Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.117

version 1.41.2.2, 2003/06/13 07:45:28 version 1.117, 2006/03/14 17:16:22
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.117  2006/03/14 17:16:22  brouard
      (Module): varevsij Comments added explaining the second
   This program computes Healthy Life Expectancies from    table of variances if popbased=1 .
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   first survey ("cross") where individuals from different ages are    (Module): Function pstamp added
   interviewed on their health status or degree of disability (in the    (Module): Version 0.98d
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.116  2006/03/06 10:29:27  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Variance-covariance wrong links and
   computed from the time spent in each health state according to a    varian-covariance of ej. is needed (Saito).
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.115  2006/02/27 12:17:45  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): One freematrix added in mlikeli! 0.98c
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.114  2006/02/26 12:57:58  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Some improvements in processing parameter
   'age' is age and 'sex' is a covariate. If you want to have a more    filename with strsep.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.113  2006/02/24 14:20:24  brouard
   you to do it.  More covariates you add, slower the    (Module): Memory leaks checks with valgrind and:
   convergence.    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.112  2006/01/30 09:55:26  brouard
   identical for each individual. Also, if a individual missed an    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   hPijx is the probability to be observed in state i at age x+h    (Module): Comments can be added in data file. Missing date values
   conditional to the observed state i at age x. The delay 'h' can be    can be a simple dot '.'.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.110  2006/01/25 00:51:50  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): Lots of cleaning and bugs added (Gompertz)
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.109  2006/01/24 19:37:15  brouard
   hPijx.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.108  2006/01/19 18:05:42  lievre
   of the life expectancies. It also computes the prevalence limits.    Gnuplot problem appeared...
      To be fixed
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.107  2006/01/19 16:20:37  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Test existence of gnuplot in imach path
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.106  2006/01/19 13:24:36  brouard
   software can be distributed freely for non commercial use. Latest version    Some cleaning and links added in html output
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.105  2006/01/05 20:23:19  lievre
      *** empty log message ***
 #include <math.h>  
 #include <stdio.h>    Revision 1.104  2005/09/30 16:11:43  lievre
 #include <stdlib.h>    (Module): sump fixed, loop imx fixed, and simplifications.
 #include <unistd.h>    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 #define MAXLINE 256    (instead of missing=-1 in earlier versions) and his/her
 #define GNUPLOTPROGRAM "wgnuplot"    contributions to the likelihood is 1 - Prob of dying from last
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define FILENAMELENGTH 80    the healthy state at last known wave). Version is 0.98
 /*#define DEBUG*/  
     Revision 1.103  2005/09/30 15:54:49  lievre
 /*#define windows*/    (Module): sump fixed, loop imx fixed, and simplifications.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.100  2004/07/12 18:29:06  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Add version for Mac OS X. Just define UNIX in Makefile
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.99  2004/06/05 08:57:40  brouard
 #define YEARM 12. /* Number of months per year */    *** empty log message ***
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 int erreur; /* Error number */    state at each age, but using a Gompertz model: log u =a + b*age .
 int nvar;    This is the basic analysis of mortality and should be done before any
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    other analysis, in order to test if the mortality estimated from the
 int npar=NPARMAX;    cross-longitudinal survey is different from the mortality estimated
 int nlstate=2; /* Number of live states */    from other sources like vital statistic data.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    The same imach parameter file can be used but the option for mle should be -3.
 int popbased=0;  
     Agnès, who wrote this part of the code, tried to keep most of the
 int *wav; /* Number of waves for this individuual 0 is possible */    former routines in order to include the new code within the former code.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    The output is very simple: only an estimate of the intercept and of
 int mle, weightopt;    the slope with 95% confident intervals.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Current limitations:
 double jmean; /* Mean space between 2 waves */    A) Even if you enter covariates, i.e. with the
 double **oldm, **newm, **savm; /* Working pointers to matrices */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    B) There is no computation of Life Expectancy nor Life Table.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.97  2004/02/20 13:25:42  lievre
 FILE *ficreseij;    Version 0.96d. Population forecasting command line is (temporarily)
   char filerese[FILENAMELENGTH];    suppressed.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.96  2003/07/15 15:38:55  brouard
  FILE  *ficresvpl;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   char fileresvpl[FILENAMELENGTH];    rewritten within the same printf. Workaround: many printfs.
   
 #define NR_END 1    Revision 1.95  2003/07/08 07:54:34  brouard
 #define FREE_ARG char*    * imach.c (Repository):
 #define FTOL 1.0e-10    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 #define NRANSI  
 #define ITMAX 200    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 #define TOL 2.0e-4  
     Revision 1.93  2003/06/25 16:33:55  brouard
 #define CGOLD 0.3819660    (Module): On windows (cygwin) function asctime_r doesn't
 #define ZEPS 1.0e-10    exist so I changed back to asctime which exists.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Version 0.96b
   
 #define GOLD 1.618034    Revision 1.92  2003/06/25 16:30:45  brouard
 #define GLIMIT 100.0    (Module): On windows (cygwin) function asctime_r doesn't
 #define TINY 1.0e-20    exist so I changed back to asctime which exists.
   
 static double maxarg1,maxarg2;    Revision 1.91  2003/06/25 15:30:29  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Repository): Duplicated warning errors corrected.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Repository): Elapsed time after each iteration is now output. It
      helps to forecast when convergence will be reached. Elapsed time
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    is stamped in powell.  We created a new html file for the graphs
 #define rint(a) floor(a+0.5)    concerning matrix of covariance. It has extension -cov.htm.
   
 static double sqrarg;    Revision 1.90  2003/06/24 12:34:15  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Some bugs corrected for windows. Also, when
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int imx;  
 int stepm;    Revision 1.89  2003/06/24 12:30:52  brouard
 /* Stepm, step in month: minimum step interpolation*/    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int estepm;    of the covariance matrix to be input.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.88  2003/06/23 17:54:56  brouard
 int m,nb;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.87  2003/06/18 12:26:01  brouard
 double **pmmij, ***probs, ***mobaverage;    Version 0.96
 double dateintmean=0;  
     Revision 1.86  2003/06/17 20:04:08  brouard
 double *weight;    (Module): Change position of html and gnuplot routines and added
 int **s; /* Status */    routine fileappend.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    current date of interview. It may happen when the death was just
 double ftolhess; /* Tolerance for computing hessian */    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 /**************** split *************************/    assuming that the date of death was just one stepm after the
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    interview.
 {    (Repository): Because some people have very long ID (first column)
    char *s;                             /* pointer */    we changed int to long in num[] and we added a new lvector for
    int  l1, l2;                         /* length counters */    memory allocation. But we also truncated to 8 characters (left
     truncation)
    l1 = strlen( path );                 /* length of path */    (Repository): No more line truncation errors.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows    Revision 1.84  2003/06/13 21:44:43  brouard
    s = strrchr( path, '\\' );           /* find last / */    * imach.c (Repository): Replace "freqsummary" at a correct
 #else    place. It differs from routine "prevalence" which may be called
    s = strrchr( path, '/' );            /* find last / */    many times. Probs is memory consuming and must be used with
 #endif    parcimony.
    if ( s == NULL ) {                   /* no directory, so use current */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.82  2003/06/05 15:57:20  brouard
       extern char       *getcwd( );    Add log in  imach.c and  fullversion number is now printed.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  */
 #endif  /*
          return( GLOCK_ERROR_GETCWD );     Interpolated Markov Chain
       }  
       strcpy( name, path );             /* we've got it */    Short summary of the programme:
    } else {                             /* strip direcotry from path */    
       s++;                              /* after this, the filename */    This program computes Healthy Life Expectancies from
       l2 = strlen( s );                 /* length of filename */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    first survey ("cross") where individuals from different ages are
       strcpy( name, s );                /* save file name */    interviewed on their health status or degree of disability (in the
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    case of a health survey which is our main interest) -2- at least a
       dirc[l1-l2] = 0;                  /* add zero */    second wave of interviews ("longitudinal") which measure each change
    }    (if any) in individual health status.  Health expectancies are
    l1 = strlen( dirc );                 /* length of directory */    computed from the time spent in each health state according to a
 #ifdef windows    model. More health states you consider, more time is necessary to reach the
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Maximum Likelihood of the parameters involved in the model.  The
 #else    simplest model is the multinomial logistic model where pij is the
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    probability to be observed in state j at the second wave
 #endif    conditional to be observed in state i at the first wave. Therefore
    s = strrchr( name, '.' );            /* find last / */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    s++;    'age' is age and 'sex' is a covariate. If you want to have a more
    strcpy(ext,s);                       /* save extension */    complex model than "constant and age", you should modify the program
    l1= strlen( name);    where the markup *Covariates have to be included here again* invites
    l2= strlen( s)+1;    you to do it.  More covariates you add, slower the
    strncpy( finame, name, l1-l2);    convergence.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    The advantage of this computer programme, compared to a simple
 }    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 /******************************************/    account using an interpolation or extrapolation.  
   
 void replace(char *s, char*t)    hPijx is the probability to be observed in state i at age x+h
 {    conditional to the observed state i at age x. The delay 'h' can be
   int i;    split into an exact number (nh*stepm) of unobserved intermediate
   int lg=20;    states. This elementary transition (by month, quarter,
   i=0;    semester or year) is modelled as a multinomial logistic.  The hPx
   lg=strlen(t);    matrix is simply the matrix product of nh*stepm elementary matrices
   for(i=0; i<= lg; i++) {    and the contribution of each individual to the likelihood is simply
     (s[i] = t[i]);    hPijx.
     if (t[i]== '\\') s[i]='/';  
   }    Also this programme outputs the covariance matrix of the parameters but also
 }    of the life expectancies. It also computes the period (stable) prevalence. 
     
 int nbocc(char *s, char occ)    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 {             Institut national d'études démographiques, Paris.
   int i,j=0;    This software have been partly granted by Euro-REVES, a concerted action
   int lg=20;    from the European Union.
   i=0;    It is copyrighted identically to a GNU software product, ie programme and
   lg=strlen(s);    software can be distributed freely for non commercial use. Latest version
   for(i=0; i<= lg; i++) {    can be accessed at http://euroreves.ined.fr/imach .
   if  (s[i] == occ ) j++;  
   }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   return j;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
     **********************************************************************/
 void cutv(char *u,char *v, char*t, char occ)  /*
 {    main
   int i,lg,j,p=0;    read parameterfile
   i=0;    read datafile
   for(j=0; j<=strlen(t)-1; j++) {    concatwav
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    freqsummary
   }    if (mle >= 1)
       mlikeli
   lg=strlen(t);    print results files
   for(j=0; j<p; j++) {    if mle==1 
     (u[j] = t[j]);       computes hessian
   }    read end of parameter file: agemin, agemax, bage, fage, estepm
      u[p]='\0';        begin-prev-date,...
     open gnuplot file
    for(j=0; j<= lg; j++) {    open html file
     if (j>=(p+1))(v[j-p-1] = t[j]);    period (stable) prevalence
   }     for age prevalim()
 }    h Pij x
     variance of p varprob
 /********************** nrerror ********************/    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 void nrerror(char error_text[])    Variance-covariance of DFLE
 {    prevalence()
   fprintf(stderr,"ERREUR ...\n");     movingaverage()
   fprintf(stderr,"%s\n",error_text);    varevsij() 
   exit(1);    if popbased==1 varevsij(,popbased)
 }    total life expectancies
 /*********************** vector *******************/    Variance of period (stable) prevalence
 double *vector(int nl, int nh)   end
 {  */
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;   
 }  #include <math.h>
   #include <stdio.h>
 /************************ free vector ******************/  #include <stdlib.h>
 void free_vector(double*v, int nl, int nh)  #include <string.h>
 {  #include <unistd.h>
   free((FREE_ARG)(v+nl-NR_END));  
 }  #include <limits.h>
   #include <sys/types.h>
 /************************ivector *******************************/  #include <sys/stat.h>
 int *ivector(long nl,long nh)  #include <errno.h>
 {  extern int errno;
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /* #include <sys/time.h> */
   if (!v) nrerror("allocation failure in ivector");  #include <time.h>
   return v-nl+NR_END;  #include "timeval.h"
 }  
   /* #include <libintl.h> */
 /******************free ivector **************************/  /* #define _(String) gettext (String) */
 void free_ivector(int *v, long nl, long nh)  
 {  #define MAXLINE 256
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /******************* imatrix *******************************/  #define FILENAMELENGTH 132
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define NINTERVMAX 8
   if (!m) nrerror("allocation failure 1 in matrix()");  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   m += NR_END;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m -= nrl;  #define NCOVMAX 8 /* Maximum number of covariates */
    #define MAXN 20000
    #define YEARM 12. /* Number of months per year */
   /* allocate rows and set pointers to them */  #define AGESUP 130
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define AGEBASE 40
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   m[nrl] += NR_END;  #ifdef UNIX
   m[nrl] -= ncl;  #define DIRSEPARATOR '/'
    #define CHARSEPARATOR "/"
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define ODIRSEPARATOR '\\'
    #else
   /* return pointer to array of pointers to rows */  #define DIRSEPARATOR '\\'
   return m;  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
   #endif
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  /* $Id$ */
       int **m;  /* $State$ */
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  char version[]="Imach version 0.98d, March 2006, INED-EUROREVES-Institut de longevite ";
 {  char fullversion[]="$Revision$ $Date$"; 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char strstart[80];
   free((FREE_ARG) (m+nrl-NR_END));  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 /******************* matrix *******************************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 double **matrix(long nrl, long nrh, long ncl, long nch)  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int ndeath=1; /* Number of dead states */
   double **m;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  int *wav; /* Number of waves for this individuual 0 is possible */
   m += NR_END;  int maxwav; /* Maxim number of waves */
   m -= nrl;  int jmin, jmax; /* min, max spacing between 2 waves */
   int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int gipmx, gsw; /* Global variables on the number of contributions 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");                     to the likelihood and the sum of weights (done by funcone)*/
   m[nrl] += NR_END;  int mle, weightopt;
   m[nrl] -= ncl;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   return m;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 }  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 /*************************free matrix ************************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int globpr; /* Global variable for printing or not */
   free((FREE_ARG)(m+nrl-NR_END));  double fretone; /* Only one call to likelihood */
 }  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 /******************* ma3x *******************************/  char filerespow[FILENAMELENGTH];
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 {  FILE *ficresilk;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   double ***m;  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *ficreseij;
   if (!m) nrerror("allocation failure 1 in matrix()");  char filerese[FILENAMELENGTH];
   m += NR_END;  FILE *ficresstdeij;
   m -= nrl;  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char filerescve[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE  *ficresvij;
   m[nrl] += NR_END;  char fileresv[FILENAMELENGTH];
   m[nrl] -= ncl;  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   m[nrl][ncl] += NR_END;  char command[FILENAMELENGTH];
   m[nrl][ncl] -= nll;  int  outcmd=0;
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    
   for (i=nrl+1; i<=nrh; i++) {  char filelog[FILENAMELENGTH]; /* Log file */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char filerest[FILENAMELENGTH];
     for (j=ncl+1; j<=nch; j++)  char fileregp[FILENAMELENGTH];
       m[i][j]=m[i][j-1]+nlay;  char popfile[FILENAMELENGTH];
   }  
   return m;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 }  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 /*************************free ma3x ************************/  struct timezone tzp;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  extern int gettimeofday();
 {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  long time_value;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  extern long time();
   free((FREE_ARG)(m+nrl-NR_END));  char strcurr[80], strfor[80];
 }  
   char *endptr;
 /***************** f1dim *************************/  long lval;
 extern int ncom;  
 extern double *pcom,*xicom;  #define NR_END 1
 extern double (*nrfunc)(double []);  #define FREE_ARG char*
    #define FTOL 1.0e-10
 double f1dim(double x)  
 {  #define NRANSI 
   int j;  #define ITMAX 200 
   double f;  
   double *xt;  #define TOL 2.0e-4 
    
