Diff for /imach/src/imach.c between versions 1.118 and 1.125

version 1.118, 2006/03/14 18:20:07 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): varevsij Comments added explaining the second    Errors in calculation of health expectancies. Age was not initialized.
   table of variances if popbased=1 .    Forecasting file added.
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.  
   (Module): Function pstamp added    Revision 1.124  2006/03/22 17:13:53  lievre
   (Module): Version 0.98d    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   Revision 1.117  2006/03/14 17:16:22  brouard  
   (Module): varevsij Comments added explaining the second    Revision 1.123  2006/03/20 10:52:43  brouard
   table of variances if popbased=1 .    * imach.c (Module): <title> changed, corresponds to .htm file
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    name. <head> headers where missing.
   (Module): Function pstamp added  
   (Module): Version 0.98d    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
   Revision 1.116  2006/03/06 10:29:27  brouard    otherwise the weight is truncated).
   (Module): Variance-covariance wrong links and    Modification of warning when the covariates values are not 0 or
   varian-covariance of ej. is needed (Saito).    1.
     Version 0.98g
   Revision 1.115  2006/02/27 12:17:45  brouard  
   (Module): One freematrix added in mlikeli! 0.98c    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
   Revision 1.114  2006/02/26 12:57:58  brouard    English (a comma might work with a correct LC_NUMERIC environment,
   (Module): Some improvements in processing parameter    otherwise the weight is truncated).
   filename with strsep.    Modification of warning when the covariates values are not 0 or
     1.
   Revision 1.113  2006/02/24 14:20:24  brouard    Version 0.98g
   (Module): Memory leaks checks with valgrind and:  
   datafile was not closed, some imatrix were not freed and on matrix    Revision 1.121  2006/03/16 17:45:01  lievre
   allocation too.    * imach.c (Module): Comments concerning covariates added
   
   Revision 1.112  2006/01/30 09:55:26  brouard    * imach.c (Module): refinements in the computation of lli if
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   Revision 1.111  2006/01/25 20:38:18  brouard  
   (Module): Lots of cleaning and bugs added (Gompertz)    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): Comments can be added in data file. Missing date values    (Module): refinements in the computation of lli if
   can be a simple dot '.'.    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   Revision 1.110  2006/01/25 00:51:50  brouard  
   (Module): Lots of cleaning and bugs added (Gompertz)    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   Revision 1.109  2006/01/24 19:37:15  brouard    computed as likelihood omitting the logarithm. Version O.98e
   (Module): Comments (lines starting with a #) are allowed in data.  
     Revision 1.118  2006/03/14 18:20:07  brouard
   Revision 1.108  2006/01/19 18:05:42  lievre    (Module): varevsij Comments added explaining the second
   Gnuplot problem appeared...    table of variances if popbased=1 .
   To be fixed    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Revision 1.107  2006/01/19 16:20:37  brouard    (Module): Version 0.98d
   Test existence of gnuplot in imach path  
     Revision 1.117  2006/03/14 17:16:22  brouard
   Revision 1.106  2006/01/19 13:24:36  brouard    (Module): varevsij Comments added explaining the second
   Some cleaning and links added in html output    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Revision 1.105  2006/01/05 20:23:19  lievre    (Module): Function pstamp added
   *** empty log message ***    (Module): Version 0.98d
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): Variance-covariance wrong links and
   (Module): If the status is missing at the last wave but we know    varian-covariance of ej. is needed (Saito).
   that the person is alive, then we can code his/her status as -2  
   (instead of missing=-1 in earlier versions) and his/her    Revision 1.115  2006/02/27 12:17:45  brouard
   contributions to the likelihood is 1 - Prob of dying from last    (Module): One freematrix added in mlikeli! 0.98c
   health status (= 1-p13= p11+p12 in the easiest case of somebody in  
   the healthy state at last known wave). Version is 0.98    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
   Revision 1.103  2005/09/30 15:54:49  lievre    filename with strsep.
   (Module): sump fixed, loop imx fixed, and simplifications.  
     Revision 1.113  2006/02/24 14:20:24  brouard
   Revision 1.102  2004/09/15 17:31:30  brouard    (Module): Memory leaks checks with valgrind and:
   Add the possibility to read data file including tab characters.    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
   Revision 1.101  2004/09/15 10:38:38  brouard  
   Fix on curr_time    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
   Revision 1.100  2004/07/12 18:29:06  brouard  
   Add version for Mac OS X. Just define UNIX in Makefile    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   Revision 1.99  2004/06/05 08:57:40  brouard    (Module): Comments can be added in data file. Missing date values
   *** empty log message ***    can be a simple dot '.'.
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   New version 0.97 . First attempt to estimate force of mortality    (Module): Lots of cleaning and bugs added (Gompertz)
   directly from the data i.e. without the need of knowing the health  
   state at each age, but using a Gompertz model: log u =a + b*age .    Revision 1.109  2006/01/24 19:37:15  brouard
   This is the basic analysis of mortality and should be done before any    (Module): Comments (lines starting with a #) are allowed in data.
   other analysis, in order to test if the mortality estimated from the  
   cross-longitudinal survey is different from the mortality estimated    Revision 1.108  2006/01/19 18:05:42  lievre
   from other sources like vital statistic data.    Gnuplot problem appeared...
     To be fixed
   The same imach parameter file can be used but the option for mle should be -3.  
     Revision 1.107  2006/01/19 16:20:37  brouard
   Agnès, who wrote this part of the code, tried to keep most of the    Test existence of gnuplot in imach path
   former routines in order to include the new code within the former code.  
     Revision 1.106  2006/01/19 13:24:36  brouard
   The output is very simple: only an estimate of the intercept and of    Some cleaning and links added in html output
   the slope with 95% confident intervals.  
     Revision 1.105  2006/01/05 20:23:19  lievre
   Current limitations:    *** empty log message ***
   A) Even if you enter covariates, i.e. with the  
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    Revision 1.104  2005/09/30 16:11:43  lievre
   B) There is no computation of Life Expectancy nor Life Table.    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
   Revision 1.97  2004/02/20 13:25:42  lievre    that the person is alive, then we can code his/her status as -2
   Version 0.96d. Population forecasting command line is (temporarily)    (instead of missing=-1 in earlier versions) and his/her
   suppressed.    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
   Revision 1.96  2003/07/15 15:38:55  brouard    the healthy state at last known wave). Version is 0.98
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is  
   rewritten within the same printf. Workaround: many printfs.    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   Revision 1.95  2003/07/08 07:54:34  brouard  
   * imach.c (Repository):    Revision 1.102  2004/09/15 17:31:30  brouard
   (Repository): Using imachwizard code to output a more meaningful covariance    Add the possibility to read data file including tab characters.
   matrix (cov(a12,c31) instead of numbers.  
     Revision 1.101  2004/09/15 10:38:38  brouard
   Revision 1.94  2003/06/27 13:00:02  brouard    Fix on curr_time
   Just cleaning  
     Revision 1.100  2004/07/12 18:29:06  brouard
   Revision 1.93  2003/06/25 16:33:55  brouard    Add version for Mac OS X. Just define UNIX in Makefile
   (Module): On windows (cygwin) function asctime_r doesn't  
   exist so I changed back to asctime which exists.    Revision 1.99  2004/06/05 08:57:40  brouard
   (Module): Version 0.96b    *** empty log message ***
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    New version 0.97 . First attempt to estimate force of mortality
   exist so I changed back to asctime which exists.    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
   Revision 1.91  2003/06/25 15:30:29  brouard    This is the basic analysis of mortality and should be done before any
   * imach.c (Repository): Duplicated warning errors corrected.    other analysis, in order to test if the mortality estimated from the
   (Repository): Elapsed time after each iteration is now output. It    cross-longitudinal survey is different from the mortality estimated
   helps to forecast when convergence will be reached. Elapsed time    from other sources like vital statistic data.
   is stamped in powell.  We created a new html file for the graphs  
   concerning matrix of covariance. It has extension -cov.htm.    The same imach parameter file can be used but the option for mle should be -3.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Agnès, who wrote this part of the code, tried to keep most of the
   (Module): Some bugs corrected for windows. Also, when    former routines in order to include the new code within the former code.
   mle=-1 a template is output in file "or"mypar.txt with the design  
   of the covariance matrix to be input.    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   Revision 1.89  2003/06/24 12:30:52  brouard  
   (Module): Some bugs corrected for windows. Also, when    Current limitations:
   mle=-1 a template is output in file "or"mypar.txt with the design    A) Even if you enter covariates, i.e. with the
   of the covariance matrix to be input.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
   Revision 1.88  2003/06/23 17:54:56  brouard  
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
   Revision 1.87  2003/06/18 12:26:01  brouard    suppressed.
   Version 0.96  
     Revision 1.96  2003/07/15 15:38:55  brouard
   Revision 1.86  2003/06/17 20:04:08  brouard    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   (Module): Change position of html and gnuplot routines and added    rewritten within the same printf. Workaround: many printfs.
   routine fileappend.  
     Revision 1.95  2003/07/08 07:54:34  brouard
   Revision 1.85  2003/06/17 13:12:43  brouard    * imach.c (Repository):
   * imach.c (Repository): Check when date of death was earlier that    (Repository): Using imachwizard code to output a more meaningful covariance
   current date of interview. It may happen when the death was just    matrix (cov(a12,c31) instead of numbers.
   prior to the death. In this case, dh was negative and likelihood  
   was wrong (infinity). We still send an "Error" but patch by    Revision 1.94  2003/06/27 13:00:02  brouard
   assuming that the date of death was just one stepm after the    Just cleaning
   interview.  
   (Repository): Because some people have very long ID (first column)    Revision 1.93  2003/06/25 16:33:55  brouard
   we changed int to long in num[] and we added a new lvector for    (Module): On windows (cygwin) function asctime_r doesn't
   memory allocation. But we also truncated to 8 characters (left    exist so I changed back to asctime which exists.
   truncation)    (Module): Version 0.96b
   (Repository): No more line truncation errors.  
     Revision 1.92  2003/06/25 16:30:45  brouard
   Revision 1.84  2003/06/13 21:44:43  brouard    (Module): On windows (cygwin) function asctime_r doesn't
   * imach.c (Repository): Replace "freqsummary" at a correct    exist so I changed back to asctime which exists.
   place. It differs from routine "prevalence" which may be called  
   many times. Probs is memory consuming and must be used with    Revision 1.91  2003/06/25 15:30:29  brouard
   parcimony.    * imach.c (Repository): Duplicated warning errors corrected.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
   Revision 1.83  2003/06/10 13:39:11  lievre    is stamped in powell.  We created a new html file for the graphs
   *** empty log message ***    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   Add log in  imach.c and  fullversion number is now printed.    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 */    of the covariance matrix to be input.
 /*  
    Interpolated Markov Chain    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
   Short summary of the programme:    mle=-1 a template is output in file "or"mypar.txt with the design
       of the covariance matrix to be input.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.88  2003/06/23 17:54:56  brouard
   first survey ("cross") where individuals from different ages are    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.87  2003/06/18 12:26:01  brouard
   second wave of interviews ("longitudinal") which measure each change    Version 0.96
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.86  2003/06/17 20:04:08  brouard
   model. More health states you consider, more time is necessary to reach the    (Module): Change position of html and gnuplot routines and added
   Maximum Likelihood of the parameters involved in the model.  The    routine fileappend.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.85  2003/06/17 13:12:43  brouard
   conditional to be observed in state i at the first wave. Therefore    * imach.c (Repository): Check when date of death was earlier that
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    current date of interview. It may happen when the death was just
   'age' is age and 'sex' is a covariate. If you want to have a more    prior to the death. In this case, dh was negative and likelihood
   complex model than "constant and age", you should modify the program    was wrong (infinity). We still send an "Error" but patch by
   where the markup *Covariates have to be included here again* invites    assuming that the date of death was just one stepm after the
   you to do it.  More covariates you add, slower the    interview.
   convergence.    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
   The advantage of this computer programme, compared to a simple    memory allocation. But we also truncated to 8 characters (left
   multinomial logistic model, is clear when the delay between waves is not    truncation)
   identical for each individual. Also, if a individual missed an    (Repository): No more line truncation errors.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
   hPijx is the probability to be observed in state i at age x+h    place. It differs from routine "prevalence" which may be called
   conditional to the observed state i at age x. The delay 'h' can be    many times. Probs is memory consuming and must be used with
   split into an exact number (nh*stepm) of unobserved intermediate    parcimony.
   states. This elementary transition (by month, quarter,    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   semester or year) is modelled as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.83  2003/06/10 13:39:11  lievre
   and the contribution of each individual to the likelihood is simply    *** empty log message ***
   hPijx.  
     Revision 1.82  2003/06/05 15:57:20  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Add log in  imach.c and  fullversion number is now printed.
   of the life expectancies. It also computes the period (stable) prevalence.   
     */
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  /*
            Institut national d'études démographiques, Paris.     Interpolated Markov Chain
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Short summary of the programme:
   It is copyrighted identically to a GNU software product, ie programme and   
   software can be distributed freely for non commercial use. Latest version    This program computes Healthy Life Expectancies from
   can be accessed at http://euroreves.ined.fr/imach .    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    interviewed on their health status or degree of disability (in the
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    case of a health survey which is our main interest) -2- at least a
       second wave of interviews ("longitudinal") which measure each change
   **********************************************************************/    (if any) in individual health status.  Health expectancies are
 /*    computed from the time spent in each health state according to a
   main    model. More health states you consider, more time is necessary to reach the
   read parameterfile    Maximum Likelihood of the parameters involved in the model.  The
   read datafile    simplest model is the multinomial logistic model where pij is the
   concatwav    probability to be observed in state j at the second wave
   freqsummary    conditional to be observed in state i at the first wave. Therefore
   if (mle >= 1)    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     mlikeli    'age' is age and 'sex' is a covariate. If you want to have a more
   print results files    complex model than "constant and age", you should modify the program
   if mle==1     where the markup *Covariates have to be included here again* invites
      computes hessian    you to do it.  More covariates you add, slower the
   read end of parameter file: agemin, agemax, bage, fage, estepm    convergence.
       begin-prev-date,...  
   open gnuplot file    The advantage of this computer programme, compared to a simple
   open html file    multinomial logistic model, is clear when the delay between waves is not
   period (stable) prevalence    identical for each individual. Also, if a individual missed an
    for age prevalim()    intermediate interview, the information is lost, but taken into
   h Pij x    account using an interpolation or extrapolation.  
   variance of p varprob  
   forecasting if prevfcast==1 prevforecast call prevalence()    hPijx is the probability to be observed in state i at age x+h
   health expectancies    conditional to the observed state i at age x. The delay 'h' can be
   Variance-covariance of DFLE    split into an exact number (nh*stepm) of unobserved intermediate
   prevalence()    states. This elementary transition (by month, quarter,
    movingaverage()    semester or year) is modelled as a multinomial logistic.  The hPx
   varevsij()     matrix is simply the matrix product of nh*stepm elementary matrices
   if popbased==1 varevsij(,popbased)    and the contribution of each individual to the likelihood is simply
   total life expectancies    hPijx.
   Variance of period (stable) prevalence  
  end    Also this programme outputs the covariance matrix of the parameters but also
 */    of the life expectancies. It also computes the period (stable) prevalence.
    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
      This software have been partly granted by Euro-REVES, a concerted action
 #include <math.h>    from the European Union.
 #include <stdio.h>    It is copyrighted identically to a GNU software product, ie programme and
 #include <stdlib.h>    software can be distributed freely for non commercial use. Latest version
 #include <string.h>    can be accessed at http://euroreves.ined.fr/imach .
 #include <unistd.h>  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #include <limits.h>    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #include <sys/types.h>   
 #include <sys/stat.h>    **********************************************************************/
 #include <errno.h>  /*
 extern int errno;    main
     read parameterfile
 /* #include <sys/time.h> */    read datafile
 #include <time.h>    concatwav
 #include "timeval.h"    freqsummary
     if (mle >= 1)
 /* #include <libintl.h> */      mlikeli
 /* #define _(String) gettext (String) */    print results files
     if mle==1
 #define MAXLINE 256       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 #define GNUPLOTPROGRAM "gnuplot"        begin-prev-date,...
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    open gnuplot file
 #define FILENAMELENGTH 132    open html file
     period (stable) prevalence
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */     for age prevalim()
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    h Pij x
     variance of p varprob
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    forecasting if prevfcast==1 prevforecast call prevalence()
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    health expectancies
     Variance-covariance of DFLE
 #define NINTERVMAX 8    prevalence()
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */     movingaverage()
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    varevsij()
 #define NCOVMAX 8 /* Maximum number of covariates */    if popbased==1 varevsij(,popbased)
 #define MAXN 20000    total life expectancies
 #define YEARM 12. /* Number of months per year */    Variance of period (stable) prevalence
 #define AGESUP 130   end
 #define AGEBASE 40  */
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  
 #ifdef UNIX  
 #define DIRSEPARATOR '/'  
 #define CHARSEPARATOR "/"   
 #define ODIRSEPARATOR '\\'  #include <math.h>
 #else  #include <stdio.h>
 #define DIRSEPARATOR '\\'  #include <stdlib.h>
 #define CHARSEPARATOR "\\"  #include <string.h>
 #define ODIRSEPARATOR '/'  #include <unistd.h>
 #endif  
   #include <limits.h>
 /* $Id$ */  #include <sys/types.h>
 /* $State$ */  #include <sys/stat.h>
   #include <errno.h>
 char version[]="Imach version 0.98d, March 2006, INED-EUROREVES-Institut de longevite ";  extern int errno;
 char fullversion[]="$Revision$ $Date$";   
 char strstart[80];  /* #include <sys/time.h> */
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  #include <time.h>
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  #include "timeval.h"
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  /* #include <libintl.h> */
 int npar=NPARMAX;  /* #define _(String) gettext (String) */
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */  #define MAXLINE 256
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int *wav; /* Number of waves for this individuual 0 is possible */  #define FILENAMELENGTH 132
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int ijmin, ijmax; /* Individuals having jmin and jmax */   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int gipmx, gsw; /* Global variables on the number of contributions   
                    to the likelihood and the sum of weights (done by funcone)*/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 int mle, weightopt;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #define NINTERVMAX 8
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 double jmean; /* Mean space between 2 waves */  #define NCOVMAX 8 /* Maximum number of covariates */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define MAXN 20000
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #define YEARM 12. /* Number of months per year */
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #define AGESUP 130
 FILE *ficlog, *ficrespow;  #define AGEBASE 40
 int globpr; /* Global variable for printing or not */  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 double fretone; /* Only one call to likelihood */  #ifdef UNIX
 long ipmx; /* Number of contributions */  #define DIRSEPARATOR '/'
 double sw; /* Sum of weights */  #define CHARSEPARATOR "/"
 char filerespow[FILENAMELENGTH];  #define ODIRSEPARATOR '\\'
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  #else
 FILE *ficresilk;  #define DIRSEPARATOR '\\'
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #define CHARSEPARATOR "\\"
 FILE *ficresprobmorprev;  #define ODIRSEPARATOR '/'
 FILE *fichtm, *fichtmcov; /* Html File */  #endif
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];  /* $Id$ */
 FILE *ficresstdeij;  /* $State$ */
 char fileresstde[FILENAMELENGTH];  
 FILE *ficrescveij;  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 char filerescve[FILENAMELENGTH];  char fullversion[]="$Revision$ $Date$";
 FILE  *ficresvij;  char strstart[80];
 char fileresv[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 FILE  *ficresvpl;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 char fileresvpl[FILENAMELENGTH];  int nvar;
 char title[MAXLINE];  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  int npar=NPARMAX;
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  int nlstate=2; /* Number of live states */
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   int ndeath=1; /* Number of dead states */
 char command[FILENAMELENGTH];  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int  outcmd=0;  int popbased=0;
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 char filelog[FILENAMELENGTH]; /* Log file */  int jmin, jmax; /* min, max spacing between 2 waves */
 char filerest[FILENAMELENGTH];  int ijmin, ijmax; /* Individuals having jmin and jmax */
 char fileregp[FILENAMELENGTH];  int gipmx, gsw; /* Global variables on the number of contributions
 char popfile[FILENAMELENGTH];                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 struct timezone tzp;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 extern int gettimeofday();  double jmean; /* Mean space between 2 waves */
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  double **oldm, **newm, **savm; /* Working pointers to matrices */
 long time_value;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 extern long time();  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 char strcurr[80], strfor[80];  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 char *endptr;  double fretone; /* Only one call to likelihood */
 long lval;  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 #define NR_END 1  char filerespow[FILENAMELENGTH];
 #define FREE_ARG char*  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #define FTOL 1.0e-10  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #define NRANSI   FILE *ficresprobmorprev;
 #define ITMAX 200   FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 #define TOL 2.0e-4   char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
 #define CGOLD 0.3819660   char fileresstde[FILENAMELENGTH];
 #define ZEPS 1.0e-10   FILE *ficrescveij;
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 #define GOLD 1.618034   char fileresv[FILENAMELENGTH];
 #define GLIMIT 100.0   FILE  *ficresvpl;
 #define TINY 1.0e-20   char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 static double maxarg1,maxarg2;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
     char command[FILENAMELENGTH];
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  int  outcmd=0;
 #define rint(a) floor(a+0.5)  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char filelog[FILENAMELENGTH]; /* Log file */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   char filerest[FILENAMELENGTH];
 int agegomp= AGEGOMP;  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 int imx;   
 int stepm=1;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 /* Stepm, step in month: minimum step interpolation*/  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 int estepm;  struct timezone tzp;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 int m,nb;  long time_value;
 long *num;  extern long time();
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  char strcurr[80], strfor[80];
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs;  char *endptr;
 double *ageexmed,*agecens;  long lval;
 double dateintmean=0;  double dval;
   
 double *weight;  #define NR_END 1
 int **s; /* Status */  #define FREE_ARG char*
 double *agedc, **covar, idx;  #define FTOL 1.0e-10
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
 double *lsurv, *lpop, *tpop;  #define NRANSI
   #define ITMAX 200
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  #define TOL 2.0e-4
   
 /**************** split *************************/  #define CGOLD 0.3819660
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define ZEPS 1.0e-10
 {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  #define GOLD 1.618034
   */   #define GLIMIT 100.0
   char  *ss;                            /* pointer */  #define TINY 1.0e-20
   int   l1, l2;                         /* length counters */  
   static double maxarg1,maxarg2;
   l1 = strlen(path );                   /* length of path */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */   
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     strcpy( name, path );               /* we got the fullname name because no directory */  #define rint(a) floor(a+0.5)
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  static double sqrarg;
     /* get current working directory */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     /*    extern  char* getcwd ( char *buf , int len);*/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int agegomp= AGEGOMP;
       return( GLOCK_ERROR_GETCWD );  
     }  int imx;
     /* got dirc from getcwd*/  int stepm=1;
     printf(" DIRC = %s \n",dirc);  /* Stepm, step in month: minimum step interpolation*/
   } else {                              /* strip direcotry from path */  
     ss++;                               /* after this, the filename */  int estepm;
     l2 = strlen( ss );                  /* length of filename */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
     strcpy( name, ss );         /* save file name */  int m,nb;
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  long *num;
     dirc[l1-l2] = 0;                    /* add zero */  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     printf(" DIRC2 = %s \n",dirc);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   }  double **pmmij, ***probs;
   /* We add a separator at the end of dirc if not exists */  double *ageexmed,*agecens;
   l1 = strlen( dirc );                  /* length of directory */  double dateintmean=0;
   if( dirc[l1-1] != DIRSEPARATOR ){  
     dirc[l1] =  DIRSEPARATOR;  double *weight;
     dirc[l1+1] = 0;   int **s; /* Status */
     printf(" DIRC3 = %s \n",dirc);  double *agedc, **covar, idx;
   }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   ss = strrchr( name, '.' );            /* find last / */  double *lsurv, *lpop, *tpop;
   if (ss >0){  
     ss++;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     strcpy(ext,ss);                     /* save extension */  double ftolhess; /* Tolerance for computing hessian */
     l1= strlen( name);  
     l2= strlen(ss)+1;  /**************** split *************************/
     strncpy( finame, name, l1-l2);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     finame[l1-l2]= 0;  {
   }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
   return( 0 );                          /* we're done */    */
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
   
 /******************************************/    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 void replace_back_to_slash(char *s, char*t)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   int i;      strcpy( name, path );               /* we got the fullname name because no directory */
   int lg=0;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   i=0;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   lg=strlen(t);      /* get current working directory */
   for(i=0; i<= lg; i++) {      /*    extern  char* getcwd ( char *buf , int len);*/
     (s[i] = t[i]);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     if (t[i]== '\\') s[i]='/';        return( GLOCK_ERROR_GETCWD );
   }      }
 }      /* got dirc from getcwd*/
       printf(" DIRC = %s \n",dirc);
 int nbocc(char *s, char occ)    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   int i,j=0;      l2 = strlen( ss );                  /* length of filename */
   int lg=20;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   i=0;      strcpy( name, ss );         /* save file name */
   lg=strlen(s);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   for(i=0; i<= lg; i++) {      dirc[l1-l2] = 0;                    /* add zero */
   if  (s[i] == occ ) j++;      printf(" DIRC2 = %s \n",dirc);
   }    }
   return j;    /* We add a separator at the end of dirc if not exists */
 }    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
 void cutv(char *u,char *v, char*t, char occ)      dirc[l1] =  DIRSEPARATOR;
 {      dirc[l1+1] = 0;
   /* cuts string t into u and v where u ends before first occurence of char 'occ'       printf(" DIRC3 = %s \n",dirc);
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')    }
      gives u="abcedf" and v="ghi2j" */    ss = strrchr( name, '.' );            /* find last / */
   int i,lg,j,p=0;    if (ss >0){
   i=0;      ss++;
   for(j=0; j<=strlen(t)-1; j++) {      strcpy(ext,ss);                     /* save extension */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      l1= strlen( name);
   }      l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
   lg=strlen(t);      finame[l1-l2]= 0;
   for(j=0; j<p; j++) {    }
     (u[j] = t[j]);  
   }    return( 0 );                          /* we're done */
      u[p]='\0';  }
   
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  /******************************************/
   }  
 }  void replace_back_to_slash(char *s, char*t)
   {
 /********************** nrerror ********************/    int i;
     int lg=0;
 void nrerror(char error_text[])    i=0;
 {    lg=strlen(t);
   fprintf(stderr,"ERREUR ...\n");    for(i=0; i<= lg; i++) {
   fprintf(stderr,"%s\n",error_text);      (s[i] = t[i]);
   exit(EXIT_FAILURE);      if (t[i]== '\\') s[i]='/';
 }    }
 /*********************** vector *******************/  }
 double *vector(int nl, int nh)  
 {  int nbocc(char *s, char occ)
   double *v;  {
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    int i,j=0;
   if (!v) nrerror("allocation failure in vector");    int lg=20;
   return v-nl+NR_END;    i=0;
 }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
 /************************ free vector ******************/    if  (s[i] == occ ) j++;
 void free_vector(double*v, int nl, int nh)    }
 {    return j;
   free((FREE_ARG)(v+nl-NR_END));  }
 }  
   void cutv(char *u,char *v, char*t, char occ)
 /************************ivector *******************************/  {
 int *ivector(long nl,long nh)    /* cuts string t into u and v where u ends before first occurence of char 'occ'
 {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   int *v;       gives u="abcedf" and v="ghi2j" */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    int i,lg,j,p=0;
   if (!v) nrerror("allocation failure in ivector");    i=0;
   return v-nl+NR_END;    for(j=0; j<=strlen(t)-1; j++) {
 }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    lg=strlen(t);
 {    for(j=0; j<p; j++) {
   free((FREE_ARG)(v+nl-NR_END));      (u[j] = t[j]);
 }    }
        u[p]='\0';
 /************************lvector *******************************/  
 long *lvector(long nl,long nh)     for(j=0; j<= lg; j++) {
 {      if (j>=(p+1))(v[j-p-1] = t[j]);
   long *v;    }
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  }
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  /********************** nrerror ********************/
 }  
   void nrerror(char error_text[])
 /******************free lvector **************************/  {
 void free_lvector(long *v, long nl, long nh)    fprintf(stderr,"ERREUR ...\n");
 {    fprintf(stderr,"%s\n",error_text);
   free((FREE_ARG)(v+nl-NR_END));    exit(EXIT_FAILURE);
 }  }
   /*********************** vector *******************/
 /******************* imatrix *******************************/  double *vector(int nl, int nh)
 int **imatrix(long nrl, long nrh, long ncl, long nch)   {
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */     double *v;
 {     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;     if (!v) nrerror("allocation failure in vector");
   int **m;     return v-nl+NR_END;
     }
   /* allocate pointers to rows */   
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   /************************ free vector ******************/
   if (!m) nrerror("allocation failure 1 in matrix()");   void free_vector(double*v, int nl, int nh)
   m += NR_END;   {
   m -= nrl;     free((FREE_ARG)(v+nl-NR_END));
     }
     
