j1=nbocc(model,'*');     } /* end i1 */
     cptcovn=j+1;   }/* End k1 */
     cptcovprod=j1;   fprintf(fichtm,"</ul>");
       fflush(fichtm);
     strcpy(modelsav,model);  }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);  /******************* Gnuplot file **************/
       fprintf(ficlog,"Error. Non available option model=%s ",model);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       goto end;  
     }    char dirfileres[132],optfileres[132];
        int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     for(i=(j+1); i>=1;i--){    int ng;
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */  /*     printf("Problem with file %s",optionfilegnuplot); */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       /*scanf("%d",i);*/  /*   } */
       if (strchr(strb,'*')) {  /* Model includes a product */  
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    /*#ifdef windows */
         if (strcmp(strc,"age")==0) { /* Vn*age */    fprintf(ficgp,"cd \"%s\" \n",pathc);
           cptcovprod--;      /*#endif */
           cutv(strb,stre,strd,'V');    m=pow(2,cptcoveff);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  
           cptcovage++;    strcpy(dirfileres,optionfilefiname);
             Tage[cptcovage]=i;    strcpy(optfileres,"vpl");
             /*printf("stre=%s ", stre);*/   /* 1eme*/
         }    for (cpt=1; cpt<= nlstate ; cpt ++) {
         else if (strcmp(strd,"age")==0) { /* or age*Vn */     for (k1=1; k1<= m ; k1 ++) {
           cptcovprod--;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
           cutv(strb,stre,strc,'V');       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
           Tvar[i]=atoi(stre);       fprintf(ficgp,"set xlabel \"Age\" \n\
           cptcovage++;  set ylabel \"Probability\" \n\
           Tage[cptcovage]=i;  set ter png small\n\
         }  set size 0.65,0.65\n\
         else {  /* Age is not in the model */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/  
           Tvar[i]=ncovcol+k1;       for (i=1; i<= nlstate ; i ++) {
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           Tprod[k1]=i;         else fprintf(ficgp," \%%*lf (\%%*lf)");
           Tvard[k1][1]=atoi(strc); /* m*/       }
           Tvard[k1][2]=atoi(stre); /* n */       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           Tvar[cptcovn+k2]=Tvard[k1][1];       for (i=1; i<= nlstate ; i ++) {
           Tvar[cptcovn+k2+1]=Tvard[k1][2];         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           for (k=1; k<=lastobs;k++)         else fprintf(ficgp," \%%*lf (\%%*lf)");
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       } 
           k1++;       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
           k2=k2+2;       for (i=1; i<= nlstate ; i ++) {
         }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       }         else fprintf(ficgp," \%%*lf (\%%*lf)");
       else { /* no more sum */       }  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
        /*  scanf("%d",i);*/     }
       cutv(strd,strc,strb,'V');    }
       Tvar[i]=atoi(strc);    /*2 eme*/
       }    
       strcpy(modelsav,stra);      for (k1=1; k1<= m ; k1 ++) { 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         scanf("%d",i);*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     } /* end of loop + */      
   } /* end model */      for (i=1; i<= nlstate+1 ; i ++) {
          k=2*i;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   printf("cptcovprod=%d ", cptcovprod);        for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   scanf("%d ",i);*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fclose(fic);        }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     /*  if(mle==1){*/        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     if (weightopt != 1) { /* Maximisation without weights*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(i=1;i<=n;i++) weight[i]=1.0;        for (j=1; j<= nlstate+1 ; j ++) {
     }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     /*-calculation of age at interview from date of interview and age at death -*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
     agev=matrix(1,maxwav,1,imx);        }   
         fprintf(ficgp,"\" t\"\" w l 0,");
     for (i=1; i<=imx; i++) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(m=2; (m<= maxwav); m++) {        for (j=1; j<= nlstate+1 ; j ++) {
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
          anint[m][i]=9999;          else fprintf(ficgp," \%%*lf (\%%*lf)");
          s[m][i]=-1;        }   
        }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        else fprintf(ficgp,"\" t\"\" w l 0,");
       }      }
     }    }
     
     for (i=1; i<=imx; i++)  {    /*3eme*/
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    
       for(m=1; (m<= maxwav); m++){    for (k1=1; k1<= m ; k1 ++) { 
         if(s[m][i] >0){      for (cpt=1; cpt<= nlstate ; cpt ++) {
           if (s[m][i] >= nlstate+1) {        k=2+nlstate*(2*cpt-2);
             if(agedc[i]>0)        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
               if(moisdc[i]!=99 && andc[i]!=9999)        fprintf(ficgp,"set ter png small\n\
                 agev[m][i]=agedc[i];  set size 0.65,0.65\n\
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
            else {        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
               if (andc[i]!=9999){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
               agev[m][i]=-1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
               }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             }          
           }        */
           else if(s[m][i] !=9){ /* Should no more exist */        for (i=1; i< nlstate ; i ++) {
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
             if(mint[m][i]==99 || anint[m][i]==9999)          
               agev[m][i]=1;        } 
             else if(agev[m][i] <agemin){      }
               agemin=agev[m][i];    }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    
             }    /* CV preval stable (period) */