   xt=vector(1,ncom);  #define CGOLD 0.3819660 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define ZEPS 1.0e-10 
   f=(*nrfunc)(xt);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   free_vector(xt,1,ncom);  
   return f;  #define GOLD 1.618034 
 }  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  static double maxarg1,maxarg2;
 {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   int iter;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double a,b,d,etemp;    
   double fu,fv,fw,fx;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double ftemp;  #define rint(a) floor(a+0.5)
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  static double sqrarg;
    #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   a=(ax < cx ? ax : cx);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   b=(ax > cx ? ax : cx);  int agegomp= AGEGOMP;
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  int imx; 
   for (iter=1;iter<=ITMAX;iter++) {  int stepm=1;
     xm=0.5*(a+b);  /* Stepm, step in month: minimum step interpolation*/
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int estepm;
     printf(".");fflush(stdout);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int m,nb;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  long *num;
 #endif  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       *xmin=x;  double **pmmij, ***probs;
       return fx;  double *ageexmed,*agecens;
     }  double dateintmean=0;
     ftemp=fu;  
     if (fabs(e) > tol1) {  double *weight;
       r=(x-w)*(fx-fv);  int **s; /* Status */
       q=(x-v)*(fx-fw);  double *agedc, **covar, idx;
       p=(x-v)*q-(x-w)*r;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       q=2.0*(q-r);  double *lsurv, *lpop, *tpop;
       if (q > 0.0) p = -p;  
       q=fabs(q);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       etemp=e;  double ftolhess; /* Tolerance for computing hessian */
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /**************** split *************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       else {  {
         d=p/q;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         u=x+d;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         if (u-a < tol2 || b-u < tol2)    */ 
           d=SIGN(tol1,xm-x);    char  *ss;                            /* pointer */
       }    int   l1, l2;                         /* length counters */
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    l1 = strlen(path );                   /* length of path */
     }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     fu=(*f)(u);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     if (fu <= fx) {      strcpy( name, path );               /* we got the fullname name because no directory */
       if (u >= x) a=x; else b=x;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       SHFT(v,w,x,u)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         SHFT(fv,fw,fx,fu)      /* get current working directory */
         } else {      /*    extern  char* getcwd ( char *buf , int len);*/
           if (u < x) a=u; else b=u;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
           if (fu <= fw || w == x) {        return( GLOCK_ERROR_GETCWD );
             v=w;      }
             w=u;      /* got dirc from getcwd*/
             fv=fw;      printf(" DIRC = %s \n",dirc);
             fw=fu;    } else {                              /* strip direcotry from path */
           } else if (fu <= fv || v == x || v == w) {      ss++;                               /* after this, the filename */
             v=u;      l2 = strlen( ss );                  /* length of filename */
             fv=fu;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
           }      strcpy( name, ss );         /* save file name */
         }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   }      dirc[l1-l2] = 0;                    /* add zero */
   nrerror("Too many iterations in brent");      printf(" DIRC2 = %s \n",dirc);
   *xmin=x;    }
   return fx;    /* We add a separator at the end of dirc if not exists */
 }    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
 /****************** mnbrak ***********************/      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      printf(" DIRC3 = %s \n",dirc);
             double (*func)(double))    }
 {    ss = strrchr( name, '.' );            /* find last / */
   double ulim,u,r,q, dum;    if (ss >0){
   double fu;      ss++;
        strcpy(ext,ss);                     /* save extension */
   *fa=(*func)(*ax);      l1= strlen( name);
   *fb=(*func)(*bx);      l2= strlen(ss)+1;
   if (*fb > *fa) {      strncpy( finame, name, l1-l2);
     SHFT(dum,*ax,*bx,dum)      finame[l1-l2]= 0;
       SHFT(dum,*fb,*fa,dum)    }
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);    return( 0 );                          /* we're done */
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  /******************************************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  void replace_back_to_slash(char *s, char*t)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    int i;
       fu=(*func)(u);    int lg=0;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    i=0;
       fu=(*func)(u);    lg=strlen(t);
       if (fu < *fc) {    for(i=0; i<= lg; i++) {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      (s[i] = t[i]);
           SHFT(*fb,*fc,fu,(*func)(u))      if (t[i]== '\\') s[i]='/';
           }    }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  }
       u=ulim;  
       fu=(*func)(u);  int nbocc(char *s, char occ)
     } else {  {
       u=(*cx)+GOLD*(*cx-*bx);    int i,j=0;
       fu=(*func)(u);    int lg=20;
     }    i=0;
     SHFT(*ax,*bx,*cx,u)    lg=strlen(s);
       SHFT(*fa,*fb,*fc,fu)    for(i=0; i<= lg; i++) {
       }    if  (s[i] == occ ) j++;
 }    }
     return j;
 /*************** linmin ************************/  }
   
 int ncom;  void cutv(char *u,char *v, char*t, char occ)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))       gives u="abcedf" and v="ghi2j" */
 {    int i,lg,j,p=0;
   double brent(double ax, double bx, double cx,    i=0;
                double (*f)(double), double tol, double *xmin);    for(j=0; j<=strlen(t)-1; j++) {
   double f1dim(double x);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    }
               double *fc, double (*func)(double));  
   int j;    lg=strlen(t);
   double xx,xmin,bx,ax;    for(j=0; j<p; j++) {
   double fx,fb,fa;      (u[j] = t[j]);
      }
   ncom=n;       u[p]='\0';
   pcom=vector(1,n);  
   xicom=vector(1,n);     for(j=0; j<= lg; j++) {
   nrfunc=func;      if (j>=(p+1))(v[j-p-1] = t[j]);
   for (j=1;j<=n;j++) {    }
     pcom[j]=p[j];  }
     xicom[j]=xi[j];  
   }  /********************** nrerror ********************/
   ax=0.0;  
   xx=1.0;  void nrerror(char error_text[])
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    fprintf(stderr,"ERREUR ...\n");
 #ifdef DEBUG    fprintf(stderr,"%s\n",error_text);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    exit(EXIT_FAILURE);
 #endif  }
   for (j=1;j<=n;j++) {  /*********************** vector *******************/
     xi[j] *= xmin;  double *vector(int nl, int nh)
     p[j] += xi[j];  {
   }    double *v;
   free_vector(xicom,1,n);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   free_vector(pcom,1,n);    if (!v) nrerror("allocation failure in vector");
 }    return v-nl+NR_END;
   }
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  /************************ free vector ******************/
             double (*func)(double []))  void free_vector(double*v, int nl, int nh)
 {  {
   void linmin(double p[], double xi[], int n, double *fret,    free((FREE_ARG)(v+nl-NR_END));
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /************************ivector *******************************/
   double fp,fptt;  int *ivector(long nl,long nh)
   double *xits;  {
   pt=vector(1,n);    int *v;
   ptt=vector(1,n);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   xit=vector(1,n);    if (!v) nrerror("allocation failure in ivector");
   xits=vector(1,n);    return v-nl+NR_END;
   *fret=(*func)(p);  }
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /******************free ivector **************************/
     fp=(*fret);  void free_ivector(int *v, long nl, long nh)
     ibig=0;  {
     del=0.0;    free((FREE_ARG)(v+nl-NR_END));
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  }
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  /************************lvector *******************************/
     printf("\n");  long *lvector(long nl,long nh)
     for (i=1;i<=n;i++) {  {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    long *v;
       fptt=(*fret);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 #ifdef DEBUG    if (!v) nrerror("allocation failure in ivector");
       printf("fret=%lf \n",*fret);    return v-nl+NR_END;
 #endif  }
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  /******************free lvector **************************/
       if (fabs(fptt-(*fret)) > del) {  void free_lvector(long *v, long nl, long nh)
         del=fabs(fptt-(*fret));  {
         ibig=i;    free((FREE_ARG)(v+nl-NR_END));
       }  }
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  /******************* imatrix *******************************/
       for (j=1;j<=n;j++) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         printf(" x(%d)=%.12e",j,xit[j]);  { 
       }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       for(j=1;j<=n;j++)    int **m; 
         printf(" p=%.12e",p[j]);    
       printf("\n");    /* allocate pointers to rows */ 
 #endif    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m += NR_END; 
 #ifdef DEBUG    m -= nrl; 
       int k[2],l;    
       k[0]=1;    
       k[1]=-1;    /* allocate rows and set pointers to them */ 
       printf("Max: %.12e",(*func)(p));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       for (j=1;j<=n;j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         printf(" %.12e",p[j]);    m[nrl] += NR_END; 
       printf("\n");    m[nrl] -= ncl; 
       for(l=0;l<=1;l++) {    
         for (j=1;j<=n;j++) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    /* return pointer to array of pointers to rows */ 
         }    return m; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  } 
       }  
 #endif  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
       free_vector(xit,1,n);        long nch,ncl,nrh,nrl; 
       free_vector(xits,1,n);       /* free an int matrix allocated by imatrix() */ 
       free_vector(ptt,1,n);  { 
       free_vector(pt,1,n);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       return;    free((FREE_ARG) (m+nrl-NR_END)); 
     }  } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /******************* matrix *******************************/
       ptt[j]=2.0*p[j]-pt[j];  double **matrix(long nrl, long nrh, long ncl, long nch)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     }    double **m;
     fptt=(*func)(ptt);  
     if (fptt < fp) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    if (!m) nrerror("allocation failure 1 in matrix()");
       if (t < 0.0) {    m += NR_END;
         linmin(p,xit,n,fret,func);    m -= nrl;
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           xi[j][n]=xit[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         }    m[nrl] += NR_END;
 #ifdef DEBUG    m[nrl] -= ncl;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           printf(" %.12e",xit[j]);    return m;
         printf("\n");    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 #endif     */
       }  }
     }  
   }  /*************************free matrix ************************/
 }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 /**** Prevalence limit ****************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /******************* ma3x *******************************/
      matrix by transitions matrix until convergence is reached */  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
   int i, ii,j,k;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double min, max, maxmin, maxmax,sumnew=0.;    double ***m;
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double **newm;    if (!m) nrerror("allocation failure 1 in matrix()");
   double agefin, delaymax=50 ; /* Max number of years to converge */    m += NR_END;
     m -= nrl;
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     m[nrl] -= ncl;
    cov[1]=1.;  
      for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     newm=savm;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     /* Covariates have to be included here again */    m[nrl][ncl] += NR_END;
      cov[2]=agefin;    m[nrl][ncl] -= nll;
      for (j=ncl+1; j<=nch; j++) 
       for (k=1; k<=cptcovn;k++) {      m[nrl][j]=m[nrl][j-1]+nlay;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    for (i=nrl+1; i<=nrh; i++) {
       }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      for (j=ncl+1; j<=nch; j++) 
       for (k=1; k<=cptcovprod;k++)        m[i][j]=m[i][j-1]+nlay;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    }
     return m; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  }
   
     savm=oldm;  /*************************free ma3x ************************/
     oldm=newm;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     maxmax=0.;  {
     for(j=1;j<=nlstate;j++){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       min=1.;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       max=0.;    free((FREE_ARG)(m+nrl-NR_END));
       for(i=1; i<=nlstate; i++) {  }
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /*************** function subdirf ***********/
         prlim[i][j]= newm[i][j]/(1-sumnew);  char *subdirf(char fileres[])
         max=FMAX(max,prlim[i][j]);  {
         min=FMIN(min,prlim[i][j]);    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
       maxmin=max-min;    strcat(tmpout,"/"); /* Add to the right */
       maxmax=FMAX(maxmax,maxmin);    strcat(tmpout,fileres);
     }    return tmpout;
     if(maxmax < ftolpl){  }
       return prlim;  
     }  /*************** function subdirf2 ***********/
   }  char *subdirf2(char fileres[], char *preop)
 }  {
     
 /*************** transition probabilities ***************/    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    strcat(tmpout,"/");
 {    strcat(tmpout,preop);
   double s1, s2;    strcat(tmpout,fileres);
   /*double t34;*/    return tmpout;
   int i,j,j1, nc, ii, jj;  }
   
     for(i=1; i<= nlstate; i++){  /*************** function subdirf3 ***********/
     for(j=1; j<i;j++){  char *subdirf3(char fileres[], char *preop, char *preop2)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         /*s2 += param[i][j][nc]*cov[nc];*/    
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* Caution optionfilefiname is hidden */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/");
       ps[i][j]=s2;    strcat(tmpout,preop);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
     for(j=i+1; j<=nlstate+ndeath;j++){    return tmpout;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /***************** f1dim *************************/
       }  extern int ncom; 
       ps[i][j]=s2;  extern double *pcom,*xicom;
     }  extern double (*nrfunc)(double []); 
   }   
     /*ps[3][2]=1;*/  double f1dim(double x) 
   { 
   for(i=1; i<= nlstate; i++){    int j; 
      s1=0;    double f;
     for(j=1; j<i; j++)    double *xt; 
       s1+=exp(ps[i][j]);   
     for(j=i+1; j<=nlstate+ndeath; j++)    xt=vector(1,ncom); 
       s1+=exp(ps[i][j]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     ps[i][i]=1./(s1+1.);    f=(*nrfunc)(xt); 
     for(j=1; j<i; j++)    free_vector(xt,1,ncom); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    return f; 
     for(j=i+1; j<=nlstate+ndeath; j++)  } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  /*****************brent *************************/
   } /* end i */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    int iter; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    double a,b,d,etemp;
       ps[ii][jj]=0;    double fu,fv,fw,fx;
       ps[ii][ii]=1;    double ftemp;
     }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   }    double e=0.0; 
    
     a=(ax < cx ? ax : cx); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    b=(ax > cx ? ax : cx); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    x=w=v=bx; 
      printf("%lf ",ps[ii][jj]);    fw=fv=fx=(*f)(x); 
    }    for (iter=1;iter<=ITMAX;iter++) { 
     printf("\n ");      xm=0.5*(a+b); 
     }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     printf("\n ");printf("%lf ",cov[2]);*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 /*      printf(".");fflush(stdout);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      fprintf(ficlog,".");fflush(ficlog);
   goto end;*/  #ifdef DEBUG
     return ps;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 /**************** Product of 2 matrices ******************/  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        *xmin=x; 
 {        return fx; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      } 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      ftemp=fu;
   /* in, b, out are matrice of pointers which should have been initialized      if (fabs(e) > tol1) { 
      before: only the contents of out is modified. The function returns        r=(x-w)*(fx-fv); 
      a pointer to pointers identical to out */        q=(x-v)*(fx-fw); 
   long i, j, k;        p=(x-v)*q-(x-w)*r; 
   for(i=nrl; i<= nrh; i++)        q=2.0*(q-r); 
     for(k=ncolol; k<=ncoloh; k++)        if (q > 0.0) p = -p; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        q=fabs(q); 
         out[i][k] +=in[i][j]*b[j][k];        etemp=e; 
         e=d; 
   return out;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
           d=p/q; 
 /************* Higher Matrix Product ***************/          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )            d=SIGN(tol1,xm-x); 
 {        } 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      } else { 
      duration (i.e. until        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      } 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
      (typically every 2 years instead of every month which is too big).      fu=(*f)(u); 
      Model is determined by parameters x and covariates have to be      if (fu <= fx) { 
      included manually here.        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
      */          SHFT(fv,fw,fx,fu) 
           } else { 
   int i, j, d, h, k;            if (u < x) a=u; else b=u; 
   double **out, cov[NCOVMAX];            if (fu <= fw || w == x) { 
   double **newm;              v=w; 
               w=u; 
   /* Hstepm could be zero and should return the unit matrix */              fv=fw; 
   for (i=1;i<=nlstate+ndeath;i++)              fw=fu; 
     for (j=1;j<=nlstate+ndeath;j++){            } else if (fu <= fv || v == x || v == w) { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);              v=u; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);              fv=fu; 
     }            } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          } 
   for(h=1; h <=nhstepm; h++){    } 
     for(d=1; d <=hstepm; d++){    nrerror("Too many iterations in brent"); 
       newm=savm;    *xmin=x; 
       /* Covariates have to be included here again */    return fx; 
       cov[1]=1.;  } 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /****************** mnbrak ***********************/
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       for (k=1; k<=cptcovprod;k++)              double (*func)(double)) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  { 
     double ulim,u,r,q, dum;
     double fu; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/   
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    *fa=(*func)(*ax); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    *fb=(*func)(*bx); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    if (*fb > *fa) { 
       savm=oldm;      SHFT(dum,*ax,*bx,dum) 
       oldm=newm;        SHFT(dum,*fb,*fa,dum) 
     }        } 
     for(i=1; i<=nlstate+ndeath; i++)    *cx=(*bx)+GOLD*(*bx-*ax); 
       for(j=1;j<=nlstate+ndeath;j++) {    *fc=(*func)(*cx); 
         po[i][j][h]=newm[i][j];    while (*fb > *fc) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      r=(*bx-*ax)*(*fb-*fc); 
          */      q=(*bx-*cx)*(*fb-*fa); 
       }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   } /* end h */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   return po;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 }      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
 /*************** log-likelihood *************/        fu=(*func)(u); 
 double func( double *x)        if (fu < *fc) { 
 {          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   int i, ii, j, k, mi, d, kk;            SHFT(*fb,*fc,fu,(*func)(u)) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];            } 
   double **out;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double sw; /* Sum of weights */        u=ulim; 
   double lli; /* Individual log likelihood */        fu=(*func)(u); 
   int s1, s2;      } else { 
   long ipmx;        u=(*cx)+GOLD*(*cx-*bx); 
   /*extern weight */        fu=(*func)(u); 
   /* We are differentiating ll according to initial status */      } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      SHFT(*ax,*bx,*cx,u) 
   /*for(i=1;i<imx;i++)        SHFT(*fa,*fb,*fc,fu) 
     printf(" %d\n",s[4][i]);        } 
   */  } 
   cov[1]=1.;  
   /*************** linmin ************************/
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  int ncom; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  double *pcom,*xicom;
     for(mi=1; mi<= wav[i]-1; mi++){  double (*nrfunc)(double []); 
       for (ii=1;ii<=nlstate+ndeath;ii++)   
         for (j=1;j<=nlstate+ndeath;j++){  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  { 
           savm[ii][j]=(ii==j ? 1.0 : 0.0);    double brent(double ax, double bx, double cx, 
         }                 double (*f)(double), double tol, double *xmin); 
       for(d=0; d<dh[mi][i]; d++){    double f1dim(double x); 
         newm=savm;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;                double *fc, double (*func)(double)); 
         for (kk=1; kk<=cptcovage;kk++) {    int j; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double xx,xmin,bx,ax; 
         }    double fx,fb,fa;
           