   /* allocate rows and set pointers to them */   /************************ivector *******************************/
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   int *ivector(long nl,long nh)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   {
   m[nrl] += NR_END;     int *v;
   m[nrl] -= ncl;     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       if (!v) nrerror("allocation failure in ivector");
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;     return v-nl+NR_END;
     }
   /* return pointer to array of pointers to rows */   
   return m;   /******************free ivector **************************/
 }   void free_ivector(int *v, long nl, long nh)
   {
 /****************** free_imatrix *************************/    free((FREE_ARG)(v+nl-NR_END));
 void free_imatrix(m,nrl,nrh,ncl,nch)  }
       int **m;  
       long nch,ncl,nrh,nrl;   /************************lvector *******************************/
      /* free an int matrix allocated by imatrix() */   long *lvector(long nl,long nh)
 {   {
   free((FREE_ARG) (m[nrl]+ncl-NR_END));     long *v;
   free((FREE_ARG) (m+nrl-NR_END));     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 }     if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /******************* matrix *******************************/  }
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  /******************free lvector **************************/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  void free_lvector(long *v, long nl, long nh)
   double **m;  {
     free((FREE_ARG)(v+nl-NR_END));
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  }
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /******************* imatrix *******************************/
   m -= nrl;  int **imatrix(long nrl, long nrh, long ncl, long nch)
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
   m[nrl] += NR_END;    int **m;
   m[nrl] -= ncl;   
     /* allocate pointers to rows */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
   return m;    if (!m) nrerror("allocation failure 1 in matrix()");
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])     m += NR_END;
    */    m -= nrl;
 }   
    
 /*************************free matrix ************************/    /* allocate rows and set pointers to them */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m[nrl] += NR_END;
   free((FREE_ARG)(m+nrl-NR_END));    m[nrl] -= ncl;
 }   
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
 /******************* ma3x *******************************/   
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    /* return pointer to array of pointers to rows */
 {    return m;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  }
   double ***m;  
   /****************** free_imatrix *************************/
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  void free_imatrix(m,nrl,nrh,ncl,nch)
   if (!m) nrerror("allocation failure 1 in matrix()");        int **m;
   m += NR_END;        long nch,ncl,nrh,nrl;
   m -= nrl;       /* free an int matrix allocated by imatrix() */
   {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    free((FREE_ARG) (m[nrl]+ncl-NR_END));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    free((FREE_ARG) (m+nrl-NR_END));
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  
   /******************* matrix *******************************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    double **m;
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (j=ncl+1; j<=nch; j++)     if (!m) nrerror("allocation failure 1 in matrix()");
     m[nrl][j]=m[nrl][j-1]+nlay;    m += NR_END;
       m -= nrl;
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (j=ncl+1; j<=nch; j++)     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       m[i][j]=m[i][j-1]+nlay;    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   return m;   
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    return m;
   */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
 }     */
   }
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /*************************free matrix ************************/
 {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   free((FREE_ARG)(m+nrl-NR_END));    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /*************** function subdirf ***********/  /******************* ma3x *******************************/
 char *subdirf(char fileres[])  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 {  {
   /* Caution optionfilefiname is hidden */    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   strcpy(tmpout,optionfilefiname);    double ***m;
   strcat(tmpout,"/"); /* Add to the right */  
   strcat(tmpout,fileres);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   return tmpout;    if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
 /*************** function subdirf2 ***********/  
 char *subdirf2(char fileres[], char *preop)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       m[nrl] += NR_END;
   /* Caution optionfilefiname is hidden */    m[nrl] -= ncl;
   strcpy(tmpout,optionfilefiname);  
   strcat(tmpout,"/");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   strcat(tmpout,preop);  
   strcat(tmpout,fileres);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   return tmpout;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 }    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
 /*************** function subdirf3 ***********/    for (j=ncl+1; j<=nch; j++)
 char *subdirf3(char fileres[], char *preop, char *preop2)      m[nrl][j]=m[nrl][j-1]+nlay;
 {   
       for (i=nrl+1; i<=nrh; i++) {
   /* Caution optionfilefiname is hidden */      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   strcpy(tmpout,optionfilefiname);      for (j=ncl+1; j<=nch; j++)
   strcat(tmpout,"/");        m[i][j]=m[i][j-1]+nlay;
   strcat(tmpout,preop);    }
   strcat(tmpout,preop2);    return m;
   strcat(tmpout,fileres);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   return tmpout;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 }    */
   }
 /***************** f1dim *************************/  
 extern int ncom;   /*************************free ma3x ************************/
 extern double *pcom,*xicom;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 extern double (*nrfunc)(double []);   {
      free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 double f1dim(double x)     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {     free((FREE_ARG)(m+nrl-NR_END));
   int j;   }
   double f;  
   double *xt;   /*************** function subdirf ***********/
    char *subdirf(char fileres[])
   xt=vector(1,ncom);   {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     /* Caution optionfilefiname is hidden */
   f=(*nrfunc)(xt);     strcpy(tmpout,optionfilefiname);
   free_vector(xt,1,ncom);     strcat(tmpout,"/"); /* Add to the right */
   return f;     strcat(tmpout,fileres);
 }     return tmpout;
   }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   /*************** function subdirf2 ***********/
 {   char *subdirf2(char fileres[], char *preop)
   int iter;   {
   double a,b,d,etemp;   
   double fu,fv,fw,fx;    /* Caution optionfilefiname is hidden */
   double ftemp;    strcpy(tmpout,optionfilefiname);
   double p,q,r,tol1,tol2,u,v,w,x,xm;     strcat(tmpout,"/");
   double e=0.0;     strcat(tmpout,preop);
      strcat(tmpout,fileres);
   a=(ax < cx ? ax : cx);     return tmpout;
   b=(ax > cx ? ax : cx);   }
   x=w=v=bx;   
   fw=fv=fx=(*f)(x);   /*************** function subdirf3 ***********/
   for (iter=1;iter<=ITMAX;iter++) {   char *subdirf3(char fileres[], char *preop, char *preop2)
     xm=0.5*(a+b);   {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    /* Caution optionfilefiname is hidden */
     printf(".");fflush(stdout);    strcpy(tmpout,optionfilefiname);
     fprintf(ficlog,".");fflush(ficlog);    strcat(tmpout,"/");
 #ifdef DEBUG    strcat(tmpout,preop);
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    strcat(tmpout,preop2);
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    strcat(tmpout,fileres);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    return tmpout;
 #endif  }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){   
       *xmin=x;   /***************** f1dim *************************/
       return fx;   extern int ncom;
     }   extern double *pcom,*xicom;
     ftemp=fu;  extern double (*nrfunc)(double []);
     if (fabs(e) > tol1) {    
       r=(x-w)*(fx-fv);   double f1dim(double x)
       q=(x-v)*(fx-fw);   {
       p=(x-v)*q-(x-w)*r;     int j;
       q=2.0*(q-r);     double f;
       if (q > 0.0) p = -p;     double *xt;
       q=fabs(q);    
       etemp=e;     xt=vector(1,ncom);
       e=d;     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     f=(*nrfunc)(xt);
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     free_vector(xt,1,ncom);
       else {     return f;
         d=p/q;   }
         u=x+d;   
         if (u-a < tol2 || b-u < tol2)   /*****************brent *************************/
           d=SIGN(tol1,xm-x);   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
       }   {
     } else {     int iter;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     double a,b,d,etemp;
     }     double fu,fv,fw,fx;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     double ftemp;
     fu=(*f)(u);     double p,q,r,tol1,tol2,u,v,w,x,xm;
     if (fu <= fx) {     double e=0.0;
       if (u >= x) a=x; else b=x;    
       SHFT(v,w,x,u)     a=(ax < cx ? ax : cx);
         SHFT(fv,fw,fx,fu)     b=(ax > cx ? ax : cx);
         } else {     x=w=v=bx;
           if (u < x) a=u; else b=u;     fw=fv=fx=(*f)(x);
           if (fu <= fw || w == x) {     for (iter=1;iter<=ITMAX;iter++) {
             v=w;       xm=0.5*(a+b);
             w=u;       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
             fv=fw;       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
             fw=fu;       printf(".");fflush(stdout);
           } else if (fu <= fv || v == x || v == w) {       fprintf(ficlog,".");fflush(ficlog);
             v=u;   #ifdef DEBUG
             fv=fu;       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           }       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         }       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   }   #endif
   nrerror("Too many iterations in brent");       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
   *xmin=x;         *xmin=x;
   return fx;         return fx;
 }       }
       ftemp=fu;
 /****************** mnbrak ***********************/      if (fabs(e) > tol1) {
         r=(x-w)*(fx-fv);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,         q=(x-v)*(fx-fw);
             double (*func)(double))         p=(x-v)*q-(x-w)*r;
 {         q=2.0*(q-r);
   double ulim,u,r,q, dum;        if (q > 0.0) p = -p;
   double fu;         q=fabs(q);
          etemp=e;
   *fa=(*func)(*ax);         e=d;
   *fb=(*func)(*bx);         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
   if (*fb > *fa) {           d=CGOLD*(e=(x >= xm ? a-x : b-x));
     SHFT(dum,*ax,*bx,dum)         else {
       SHFT(dum,*fb,*fa,dum)           d=p/q;
       }           u=x+d;
   *cx=(*bx)+GOLD*(*bx-*ax);           if (u-a < tol2 || b-u < tol2)
   *fc=(*func)(*cx);             d=SIGN(tol1,xm-x);
   while (*fb > *fc) {         }
     r=(*bx-*ax)*(*fb-*fc);       } else {
     q=(*bx-*cx)*(*fb-*fa);         d=CGOLD*(e=(x >= xm ? a-x : b-x));
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
     ulim=(*bx)+GLIMIT*(*cx-*bx);       fu=(*f)(u);
     if ((*bx-u)*(u-*cx) > 0.0) {       if (fu <= fx) {
       fu=(*func)(u);         if (u >= x) a=x; else b=x;
     } else if ((*cx-u)*(u-ulim) > 0.0) {         SHFT(v,w,x,u)
       fu=(*func)(u);           SHFT(fv,fw,fx,fu)
       if (fu < *fc) {           } else {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))             if (u < x) a=u; else b=u;
           SHFT(*fb,*fc,fu,(*func)(u))             if (fu <= fw || w == x) {
           }               v=w;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {               w=u;
       u=ulim;               fv=fw;
       fu=(*func)(u);               fw=fu;
     } else {             } else if (fu <= fv || v == x || v == w) {
       u=(*cx)+GOLD*(*cx-*bx);               v=u;
       fu=(*func)(u);               fv=fu;
     }             }
     SHFT(*ax,*bx,*cx,u)           }
       SHFT(*fa,*fb,*fc,fu)     }
       }     nrerror("Too many iterations in brent");
 }     *xmin=x;
     return fx;
 /*************** linmin ************************/  }
   
 int ncom;   /****************** mnbrak ***********************/
 double *pcom,*xicom;  
 double (*nrfunc)(double []);   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
                double (*func)(double))
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   {
 {     double ulim,u,r,q, dum;
   double brent(double ax, double bx, double cx,     double fu;
                double (*f)(double), double tol, double *xmin);    
   double f1dim(double x);     *fa=(*func)(*ax);
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,     *fb=(*func)(*bx);
               double *fc, double (*func)(double));     if (*fb > *fa) {
   int j;       SHFT(dum,*ax,*bx,dum)
   double xx,xmin,bx,ax;         SHFT(dum,*fb,*fa,dum)
   double fx,fb,fa;        }
      *cx=(*bx)+GOLD*(*bx-*ax);
   ncom=n;     *fc=(*func)(*cx);
   pcom=vector(1,n);     while (*fb > *fc) {
   xicom=vector(1,n);       r=(*bx-*ax)*(*fb-*fc);
   nrfunc=func;       q=(*bx-*cx)*(*fb-*fa);
   for (j=1;j<=n;j++) {       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
     pcom[j]=p[j];         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
     xicom[j]=xi[j];       ulim=(*bx)+GLIMIT*(*cx-*bx);
   }       if ((*bx-u)*(u-*cx) > 0.0) {
   ax=0.0;         fu=(*func)(u);
   xx=1.0;       } else if ((*cx-u)*(u-ulim) > 0.0) {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);         fu=(*func)(u);
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);         if (fu < *fc) {
 #ifdef DEBUG          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);            SHFT(*fb,*fc,fu,(*func)(u))
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);            }
 #endif      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
   for (j=1;j<=n;j++) {         u=ulim;
     xi[j] *= xmin;         fu=(*func)(u);
     p[j] += xi[j];       } else {
   }         u=(*cx)+GOLD*(*cx-*bx);
   free_vector(xicom,1,n);         fu=(*func)(u);
   free_vector(pcom,1,n);       }
 }       SHFT(*ax,*bx,*cx,u)
         SHFT(*fa,*fb,*fc,fu)
 char *asc_diff_time(long time_sec, char ascdiff[])        }
 {  }
   long sec_left, days, hours, minutes;  
   days = (time_sec) / (60*60*24);  /*************** linmin ************************/
   sec_left = (time_sec) % (60*60*24);  
   hours = (sec_left) / (60*60) ;  int ncom;
   sec_left = (sec_left) %(60*60);  double *pcom,*xicom;
   minutes = (sec_left) /60;  double (*nrfunc)(double []);
   sec_left = (sec_left) % (60);   
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);    void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
   return ascdiff;  {
 }    double brent(double ax, double bx, double cx,
                  double (*f)(double), double tol, double *xmin);
 /*************** powell ************************/    double f1dim(double x);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
             double (*func)(double []))                 double *fc, double (*func)(double));
 {     int j;
   void linmin(double p[], double xi[], int n, double *fret,     double xx,xmin,bx,ax;
               double (*func)(double []));     double fx,fb,fa;
   int i,ibig,j;    
   double del,t,*pt,*ptt,*xit;    ncom=n;
   double fp,fptt;    pcom=vector(1,n);
   double *xits;    xicom=vector(1,n);
   int niterf, itmp;    nrfunc=func;
     for (j=1;j<=n;j++) {
   pt=vector(1,n);       pcom[j]=p[j];
   ptt=vector(1,n);       xicom[j]=xi[j];
   xit=vector(1,n);     }
   xits=vector(1,n);     ax=0.0;
   *fret=(*func)(p);     xx=1.0;
   for (j=1;j<=n;j++) pt[j]=p[j];     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
   for (*iter=1;;++(*iter)) {     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
     fp=(*fret);   #ifdef DEBUG
     ibig=0;     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     del=0.0;     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     last_time=curr_time;  #endif
     (void) gettimeofday(&curr_time,&tzp);    for (j=1;j<=n;j++) {
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);      xi[j] *= xmin;
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);      p[j] += xi[j];
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);    }
     */    free_vector(xicom,1,n);
    for (i=1;i<=n;i++) {    free_vector(pcom,1,n);
       printf(" %d %.12f",i, p[i]);  }
       fprintf(ficlog," %d %.12lf",i, p[i]);  
       fprintf(ficrespow," %.12lf", p[i]);  char *asc_diff_time(long time_sec, char ascdiff[])
     }  {
     printf("\n");    long sec_left, days, hours, minutes;
     fprintf(ficlog,"\n");    days = (time_sec) / (60*60*24);
     fprintf(ficrespow,"\n");fflush(ficrespow);    sec_left = (time_sec) % (60*60*24);
     if(*iter <=3){    hours = (sec_left) / (60*60) ;
       tm = *localtime(&curr_time.tv_sec);    sec_left = (sec_left) %(60*60);
       strcpy(strcurr,asctime(&tm));    minutes = (sec_left) /60;
 /*       asctime_r(&tm,strcurr); */    sec_left = (sec_left) % (60);
       forecast_time=curr_time;     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       itmp = strlen(strcurr);    return ascdiff;
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */  }
         strcurr[itmp-1]='\0';  
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  /*************** powell ************************/
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
       for(niterf=10;niterf<=30;niterf+=10){              double (*func)(double []))
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);  {
         tmf = *localtime(&forecast_time.tv_sec);    void linmin(double p[], double xi[], int n, double *fret,
 /*      asctime_r(&tmf,strfor); */                double (*func)(double []));
         strcpy(strfor,asctime(&tmf));    int i,ibig,j;
         itmp = strlen(strfor);    double del,t,*pt,*ptt,*xit;
         if(strfor[itmp-1]=='\n')    double fp,fptt;
         strfor[itmp-1]='\0';    double *xits;
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    int niterf, itmp;
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  
       }    pt=vector(1,n);
     }    ptt=vector(1,n);
     for (i=1;i<=n;i++) {     xit=vector(1,n);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     xits=vector(1,n);
       fptt=(*fret);     *fret=(*func)(p);
 #ifdef DEBUG    for (j=1;j<=n;j++) pt[j]=p[j];
       printf("fret=%lf \n",*fret);    for (*iter=1;;++(*iter)) {
       fprintf(ficlog,"fret=%lf \n",*fret);      fp=(*fret);
 #endif      ibig=0;
       printf("%d",i);fflush(stdout);      del=0.0;
       fprintf(ficlog,"%d",i);fflush(ficlog);      last_time=curr_time;
       linmin(p,xit,n,fret,func);       (void) gettimeofday(&curr_time,&tzp);
       if (fabs(fptt-(*fret)) > del) {       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         del=fabs(fptt-(*fret));       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
         ibig=i;   /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       }      for (i=1;i<=n;i++) {
 #ifdef DEBUG        printf(" %d %.12f",i, p[i]);
       printf("%d %.12e",i,(*fret));        fprintf(ficlog," %d %.12lf",i, p[i]);
       fprintf(ficlog,"%d %.12e",i,(*fret));        fprintf(ficrespow," %.12lf", p[i]);
       for (j=1;j<=n;j++) {      }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      printf("\n");
         printf(" x(%d)=%.12e",j,xit[j]);      fprintf(ficlog,"\n");
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);      fprintf(ficrespow,"\n");fflush(ficrespow);
       }      if(*iter <=3){
       for(j=1;j<=n;j++) {        tm = *localtime(&curr_time.tv_sec);
         printf(" p=%.12e",p[j]);        strcpy(strcurr,asctime(&tm));
         fprintf(ficlog," p=%.12e",p[j]);  /*       asctime_r(&tm,strcurr); */
       }        forecast_time=curr_time;
       printf("\n");        itmp = strlen(strcurr);
       fprintf(ficlog,"\n");        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 #endif          strcurr[itmp-1]='\0';
     }         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 #ifdef DEBUG        for(niterf=10;niterf<=30;niterf+=10){
       int k[2],l;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       k[0]=1;          tmf = *localtime(&forecast_time.tv_sec);
       k[1]=-1;  /*      asctime_r(&tmf,strfor); */
       printf("Max: %.12e",(*func)(p));          strcpy(strfor,asctime(&tmf));
       fprintf(ficlog,"Max: %.12e",(*func)(p));          itmp = strlen(strfor);
       for (j=1;j<=n;j++) {          if(strfor[itmp-1]=='\n')
         printf(" %.12e",p[j]);          strfor[itmp-1]='\0';
         fprintf(ficlog," %.12e",p[j]);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       printf("\n");        }
       fprintf(ficlog,"\n");      }
       for(l=0;l<=1;l++) {      for (i=1;i<=n;i++) {
         for (j=1;j<=n;j++) {        for (j=1;j<=n;j++) xit[j]=xi[j][i];
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        fptt=(*fret);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #ifdef DEBUG
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        printf("fret=%lf \n",*fret);
         }        fprintf(ficlog,"fret=%lf \n",*fret);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #endif
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        printf("%d",i);fflush(stdout);
       }        fprintf(ficlog,"%d",i);fflush(ficlog);
 #endif        linmin(p,xit,n,fret,func);
         if (fabs(fptt-(*fret)) > del) {
           del=fabs(fptt-(*fret));
       free_vector(xit,1,n);           ibig=i;
       free_vector(xits,1,n);         }
       free_vector(ptt,1,n);   #ifdef DEBUG
       free_vector(pt,1,n);         printf("%d %.12e",i,(*fret));
       return;         fprintf(ficlog,"%d %.12e",i,(*fret));
     }         for (j=1;j<=n;j++) {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for (j=1;j<=n;j++) {           printf(" x(%d)=%.12e",j,xit[j]);
       ptt[j]=2.0*p[j]-pt[j];           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       xit[j]=p[j]-pt[j];         }
       pt[j]=p[j];         for(j=1;j<=n;j++) {
     }           printf(" p=%.12e",p[j]);
     fptt=(*func)(ptt);           fprintf(ficlog," p=%.12e",p[j]);
     if (fptt < fp) {         }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);         printf("\n");
       if (t < 0.0) {         fprintf(ficlog,"\n");
         linmin(p,xit,n,fret,func);   #endif
         for (j=1;j<=n;j++) {       }
           xi[j][ibig]=xi[j][n];       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
           xi[j][n]=xit[j];   #ifdef DEBUG
         }        int k[2],l;
 #ifdef DEBUG        k[0]=1;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        k[1]=-1;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        printf("Max: %.12e",(*func)(p));
         for(j=1;j<=n;j++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
           printf(" %.12e",xit[j]);        for (j=1;j<=n;j++) {
           fprintf(ficlog," %.12e",xit[j]);          printf(" %.12e",p[j]);
         }          fprintf(ficlog," %.12e",p[j]);
         printf("\n");        }
         fprintf(ficlog,"\n");        printf("\n");
 #endif        fprintf(ficlog,"\n");
       }        for(l=0;l<=1;l++) {
     }           for (j=1;j<=n;j++) {
   }             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 }             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 /**** Prevalence limit (stable or period prevalence)  ****************/          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {        }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #endif
      matrix by transitions matrix until convergence is reached */  
   
   int i, ii,j,k;        free_vector(xit,1,n);
   double min, max, maxmin, maxmax,sumnew=0.;        free_vector(xits,1,n);
   double **matprod2();        free_vector(ptt,1,n);
   double **out, cov[NCOVMAX], **pmij();        free_vector(pt,1,n);
   double **newm;        return;
   double agefin, delaymax=50 ; /* Max number of years to converge */      }
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
   for (ii=1;ii<=nlstate+ndeath;ii++)      for (j=1;j<=n;j++) {
     for (j=1;j<=nlstate+ndeath;j++){        ptt[j]=2.0*p[j]-pt[j];
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        xit[j]=p[j]-pt[j];
     }        pt[j]=p[j];
       }
    cov[1]=1.;      fptt=(*func)(ptt);
        if (fptt < fp) {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        if (t < 0.0) {
     newm=savm;          linmin(p,xit,n,fret,func);
     /* Covariates have to be included here again */          for (j=1;j<=n;j++) {
      cov[2]=agefin;            xi[j][ibig]=xi[j][n];
               xi[j][n]=xit[j];
       for (k=1; k<=cptcovn;k++) {          }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #ifdef DEBUG
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          for(j=1;j<=n;j++){
       for (k=1; k<=cptcovprod;k++)            printf(" %.12e",xit[j]);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            fprintf(ficlog," %.12e",xit[j]);
           }
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          printf("\n");
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          fprintf(ficlog,"\n");
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  #endif
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        }
       }
     savm=oldm;    }
     oldm=newm;  }
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /**** Prevalence limit (stable or period prevalence)  ****************/
       min=1.;  
       max=0.;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       for(i=1; i<=nlstate; i++) {  {
         sumnew=0;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];       matrix by transitions matrix until convergence is reached */
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);    int i, ii,j,k;
         min=FMIN(min,prlim[i][j]);    double min, max, maxmin, maxmax,sumnew=0.;
       }    double **matprod2();
       maxmin=max-min;    double **out, cov[NCOVMAX], **pmij();
       maxmax=FMAX(maxmax,maxmin);    double **newm;
     }    double agefin, delaymax=50 ; /* Max number of years to converge */
     if(maxmax < ftolpl){  
       return prlim;    for (ii=1;ii<=nlstate+ndeath;ii++)
     }      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }      }
   
 /*************** transition probabilities ***************/      cov[1]=1.;
    
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   double s1, s2;      newm=savm;
   /*double t34;*/      /* Covariates have to be included here again */
   int i,j,j1, nc, ii, jj;       cov[2]=agefin;
    
     for(i=1; i<= nlstate; i++){        for (k=1; k<=cptcovn;k++) {
       for(j=1; j<i;j++){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
           /*s2 += param[i][j][nc]*cov[nc];*/        }
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */        for (k=1; k<=cptcovprod;k++)
         }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         ps[i][j]=s2;  
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       for(j=i+1; j<=nlstate+ndeath;j++){        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */      savm=oldm;
         }      oldm=newm;
         ps[i][j]=s2;      maxmax=0.;
       }      for(j=1;j<=nlstate;j++){
     }        min=1.;
     /*ps[3][2]=1;*/        max=0.;
             for(i=1; i<=nlstate; i++) {
     for(i=1; i<= nlstate; i++){          sumnew=0;
       s1=0;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for(j=1; j<i; j++)          prlim[i][j]= newm[i][j]/(1-sumnew);
         s1+=exp(ps[i][j]);          max=FMAX(max,prlim[i][j]);
       for(j=i+1; j<=nlstate+ndeath; j++)          min=FMIN(min,prlim[i][j]);
         s1+=exp(ps[i][j]);        }
       ps[i][i]=1./(s1+1.);        maxmin=max-min;
       for(j=1; j<i; j++)        maxmax=FMAX(maxmax,maxmin);
         ps[i][j]= exp(ps[i][j])*ps[i][i];      }
       for(j=i+1; j<=nlstate+ndeath; j++)      if(maxmax < ftolpl){
         ps[i][j]= exp(ps[i][j])*ps[i][i];        return prlim;
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      }
     } /* end i */    }
       }
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
       for(jj=1; jj<= nlstate+ndeath; jj++){  /*************** transition probabilities ***************/
         ps[ii][jj]=0;  
         ps[ii][ii]=1;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       }  {
     }    double s1, s2;
         /*double t34;*/
     int i,j,j1, nc, ii, jj;
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */  
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */      for(i=1; i<= nlstate; i++){
 /*         printf("ddd %lf ",ps[ii][jj]); */        for(j=1; j<i;j++){
 /*       } */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 /*       printf("\n "); */            /*s2 += param[i][j][nc]*cov[nc];*/
 /*        } */            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /*        printf("\n ");printf("%lf ",cov[2]); */  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
        /*          }
       for(i=1; i<= npar; i++) printf("%f ",x[i]);          ps[i][j]=s2;
       goto end;*/  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     return ps;        }
 }        for(j=i+1; j<=nlstate+ndeath;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 /**************** Product of 2 matrices ******************/            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          }
 {          ps[i][j]=s2;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      }
   /* in, b, out are matrice of pointers which should have been initialized       /*ps[3][2]=1;*/
      before: only the contents of out is modified. The function returns     
      a pointer to pointers identical to out */      for(i=1; i<= nlstate; i++){
   long i, j, k;        s1=0;
   for(i=nrl; i<= nrh; i++)        for(j=1; j<i; j++)
     for(k=ncolol; k<=ncoloh; k++)          s1+=exp(ps[i][j]);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        for(j=i+1; j<=nlstate+ndeath; j++)
         out[i][k] +=in[i][j]*b[j][k];          s1+=exp(ps[i][j]);
         ps[i][i]=1./(s1+1.);
   return out;        for(j=1; j<i; j++)
 }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
 /************* Higher Matrix Product ***************/        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       } /* end i */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )     
 {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   /* Computes the transition matrix starting at age 'age' over         for(jj=1; jj<= nlstate+ndeath; jj++){
      'nhstepm*hstepm*stepm' months (i.e. until          ps[ii][jj]=0;
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying           ps[ii][ii]=1;
      nhstepm*hstepm matrices.         }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step       }
      (typically every 2 years instead of every month which is too big      
      for the memory).  
      Model is determined by parameters x and covariates have to be   /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
      included manually here.   /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
      */  /*       } */
   /*       printf("\n "); */
   int i, j, d, h, k;  /*        } */
   double **out, cov[NCOVMAX];  /*        printf("\n ");printf("%lf ",cov[2]); */
   double **newm;         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
   /* Hstepm could be zero and should return the unit matrix */        goto end;*/
   for (i=1;i<=nlstate+ndeath;i++)      return ps;
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /**************** Product of 2 matrices ******************/
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   for(h=1; h <=nhstepm; h++){  {
     for(d=1; d <=hstepm; d++){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       newm=savm;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       /* Covariates have to be included here again */    /* in, b, out are matrice of pointers which should have been initialized
       cov[1]=1.;       before: only the contents of out is modified. The function returns
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;       a pointer to pointers identical to out */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    long i, j, k;
       for (k=1; k<=cptcovage;k++)    for(i=nrl; i<= nrh; i++)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      for(k=ncolol; k<=ncoloh; k++)
       for (k=1; k<=cptcovprod;k++)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          out[i][k] +=in[i][j]*b[j][k];
   
     return out;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /************* Higher Matrix Product ***************/
       savm=oldm;  
       oldm=newm;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }  {
     for(i=1; i<=nlstate+ndeath; i++)    /* Computes the transition matrix starting at age 'age' over
       for(j=1;j<=nlstate+ndeath;j++) {       'nhstepm*hstepm*stepm' months (i.e. until
         po[i][j][h]=newm[i][j];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);       nhstepm*hstepm matrices.
          */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
       }       (typically every 2 years instead of every month which is too big
   } /* end h */       for the memory).
   return po;       Model is determined by parameters x and covariates have to be
 }       included manually here.
   