             else if(agev[m][i] >agemax){    for (k1=1; k1<= m ; k1 ++) { 
               agemax=agev[m][i];      for (cpt=1; cpt<=nlstate ; cpt ++) {
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        k=3;
             }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
             /*agev[m][i]=anint[m][i]-annais[i];*/        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
             /*   agev[m][i] = age[i]+2*m;*/  set ter png small\nset size 0.65,0.65\n\
           }  unset log y\n\
           else { /* =9 */  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
             agev[m][i]=1;        
             s[m][i]=-1;        for (i=1; i< nlstate ; i ++)
           }          fprintf(ficgp,"+$%d",k+i+1);
         }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         else /*= 0 Unknown */        
           agev[m][i]=1;        l=3+(nlstate+ndeath)*cpt;
       }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
            for (i=1; i< nlstate ; i ++) {
     }          l=3+(nlstate+ndeath)*cpt;
     for (i=1; i<=imx; i++)  {          fprintf(ficgp,"+$%d",l+i+1);
       for(m=1; (m<= maxwav); m++){        }
         if (s[m][i] > (nlstate+ndeath)) {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        } 
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      }  
           goto end;    
         }    /* proba elementaires */
       }    for(i=1,jk=1; i <=nlstate; i++){
     }      for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          for(j=1; j <=ncovmodel; j++){
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
     free_vector(severity,1,maxwav);            fprintf(ficgp,"\n");
     free_imatrix(outcome,1,maxwav+1,1,n);          }
     free_vector(moisnais,1,n);        }
     free_vector(annais,1,n);      }
     /* free_matrix(mint,1,maxwav,1,n);     }
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     free_vector(andc,1,n);       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
             if (ng==2)
     wav=ivector(1,imx);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);         else
     mw=imatrix(1,lastpass-firstpass+1,1,imx);           fprintf(ficgp,"\nset title \"Probability\"\n");
             fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     /* Concatenates waves */         i=1;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
       Tcode=ivector(1,100);             if (k != k2){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);               if(ng==2)
       ncodemax[1]=1;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);               else
                       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
    codtab=imatrix(1,100,1,10);               ij=1;
    h=0;               for(j=3; j <=ncovmodel; j++) {
    m=pow(2,cptcoveff);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                     fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
    for(k=1;k<=cptcoveff; k++){                   ij++;
      for(i=1; i <=(m/pow(2,k));i++){                 }
        for(j=1; j <= ncodemax[k]; j++){                 else
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
            h++;               }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;               fprintf(ficgp,")/(1");
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/               
          }               for(k1=1; k1 <=nlstate; k1++){   
        }                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
      }                 ij=1;
    }                 for(j=3; j <=ncovmodel; j++){
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       codtab[1][2]=1;codtab[2][2]=2; */                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
    /* for(i=1; i <=m ;i++){                     ij++;
       for(k=1; k <=cptcovn; k++){                   }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                   else
       }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       printf("\n");                 }
       }                 fprintf(ficgp,")");
       scanf("%d",i);*/               }
                   fprintf(ficgp,") t \"p%d%d\" ", k2,k);
    /* Calculates basic frequencies. Computes observed prevalence at single age               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
        and prints on file fileres'p'. */               i=i+ncovmodel;
              }
               } /* end k */
             } /* end k2 */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       } /* end jk */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     } /* end ng */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     fflush(ficgp); 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }  /* end gnuplot */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
        
     /* For Powell, parameters are in a vector p[] starting at p[1]  /*************** Moving average **************/
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
     int i, cpt, cptcod;
     if(mle==1){    int modcovmax =1;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    int mobilavrange, mob;
     }    double age;
      
     /*--------- results files --------------*/    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                             a covariate has 2 modalities */
      if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
    jk=1;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      if(mobilav==1) mobilavrange=5; /* default */
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      else mobilavrange=mobilav;
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for (age=bage; age<=fage; age++)
    for(i=1,jk=1; i <=nlstate; i++){        for (i=1; i<=nlstate;i++)
      for(k=1; k <=(nlstate+ndeath); k++){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
        if (k != i)            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
          {      /* We keep the original values on the extreme ages bage, fage and for 
            printf("%d%d ",i,k);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
            fprintf(ficlog,"%d%d ",i,k);         we use a 5 terms etc. until the borders are no more concerned. 