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    ncom=n; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    pcom=vector(1,n); 
         savm=oldm;    xicom=vector(1,n); 
         oldm=newm;    nrfunc=func; 
            for (j=1;j<=n;j++) { 
              pcom[j]=p[j]; 
       } /* end mult */      xicom[j]=xi[j]; 
          } 
       s1=s[mw[mi][i]][i];    ax=0.0; 
       s2=s[mw[mi+1][i]][i];    xx=1.0; 
       if( s2 > nlstate){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         /* i.e. if s2 is a death state and if the date of death is known then the contribution    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
            to the likelihood is the probability to die between last step unit time and current  #ifdef DEBUG
            step unit time, which is also the differences between probability to die before dh    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
            and probability to die before dh-stepm .    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
            In version up to 0.92 likelihood was computed  #endif
            as if date of death was unknown. Death was treated as any other    for (j=1;j<=n;j++) { 
            health state: the date of the interview describes the actual state      xi[j] *= xmin; 
            and not the date of a change in health state. The former idea was      p[j] += xi[j]; 
            to consider that at each interview the state was recorded    } 
            (healthy, disable or death) and IMaCh was corrected; but when we    free_vector(xicom,1,n); 
            introduced the exact date of death then we should have modified    free_vector(pcom,1,n); 
            the contribution of an exact death to the likelihood. This new  } 
            contribution is smaller and very dependent of the step unit  
            stepm. It is no more the probability to die between last interview  char *asc_diff_time(long time_sec, char ascdiff[])
            and month of death but the probability to survive from last  {
            interview up to one month before death multiplied by the    long sec_left, days, hours, minutes;
            probability to die within a month. Thanks to Chris    days = (time_sec) / (60*60*24);
            Jackson for correcting this bug.  Former versions increased    sec_left = (time_sec) % (60*60*24);
            mortality artificially. The bad side is that we add another loop    hours = (sec_left) / (60*60) ;
            which slows down the processing. The difference can be up to 10%    sec_left = (sec_left) %(60*60);
            lower mortality.    minutes = (sec_left) /60;
         */    sec_left = (sec_left) % (60);
         lli=log(out[s1][s2] - savm[s1][s2]);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       }else{    return ascdiff;
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */  }
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       }  /*************** powell ************************/
       ipmx +=1;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       sw += weight[i];              double (*func)(double [])) 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  { 
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/    void linmin(double p[], double xi[], int n, double *fret, 
     } /* end of wave */                double (*func)(double [])); 
   } /* end of individual */    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    double fp,fptt;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    double *xits;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    int niterf, itmp;
   /*exit(0);*/  
   return -l;    pt=vector(1,n); 
 }    ptt=vector(1,n); 
     xit=vector(1,n); 
     xits=vector(1,n); 
 /*********** Maximum Likelihood Estimation ***************/    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    for (*iter=1;;++(*iter)) { 
 {      fp=(*fret); 
   int i,j, iter;      ibig=0; 
   double **xi,*delti;      del=0.0; 
   double fret;      last_time=curr_time;
   xi=matrix(1,npar,1,npar);      (void) gettimeofday(&curr_time,&tzp);
   for (i=1;i<=npar;i++)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for (j=1;j<=npar;j++)      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       xi[i][j]=(i==j ? 1.0 : 0.0);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   printf("Powell\n");      */
   powell(p,xi,npar,ftol,&iter,&fret,func);     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        fprintf(ficlog," %d %.12lf",i, p[i]);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        fprintf(ficrespow," %.12lf", p[i]);
       }
 }      printf("\n");
       fprintf(ficlog,"\n");
 /**** Computes Hessian and covariance matrix ***/      fprintf(ficrespow,"\n");fflush(ficrespow);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      if(*iter <=3){
 {        tm = *localtime(&curr_time.tv_sec);
   double  **a,**y,*x,pd;        strcpy(strcurr,asctime(&tm));
   double **hess;  /*       asctime_r(&tm,strcurr); */
   int i, j,jk;        forecast_time=curr_time; 
   int *indx;        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   double hessii(double p[], double delta, int theta, double delti[]);          strcurr[itmp-1]='\0';
   double hessij(double p[], double delti[], int i, int j);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   void lubksb(double **a, int npar, int *indx, double b[]) ;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   hess=matrix(1,npar,1,npar);          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
   printf("\nCalculation of the hessian matrix. Wait...\n");          strcpy(strfor,asctime(&tmf));
   for (i=1;i<=npar;i++){          itmp = strlen(strfor);
     printf("%d",i);fflush(stdout);          if(strfor[itmp-1]=='\n')
     hess[i][i]=hessii(p,ftolhess,i,delti);          strfor[itmp-1]='\0';
     /*printf(" %f ",p[i]);*/          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     /*printf(" %lf ",hess[i][i]);*/          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   }        }
        }
   for (i=1;i<=npar;i++) {      for (i=1;i<=n;i++) { 
     for (j=1;j<=npar;j++)  {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       if (j>i) {        fptt=(*fret); 
         printf(".%d%d",i,j);fflush(stdout);  #ifdef DEBUG
         hess[i][j]=hessij(p,delti,i,j);        printf("fret=%lf \n",*fret);
         hess[j][i]=hess[i][j];            fprintf(ficlog,"fret=%lf \n",*fret);
         /*printf(" %lf ",hess[i][j]);*/  #endif
       }        printf("%d",i);fflush(stdout);
     }        fprintf(ficlog,"%d",i);fflush(ficlog);
   }        linmin(p,xit,n,fret,func); 
   printf("\n");        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          ibig=i; 
          } 
   a=matrix(1,npar,1,npar);  #ifdef DEBUG
   y=matrix(1,npar,1,npar);        printf("%d %.12e",i,(*fret));
   x=vector(1,npar);        fprintf(ficlog,"%d %.12e",i,(*fret));
   indx=ivector(1,npar);        for (j=1;j<=n;j++) {
   for (i=1;i<=npar;i++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          printf(" x(%d)=%.12e",j,xit[j]);
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   for (j=1;j<=npar;j++) {        for(j=1;j<=n;j++) {
     for (i=1;i<=npar;i++) x[i]=0;          printf(" p=%.12e",p[j]);
     x[j]=1;          fprintf(ficlog," p=%.12e",p[j]);
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){        printf("\n");
       matcov[i][j]=x[i];        fprintf(ficlog,"\n");
     }  #endif
   }      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   printf("\n#Hessian matrix#\n");  #ifdef DEBUG
   for (i=1;i<=npar;i++) {        int k[2],l;
     for (j=1;j<=npar;j++) {        k[0]=1;
       printf("%.3e ",hess[i][j]);        k[1]=-1;
     }        printf("Max: %.12e",(*func)(p));
     printf("\n");        fprintf(ficlog,"Max: %.12e",(*func)(p));
   }        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
   /* Recompute Inverse */          fprintf(ficlog," %.12e",p[j]);
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        printf("\n");
   ludcmp(a,npar,indx,&pd);        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
   /*  printf("\n#Hessian matrix recomputed#\n");          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   for (j=1;j<=npar;j++) {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (i=1;i<=npar;i++) x[i]=0;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     x[j]=1;          }
     lubksb(a,npar,indx,x);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (i=1;i<=npar;i++){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       y[i][j]=x[i];        }
       printf("%.3e ",y[i][j]);  #endif
     }  
     printf("\n");  
   }        free_vector(xit,1,n); 
   */        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   free_matrix(a,1,npar,1,npar);        free_vector(pt,1,n); 
   free_matrix(y,1,npar,1,npar);        return; 
   free_vector(x,1,npar);      } 
   free_ivector(indx,1,npar);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   free_matrix(hess,1,npar,1,npar);      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
 }        pt[j]=p[j]; 
       } 
 /*************** hessian matrix ****************/      fptt=(*func)(ptt); 
 double hessii( double x[], double delta, int theta, double delti[])      if (fptt < fp) { 
 {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   int i;        if (t < 0.0) { 
   int l=1, lmax=20;          linmin(p,xit,n,fret,func); 
   double k1,k2;          for (j=1;j<=n;j++) { 
   double p2[NPARMAX+1];            xi[j][ibig]=xi[j][n]; 
   double res;            xi[j][n]=xit[j]; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          }
   double fx;  #ifdef DEBUG
   int k=0,kmax=10;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double l1;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   fx=func(x);            printf(" %.12e",xit[j]);
   for (i=1;i<=npar;i++) p2[i]=x[i];            fprintf(ficlog," %.12e",xit[j]);
   for(l=0 ; l <=lmax; l++){          }
     l1=pow(10,l);          printf("\n");
     delts=delt;          fprintf(ficlog,"\n");
     for(k=1 ; k <kmax; k=k+1){  #endif
       delt = delta*(l1*k);        }
       p2[theta]=x[theta] +delt;      } 
       k1=func(p2)-fx;    } 
       p2[theta]=x[theta]-delt;  } 
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /**** Prevalence limit (stable or period prevalence)  ****************/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
        double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 #ifdef DEBUG  {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 #endif       matrix by transitions matrix until convergence is reached */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    int i, ii,j,k;
         k=kmax;    double min, max, maxmin, maxmax,sumnew=0.;
       }    double **matprod2();
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    double **out, cov[NCOVMAX], **pmij();
         k=kmax; l=lmax*10.;    double **newm;
       }    double agefin, delaymax=50 ; /* Max number of years to converge */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;    for (ii=1;ii<=nlstate+ndeath;ii++)
       }      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }      }
   delti[theta]=delts;  
   return res;     cov[1]=1.;
     
 }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 double hessij( double x[], double delti[], int thetai,int thetaj)      newm=savm;
 {      /* Covariates have to be included here again */
   int i;       cov[2]=agefin;
   int l=1, l1, lmax=20;    
   double k1,k2,k3,k4,res,fx;        for (k=1; k<=cptcovn;k++) {
   double p2[NPARMAX+1];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int k;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
   fx=func(x);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for (k=1; k<=2; k++) {        for (k=1; k<=cptcovprod;k++)
     for (i=1;i<=npar;i++) p2[i]=x[i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     k1=func(p2)-fx;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
          /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     p2[thetai]=x[thetai]+delti[thetai]/k;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;      savm=oldm;
        oldm=newm;
     p2[thetai]=x[thetai]-delti[thetai]/k;      maxmax=0.;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for(j=1;j<=nlstate;j++){
     k3=func(p2)-fx;        min=1.;
          max=0.;
     p2[thetai]=x[thetai]-delti[thetai]/k;        for(i=1; i<=nlstate; i++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          sumnew=0;
     k4=func(p2)-fx;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          prlim[i][j]= newm[i][j]/(1-sumnew);
 #ifdef DEBUG          max=FMAX(max,prlim[i][j]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          min=FMIN(min,prlim[i][j]);
 #endif        }
   }        maxmin=max-min;
   return res;        maxmax=FMAX(maxmax,maxmin);
 }      }
       if(maxmax < ftolpl){
 /************** Inverse of matrix **************/        return prlim;
 void ludcmp(double **a, int n, int *indx, double *d)      }
 {    }
   int i,imax,j,k;  }
   double big,dum,sum,temp;  
   double *vv;  /*************** transition probabilities ***************/ 
    
   vv=vector(1,n);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   *d=1.0;  {
   for (i=1;i<=n;i++) {    double s1, s2;
     big=0.0;    /*double t34;*/
     for (j=1;j<=n;j++)    int i,j,j1, nc, ii, jj;
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      for(i=1; i<= nlstate; i++){
     vv[i]=1.0/big;        for(j=1; j<i;j++){
   }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (j=1;j<=n;j++) {            /*s2 += param[i][j][nc]*cov[nc];*/
     for (i=1;i<j;i++) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       sum=a[i][j];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          }
       a[i][j]=sum;          ps[i][j]=s2;
     }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     big=0.0;        }
     for (i=j;i<=n;i++) {        for(j=i+1; j<=nlstate+ndeath;j++){
       sum=a[i][j];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       for (k=1;k<j;k++)            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         sum -= a[i][k]*a[k][j];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       a[i][j]=sum;          }
       if ( (dum=vv[i]*fabs(sum)) >= big) {          ps[i][j]=s2;
         big=dum;        }
         imax=i;      }
       }      /*ps[3][2]=1;*/
     }      
     if (j != imax) {      for(i=1; i<= nlstate; i++){
       for (k=1;k<=n;k++) {        s1=0;
         dum=a[imax][k];        for(j=1; j<i; j++)
         a[imax][k]=a[j][k];          s1+=exp(ps[i][j]);
         a[j][k]=dum;        for(j=i+1; j<=nlstate+ndeath; j++)
       }          s1+=exp(ps[i][j]);
       *d = -(*d);        ps[i][i]=1./(s1+1.);
       vv[imax]=vv[j];        for(j=1; j<i; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     indx[j]=imax;        for(j=i+1; j<=nlstate+ndeath; j++)
     if (a[j][j] == 0.0) a[j][j]=TINY;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     if (j != n) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       dum=1.0/(a[j][j]);      } /* end i */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      
     }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   }        for(jj=1; jj<= nlstate+ndeath; jj++){
   free_vector(vv,1,n);  /* Doesn't work */          ps[ii][jj]=0;
 ;          ps[ii][ii]=1;
 }        }
       }
 void lubksb(double **a, int n, int *indx, double b[])      
 {  
   int i,ii=0,ip,j;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double sum;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
    /*         printf("ddd %lf ",ps[ii][jj]); */
   for (i=1;i<=n;i++) {  /*       } */
     ip=indx[i];  /*       printf("\n "); */
     sum=b[ip];  /*        } */
     b[ip]=b[i];  /*        printf("\n ");printf("%lf ",cov[2]); */
     if (ii)         /*
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     else if (sum) ii=i;        goto end;*/
     b[i]=sum;      return ps;
   }  }
   for (i=n;i>=1;i--) {  
     sum=b[i];  /**************** Product of 2 matrices ******************/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   }  {
 }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 /************ Frequencies ********************/    /* in, b, out are matrice of pointers which should have been initialized 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)       before: only the contents of out is modified. The function returns
 {  /* Some frequencies */       a pointer to pointers identical to out */
      long i, j, k;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    for(i=nrl; i<= nrh; i++)
   double ***freq; /* Frequencies */      for(k=ncolol; k<=ncoloh; k++)
   double *pp;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   double pos, k2, dateintsum=0,k2cpt=0;          out[i][k] +=in[i][j]*b[j][k];
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];    return out;
    }
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   strcpy(fileresp,"p");  /************* Higher Matrix Product ***************/
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     printf("Problem with prevalence resultfile: %s\n", fileresp);  {
     exit(0);    /* Computes the transition matrix starting at age 'age' over 
   }       'nhstepm*hstepm*stepm' months (i.e. until
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   j1=0;       nhstepm*hstepm matrices. 
         Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   j=cptcoveff;       (typically every 2 years instead of every month which is too big 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       for the memory).
         Model is determined by parameters x and covariates have to be 
   for(k1=1; k1<=j;k1++){       included manually here. 
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;       */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/    int i, j, d, h, k;
       for (i=-1; i<=nlstate+ndeath; i++)      double **out, cov[NCOVMAX];
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double **newm;
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;    /* Hstepm could be zero and should return the unit matrix */
          for (i=1;i<=nlstate+ndeath;i++)
       dateintsum=0;      for (j=1;j<=nlstate+ndeath;j++){
       k2cpt=0;        oldm[i][j]=(i==j ? 1.0 : 0.0);
       for (i=1; i<=imx; i++) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
         bool=1;      }
         if  (cptcovn>0) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           for (z1=1; z1<=cptcoveff; z1++)    for(h=1; h <=nhstepm; h++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for(d=1; d <=hstepm; d++){
               bool=0;        newm=savm;
         }        /* Covariates have to be included here again */
         if (bool==1) {        cov[1]=1.;
           for(m=firstpass; m<=lastpass; m++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
             k2=anint[m][i]+(mint[m][i]/12.);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for (k=1; k<=cptcovage;k++)
               if(agev[m][i]==0) agev[m][i]=agemax+1;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for (k=1; k<=cptcovprod;k++)
               if (m<lastpass) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
               }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                      /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                 dateintsum=dateintsum+k2;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
                 k2cpt++;        savm=oldm;
               }        oldm=newm;
             }      }
           }      for(i=1; i<=nlstate+ndeath; i++)
         }        for(j=1;j<=nlstate+ndeath;j++) {
       }          po[i][j][h]=newm[i][j];
                  /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           */
         }
       if  (cptcovn>0) {    } /* end h */
         fprintf(ficresp, "\n#********** Variable ");    return po;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  }
         fprintf(ficresp, "**********\n#");  
       }  
       for(i=1; i<=nlstate;i++)  /*************** log-likelihood *************/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  double func( double *x)
       fprintf(ficresp, "\n");  {
          int i, ii, j, k, mi, d, kk;
       for(i=(int)agemin; i <= (int)agemax+3; i++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         if(i==(int)agemax+3)    double **out;
           printf("Total");    double sw; /* Sum of weights */
         else    double lli; /* Individual log likelihood */
           printf("Age %d", i);    int s1, s2;
         for(jk=1; jk <=nlstate ; jk++){    double bbh, survp;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    long ipmx;
             pp[jk] += freq[jk][m][i];    /*extern weight */
         }    /* We are differentiating ll according to initial status */
         for(jk=1; jk <=nlstate ; jk++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for(m=-1, pos=0; m <=0 ; m++)    /*for(i=1;i<imx;i++) 
             pos += freq[jk][m][i];      printf(" %d\n",s[4][i]);
           if(pp[jk]>=1.e-10)    */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    cov[1]=1.;
           else  
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
     if(mle==1){
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pp[jk] += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           pos += pp[jk];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){            }
           if(pos>=1.e-5)          for(d=0; d<dh[mi][i]; d++){
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            newm=savm;
           else            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            for (kk=1; kk<=cptcovage;kk++) {
           if( i <= (int) agemax){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             if(pos>=1.e-5){            }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               probs[i][jk][j1]= pp[jk]/pos;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            savm=oldm;
             }            oldm=newm;
             else          } /* end mult */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        
           }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         }          /* But now since version 0.9 we anticipate for bias at large stepm.
                   * If stepm is larger than one month (smallest stepm) and if the exact delay 
         for(jk=-1; jk <=nlstate+ndeath; jk++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
           for(m=-1; m <=nlstate+ndeath; m++)           * the nearest (and in case of equal distance, to the lowest) interval but now
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         if(i <= (int) agemax)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           fprintf(ficresp,"\n");           * probability in order to take into account the bias as a fraction of the way
         printf("\n");           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       }           * -stepm/2 to stepm/2 .
     }           * For stepm=1 the results are the same as for previous versions of Imach.
   }           * For stepm > 1 the results are less biased than in previous versions. 
   dateintmean=dateintsum/k2cpt;           */
            s1=s[mw[mi][i]][i];
   fclose(ficresp);          s2=s[mw[mi+1][i]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          bbh=(double)bh[mi][i]/(double)stepm; 
   free_vector(pp,1,nlstate);          /* bias bh is positive if real duration
             * is higher than the multiple of stepm and negative otherwise.
   /* End of Freq */           */
 }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
 /************ Prevalence ********************/            /* i.e. if s2 is a death state and if the date of death is known 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)               then the contribution to the likelihood is the probability to 
 {  /* Some frequencies */               die between last step unit time and current  step unit time, 
                 which is also equal to probability to die before dh 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;               minus probability to die before dh-stepm . 
   double ***freq; /* Frequencies */               In version up to 0.92 likelihood was computed
   double *pp;          as if date of death was unknown. Death was treated as any other
   double pos, k2;          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   pp=vector(1,nlstate);          to consider that at each interview the state was recorded
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          (healthy, disable or death) and IMaCh was corrected; but when we
            introduced the exact date of death then we should have modified
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          the contribution of an exact death to the likelihood. This new
   j1=0;          contribution is smaller and very dependent of the step unit
            stepm. It is no more the probability to die between last interview
   j=cptcoveff;          and month of death but the probability to survive from last
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          interview up to one month before death multiplied by the
            probability to die within a month. Thanks to Chris
  for(k1=1; k1<=j;k1++){          Jackson for correcting this bug.  Former versions increased
     for(i1=1; i1<=ncodemax[k1];i1++){          mortality artificially. The bad side is that we add another loop
       j1++;          which slows down the processing. The difference can be up to 10%
            lower mortality.
       for (i=-1; i<=nlstate+ndeath; i++)              */
         for (jk=-1; jk<=nlstate+ndeath; jk++)              lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  
                } else if  (s2==-2) {
       for (i=1; i<=imx; i++) {            for (j=1,survp=0. ; j<=nlstate; j++) 
         bool=1;              survp += out[s1][j];
         if  (cptcovn>0) {            lli= survp;
           for (z1=1; z1<=cptcoveff; z1++)          }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          
               bool=0;          else if  (s2==-4) {
         }            for (j=3,survp=0. ; j<=nlstate; j++) 
         if (bool==1) {              survp += out[s1][j];
           for(m=firstpass; m<=lastpass; m++){            lli= survp;
             k2=anint[m][i]+(mint[m][i]/12.);          }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          
               if(agev[m][i]==0) agev[m][i]=agemax+1;          else if  (s2==-5) {
               if(agev[m][i]==1) agev[m][i]=agemax+2;            for (j=1,survp=0. ; j<=2; j++) 
               if (m<lastpass)              survp += out[s1][j];
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            lli= survp;
               else          }
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  
             }          else{
           }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       }          } 
         for(i=(int)agemin; i <= (int)agemax+3; i++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for(jk=1; jk <=nlstate ; jk++){          /*if(lli ==000.0)*/
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
               pp[jk] += freq[jk][m][i];          ipmx +=1;
           }          sw += weight[i];
           for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             for(m=-1, pos=0; m <=0 ; m++)        } /* end of wave */
             pos += freq[jk][m][i];      } /* end of individual */
         }    }  else if(mle==2){
              for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(mi=1; mi<= wav[i]-1; mi++){
              pp[jk] += freq[jk][m][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
          }            for (j=1;j<=nlstate+ndeath;j++){
                        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
          for(jk=1; jk <=nlstate ; jk++){                    for(d=0; d<=dh[mi][i]; d++){
            if( i <= (int) agemax){            newm=savm;
              if(pos>=1.e-5){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                probs[i][jk][j1]= pp[jk]/pos;            for (kk=1; kk<=cptcovage;kk++) {
              }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            }            }
          }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                   1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
     }            oldm=newm;
   }          } /* end mult */
         