        */
 /*************** log-likelihood *************/  
 double func( double *x)    int i, j, d, h, k;
 {    double **out, cov[NCOVMAX];
   int i, ii, j, k, mi, d, kk;    double **newm;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;    /* Hstepm could be zero and should return the unit matrix */
   double sw; /* Sum of weights */    for (i=1;i<=nlstate+ndeath;i++)
   double lli; /* Individual log likelihood */      for (j=1;j<=nlstate+ndeath;j++){
   int s1, s2;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double bbh, survp;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   long ipmx;      }
   /*extern weight */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /* We are differentiating ll according to initial status */    for(h=1; h <=nhstepm; h++){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      for(d=1; d <=hstepm; d++){
   /*for(i=1;i<imx;i++)         newm=savm;
     printf(" %d\n",s[4][i]);        /* Covariates have to be included here again */
   */        cov[1]=1.;
   cov[1]=1.;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for(k=1; k<=nlstate; k++) ll[k]=0.;        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   if(mle==1){        for (k=1; k<=cptcovprod;k++)
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           for (j=1;j<=nlstate+ndeath;j++){        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
             savm[ii][j]=(ii==j ? 1.0 : 0.0);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           }        savm=oldm;
         for(d=0; d<dh[mi][i]; d++){        oldm=newm;
           newm=savm;      }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for(i=1; i<=nlstate+ndeath; i++)
           for (kk=1; kk<=cptcovage;kk++) {        for(j=1;j<=nlstate+ndeath;j++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          po[i][j][h]=newm[i][j];
           }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,           */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        }
           savm=oldm;    } /* end h */
           oldm=newm;    return po;
         } /* end mult */  }
         
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  
         /* But now since version 0.9 we anticipate for bias at large stepm.  /*************** log-likelihood *************/
          * If stepm is larger than one month (smallest stepm) and if the exact delay   double func( double *x)
          * (in months) between two waves is not a multiple of stepm, we rounded to   {
          * the nearest (and in case of equal distance, to the lowest) interval but now    int i, ii, j, k, mi, d, kk;
          * we keep into memory the bias bh[mi][i] and also the previous matrix product    double l, ll[NLSTATEMAX], cov[NCOVMAX];
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the    double **out;
          * probability in order to take into account the bias as a fraction of the way    double sw; /* Sum of weights */
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies    double lli; /* Individual log likelihood */
          * -stepm/2 to stepm/2 .    int s1, s2;
          * For stepm=1 the results are the same as for previous versions of Imach.    double bbh, survp;
          * For stepm > 1 the results are less biased than in previous versions.     long ipmx;
          */    /*extern weight */
         s1=s[mw[mi][i]][i];    /* We are differentiating ll according to initial status */
         s2=s[mw[mi+1][i]][i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         bbh=(double)bh[mi][i]/(double)stepm;     /*for(i=1;i<imx;i++)
         /* bias bh is positive if real duration      printf(" %d\n",s[4][i]);
          * is higher than the multiple of stepm and negative otherwise.    */
          */    cov[1]=1.;
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  
         if( s2 > nlstate){     for(k=1; k<=nlstate; k++) ll[k]=0.;
           /* i.e. if s2 is a death state and if the date of death is known   
              then the contribution to the likelihood is the probability to     if(mle==1){
              die between last step unit time and current  step unit time,       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              which is also equal to probability to die before dh         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              minus probability to die before dh-stepm .         for(mi=1; mi<= wav[i]-1; mi++){
              In version up to 0.92 likelihood was computed          for (ii=1;ii<=nlstate+ndeath;ii++)
         as if date of death was unknown. Death was treated as any other            for (j=1;j<=nlstate+ndeath;j++){
         health state: the date of the interview describes the actual state              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         and not the date of a change in health state. The former idea was              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         to consider that at each interview the state was recorded            }
         (healthy, disable or death) and IMaCh was corrected; but when we          for(d=0; d<dh[mi][i]; d++){
         introduced the exact date of death then we should have modified            newm=savm;
         the contribution of an exact death to the likelihood. This new            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         contribution is smaller and very dependent of the step unit            for (kk=1; kk<=cptcovage;kk++) {
         stepm. It is no more the probability to die between last interview              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         and month of death but the probability to survive from last            }
         interview up to one month before death multiplied by the            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         probability to die within a month. Thanks to Chris                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         Jackson for correcting this bug.  Former versions increased            savm=oldm;
         mortality artificially. The bad side is that we add another loop            oldm=newm;
         which slows down the processing. The difference can be up to 10%          } /* end mult */
         lower mortality.       
           */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           lli=log(out[s1][s2] - savm[s1][s2]);          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay
            * (in months) between two waves is not a multiple of stepm, we rounded to
         } else if  (s2==-2) {           * the nearest (and in case of equal distance, to the lowest) interval but now
           for (j=1,survp=0. ; j<=nlstate; j++)            * we keep into memory the bias bh[mi][i] and also the previous matrix product
             survp += out[s1][j];           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           lli= survp;           * probability in order to take into account the bias as a fraction of the way
         }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                    * -stepm/2 to stepm/2 .
         else if  (s2==-4) {           * For stepm=1 the results are the same as for previous versions of Imach.
           for (j=3,survp=0. ; j<=nlstate; j++)            * For stepm > 1 the results are less biased than in previous versions.
             survp += out[s1][j];           */
           lli= survp;          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
                   bbh=(double)bh[mi][i]/(double)stepm;
         else if  (s2==-5) {          /* bias bh is positive if real duration
           for (j=1,survp=0. ; j<=2; j++)            * is higher than the multiple of stepm and negative otherwise.
             survp += out[s1][j];           */
           lli= survp;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         }          if( s2 > nlstate){
             /* i.e. if s2 is a death state and if the date of death is known
                then the contribution to the likelihood is the probability to
         else{               die between last step unit time and current  step unit time,
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */               which is also equal to probability to die before dh
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */               minus probability to die before dh-stepm .
         }                In version up to 0.92 likelihood was computed
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          as if date of death was unknown. Death was treated as any other
         /*if(lli ==000.0)*/          health state: the date of the interview describes the actual state
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          and not the date of a change in health state. The former idea was
         ipmx +=1;          to consider that at each interview the state was recorded
         sw += weight[i];          (healthy, disable or death) and IMaCh was corrected; but when we
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          introduced the exact date of death then we should have modified
       } /* end of wave */          the contribution of an exact death to the likelihood. This new
     } /* end of individual */          contribution is smaller and very dependent of the step unit
   }  else if(mle==2){          stepm. It is no more the probability to die between last interview
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          and month of death but the probability to survive from last
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          interview up to one month before death multiplied by the
       for(mi=1; mi<= wav[i]-1; mi++){          probability to die within a month. Thanks to Chris
         for (ii=1;ii<=nlstate+ndeath;ii++)          Jackson for correcting this bug.  Former versions increased
           for (j=1;j<=nlstate+ndeath;j++){          mortality artificially. The bad side is that we add another loop
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          which slows down the processing. The difference can be up to 10%
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          lower mortality.
           }            */
         for(d=0; d<=dh[mi][i]; d++){            lli=log(out[s1][s2] - savm[s1][s2]);
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
           for (kk=1; kk<=cptcovage;kk++) {          } else if  (s2==-2) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            for (j=1,survp=0. ; j<=nlstate; j++)
           }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            /*survp += out[s1][j]; */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            lli= log(survp);
           savm=oldm;          }
           oldm=newm;         
         } /* end mult */          else if  (s2==-4) {
                   for (j=3,survp=0. ; j<=nlstate; j++)  
         s1=s[mw[mi][i]][i];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         s2=s[mw[mi+1][i]][i];            lli= log(survp);
         bbh=(double)bh[mi][i]/(double)stepm;           }
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  
         ipmx +=1;          else if  (s2==-5) {
         sw += weight[i];            for (j=1,survp=0. ; j<=2; j++)  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       } /* end of wave */            lli= log(survp);
     } /* end of individual */          }
   }  else if(mle==3){  /* exponential inter-extrapolation */         
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          else{
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(mi=1; mi<= wav[i]-1; mi++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         for (ii=1;ii<=nlstate+ndeath;ii++)          }
           for (j=1;j<=nlstate+ndeath;j++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          /*if(lli ==000.0)*/
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           }          ipmx +=1;
         for(d=0; d<dh[mi][i]; d++){          sw += weight[i];
           newm=savm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        } /* end of wave */
           for (kk=1; kk<=cptcovage;kk++) {      } /* end of individual */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    }  else if(mle==2){
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for(mi=1; mi<= wav[i]-1; mi++){
           savm=oldm;          for (ii=1;ii<=nlstate+ndeath;ii++)
           oldm=newm;            for (j=1;j<=nlstate+ndeath;j++){
         } /* end mult */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                     savm[ii][j]=(ii==j ? 1.0 : 0.0);
         s1=s[mw[mi][i]][i];            }
         s2=s[mw[mi+1][i]][i];          for(d=0; d<=dh[mi][i]; d++){
         bbh=(double)bh[mi][i]/(double)stepm;             newm=savm;
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         ipmx +=1;            for (kk=1; kk<=cptcovage;kk++) {
         sw += weight[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            }
       } /* end of wave */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     } /* end of individual */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }else if (mle==4){  /* ml=4 no inter-extrapolation */            savm=oldm;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            oldm=newm;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          } /* end mult */
       for(mi=1; mi<= wav[i]-1; mi++){       
         for (ii=1;ii<=nlstate+ndeath;ii++)          s1=s[mw[mi][i]][i];
           for (j=1;j<=nlstate+ndeath;j++){          s2=s[mw[mi+1][i]][i];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          bbh=(double)bh[mi][i]/(double)stepm;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           }          ipmx +=1;
         for(d=0; d<dh[mi][i]; d++){          sw += weight[i];
           newm=savm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        } /* end of wave */
           for (kk=1; kk<=cptcovage;kk++) {      } /* end of individual */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    }  else if(mle==3){  /* exponential inter-extrapolation */
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                 for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(mi=1; mi<= wav[i]-1; mi++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          for (ii=1;ii<=nlstate+ndeath;ii++)
           savm=oldm;            for (j=1;j<=nlstate+ndeath;j++){
           oldm=newm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         } /* end mult */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   }
         s1=s[mw[mi][i]][i];          for(d=0; d<dh[mi][i]; d++){
         s2=s[mw[mi+1][i]][i];            newm=savm;
         if( s2 > nlstate){             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           lli=log(out[s1][s2] - savm[s1][s2]);            for (kk=1; kk<=cptcovage;kk++) {
         }else{              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         ipmx +=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         sw += weight[i];            savm=oldm;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            oldm=newm;
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          } /* end mult */
       } /* end of wave */       
     } /* end of individual */          s1=s[mw[mi][i]][i];
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */          s2=s[mw[mi+1][i]][i];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          bbh=(double)bh[mi][i]/(double)stepm;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(mi=1; mi<= wav[i]-1; mi++){          ipmx +=1;
         for (ii=1;ii<=nlstate+ndeath;ii++)          sw += weight[i];
           for (j=1;j<=nlstate+ndeath;j++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        } /* end of wave */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      } /* end of individual */
           }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         for(d=0; d<dh[mi][i]; d++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           newm=savm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(mi=1; mi<= wav[i]-1; mi++){
           for (kk=1; kk<=cptcovage;kk++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                       savm[ii][j]=(ii==j ? 1.0 : 0.0);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          for(d=0; d<dh[mi][i]; d++){
           savm=oldm;            newm=savm;
           oldm=newm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         } /* end mult */            for (kk=1; kk<=cptcovage;kk++) {
                     cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         s1=s[mw[mi][i]][i];            }
         s2=s[mw[mi+1][i]][i];         
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         ipmx +=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         sw += weight[i];            savm=oldm;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            oldm=newm;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          } /* end mult */
       } /* end of wave */       
     } /* end of individual */          s1=s[mw[mi][i]][i];
   } /* End of if */          s2=s[mw[mi+1][i]][i];
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          if( s2 > nlstate){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            lli=log(out[s1][s2] - savm[s1][s2]);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          }else{
   return -l;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 }          }
           ipmx +=1;
 /*************** log-likelihood *************/          sw += weight[i];
 double funcone( double *x)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   /* Same as likeli but slower because of a lot of printf and if */        } /* end of wave */
   int i, ii, j, k, mi, d, kk;      } /* end of individual */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   double **out;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double lli; /* Individual log likelihood */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double llt;        for(mi=1; mi<= wav[i]-1; mi++){
   int s1, s2;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double bbh, survp;            for (j=1;j<=nlstate+ndeath;j++){
   /*extern weight */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* We are differentiating ll according to initial status */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/            }
   /*for(i=1;i<imx;i++)           for(d=0; d<dh[mi][i]; d++){
     printf(" %d\n",s[4][i]);            newm=savm;
   */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   cov[1]=1.;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(k=1; k<=nlstate; k++) ll[k]=0.;            }
          
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(mi=1; mi<= wav[i]-1; mi++){            savm=oldm;
       for (ii=1;ii<=nlstate+ndeath;ii++)            oldm=newm;
         for (j=1;j<=nlstate+ndeath;j++){          } /* end mult */
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);       
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
       for(d=0; d<dh[mi][i]; d++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         newm=savm;          ipmx +=1;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          sw += weight[i];
         for (kk=1; kk<=cptcovage;kk++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         }        } /* end of wave */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      } /* end of individual */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    } /* End of if */
         savm=oldm;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         oldm=newm;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       } /* end mult */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           return -l;
       s1=s[mw[mi][i]][i];  }
       s2=s[mw[mi+1][i]][i];  
       bbh=(double)bh[mi][i]/(double)stepm;   /*************** log-likelihood *************/
       /* bias is positive if real duration  double funcone( double *x)
        * is higher than the multiple of stepm and negative otherwise.  {
        */    /* Same as likeli but slower because of a lot of printf and if */
       if( s2 > nlstate && (mle <5) ){  /* Jackson */    int i, ii, j, k, mi, d, kk;
         lli=log(out[s1][s2] - savm[s1][s2]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       } else if (mle==1){    double **out;
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */    double lli; /* Individual log likelihood */
       } else if(mle==2){    double llt;
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */    int s1, s2;
       } else if(mle==3){  /* exponential inter-extrapolation */    double bbh, survp;
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    /*extern weight */
       } else if (mle==4){  /* mle=4 no inter-extrapolation */    /* We are differentiating ll according to initial status */
         lli=log(out[s1][s2]); /* Original formula */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */    /*for(i=1;i<imx;i++)
         lli=log(out[s1][s2]); /* Original formula */      printf(" %d\n",s[4][i]);
       } /* End of if */    */
       ipmx +=1;    cov[1]=1.;
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    for(k=1; k<=nlstate; k++) ll[k]=0.;
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */  
       if(globpr){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  %10.6f %10.6f %10.6f ", \      for(mi=1; mi<= wav[i]-1; mi++){
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],        for (ii=1;ii<=nlstate+ndeath;ii++)
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);          for (j=1;j<=nlstate+ndeath;j++){
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           llt +=ll[k]*gipmx/gsw;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);          }
         }        for(d=0; d<dh[mi][i]; d++){
         fprintf(ficresilk," %10.6f\n", -llt);          newm=savm;
       }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     } /* end of wave */          for (kk=1; kk<=cptcovage;kk++) {
   } /* end of individual */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if(globpr==0){ /* First time we count the contributions and weights */          savm=oldm;
     gipmx=ipmx;          oldm=newm;
     gsw=sw;        } /* end mult */
   }       
   return -l;        s1=s[mw[mi][i]][i];
 }        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;
         /* bias is positive if real duration
 /*************** function likelione ***********/         * is higher than the multiple of stepm and negative otherwise.
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))         */
 {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   /* This routine should help understanding what is done with           lli=log(out[s1][s2] - savm[s1][s2]);
      the selection of individuals/waves and        } else if  (s2==-2) {
      to check the exact contribution to the likelihood.          for (j=1,survp=0. ; j<=nlstate; j++)
      Plotting could be done.            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    */          lli= log(survp);
   int k;        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   if(*globpri !=0){ /* Just counts and sums, no printings */        } else if(mle==2){
     strcpy(fileresilk,"ilk");           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     strcat(fileresilk,fileres);        } else if(mle==3){  /* exponential inter-extrapolation */
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       printf("Problem with resultfile: %s\n", fileresilk);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);          lli=log(out[s1][s2]); /* Original formula */
     }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");          lli=log(out[s1][s2]); /* Original formula */
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");        } /* End of if */
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */        ipmx +=1;
     for(k=1; k<=nlstate; k++)         sw += weight[i];
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   }        if(globpr){
           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   *fretone=(*funcone)(p);   %11.6f %11.6f %11.6f ", \
   if(*globpri !=0){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     fclose(ficresilk);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     fflush(fichtm);             llt +=ll[k]*gipmx/gsw;
   }             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   return;          }
 }          fprintf(ficresilk," %10.6f\n", -llt);
         }
       } /* end of wave */
 /*********** Maximum Likelihood Estimation ***************/    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i,j, iter;    if(globpr==0){ /* First time we count the contributions and weights */
   double **xi;      gipmx=ipmx;
   double fret;      gsw=sw;
   double fretone; /* Only one call to likelihood */    }
   /*  char filerespow[FILENAMELENGTH];*/    return -l;
   xi=matrix(1,npar,1,npar);  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  /*************** function likelione ***********/
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   strcpy(filerespow,"pow");   {
   strcat(filerespow,fileres);    /* This routine should help understanding what is done with
   if((ficrespow=fopen(filerespow,"w"))==NULL) {       the selection of individuals/waves and
     printf("Problem with resultfile: %s\n", filerespow);       to check the exact contribution to the likelihood.
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);       Plotting could be done.
   }     */
   fprintf(ficrespow,"# Powell\n# iter -2*LL");    int k;
   for (i=1;i<=nlstate;i++)  
     for(j=1;j<=nlstate+ndeath;j++)    if(*globpri !=0){ /* Just counts and sums, no printings */
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      strcpy(fileresilk,"ilk");
   fprintf(ficrespow,"\n");      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   powell(p,xi,npar,ftol,&iter,&fret,func);        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   free_matrix(xi,1,npar,1,npar);      }
   fclose(ficrespow);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      for(k=1; k<=nlstate; k++)
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    *fretone=(*funcone)(p);
 {    if(*globpri !=0){
   double  **a,**y,*x,pd;      fclose(ficresilk);
   double **hess;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   int i, j,jk;      fflush(fichtm);
   int *indx;    }
     return;
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);  }
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*********** Maximum Likelihood Estimation ***************/
   double gompertz(double p[]);  
   hess=matrix(1,npar,1,npar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
   printf("\nCalculation of the hessian matrix. Wait...\n");    int i,j, iter;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    double **xi;
   for (i=1;i<=npar;i++){    double fret;
     printf("%d",i);fflush(stdout);    double fretone; /* Only one call to likelihood */
     fprintf(ficlog,"%d",i);fflush(ficlog);    /*  char filerespow[FILENAMELENGTH];*/
        xi=matrix(1,npar,1,npar);
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);    for (i=1;i<=npar;i++)
           for (j=1;j<=npar;j++)
     /*  printf(" %f ",p[i]);        xi[i][j]=(i==j ? 1.0 : 0.0);
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   }    strcpy(filerespow,"pow");
       strcat(filerespow,fileres);
   for (i=1;i<=npar;i++) {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     for (j=1;j<=npar;j++)  {      printf("Problem with resultfile: %s\n", filerespow);
       if (j>i) {       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         printf(".%d%d",i,j);fflush(stdout);    }
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         hess[i][j]=hessij(p,delti,i,j,func,npar);    for (i=1;i<=nlstate;i++)
               for(j=1;j<=nlstate+ndeath;j++)
         hess[j][i]=hess[i][j];            if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         /*printf(" %lf ",hess[i][j]);*/    fprintf(ficrespow,"\n");
       }  
     }    powell(p,xi,npar,ftol,&iter,&fret,func);
   }  
   printf("\n");    free_matrix(xi,1,npar,1,npar);
   fprintf(ficlog,"\n");    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     
   a=matrix(1,npar,1,npar);  }
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  /**** Computes Hessian and covariance matrix ***/
   indx=ivector(1,npar);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    double  **a,**y,*x,pd;
   ludcmp(a,npar,indx,&pd);    double **hess;
     int i, j,jk;
   for (j=1;j<=npar;j++) {    int *indx;
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     lubksb(a,npar,indx,x);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     for (i=1;i<=npar;i++){     void lubksb(double **a, int npar, int *indx, double b[]) ;
       matcov[i][j]=x[i];    void ludcmp(double **a, int npar, int *indx, double *d) ;
     }    double gompertz(double p[]);
   }    hess=matrix(1,npar,1,npar);
   
   printf("\n#Hessian matrix#\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficlog,"\n#Hessian matrix#\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   for (i=1;i<=npar;i++) {     for (i=1;i<=npar;i++){
     for (j=1;j<=npar;j++) {       printf("%d",i);fflush(stdout);
       printf("%.3e ",hess[i][j]);      fprintf(ficlog,"%d",i);fflush(ficlog);
       fprintf(ficlog,"%.3e ",hess[i][j]);     
     }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     printf("\n");     
     fprintf(ficlog,"\n");      /*  printf(" %f ",p[i]);
   }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
   /* Recompute Inverse */   
   for (i=1;i<=npar;i++)    for (i=1;i<=npar;i++) {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      for (j=1;j<=npar;j++)  {
   ludcmp(a,npar,indx,&pd);        if (j>i) {
           printf(".%d%d",i,j);fflush(stdout);
   /*  printf("\n#Hessian matrix recomputed#\n");          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
   for (j=1;j<=npar;j++) {         
     for (i=1;i<=npar;i++) x[i]=0;          hess[j][i]=hess[i][j];    
     x[j]=1;          /*printf(" %lf ",hess[i][j]);*/
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){       }
       y[i][j]=x[i];    }
       printf("%.3e ",y[i][j]);    printf("\n");
       fprintf(ficlog,"%.3e ",y[i][j]);    fprintf(ficlog,"\n");
     }  
     printf("\n");    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   }   
   */    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   free_matrix(a,1,npar,1,npar);    x=vector(1,npar);
   free_matrix(y,1,npar,1,npar);    indx=ivector(1,npar);
   free_vector(x,1,npar);    for (i=1;i<=npar;i++)
   free_ivector(indx,1,npar);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   free_matrix(hess,1,npar,1,npar);    ludcmp(a,npar,indx,&pd);
   