            fprintf(ficres,"%1d%1d ",i,k);      */ 
            for(j=1; j <=ncovmodel; j++){      for (mob=3;mob <=mobilavrange;mob=mob+2){
              printf("%f ",p[jk]);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
              fprintf(ficlog,"%f ",p[jk]);          for (i=1; i<=nlstate;i++){
              fprintf(ficres,"%f ",p[jk]);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
              jk++;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
            }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
            printf("\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
            fprintf(ficlog,"\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
            fprintf(ficres,"\n");                }
          }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
      }            }
    }          }
    if(mle==1){        }/* end age */
      /* Computing hessian and covariance matrix */      }/* end mob */
      ftolhess=ftol; /* Usually correct */    }else return -1;
      hesscov(matcov, p, npar, delti, ftolhess, func);    return 0;
    }  }/* End movingaverage */
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
    printf("# Scales (for hessian or gradient estimation)\n");  
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");  /************** Forecasting ******************/
    for(i=1,jk=1; i <=nlstate; i++){  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
      for(j=1; j <=nlstate+ndeath; j++){    /* proj1, year, month, day of starting projection 
        if (j!=i) {       agemin, agemax range of age
          fprintf(ficres,"%1d%1d",i,j);       dateprev1 dateprev2 range of dates during which prevalence is computed
          printf("%1d%1d",i,j);       anproj2 year of en of projection (same day and month as proj1).
          fprintf(ficlog,"%1d%1d",i,j);    */
          for(k=1; k<=ncovmodel;k++){    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
            printf(" %.5e",delti[jk]);    int *popage;
            fprintf(ficlog," %.5e",delti[jk]);    double agec; /* generic age */
            fprintf(ficres," %.5e",delti[jk]);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
            jk++;    double *popeffectif,*popcount;
          }    double ***p3mat;
          printf("\n");    double ***mobaverage;
          fprintf(ficlog,"\n");    char fileresf[FILENAMELENGTH];
          fprintf(ficres,"\n");  
        }    agelim=AGESUP;
      }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    }   
        strcpy(fileresf,"f"); 
    k=1;    strcat(fileresf,fileres);
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    if((ficresf=fopen(fileresf,"w"))==NULL) {
    if(mle==1)      printf("Problem with forecast resultfile: %s\n", fileresf);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }
    for(i=1;i<=npar;i++){    printf("Computing forecasting: result on file '%s' \n", fileresf);
      /*  if (k>nlstate) k=1;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
          i1=(i-1)/(ncovmodel*nlstate)+1;  
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
          printf("%s%d%d",alph[k],i1,tab[i]);*/  
      fprintf(ficres,"%3d",i);    if (mobilav!=0) {
      if(mle==1)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        printf("%3d",i);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
      fprintf(ficlog,"%3d",i);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      for(j=1; j<=i;j++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        fprintf(ficres," %.5e",matcov[i][j]);      }
        if(mle==1)    }
          printf(" %.5e",matcov[i][j]);  
        fprintf(ficlog," %.5e",matcov[i][j]);    stepsize=(int) (stepm+YEARM-1)/YEARM;
      }    if (stepm<=12) stepsize=1;
      fprintf(ficres,"\n");    if(estepm < stepm){
      if(mle==1)      printf ("Problem %d lower than %d\n",estepm, stepm);
        printf("\n");    }
      fprintf(ficlog,"\n");    else  hstepm=estepm;   
      k++;  
    }    hstepm=hstepm/stepm; 
        yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
    while((c=getc(ficpar))=='#' && c!= EOF){                                 fractional in yp1 */
      ungetc(c,ficpar);    anprojmean=yp;
      fgets(line, MAXLINE, ficpar);    yp2=modf((yp1*12),&yp);
      puts(line);    mprojmean=yp;
      fputs(line,ficparo);    yp1=modf((yp2*30.5),&yp);
    }    jprojmean=yp;
    ungetc(c,ficpar);    if(jprojmean==0) jprojmean=1;
    estepm=0;    if(mprojmean==0) jprojmean=1;
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
    if (estepm==0 || estepm < stepm) estepm=stepm;    i1=cptcoveff;
    if (fage <= 2) {    if (cptcovn < 1){i1=1;}
      bage = ageminpar;    
      fage = agemaxpar;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
    }    
        fprintf(ficresf,"#****** Routine prevforecast **\n");
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  /*            if (h==(int)(YEARM*yearp)){ */
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
          for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
    while((c=getc(ficpar))=='#' && c!= EOF){        k=k+1;
      ungetc(c,ficpar);        fprintf(ficresf,"\n#******");
      fgets(line, MAXLINE, ficpar);        for(j=1;j<=cptcoveff;j++) {
      puts(line);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