            s1=s[mw[mi][i]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s2=s[mw[mi+1][i]][i];
   free_vector(pp,1,nlstate);          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 }  /* End of Freq */          ipmx +=1;
           sw += weight[i];
 /************* Waves Concatenation ***************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      } /* end of individual */
 {    }  else if(mle==3){  /* exponential inter-extrapolation */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      Death is a valid wave (if date is known).        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for(mi=1; mi<= wav[i]-1; mi++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          for (ii=1;ii<=nlstate+ndeath;ii++)
      and mw[mi+1][i]. dh depends on stepm.            for (j=1;j<=nlstate+ndeath;j++){
      */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, mi, m;            }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          for(d=0; d<dh[mi][i]; d++){
      double sum=0., jmean=0.;*/            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int j, k=0,jk, ju, jl;            for (kk=1; kk<=cptcovage;kk++) {
   double sum=0.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   jmin=1e+5;            }
   jmax=-1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   jmean=0.;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=imx; i++){            savm=oldm;
     mi=0;            oldm=newm;
     m=firstpass;          } /* end mult */
     while(s[m][i] <= nlstate){        
       if(s[m][i]>=1)          s1=s[mw[mi][i]][i];
         mw[++mi][i]=m;          s2=s[mw[mi+1][i]][i];
       if(m >=lastpass)          bbh=(double)bh[mi][i]/(double)stepm; 
         break;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       else          ipmx +=1;
         m++;          sw += weight[i];
     }/* end while */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (s[m][i] > nlstate){        } /* end of wave */
       mi++;     /* Death is another wave */      } /* end of individual */
       /* if(mi==0)  never been interviewed correctly before death */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
          /* Only death is a correct wave */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       mw[mi][i]=m;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     wav[i]=mi;            for (j=1;j<=nlstate+ndeath;j++){
     if(mi==0)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<dh[mi][i]; d++){
   for(i=1; i<=imx; i++){            newm=savm;
     for(mi=1; mi<wav[i];mi++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if (stepm <=0)            for (kk=1; kk<=cptcovage;kk++) {
         dh[mi][i]=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       else{            }
         if (s[mw[mi+1][i]][i] > nlstate) {          
           if (agedc[i] < 2*AGESUP) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if(j==0) j=1;  /* Survives at least one month after exam */            savm=oldm;
           k=k+1;            oldm=newm;
           if (j >= jmax) jmax=j;          } /* end mult */
           if (j <= jmin) jmin=j;        
           sum=sum+j;          s1=s[mw[mi][i]][i];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          s2=s[mw[mi+1][i]][i];
           }          if( s2 > nlstate){ 
         }            lli=log(out[s1][s2] - savm[s1][s2]);
         else{          }else{
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           k=k+1;          }
           if (j >= jmax) jmax=j;          ipmx +=1;
           else if (j <= jmin)jmin=j;          sw += weight[i];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           sum=sum+j;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        } /* end of wave */
         jk= j/stepm;      } /* end of individual */
         jl= j -jk*stepm;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         ju= j -(jk+1)*stepm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if(jl <= -ju)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           dh[mi][i]=jk;        for(mi=1; mi<= wav[i]-1; mi++){
         else          for (ii=1;ii<=nlstate+ndeath;ii++)
           dh[mi][i]=jk+1;            for (j=1;j<=nlstate+ndeath;j++){
         if(dh[mi][i]==0)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=1; /* At least one step */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     }          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   jmean=sum/k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            for (kk=1; kk<=cptcovage;kk++) {
  }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /*********** Tricode ****************************/            }
 void tricode(int *Tvar, int **nbcode, int imx)          
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int Ndum[20],ij=1, k, j, i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int cptcode=0;            savm=oldm;
   cptcoveff=0;            oldm=newm;
            } /* end mult */
   for (k=0; k<19; k++) Ndum[k]=0;        
   for (k=1; k<=7; k++) ncodemax[k]=0;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for (i=1; i<=imx; i++) {          ipmx +=1;
       ij=(int)(covar[Tvar[j]][i]);          sw += weight[i];
       Ndum[ij]++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       if (ij > cptcode) cptcode=ij;        } /* end of wave */
     }      } /* end of individual */
     } /* End of if */
     for (i=0; i<=cptcode; i++) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       if(Ndum[i]!=0) ncodemax[j]++;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     ij=1;    return -l;
   }
   
     for (i=1; i<=ncodemax[j]; i++) {  /*************** log-likelihood *************/
       for (k=0; k<=19; k++) {  double funcone( double *x)
         if (Ndum[k] != 0) {  {
           nbcode[Tvar[j]][ij]=k;    /* Same as likeli but slower because of a lot of printf and if */
              int i, ii, j, k, mi, d, kk;
           ij++;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         }    double **out;
         if (ij > ncodemax[j]) break;    double lli; /* Individual log likelihood */
       }      double llt;
     }    int s1, s2;
   }      double bbh, survp;
     /*extern weight */
  for (k=0; k<19; k++) Ndum[k]=0;    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
  for (i=1; i<=ncovmodel-2; i++) {    /*for(i=1;i<imx;i++) 
       ij=Tvar[i];      printf(" %d\n",s[4][i]);
       Ndum[ij]++;    */
     }    cov[1]=1.;
   
  ij=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      Tvaraff[ij]=i;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      ij++;      for(mi=1; mi<= wav[i]-1; mi++){
    }        for (ii=1;ii<=nlstate+ndeath;ii++)
  }          for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     cptcoveff=ij-1;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }          }
         for(d=0; d<dh[mi][i]; d++){
 /*********** Health Expectancies ****************/          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {          }
   /* Health expectancies */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double age, agelim, hf;          savm=oldm;
   double ***p3mat,***varhe;          oldm=newm;
   double **dnewm,**doldm;        } /* end mult */
   double *xp;        
   double **gp, **gm;        s1=s[mw[mi][i]][i];
   double ***gradg, ***trgradg;        s2=s[mw[mi+1][i]][i];
   int theta;        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);         * is higher than the multiple of stepm and negative otherwise.
   xp=vector(1,npar);         */
   dnewm=matrix(1,nlstate*2,1,npar);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   doldm=matrix(1,nlstate*2,1,nlstate*2);          lli=log(out[s1][s2] - savm[s1][s2]);
          } else if (mle==1){
   fprintf(ficreseij,"# Health expectancies\n");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   fprintf(ficreseij,"# Age");        } else if(mle==2){
   for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(j=1; j<=nlstate;j++)        } else if(mle==3){  /* exponential inter-extrapolation */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   fprintf(ficreseij,"\n");        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
   if(estepm < stepm){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     printf ("Problem %d lower than %d\n",estepm, stepm);          lli=log(out[s1][s2]); /* Original formula */
   }        } /* End of if */
   else  hstepm=estepm;          ipmx +=1;
   /* We compute the life expectancy from trapezoids spaced every estepm months        sw += weight[i];
    * This is mainly to measure the difference between two models: for example        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    * if stepm=24 months pijx are given only every 2 years and by summing them  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    * we are calculating an estimate of the Life Expectancy assuming a linear        if(globpr){
    * progression inbetween and thus overestimating or underestimating according          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    * to the curvature of the survival function. If, for the same date, we   %10.6f %10.6f %10.6f ", \
    * estimate the model with stepm=1 month, we can keep estepm to 24 months                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
    * to compare the new estimate of Life expectancy with the same linear                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
    * hypothesis. A more precise result, taking into account a more precise          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
    * curvature will be obtained if estepm is as small as stepm. */            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   /* For example we decided to compute the life expectancy with the smallest unit */          }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          fprintf(ficresilk," %10.6f\n", -llt);
      nhstepm is the number of hstepm from age to agelim        }
      nstepm is the number of stepm from age to agelin.      } /* end of wave */
      Look at hpijx to understand the reason of that which relies in memory size    } /* end of individual */
      and note for a fixed period like estepm months */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      survival function given by stepm (the optimization length). Unfortunately it    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      means that if the survival funtion is printed only each two years of age and if    if(globpr==0){ /* First time we count the contributions and weights */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      gipmx=ipmx;
      results. So we changed our mind and took the option of the best precision.      gsw=sw;
   */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    return -l;
   }
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */  /*************** function likelione ***********/
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  {
     /* if (stepm >= YEARM) hstepm=1;*/    /* This routine should help understanding what is done with 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       the selection of individuals/waves and
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       to check the exact contribution to the likelihood.
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);       Plotting could be done.
     gp=matrix(0,nhstepm,1,nlstate*2);     */
     gm=matrix(0,nhstepm,1,nlstate*2);    int k;
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    if(*globpri !=0){ /* Just counts and sums, no printings */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      strcpy(fileresilk,"ilk"); 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        strcat(fileresilk,fileres);
        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
     /* Computing Variances of health expectancies */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      for(theta=1; theta <=npar; theta++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(i=1; i<=npar; i++){      for(k=1; k<=nlstate; k++) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
    
       cptj=0;    *fretone=(*funcone)(p);
       for(j=1; j<= nlstate; j++){    if(*globpri !=0){
         for(i=1; i<=nlstate; i++){      fclose(ficresilk);
           cptj=cptj+1;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      fflush(fichtm); 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    } 
           }    return;
         }  }
       }  
        
        /*********** Maximum Likelihood Estimation ***************/
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    {
          int i,j, iter;
       cptj=0;    double **xi;
       for(j=1; j<= nlstate; j++){    double fret;
         for(i=1;i<=nlstate;i++){    double fretone; /* Only one call to likelihood */
           cptj=cptj+1;    /*  char filerespow[FILENAMELENGTH];*/
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    xi=matrix(1,npar,1,npar);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for (i=1;i<=npar;i++)
           }      for (j=1;j<=npar;j++)
         }        xi[i][j]=(i==j ? 1.0 : 0.0);
       }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
          strcpy(filerespow,"pow"); 
        strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(j=1; j<= nlstate*2; j++)      printf("Problem with resultfile: %s\n", filerespow);
         for(h=0; h<=nhstepm-1; h++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    }
         }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
      }      for(j=1;j<=nlstate+ndeath;j++)
            if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 /* End theta */    fprintf(ficrespow,"\n");
   
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    powell(p,xi,npar,ftol,&iter,&fret,func);
   
      for(h=0; h<=nhstepm-1; h++)    free_matrix(xi,1,npar,1,npar);
       for(j=1; j<=nlstate*2;j++)    fclose(ficrespow);
         for(theta=1; theta <=npar; theta++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         trgradg[h][j][theta]=gradg[h][theta][j];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
      for(i=1;i<=nlstate*2;i++)  }
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     for(h=0;h<=nhstepm-1;h++){  {
       for(k=0;k<=nhstepm-1;k++){    double  **a,**y,*x,pd;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    double **hess;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    int i, j,jk;
         for(i=1;i<=nlstate*2;i++)    int *indx;
           for(j=1;j<=nlstate*2;j++)  
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     }    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
          double gompertz(double p[]);
     /* Computing expectancies */    hess=matrix(1,npar,1,npar);
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)    printf("\nCalculation of the hessian matrix. Wait...\n");
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    for (i=1;i<=npar;i++){
                printf("%d",i);fflush(stdout);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      fprintf(ficlog,"%d",i);fflush(ficlog);
      