     for (j=1;j<=npar;j++) {
 }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
 /*************** hessian matrix ****************/      lubksb(a,npar,indx,x);
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)      for (i=1;i<=npar;i++){
 {        matcov[i][j]=x[i];
   int i;      }
   int l=1, lmax=20;    }
   double k1,k2;  
   double p2[NPARMAX+1];    printf("\n#Hessian matrix#\n");
   double res;    fprintf(ficlog,"\n#Hessian matrix#\n");
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;    for (i=1;i<=npar;i++) {
   double fx;      for (j=1;j<=npar;j++) {
   int k=0,kmax=10;        printf("%.3e ",hess[i][j]);
   double l1;        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
   fx=func(x);      printf("\n");
   for (i=1;i<=npar;i++) p2[i]=x[i];      fprintf(ficlog,"\n");
   for(l=0 ; l <=lmax; l++){    }
     l1=pow(10,l);  
     delts=delt;    /* Recompute Inverse */
     for(k=1 ; k <kmax; k=k+1){    for (i=1;i<=npar;i++)
       delt = delta*(l1*k);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       p2[theta]=x[theta] +delt;    ludcmp(a,npar,indx,&pd);
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;    /*  printf("\n#Hessian matrix recomputed#\n");
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */    for (j=1;j<=npar;j++) {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      for (i=1;i<=npar;i++) x[i]=0;
             x[j]=1;
 #ifdef DEBUG      lubksb(a,npar,indx,x);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for (i=1;i<=npar;i++){
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        y[i][j]=x[i];
 #endif        printf("%.3e ",y[i][j]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        fprintf(ficlog,"%.3e ",y[i][j]);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      }
         k=kmax;      printf("\n");
       }      fprintf(ficlog,"\n");
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    }
         k=kmax; l=lmax*10.;    */
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){     free_matrix(a,1,npar,1,npar);
         delts=delt;    free_matrix(y,1,npar,1,npar);
       }    free_vector(x,1,npar);
     }    free_ivector(indx,1,npar);
   }    free_matrix(hess,1,npar,1,npar);
   delti[theta]=delts;  
   return res;   
     }
 }  
   /*************** hessian matrix ****************/
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 {  {
   int i;    int i;
   int l=1, l1, lmax=20;    int l=1, lmax=20;
   double k1,k2,k3,k4,res,fx;    double k1,k2;
   double p2[NPARMAX+1];    double p2[NPARMAX+1];
   int k;    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   fx=func(x);    double fx;
   for (k=1; k<=2; k++) {    int k=0,kmax=10;
     for (i=1;i<=npar;i++) p2[i]=x[i];    double l1;
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    fx=func(x);
     k1=func(p2)-fx;    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(l=0 ; l <=lmax; l++){
     p2[thetai]=x[thetai]+delti[thetai]/k;      l1=pow(10,l);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      delts=delt;
     k2=func(p2)-fx;      for(k=1 ; k <kmax; k=k+1){
           delt = delta*(l1*k);
     p2[thetai]=x[thetai]-delti[thetai]/k;        p2[theta]=x[theta] +delt;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        k1=func(p2)-fx;
     k3=func(p2)-fx;        p2[theta]=x[theta]-delt;
           k2=func(p2)-fx;
     p2[thetai]=x[thetai]-delti[thetai]/k;        /*res= (k1-2.0*fx+k2)/delt/delt; */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     k4=func(p2)-fx;       
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  #ifdef DEBUG
 #ifdef DEBUG        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  #endif
 #endif        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   return res;          k=kmax;
 }        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 /************** Inverse of matrix **************/          k=kmax; l=lmax*10.;
 void ludcmp(double **a, int n, int *indx, double *d)         }
 {         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
   int i,imax,j,k;           delts=delt;
   double big,dum,sum,temp;         }
   double *vv;       }
      }
   vv=vector(1,n);     delti[theta]=delts;
   *d=1.0;     return res;
   for (i=1;i<=n;i++) {    
     big=0.0;   }
     for (j=1;j<=n;j++)   
       if ((temp=fabs(a[i][j])) > big) big=temp;   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");   {
     vv[i]=1.0/big;     int i;
   }     int l=1, l1, lmax=20;
   for (j=1;j<=n;j++) {     double k1,k2,k3,k4,res,fx;
     for (i=1;i<j;i++) {     double p2[NPARMAX+1];
       sum=a[i][j];     int k;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];   
       a[i][j]=sum;     fx=func(x);
     }     for (k=1; k<=2; k++) {
     big=0.0;       for (i=1;i<=npar;i++) p2[i]=x[i];
     for (i=j;i<=n;i++) {       p2[thetai]=x[thetai]+delti[thetai]/k;
       sum=a[i][j];       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for (k=1;k<j;k++)       k1=func(p2)-fx;
         sum -= a[i][k]*a[k][j];    
       a[i][j]=sum;       p2[thetai]=x[thetai]+delti[thetai]/k;
       if ( (dum=vv[i]*fabs(sum)) >= big) {       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         big=dum;       k2=func(p2)-fx;
         imax=i;    
       }       p2[thetai]=x[thetai]-delti[thetai]/k;
     }       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     if (j != imax) {       k3=func(p2)-fx;
       for (k=1;k<=n;k++) {    
         dum=a[imax][k];       p2[thetai]=x[thetai]-delti[thetai]/k;
         a[imax][k]=a[j][k];       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         a[j][k]=dum;       k4=func(p2)-fx;
       }       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       *d = -(*d);   #ifdef DEBUG
       vv[imax]=vv[j];       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     }       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     indx[j]=imax;   #endif
     if (a[j][j] == 0.0) a[j][j]=TINY;     }
     if (j != n) {     return res;
       dum=1.0/(a[j][j]);   }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;   
     }   /************** Inverse of matrix **************/
   }   void ludcmp(double **a, int n, int *indx, double *d)
   free_vector(vv,1,n);  /* Doesn't work */  {
 ;    int i,imax,j,k;
 }     double big,dum,sum,temp;
     double *vv;
 void lubksb(double **a, int n, int *indx, double b[])    
 {     vv=vector(1,n);
   int i,ii=0,ip,j;     *d=1.0;
   double sum;     for (i=1;i<=n;i++) {
        big=0.0;
   for (i=1;i<=n;i++) {       for (j=1;j<=n;j++)
     ip=indx[i];         if ((temp=fabs(a[i][j])) > big) big=temp;
     sum=b[ip];       if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
     b[ip]=b[i];       vv[i]=1.0/big;
     if (ii)     }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];     for (j=1;j<=n;j++) {
     else if (sum) ii=i;       for (i=1;i<j;i++) {
     b[i]=sum;         sum=a[i][j];
   }         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
   for (i=n;i>=1;i--) {         a[i][j]=sum;
     sum=b[i];       }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       big=0.0;
     b[i]=sum/a[i][i];       for (i=j;i<=n;i++) {
   }         sum=a[i][j];
 }         for (k=1;k<j;k++)
           sum -= a[i][k]*a[k][j];
 void pstamp(FILE *fichier)        a[i][j]=sum;
 {        if ( (dum=vv[i]*fabs(sum)) >= big) {
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);          big=dum;
 }          imax=i;
         }
 /************ Frequencies ********************/      }
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])      if (j != imax) {
 {  /* Some frequencies */        for (k=1;k<=n;k++) {
             dum=a[imax][k];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          a[imax][k]=a[j][k];
   int first;          a[j][k]=dum;
   double ***freq; /* Frequencies */        }
   double *pp, **prop;        *d = -(*d);
   double pos,posprop, k2, dateintsum=0,k2cpt=0;        vv[imax]=vv[j];
   char fileresp[FILENAMELENGTH];      }
         indx[j]=imax;
   pp=vector(1,nlstate);      if (a[j][j] == 0.0) a[j][j]=TINY;
   prop=matrix(1,nlstate,iagemin,iagemax+3);      if (j != n) {
   strcpy(fileresp,"p");        dum=1.0/(a[j][j]);
   strcat(fileresp,fileres);        for (i=j+1;i<=n;i++) a[i][j] *= dum;
   if((ficresp=fopen(fileresp,"w"))==NULL) {      }
     printf("Problem with prevalence resultfile: %s\n", fileresp);    }
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    free_vector(vv,1,n);  /* Doesn't work */
     exit(0);  ;
   }  }
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);  
   j1=0;  void lubksb(double **a, int n, int *indx, double b[])
     {
   j=cptcoveff;    int i,ii=0,ip,j;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double sum;
    
   first=1;    for (i=1;i<=n;i++) {
       ip=indx[i];
   for(k1=1; k1<=j;k1++){      sum=b[ip];
     for(i1=1; i1<=ncodemax[k1];i1++){      b[ip]=b[i];
       j1++;      if (ii)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
         scanf("%d", i);*/      else if (sum) ii=i;
       for (i=-5; i<=nlstate+ndeath; i++)        b[i]=sum;
         for (jk=-5; jk<=nlstate+ndeath; jk++)      }
           for(m=iagemin; m <= iagemax+3; m++)    for (i=n;i>=1;i--) {
             freq[i][jk][m]=0;      sum=b[i];
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
     for (i=1; i<=nlstate; i++)        b[i]=sum/a[i][i];
       for(m=iagemin; m <= iagemax+3; m++)    }
         prop[i][m]=0;  }
         
       dateintsum=0;  void pstamp(FILE *fichier)
       k2cpt=0;  {
       for (i=1; i<=imx; i++) {    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         bool=1;  }
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)   /************ Frequencies ********************/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
               bool=0;  {  /* Some frequencies */
         }   
         if (bool==1){    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           for(m=firstpass; m<=lastpass; m++){    int first;
             k2=anint[m][i]+(mint[m][i]/12.);    double ***freq; /* Frequencies */
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/    double *pp, **prop;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    char fileresp[FILENAMELENGTH];
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];   
               if (m<lastpass) {    pp=vector(1,nlstate);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    prop=matrix(1,nlstate,iagemin,iagemax+3);
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];    strcpy(fileresp,"p");
               }    strcat(fileresp,fileres);
                   if((ficresp=fopen(fileresp,"w"))==NULL) {
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {      printf("Problem with prevalence resultfile: %s\n", fileresp);
                 dateintsum=dateintsum+k2;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                 k2cpt++;      exit(0);
               }    }
               /*}*/    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           }    j1=0;
         }   
       }    j=cptcoveff;
            if (cptcovn<1) {j=1;ncodemax[1]=1;}
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/  
       pstamp(ficresp);    first=1;
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");     for(k1=1; k1<=j;k1++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(i1=1; i1<=ncodemax[k1];i1++){
         fprintf(ficresp, "**********\n#");        j1++;
       }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for(i=1; i<=nlstate;i++)           scanf("%d", i);*/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for (i=-5; i<=nlstate+ndeath; i++)  
       fprintf(ficresp, "\n");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                   for(m=iagemin; m <= iagemax+3; m++)
       for(i=iagemin; i <= iagemax+3; i++){              freq[i][jk][m]=0;
         if(i==iagemax+3){  
           fprintf(ficlog,"Total");      for (i=1; i<=nlstate; i++)  
         }else{        for(m=iagemin; m <= iagemax+3; m++)
           if(first==1){          prop[i][m]=0;
             first=0;       
             printf("See log file for details...\n");        dateintsum=0;
           }        k2cpt=0;
           fprintf(ficlog,"Age %d", i);        for (i=1; i<=imx; i++) {
         }          bool=1;
         for(jk=1; jk <=nlstate ; jk++){          if  (cptcovn>0) {
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            for (z1=1; z1<=cptcoveff; z1++)
             pp[jk] += freq[jk][m][i];               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
         }                bool=0;
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=-1, pos=0; m <=0 ; m++)          if (bool==1){
             pos += freq[jk][m][i];            for(m=firstpass; m<=lastpass; m++){
           if(pp[jk]>=1.e-10){              k2=anint[m][i]+(mint[m][i]/12.);
             if(first==1){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           }else{                if (m<lastpass) {
             if(first==1)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);                }
           }               
         }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
         for(jk=1; jk <=nlstate ; jk++){                  k2cpt++;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)                }
             pp[jk] += freq[jk][m][i];                /*}*/
         }                   }
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){          }
           pos += pp[jk];        }
           posprop += prop[jk][i];         
         }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         for(jk=1; jk <=nlstate ; jk++){        pstamp(ficresp);
           if(pos>=1.e-5){        if  (cptcovn>0) {
             if(first==1)          fprintf(ficresp, "\n#********** Variable ");
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          fprintf(ficresp, "**********\n#");
           }else{        }
             if(first==1)        for(i=1; i<=nlstate;i++)
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        fprintf(ficresp, "\n");
           }       
           if( i <= iagemax){        for(i=iagemin; i <= iagemax+3; i++){
             if(pos>=1.e-5){          if(i==iagemax+3){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);            fprintf(ficlog,"Total");
               /*probs[i][jk][j1]= pp[jk]/pos;*/          }else{
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            if(first==1){
             }              first=0;
             else              printf("See log file for details...\n");
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);            }
           }            fprintf(ficlog,"Age %d", i);
         }          }
                   for(jk=1; jk <=nlstate ; jk++){
         for(jk=-1; jk <=nlstate+ndeath; jk++)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           for(m=-1; m <=nlstate+ndeath; m++)              pp[jk] += freq[jk][m][i];
             if(freq[jk][m][i] !=0 ) {          }
             if(first==1)          for(jk=1; jk <=nlstate ; jk++){
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            for(m=-1, pos=0; m <=0 ; m++)
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);              pos += freq[jk][m][i];
             }            if(pp[jk]>=1.e-10){
         if(i <= iagemax)              if(first==1){
           fprintf(ficresp,"\n");              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         if(first==1)              }
           printf("Others in log...\n");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         fprintf(ficlog,"\n");            }else{
       }              if(first==1)
     }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   dateintmean=dateintsum/k2cpt;             }
            }
   fclose(ficresp);  
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);          for(jk=1; jk <=nlstate ; jk++){
   free_vector(pp,1,nlstate);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);              pp[jk] += freq[jk][m][i];
   /* End of Freq */          }      
 }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
 /************ Prevalence ********************/            posprop += prop[jk][i];
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)          }
 {            for(jk=1; jk <=nlstate ; jk++){
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people            if(pos>=1.e-5){
      in each health status at the date of interview (if between dateprev1 and dateprev2).              if(first==1)
      We still use firstpass and lastpass as another selection.                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
              }else{
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;              if(first==1)
   double ***freq; /* Frequencies */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double *pp, **prop;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double pos,posprop;             }
   double  y2; /* in fractional years */            if( i <= iagemax){
   int iagemin, iagemax;              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   iagemin= (int) agemin;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   iagemax= (int) agemax;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   /*pp=vector(1,nlstate);*/              }
   prop=matrix(1,nlstate,iagemin,iagemax+3);               else
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   j1=0;            }
             }
   j=cptcoveff;         
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for(jk=-1; jk <=nlstate+ndeath; jk++)
               for(m=-1; m <=nlstate+ndeath; m++)
   for(k1=1; k1<=j;k1++){              if(freq[jk][m][i] !=0 ) {
     for(i1=1; i1<=ncodemax[k1];i1++){              if(first==1)
       j1++;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                       fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       for (i=1; i<=nlstate; i++)                }
         for(m=iagemin; m <= iagemax+3; m++)          if(i <= iagemax)
           prop[i][m]=0.0;            fprintf(ficresp,"\n");
                if(first==1)
       for (i=1; i<=imx; i++) { /* Each individual */            printf("Others in log...\n");
         bool=1;          fprintf(ficlog,"\n");
         if  (cptcovn>0) {        }
           for (z1=1; z1<=cptcoveff; z1++)       }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     }
               bool=0;    dateintmean=dateintsum/k2cpt;
         }    
         if (bool==1) {     fclose(ficresp);
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */    free_vector(pp,1,nlstate);
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    /* End of Freq */
               if(agev[m][i]==1) agev[m][i]=iagemax+2;  }
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);   
               if (s[m][i]>0 && s[m][i]<=nlstate) {   /************ Prevalence ********************/
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];  {  
                 prop[s[m][i]][iagemax+3] += weight[i];     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
               }        in each health status at the date of interview (if between dateprev1 and dateprev2).
             }       We still use firstpass and lastpass as another selection.
           } /* end selection of waves */    */
         }   
       }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       for(i=iagemin; i <= iagemax+3; i++){      double ***freq; /* Frequencies */
             double *pp, **prop;
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {     double pos,posprop;
           posprop += prop[jk][i];     double  y2; /* in fractional years */
         }     int iagemin, iagemax;
   
         for(jk=1; jk <=nlstate ; jk++){         iagemin= (int) agemin;
           if( i <=  iagemax){     iagemax= (int) agemax;
             if(posprop>=1.e-5){     /*pp=vector(1,nlstate);*/
               probs[i][jk][j1]= prop[jk][i]/posprop;    prop=matrix(1,nlstate,iagemin,iagemax+3);
             }     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           }     j1=0;
         }/* end jk */    
       }/* end i */     j=cptcoveff;
     } /* end i1 */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   } /* end k1 */   
       for(k1=1; k1<=j;k1++){
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/      for(i1=1; i1<=ncodemax[k1];i1++){
   /*free_vector(pp,1,nlstate);*/        j1++;
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);       
 }  /* End of prevalence */        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
 /************* Waves Concatenation ***************/            prop[i][m]=0.0;
        
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for (i=1; i<=imx; i++) { /* Each individual */
 {          bool=1;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          if  (cptcovn>0) {
      Death is a valid wave (if date is known).            for (z1=1; z1<=cptcoveff; z1++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]                bool=0;
      and mw[mi+1][i]. dh depends on stepm.          }
      */          if (bool==1) {
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   int i, mi, m;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
      double sum=0., jmean=0.;*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int first;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   int j, k=0,jk, ju, jl;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
   double sum=0.;                if (s[m][i]>0 && s[m][i]<=nlstate) {
   first=0;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   jmin=1e+5;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   jmax=-1;                  prop[s[m][i]][iagemax+3] += weight[i];
   jmean=0.;                }
   for(i=1; i<=imx; i++){              }
     mi=0;            } /* end selection of waves */
     m=firstpass;          }
     while(s[m][i] <= nlstate){        }
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)        for(i=iagemin; i <= iagemax+3; i++){  
         mw[++mi][i]=m;         
       if(m >=lastpass)          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
         break;            posprop += prop[jk][i];
       else          }
         m++;  
     }/* end while */          for(jk=1; jk <=nlstate ; jk++){    
     if (s[m][i] > nlstate){            if( i <=  iagemax){
       mi++;     /* Death is another wave */              if(posprop>=1.e-5){
       /* if(mi==0)  never been interviewed correctly before death */                probs[i][jk][j1]= prop[jk][i]/posprop;
          /* Only death is a correct wave */              }
       mw[mi][i]=m;            }
     }          }/* end jk */
         }/* end i */
     wav[i]=mi;      } /* end i1 */
     if(mi==0){    } /* end k1 */
       nbwarn++;   
       if(first==0){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);    /*free_vector(pp,1,nlstate);*/
         first=1;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       }  }  /* End of prevalence */
       if(first==1){  
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);  /************* Waves Concatenation ***************/
       }  
     } /* end mi==0 */  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   } /* End individuals */  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   for(i=1; i<=imx; i++){       Death is a valid wave (if date is known).
     for(mi=1; mi<wav[i];mi++){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       if (stepm <=0)       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         dh[mi][i]=1;       and mw[mi+1][i]. dh depends on stepm.
       else{       */
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */  
           if (agedc[i] < 2*AGESUP) {    int i, mi, m;
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             if(j==0) j=1;  /* Survives at least one month after exam */       double sum=0., jmean=0.;*/
             else if(j<0){    int first;
               nberr++;    int j, k=0,jk, ju, jl;
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    double sum=0.;
               j=1; /* Temporary Dangerous patch */    first=0;
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);    jmin=1e+5;
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    jmax=-1;
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);    jmean=0.;
             }    for(i=1; i<=imx; i++){
             k=k+1;      mi=0;
             if (j >= jmax){      m=firstpass;
               jmax=j;      while(s[m][i] <= nlstate){
               ijmax=i;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
             }          mw[++mi][i]=m;
             if (j <= jmin){        if(m >=lastpass)
               jmin=j;          break;
               ijmin=i;        else
             }          m++;
             sum=sum+j;      }/* end while */
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/      if (s[m][i] > nlstate){
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/        mi++;     /* Death is another wave */
           }        /* if(mi==0)  never been interviewed correctly before death */
         }           /* Only death is a correct wave */
         else{        mw[mi][i]=m;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      }
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */  
       wav[i]=mi;
           k=k+1;      if(mi==0){
           if (j >= jmax) {        nbwarn++;
             jmax=j;        if(first==0){
             ijmax=i;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           }          first=1;
           else if (j <= jmin){        }
             jmin=j;        if(first==1){
             ijmin=i;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           }        }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      } /* end mi==0 */
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/    } /* End individuals */
           if(j<0){  
             nberr++;    for(i=1; i<=imx; i++){
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);      for(mi=1; mi<wav[i];mi++){
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        if (stepm <=0)
           }          dh[mi][i]=1;
           sum=sum+j;        else{
         }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         jk= j/stepm;            if (agedc[i] < 2*AGESUP) {
         jl= j -jk*stepm;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
         ju= j -(jk+1)*stepm;              if(j==0) j=1;  /* Survives at least one month after exam */
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */              else if(j<0){
           if(jl==0){                nberr++;
             dh[mi][i]=jk;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             bh[mi][i]=0;                j=1; /* Temporary Dangerous patch */
           }else{ /* We want a negative bias in order to only have interpolation ie                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   * at the price of an extra matrix product in likelihood */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             dh[mi][i]=jk+1;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             bh[mi][i]=ju;              }
           }              k=k+1;
         }else{              if (j >= jmax){
           if(jl <= -ju){                jmax=j;
             dh[mi][i]=jk;                ijmax=i;
             bh[mi][i]=jl;       /* bias is positive if real duration              }
                                  * is higher than the multiple of stepm and negative otherwise.              if (j <= jmin){
                                  */                jmin=j;
           }                ijmin=i;
           else{              }
             dh[mi][i]=jk+1;              sum=sum+j;
             bh[mi][i]=ju;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           if(dh[mi][i]==0){            }
             dh[mi][i]=1; /* At least one step */          }
             bh[mi][i]=ju; /* At least one step */          else{
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         } /* end if mle */  
       }            k=k+1;
     } /* end wave */            if (j >= jmax) {
   }              jmax=j;
   jmean=sum/k;              ijmax=i;
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);            }
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);            else if (j <= jmin){
  }              jmin=j;
               ijmin=i;
 /*********** Tricode ****************************/            }
 void tricode(int *Tvar, int **nbcode, int imx)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
               if(j<0){
   int Ndum[20],ij=1, k, j, i, maxncov=19;              nberr++;
   int cptcode=0;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   cptcoveff=0;               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              }
   for (k=0; k<maxncov; k++) Ndum[k]=0;            sum=sum+j;
   for (k=1; k<=7; k++) ncodemax[k]=0;          }
           jk= j/stepm;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          jl= j -jk*stepm;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum           ju= j -(jk+1)*stepm;
                                modality*/           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/            if(jl==0){
       Ndum[ij]++; /*store the modality */              dh[mi][i]=jk;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              bh[mi][i]=0;
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable             }else{ /* We want a negative bias in order to only have interpolation ie
                                        Tvar[j]. If V=sex and male is 0 and                     * at the price of an extra matrix product in likelihood */
                                        female is 1, then  cptcode=1.*/              dh[mi][i]=jk+1;
     }              bh[mi][i]=ju;
             }
     for (i=0; i<=cptcode; i++) {          }else{
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */            if(jl <= -ju){
     }              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
     ij=1;                                    * is higher than the multiple of stepm and negative otherwise.
     for (i=1; i<=ncodemax[j]; i++) {                                   */
       for (k=0; k<= maxncov; k++) {            }
         if (Ndum[k] != 0) {            else{
           nbcode[Tvar[j]][ij]=k;               dh[mi][i]=jk+1;
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */              bh[mi][i]=ju;
                       }
           ij++;            if(dh[mi][i]==0){
         }              dh[mi][i]=1; /* At least one step */
         if (ij > ncodemax[j]) break;               bh[mi][i]=ju; /* At least one step */
       }                /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     }             }
   }            } /* end if mle */
         }
  for (k=0; k< maxncov; k++) Ndum[k]=0;      } /* end wave */
     }
  for (i=1; i<=ncovmodel-2; i++) {     jmean=sum/k;
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
    ij=Tvar[i];    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    Ndum[ij]++;   }
  }  
   /*********** Tricode ****************************/
  ij=1;  void tricode(int *Tvar, int **nbcode, int imx)
  for (i=1; i<= maxncov; i++) {  {
    if((Ndum[i]!=0) && (i<=ncovcol)){   
      Tvaraff[ij]=i; /*For printing */    int Ndum[20],ij=1, k, j, i, maxncov=19;
      ij++;    int cptcode=0;
    }    cptcoveff=0;
  }   
      for (k=0; k<maxncov; k++) Ndum[k]=0;
  cptcoveff=ij-1; /*Number of simple covariates*/    for (k=1; k<=7; k++) ncodemax[k]=0;
 }  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 /*********** Health Expectancies ****************/      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
                                  modality*/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
 {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   /* Health expectancies, no variances */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;                                         Tvar[j]. If V=sex and male is 0 and
   double age, agelim, hf;                                         female is 1, then  cptcode=1.*/
   double ***p3mat;      }
   double eip;  
       for (i=0; i<=cptcode; i++) {
   pstamp(ficreseij);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");      }
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++){      ij=1;
     for(j=1; j<=nlstate;j++){      for (i=1; i<=ncodemax[j]; i++) {
       fprintf(ficreseij," e%1d%1d ",i,j);        for (k=0; k<= maxncov; k++) {
     }          if (Ndum[k] != 0) {
     fprintf(ficreseij," e%1d. ",i);            nbcode[Tvar[j]][ij]=k;
   }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   fprintf(ficreseij,"\n");           
             ij++;
             }
   if(estepm < stepm){          if (ij > ncodemax[j]) break;
     printf ("Problem %d lower than %d\n",estepm, stepm);        }  
   }      }
   else  hstepm=estepm;       }  
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example   for (k=0; k< maxncov; k++) Ndum[k]=0;
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear    for (i=1; i<=ncovmodel-2; i++) {
    * progression in between and thus overestimating or underestimating according     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
    * to the curvature of the survival function. If, for the same date, we      ij=Tvar[i];
    * estimate the model with stepm=1 month, we can keep estepm to 24 months     Ndum[ij]++;
    * to compare the new estimate of Life expectancy with the same linear    }
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */   ij=1;
    for (i=1; i<= maxncov; i++) {
   /* For example we decided to compute the life expectancy with the smallest unit */     if((Ndum[i]!=0) && (i<=ncovcol)){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        Tvaraff[ij]=i; /*For printing */
      nhstepm is the number of hstepm from age to agelim        ij++;
      nstepm is the number of stepm from age to agelin.      }
      Look at hpijx to understand the reason of that which relies in memory size   }
      and note for a fixed period like estepm months */   
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the   cptcoveff=ij-1; /*Number of simple covariates*/
      survival function given by stepm (the optimization length). Unfortunately it  }
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same   /*********** Health Expectancies ****************/
      results. So we changed our mind and took the option of the best precision.  
   */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */   
   {
   agelim=AGESUP;    /* Health expectancies, no variances */
   /* nhstepm age range expressed in number of stepm */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   nstepm=(int) rint((agelim-age)*YEARM/stepm);     double age, agelim, hf;
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */     double ***p3mat;
   /* if (stepm >= YEARM) hstepm=1;*/    double eip;
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficreseij,"# Age");
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    for(i=1; i<=nlstate;i++){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);        }
        fprintf(ficreseij," e%1d. ",i);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    }
     fprintf(ficreseij,"\n");
     /* Computing  Variances of health expectancies */  
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to   
        decrease memory allocation */    if(estepm < stepm){
      printf("%d|",(int)age);fflush(stdout);      printf ("Problem %d lower than %d\n",estepm, stepm);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    }
     /* Computing expectancies */    else  hstepm=estepm;  
     for(i=1; i<=nlstate;i++)    /* We compute the life expectancy from trapezoids spaced every estepm months
       for(j=1; j<=nlstate;j++)     * This is mainly to measure the difference between two models: for example
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){     * if stepm=24 months pijx are given only every 2 years and by summing them
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;     * we are calculating an estimate of the Life Expectancy assuming a linear
                * progression in between and thus overestimating or underestimating according
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/     * to the curvature of the survival function. If, for the same date, we
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
         }     * to compare the new estimate of Life expectancy with the same linear
      * hypothesis. A more precise result, taking into account a more precise
     fprintf(ficreseij,"%3.0f",age );     * curvature will be obtained if estepm is as small as stepm. */
     for(i=1; i<=nlstate;i++){  
       eip=0;    /* For example we decided to compute the life expectancy with the smallest unit */
       for(j=1; j<=nlstate;j++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
         eip +=eij[i][j][(int)age];       nhstepm is the number of hstepm from age to agelim
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );       nstepm is the number of stepm from age to agelin.
       }       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficreseij,"%9.4f", eip );       and note for a fixed period like estepm months */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficreseij,"\n");       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       results. So we changed our mind and took the option of the best precision.
   printf("\n");    */
   fprintf(ficlog,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   
 }    agelim=AGESUP;
     /* If stepm=6 months */
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 {     
   /* Covariances of health expectancies eij and of total life expectancies according  /* nhstepm age range expressed in number of stepm */
    to initial status i, ei. .    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;    /* if (stepm >= YEARM) hstepm=1;*/
   double age, agelim, hf;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double ***p3matp, ***p3matm, ***varhe;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **dnewm,**doldm;  
   double *xp, *xm;    for (age=bage; age<=fage; age ++){
   double **gp, **gm;  
   double ***gradg, ***trgradg;  
   int theta;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
      
   double eip, vip;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);      printf("%d|",(int)age);fflush(stdout);
   xp=vector(1,npar);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   xm=vector(1,npar);     
   dnewm=matrix(1,nlstate*nlstate,1,npar);  
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);      /* Computing expectancies */
         for(i=1; i<=nlstate;i++)
   pstamp(ficresstdeij);        for(j=1; j<=nlstate;j++)
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fprintf(ficresstdeij,"# Age");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   for(i=1; i<=nlstate;i++){           
     for(j=1; j<=nlstate;j++)            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);  
     fprintf(ficresstdeij," e%1d. ",i);          }
   }     
   fprintf(ficresstdeij,"\n");      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   pstamp(ficrescveij);        eip=0;
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");        for(j=1; j<=nlstate;j++){
   fprintf(ficrescveij,"# Age");          eip +=eij[i][j][(int)age];
   for(i=1; i<=nlstate;i++)          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     for(j=1; j<=nlstate;j++){        }
       cptj= (j-1)*nlstate+i;        fprintf(ficreseij,"%9.4f", eip );
       for(i2=1; i2<=nlstate;i2++)      }
         for(j2=1; j2<=nlstate;j2++){      fprintf(ficreseij,"\n");
           cptj2= (j2-1)*nlstate+i2;     
           if(cptj2 <= cptj)    }
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    printf("\n");
     }    fprintf(ficlog,"\n");
   fprintf(ficrescveij,"\n");   
     }
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   }  
   else  hstepm=estepm;     {
   /* We compute the life expectancy from trapezoids spaced every estepm months    /* Covariances of health expectancies eij and of total life expectancies according
    * This is mainly to measure the difference between two models: for example     to initial status i, ei. .
    * if stepm=24 months pijx are given only every 2 years and by summing them    */
    * we are calculating an estimate of the Life Expectancy assuming a linear     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
    * progression in between and thus overestimating or underestimating according    double age, agelim, hf;
    * to the curvature of the survival function. If, for the same date, we     double ***p3matp, ***p3matm, ***varhe;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    double **dnewm,**doldm;
    * to compare the new estimate of Life expectancy with the same linear     double *xp, *xm;
    * hypothesis. A more precise result, taking into account a more precise    double **gp, **gm;
    * curvature will be obtained if estepm is as small as stepm. */    double ***gradg, ***trgradg;
     int theta;
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     double eip, vip;
      nhstepm is the number of hstepm from age to agelim   
      nstepm is the number of stepm from age to agelin.     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      Look at hpijx to understand the reason of that which relies in memory size    xp=vector(1,npar);
      and note for a fixed period like estepm months */    xm=vector(1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    dnewm=matrix(1,nlstate*nlstate,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      means that if the survival funtion is printed only each two years of age and if   
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     pstamp(ficresstdeij);
      results. So we changed our mind and took the option of the best precision.    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   */    fprintf(ficresstdeij,"# Age");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
   /* If stepm=6 months */        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   /* nhstepm age range expressed in number of stepm */      fprintf(ficresstdeij," e%1d. ",i);
   agelim=AGESUP;    }
   nstepm=(int) rint((agelim-age)*YEARM/stepm);     fprintf(ficresstdeij,"\n");
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */   
   /* if (stepm >= YEARM) hstepm=1;*/    pstamp(ficrescveij);
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       fprintf(ficrescveij,"# Age");
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=nlstate;i++)
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=1; j<=nlstate;j++){
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);        cptj= (j-1)*nlstate+i;
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);        for(i2=1; i2<=nlstate;i2++)
   gp=matrix(0,nhstepm,1,nlstate*nlstate);          for(j2=1; j2<=nlstate;j2++){
   gm=matrix(0,nhstepm,1,nlstate*nlstate);            cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
   for (age=bage; age<=fage; age ++){               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    fprintf(ficrescveij,"\n");
     