      fputs(line,ficparo);        }
    }        fprintf(ficresf,"******\n");
    ungetc(c,ficpar);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
          for(j=1; j<=nlstate+ndeath;j++){ 
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          for(i=1; i<=nlstate;i++)              
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            fprintf(ficresf," p%d%d",i,j);
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficresf," p.%d",j);
            }
    while((c=getc(ficpar))=='#' && c!= EOF){        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
      ungetc(c,ficpar);          fprintf(ficresf,"\n");
      fgets(line, MAXLINE, ficpar);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
      puts(line);  
      fputs(line,ficparo);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
    }            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
    ungetc(c,ficpar);            nhstepm = nhstepm/hstepm; 
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          
             for (h=0; h<=nhstepm; h++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);              if (h*hstepm/YEARM*stepm ==yearp) {
   fprintf(ficparo,"pop_based=%d\n",popbased);                  fprintf(ficresf,"\n");
   fprintf(ficres,"pop_based=%d\n",popbased);                  for(j=1;j<=cptcoveff;j++) 
                    fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   while((c=getc(ficpar))=='#' && c!= EOF){                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     ungetc(c,ficpar);              } 
     fgets(line, MAXLINE, ficpar);              for(j=1; j<=nlstate+ndeath;j++) {
     puts(line);                ppij=0.;
     fputs(line,ficparo);                for(i=1; i<=nlstate;i++) {
   }                  if (mobilav==1) 
   ungetc(c,ficpar);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                  }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                  if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
 while((c=getc(ficpar))=='#' && c!= EOF){                } /* end i */
     ungetc(c,ficpar);                if (h*hstepm/YEARM*stepm==yearp) {
     fgets(line, MAXLINE, ficpar);                  fprintf(ficresf," %.3f", ppij);
     puts(line);                }
     fputs(line,ficparo);              }/* end j */
   }            } /* end h */
   ungetc(c,ficpar);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        } /* end yearp */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      } /* end cptcod */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    } /* end  cptcov */
          
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
 /*------------ gnuplot -------------*/    fclose(ficresf);
   strcpy(optionfilegnuplot,optionfilefiname);  }
   strcat(optionfilegnuplot,".gp");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  /************** Forecasting *****not tested NB*************/
     printf("Problem with file %s",optionfilegnuplot);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   }    
   fclose(ficgp);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    int *popage;
 /*--------- index.htm --------*/    double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
   strcpy(optionfilehtm,optionfile);    double ***p3mat,***tabpop,***tabpopprev;
   strcat(optionfilehtm,".htm");    double ***mobaverage;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    char filerespop[FILENAMELENGTH];
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    agelim=AGESUP;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 \n    
 Total number of observations=%d <br>\n    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    
 <hr  size=\"2\" color=\"#EC5E5E\">    
  <ul><li><h4>Parameter files</h4>\n    strcpy(filerespop,"pop"); 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    strcat(filerespop,fileres);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    if((ficrespop=fopen(filerespop,"w"))==NULL) {
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);      printf("Problem with forecast resultfile: %s\n", filerespop);
   fclose(fichtm);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    printf("Computing forecasting: result on file '%s' \n", filerespop);
      fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 /*------------ free_vector  -------------*/  
  chdir(path);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    
  free_ivector(wav,1,imx);    if (mobilav!=0) {
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
  free_ivector(num,1,n);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  free_vector(agedc,1,n);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      }
  fclose(ficparo);    }
  fclose(ficres);  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
   /*--------------- Prevalence limit --------------*/    
      agelim=AGESUP;
   strcpy(filerespl,"pl");    
   strcat(filerespl,fileres);    hstepm=1;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    hstepm=hstepm/stepm; 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    if (popforecast==1) {
   }      if((ficpop=fopen(popfile,"r"))==NULL) {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        printf("Problem with population file : %s\n",popfile);exit(0);