         }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
     fprintf(ficreseij,"%3.0f",age );      /*  printf(" %f ",p[i]);
     cptj=0;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++){    
         cptj++;    for (i=1;i<=npar;i++) {
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      for (j=1;j<=npar;j++)  {
       }        if (j>i) { 
     fprintf(ficreseij,"\n");          printf(".%d%d",i,j);fflush(stdout);
              fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     free_matrix(gm,0,nhstepm,1,nlstate*2);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     free_matrix(gp,0,nhstepm,1,nlstate*2);          
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          hess[j][i]=hess[i][j];    
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          /*printf(" %lf ",hess[i][j]);*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
   }      }
   free_vector(xp,1,npar);    }
   free_matrix(dnewm,1,nlstate*2,1,npar);    printf("\n");
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    fprintf(ficlog,"\n");
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  
 }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 /************ Variance ******************/    
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    a=matrix(1,npar,1,npar);
 {    y=matrix(1,npar,1,npar);
   /* Variance of health expectancies */    x=vector(1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    indx=ivector(1,npar);
   double **newm;    for (i=1;i<=npar;i++)
   double **dnewm,**doldm;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   int i, j, nhstepm, hstepm, h, nstepm ;    ludcmp(a,npar,indx,&pd);
   int k, cptcode;  
   double *xp;    for (j=1;j<=npar;j++) {
   double **gp, **gm;      for (i=1;i<=npar;i++) x[i]=0;
   double ***gradg, ***trgradg;      x[j]=1;
   double ***p3mat;      lubksb(a,npar,indx,x);
   double age,agelim, hf;      for (i=1;i<=npar;i++){ 
   int theta;        matcov[i][j]=x[i];
       }
    fprintf(ficresvij,"# Covariances of life expectancies\n");    }
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    printf("\n#Hessian matrix#\n");
     for(j=1; j<=nlstate;j++)    fprintf(ficlog,"\n#Hessian matrix#\n");
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    for (i=1;i<=npar;i++) { 
   fprintf(ficresvij,"\n");      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
   xp=vector(1,npar);        fprintf(ficlog,"%.3e ",hess[i][j]);
   dnewm=matrix(1,nlstate,1,npar);      }
   doldm=matrix(1,nlstate,1,nlstate);      printf("\n");
        fprintf(ficlog,"\n");
   if(estepm < stepm){    }
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    /* Recompute Inverse */
   else  hstepm=estepm;      for (i=1;i<=npar;i++)
   /* For example we decided to compute the life expectancy with the smallest unit */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    ludcmp(a,npar,indx,&pd);
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    /*  printf("\n#Hessian matrix recomputed#\n");
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */    for (j=1;j<=npar;j++) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (i=1;i<=npar;i++) x[i]=0;
      survival function given by stepm (the optimization length). Unfortunately it      x[j]=1;
      means that if the survival funtion is printed only each two years of age and if      lubksb(a,npar,indx,x);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (i=1;i<=npar;i++){ 
      results. So we changed our mind and took the option of the best precision.        y[i][j]=x[i];
   */        printf("%.3e ",y[i][j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        fprintf(ficlog,"%.3e ",y[i][j]);
   agelim = AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);    free_matrix(a,1,npar,1,npar);
     gm=matrix(0,nhstepm,1,nlstate);    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
     for(theta=1; theta <=npar; theta++){    free_ivector(indx,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_matrix(hess,1,npar,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   /*************** hessian matrix ****************/
       if (popbased==1) {  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         for(i=1; i<=nlstate;i++)  {
           prlim[i][i]=probs[(int)age][i][ij];    int i;
       }    int l=1, lmax=20;
      double k1,k2;
       for(j=1; j<= nlstate; j++){    double p2[NPARMAX+1];
         for(h=0; h<=nhstepm; h++){    double res;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double fx;
         }    int k=0,kmax=10;
       }    double l1;
      
       for(i=1; i<=npar; i++) /* Computes gradient */    fx=func(x);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++) p2[i]=x[i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for(l=0 ; l <=lmax; l++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      l1=pow(10,l);
        delts=delt;
       if (popbased==1) {      for(k=1 ; k <kmax; k=k+1){
         for(i=1; i<=nlstate;i++)        delt = delta*(l1*k);
           prlim[i][i]=probs[(int)age][i][ij];        p2[theta]=x[theta] +delt;
       }        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
       for(j=1; j<= nlstate; j++){        k2=func(p2)-fx;
         for(h=0; h<=nhstepm; h++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        
         }  #ifdef DEBUG
       }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(j=1; j<= nlstate; j++)  #endif
         for(h=0; h<=nhstepm; h++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         }          k=kmax;
     } /* End theta */        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          k=kmax; l=lmax*10.;
         }
     for(h=0; h<=nhstepm; h++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       for(j=1; j<=nlstate;j++)          delts=delt;
         for(theta=1; theta <=npar; theta++)        }
           trgradg[h][j][theta]=gradg[h][theta][j];      }
     }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    delti[theta]=delts;
     for(i=1;i<=nlstate;i++)    return res; 
       for(j=1;j<=nlstate;j++)    
         vareij[i][j][(int)age] =0.;  }
   
     for(h=0;h<=nhstepm;h++){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       for(k=0;k<=nhstepm;k++){  {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    int i;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    int l=1, l1, lmax=20;
         for(i=1;i<=nlstate;i++)    double k1,k2,k3,k4,res,fx;
           for(j=1;j<=nlstate;j++)    double p2[NPARMAX+1];
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    int k;
       }  
     }    fx=func(x);
     for (k=1; k<=2; k++) {
     fprintf(ficresvij,"%.0f ",age );      for (i=1;i<=npar;i++) p2[i]=x[i];
     for(i=1; i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(j=1; j<=nlstate;j++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      k1=func(p2)-fx;
       }    
     fprintf(ficresvij,"\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_matrix(gp,0,nhstepm,1,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     free_matrix(gm,0,nhstepm,1,nlstate);      k2=func(p2)-fx;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   } /* End age */      k3=func(p2)-fx;
      
   free_vector(xp,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
   free_matrix(doldm,1,nlstate,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   free_matrix(dnewm,1,nlstate,1,nlstate);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 }  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 /************ Variance of prevlim ******************/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  #endif
 {    }
   /* Variance of prevalence limit */    return res;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  }
   double **newm;  
   double **dnewm,**doldm;  /************** Inverse of matrix **************/
   int i, j, nhstepm, hstepm;  void ludcmp(double **a, int n, int *indx, double *d) 
   int k, cptcode;  { 
   double *xp;    int i,imax,j,k; 
   double *gp, *gm;    double big,dum,sum,temp; 
   double **gradg, **trgradg;    double *vv; 
   double age,agelim;   
   int theta;    vv=vector(1,n); 
        *d=1.0; 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    for (i=1;i<=n;i++) { 
   fprintf(ficresvpl,"# Age");      big=0.0; 
   for(i=1; i<=nlstate;i++)      for (j=1;j<=n;j++) 
       fprintf(ficresvpl," %1d-%1d",i,i);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   fprintf(ficresvpl,"\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
   xp=vector(1,npar);    } 
   dnewm=matrix(1,nlstate,1,npar);    for (j=1;j<=n;j++) { 
   doldm=matrix(1,nlstate,1,nlstate);      for (i=1;i<j;i++) { 
          sum=a[i][j]; 
   hstepm=1*YEARM; /* Every year of age */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        a[i][j]=sum; 
   agelim = AGESUP;      } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      big=0.0; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=j;i<=n;i++) { 
     if (stepm >= YEARM) hstepm=1;        sum=a[i][j]; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for (k=1;k<j;k++) 
     gradg=matrix(1,npar,1,nlstate);          sum -= a[i][k]*a[k][j]; 
     gp=vector(1,nlstate);        a[i][j]=sum; 
     gm=vector(1,nlstate);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
     for(theta=1; theta <=npar; theta++){          imax=i; 
       for(i=1; i<=npar; i++){ /* Computes gradient */        } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } 
       }      if (j != imax) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1;k<=n;k++) { 
       for(i=1;i<=nlstate;i++)          dum=a[imax][k]; 
         gp[i] = prlim[i][i];          a[imax][k]=a[j][k]; 
              a[j][k]=dum; 
       for(i=1; i<=npar; i++) /* Computes gradient */        } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        *d = -(*d); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        vv[imax]=vv[j]; 
       for(i=1;i<=nlstate;i++)      } 
         gm[i] = prlim[i][i];      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
       for(i=1;i<=nlstate;i++)      if (j != n) { 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        dum=1.0/(a[j][j]); 
     } /* End theta */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     trgradg =matrix(1,nlstate,1,npar);    } 
     free_vector(vv,1,n);  /* Doesn't work */
     for(j=1; j<=nlstate;j++)  ;
       for(theta=1; theta <=npar; theta++)  } 
         trgradg[j][theta]=gradg[theta][j];  
   void lubksb(double **a, int n, int *indx, double b[]) 
     for(i=1;i<=nlstate;i++)  { 
       varpl[i][(int)age] =0.;    int i,ii=0,ip,j; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double sum; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);   
     for(i=1;i<=nlstate;i++)    for (i=1;i<=n;i++) { 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      ip=indx[i]; 
       sum=b[ip]; 
     fprintf(ficresvpl,"%.0f ",age );      b[ip]=b[i]; 
     for(i=1; i<=nlstate;i++)      if (ii) 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     fprintf(ficresvpl,"\n");      else if (sum) ii=i; 
     free_vector(gp,1,nlstate);      b[i]=sum; 
     free_vector(gm,1,nlstate);    } 
     free_matrix(gradg,1,npar,1,nlstate);    for (i=n;i>=1;i--) { 
     free_matrix(trgradg,1,nlstate,1,npar);      sum=b[i]; 
   } /* End age */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
   free_vector(xp,1,npar);    } 
   free_matrix(doldm,1,nlstate,1,npar);  } 
   free_matrix(dnewm,1,nlstate,1,nlstate);  
   void pstamp(FILE *fichier)
 }  {
     fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 /************ Variance of one-step probabilities  ******************/  }
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {  /************ Frequencies ********************/
   int i, j, i1, k1, j1, z1;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   int k=0, cptcode;  {  /* Some frequencies */
   double **dnewm,**doldm;    
   double *xp;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   double *gp, *gm;    int first;
   double **gradg, **trgradg;    double ***freq; /* Frequencies */
   double age,agelim, cov[NCOVMAX];    double *pp, **prop;
   int theta;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   char fileresprob[FILENAMELENGTH];    char fileresp[FILENAMELENGTH];
     
   strcpy(fileresprob,"prob");    pp=vector(1,nlstate);
   strcat(fileresprob,fileres);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    strcpy(fileresp,"p");
     printf("Problem with resultfile: %s\n", fileresprob);    strcat(fileresp,fileres);
   }    if((ficresp=fopen(fileresp,"w"))==NULL) {
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      printf("Problem with prevalence resultfile: %s\n", fileresp);
        fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");      exit(0);
   fprintf(ficresprob,"# Age");    }
   for(i=1; i<=nlstate;i++)    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     for(j=1; j<=(nlstate+ndeath);j++)    j1=0;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    
     j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficresprob,"\n");  
     first=1;
   
   xp=vector(1,npar);    for(k1=1; k1<=j;k1++){
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for(i1=1; i1<=ncodemax[k1];i1++){
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        j1++;
          /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   cov[1]=1;          scanf("%d", i);*/
   j=cptcoveff;        for (i=-5; i<=nlstate+ndeath; i++)  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   j1=0;            for(m=iagemin; m <= iagemax+3; m++)
   for(k1=1; k1<=1;k1++){              freq[i][jk][m]=0;
     for(i1=1; i1<=ncodemax[k1];i1++){  
     j1++;      for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
     if  (cptcovn>0) {          prop[i][m]=0;
       fprintf(ficresprob, "\n#********** Variable ");        
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        dateintsum=0;
       fprintf(ficresprob, "**********\n#");        k2cpt=0;
     }        for (i=1; i<=imx; i++) {
              bool=1;
       for (age=bage; age<=fage; age ++){          if  (cptcovn>0) {
         cov[2]=age;            for (z1=1; z1<=cptcoveff; z1++) 
         for (k=1; k<=cptcovn;k++) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];                bool=0;
                    }
         }          if (bool==1){
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            for(m=firstpass; m<=lastpass; m++){
         for (k=1; k<=cptcovprod;k++)              k2=anint[m][i]+(mint[m][i]/12.);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                        if(agev[m][i]==0) agev[m][i]=iagemax+1;
         gradg=matrix(1,npar,1,9);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         trgradg=matrix(1,9,1,npar);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                if (m<lastpass) {
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                      freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         for(theta=1; theta <=npar; theta++){                }
           for(i=1; i<=npar; i++)                
             xp[i] = x[i] + (i==theta ?delti[theta]:0);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                            dateintsum=dateintsum+k2;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                  k2cpt++;
                          }
           k=0;                /*}*/
           for(i=1; i<= (nlstate+ndeath); i++){            }
             for(j=1; j<=(nlstate+ndeath);j++){          }
               k=k+1;        }
               gp[k]=pmmij[i][j];         
             }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           }        pstamp(ficresp);
                  if  (cptcovn>0) {
           for(i=1; i<=npar; i++)          fprintf(ficresp, "\n#********** Variable "); 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresp, "**********\n#");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        }
           k=0;        for(i=1; i<=nlstate;i++) 
           for(i=1; i<=(nlstate+ndeath); i++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             for(j=1; j<=(nlstate+ndeath);j++){        fprintf(ficresp, "\n");
               k=k+1;        
               gm[k]=pmmij[i][j];        for(i=iagemin; i <= iagemax+3; i++){
             }          if(i==iagemax+3){
           }            fprintf(ficlog,"Total");
                }else{
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)            if(first==1){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                first=0;
         }              printf("See log file for details...\n");
             }
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)            fprintf(ficlog,"Age %d", i);
           for(theta=1; theta <=npar; theta++)          }
             trgradg[j][theta]=gradg[theta][j];          for(jk=1; jk <=nlstate ; jk++){
                    for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              pp[jk] += freq[jk][m][i]; 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          }
                  for(jk=1; jk <=nlstate ; jk++){
         pmij(pmmij,cov,ncovmodel,x,nlstate);            for(m=-1, pos=0; m <=0 ; m++)
                      pos += freq[jk][m][i];
         k=0;            if(pp[jk]>=1.e-10){
         for(i=1; i<=(nlstate+ndeath); i++){              if(first==1){
           for(j=1; j<=(nlstate+ndeath);j++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             k=k+1;              }
             gm[k]=pmmij[i][j];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }            }else{
         }              if(first==1)
                      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      /*printf("\n%d ",(int)age);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          }
      }*/  
           for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficresprob,"\n%d ",(int)age);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)          }       
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
              pos += pp[jk];
       }            posprop += prop[jk][i];
     }          }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          for(jk=1; jk <=nlstate ; jk++){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            if(pos>=1.e-5){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              if(first==1)
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_vector(xp,1,npar);            }else{
   fclose(ficresprob);              if(first==1)
                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
 /******************* Printing html file ***********/            if( i <= iagemax){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              if(pos>=1.e-5){
  int lastpass, int stepm, int weightopt, char model[],\                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \                /*probs[i][jk][j1]= pp[jk]/pos;*/
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
  char version[], int popforecast, int estepm ){              }
   int jj1, k1, i1, cpt;              else
   FILE *fichtm;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   /*char optionfilehtm[FILENAMELENGTH];*/            }
           }
   strcpy(optionfilehtm,optionfile);          
   strcat(optionfilehtm,".htm");          for(jk=-1; jk <=nlstate+ndeath; jk++)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            for(m=-1; m <=nlstate+ndeath; m++)
     printf("Problem with %s \n",optionfilehtm), exit(0);              if(freq[jk][m][i] !=0 ) {
   }              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n              }
 \n          if(i <= iagemax)
 Total number of observations=%d <br>\n            fprintf(ficresp,"\n");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          if(first==1)
 <hr  size=\"2\" color=\"#EC5E5E\">            printf("Others in log...\n");
  <ul><li>Outputs files<br>\n          fprintf(ficlog,"\n");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      }
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    }
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    dateintmean=dateintsum/k2cpt; 
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n   
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    fclose(ficresp);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
  fprintf(fichtm,"\n    free_vector(pp,1,nlstate);
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    /* End of Freq */
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  }
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
  if(popforecast==1) fprintf(fichtm,"\n  {  
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n       in each health status at the date of interview (if between dateprev1 and dateprev2).
         <br>",fileres,fileres,fileres,fileres);       We still use firstpass and lastpass as another selection.
  else    */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);   
 fprintf(fichtm," <li>Graphs</li><p>");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
  m=cptcoveff;    double *pp, **prop;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double pos,posprop; 
     double  y2; /* in fractional years */
  jj1=0;    int iagemin, iagemax;
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){    iagemin= (int) agemin;
        jj1++;    iagemax= (int) agemax;
        if (cptcovn > 0) {    /*pp=vector(1,nlstate);*/
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
          for (cpt=1; cpt<=cptcoveff;cpt++)    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    j1=0;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    
        }    j=cptcoveff;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        
        for(cpt=1; cpt<nlstate;cpt++){    for(k1=1; k1<=j;k1++){
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      for(i1=1; i1<=ncodemax[k1];i1++){
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        j1++;
        }        
     for(cpt=1; cpt<=nlstate;cpt++) {        for (i=1; i<=nlstate; i++)  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          for(m=iagemin; m <= iagemax+3; m++)
 interval) in state (%d): v%s%d%d.gif <br>            prop[i][m]=0.0;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);         
      }        for (i=1; i<=imx; i++) { /* Each individual */
      for(cpt=1; cpt<=nlstate;cpt++) {          bool=1;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          if  (cptcovn>0) {
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            for (z1=1; z1<=cptcoveff; z1++) 
      }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                bool=0;
 health expectancies in states (1) and (2): e%s%d.gif<br>          } 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          if (bool==1) { 
 fprintf(fichtm,"\n</body>");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
    }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
    }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 fclose(fichtm);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 /******************* Gnuplot file **************/                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
   strcpy(optionfilegnuplot,optionfilefiname);              }
   strcat(optionfilegnuplot,".gp.txt");            } /* end selection of waves */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          }
     printf("Problem with file %s",optionfilegnuplot);        }
   }        for(i=iagemin; i <= iagemax+3; i++){  
           