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     /* Computing  Variances of health expectancies */    }
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to    else  hstepm=estepm;  
        decrease memory allocation */    /* We compute the life expectancy from trapezoids spaced every estepm months
     for(theta=1; theta <=npar; theta++){     * This is mainly to measure the difference between two models: for example
       for(i=1; i<=npar; i++){      * if stepm=24 months pijx are given only every 2 years and by summing them
         xp[i] = x[i] + (i==theta ?delti[theta]:0);     * we are calculating an estimate of the Life Expectancy assuming a linear
         xm[i] = x[i] - (i==theta ?delti[theta]:0);     * progression in between and thus overestimating or underestimating according
       }     * to the curvature of the survival function. If, for the same date, we
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);       * estimate the model with stepm=1 month, we can keep estepm to 24 months
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);       * to compare the new estimate of Life expectancy with the same linear
        * hypothesis. A more precise result, taking into account a more precise
       for(j=1; j<= nlstate; j++){     * curvature will be obtained if estepm is as small as stepm. */
         for(i=1; i<=nlstate; i++){  
           for(h=0; h<=nhstepm-1; h++){    /* For example we decided to compute the life expectancy with the smallest unit */
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;       nhstepm is the number of hstepm from age to agelim
           }       nstepm is the number of stepm from age to agelin.
         }       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
          /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(ij=1; ij<= nlstate*nlstate; ij++)       survival function given by stepm (the optimization length). Unfortunately it
         for(h=0; h<=nhstepm-1; h++){       means that if the survival funtion is printed only each two years of age and if
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];       you sum them up and add 1 year (area under the trapezoids) you won't get the same
         }       results. So we changed our mind and took the option of the best precision.
     }/* End theta */    */
         hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
       
     for(h=0; h<=nhstepm-1; h++)    /* If stepm=6 months */
       for(j=1; j<=nlstate*nlstate;j++)    /* nhstepm age range expressed in number of stepm */
         for(theta=1; theta <=npar; theta++)    agelim=AGESUP;
           trgradg[h][j][theta]=gradg[h][theta][j];    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
         /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     /* if (stepm >= YEARM) hstepm=1;*/
      for(ij=1;ij<=nlstate*nlstate;ij++)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(ji=1;ji<=nlstate*nlstate;ji++)   
         varhe[ij][ji][(int)age] =0.;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("%d|",(int)age);fflush(stdout);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      for(h=0;h<=nhstepm-1;h++){    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       for(k=0;k<=nhstepm-1;k++){    gm=matrix(0,nhstepm,1,nlstate*nlstate);
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);    for (age=bage; age<=fage; age ++){
         for(ij=1;ij<=nlstate*nlstate;ij++)  
           for(ji=1;ji<=nlstate*nlstate;ji++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       }   
     }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     /* Computing expectancies */  
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);        /* Computing  Variances of health expectancies */
     for(i=1; i<=nlstate;i++)      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       for(j=1; j<=nlstate;j++)         decrease memory allocation */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      for(theta=1; theta <=npar; theta++){
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;        for(i=1; i<=npar; i++){
                     xp[i] = x[i] + (i==theta ?delti[theta]:0);
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     fprintf(ficresstdeij,"%3.0f",age );   
     for(i=1; i<=nlstate;i++){        for(j=1; j<= nlstate; j++){
       eip=0.;          for(i=1; i<=nlstate; i++){
       vip=0.;            for(h=0; h<=nhstepm-1; h++){
       for(j=1; j<=nlstate;j++){              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         eip += eij[i][j][(int)age];              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */            }
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];          }
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );        }
       }       
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));        for(ij=1; ij<= nlstate*nlstate; ij++)
     }          for(h=0; h<=nhstepm-1; h++){
     fprintf(ficresstdeij,"\n");            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
     fprintf(ficrescveij,"%3.0f",age );      }/* End theta */
     for(i=1; i<=nlstate;i++)     
       for(j=1; j<=nlstate;j++){     
         cptj= (j-1)*nlstate+i;      for(h=0; h<=nhstepm-1; h++)
         for(i2=1; i2<=nlstate;i2++)        for(j=1; j<=nlstate*nlstate;j++)
           for(j2=1; j2<=nlstate;j2++){          for(theta=1; theta <=npar; theta++)
             cptj2= (j2-1)*nlstate+i2;            trgradg[h][j][theta]=gradg[h][theta][j];
             if(cptj2 <= cptj)     
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);  
           }       for(ij=1;ij<=nlstate*nlstate;ij++)
       }        for(ji=1;ji<=nlstate*nlstate;ji++)
     fprintf(ficrescveij,"\n");          varhe[ij][ji][(int)age] =0.;
      
   }       printf("%d|",(int)age);fflush(stdout);
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);       for(h=0;h<=nhstepm-1;h++){
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);        for(k=0;k<=nhstepm-1;k++){
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(ij=1;ij<=nlstate*nlstate;ij++)
   printf("\n");            for(ji=1;ji<=nlstate*nlstate;ji++)
   fprintf(ficlog,"\n");              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
   free_vector(xm,1,npar);      }
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);      /* Computing expectancies */
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);      for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 /************ Variance ******************/            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])           
 {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          }
   /* double **newm;*/  
   double **dnewm,**doldm;      fprintf(ficresstdeij,"%3.0f",age );
   double **dnewmp,**doldmp;      for(i=1; i<=nlstate;i++){
   int i, j, nhstepm, hstepm, h, nstepm ;        eip=0.;
   int k, cptcode;        vip=0.;
   double *xp;        for(j=1; j<=nlstate;j++){
   double **gp, **gm;  /* for var eij */          eip += eij[i][j][(int)age];
   double ***gradg, ***trgradg; /*for var eij */          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   double **gradgp, **trgradgp; /* for var p point j */            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   double *gpp, *gmp; /* for var p point j */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        }
   double ***p3mat;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   double age,agelim, hf;      }
   double ***mobaverage;      fprintf(ficresstdeij,"\n");
   int theta;  
   char digit[4];      fprintf(ficrescveij,"%3.0f",age );
   char digitp[25];      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   char fileresprobmorprev[FILENAMELENGTH];          cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
   if(popbased==1){            for(j2=1; j2<=nlstate;j2++){
     if(mobilav!=0)              cptj2= (j2-1)*nlstate+i2;
       strcpy(digitp,"-populbased-mobilav-");              if(cptj2 <= cptj)
     else strcpy(digitp,"-populbased-nomobil-");                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   }            }
   else         }
     strcpy(digitp,"-stablbased-");      fprintf(ficrescveij,"\n");
      
   if (mobilav!=0) {    }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
   strcpy(fileresprobmorprev,"prmorprev");     fprintf(ficlog,"\n");
   sprintf(digit,"%-d",ij);  
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    free_vector(xm,1,npar);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    free_vector(xp,1,npar);
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   strcat(fileresprobmorprev,fileres);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     printf("Problem with resultfile: %s\n", fileresprobmorprev);  }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  
   }  /************ Variance ******************/
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
    {
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    /* Variance of health expectancies */
   pstamp(ficresprobmorprev);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    /* double **newm;*/
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    double **dnewm,**doldm;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    double **dnewmp,**doldmp;
     fprintf(ficresprobmorprev," p.%-d SE",j);    int i, j, nhstepm, hstepm, h, nstepm ;
     for(i=1; i<=nlstate;i++)    int k, cptcode;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    double *xp;
   }      double **gp, **gm;  /* for var eij */
   fprintf(ficresprobmorprev,"\n");    double ***gradg, ***trgradg; /*for var eij */
   fprintf(ficgp,"\n# Routine varevsij");    double **gradgp, **trgradgp; /* for var p point j */
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/    double *gpp, *gmp; /* for var p point j */
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    double ***p3mat;
 /*   } */    double age,agelim, hf;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    double ***mobaverage;
   pstamp(ficresvij);    int theta;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");    char digit[4];
   if(popbased==1)    char digitp[25];
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");  
   else    char fileresprobmorprev[FILENAMELENGTH];
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");  
   fprintf(ficresvij,"# Age");    if(popbased==1){
   for(i=1; i<=nlstate;i++)      if(mobilav!=0)
     for(j=1; j<=nlstate;j++)        strcpy(digitp,"-populbased-mobilav-");
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);      else strcpy(digitp,"-populbased-nomobil-");
   fprintf(ficresvij,"\n");    }
     else
   xp=vector(1,npar);      strcpy(digitp,"-stablbased-");
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    if (mobilav!=0) {
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   gpp=vector(nlstate+1,nlstate+ndeath);      }
   gmp=vector(nlstate+1,nlstate+ndeath);    }
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  
       strcpy(fileresprobmorprev,"prmorprev");
   if(estepm < stepm){    sprintf(digit,"%-d",ij);
     printf ("Problem %d lower than %d\n",estepm, stepm);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   else  hstepm=estepm;       strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   /* For example we decided to compute the life expectancy with the smallest unit */    strcat(fileresprobmorprev,fileres);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
      nhstepm is the number of hstepm from age to agelim       printf("Problem with resultfile: %s\n", fileresprobmorprev);
      nstepm is the number of stepm from age to agelin.       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      Look at hpijx to understand the reason of that which relies in memory size    }
      and note for a fixed period like k years */    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the   
      survival function given by stepm (the optimization length). Unfortunately it    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      means that if the survival funtion is printed every two years of age and if    pstamp(ficresprobmorprev);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      results. So we changed our mind and took the option of the best precision.    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       fprintf(ficresprobmorprev," p.%-d SE",j);
   agelim = AGESUP;      for(i=1; i<=nlstate;i++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     }  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    fprintf(ficresprobmorprev,"\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficgp,"\n# Routine varevsij");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     gp=matrix(0,nhstepm,1,nlstate);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     gm=matrix(0,nhstepm,1,nlstate);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for(theta=1; theta <=npar; theta++){    pstamp(ficresvij);
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    if(popbased==1)
       }      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      else
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
       if (popbased==1) {    for(i=1; i<=nlstate;i++)
         if(mobilav ==0){      for(j=1; j<=nlstate;j++)
           for(i=1; i<=nlstate;i++)        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
             prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficresvij,"\n");
         }else{ /* mobilav */   
           for(i=1; i<=nlstate;i++)    xp=vector(1,npar);
             prlim[i][i]=mobaverage[(int)age][i][ij];    dnewm=matrix(1,nlstate,1,npar);
         }    doldm=matrix(1,nlstate,1,nlstate);
       }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    gpp=vector(nlstate+1,nlstate+ndeath);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    gmp=vector(nlstate+1,nlstate+ndeath);
         }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       }   
       /* This for computing probability of death (h=1 means    if(estepm < stepm){
          computed over hstepm matrices product = hstepm*stepm months)       printf ("Problem %d lower than %d\n",estepm, stepm);
          as a weighted average of prlim.    }
       */    else  hstepm=estepm;  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    /* For example we decided to compute the life expectancy with the smallest unit */
         for(i=1,gpp[j]=0.; i<= nlstate; i++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
           gpp[j] += prlim[i][i]*p3mat[i][j][1];       nhstepm is the number of hstepm from age to agelim
       }           nstepm is the number of stepm from age to agelin.
       /* end probability of death */       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       survival function given by stepm (the optimization length). Unfortunately it
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         means that if the survival funtion is printed every two years of age and if
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
         results. So we changed our mind and took the option of the best precision.
       if (popbased==1) {    */
         if(mobilav ==0){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
           for(i=1; i<=nlstate;i++)    agelim = AGESUP;
             prlim[i][i]=probs[(int)age][i][ij];    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         }else{ /* mobilav */       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
           for(i=1; i<=nlstate;i++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             prlim[i][i]=mobaverage[(int)age][i][ij];      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       }      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      for(theta=1; theta <=npar; theta++){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
       /* This for computing probability of death (h=1 means        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          computed over hstepm matrices product = hstepm*stepm months)         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          as a weighted average of prlim.  
       */        if (popbased==1) {
       for(j=nlstate+1;j<=nlstate+ndeath;j++){          if(mobilav ==0){
         for(i=1,gmp[j]=0.; i<= nlstate; i++)            for(i=1; i<=nlstate;i++)
          gmp[j] += prlim[i][i]*p3mat[i][j][1];              prlim[i][i]=probs[(int)age][i][ij];
       }              }else{ /* mobilav */
       /* end probability of death */            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
       for(j=1; j<= nlstate; j++) /* vareij */          }
         for(h=0; h<=nhstepm; h++){        }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];   
         }        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       }          }
         }
     } /* End theta */        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */           as a weighted average of prlim.
         */
     for(h=0; h<=nhstepm; h++) /* veij */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate;j++)          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         for(theta=1; theta <=npar; theta++)            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           trgradg[h][j][theta]=gradg[h][theta][j];        }    
         /* end probability of death */
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */  
       for(theta=1; theta <=npar; theta++)        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         trgradgp[j][theta]=gradgp[theta][j];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */   
     for(i=1;i<=nlstate;i++)        if (popbased==1) {
       for(j=1;j<=nlstate;j++)          if(mobilav ==0){
         vareij[i][j][(int)age] =0.;            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
     for(h=0;h<=nhstepm;h++){          }else{ /* mobilav */
       for(k=0;k<=nhstepm;k++){            for(i=1; i<=nlstate;i++)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);              prlim[i][i]=mobaverage[(int)age][i][ij];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          }
         for(i=1;i<=nlstate;i++)        }
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        for(j=1; j<= nlstate; j++){
       }          for(h=0; h<=nhstepm; h++){
     }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                 gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     /* pptj */          }
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);        }
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        /* This for computing probability of death (h=1 means
     for(j=nlstate+1;j<=nlstate+ndeath;j++)           computed over hstepm matrices product = hstepm*stepm months)
       for(i=nlstate+1;i<=nlstate+ndeath;i++)           as a weighted average of prlim.
         varppt[j][i]=doldmp[j][i];        */
     /* end ppptj */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     /*  x centered again */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);             gmp[j] += prlim[i][i]*p3mat[i][j][1];
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        }    
          /* end probability of death */
     if (popbased==1) {  
       if(mobilav ==0){        for(j=1; j<= nlstate; j++) /* vareij */
         for(i=1; i<=nlstate;i++)          for(h=0; h<=nhstepm; h++){
           prlim[i][i]=probs[(int)age][i][ij];            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       }else{ /* mobilav */           }
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=mobaverage[(int)age][i][ij];        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     }        }
                
     /* This for computing probability of death (h=1 means      } /* End theta */
        computed over hstepm (estepm) matrices product = hstepm*stepm months)   
        as a weighted average of prlim.      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     */  
     for(j=nlstate+1;j<=nlstate+ndeath;j++){      for(h=0; h<=nhstepm; h++) /* veij */
       for(i=1,gmp[j]=0.;i<= nlstate; i++)         for(j=1; j<=nlstate;j++)
         gmp[j] += prlim[i][i]*p3mat[i][j][1];           for(theta=1; theta <=npar; theta++)
     }                trgradg[h][j][theta]=gradg[h][theta][j];
     /* end probability of death */  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);        for(theta=1; theta <=npar; theta++)
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){          trgradgp[j][theta]=gradgp[theta][j];
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));   
       for(i=1; i<=nlstate;i++){  
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       }      for(i=1;i<=nlstate;i++)
     }         for(j=1;j<=nlstate;j++)
     fprintf(ficresprobmorprev,"\n");          vareij[i][j][(int)age] =0.;
   
     fprintf(ficresvij,"%.0f ",age );      for(h=0;h<=nhstepm;h++){
     for(i=1; i<=nlstate;i++)        for(k=0;k<=nhstepm;k++){
       for(j=1; j<=nlstate;j++){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       }          for(i=1;i<=nlstate;i++)
     fprintf(ficresvij,"\n");            for(j=1;j<=nlstate;j++)
     free_matrix(gp,0,nhstepm,1,nlstate);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     free_matrix(gm,0,nhstepm,1,nlstate);        }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);   
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* pptj */
   } /* End age */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   free_vector(gpp,nlstate+1,nlstate+ndeath);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   free_vector(gmp,nlstate+1,nlstate+ndeath);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          varppt[j][i]=doldmp[j][i];
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      /* end ppptj */
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */      /*  x centered again */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */   
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */      if (popbased==1) {
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));        if(mobilav ==0){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));          for(i=1; i<=nlstate;i++)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));            prlim[i][i]=probs[(int)age][i][ij];
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));        }else{ /* mobilav */
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);          for(i=1; i<=nlstate;i++)
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);            prlim[i][i]=mobaverage[(int)age][i][ij];
 */        }
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */      }
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);               
       /* This for computing probability of death (h=1 means
   free_vector(xp,1,npar);         computed over hstepm (estepm) matrices product = hstepm*stepm months)
   free_matrix(doldm,1,nlstate,1,nlstate);         as a weighted average of prlim.
   free_matrix(dnewm,1,nlstate,1,npar);      */
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);        for(i=1,gmp[j]=0.;i<= nlstate; i++)
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          gmp[j] += prlim[i][i]*p3mat[i][j][1];
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }    
   fclose(ficresprobmorprev);      /* end probability of death */
   fflush(ficgp);  
   fflush(fichtm);       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 }  /* end varevsij */      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 /************ Variance of prevlim ******************/        for(i=1; i<=nlstate;i++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 {        }
   /* Variance of prevalence limit */      }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/      fprintf(ficresprobmorprev,"\n");
   double **newm;  
   double **dnewm,**doldm;      fprintf(ficresvij,"%.0f ",age );
   int i, j, nhstepm, hstepm;      for(i=1; i<=nlstate;i++)
   int k, cptcode;        for(j=1; j<=nlstate;j++){
   double *xp;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   double *gp, *gm;        }
   double **gradg, **trgradg;      fprintf(ficresvij,"\n");
   double age,agelim;      free_matrix(gp,0,nhstepm,1,nlstate);
   int theta;      free_matrix(gm,0,nhstepm,1,nlstate);
         free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   pstamp(ficresvpl);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficresvpl,"# Age");    } /* End age */
   for(i=1; i<=nlstate;i++)    free_vector(gpp,nlstate+1,nlstate+ndeath);
       fprintf(ficresvpl," %1d-%1d",i,i);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   fprintf(ficresvpl,"\n");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   xp=vector(1,npar);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   dnewm=matrix(1,nlstate,1,npar);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   doldm=matrix(1,nlstate,1,nlstate);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   hstepm=1*YEARM; /* Every year of age */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   agelim = AGESUP;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     if (stepm >= YEARM) hstepm=1;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     gradg=matrix(1,npar,1,nlstate);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     gp=vector(1,nlstate);  */
     gm=vector(1,nlstate);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_vector(xp,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_matrix(doldm,1,nlstate,1,nlstate);
       }    free_matrix(dnewm,1,nlstate,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(i=1;i<=nlstate;i++)    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         gp[i] = prlim[i][i];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1; i<=npar; i++) /* Computes gradient */    fclose(ficresprobmorprev);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fflush(ficgp);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fflush(fichtm);
       for(i=1;i<=nlstate;i++)  }  /* end varevsij */
         gm[i] = prlim[i][i];  
   /************ Variance of prevlim ******************/
       for(i=1;i<=nlstate;i++)  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  {
     } /* End theta */    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     trgradg =matrix(1,nlstate,1,npar);    double **newm;
     double **dnewm,**doldm;
     for(j=1; j<=nlstate;j++)    int i, j, nhstepm, hstepm;
       for(theta=1; theta <=npar; theta++)    int k, cptcode;
         trgradg[j][theta]=gradg[theta][j];    double *xp;
     double *gp, *gm;
     for(i=1;i<=nlstate;i++)    double **gradg, **trgradg;
       varpl[i][(int)age] =0.;    double age,agelim;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    int theta;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);   
     for(i=1;i<=nlstate;i++)    pstamp(ficresvpl);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     fprintf(ficresvpl,"%.0f ",age );    for(i=1; i<=nlstate;i++)
     for(i=1; i<=nlstate;i++)        fprintf(ficresvpl," %1d-%1d",i,i);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    fprintf(ficresvpl,"\n");
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    xp=vector(1,npar);
     free_vector(gm,1,nlstate);    dnewm=matrix(1,nlstate,1,npar);
     free_matrix(gradg,1,npar,1,nlstate);    doldm=matrix(1,nlstate,1,nlstate);
     free_matrix(trgradg,1,nlstate,1,npar);   
   } /* End age */    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
   free_vector(xp,1,npar);    agelim = AGESUP;
   free_matrix(doldm,1,nlstate,1,npar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   free_matrix(dnewm,1,nlstate,1,nlstate);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       if (stepm >= YEARM) hstepm=1;
 }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
 /************ Variance of one-step probabilities  ******************/      gp=vector(1,nlstate);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])      gm=vector(1,nlstate);
 {  
   int i, j=0,  i1, k1, l1, t, tj;      for(theta=1; theta <=npar; theta++){
   int k2, l2, j1,  z1;        for(i=1; i<=npar; i++){ /* Computes gradient */
   int k=0,l, cptcode;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int first=1, first1;        }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double **dnewm,**doldm;        for(i=1;i<=nlstate;i++)
   double *xp;          gp[i] = prlim[i][i];
   double *gp, *gm;     
   double **gradg, **trgradg;        for(i=1; i<=npar; i++) /* Computes gradient */
   double **mu;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double age,agelim, cov[NCOVMAX];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        for(i=1;i<=nlstate;i++)
   int theta;          gm[i] = prlim[i][i];
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];        for(i=1;i<=nlstate;i++)
   char fileresprobcor[FILENAMELENGTH];          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   double ***varpij;  
       trgradg =matrix(1,nlstate,1,npar);
   strcpy(fileresprob,"prob");   
   strcat(fileresprob,fileres);      for(j=1; j<=nlstate;j++)
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        for(theta=1; theta <=npar; theta++)
     printf("Problem with resultfile: %s\n", fileresprob);          trgradg[j][theta]=gradg[theta][j];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  
   }      for(i=1;i<=nlstate;i++)
   strcpy(fileresprobcov,"probcov");         varpl[i][(int)age] =0.;
   strcat(fileresprobcov,fileres);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     printf("Problem with resultfile: %s\n", fileresprobcov);      for(i=1;i<=nlstate;i++)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   }  
   strcpy(fileresprobcor,"probcor");       fprintf(ficresvpl,"%.0f ",age );
   strcat(fileresprobcor,fileres);      for(i=1; i<=nlstate;i++)
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     printf("Problem with resultfile: %s\n", fileresprobcor);      fprintf(ficresvpl,"\n");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      free_vector(gp,1,nlstate);
   }      free_vector(gm,1,nlstate);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      free_matrix(gradg,1,npar,1,nlstate);
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      free_matrix(trgradg,1,nlstate,1,npar);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    } /* End age */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    free_vector(xp,1,npar);
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    free_matrix(doldm,1,nlstate,1,npar);
   pstamp(ficresprob);    free_matrix(dnewm,1,nlstate,1,nlstate);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  
   fprintf(ficresprob,"# Age");  }
   pstamp(ficresprobcov);  
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  /************ Variance of one-step probabilities  ******************/
   fprintf(ficresprobcov,"# Age");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   pstamp(ficresprobcor);  {
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    int i, j=0,  i1, k1, l1, t, tj;
   fprintf(ficresprobcor,"# Age");    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
   for(i=1; i<=nlstate;i++)    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     for(j=1; j<=(nlstate+ndeath);j++){    double **dnewm,**doldm;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    double *xp;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    double *gp, *gm;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    double **gradg, **trgradg;
     }      double **mu;
  /* fprintf(ficresprob,"\n");    double age,agelim, cov[NCOVMAX];
   fprintf(ficresprobcov,"\n");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   fprintf(ficresprobcor,"\n");    int theta;
  */    char fileresprob[FILENAMELENGTH];
  xp=vector(1,npar);    char fileresprobcov[FILENAMELENGTH];
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    char fileresprobcor[FILENAMELENGTH];
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    double ***varpij;
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  
   first=1;    strcpy(fileresprob,"prob");
   fprintf(ficgp,"\n# Routine varprob");    strcat(fileresprob,fileres);
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   fprintf(fichtm,"\n");      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);    }
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\    strcpy(fileresprobcov,"probcov");
   file %s<br>\n",optionfilehtmcov);    strcat(fileresprobcov,fileres);
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 and drawn. It helps understanding how is the covariance between two incidences.\      printf("Problem with resultfile: %s\n", fileresprobcov);
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \    }
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \    strcpy(fileresprobcor,"probcor");
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \    strcat(fileresprobcor,fileres);
 standard deviations wide on each axis. <br>\    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\      printf("Problem with resultfile: %s\n", fileresprobcor);
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   cov[1]=1;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   tj=cptcoveff;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   j1=0;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   for(t=1; t<=tj;t++){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     for(i1=1; i1<=ncodemax[t];i1++){     pstamp(ficresprob);
       j1++;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       if  (cptcovn>0) {    fprintf(ficresprob,"# Age");
         fprintf(ficresprob, "\n#********** Variable ");     pstamp(ficresprobcov);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         fprintf(ficresprob, "**********\n#\n");    fprintf(ficresprobcov,"# Age");
         fprintf(ficresprobcov, "\n#********** Variable ");     pstamp(ficresprobcor);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         fprintf(ficresprobcov, "**********\n#\n");    fprintf(ficresprobcor,"# Age");
           
         fprintf(ficgp, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for(i=1; i<=nlstate;i++)
         fprintf(ficgp, "**********\n#\n");      for(j=1; j<=(nlstate+ndeath);j++){
                 fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                 fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");         fprintf(ficresprobcor," p%1d-%1d ",i,j);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      }  
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");   /* fprintf(ficresprob,"\n");
             fprintf(ficresprobcov,"\n");
         fprintf(ficresprobcor, "\n#********** Variable ");        fprintf(ficresprobcor,"\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   */
         fprintf(ficresprobcor, "**********\n#");       xp=vector(1,npar);
       }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       for (age=bage; age<=fage; age ++){     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
         cov[2]=age;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         for (k=1; k<=cptcovn;k++) {    first=1;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    fprintf(ficgp,"\n# Routine varprob");
         }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    fprintf(fichtm,"\n");
         for (k=1; k<=cptcovprod;k++)  
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
             fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    file %s<br>\n",optionfilehtmcov);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         gp=vector(1,(nlstate)*(nlstate+ndeath));  and drawn. It helps understanding how is the covariance between two incidences.\
         gm=vector(1,(nlstate)*(nlstate+ndeath));   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         for(theta=1; theta <=npar; theta++){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
           for(i=1; i<=npar; i++)  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);  standard deviations wide on each axis. <br>\
              Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           pmij(pmmij,cov,ncovmodel,xp,nlstate);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
             To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
           k=0;  
           for(i=1; i<= (nlstate); i++){    cov[1]=1;
             for(j=1; j<=(nlstate+ndeath);j++){    tj=cptcoveff;
               k=k+1;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
               gp[k]=pmmij[i][j];    j1=0;
             }    for(t=1; t<=tj;t++){
           }      for(i1=1; i1<=ncodemax[t];i1++){
                   j1++;
           for(i=1; i<=npar; i++)        if  (cptcovn>0) {
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);          fprintf(ficresprob, "\n#********** Variable ");
               for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          fprintf(ficresprob, "**********\n#\n");
           k=0;          fprintf(ficresprobcov, "\n#********** Variable ");
           for(i=1; i<=(nlstate); i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             for(j=1; j<=(nlstate+ndeath);j++){          fprintf(ficresprobcov, "**********\n#\n");
               k=k+1;         
               gm[k]=pmmij[i][j];          fprintf(ficgp, "\n#********** Variable ");
             }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           }          fprintf(ficgp, "**********\n#\n");
               