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   fprintf(ficrespl,"#Prevalence limit\n");      } 
   fprintf(ficrespl,"#Age ");      popage=ivector(0,AGESUP);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      popeffectif=vector(0,AGESUP);
   fprintf(ficrespl,"\n");      popcount=vector(0,AGESUP);
        
   prlim=matrix(1,nlstate,1,nlstate);      i=1;   
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      imx=i;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    }
   k=0;  
   agebase=ageminpar;    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   agelim=agemaxpar;     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   ftolpl=1.e-10;        k=k+1;
   i1=cptcoveff;        fprintf(ficrespop,"\n#******");
   if (cptcovn < 1){i1=1;}        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficrespop,"******\n");
         k=k+1;        fprintf(ficrespop,"# Age");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         fprintf(ficrespl,"\n#******");        if (popforecast==1)  fprintf(ficrespop," [Population]");
         printf("\n#******");        
         fprintf(ficlog,"\n#******");        for (cpt=0; cpt<=0;cpt++) { 
         for(j=1;j<=cptcoveff;j++) {          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
         }            nhstepm = nhstepm/hstepm; 
         fprintf(ficrespl,"******\n");            
         printf("******\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficlog,"******\n");            oldm=oldms;savm=savms;
                    hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         for (age=agebase; age<=agelim; age++){          
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            for (h=0; h<=nhstepm; h++){
           fprintf(ficrespl,"%.0f",age );              if (h==(int) (calagedatem+YEARM*cpt)) {
           for(i=1; i<=nlstate;i++)                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           fprintf(ficrespl," %.5f", prlim[i][i]);              } 
           fprintf(ficrespl,"\n");              for(j=1; j<=nlstate+ndeath;j++) {
         }                kk1=0.;kk2=0;
       }                for(i=1; i<=nlstate;i++) {              
     }                  if (mobilav==1) 
   fclose(ficrespl);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
   /*------------- h Pij x at various ages ------------*/                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                    }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                if (h==(int)(calagedatem+12*cpt)){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;                    /*fprintf(ficrespop," %.3f", kk1);
   }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   printf("Computing pij: result on file '%s' \n", filerespij);                }
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);              }
                for(i=1; i<=nlstate;i++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;                kk1=0.;
   /*if (stepm<=24) stepsize=2;*/                  for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   agelim=AGESUP;                  }
   hstepm=stepsize*YEARM; /* Every year of age */                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */              }
   
   /* hstepm=1;   aff par mois*/              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   k=0;            }
   for(cptcov=1;cptcov<=i1;cptcov++){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }
       k=k+1;        }
         fprintf(ficrespij,"\n#****** ");   
         for(j=1;j<=cptcoveff;j++)    /******/
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
                  fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            nhstepm = nhstepm/hstepm; 
             
           /*      nhstepm=nhstepm*YEARM; aff par mois*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           oldm=oldms;savm=savms;            for (h=0; h<=nhstepm; h++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                if (h==(int) (calagedatem+YEARM*cpt)) {
           fprintf(ficrespij,"# Age");                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           for(i=1; i<=nlstate;i++)              } 
             for(j=1; j<=nlstate+ndeath;j++)              for(j=1; j<=nlstate+ndeath;j++) {
               fprintf(ficrespij," %1d-%1d",i,j);                kk1=0.;kk2=0;
           fprintf(ficrespij,"\n");                for(i=1; i<=nlstate;i++) {              
            for (h=0; h<=nhstepm; h++){                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                }
             for(i=1; i<=nlstate;i++)                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               for(j=1; j<=nlstate+ndeath;j++)              }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            }
             fprintf(ficrespij,"\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           fprintf(ficrespij,"\n");     } 
         }    }
     }   
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
   fclose(ficrespij);      free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