 #ifdef windows          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     fprintf(ficgp,"cd \"%s\" \n",pathc);            posprop += prop[jk][i]; 
 #endif          } 
 m=pow(2,cptcoveff);  
            for(jk=1; jk <=nlstate ; jk++){     
  /* 1eme*/            if( i <=  iagemax){ 
   for (cpt=1; cpt<= nlstate ; cpt ++) {              if(posprop>=1.e-5){ 
    for (k1=1; k1<= m ; k1 ++) {                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            } 
           }/* end jk */ 
 for (i=1; i<= nlstate ; i ++) {        }/* end i */ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      } /* end i1 */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    } /* end k1 */
 }    
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     for (i=1; i<= nlstate ; i ++) {    /*free_vector(pp,1,nlstate);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }  /* End of prevalence */
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  /************* Waves Concatenation ***************/
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {
 }      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
    }       and mw[mi+1][i]. dh depends on stepm.
   }       */
   /*2 eme*/  
     int i, mi, m;
   for (k1=1; k1<= m ; k1 ++) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);       double sum=0., jmean=0.;*/
        int first;
     for (i=1; i<= nlstate+1 ; i ++) {    int j, k=0,jk, ju, jl;
       k=2*i;    double sum=0.;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    first=0;
       for (j=1; j<= nlstate+1 ; j ++) {    jmin=1e+5;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    jmax=-1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    jmean=0.;
 }      for(i=1; i<=imx; i++){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      mi=0;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      m=firstpass;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      while(s[m][i] <= nlstate){
       for (j=1; j<= nlstate+1 ; j ++) {        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          mw[++mi][i]=m;
         else fprintf(ficgp," \%%*lf (\%%*lf)");        if(m >=lastpass)
 }            break;
       fprintf(ficgp,"\" t\"\" w l 0,");        else
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          m++;
       for (j=1; j<= nlstate+1 ; j ++) {      }/* end while */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      if (s[m][i] > nlstate){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        mi++;     /* Death is another wave */
 }          /* if(mi==0)  never been interviewed correctly before death */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");           /* Only death is a correct wave */
       else fprintf(ficgp,"\" t\"\" w l 0,");        mw[mi][i]=m;
     }      }
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  
   }      wav[i]=mi;
        if(mi==0){
   /*3eme*/        nbwarn++;
         if(first==0){
   for (k1=1; k1<= m ; k1 ++) {          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     for (cpt=1; cpt<= nlstate ; cpt ++) {          first=1;
       k=2+nlstate*(2*cpt-2);        }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        if(first==1){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      } /* end mi==0 */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    } /* End individuals */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
 */        if (stepm <=0)
       for (i=1; i< nlstate ; i ++) {          dh[mi][i]=1;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       }            if (agedc[i] < 2*AGESUP) {
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     }              if(j==0) j=1;  /* Survives at least one month after exam */
     }              else if(j<0){
                  nberr++;
   /* CV preval stat */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for (k1=1; k1<= m ; k1 ++) {                j=1; /* Temporary Dangerous patch */
     for (cpt=1; cpt<nlstate ; cpt ++) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       k=3;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
       for (i=1; i< nlstate ; i ++)              k=k+1;
         fprintf(ficgp,"+$%d",k+i+1);              if (j >= jmax){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                jmax=j;
                      ijmax=i;
       l=3+(nlstate+ndeath)*cpt;              }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              if (j <= jmin){
       for (i=1; i< nlstate ; i ++) {                jmin=j;
         l=3+(nlstate+ndeath)*cpt;                ijmin=i;
         fprintf(ficgp,"+$%d",l+i+1);              }
       }              sum=sum+j;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     }            }
   }            }
            else{
   /* proba elementaires */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    for(i=1,jk=1; i <=nlstate; i++){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {            k=k+1;
         for(j=1; j <=ncovmodel; j++){            if (j >= jmax) {
                      jmax=j;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              ijmax=i;
           jk++;            }
           fprintf(ficgp,"\n");            else if (j <= jmin){
         }              jmin=j;
       }              ijmin=i;
     }            }
     }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for(jk=1; jk <=m; jk++) {            if(j<0){
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              nberr++;
    i=1;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    for(k2=1; k2<=nlstate; k2++) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      k3=i;            }
      for(k=1; k<=(nlstate+ndeath); k++) {            sum=sum+j;
        if (k != k2){          }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          jk= j/stepm;
 ij=1;          jl= j -jk*stepm;
         for(j=3; j <=ncovmodel; j++) {          ju= j -(jk+1)*stepm;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            if(jl==0){
             ij++;              dh[mi][i]=jk;
           }              bh[mi][i]=0;
           else            }else{ /* We want a negative bias in order to only have interpolation ie
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                    * at the price of an extra matrix product in likelihood */
         }              dh[mi][i]=jk+1;
           fprintf(ficgp,")/(1");              bh[mi][i]=ju;
                    }
         for(k1=1; k1 <=nlstate; k1++){            }else{
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            if(jl <= -ju){
 ij=1;              dh[mi][i]=jk;
           for(j=3; j <=ncovmodel; j++){              bh[mi][i]=jl;       /* bias is positive if real duration
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                                   * is higher than the multiple of stepm and negative otherwise.
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                                   */
             ij++;            }
           }            else{
           else              dh[mi][i]=jk+1;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              bh[mi][i]=ju;
           }            }
           fprintf(ficgp,")");            if(dh[mi][i]==0){
         }              dh[mi][i]=1; /* At least one step */
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);              bh[mi][i]=ju; /* At least one step */
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         i=i+ncovmodel;            }
        }          } /* end if mle */
      }        }
    }      } /* end wave */
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    }
    }    jmean=sum/k;
        printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   fclose(ficgp);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 }  /* end gnuplot */   }
   
   /*********** Tricode ****************************/
 /*************** Moving average **************/  void tricode(int *Tvar, int **nbcode, int imx)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  {
     
   int i, cpt, cptcod;    int Ndum[20],ij=1, k, j, i, maxncov=19;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    int cptcode=0;
       for (i=1; i<=nlstate;i++)    cptcoveff=0; 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)   
           mobaverage[(int)agedeb][i][cptcod]=0.;    for (k=0; k<maxncov; k++) Ndum[k]=0;
        for (k=1; k<=7; k++) ncodemax[k]=0;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
           for (cpt=0;cpt<=4;cpt++){                                 modality*/ 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           }        Ndum[ij]++; /*store the modality */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       }                                         Tvar[j]. If V=sex and male is 0 and 
     }                                         female is 1, then  cptcode=1.*/
          }
 }  
       for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 /************** Forecasting ******************/      }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  
        ij=1; 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      for (i=1; i<=ncodemax[j]; i++) {
   int *popage;        for (k=0; k<= maxncov; k++) {
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          if (Ndum[k] != 0) {
   double *popeffectif,*popcount;            nbcode[Tvar[j]][ij]=k; 
   double ***p3mat;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   char fileresf[FILENAMELENGTH];            
             ij++;
  agelim=AGESUP;          }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          if (ij > ncodemax[j]) break; 
         }  
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      } 
      }  
    
   strcpy(fileresf,"f");   for (k=0; k< maxncov; k++) Ndum[k]=0;
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {   for (i=1; i<=ncovmodel-2; i++) { 
     printf("Problem with forecast resultfile: %s\n", fileresf);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   }     ij=Tvar[i];
   printf("Computing forecasting: result on file '%s' \n", fileresf);     Ndum[ij]++;
    }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
    ij=1;
   if (mobilav==1) {   for (i=1; i<= maxncov; i++) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     if((Ndum[i]!=0) && (i<=ncovcol)){
     movingaverage(agedeb, fage, ageminpar, mobaverage);       Tvaraff[ij]=i; /*For printing */
   }       ij++;
      }
   stepsize=(int) (stepm+YEARM-1)/YEARM;   }
   if (stepm<=12) stepsize=1;   
     cptcoveff=ij-1; /*Number of simple covariates*/
   agelim=AGESUP;  }
    
   hstepm=1;  /*********** Health Expectancies ****************/
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);  {
   mprojmean=yp;    /* Health expectancies, no variances */
   yp1=modf((yp2*30.5),&yp);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   jprojmean=yp;    double age, agelim, hf;
   if(jprojmean==0) jprojmean=1;    double ***p3mat;
   if(mprojmean==0) jprojmean=1;    double eip;
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    pstamp(ficreseij);
      fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficreseij,"# Age");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    for(i=1; i<=nlstate;i++){
       k=k+1;      for(j=1; j<=nlstate;j++){
       fprintf(ficresf,"\n#******");        fprintf(ficreseij," e%1d%1d ",i,j);
       for(j=1;j<=cptcoveff;j++) {      }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficreseij," e%1d. ",i);
       }    }
       fprintf(ficresf,"******\n");    fprintf(ficreseij,"\n");
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    
          if(estepm < stepm){
            printf ("Problem %d lower than %d\n",estepm, stepm);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    }
         fprintf(ficresf,"\n");    else  hstepm=estepm;   
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     * if stepm=24 months pijx are given only every 2 years and by summing them
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           nhstepm = nhstepm/hstepm;     * progression in between and thus overestimating or underestimating according
               * to the curvature of the survival function. If, for the same date, we 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           oldm=oldms;savm=savms;     * to compare the new estimate of Life expectancy with the same linear 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * hypothesis. A more precise result, taking into account a more precise
             * curvature will be obtained if estepm is as small as stepm. */
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    /* For example we decided to compute the life expectancy with the smallest unit */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             }       nhstepm is the number of hstepm from age to agelim 
             for(j=1; j<=nlstate+ndeath;j++) {       nstepm is the number of stepm from age to agelin. 
               kk1=0.;kk2=0;       Look at hpijx to understand the reason of that which relies in memory size
               for(i=1; i<=nlstate;i++) {                     and note for a fixed period like estepm months */
                 if (mobilav==1)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       survival function given by stepm (the optimization length). Unfortunately it
                 else {       means that if the survival funtion is printed only each two years of age and if
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                 }       results. So we changed our mind and took the option of the best precision.
                    */
               }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               if (h==(int)(calagedate+12*cpt)){  
                 fprintf(ficresf," %.3f", kk1);    agelim=AGESUP;
                            /* nhstepm age range expressed in number of stepm */
               }    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
             }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           }    /* if (stepm >= YEARM) hstepm=1;*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }  
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                 in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   fclose(ficresf);   
 }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      /* Computing  Variances of health expectancies */
        /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;         decrease memory allocation */
   int *popage;       printf("%d|",(int)age);fflush(stdout);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double *popeffectif,*popcount;      /* Computing expectancies */
   double ***p3mat,***tabpop,***tabpopprev;      for(i=1; i<=nlstate;i++)
   char filerespop[FILENAMELENGTH];        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            
   agelim=AGESUP;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
            }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
        fprintf(ficreseij,"%3.0f",age );
        for(i=1; i<=nlstate;i++){
   strcpy(filerespop,"pop");        eip=0;
   strcat(filerespop,fileres);        for(j=1; j<=nlstate;j++){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          eip +=eij[i][j][(int)age];
     printf("Problem with forecast resultfile: %s\n", filerespop);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   }        }
   printf("Computing forecasting: result on file '%s' \n", filerespop);        fprintf(ficreseij,"%9.4f", eip );
       }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      fprintf(ficreseij,"\n");
   
   if (mobilav==1) {    }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    printf("\n");
   }    fprintf(ficlog,"\n");
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;  }
   if (stepm<=12) stepsize=1;  
    void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   agelim=AGESUP;  
    {
   hstepm=1;    /* Covariances of health expectancies eij and of total life expectancies according
   hstepm=hstepm/stepm;     to initial status i, ei. .
      */
   if (popforecast==1) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     if((ficpop=fopen(popfile,"r"))==NULL) {    double age, agelim, hf;
       printf("Problem with population file : %s\n",popfile);exit(0);    double ***p3matp, ***p3matm, ***varhe;
     }    double **dnewm,**doldm;
     popage=ivector(0,AGESUP);    double *xp, *xm;
     popeffectif=vector(0,AGESUP);    double **gp, **gm;
     popcount=vector(0,AGESUP);    double ***gradg, ***trgradg;
        int theta;
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    double eip, vip;
      
     imx=i;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    xp=vector(1,npar);
   }    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
   for(cptcov=1;cptcov<=i2;cptcov++){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    
       k=k+1;    pstamp(ficresstdeij);
       fprintf(ficrespop,"\n#******");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficresstdeij,"# Age");
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i<=nlstate;i++){
       }      for(j=1; j<=nlstate;j++)
       fprintf(ficrespop,"******\n");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficrespop,"# Age");      fprintf(ficresstdeij," e%1d. ",i);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    }
       if (popforecast==1)  fprintf(ficrespop," [Population]");    fprintf(ficresstdeij,"\n");
        
       for (cpt=0; cpt<=0;cpt++) {    pstamp(ficrescveij);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
            fprintf(ficrescveij,"# Age");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    for(i=1; i<=nlstate;i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(j=1; j<=nlstate;j++){
           nhstepm = nhstepm/hstepm;        cptj= (j-1)*nlstate+i;
                  for(i2=1; i2<=nlstate;i2++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(j2=1; j2<=nlstate;j2++){
           oldm=oldms;savm=savms;            cptj2= (j2-1)*nlstate+i2;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              if(cptj2 <= cptj)
                      fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           for (h=0; h<=nhstepm; h++){          }
             if (h==(int) (calagedate+YEARM*cpt)) {      }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficrescveij,"\n");
             }    
             for(j=1; j<=nlstate+ndeath;j++) {    if(estepm < stepm){
               kk1=0.;kk2=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
               for(i=1; i<=nlstate;i++) {                  }
                 if (mobilav==1)    else  hstepm=estepm;   
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /* We compute the life expectancy from trapezoids spaced every estepm months
                 else {     * This is mainly to measure the difference between two models: for example
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     * if stepm=24 months pijx are given only every 2 years and by summing them
                 }     * we are calculating an estimate of the Life Expectancy assuming a linear 
               }     * progression in between and thus overestimating or underestimating according
               if (h==(int)(calagedate+12*cpt)){     * to the curvature of the survival function. If, for the same date, we 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   /*fprintf(ficrespop," %.3f", kk1);     * to compare the new estimate of Life expectancy with the same linear 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/     * hypothesis. A more precise result, taking into account a more precise
               }     * curvature will be obtained if estepm is as small as stepm. */
             }  
             for(i=1; i<=nlstate;i++){    /* For example we decided to compute the life expectancy with the smallest unit */
               kk1=0.;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 for(j=1; j<=nlstate;j++){       nhstepm is the number of hstepm from age to agelim 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];       nstepm is the number of stepm from age to agelin. 
                 }       Look at hpijx to understand the reason of that which relies in memory size
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];       and note for a fixed period like estepm months */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)       means that if the survival funtion is printed only each two years of age and if
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           }       results. So we changed our mind and took the option of the best precision.
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       }  
      /* If stepm=6 months */
   /******/    /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* if (stepm >= YEARM) hstepm=1;*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           nhstepm = nhstepm/hstepm;    
              p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           for (h=0; h<=nhstepm; h++){    gp=matrix(0,nhstepm,1,nlstate*nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {    gm=matrix(0,nhstepm,1,nlstate*nlstate);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    for (age=bage; age<=fage; age ++){ 
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
               for(i=1; i<=nlstate;i++) {                       in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];       
               }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  
             }      /* Computing  Variances of health expectancies */
           }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         decrease memory allocation */
         }      for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ 
    }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
          }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   if (popforecast==1) {    
     free_ivector(popage,0,AGESUP);        for(j=1; j<= nlstate; j++){
     free_vector(popeffectif,0,AGESUP);          for(i=1; i<=nlstate; i++){
     free_vector(popcount,0,AGESUP);            for(h=0; h<=nhstepm-1; h++){
   }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   fclose(ficrespop);          }
 }        }
        
 /***********************************************/        for(ij=1; ij<= nlstate*nlstate; ij++)
 /**************** Main Program *****************/          for(h=0; h<=nhstepm-1; h++){
 /***********************************************/            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
 int main(int argc, char *argv[])      }/* End theta */
 {      
       