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];            fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)         
           for(theta=1; theta <=npar; theta++)          fprintf(ficresprobcor, "\n#********** Variable ");    
             trgradg[j][theta]=gradg[theta][j];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   fprintf(ficresprobcor, "**********\n#");    
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);         }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);       
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        for (age=bage; age<=fage; age ++){
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          cov[2]=age;
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for (k=1; k<=cptcovn;k++) {
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
         pmij(pmmij,cov,ncovmodel,x,nlstate);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                   for (k=1; k<=cptcovprod;k++)
         k=0;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for(i=1; i<=(nlstate); i++){         
           for(j=1; j<=(nlstate+ndeath);j++){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
             k=k+1;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             mu[k][(int) age]=pmmij[i][j];          gp=vector(1,(nlstate)*(nlstate+ndeath));
           }          gm=vector(1,(nlstate)*(nlstate+ndeath));
         }     
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          for(theta=1; theta <=npar; theta++){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)            for(i=1; i<=npar; i++)
             varpij[i][j][(int)age] = doldm[i][j];              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
            
         /*printf("\n%d ",(int)age);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){           
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            k=0;
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            for(i=1; i<= (nlstate); i++){
           }*/              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
         fprintf(ficresprob,"\n%d ",(int)age);                gp[k]=pmmij[i][j];
         fprintf(ficresprobcov,"\n%d ",(int)age);              }
         fprintf(ficresprobcor,"\n%d ",(int)age);            }
            
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            for(i=1; i<=npar; i++)
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){     
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            k=0;
         }            for(i=1; i<=(nlstate); i++){
         i=0;              for(j=1; j<=(nlstate+ndeath);j++){
         for (k=1; k<=(nlstate);k++){                k=k+1;
           for (l=1; l<=(nlstate+ndeath);l++){                 gm[k]=pmmij[i][j];
             i=i++;              }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);       
             for (j=1; j<=i;j++){            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          }
             }  
           }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         }/* end of loop for state */            for(theta=1; theta <=npar; theta++)
       } /* end of loop for age */              trgradg[j][theta]=gradg[theta][j];
          
       /* Confidence intervalle of pij  */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
       /*          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         fprintf(ficgp,"\nset noparametric;unset label");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          pmij(pmmij,cov,ncovmodel,x,nlstate);
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);         
       */          k=0;
           for(i=1; i<=(nlstate); i++){
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            for(j=1; j<=(nlstate+ndeath);j++){
       first1=1;              k=k+1;
       for (k2=1; k2<=(nlstate);k2++){              mu[k][(int) age]=pmmij[i][j];
         for (l2=1; l2<=(nlstate+ndeath);l2++){             }
           if(l2==k2) continue;          }
           j=(k2-1)*(nlstate+ndeath)+l2;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           for (k1=1; k1<=(nlstate);k1++){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
             for (l1=1; l1<=(nlstate+ndeath);l1++){               varpij[i][j][(int)age] = doldm[i][j];
               if(l1==k1) continue;  
               i=(k1-1)*(nlstate+ndeath)+l1;          /*printf("\n%d ",(int)age);
               if(i<=j) continue;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               for (age=bage; age<=fage; age ++){             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                 if ((int)age %5==0){            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            }*/
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          fprintf(ficresprob,"\n%d ",(int)age);
                   mu1=mu[i][(int) age]/stepm*YEARM ;          fprintf(ficresprobcov,"\n%d ",(int)age);
                   mu2=mu[j][(int) age]/stepm*YEARM;          fprintf(ficresprobcor,"\n%d ",(int)age);
                   c12=cv12/sqrt(v1*v2);  
                   /* Computing eigen value of matrix of covariance */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   /* Eigen vectors */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                   /*v21=sqrt(1.-v11*v11); *//* error */          }
                   v21=(lc1-v1)/cv12*v11;          i=0;
                   v12=-v21;          for (k=1; k<=(nlstate);k++){
                   v22=v11;            for (l=1; l<=(nlstate+ndeath);l++){
                   tnalp=v21/v11;              i=i++;
                   if(first1==1){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                     first1=0;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);              for (j=1; j<=i;j++){
                   }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                   /*printf(fignu*/              }
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            }
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */          }/* end of loop for state */
                   if(first==1){        } /* end of loop for age */
                     first=0;  
                     fprintf(ficgp,"\nset parametric;unset label");        /* Confidence intervalle of pij  */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);        /*
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          fprintf(ficgp,"\nset noparametric;unset label");
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);        */
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        first1=1;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        for (k2=1; k2<=(nlstate);k2++){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\          for (l2=1; l2<=(nlstate+ndeath);l2++){
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));            if(l2==k2) continue;
                   }else{            j=(k2-1)*(nlstate+ndeath)+l2;
                     first=0;            for (k1=1; k1<=(nlstate);k1++){
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);              for (l1=1; l1<=(nlstate+ndeath);l1++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                if(l1==k1) continue;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                i=(k1-1)*(nlstate+ndeath)+l1;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                if(i<=j) continue;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                for (age=bage; age<=fage; age ++){
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                  if ((int)age %5==0){
                   }/* if first */                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                 } /* age mod 5 */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
               } /* end loop age */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                    mu1=mu[i][(int) age]/stepm*YEARM ;
               first=1;                    mu2=mu[j][(int) age]/stepm*YEARM;
             } /*l12 */                    c12=cv12/sqrt(v1*v2);
           } /* k12 */                    /* Computing eigen value of matrix of covariance */
         } /*l1 */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       }/* k1 */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     } /* loop covariates */                    /* Eigen vectors */
   }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                    /*v21=sqrt(1.-v11*v11); *//* error */
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);                    v21=(lc1-v1)/cv12*v11;
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));                    v12=-v21;
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);                    v22=v11;
   free_vector(xp,1,npar);                    tnalp=v21/v11;
   fclose(ficresprob);                    if(first1==1){
   fclose(ficresprobcov);                      first1=0;
   fclose(ficresprobcor);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   fflush(ficgp);                    }
   fflush(fichtmcov);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 }                    /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 /******************* Printing html file ***********/                    if(first==1){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                      first=0;
                   int lastpass, int stepm, int weightopt, char model[],\                      fprintf(ficgp,"\nset parametric;unset label");
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                   int popforecast, int estepm ,\                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   double jprev1, double mprev1,double anprev1, \                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
                   double jprev2, double mprev2,double anprev2){   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   int jj1, k1, i1, cpt;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 </ul>");                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
    fprintf(fichtm,"\                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
    fprintf(fichtm,"\                    }else{
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",                      first=0;
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
    fprintf(fichtm,"\                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
    <a href=\"%s\">%s</a> <br>\n</li>",                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");                  } /* age mod 5 */
                 } /* end loop age */
  m=cptcoveff;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                first=1;
               } /*l12 */
  jj1=0;            } /* k12 */
  for(k1=1; k1<=m;k1++){          } /*l1 */
    for(i1=1; i1<=ncodemax[k1];i1++){        }/* k1 */
      jj1++;      } /* loop covariates */
      if (cptcovn > 0) {    }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
        for (cpt=1; cpt<=cptcoveff;cpt++)     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
      }    free_vector(xp,1,npar);
      /* Pij */    fclose(ficresprob);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \    fclose(ficresprobcov);
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);         fclose(ficresprobcor);
      /* Quasi-incidences */    fflush(ficgp);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\    fflush(fichtmcov);
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \  }
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);   
        /* Period (stable) prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){  /******************* Printing html file ***********/
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);                    int lastpass, int stepm, int weightopt, char model[],\
        }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
      for(cpt=1; cpt<=nlstate;cpt++) {                    int popforecast, int estepm ,\
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \                    double jprev1, double mprev1,double anprev1, \
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);                    double jprev2, double mprev2,double anprev2){
      }    int jj1, k1, i1, cpt;
    } /* end i1 */  
  }/* End k1 */     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
  fprintf(fichtm,"</ul>");     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
  fprintf(fichtm,"\   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);     fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));     fprintf(fichtm,"\
  fprintf(fichtm,"\   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));     fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
  fprintf(fichtm,"\     <a href=\"%s\">%s</a> <br>\n",
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));     fprintf(fichtm,"\
  fprintf(fichtm,"\   - Population projections by age and states: \
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
    <a href=\"%s\">%s</a> <br>\n</li>",  
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
  fprintf(fichtm,"\  
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \   m=cptcoveff;
    <a href=\"%s\">%s</a> <br>\n</li>",   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));  
  fprintf(fichtm,"\   jj1=0;
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",   for(k1=1; k1<=m;k1++){
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));     for(i1=1; i1<=ncodemax[k1];i1++){
  fprintf(fichtm,"\       jj1++;
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",       if (cptcovn > 0) {
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  fprintf(fichtm,"\         for (cpt=1; cpt<=cptcoveff;cpt++)
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
 /*  if(popforecast==1) fprintf(fichtm,"\n */       /* Pij */
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
 /*      <br>",fileres,fileres,fileres,fileres); */       /* Quasi-incidences */
 /*  else  */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
  fflush(fichtm);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");         /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
  m=cptcoveff;           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
  jj1=0;       for(cpt=1; cpt<=nlstate;cpt++) {
  for(k1=1; k1<=m;k1++){          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
    for(i1=1; i1<=ncodemax[k1];i1++){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
      jj1++;       }
      if (cptcovn > 0) {     } /* end i1 */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");   }/* End k1 */
        for (cpt=1; cpt<=cptcoveff;cpt++)    fprintf(fichtm,"</ul>");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }   fprintf(fichtm,"\
      for(cpt=1; cpt<=nlstate;cpt++) {  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\  
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);     fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
      }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \   fprintf(fichtm,"\
 health expectancies in states (1) and (2): %s%d.png<br>\   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
    } /* end i1 */  
  }/* End k1 */   fprintf(fichtm,"\
  fprintf(fichtm,"</ul>");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  fflush(fichtm);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
 }   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 /******************* Gnuplot file **************/     <a href=\"%s\">%s</a> <br>\n</li>",
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
   char dirfileres[132],optfileres[132];   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;     <a href=\"%s\">%s</a> <br>\n</li>",
   int ng;             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */   fprintf(fichtm,"\
 /*     printf("Problem with file %s",optionfilegnuplot); */   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 /*   } */   fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
   /*#ifdef windows */           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   fprintf(ficgp,"cd \"%s\" \n",pathc);   fprintf(fichtm,"\
     /*#endif */   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   m=pow(2,cptcoveff);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   strcpy(dirfileres,optionfilefiname);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   strcpy(optfileres,"vpl");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
  /* 1eme*/  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   for (cpt=1; cpt<= nlstate ; cpt ++) {  /*      <br>",fileres,fileres,fileres,fileres); */
    for (k1=1; k1<= m ; k1 ++) {  /*  else  */
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);   fflush(fichtm);
      fprintf(ficgp,"set xlabel \"Age\" \n\   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
 set ylabel \"Probability\" \n\  
 set ter png small\n\   m=cptcoveff;
 set size 0.65,0.65\n\   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);  
    jj1=0;
      for (i=1; i<= nlstate ; i ++) {   for(k1=1; k1<=m;k1++){
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     for(i1=1; i1<=ncodemax[k1];i1++){
        else fprintf(ficgp," \%%*lf (\%%*lf)");       jj1++;
      }       if (cptcovn > 0) {
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
      for (i=1; i<= nlstate ; i ++) {         for (cpt=1; cpt<=cptcoveff;cpt++)
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
        else fprintf(ficgp," \%%*lf (\%%*lf)");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
      }        }
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);        for(cpt=1; cpt<=nlstate;cpt++) {
      for (i=1; i<= nlstate ; i ++) {         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
        else fprintf(ficgp," \%%*lf (\%%*lf)");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
      }         }
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    }  health expectancies in states (1) and (2): %s%d.png<br>\
   }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   /*2 eme*/     } /* end i1 */
      }/* End k1 */
   for (k1=1; k1<= m ; k1 ++) {    fprintf(fichtm,"</ul>");
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);   fflush(fichtm);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  }
       
     for (i=1; i<= nlstate+1 ; i ++) {  /******************* Gnuplot file **************/
       k=2*i;  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    char dirfileres[132],optfileres[132];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    int ng;
       }     /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  /*     printf("Problem with file %s",optionfilegnuplot); */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  /*   } */
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /*#ifdef windows */
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficgp,"cd \"%s\" \n",pathc);
       }         /*#endif */
       fprintf(ficgp,"\" t\"\" w l 0,");    m=pow(2,cptcoveff);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    strcpy(dirfileres,optionfilefiname);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    strcpy(optfileres,"vpl");
         else fprintf(ficgp," \%%*lf (\%%*lf)");   /* 1eme*/
       }       for (cpt=1; cpt<= nlstate ; cpt ++) {
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");     for (k1=1; k1<= m ; k1 ++) {
       else fprintf(ficgp,"\" t\"\" w l 0,");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   }       fprintf(ficgp,"set xlabel \"Age\" \n\
     set ylabel \"Probability\" \n\
   /*3eme*/  set ter png small\n\
     set size 0.65,0.65\n\
   for (k1=1; k1<= m ; k1 ++) {   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       /*       k=2+nlstate*(2*cpt-2); */       for (i=1; i<= nlstate ; i ++) {
       k=2+(nlstate+1)*(cpt-1);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficgp,"set ter png small\n\       }
 set size 0.65,0.65\n\       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);       for (i=1; i<= nlstate ; i ++) {
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");         else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                  else fprintf(ficgp," \%%*lf (\%%*lf)");
       */       }  
       for (i=1; i< nlstate ; i ++) {       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);     }
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/    }
             /*2 eme*/
       }    
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);    for (k1=1; k1<= m ; k1 ++) {
     }      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
        
   /* CV preval stable (period) */      for (i=1; i<= nlstate+1 ; i ++) {
   for (k1=1; k1<= m ; k1 ++) {         k=2*i;
     for (cpt=1; cpt<=nlstate ; cpt ++) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       k=3;        for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\          else fprintf(ficgp," \%%*lf (\%%*lf)");
 set ter png small\nset size 0.65,0.65\n\        }  
 unset log y\n\        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
               fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for (i=1; i< nlstate ; i ++)        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficgp,"+$%d",k+i+1);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          else fprintf(ficgp," \%%*lf (\%%*lf)");
               }  
       l=3+(nlstate+ndeath)*cpt;        fprintf(ficgp,"\" t\"\" w l 0,");
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for (i=1; i< nlstate ; i ++) {        for (j=1; j<= nlstate+1 ; j ++) {
         l=3+(nlstate+ndeath)*cpt;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficgp,"+$%d",l+i+1);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       }        }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);           if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     }         else fprintf(ficgp,"\" t\"\" w l 0,");
   }        }
       }
   /* proba elementaires */   
   for(i=1,jk=1; i <=nlstate; i++){    /*3eme*/
     for(k=1; k <=(nlstate+ndeath); k++){   
       if (k != i) {    for (k1=1; k1<= m ; k1 ++) {
         for(j=1; j <=ncovmodel; j++){      for (cpt=1; cpt<= nlstate ; cpt ++) {
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        /*       k=2+nlstate*(2*cpt-2); */
           jk++;         k=2+(nlstate+1)*(cpt-1);
           fprintf(ficgp,"\n");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         }        fprintf(ficgp,"set ter png small\n\
       }  set size 0.65,0.65\n\
     }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
    }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
      for(jk=1; jk <=m; jk++) {          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
        if (ng==2)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");         
        else        */
          fprintf(ficgp,"\nset title \"Probability\"\n");        for (i=1; i< nlstate ; i ++) {
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
        i=1;          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
        for(k2=1; k2<=nlstate; k2++) {         
          k3=i;        }
          for(k=1; k<=(nlstate+ndeath); k++) {        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
            if (k != k2){      }
              if(ng==2)    }
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);   
              else    /* CV preval stable (period) */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    for (k1=1; k1<= m ; k1 ++) {
              ij=1;      for (cpt=1; cpt<=nlstate ; cpt ++) {
              for(j=3; j <=ncovmodel; j++) {        k=3;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
                  ij++;  set ter png small\nset size 0.65,0.65\n\
                }  unset log y\n\
                else  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       
              }        for (i=1; i< nlstate ; i ++)
              fprintf(ficgp,")/(1");          fprintf(ficgp,"+$%d",k+i+1);
                      fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
              for(k1=1; k1 <=nlstate; k1++){          
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        l=3+(nlstate+ndeath)*cpt;
                ij=1;        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
                for(j=3; j <=ncovmodel; j++){        for (i=1; i< nlstate ; i ++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          l=3+(nlstate+ndeath)*cpt;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          fprintf(ficgp,"+$%d",l+i+1);
                    ij++;        }
                  }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
                  else      }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    }  
                }   
                fprintf(ficgp,")");    /* proba elementaires */
              }    for(i=1,jk=1; i <=nlstate; i++){
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);      for(k=1; k <=(nlstate+ndeath); k++){
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        if (k != i) {
              i=i+ncovmodel;          for(j=1; j <=ncovmodel; j++){
            }            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
          } /* end k */            jk++;
        } /* end k2 */            fprintf(ficgp,"\n");
      } /* end jk */          }
    } /* end ng */        }
    fflush(ficgp);       }
 }  /* end gnuplot */     }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 /*************** Moving average **************/       for(jk=1; jk <=m; jk++) {
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
          if (ng==2)
   int i, cpt, cptcod;           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   int modcovmax =1;         else
   int mobilavrange, mob;           fprintf(ficgp,"\nset title \"Probability\"\n");
   double age;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose          for(k2=1; k2<=nlstate; k2++) {
                            a covariate has 2 modalities */           k3=i;
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */           for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){               if(ng==2)
     if(mobilav==1) mobilavrange=5; /* default */                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     else mobilavrange=mobilav;               else
     for (age=bage; age<=fage; age++)                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       for (i=1; i<=nlstate;i++)               ij=1;
         for (cptcod=1;cptcod<=modcovmax;cptcod++)               for(j=3; j <=ncovmodel; j++) {
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     /* We keep the original values on the extreme ages bage, fage and for                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2                   ij++;
        we use a 5 terms etc. until the borders are no more concerned.                  }
     */                  else
     for (mob=3;mob <=mobilavrange;mob=mob+2){                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){               }
         for (i=1; i<=nlstate;i++){               fprintf(ficgp,")/(1");
           for (cptcod=1;cptcod<=modcovmax;cptcod++){               
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];               for(k1=1; k1 <=nlstate; k1++){  
               for (cpt=1;cpt<=(mob-1)/2;cpt++){                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];                 ij=1;
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];                 for(j=3; j <=ncovmodel; j++){
               }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           }                     ij++;
         }                   }
       }/* end age */                   else
     }/* end mob */                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   }else return -1;                 }
   return 0;                 fprintf(ficgp,")");
 }/* End movingaverage */               }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 /************** Forecasting ******************/               i=i+ncovmodel;
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){             }
   /* proj1, year, month, day of starting projection            } /* end k */
      agemin, agemax range of age         } /* end k2 */
      dateprev1 dateprev2 range of dates during which prevalence is computed       } /* end jk */
      anproj2 year of en of projection (same day and month as proj1).     } /* end ng */
   */     fflush(ficgp);
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;  }  /* end gnuplot */
   int *popage;  
   double agec; /* generic age */  
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  /*************** Moving average **************/
   double *popeffectif,*popcount;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   double ***p3mat;  
   double ***mobaverage;    int i, cpt, cptcod;
   char fileresf[FILENAMELENGTH];    int modcovmax =1;
     int mobilavrange, mob;
   agelim=AGESUP;    double age;
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  
      modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
   strcpy(fileresf,"f");                              a covariate has 2 modalities */
   strcat(fileresf,fileres);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      if(mobilav==1) mobilavrange=5; /* default */
   }      else mobilavrange=mobilav;
   printf("Computing forecasting: result on file '%s' \n", fileresf);      for (age=bage; age<=fage; age++)
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);        for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for
   if (mobilav!=0) {         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         we use a 5 terms etc. until the borders are no more concerned.
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){      */
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      for (mob=3;mob <=mobilavrange;mob=mob+2){
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     }          for (i=1; i<=nlstate;i++){
   }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   stepsize=(int) (stepm+YEARM-1)/YEARM;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   if (stepm<=12) stepsize=1;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   if(estepm < stepm){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     printf ("Problem %d lower than %d\n",estepm, stepm);                }
   }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   else  hstepm=estepm;               }
           }
   hstepm=hstepm/stepm;         }/* end age */
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and      }/* end mob */
                                fractional in yp1 */    }else return -1;
   anprojmean=yp;    return 0;
   yp2=modf((yp1*12),&yp);  }/* End movingaverage */
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;  /************** Forecasting ******************/
   if(jprojmean==0) jprojmean=1;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   if(mprojmean==0) jprojmean=1;    /* proj1, year, month, day of starting projection
        agemin, agemax range of age
   i1=cptcoveff;       dateprev1 dateprev2 range of dates during which prevalence is computed
   if (cptcovn < 1){i1=1;}       anproj2 year of en of projection (same day and month as proj1).
       */
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       int *popage;
   fprintf(ficresf,"#****** Routine prevforecast **\n");    double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 /*            if (h==(int)(YEARM*yearp)){ */    double *popeffectif,*popcount;
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){    double ***p3mat;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double ***mobaverage;
       k=k+1;    char fileresf[FILENAMELENGTH];
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {    agelim=AGESUP;
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       }   
       fprintf(ficresf,"******\n");    strcpy(fileresf,"f");
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");    strcat(fileresf,fileres);
       for(j=1; j<=nlstate+ndeath;j++){     if((ficresf=fopen(fileresf,"w"))==NULL) {
         for(i=1; i<=nlstate;i++)                    printf("Problem with forecast resultfile: %s\n", fileresf);
           fprintf(ficresf," p%d%d",i,j);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         fprintf(ficresf," p.%d",j);    }
       }    printf("Computing forecasting: result on file '%s' \n", fileresf);
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);       if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
         for (agec=fage; agec>=(ageminpar-1); agec--){     if (mobilav!=0) {
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           nhstepm = nhstepm/hstepm;       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           oldm=oldms;savm=savms;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);        }
             }
           for (h=0; h<=nhstepm; h++){  
             if (h*hstepm/YEARM*stepm ==yearp) {    stepsize=(int) (stepm+YEARM-1)/YEARM;
               fprintf(ficresf,"\n");    if (stepm<=12) stepsize=1;
               for(j=1;j<=cptcoveff;j++)     if(estepm < stepm){
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf ("Problem %d lower than %d\n",estepm, stepm);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);    }
             }     else  hstepm=estepm;  
             for(j=1; j<=nlstate+ndeath;j++) {  
               ppij=0.;    hstepm=hstepm/stepm;
               for(i=1; i<=nlstate;i++) {    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                 if (mobilav==1)                                  fractional in yp1 */
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];    anprojmean=yp;
                 else {    yp2=modf((yp1*12),&yp);
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];    mprojmean=yp;
                 }    yp1=modf((yp2*30.5),&yp);
                 if (h*hstepm/YEARM*stepm== yearp) {    jprojmean=yp;
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);    if(jprojmean==0) jprojmean=1;
                 }    if(mprojmean==0) jprojmean=1;
               } /* end i */  
               if (h*hstepm/YEARM*stepm==yearp) {    i1=cptcoveff;
                 fprintf(ficresf," %.3f", ppij);    if (cptcovn < 1){i1=1;}
               }   
             }/* end j */    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
           } /* end h */   
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresf,"#****** Routine prevforecast **\n");
         } /* end agec */  
       } /* end yearp */  /*            if (h==(int)(YEARM*yearp)){ */
     } /* end cptcod */    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   } /* end  cptcov */      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                k=k+1;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
   fclose(ficresf);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 }        }
         fprintf(ficresf,"******\n");
 /************** Forecasting *****not tested NB*************/        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        for(j=1; j<=nlstate+ndeath;j++){
             for(i=1; i<=nlstate;i++)              
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            fprintf(ficresf," p%d%d",i,j);
   int *popage;          fprintf(ficresf," p.%d",j);
   double calagedatem, agelim, kk1, kk2;        }
   double *popeffectif,*popcount;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
   double ***p3mat,***tabpop,***tabpopprev;          fprintf(ficresf,"\n");
   double ***mobaverage;          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   char filerespop[FILENAMELENGTH];  
           for (agec=fage; agec>=(ageminpar-1); agec--){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            nhstepm = nhstepm/hstepm;
   agelim=AGESUP;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            oldm=oldms;savm=savms;
               hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);         
               for (h=0; h<=nhstepm; h++){
                 if (h*hstepm/YEARM*stepm ==yearp) {
   strcpy(filerespop,"pop");                 fprintf(ficresf,"\n");
   strcat(filerespop,fileres);                for(j=1;j<=cptcoveff;j++)
   if((ficrespop=fopen(filerespop,"w"))==NULL) {                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     printf("Problem with forecast resultfile: %s\n", filerespop);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);              }
   }              for(j=1; j<=nlstate+ndeath;j++) {
   printf("Computing forecasting: result on file '%s' \n", filerespop);                ppij=0.;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);                for(i=1; i<=nlstate;i++) {
                   if (mobilav==1)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
   if (mobilav!=0) {                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  }
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){                  if (h*hstepm/YEARM*stepm== yearp) {
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);                  }
     }                } /* end i */
   }                if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
   stepsize=(int) (stepm+YEARM-1)/YEARM;                }
   if (stepm<=12) stepsize=1;              }/* end j */
               } /* end h */
   agelim=AGESUP;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             } /* end agec */
   hstepm=1;        } /* end yearp */
   hstepm=hstepm/stepm;       } /* end cptcod */
       } /* end  cptcov */
   if (popforecast==1) {         
     if((ficpop=fopen(popfile,"r"))==NULL) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("Problem with population file : %s\n",popfile);exit(0);  
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    fclose(ficresf);
     }   }
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);  /************** Forecasting *****not tested NB*************/
     popcount=vector(0,AGESUP);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
        