   /*---------- Forecasting ------------------*/    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((stepm == 1) && (strcmp(model,".")==0)){    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    fclose(ficrespop);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  } /* End of popforecast */
   }  
   else{  int fileappend(FILE *fichier, char *optionfich)
     erreur=108;  {
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    if((fichier=fopen(optionfich,"a"))==NULL) {
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      printf("Problem with file: %s\n", optionfich);
   }      fprintf(ficlog,"Problem with file: %s\n", optionfich);
        return (0);
     }
   /*---------- Health expectancies and variances ------------*/    fflush(fichier);
     return (1);
   strcpy(filerest,"t");  }
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /**************** function prwizard **********************/
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   }  {
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
   strcpy(filerese,"e");    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   strcat(filerese,fileres);    int numlinepar;
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   }    for(i=1; i <=nlstate; i++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      jj=0;
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
   strcpy(fileresv,"v");        jj++;
   strcat(fileresv,fileres);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        printf("%1d%1d",i,j);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        fprintf(ficparo,"%1d%1d",i,j);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        for(k=1; k<=ncovmodel;k++){
   }          /*        printf(" %lf",param[i][j][k]); */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          printf(" 0.");
   calagedate=-1;          fprintf(ficparo," 0.");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }
         printf("\n");
   k=0;        fprintf(ficparo,"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){      }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;    printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficrest,"\n#****** ");    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
       for(j=1;j<=cptcoveff;j++)    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i <=nlstate; i++){
       fprintf(ficrest,"******\n");      jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
       fprintf(ficreseij,"\n#****** ");        if(j==i) continue;
       for(j=1;j<=cptcoveff;j++)        jj++;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficparo,"%1d%1d",i,j);
       fprintf(ficreseij,"******\n");        printf("%1d%1d",i,j);
         fflush(stdout);
       fprintf(ficresvij,"\n#****** ");        for(k=1; k<=ncovmodel;k++){
       for(j=1;j<=cptcoveff;j++)          /*      printf(" %le",delti3[i][j][k]); */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
       fprintf(ficresvij,"******\n");          printf(" 0.");
           fprintf(ficparo," 0.");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;        numlinepar++;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          printf("\n");
          fprintf(ficparo,"\n");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }
       oldm=oldms;savm=savms;    }
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    printf("# Covariance matrix\n");
       if(popbased==1){  /* # 121 Var(a12)\n\ */
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
        }  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
    /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       fprintf(ficrest,"\n");  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
       epj=vector(1,nlstate+1);    fprintf(ficparo,"# Covariance matrix\n");
       for(age=bage; age <=fage ;age++){    /* # 121 Var(a12)\n\ */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
         if (popbased==1) {    /* #   ...\n\ */
           for(i=1; i<=nlstate;i++)    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
             prlim[i][i]=probs[(int)age][i][k];    
         }    for(itimes=1;itimes<=2;itimes++){
              jj=0;
         fprintf(ficrest," %4.0f",age);      for(i=1; i <=nlstate; i++){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        for(j=1; j <=nlstate+ndeath; j++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          if(j==i) continue;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          for(k=1; k<=ncovmodel;k++){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/            jj++;
           }            ca[0]= k+'a'-1;ca[1]='\0';
           epj[nlstate+1] +=epj[j];            if(itimes==1){
         }              printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
         for(i=1, vepp=0.;i <=nlstate;i++)            }else{
           for(j=1;j <=nlstate;j++)              printf("%1d%1d%d",i,j,k);
             vepp += vareij[i][j][(int)age];              fprintf(ficparo,"%1d%1d%d",i,j,k);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));              /*  printf(" %.5le",matcov[i][j]); */
         for(j=1;j <=nlstate;j++){            }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));            ll=0;
         }            for(li=1;li <=nlstate; li++){
         fprintf(ficrest,"\n");              for(lj=1;lj <=nlstate+ndeath; lj++){
       }                if(lj==li) continue;