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      for(h=0; h<=nhstepm-1; h++)
   double agedeb, agefin,hf;        for(j=1; j<=nlstate*nlstate;j++)
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   double fret;      
   double **xi,tmp,delta;  
        for(ij=1;ij<=nlstate*nlstate;ij++)
   double dum; /* Dummy variable */        for(ji=1;ji<=nlstate*nlstate;ji++)
   double ***p3mat;          varhe[ij][ji][(int)age] =0.;
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];       printf("%d|",(int)age);fflush(stdout);
   char title[MAXLINE];       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];       for(h=0;h<=nhstepm-1;h++){
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        for(k=0;k<=nhstepm-1;k++){
            matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
   char filerest[FILENAMELENGTH];            for(ji=1;ji<=nlstate*nlstate;ji++)
   char fileregp[FILENAMELENGTH];              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   char popfile[FILENAMELENGTH];        }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      }
   int firstobs=1, lastobs=10;      /* Computing expectancies */
   int sdeb, sfin; /* Status at beginning and end */      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   int c,  h , cpt,l;      for(i=1; i<=nlstate;i++)
   int ju,jl, mi;        for(j=1; j<=nlstate;j++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   int mobilav=0,popforecast=0;            
   int hstepm, nhstepm;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
           }
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;      fprintf(ficresstdeij,"%3.0f",age );
   double **prlim;      for(i=1; i<=nlstate;i++){
   double *severity;        eip=0.;
   double ***param; /* Matrix of parameters */        vip=0.;
   double  *p;        for(j=1; j<=nlstate;j++){
   double **matcov; /* Matrix of covariance */          eip += eij[i][j][(int)age];
   double ***delti3; /* Scale */          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   double *delti; /* Scale */            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   double ***eij, ***vareij;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   double **varpl; /* Variances of prevalence limits by age */        }
   double *epj, vepp;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   double kk1, kk2;      }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      fprintf(ficresstdeij,"\n");
    
       fprintf(ficrescveij,"%3.0f",age );
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";      for(i=1; i<=nlstate;i++)
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
   char z[1]="c", occ;            for(j2=1; j2<=nlstate;j2++){
 #include <sys/time.h>              cptj2= (j2-1)*nlstate+i2;
 #include <time.h>              if(cptj2 <= cptj)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
              }
   /* long total_usecs;        }
   struct timeval start_time, end_time;      fprintf(ficrescveij,"\n");
       
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    }
   getcwd(pathcd, size);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   printf("\n%s",version);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   if(argc <=1){    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     printf("\nEnter the parameter file name: ");    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     scanf("%s",pathtot);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    printf("\n");
   else{    fprintf(ficlog,"\n");
     strcpy(pathtot,argv[1]);  
   }    free_vector(xm,1,npar);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    free_vector(xp,1,npar);
   /*cygwin_split_path(pathtot,path,optionfile);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   /* cutv(path,optionfile,pathtot,'\\');*/    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  /************ Variance ******************/
   chdir(path);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   replace(pathc,path);  {
     /* Variance of health expectancies */
 /*-------- arguments in the command line --------*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
   strcpy(fileres,"r");    double **dnewm,**doldm;
   strcat(fileres, optionfilefiname);    double **dnewmp,**doldmp;
   strcat(fileres,".txt");    /* Other files have txt extension */    int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
   /*---------arguments file --------*/    double *xp;
     double **gp, **gm;  /* for var eij */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    double ***gradg, ***trgradg; /*for var eij */
     printf("Problem with optionfile %s\n",optionfile);    double **gradgp, **trgradgp; /* for var p point j */
     goto end;    double *gpp, *gmp; /* for var p point j */
   }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
   strcpy(filereso,"o");    double age,agelim, hf;
   strcat(filereso,fileres);    double ***mobaverage;
   if((ficparo=fopen(filereso,"w"))==NULL) {    int theta;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    char digit[4];
   }    char digitp[25];
   
   /* Reads comments: lines beginning with '#' */    char fileresprobmorprev[FILENAMELENGTH];
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    if(popbased==1){
     fgets(line, MAXLINE, ficpar);      if(mobilav!=0)
     puts(line);        strcpy(digitp,"-populbased-mobilav-");
     fputs(line,ficparo);      else strcpy(digitp,"-populbased-nomobil-");
   }    }
   ungetc(c,ficpar);    else 
       strcpy(digitp,"-stablbased-");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    if (mobilav!=0) {
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 while((c=getc(ficpar))=='#' && c!= EOF){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     ungetc(c,ficpar);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fgets(line, MAXLINE, ficpar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     puts(line);      }
     fputs(line,ficparo);    }
   }  
   ungetc(c,ficpar);    strcpy(fileresprobmorprev,"prmorprev"); 
      sprintf(digit,"%-d",ij);
        /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   covar=matrix(0,NCOVMAX,1,n);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   cptcovn=0;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   ncovmodel=2+cptcovn;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
   /* Read guess parameters */    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /* Reads comments: lines beginning with '#' */   
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     ungetc(c,ficpar);    pstamp(ficresprobmorprev);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     puts(line);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     fputs(line,ficparo);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }      fprintf(ficresprobmorprev," p.%-d SE",j);
   ungetc(c,ficpar);      for(i=1; i<=nlstate;i++)
          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    }  
     for(i=1; i <=nlstate; i++)    fprintf(ficresprobmorprev,"\n");
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(ficgp,"\n# Routine varevsij");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       printf("%1d%1d",i,j);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       for(k=1; k<=ncovmodel;k++){  /*   } */
         fscanf(ficpar," %lf",&param[i][j][k]);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         printf(" %lf",param[i][j][k]);    pstamp(ficresvij);
         fprintf(ficparo," %lf",param[i][j][k]);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       }    if(popbased==1)
       fscanf(ficpar,"\n");      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
       printf("\n");    else
       fprintf(ficparo,"\n");      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     }    fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   p=param[1][1];    fprintf(ficresvij,"\n");
    
   /* Reads comments: lines beginning with '#' */    xp=vector(1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    dnewm=matrix(1,nlstate,1,npar);
     ungetc(c,ficpar);    doldm=matrix(1,nlstate,1,nlstate);
     fgets(line, MAXLINE, ficpar);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     puts(line);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);  
   }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    
   for(i=1; i <=nlstate; i++){    if(estepm < stepm){
     for(j=1; j <=nlstate+ndeath-1; j++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       printf("%1d%1d",i,j);    else  hstepm=estepm;   
       fprintf(ficparo,"%1d%1d",i1,j1);    /* For example we decided to compute the life expectancy with the smallest unit */
       for(k=1; k<=ncovmodel;k++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fscanf(ficpar,"%le",&delti3[i][j][k]);       nhstepm is the number of hstepm from age to agelim 
         printf(" %le",delti3[i][j][k]);       nstepm is the number of stepm from age to agelin. 
         fprintf(ficparo," %le",delti3[i][j][k]);       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like k years */
       fscanf(ficpar,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       printf("\n");       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficparo,"\n");       means that if the survival funtion is printed every two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
   delti=delti3[1][1];    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /* Reads comments: lines beginning with '#' */    agelim = AGESUP;
   while((c=getc(ficpar))=='#' && c!= EOF){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     ungetc(c,ficpar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fgets(line, MAXLINE, ficpar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     puts(line);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficparo);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   }      gp=matrix(0,nhstepm,1,nlstate);
   ungetc(c,ficpar);      gm=matrix(0,nhstepm,1,nlstate);
    
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){      for(theta=1; theta <=npar; theta++){
     fscanf(ficpar,"%s",&str);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     printf("%s",str);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fprintf(ficparo,"%s",str);        }
     for(j=1; j <=i; j++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fscanf(ficpar," %le",&matcov[i][j]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);        if (popbased==1) {
     }          if(mobilav ==0){
     fscanf(ficpar,"\n");            for(i=1; i<=nlstate;i++)
     printf("\n");              prlim[i][i]=probs[(int)age][i][ij];
     fprintf(ficparo,"\n");          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
   for(i=1; i <=npar; i++)              prlim[i][i]=mobaverage[(int)age][i][ij];
     for(j=i+1;j<=npar;j++)          }
       matcov[i][j]=matcov[j][i];        }
        
   printf("\n");        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     /*-------- Rewriting paramater file ----------*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
      strcpy(rfileres,"r");    /* "Rparameterfile */          }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        }
      strcat(rfileres,".");    /* */        /* This for computing probability of death (h=1 means
      strcat(rfileres,optionfilext);    /* Other files have txt extension */           computed over hstepm matrices product = hstepm*stepm months) 
     if((ficres =fopen(rfileres,"w"))==NULL) {           as a weighted average of prlim.
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        */
     }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fprintf(ficres,"#%s\n",version);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                gpp[j] += prlim[i][i]*p3mat[i][j][1];
     /*-------- data file ----------*/        }    
     if((fic=fopen(datafile,"r"))==NULL)    {        /* end probability of death */
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
     n= lastobs;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     severity = vector(1,maxwav);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     outcome=imatrix(1,maxwav+1,1,n);   
     num=ivector(1,n);        if (popbased==1) {
     moisnais=vector(1,n);          if(mobilav ==0){
     annais=vector(1,n);            for(i=1; i<=nlstate;i++)
     moisdc=vector(1,n);              prlim[i][i]=probs[(int)age][i][ij];
     andc=vector(1,n);          }else{ /* mobilav */ 
     agedc=vector(1,n);            for(i=1; i<=nlstate;i++)
     cod=ivector(1,n);              prlim[i][i]=mobaverage[(int)age][i][ij];
     weight=vector(1,n);          }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        }
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);        for(j=1; j<= nlstate; j++){
     s=imatrix(1,maxwav+1,1,n);          for(h=0; h<=nhstepm; h++){
     adl=imatrix(1,maxwav+1,1,n);                for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     tab=ivector(1,NCOVMAX);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     ncodemax=ivector(1,8);          }
         }
     i=1;        /* This for computing probability of death (h=1 means
     while (fgets(line, MAXLINE, fic) != NULL)    {           computed over hstepm matrices product = hstepm*stepm months) 
       if ((i >= firstobs) && (i <=lastobs)) {           as a weighted average of prlim.
                */
         for (j=maxwav;j>=1;j--){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           strcpy(line,stra);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }    
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        /* end probability of death */
         }  
                for(j=1; j<= nlstate; j++) /* vareij */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(h=0; h<=nhstepm; h++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         for (j=ncovcol;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      } /* End theta */
         }  
         num[i]=atol(stra);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
          
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      for(h=0; h<=nhstepm; h++) /* veij */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
         i=i+1;            trgradg[h][j][theta]=gradg[h][theta][j];
       }  
     }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     /* printf("ii=%d", ij);        for(theta=1; theta <=npar; theta++)
        scanf("%d",i);*/          trgradgp[j][theta]=gradgp[theta][j];
   imx=i-1; /* Number of individuals */    
   
   /* for (i=1; i<=imx; i++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      for(i=1;i<=nlstate;i++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        for(j=1;j<=nlstate;j++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          vareij[i][j][(int)age] =0.;
     }*/  
    /*  for (i=1; i<=imx; i++){      for(h=0;h<=nhstepm;h++){
      if (s[4][i]==9)  s[4][i]=-1;        for(k=0;k<=nhstepm;k++){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            for(i=1;i<=nlstate;i++)
   /* Calculation of the number of parameter from char model*/            for(j=1;j<=nlstate;j++)
   Tvar=ivector(1,15);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   Tprod=ivector(1,15);        }
   Tvaraff=ivector(1,15);      }
   Tvard=imatrix(1,15,1,2);    
   Tage=ivector(1,15);            /* pptj */
          matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   if (strlen(model) >1){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     j=0, j1=0, k1=1, k2=1;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     j=nbocc(model,'+');        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     j1=nbocc(model,'*');          varppt[j][i]=doldmp[j][i];
     cptcovn=j+1;      /* end ppptj */
     cptcovprod=j1;      /*  x centered again */
          hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     strcpy(modelsav,model);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){   
       printf("Error. Non available option model=%s ",model);      if (popbased==1) {
       goto end;        if(mobilav ==0){
     }          for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
     for(i=(j+1); i>=1;i--){        }else{ /* mobilav */ 
       cutv(stra,strb,modelsav,'+');          for(i=1; i<=nlstate;i++)
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            prlim[i][i]=mobaverage[(int)age][i][ij];
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        }
       /*scanf("%d",i);*/      }
       if (strchr(strb,'*')) {               
         cutv(strd,strc,strb,'*');      /* This for computing probability of death (h=1 means
         if (strcmp(strc,"age")==0) {         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           cptcovprod--;         as a weighted average of prlim.
           cutv(strb,stre,strd,'V');      */
           Tvar[i]=atoi(stre);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           cptcovage++;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
             Tage[cptcovage]=i;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
             /*printf("stre=%s ", stre);*/      }    
         }      /* end probability of death */
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           cutv(strb,stre,strc,'V');      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           Tvar[i]=atoi(stre);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           cptcovage++;        for(i=1; i<=nlstate;i++){
           Tage[cptcovage]=i;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }        }
         else {      } 
           cutv(strb,stre,strc,'V');      fprintf(ficresprobmorprev,"\n");
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V');      fprintf(ficresvij,"%.0f ",age );
           Tprod[k1]=i;      for(i=1; i<=nlstate;i++)
           Tvard[k1][1]=atoi(strc);        for(j=1; j<=nlstate;j++){
           Tvard[k1][2]=atoi(stre);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           Tvar[cptcovn+k2]=Tvard[k1][1];        }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      fprintf(ficresvij,"\n");
           for (k=1; k<=lastobs;k++)      free_matrix(gp,0,nhstepm,1,nlstate);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      free_matrix(gm,0,nhstepm,1,nlstate);
           k1++;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           k2=k2+2;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    } /* End age */
       else {    free_vector(gpp,nlstate+1,nlstate+ndeath);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
        /*  scanf("%d",i);*/    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       cutv(strd,strc,strb,'V');    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       Tvar[i]=atoi(strc);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       strcpy(modelsav,stra);      fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         scanf("%d",i);*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   printf("cptcovprod=%d ", cptcovprod);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   scanf("%d ",i);*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fclose(fic);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
     /*  if(mle==1){*/  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     if (weightopt != 1) { /* Maximisation without weights*/    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }    free_vector(xp,1,npar);
     /*-calculation of age at interview from date of interview and age at death -*/    free_matrix(doldm,1,nlstate,1,nlstate);
     agev=matrix(1,maxwav,1,imx);    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for (i=1; i<=imx; i++) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       for(m=2; (m<= maxwav); m++) {    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
          anint[m][i]=9999;    fclose(ficresprobmorprev);
          s[m][i]=-1;    fflush(ficgp);
        }    fflush(fichtm); 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  }  /* end varevsij */
       }  
     }  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     for (i=1; i<=imx; i++)  {  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    /* Variance of prevalence limit */
       for(m=1; (m<= maxwav); m++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         if(s[m][i] >0){    double **newm;
           if (s[m][i] >= nlstate+1) {    double **dnewm,**doldm;
             if(agedc[i]>0)    int i, j, nhstepm, hstepm;
               if(moisdc[i]!=99 && andc[i]!=9999)    int k, cptcode;
                 agev[m][i]=agedc[i];    double *xp;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    double *gp, *gm;
            else {    double **gradg, **trgradg;
               if (andc[i]!=9999){    double age,agelim;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    int theta;
               agev[m][i]=-1;    
               }    pstamp(ficresvpl);
             }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
           }    fprintf(ficresvpl,"# Age");
           else if(s[m][i] !=9){ /* Should no more exist */    for(i=1; i<=nlstate;i++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        fprintf(ficresvpl," %1d-%1d",i,i);
             if(mint[m][i]==99 || anint[m][i]==9999)    fprintf(ficresvpl,"\n");
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){    xp=vector(1,npar);
               agemin=agev[m][i];    dnewm=matrix(1,nlstate,1,npar);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    doldm=matrix(1,nlstate,1,nlstate);
             }    
             else if(agev[m][i] >agemax){    hstepm=1*YEARM; /* Every year of age */
               agemax=agev[m][i];    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    agelim = AGESUP;
             }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             /*agev[m][i]=anint[m][i]-annais[i];*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             /*   agev[m][i] = age[i]+2*m;*/      if (stepm >= YEARM) hstepm=1;
           }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           else { /* =9 */      gradg=matrix(1,npar,1,nlstate);
             agev[m][i]=1;      gp=vector(1,nlstate);
             s[m][i]=-1;      gm=vector(1,nlstate);
           }  
         }      for(theta=1; theta <=npar; theta++){
         else /*= 0 Unknown */        for(i=1; i<=npar; i++){ /* Computes gradient */
           agev[m][i]=1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }        for(i=1;i<=nlstate;i++)
     for (i=1; i<=imx; i++)  {          gp[i] = prlim[i][i];
       for(m=1; (m<= maxwav); m++){      
         if (s[m][i] > (nlstate+ndeath)) {        for(i=1; i<=npar; i++) /* Computes gradient */
           printf("Error: Wrong value in nlstate or ndeath\n");            xp[i] = x[i] - (i==theta ?delti[theta]:0);
           goto end;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }        for(i=1;i<=nlstate;i++)
       }          gm[i] = prlim[i][i];
     }  
         for(i=1;i<=nlstate;i++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);      trgradg =matrix(1,nlstate,1,npar);
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);      for(j=1; j<=nlstate;j++)
     /* free_matrix(mint,1,maxwav,1,n);        for(theta=1; theta <=npar; theta++)
        free_matrix(anint,1,maxwav,1,n);*/          trgradg[j][theta]=gradg[theta][j];
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
          matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     wav=ivector(1,imx);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      for(i=1;i<=nlstate;i++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
      