     i=1;       int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    int *popage;
        double calagedatem, agelim, kk1, kk2;
     imx=i;    double *popeffectif,*popcount;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    double ***p3mat,***tabpop,***tabpopprev;
   }    double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       k=k+1;    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficrespop,"\n#******");    agelim=AGESUP;
       for(j=1;j<=cptcoveff;j++) {    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
       }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       fprintf(ficrespop,"******\n");   
       fprintf(ficrespop,"# Age");   
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    strcpy(filerespop,"pop");
       if (popforecast==1)  fprintf(ficrespop," [Population]");    strcat(filerespop,fileres);
           if((ficrespop=fopen(filerespop,"w"))==NULL) {
       for (cpt=0; cpt<=0;cpt++) {       printf("Problem with forecast resultfile: %s\n", filerespop);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
             }
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){     printf("Computing forecasting: result on file '%s' \n", filerespop);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
           nhstepm = nhstepm/hstepm;   
               if (cptcoveff==0) ncodemax[cptcoveff]=1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    if (mobilav!=0) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           for (h=0; h<=nhstepm; h++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             if (h==(int) (calagedatem+YEARM*cpt)) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      }
             }     }
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    stepsize=(int) (stepm+YEARM-1)/YEARM;
               for(i=1; i<=nlstate;i++) {                  if (stepm<=12) stepsize=1;
                 if (mobilav==1)    
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    agelim=AGESUP;
                 else {   
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    hstepm=1;
                 }    hstepm=hstepm/stepm;
               }   
               if (h==(int)(calagedatem+12*cpt)){    if (popforecast==1) {
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      if((ficpop=fopen(popfile,"r"))==NULL) {
                   /*fprintf(ficrespop," %.3f", kk1);        printf("Problem with population file : %s\n",popfile);exit(0);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
               }      }
             }      popage=ivector(0,AGESUP);
             for(i=1; i<=nlstate;i++){      popeffectif=vector(0,AGESUP);
               kk1=0.;      popcount=vector(0,AGESUP);
                 for(j=1; j<=nlstate;j++){     
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];       i=1;  
                 }      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];     
             }      imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)     }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         }        k=k+1;
       }        fprintf(ficrespop,"\n#******");
          for(j=1;j<=cptcoveff;j++) {
   /******/          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);           fprintf(ficrespop,"# Age");
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         if (popforecast==1)  fprintf(ficrespop," [Population]");
           nhstepm = nhstepm/hstepm;        
                   for (cpt=0; cpt<=0;cpt++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
           oldm=oldms;savm=savms;         
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
           for (h=0; h<=nhstepm; h++){            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
             if (h==(int) (calagedatem+YEARM*cpt)) {            nhstepm = nhstepm/hstepm;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);           
             }             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             for(j=1; j<=nlstate+ndeath;j++) {            oldm=oldms;savm=savms;
               kk1=0.;kk2=0;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
               for(i=1; i<=nlstate;i++) {                       
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                for (h=0; h<=nhstepm; h++){
               }              if (h==(int) (calagedatem+YEARM*cpt)) {
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                        fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
             }              }
           }              for(j=1; j<=nlstate+ndeath;j++) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                kk1=0.;kk2=0;
         }                for(i=1; i<=nlstate;i++) {              
       }                  if (mobilav==1)
    }                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   }                  else {
                      kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  }
                 }
   if (popforecast==1) {                if (h==(int)(calagedatem+12*cpt)){
     free_ivector(popage,0,AGESUP);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     free_vector(popeffectif,0,AGESUP);                    /*fprintf(ficrespop," %.3f", kk1);
     free_vector(popcount,0,AGESUP);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   }                }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              for(i=1; i<=nlstate;i++){
   fclose(ficrespop);                kk1=0.;
 } /* End of popforecast */                  for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
 int fileappend(FILE *fichier, char *optionfich)                  }
 {                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   if((fichier=fopen(optionfich,"a"))==NULL) {              }
     printf("Problem with file: %s\n", optionfich);  
     fprintf(ficlog,"Problem with file: %s\n", optionfich);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
     return (0);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   }            }
   fflush(fichier);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   return (1);          }
 }        }
    
     /******/
 /**************** function prwizard **********************/  
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
 {          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   /* Wizard to print covariance matrix template */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
   char ca[32], cb[32], cc[32];           
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int numlinepar;            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            for (h=0; h<=nhstepm; h++){
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              if (h==(int) (calagedatem+YEARM*cpt)) {
   for(i=1; i <=nlstate; i++){                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     jj=0;              }
     for(j=1; j <=nlstate+ndeath; j++){              for(j=1; j<=nlstate+ndeath;j++) {
       if(j==i) continue;                kk1=0.;kk2=0;
       jj++;                for(i=1; i<=nlstate;i++) {              
       /*ca[0]= k+'a'-1;ca[1]='\0';*/                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
       printf("%1d%1d",i,j);                }
       fprintf(ficparo,"%1d%1d",i,j);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
       for(k=1; k<=ncovmodel;k++){              }
         /*        printf(" %lf",param[i][j][k]); */            }
         /*        fprintf(ficparo," %lf",param[i][j][k]); */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         printf(" 0.");          }
         fprintf(ficparo," 0.");        }
       }     }
       printf("\n");    }
       fprintf(ficparo,"\n");   
     }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }  
   printf("# Scales (for hessian or gradient estimation)\n");    if (popforecast==1) {
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");      free_ivector(popage,0,AGESUP);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/       free_vector(popeffectif,0,AGESUP);
   for(i=1; i <=nlstate; i++){      free_vector(popcount,0,AGESUP);
     jj=0;    }
     for(j=1; j <=nlstate+ndeath; j++){    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if(j==i) continue;    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       jj++;    fclose(ficrespop);
       fprintf(ficparo,"%1d%1d",i,j);  } /* End of popforecast */
       printf("%1d%1d",i,j);  
       fflush(stdout);  int fileappend(FILE *fichier, char *optionfich)
       for(k=1; k<=ncovmodel;k++){  {
         /*      printf(" %le",delti3[i][j][k]); */    if((fichier=fopen(optionfich,"a"))==NULL) {
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */      printf("Problem with file: %s\n", optionfich);
         printf(" 0.");      fprintf(ficlog,"Problem with file: %s\n", optionfich);
         fprintf(ficparo," 0.");      return (0);
       }    }
       numlinepar++;    fflush(fichier);
       printf("\n");    return (1);
       fprintf(ficparo,"\n");  }
     }  
   }  
   printf("# Covariance matrix\n");  /**************** function prwizard **********************/
 /* # 121 Var(a12)\n\ */  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 /* # 122 Cov(b12,a12) Var(b12)\n\ */  {
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */  
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    /* Wizard to print covariance matrix template */
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */  
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */    char ca[32], cb[32], cc[32];
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    int numlinepar;
   fflush(stdout);  
   fprintf(ficparo,"# Covariance matrix\n");    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   /* # 121 Var(a12)\n\ */    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   /* # 122 Cov(b12,a12) Var(b12)\n\ */    for(i=1; i <=nlstate; i++){
   /* #   ...\n\ */      jj=0;
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */      for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
   for(itimes=1;itimes<=2;itimes++){        jj++;
     jj=0;        /*ca[0]= k+'a'-1;ca[1]='\0';*/
     for(i=1; i <=nlstate; i++){        printf("%1d%1d",i,j);
       for(j=1; j <=nlstate+ndeath; j++){        fprintf(ficparo,"%1d%1d",i,j);
         if(j==i) continue;        for(k=1; k<=ncovmodel;k++){
         for(k=1; k<=ncovmodel;k++){          /*        printf(" %lf",param[i][j][k]); */
           jj++;          /*        fprintf(ficparo," %lf",param[i][j][k]); */
           ca[0]= k+'a'-1;ca[1]='\0';          printf(" 0.");
           if(itimes==1){          fprintf(ficparo," 0.");
             printf("#%1d%1d%d",i,j,k);        }
             fprintf(ficparo,"#%1d%1d%d",i,j,k);        printf("\n");
           }else{        fprintf(ficparo,"\n");
             printf("%1d%1d%d",i,j,k);      }
             fprintf(ficparo,"%1d%1d%d",i,j,k);    }
             /*  printf(" %.5le",matcov[i][j]); */    printf("# Scales (for hessian or gradient estimation)\n");
           }    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
           ll=0;    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
           for(li=1;li <=nlstate; li++){    for(i=1; i <=nlstate; i++){
             for(lj=1;lj <=nlstate+ndeath; lj++){      jj=0;
               if(lj==li) continue;      for(j=1; j <=nlstate+ndeath; j++){
               for(lk=1;lk<=ncovmodel;lk++){        if(j==i) continue;
                 ll++;        jj++;
                 if(ll<=jj){        fprintf(ficparo,"%1d%1d",i,j);
                   cb[0]= lk +'a'-1;cb[1]='\0';        printf("%1d%1d",i,j);
                   if(ll<jj){        fflush(stdout);
                     if(itimes==1){        for(k=1; k<=ncovmodel;k++){
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          /*      printf(" %le",delti3[i][j][k]); */
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
                     }else{          printf(" 0.");
                       printf(" 0.");          fprintf(ficparo," 0.");
                       fprintf(ficparo," 0.");        }
                     }        numlinepar++;
                   }else{        printf("\n");
                     if(itimes==1){        fprintf(ficparo,"\n");
                       printf(" Var(%s%1d%1d)",ca,i,j);      }
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);    }
                     }else{    printf("# Covariance matrix\n");
                       printf(" 0.");  /* # 121 Var(a12)\n\ */
                       fprintf(ficparo," 0.");  /* # 122 Cov(b12,a12) Var(b12)\n\ */
                     }  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   }  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                 }  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
               } /* end lk */  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
             } /* end lj */  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
           } /* end li */  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
           printf("\n");    fflush(stdout);
           fprintf(ficparo,"\n");    fprintf(ficparo,"# Covariance matrix\n");
           numlinepar++;    /* # 121 Var(a12)\n\ */
         } /* end k*/    /* # 122 Cov(b12,a12) Var(b12)\n\ */
       } /*end j */    /* #   ...\n\ */
     } /* end i */    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   } /* end itimes */   
     for(itimes=1;itimes<=2;itimes++){
 } /* end of prwizard */      jj=0;
 /******************* Gompertz Likelihood ******************************/      for(i=1; i <=nlstate; i++){
 double gompertz(double x[])        for(j=1; j <=nlstate+ndeath; j++){
 {           if(j==i) continue;
   double A,B,L=0.0,sump=0.,num=0.;          for(k=1; k<=ncovmodel;k++){
   int i,n=0; /* n is the size of the sample */            jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
   for (i=0;i<=imx-1 ; i++) {            if(itimes==1){
     sump=sump+weight[i];              printf("#%1d%1d%d",i,j,k);
     /*    sump=sump+1;*/              fprintf(ficparo,"#%1d%1d%d",i,j,k);
     num=num+1;            }else{
   }              printf("%1d%1d%d",i,j,k);
                fprintf(ficparo,"%1d%1d%d",i,j,k);
                /*  printf(" %.5le",matcov[i][j]); */
   /* for (i=0; i<=imx; i++)             }
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/            ll=0;
             for(li=1;li <=nlstate; li++){
   for (i=1;i<=imx ; i++)              for(lj=1;lj <=nlstate+ndeath; lj++){
     {                if(lj==li) continue;
       if (cens[i] == 1 && wav[i]>1)                for(lk=1;lk<=ncovmodel;lk++){
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));                  ll++;
                         if(ll<=jj){
       if (cens[i] == 0 && wav[i]>1)                    cb[0]= lk +'a'-1;cb[1]='\0';
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))                    if(ll<jj){
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);                        if(itimes==1){
                               printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       if (wav[i] > 1 ) { /* ??? */                      }else{
         L=L+A*weight[i];                        printf(" 0.");
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/                        fprintf(ficparo," 0.");
       }                      }
     }                    }else{
                       if(itimes==1){
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/                        printf(" Var(%s%1d%1d)",ca,i,j);
                          fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   return -2*L*num/sump;                      }else{
 }                        printf(" 0.");
                         fprintf(ficparo," 0.");
 /******************* Printing html file ***********/                      }
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \                    }
                   int lastpass, int stepm, int weightopt, char model[],\                  }
                   int imx,  double p[],double **matcov,double agemortsup){                } /* end lk */
   int i,k;              } /* end lj */
             } /* end li */
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");            printf("\n");
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);            fprintf(ficparo,"\n");
   for (i=1;i<=2;i++)             numlinepar++;
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));          } /* end k*/
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");        } /*end j */
   fprintf(fichtm,"</ul>");      } /* end i */
     } /* end itimes */
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");  
   } /* end of prwizard */
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");  /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
  for (k=agegomp;k<(agemortsup-2);k++)   {
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);    double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
    
   fflush(fichtm);    for (i=0;i<=imx-1 ; i++) {
 }      sump=sump+weight[i];
       /*    sump=sump+1;*/
 /******************* Gnuplot file **************/      num=num+1;
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    }
    
   char dirfileres[132],optfileres[132];   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    /* for (i=0; i<=imx; i++)
   int ng;       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
   /*#ifdef windows */      {
   fprintf(ficgp,"cd \"%s\" \n",pathc);        if (cens[i] == 1 && wav[i]>1)
     /*#endif */          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
        
         if (cens[i] == 0 && wav[i]>1)
   strcpy(dirfileres,optionfilefiname);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   strcpy(optfileres,"vpl");               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   fprintf(ficgp,"set out \"graphmort.png\"\n ");        
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   fprintf(ficgp, "set ter png small\n set log y\n");         if (wav[i] > 1 ) { /* ??? */
   fprintf(ficgp, "set size 0.65,0.65\n");          L=L+A*weight[i];
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
 }       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
 /***********************************************/  
 /**************** Main Program *****************/  /******************* Printing html file ***********/
 /***********************************************/  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
 int main(int argc, char *argv[])                    int imx,  double p[],double **matcov,double agemortsup){
 {    int i,k;
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   int linei, month, year,iout;    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   int jj, ll, li, lj, lk, imk;    for (i=1;i<=2;i++)
   int numlinepar=0; /* Current linenumber of parameter file */      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   int itimes;    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   int NDIM=2;    fprintf(fichtm,"</ul>");
   
   char ca[32], cb[32], cc[32];  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   char dummy[]="                         ";  
   /*  FILE *fichtm; *//* Html File */   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   /* FILE *ficgp;*/ /*Gnuplot File */  
   struct stat info;   for (k=agegomp;k<(agemortsup-2);k++)
   double agedeb, agefin,hf;     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
    
   double fret;    fflush(fichtm);
   double **xi,tmp,delta;  }
   
   double dum; /* Dummy variable */  /******************* Gnuplot file **************/
   double ***p3mat;  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   double ***mobaverage;  
   int *indx;    char dirfileres[132],optfileres[132];
   char line[MAXLINE], linepar[MAXLINE];    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    int ng;
   char pathr[MAXLINE], pathimach[MAXLINE];   
   char **bp, *tok, *val; /* pathtot */  
   int firstobs=1, lastobs=10;    /*#ifdef windows */
   int sdeb, sfin; /* Status at beginning and end */    fprintf(ficgp,"cd \"%s\" \n",pathc);
   int c,  h , cpt,l;      /*#endif */
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;     strcpy(dirfileres,optionfilefiname);
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    strcpy(optfileres,"vpl");
   int mobilav=0,popforecast=0;    fprintf(ficgp,"set out \"graphmort.png\"\n ");
   int hstepm, nhstepm;    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
   int agemortsup;    fprintf(ficgp, "set ter png small\n set log y\n");
   float  sumlpop=0.;    fprintf(ficgp, "set size 0.65,0.65\n");
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;  
   }
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;  
   double **prlim;  
   double *severity;  
   double ***param; /* Matrix of parameters */  
   double  *p;  /***********************************************/
   double **matcov; /* Matrix of covariance */  /**************** Main Program *****************/
   double ***delti3; /* Scale */  /***********************************************/
   double *delti; /* Scale */  
   double ***eij, ***vareij;  int main(int argc, char *argv[])
   double **varpl; /* Variances of prevalence limits by age */  {
   double *epj, vepp;    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   double kk1, kk2;    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    int linei, month, year,iout;
   double **ximort;    int jj, ll, li, lj, lk, imk;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    int numlinepar=0; /* Current linenumber of parameter file */
   int *dcwave;    int itimes;
     int NDIM=2;
   char z[1]="c", occ;  
     char ca[32], cb[32], cc[32];
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    char dummy[]="                         ";
   char  *strt, strtend[80];    /*  FILE *fichtm; *//* Html File */
   char *stratrunc;    /* FILE *ficgp;*/ /*Gnuplot File */
   int lstra;    struct stat info;
     double agedeb, agefin,hf;
   long total_usecs;    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
    
 /*   setlocale (LC_ALL, ""); */    double fret;
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */    double **xi,tmp,delta;
 /*   textdomain (PACKAGE); */  
 /*   setlocale (LC_CTYPE, ""); */    double dum; /* Dummy variable */
 /*   setlocale (LC_MESSAGES, ""); */    double ***p3mat;
     double ***mobaverage;
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int *indx;
   (void) gettimeofday(&start_time,&tzp);    char line[MAXLINE], linepar[MAXLINE];
   curr_time=start_time;    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   tm = *localtime(&start_time.tv_sec);    char pathr[MAXLINE], pathimach[MAXLINE];
   tmg = *gmtime(&start_time.tv_sec);    char **bp, *tok, *val; /* pathtot */
   strcpy(strstart,asctime(&tm));    int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
 /*  printf("Localtime (at start)=%s",strstart); */    int c,  h , cpt,l;
 /*  tp.tv_sec = tp.tv_sec +86400; */    int ju,jl, mi;
 /*  tm = *localtime(&start_time.tv_sec); */    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 /*   tmg.tm_hour=tmg.tm_hour + 1; */    int mobilav=0,popforecast=0;
 /*   tp.tv_sec = mktime(&tmg); */    int hstepm, nhstepm;
 /*   strt=asctime(&tmg); */    int agemortsup;
 /*   printf("Time(after) =%s",strstart);  */    float  sumlpop=0.;
 /*  (void) time (&time_value);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 *  tm = *localtime(&time_value);  
 *  strstart=asctime(&tm);    double bage, fage, age, agelim, agebase;
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);     double ftolpl=FTOL;
 */    double **prlim;
     double *severity;
   nberr=0; /* Number of errors and warnings */    double ***param; /* Matrix of parameters */
   nbwarn=0;    double  *p;
   getcwd(pathcd, size);    double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
   printf("\n%s\n%s",version,fullversion);    double *delti; /* Scale */
   if(argc <=1){    double ***eij, ***vareij;
     printf("\nEnter the parameter file name: ");    double **varpl; /* Variances of prevalence limits by age */
     fgets(pathr,FILENAMELENGTH,stdin);    double *epj, vepp;
     i=strlen(pathr);    double kk1, kk2;
     if(pathr[i-1]=='\n')    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
       pathr[i-1]='\0';    double **ximort;
    for (tok = pathr; tok != NULL; ){    char *alph[]={"a","a","b","c","d","e"}, str[4];
       printf("Pathr |%s|\n",pathr);    int *dcwave;
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');  
       printf("val= |%s| pathr=%s\n",val,pathr);    char z[1]="c", occ;
       strcpy (pathtot, val);  
       if(pathr[0] == '\0') break; /* Un peu sale */    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     }    char  *strt, strtend[80];
   }    char *stratrunc;
   else{    int lstra;
     strcpy(pathtot,argv[1]);  
   }    long total_usecs;
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/   
   /*cygwin_split_path(pathtot,path,optionfile);  /*   setlocale (LC_ALL, ""); */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /* cutv(path,optionfile,pathtot,'\\');*/  /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /* Split argv[0], imach program to get pathimach */  /*   setlocale (LC_MESSAGES, ""); */
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);  
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    (void) gettimeofday(&start_time,&tzp);
  /*   strcpy(pathimach,argv[0]); */    curr_time=start_time;
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */    tm = *localtime(&start_time.tv_sec);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    tmg = *gmtime(&start_time.tv_sec);
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    strcpy(strstart,asctime(&tm));
   chdir(path);  
   strcpy(command,"mkdir ");  /*  printf("Localtime (at start)=%s",strstart); */
   strcat(command,optionfilefiname);  /*  tp.tv_sec = tp.tv_sec +86400; */
   if((outcmd=system(command)) != 0){  /*  tm = *localtime(&start_time.tv_sec); */
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
     /* fclose(ficlog); */  /*   tmg.tm_hour=tmg.tm_hour + 1; */
 /*     exit(1); */  /*   tp.tv_sec = mktime(&tmg); */
   }  /*   strt=asctime(&tmg); */
 /*   if((imk=mkdir(optionfilefiname))<0){ */  /*   printf("Time(after) =%s",strstart);  */
 /*     perror("mkdir"); */  /*  (void) time (&time_value);
 /*   } */  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   /*-------- arguments in the command line --------*/  *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
   /* Log file */  */
   strcat(filelog, optionfilefiname);  
   strcat(filelog,".log");    /* */    nberr=0; /* Number of errors and warnings */
   if((ficlog=fopen(filelog,"w"))==NULL)    {    nbwarn=0;
     printf("Problem with logfile %s\n",filelog);    getcwd(pathcd, size);
     goto end;  
   }    printf("\n%s\n%s",version,fullversion);
   fprintf(ficlog,"Log filename:%s\n",filelog);    if(argc <=1){
   fprintf(ficlog,"\n%s\n%s",version,fullversion);      printf("\nEnter the parameter file name: ");
   fprintf(ficlog,"\nEnter the parameter file name: \n");      fgets(pathr,FILENAMELENGTH,stdin);
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\      i=strlen(pathr);
  path=%s \n\      if(pathr[i-1]=='\n')
  optionfile=%s\n\        pathr[i-1]='\0';
  optionfilext=%s\n\     for (tok = pathr; tok != NULL; ){
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);        printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   printf("Local time (at start):%s",strstart);        printf("val= |%s| pathr=%s\n",val,pathr);
   fprintf(ficlog,"Local time (at start): %s",strstart);        strcpy (pathtot, val);
   fflush(ficlog);        if(pathr[0] == '\0') break; /* Dirty */
 /*   (void) gettimeofday(&curr_time,&tzp); */      }
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    }
     else{
   /* */      strcpy(pathtot,argv[1]);
   strcpy(fileres,"r");    }
   strcat(fileres, optionfilefiname);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   strcat(fileres,".txt");    /* Other files have txt extension */    /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   /*---------arguments file --------*/    /* cutv(path,optionfile,pathtot,'\\');*/
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    /* Split argv[0], imach program to get pathimach */
     printf("Problem with optionfile %s\n",optionfile);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     goto end;   /*   strcpy(pathimach,argv[0]); */
   }    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
   strcpy(filereso,"o");    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   strcat(filereso,fileres);      printf("Current directory %s!\n",pathcd);
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */    strcpy(command,"mkdir ");
     printf("Problem with Output resultfile: %s\n", filereso);    strcat(command,optionfilefiname);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    if((outcmd=system(command)) != 0){
     fflush(ficlog);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
     goto end;      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   }      /* fclose(ficlog); */
   /*     exit(1); */
   /* Reads comments: lines beginning with '#' */    }
   numlinepar=0;  /*   if((imk=mkdir(optionfilefiname))<0){ */
   while((c=getc(ficpar))=='#' && c!= EOF){  /*     perror("mkdir"); */
     ungetc(c,ficpar);  /*   } */
     fgets(line, MAXLINE, ficpar);  
     numlinepar++;    /*-------- arguments in the command line --------*/
     puts(line);  
     fputs(line,ficparo);    /* Log file */
     fputs(line,ficlog);    strcat(filelog, optionfilefiname);
   }    strcat(filelog,".log");    /* */
   ungetc(c,ficpar);    if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      goto end;
   numlinepar++;    }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    fprintf(ficlog,"Log filename:%s\n",filelog);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficlog,"\nEnter the parameter file name: \n");
   fflush(ficlog);    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
   while((c=getc(ficpar))=='#' && c!= EOF){   path=%s \n\
     ungetc(c,ficpar);   optionfile=%s\n\
     fgets(line, MAXLINE, ficpar);   optionfilext=%s\n\
     numlinepar++;   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     puts(line);  
     fputs(line,ficparo);    printf("Local time (at start):%s",strstart);
     fputs(line,ficlog);    fprintf(ficlog,"Local time (at start): %s",strstart);
   }    fflush(ficlog);
   ungetc(c,ficpar);  /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
      