     }                for(lk=1;lk<=ncovmodel;lk++){
   }                  ll++;
 free_matrix(mint,1,maxwav,1,n);                  if(ll<=jj){
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                    cb[0]= lk +'a'-1;cb[1]='\0';
     free_vector(weight,1,n);                    if(ll<jj){
   fclose(ficreseij);                      if(itimes==1){
   fclose(ficresvij);                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   fclose(ficrest);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   fclose(ficpar);                      }else{
   free_vector(epj,1,nlstate+1);                        printf(" 0.");
                          fprintf(ficparo," 0.");
   /*------- Variance limit prevalence------*/                        }
                     }else{
   strcpy(fileresvpl,"vpl");                      if(itimes==1){
   strcat(fileresvpl,fileres);                        printf(" Var(%s%1d%1d)",ca,i,j);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                      }else{
     exit(0);                        printf(" 0.");
   }                        fprintf(ficparo," 0.");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                      }
                     }
   k=0;                  }
   for(cptcov=1;cptcov<=i1;cptcov++){                } /* end lk */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              } /* end lj */
       k=k+1;            } /* end li */
       fprintf(ficresvpl,"\n#****** ");            printf("\n");
       for(j=1;j<=cptcoveff;j++)            fprintf(ficparo,"\n");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            numlinepar++;
       fprintf(ficresvpl,"******\n");          } /* end k*/
              } /*end j */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      } /* end i */
       oldm=oldms;savm=savms;    } /* end itimes */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }  } /* end of prwizard */
  }  /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   fclose(ficresvpl);  { 
     double A,B,L=0.0,sump=0.,num=0.;
   /*---------- End : free ----------------*/    int i,n=0; /* n is the size of the sample */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
      for (i=0;i<=imx-1 ; i++) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      sump=sump+weight[i];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      /*    sump=sump+1;*/
        num=num+1;
      }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);   
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);   
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* for (i=0; i<=imx; i++) 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
    
   free_matrix(matcov,1,npar,1,npar);    for (i=1;i<=imx ; i++)
   free_vector(delti,1,npar);      {
   free_matrix(agev,1,maxwav,1,imx);        if (cens[i] == 1 && wav[i]>1)
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
   fprintf(fichtm,"\n</body>");        if (cens[i] == 0 && wav[i]>1)
   fclose(fichtm);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   fclose(ficgp);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
          
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   if(erreur >0){        if (wav[i] > 1 ) { /* ??? */
     printf("End of Imach with error or warning %d\n",erreur);          L=L+A*weight[i];
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   }else{        }
    printf("End of Imach\n");      }
    fprintf(ficlog,"End of Imach\n");  
   }   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   printf("See log file on %s\n",filelog);   
   fclose(ficlog);    return -2*L*num/sump;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  }
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  /******************* Printing html file ***********/
   /*printf("Total time was %d uSec.\n", total_usecs);*/  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   /*------ End -----------*/                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
  end:  
 #ifdef windows    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   /* chdir(pathcd);*/    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
 #endif    for (i=1;i<=2;i++) 
  /*system("wgnuplot graph.plt");*/      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
  /*system("../gp37mgw/wgnuplot graph.plt");*/    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
  /*system("cd ../gp37mgw");*/    fprintf(fichtm,"</ul>");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
  system(plotcmd);  
    for (k=agegomp;k<(agemortsup-2);k++) 
 #ifdef windows     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   while (z[0] != 'q') {  
     /* chdir(path); */   
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    fflush(fichtm);
     scanf("%s",z);  }
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);  /******************* Gnuplot file **************/
     else if (z[0] == 'g') system(plotcmd);  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     else if (z[0] == 'q') exit(0);  
   }    char dirfileres[132],optfileres[132];
 #endif    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
 }    int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.52  
changed lines
  Added in v.1.115


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>