     /* Concatenates waves */      fprintf(ficresvpl,"%.0f ",age );
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       Tcode=ivector(1,100);      free_vector(gp,1,nlstate);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      free_vector(gm,1,nlstate);
       ncodemax[1]=1;      free_matrix(gradg,1,npar,1,nlstate);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      free_matrix(trgradg,1,nlstate,1,npar);
          } /* End age */
    codtab=imatrix(1,100,1,10);  
    h=0;    free_vector(xp,1,npar);
    m=pow(2,cptcoveff);    free_matrix(doldm,1,nlstate,1,npar);
      free_matrix(dnewm,1,nlstate,1,nlstate);
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){  }
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /************ Variance of one-step probabilities  ******************/
            h++;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  {
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    int i, j=0,  i1, k1, l1, t, tj;
          }    int k2, l2, j1,  z1;
        }    int k=0,l, cptcode;
      }    int first=1, first1;
    }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    double **dnewm,**doldm;
       codtab[1][2]=1;codtab[2][2]=2; */    double *xp;
    /* for(i=1; i <=m ;i++){    double *gp, *gm;
       for(k=1; k <=cptcovn; k++){    double **gradg, **trgradg;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    double **mu;
       }    double age,agelim, cov[NCOVMAX];
       printf("\n");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       }    int theta;
       scanf("%d",i);*/    char fileresprob[FILENAMELENGTH];
        char fileresprobcov[FILENAMELENGTH];
    /* Calculates basic frequencies. Computes observed prevalence at single age    char fileresprobcor[FILENAMELENGTH];
        and prints on file fileres'p'. */  
     double ***varpij;
      
        strcpy(fileresprob,"prob"); 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcat(fileresprob,fileres);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf("Problem with resultfile: %s\n", fileresprob);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    }
          strcpy(fileresprobcov,"probcov"); 
     /* For Powell, parameters are in a vector p[] starting at p[1]    strcat(fileresprobcov,fileres);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     if(mle==1){    }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    strcpy(fileresprobcor,"probcor"); 
     }    strcat(fileresprobcor,fileres);
        if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     /*--------- results files --------------*/      printf("Problem with resultfile: %s\n", fileresprobcor);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
      }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    jk=1;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
    for(i=1,jk=1; i <=nlstate; i++){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      for(k=1; k <=(nlstate+ndeath); k++){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
        if (k != i)    pstamp(ficresprob);
          {    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
            printf("%d%d ",i,k);    fprintf(ficresprob,"# Age");
            fprintf(ficres,"%1d%1d ",i,k);    pstamp(ficresprobcov);
            for(j=1; j <=ncovmodel; j++){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
              printf("%f ",p[jk]);    fprintf(ficresprobcov,"# Age");
              fprintf(ficres,"%f ",p[jk]);    pstamp(ficresprobcor);
              jk++;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
            }    fprintf(ficresprobcor,"# Age");
            printf("\n");  
            fprintf(ficres,"\n");  
          }    for(i=1; i<=nlstate;i++)
      }      for(j=1; j<=(nlstate+ndeath);j++){
    }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
  if(mle==1){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     /* Computing hessian and covariance matrix */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     ftolhess=ftol; /* Usually correct */      }  
     hesscov(matcov, p, npar, delti, ftolhess, func);   /* fprintf(ficresprob,"\n");
  }    fprintf(ficresprobcov,"\n");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    fprintf(ficresprobcor,"\n");
     printf("# Scales (for hessian or gradient estimation)\n");   */
      for(i=1,jk=1; i <=nlstate; i++){   xp=vector(1,npar);
       for(j=1; j <=nlstate+ndeath; j++){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         if (j!=i) {    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           fprintf(ficres,"%1d%1d",i,j);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           printf("%1d%1d",i,j);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           for(k=1; k<=ncovmodel;k++){    first=1;
             printf(" %.5e",delti[jk]);    fprintf(ficgp,"\n# Routine varprob");
             fprintf(ficres," %.5e",delti[jk]);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
             jk++;    fprintf(fichtm,"\n");
           }  
           printf("\n");    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           fprintf(ficres,"\n");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         }    file %s<br>\n",optionfilehtmcov);
       }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
      }  and drawn. It helps understanding how is the covariance between two incidences.\
       They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     k=1;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     for(i=1;i<=npar;i++){  standard deviations wide on each axis. <br>\
       /*  if (k>nlstate) k=1;   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       i1=(i-1)/(ncovmodel*nlstate)+1;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       printf("%s%d%d",alph[k],i1,tab[i]);*/  
       fprintf(ficres,"%3d",i);    cov[1]=1;
       printf("%3d",i);    tj=cptcoveff;
       for(j=1; j<=i;j++){    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         fprintf(ficres," %.5e",matcov[i][j]);    j1=0;
         printf(" %.5e",matcov[i][j]);    for(t=1; t<=tj;t++){
       }      for(i1=1; i1<=ncodemax[t];i1++){ 
       fprintf(ficres,"\n");        j1++;
       printf("\n");        if  (cptcovn>0) {
       k++;          fprintf(ficresprob, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresprob, "**********\n#\n");
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcov, "\n#********** Variable "); 
       ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fgets(line, MAXLINE, ficpar);          fprintf(ficresprobcov, "**********\n#\n");
       puts(line);          
       fputs(line,ficparo);          fprintf(ficgp, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ungetc(c,ficpar);          fprintf(ficgp, "**********\n#\n");
     estepm=0;          
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          
     if (estepm==0 || estepm < stepm) estepm=stepm;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     if (fage <= 2) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       bage = ageminpar;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       fage = agemaxpar;          
     }          fprintf(ficresprobcor, "\n#********** Variable ");    
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fprintf(ficresprobcor, "**********\n#");    
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        
          for (age=bage; age<=fage; age ++){ 
     while((c=getc(ficpar))=='#' && c!= EOF){          cov[2]=age;
     ungetc(c,ficpar);          for (k=1; k<=cptcovn;k++) {
     fgets(line, MAXLINE, ficpar);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     puts(line);          }
     fputs(line,ficparo);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }          for (k=1; k<=cptcovprod;k++)
   ungetc(c,ficpar);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          gp=vector(1,(nlstate)*(nlstate+ndeath));
                gm=vector(1,(nlstate)*(nlstate+ndeath));
   while((c=getc(ficpar))=='#' && c!= EOF){      
     ungetc(c,ficpar);          for(theta=1; theta <=npar; theta++){
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=npar; i++)
     puts(line);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     fputs(line,ficparo);            
   }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   ungetc(c,ficpar);            
              k=0;
             for(i=1; i<= (nlstate); i++){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;              for(j=1; j<=(nlstate+ndeath);j++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                k=k+1;
                 gp[k]=pmmij[i][j];
   fscanf(ficpar,"pop_based=%d\n",&popbased);              }
   fprintf(ficparo,"pop_based=%d\n",popbased);              }
   fprintf(ficres,"pop_based=%d\n",popbased);              
              for(i=1; i<=npar; i++)
   while((c=getc(ficpar))=='#' && c!= EOF){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     puts(line);            k=0;
     fputs(line,ficparo);            for(i=1; i<=(nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
   ungetc(c,ficpar);                k=k+1;
                 gm[k]=pmmij[i][j];
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);              }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     puts(line);            for(theta=1; theta <=npar; theta++)
     fputs(line,ficparo);              trgradg[j][theta]=gradg[theta][j];
   }          
   ungetc(c,ficpar);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
 /*------------ gnuplot -------------*/          
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);          k=0;
            for(i=1; i<=(nlstate); i++){
 /*------------ free_vector  -------------*/            for(j=1; j<=(nlstate+ndeath);j++){
  chdir(path);              k=k+1;
                mu[k][(int) age]=pmmij[i][j];
  free_ivector(wav,1,imx);            }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
  free_ivector(num,1,n);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
  free_vector(agedc,1,n);              varpij[i][j][(int)age] = doldm[i][j];
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);          /*printf("\n%d ",(int)age);
  fclose(ficres);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 /*--------- index.htm --------*/            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);  
           fprintf(ficresprob,"\n%d ",(int)age);
            fprintf(ficresprobcov,"\n%d ",(int)age);
   /*--------------- Prevalence limit --------------*/          fprintf(ficresprobcor,"\n%d ",(int)age);
    
   strcpy(filerespl,"pl");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   strcat(filerespl,fileres);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          }
   fprintf(ficrespl,"#Prevalence limit\n");          i=0;
   fprintf(ficrespl,"#Age ");          for (k=1; k<=(nlstate);k++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            for (l=1; l<=(nlstate+ndeath);l++){ 
   fprintf(ficrespl,"\n");              i=i++;
                fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   prlim=matrix(1,nlstate,1,nlstate);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              for (j=1; j<=i;j++){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            }
   k=0;          }/* end of loop for state */
   agebase=ageminpar;        } /* end of loop for age */
   agelim=agemaxpar;  
   ftolpl=1.e-10;        /* Confidence intervalle of pij  */
   i1=cptcoveff;        /*
   if (cptcovn < 1){i1=1;}          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         k=k+1;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         fprintf(ficrespl,"\n#******");          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         for(j=1;j<=cptcoveff;j++)        */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                first1=1;
         for (age=agebase; age<=agelim; age++){        for (k2=1; k2<=(nlstate);k2++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           fprintf(ficrespl,"%.0f",age );            if(l2==k2) continue;
           for(i=1; i<=nlstate;i++)            j=(k2-1)*(nlstate+ndeath)+l2;
           fprintf(ficrespl," %.5f", prlim[i][i]);            for (k1=1; k1<=(nlstate);k1++){
           fprintf(ficrespl,"\n");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         }                if(l1==k1) continue;
       }                i=(k1-1)*(nlstate+ndeath)+l1;
     }                if(i<=j) continue;
   fclose(ficrespl);                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
   /*------------- h Pij x at various ages ------------*/                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                    mu1=mu[i][(int) age]/stepm*YEARM ;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                    mu2=mu[j][(int) age]/stepm*YEARM;
   }                    c12=cv12/sqrt(v1*v2);
   printf("Computing pij: result on file '%s' \n", filerespij);                    /* Computing eigen value of matrix of covariance */
                      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   /*if (stepm<=24) stepsize=2;*/                    /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   agelim=AGESUP;                    /*v21=sqrt(1.-v11*v11); *//* error */
   hstepm=stepsize*YEARM; /* Every year of age */                    v21=(lc1-v1)/cv12*v11;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                    v12=-v21;
                      v22=v11;
   k=0;                    tnalp=v21/v11;
   for(cptcov=1;cptcov<=i1;cptcov++){                    if(first1==1){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      first1=0;
       k=k+1;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         fprintf(ficrespij,"\n#****** ");                    }
         for(j=1;j<=cptcoveff;j++)                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    /*printf(fignu*/
         fprintf(ficrespij,"******\n");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                            /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                    if(first==1){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                      first=0;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                      fprintf(ficgp,"\nset parametric;unset label");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
           oldm=oldms;savm=savms;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                        fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           fprintf(ficrespij,"# Age");   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           for(i=1; i<=nlstate;i++)  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
             for(j=1; j<=nlstate+ndeath;j++)                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
               fprintf(ficrespij," %1d-%1d",i,j);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           fprintf(ficrespij,"\n");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
            for (h=0; h<=nhstepm; h++){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               for(j=1; j<=nlstate+ndeath;j++)                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             fprintf(ficrespij,"\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
              }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    }else{
           fprintf(ficrespij,"\n");                      first=0;
         }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   fclose(ficrespij);                    }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
   /*---------- Forecasting ------------------*/                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   if((stepm == 1) && (strcmp(model,".")==0)){                first=1;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);              } /*l12 */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);            } /* k12 */
   }          } /*l1 */
   else{        }/* k1 */
     erreur=108;      } /* loop covariates */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    }
   }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   /*---------- Health expectancies and variances ------------*/    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
   strcpy(filerest,"t");    fclose(ficresprob);
   strcat(filerest,fileres);    fclose(ficresprobcov);
   if((ficrest=fopen(filerest,"w"))==NULL) {    fclose(ficresprobcor);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    fflush(ficgp);
   }    fflush(fichtmcov);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  }
   
   
   strcpy(filerese,"e");  /******************* Printing html file ***********/
   strcat(filerese,fileres);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   if((ficreseij=fopen(filerese,"w"))==NULL) {                    int lastpass, int stepm, int weightopt, char model[],\
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   }                    int popforecast, int estepm ,\
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                    double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
  strcpy(fileresv,"v");    int jj1, k1, i1, cpt;
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   }  </ul>");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   calagedate=-1;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
   k=0;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   for(cptcov=1;cptcov<=i1;cptcov++){             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     fprintf(fichtm,"\
       k=k+1;   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficrest,"\n#****** ");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       for(j=1;j<=cptcoveff;j++)     fprintf(fichtm,"\
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
       fprintf(ficrest,"******\n");     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       fprintf(ficreseij,"******\n");  
    m=cptcoveff;
       fprintf(ficresvij,"\n#****** ");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   jj1=0;
       fprintf(ficresvij,"******\n");   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       jj1++;
       oldm=oldms;savm=savms;       if (cptcovn > 0) {
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       oldm=oldms;savm=savms;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);       }
           /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
    <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");       /* Quasi-incidences */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       fprintf(ficrest,"\n");   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       epj=vector(1,nlstate+1);         /* Period (stable) prevalence in each health state */
       for(age=bage; age <=fage ;age++){         for(cpt=1; cpt<nlstate;cpt++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
         if (popbased==1) {  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           for(i=1; i<=nlstate;i++)         }
             prlim[i][i]=probs[(int)age][i][k];       for(cpt=1; cpt<=nlstate;cpt++) {
         }          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
          <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         fprintf(ficrest," %4.0f",age);       }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){     } /* end i1 */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   }/* End k1 */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];   fprintf(fichtm,"</ul>");
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }  
           epj[nlstate+1] +=epj[j];   fprintf(fichtm,"\
         }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             vepp += vareij[i][j][(int)age];           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));   fprintf(fichtm,"\
         for(j=1;j <=nlstate;j++){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
         }  
         fprintf(ficrest,"\n");   fprintf(fichtm,"\
       }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   }   fprintf(fichtm,"\
 free_matrix(mint,1,maxwav,1,n);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);     <a href=\"%s\">%s</a> <br>\n</li>",
     free_vector(weight,1,n);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   fclose(ficreseij);   fprintf(fichtm,"\
   fclose(ficresvij);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   fclose(ficrest);     <a href=\"%s\">%s</a> <br>\n</li>",
   fclose(ficpar);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   free_vector(epj,1,nlstate+1);   fprintf(fichtm,"\
     - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   /*------- Variance limit prevalence------*/             estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
   strcpy(fileresvpl,"vpl");   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
   strcat(fileresvpl,fileres);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {   fprintf(fichtm,"\
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
     exit(0);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   k=0;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   for(cptcov=1;cptcov<=i1;cptcov++){  /*      <br>",fileres,fileres,fileres,fileres); */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*  else  */
       k=k+1;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       fprintf(ficresvpl,"\n#****** ");   fflush(fichtm);
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");   m=cptcoveff;
         if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;   jj1=0;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);   for(k1=1; k1<=m;k1++){
     }     for(i1=1; i1<=ncodemax[k1];i1++){
  }       jj1++;
        if (cptcovn > 0) {
   fclose(ficresvpl);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   /*---------- End : free ----------------*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       for(cpt=1; cpt<=nlstate;cpt++) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
    prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  health expectancies in states (1) and (2): %s%d.png<br>\
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       } /* end i1 */
   free_matrix(matcov,1,npar,1,npar);   }/* End k1 */
   free_vector(delti,1,npar);   fprintf(fichtm,"</ul>");
   free_matrix(agev,1,maxwav,1,imx);   fflush(fichtm);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  }
   
   if(erreur >0)  /******************* Gnuplot file **************/
     printf("End of Imach with error or warning %d\n",erreur);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    char dirfileres[132],optfileres[132];
      int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    int ng;
   /*printf("Total time was %d uSec.\n", total_usecs);*/  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*------ End -----------*/  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
  end:  
   /* chdir(pathcd);*/    /*#ifdef windows */
  /*system("wgnuplot graph.plt");*/    fprintf(ficgp,"cd \"%s\" \n",pathc);
  /*system("../gp37mgw/wgnuplot graph.plt");*/      /*#endif */
  /*system("cd ../gp37mgw");*/    m=pow(2,cptcoveff);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);    strcpy(dirfileres,optionfilefiname);
  strcat(plotcmd," ");    strcpy(optfileres,"vpl");
  strcat(plotcmd,optionfilegnuplot);   /* 1eme*/
  system(plotcmd);    for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
  /*#ifdef windows*/       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   while (z[0] != 'q') {       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     /* chdir(path); */       fprintf(ficgp,"set xlabel \"Age\" \n\
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  set ylabel \"Probability\" \n\
     scanf("%s",z);  set ter png small\n\
     if (z[0] == 'c') system("./imach");  set size 0.65,0.65\n\
     else if (z[0] == 'e') system(optionfilehtm);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /*#endif */         else fprintf(ficgp," \%%*lf (\%%*lf)");
 }       }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.117


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>