   covar=matrix(0,NCOVMAX,1,n);     /* */
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    strcpy(fileres,"r");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /*---------arguments file --------*/
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/  
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      printf("Problem with optionfile %s\n",optionfile);
   delti=delti3[1][1];      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/      fflush(ficlog);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */      goto end;
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    }
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);  
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);  
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);   
     fclose (ficparo);    strcpy(filereso,"o");
     fclose (ficlog);    strcat(filereso,fileres);
     exit(0);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   }      printf("Problem with Output resultfile: %s\n", filereso);
   else if(mle==-3) {      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);      fflush(ficlog);
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);      goto end;
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    }
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     matcov=matrix(1,npar,1,npar);    /* Reads comments: lines beginning with '#' */
   }    numlinepar=0;
   else{    while((c=getc(ficpar))=='#' && c!= EOF){
     /* Read guess parameters */      ungetc(c,ficpar);
     /* Reads comments: lines beginning with '#' */      fgets(line, MAXLINE, ficpar);
     while((c=getc(ficpar))=='#' && c!= EOF){      numlinepar++;
       ungetc(c,ficpar);      puts(line);
       fgets(line, MAXLINE, ficpar);      fputs(line,ficparo);
       numlinepar++;      fputs(line,ficlog);
       puts(line);    }
       fputs(line,ficparo);    ungetc(c,ficpar);
       fputs(line,ficlog);  
     }    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     ungetc(c,ficpar);    numlinepar++;
         printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     for(i=1; i <=nlstate; i++){    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       j=0;    fflush(ficlog);
       for(jj=1; jj <=nlstate+ndeath; jj++){    while((c=getc(ficpar))=='#' && c!= EOF){
         if(jj==i) continue;      ungetc(c,ficpar);
         j++;      fgets(line, MAXLINE, ficpar);
         fscanf(ficpar,"%1d%1d",&i1,&j1);      numlinepar++;
         if ((i1 != i) && (j1 != j)){      puts(line);
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);      fputs(line,ficparo);
           exit(1);      fputs(line,ficlog);
         }    }
         fprintf(ficparo,"%1d%1d",i1,j1);    ungetc(c,ficpar);
         if(mle==1)  
           printf("%1d%1d",i,j);     
         fprintf(ficlog,"%1d%1d",i,j);    covar=matrix(0,NCOVMAX,1,n);
         for(k=1; k<=ncovmodel;k++){    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
           fscanf(ficpar," %lf",&param[i][j][k]);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
           if(mle==1){  
             printf(" %lf",param[i][j][k]);    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
             fprintf(ficlog," %lf",param[i][j][k]);    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
           }    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
           else  
             fprintf(ficlog," %lf",param[i][j][k]);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
           fprintf(ficparo," %lf",param[i][j][k]);    delti=delti3[1][1];
         }    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
         fscanf(ficpar,"\n");    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
         numlinepar++;      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
         if(mle==1)      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
           printf("\n");      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         fprintf(ficlog,"\n");      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
         fprintf(ficparo,"\n");      fclose (ficparo);
       }      fclose (ficlog);
     }        goto end;
     fflush(ficlog);      exit(0);
     }
     p=param[1][1];    else if(mle==-3) {
           prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     /* Reads comments: lines beginning with '#' */      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       ungetc(c,ficpar);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       fgets(line, MAXLINE, ficpar);      matcov=matrix(1,npar,1,npar);
       numlinepar++;    }
       puts(line);    else{
       fputs(line,ficparo);      /* Read guess parameters */
       fputs(line,ficlog);      /* Reads comments: lines beginning with '#' */
     }      while((c=getc(ficpar))=='#' && c!= EOF){
     ungetc(c,ficpar);        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
     for(i=1; i <=nlstate; i++){        numlinepar++;
       for(j=1; j <=nlstate+ndeath-1; j++){        puts(line);
         fscanf(ficpar,"%1d%1d",&i1,&j1);        fputs(line,ficparo);
         if ((i1-i)*(j1-j)!=0){        fputs(line,ficlog);
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);      }
           exit(1);      ungetc(c,ficpar);
         }     
         printf("%1d%1d",i,j);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         fprintf(ficparo,"%1d%1d",i1,j1);      for(i=1; i <=nlstate; i++){
         fprintf(ficlog,"%1d%1d",i1,j1);        j=0;
         for(k=1; k<=ncovmodel;k++){        for(jj=1; jj <=nlstate+ndeath; jj++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);          if(jj==i) continue;
           printf(" %le",delti3[i][j][k]);          j++;
           fprintf(ficparo," %le",delti3[i][j][k]);          fscanf(ficpar,"%1d%1d",&i1,&j1);
           fprintf(ficlog," %le",delti3[i][j][k]);          if ((i1 != i) && (j1 != j)){
         }            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
         fscanf(ficpar,"\n");  It might be a problem of design; if ncovcol and the model are correct\n \
         numlinepar++;  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
         printf("\n");            exit(1);
         fprintf(ficparo,"\n");          }
         fprintf(ficlog,"\n");          fprintf(ficparo,"%1d%1d",i1,j1);
       }          if(mle==1)
     }            printf("%1d%1d",i,j);
     fflush(ficlog);          fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
     delti=delti3[1][1];            fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */              fprintf(ficlog," %lf",param[i][j][k]);
               }
     /* Reads comments: lines beginning with '#' */            else
     while((c=getc(ficpar))=='#' && c!= EOF){              fprintf(ficlog," %lf",param[i][j][k]);
       ungetc(c,ficpar);            fprintf(ficparo," %lf",param[i][j][k]);
       fgets(line, MAXLINE, ficpar);          }
       numlinepar++;          fscanf(ficpar,"\n");
       puts(line);          numlinepar++;
       fputs(line,ficparo);          if(mle==1)
       fputs(line,ficlog);            printf("\n");
     }          fprintf(ficlog,"\n");
     ungetc(c,ficpar);          fprintf(ficparo,"\n");
           }
     matcov=matrix(1,npar,1,npar);      }  
     for(i=1; i <=npar; i++){      fflush(ficlog);
       fscanf(ficpar,"%s",&str);  
       if(mle==1)      p=param[1][1];
         printf("%s",str);     
       fprintf(ficlog,"%s",str);      /* Reads comments: lines beginning with '#' */
       fprintf(ficparo,"%s",str);      while((c=getc(ficpar))=='#' && c!= EOF){
       for(j=1; j <=i; j++){        ungetc(c,ficpar);
         fscanf(ficpar," %le",&matcov[i][j]);        fgets(line, MAXLINE, ficpar);
         if(mle==1){        numlinepar++;
           printf(" %.5le",matcov[i][j]);        puts(line);
         }        fputs(line,ficparo);
         fprintf(ficlog," %.5le",matcov[i][j]);        fputs(line,ficlog);
         fprintf(ficparo," %.5le",matcov[i][j]);      }
       }      ungetc(c,ficpar);
       fscanf(ficpar,"\n");  
       numlinepar++;      for(i=1; i <=nlstate; i++){
       if(mle==1)        for(j=1; j <=nlstate+ndeath-1; j++){
         printf("\n");          fscanf(ficpar,"%1d%1d",&i1,&j1);
       fprintf(ficlog,"\n");          if ((i1-i)*(j1-j)!=0){
       fprintf(ficparo,"\n");            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
     }            exit(1);
     for(i=1; i <=npar; i++)          }
       for(j=i+1;j<=npar;j++)          printf("%1d%1d",i,j);
         matcov[i][j]=matcov[j][i];          fprintf(ficparo,"%1d%1d",i1,j1);
               fprintf(ficlog,"%1d%1d",i1,j1);
     if(mle==1)          for(k=1; k<=ncovmodel;k++){
       printf("\n");            fscanf(ficpar,"%le",&delti3[i][j][k]);
     fprintf(ficlog,"\n");            printf(" %le",delti3[i][j][k]);
                 fprintf(ficparo," %le",delti3[i][j][k]);
     fflush(ficlog);            fprintf(ficlog," %le",delti3[i][j][k]);
               }
     /*-------- Rewriting parameter file ----------*/          fscanf(ficpar,"\n");
     strcpy(rfileres,"r");    /* "Rparameterfile */          numlinepar++;
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          printf("\n");
     strcat(rfileres,".");    /* */          fprintf(ficparo,"\n");
     strcat(rfileres,optionfilext);    /* Other files have txt extension */          fprintf(ficlog,"\n");
     if((ficres =fopen(rfileres,"w"))==NULL) {        }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      }
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;      fflush(ficlog);
     }  
     fprintf(ficres,"#%s\n",version);      delti=delti3[1][1];
   }    /* End of mle != -3 */  
   
   /*-------- data file ----------*/      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
   if((fic=fopen(datafile,"r"))==NULL)    {   
     printf("Problem while opening datafile: %s\n", datafile);goto end;      /* Reads comments: lines beginning with '#' */
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;      while((c=getc(ficpar))=='#' && c!= EOF){
   }        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
   n= lastobs;        numlinepar++;
   severity = vector(1,maxwav);        puts(line);
   outcome=imatrix(1,maxwav+1,1,n);        fputs(line,ficparo);
   num=lvector(1,n);        fputs(line,ficlog);
   moisnais=vector(1,n);      }
   annais=vector(1,n);      ungetc(c,ficpar);
   moisdc=vector(1,n);   
   andc=vector(1,n);      matcov=matrix(1,npar,1,npar);
   agedc=vector(1,n);      for(i=1; i <=npar; i++){
   cod=ivector(1,n);        fscanf(ficpar,"%s",&str);
   weight=vector(1,n);        if(mle==1)
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          printf("%s",str);
   mint=matrix(1,maxwav,1,n);        fprintf(ficlog,"%s",str);
   anint=matrix(1,maxwav,1,n);        fprintf(ficparo,"%s",str);
   s=imatrix(1,maxwav+1,1,n);        for(j=1; j <=i; j++){
   tab=ivector(1,NCOVMAX);          fscanf(ficpar," %le",&matcov[i][j]);
   ncodemax=ivector(1,8);          if(mle==1){
             printf(" %.5le",matcov[i][j]);
   i=1;          }
   linei=0;          fprintf(ficlog," %.5le",matcov[i][j]);
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {          fprintf(ficparo," %.5le",matcov[i][j]);
     linei=linei+1;        }
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */        fscanf(ficpar,"\n");
       if(line[j] == '\t')        numlinepar++;
         line[j] = ' ';        if(mle==1)
     }          printf("\n");
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){        fprintf(ficlog,"\n");
       ;        fprintf(ficparo,"\n");
     };      }
     line[j+1]=0;  /* Trims blanks at end of line */      for(i=1; i <=npar; i++)
     if(line[0]=='#'){        for(j=i+1;j<=npar;j++)
       fprintf(ficlog,"Comment line\n%s\n",line);          matcov[i][j]=matcov[j][i];
       printf("Comment line\n%s\n",line);     
       continue;      if(mle==1)
     }        printf("\n");
       fprintf(ficlog,"\n");
     for (j=maxwav;j>=1;j--){     
       cutv(stra, strb,line,' ');       fflush(ficlog);
       errno=0;     
       lval=strtol(strb,&endptr,10);       /*-------- Rewriting parameter file ----------*/
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/      strcpy(rfileres,"r");    /* "Rparameterfile */
       if( strb[0]=='\0' || (*endptr != '\0')){      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);      strcat(rfileres,".");    /* */
         exit(1);      strcat(rfileres,optionfilext);    /* Other files have txt extension */
       }      if((ficres =fopen(rfileres,"w"))==NULL) {
       s[j][i]=lval;        printf("Problem writing new parameter file: %s\n", fileres);goto end;
               fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       strcpy(line,stra);      }
       cutv(stra, strb,line,' ');      fprintf(ficres,"#%s\n",version);
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    }    /* End of mle != -3 */
       }  
       else  if(iout=sscanf(strb,"%s.") != 0){    /*-------- data file ----------*/
         month=99;    if((fic=fopen(datafile,"r"))==NULL)    {
         year=9999;      printf("Problem while opening datafile: %s\n", datafile);goto end;
       }else{      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);    }
         exit(1);  
       }    n= lastobs;
       anint[j][i]= (double) year;     severity = vector(1,maxwav);
       mint[j][i]= (double)month;     outcome=imatrix(1,maxwav+1,1,n);
       strcpy(line,stra);    num=lvector(1,n);
     } /* ENd Waves */    moisnais=vector(1,n);
         annais=vector(1,n);
     cutv(stra, strb,line,' ');     moisdc=vector(1,n);
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    andc=vector(1,n);
     }    agedc=vector(1,n);
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){    cod=ivector(1,n);
       month=99;    weight=vector(1,n);
       year=9999;    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     }else{    mint=matrix(1,maxwav,1,n);
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);    anint=matrix(1,maxwav,1,n);
       exit(1);    s=imatrix(1,maxwav+1,1,n);
     }    tab=ivector(1,NCOVMAX);
     andc[i]=(double) year;     ncodemax=ivector(1,8);
     moisdc[i]=(double) month;   
     strcpy(line,stra);    i=1;
         linei=0;
     cutv(stra, strb,line,' ');     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      linei=linei+1;
     }      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
     else  if(iout=sscanf(strb,"%s.") != 0){        if(line[j] == '\t')
       month=99;          line[j] = ' ';
       year=9999;      }
     }else{      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);        ;
       exit(1);      };
     }      line[j+1]=0;  /* Trims blanks at end of line */
     annais[i]=(double)(year);      if(line[0]=='#'){
     moisnais[i]=(double)(month);         fprintf(ficlog,"Comment line\n%s\n",line);
     strcpy(line,stra);        printf("Comment line\n%s\n",line);
             continue;
     cutv(stra, strb,line,' ');       }
     errno=0;  
     lval=strtol(strb,&endptr,10);       for (j=maxwav;j>=1;j--){
     if( strb[0]=='\0' || (*endptr != '\0')){        cutv(stra, strb,line,' ');
       printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);        errno=0;
       exit(1);        lval=strtol(strb,&endptr,10);
     }        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
     weight[i]=(double)(lval);         if( strb[0]=='\0' || (*endptr != '\0')){
     strcpy(line,stra);          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
               exit(1);
     for (j=ncovcol;j>=1;j--){        }
       cutv(stra, strb,line,' ');         s[j][i]=lval;
       errno=0;       
       lval=strtol(strb,&endptr,10);         strcpy(line,stra);
       if( strb[0]=='\0' || (*endptr != '\0')){        cutv(stra, strb,line,' ');
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         exit(1);        }
       }        else  if(iout=sscanf(strb,"%s.") != 0){
       if(lval <-1 || lval >1){          month=99;
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);          year=9999;
         exit(1);        }else{
       }          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
       covar[j][i]=(double)(lval);          exit(1);
       strcpy(line,stra);        }
     }         anint[j][i]= (double) year;
     lstra=strlen(stra);        mint[j][i]= (double)month;
             strcpy(line,stra);
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */      } /* ENd Waves */
       stratrunc = &(stra[lstra-9]);     
       num[i]=atol(stratrunc);      cutv(stra, strb,line,' ');
     }      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     else      }
       num[i]=atol(stra);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        month=99;
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        year=9999;
           }else{
     i=i+1;        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   } /* End loop reading  data */        exit(1);
   fclose(fic);      }
   /* printf("ii=%d", ij);      andc[i]=(double) year;
      scanf("%d",i);*/      moisdc[i]=(double) month;
   imx=i-1; /* Number of individuals */      strcpy(line,stra);
      
   /* for (i=1; i<=imx; i++){      cutv(stra, strb,line,' ');
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      else  if(iout=sscanf(strb,"%s.") != 0){
     }*/        month=99;
    /*  for (i=1; i<=imx; i++){        year=9999;
      if (s[4][i]==9)  s[4][i]=-1;       }else{
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
           exit(1);
   /* for (i=1; i<=imx; i++) */      }
        annais[i]=(double)(year);
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;      moisnais[i]=(double)(month);
      else weight[i]=1;*/      strcpy(line,stra);
      
   /* Calculation of the number of parameters from char model */      cutv(stra, strb,line,' ');
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */      errno=0;
   Tprod=ivector(1,15);       dval=strtod(strb,&endptr);
   Tvaraff=ivector(1,15);       if( strb[0]=='\0' || (*endptr != '\0')){
   Tvard=imatrix(1,15,1,2);        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   Tage=ivector(1,15);              exit(1);
          }
   if (strlen(model) >1){ /* If there is at least 1 covariate */      weight[i]=dval;
     j=0, j1=0, k1=1, k2=1;      strcpy(line,stra);
     j=nbocc(model,'+'); /* j=Number of '+' */     
     j1=nbocc(model,'*'); /* j1=Number of '*' */      for (j=ncovcol;j>=1;j--){
     cptcovn=j+1;         cutv(stra, strb,line,' ');
     cptcovprod=j1; /*Number of products */        errno=0;
             lval=strtol(strb,&endptr,10);
     strcpy(modelsav,model);         if( strb[0]=='\0' || (*endptr != '\0')){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
       printf("Error. Non available option model=%s ",model);          exit(1);
       fprintf(ficlog,"Error. Non available option model=%s ",model);        }
       goto end;        if(lval <-1 || lval >1){
     }          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
        Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
     /* This loop fills the array Tvar from the string 'model'.*/   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
     for(i=(j+1); i>=1;i--){   build V1=0 V2=0 for the reference value (1),\n \
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */           V1=1 V2=0 for (2) \n \
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/   output of IMaCh is often meaningless.\n \
       /*scanf("%d",i);*/   Exiting.\n",lval,linei, i,line,j);
       if (strchr(strb,'*')) {  /* Model includes a product */          exit(1);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        }
         if (strcmp(strc,"age")==0) { /* Vn*age */        covar[j][i]=(double)(lval);
           cptcovprod--;        strcpy(line,stra);
           cutv(strb,stre,strd,'V');      }
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      lstra=strlen(stra);
           cptcovage++;     
             Tage[cptcovage]=i;      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
             /*printf("stre=%s ", stre);*/        stratrunc = &(stra[lstra-9]);
         }        num[i]=atol(stratrunc);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */      }
           cptcovprod--;      else
           cutv(strb,stre,strc,'V');        num[i]=atol(stra);
           Tvar[i]=atoi(stre);      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           cptcovage++;        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
           Tage[cptcovage]=i;     
         }      i=i+1;
         else {  /* Age is not in the model */    } /* End loop reading  data */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    fclose(fic);
           Tvar[i]=ncovcol+k1;    /* printf("ii=%d", ij);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */       scanf("%d",i);*/
           Tprod[k1]=i;    imx=i-1; /* Number of individuals */
           Tvard[k1][1]=atoi(strc); /* m*/  
           Tvard[k1][2]=atoi(stre); /* n */    /* for (i=1; i<=imx; i++){
           Tvar[cptcovn+k2]=Tvard[k1][1];      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
           for (k=1; k<=lastobs;k++)       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      }*/
           k1++;     /*  for (i=1; i<=imx; i++){
           k2=k2+2;       if (s[4][i]==9)  s[4][i]=-1;
         }       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
       }   
       else { /* no more sum */    /* for (i=1; i<=imx; i++) */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/   
        /*  scanf("%d",i);*/     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
       cutv(strd,strc,strb,'V');       else weight[i]=1;*/
       Tvar[i]=atoi(strc);  
       }    /* Calculation of the number of parameters from char model */
       strcpy(modelsav,stra);      Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    Tprod=ivector(1,15);
         scanf("%d",i);*/    Tvaraff=ivector(1,15);
     } /* end of loop + */    Tvard=imatrix(1,15,1,2);
   } /* end model */    Tage=ivector(1,15);      
        
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    if (strlen(model) >1){ /* If there is at least 1 covariate */
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/      j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      j1=nbocc(model,'*'); /* j1=Number of '*' */
   printf("cptcovprod=%d ", cptcovprod);      cptcovn=j+1;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);      cptcovprod=j1; /*Number of products */
      
   scanf("%d ",i);*/      strcpy(modelsav,model);
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
     /*  if(mle==1){*/        printf("Error. Non available option model=%s ",model);
   if (weightopt != 1) { /* Maximisation without weights*/        fprintf(ficlog,"Error. Non available option model=%s ",model);
     for(i=1;i<=n;i++) weight[i]=1.0;        goto end;
   }      }
     /*-calculation of age at interview from date of interview and age at death -*/     
   agev=matrix(1,maxwav,1,imx);      /* This loop fills the array Tvar from the string 'model'.*/
   
   for (i=1; i<=imx; i++) {      for(i=(j+1); i>=1;i--){
     for(m=2; (m<= maxwav); m++) {        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         anint[m][i]=9999;        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         s[m][i]=-1;        /*scanf("%d",i);*/
       }        if (strchr(strb,'*')) {  /* Model includes a product */
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
         nberr++;          if (strcmp(strc,"age")==0) { /* Vn*age */
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);            cptcovprod--;
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);            cutv(strb,stre,strd,'V');
         s[m][i]=-1;            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
       }            cptcovage++;
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){              Tage[cptcovage]=i;
         nberr++;              /*printf("stre=%s ", stre);*/
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);           }
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);           else if (strcmp(strd,"age")==0) { /* or age*Vn */
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */            cptcovprod--;
       }            cutv(strb,stre,strc,'V');
     }            Tvar[i]=atoi(stre);
   }            cptcovage++;
             Tage[cptcovage]=i;
   for (i=1; i<=imx; i++)  {          }
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          else {  /* Age is not in the model */
     for(m=firstpass; (m<= lastpass); m++){            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){            Tvar[i]=ncovcol+k1;
         if (s[m][i] >= nlstate+1) {            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
           if(agedc[i]>0)            Tprod[k1]=i;
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)            Tvard[k1][1]=atoi(strc); /* m*/
               agev[m][i]=agedc[i];            Tvard[k1][2]=atoi(stre); /* n */
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            Tvar[cptcovn+k2]=Tvard[k1][1];
             else {            Tvar[cptcovn+k2+1]=Tvard[k1][2];
               if ((int)andc[i]!=9999){            for (k=1; k<=lastobs;k++)
                 nbwarn++;              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);            k1++;
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);            k2=k2+2;
                 agev[m][i]=-1;          }
               }        }
             }        else { /* no more sum */
         }          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
         else if(s[m][i] !=9){ /* Standard case, age in fractional         /*  scanf("%d",i);*/
                                  years but with the precision of a month */        cutv(strd,strc,strb,'V');
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        Tvar[i]=atoi(strc);
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)        }
             agev[m][i]=1;        strcpy(modelsav,stra);  
           else if(agev[m][i] <agemin){         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             agemin=agev[m][i];          scanf("%d",i);*/
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      } /* end of loop + */
           }    } /* end model */
           else if(agev[m][i] >agemax){   
             agemax=agev[m][i];    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
           }  
           /*agev[m][i]=anint[m][i]-annais[i];*/    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
           /*     agev[m][i] = age[i]+2*m;*/    printf("cptcovprod=%d ", cptcovprod);
         }    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
         else { /* =9 */  
           agev[m][i]=1;    scanf("%d ",i);*/
           s[m][i]=-1;  
         }      /*  if(mle==1){*/
       }    if (weightopt != 1) { /* Maximisation without weights*/
       else /*= 0 Unknown */      for(i=1;i<=n;i++) weight[i]=1.0;
         agev[m][i]=1;    }
     }      /*-calculation of age at interview from date of interview and age at death -*/
         agev=matrix(1,maxwav,1,imx);
   }  
   for (i=1; i<=imx; i++)  {    for (i=1; i<=imx; i++) {
     for(m=firstpass; (m<=lastpass); m++){      for(m=2; (m<= maxwav); m++) {
       if (s[m][i] > (nlstate+ndeath)) {        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
         nberr++;          anint[m][i]=9999;
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);               s[m][i]=-1;
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             }
         goto end;        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
       }          nberr++;
     }          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   }          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
   /*for (i=1; i<=imx; i++){        }
   for (m=firstpass; (m<lastpass); m++){        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);          nberr++;
 }          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
 }*/          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    }
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   
     for (i=1; i<=imx; i++)  {
   agegomp=(int)agemin;      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
   free_vector(severity,1,maxwav);      for(m=firstpass; (m<= lastpass); m++){
   free_imatrix(outcome,1,maxwav+1,1,n);        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
   free_vector(moisnais,1,n);          if (s[m][i] >= nlstate+1) {
   free_vector(annais,1,n);            if(agedc[i]>0)
   /* free_matrix(mint,1,maxwav,1,n);              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
      free_matrix(anint,1,maxwav,1,n);*/                agev[m][i]=agedc[i];
   free_vector(moisdc,1,n);            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
   free_vector(andc,1,n);              else {
                 if ((int)andc[i]!=9999){
                      nbwarn++;
   wav=ivector(1,imx);                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
   dh=imatrix(1,lastpass-firstpass+1,1,imx);                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
   bh=imatrix(1,lastpass-firstpass+1,1,imx);                  agev[m][i]=-1;
   mw=imatrix(1,lastpass-firstpass+1,1,imx);                }
                  }
   /* Concatenates waves */          }
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
   Tcode=ivector(1,100);              agev[m][i]=1;
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);             else if(agev[m][i] <agemin){
   ncodemax[1]=1;              agemin=agev[m][i];
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
                   }
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of             else if(agev[m][i] >agemax){
                                  the estimations*/              agemax=agev[m][i];
   h=0;              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
   m=pow(2,cptcoveff);            }
              /*agev[m][i]=anint[m][i]-annais[i];*/
   for(k=1;k<=cptcoveff; k++){            /*     agev[m][i] = age[i]+2*m;*/
     for(i=1; i <=(m/pow(2,k));i++){          }
       for(j=1; j <= ncodemax[k]; j++){          else { /* =9 */
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            agev[m][i]=1;
           h++;            s[m][i]=-1;
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          }
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        }
         }         else /*= 0 Unknown */
       }          agev[m][i]=1;
     }      }
   }      
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);     }
      codtab[1][2]=1;codtab[2][2]=2; */    for (i=1; i<=imx; i++)  {
   /* for(i=1; i <=m ;i++){       for(m=firstpass; (m<=lastpass); m++){
      for(k=1; k <=cptcovn; k++){        if (s[m][i] > (nlstate+ndeath)) {
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          nberr++;
      }          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
      printf("\n");          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
      }          goto end;
      scanf("%d",i);*/        }
           }
   /*------------ gnuplot -------------*/    }
   strcpy(optionfilegnuplot,optionfilefiname);  
   if(mle==-3)    /*for (i=1; i<=imx; i++){
     strcat(optionfilegnuplot,"-mort");    for (m=firstpass; (m<lastpass); m++){
   strcat(optionfilegnuplot,".gp");       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);  }*/
   }  
   else{  
     fprintf(ficgp,"\n# %s\n", version);     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficgp,"# %s\n", optionfilegnuplot);     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficgp,"set missing 'NaNq'\n");  
   }    agegomp=(int)agemin;
   /*  fclose(ficgp);*/    free_vector(severity,1,maxwav);
   /*--------- index.htm --------*/    free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */    free_vector(annais,1,n);
   if(mle==-3)    /* free_matrix(mint,1,maxwav,1,n);
     strcat(optionfilehtm,"-mort");       free_matrix(anint,1,maxwav,1,n);*/
   strcat(optionfilehtm,".htm");    free_vector(moisdc,1,n);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    free_vector(andc,1,n);
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }     
     wav=ivector(1,imx);
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    dh=imatrix(1,lastpass-firstpass+1,1,imx);
   strcat(optionfilehtmcov,"-cov.htm");    bh=imatrix(1,lastpass-firstpass+1,1,imx);
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    mw=imatrix(1,lastpass-firstpass+1,1,imx);
     printf("Problem with %s \n",optionfilehtmcov), exit(0);     
   }    /* Concatenates waves */
   else{    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \  
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\  
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);    Tcode=ivector(1,100);
   }    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\       
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
 \n\                                   the estimations*/
 <hr  size=\"2\" color=\"#EC5E5E\">\    h=0;
  <ul><li><h4>Parameter files</h4>\n\    m=pow(2,cptcoveff);
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\   
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    for(k=1;k<=cptcoveff; k++){
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\      for(i=1; i <=(m/pow(2,k));i++){
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\        for(j=1; j <= ncodemax[k]; j++){
  - Date and time at start: %s</ul>\n",\          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\            h++;
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
           fileres,fileres,\            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);          }
   fflush(fichtm);        }
       }
   strcpy(pathr,path);    }
   strcat(pathr,optionfilefiname);    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
   chdir(optionfilefiname); /* Move to directory named optionfile */       codtab[1][2]=1;codtab[2][2]=2; */
       /* for(i=1; i <=m ;i++){
   /* Calculates basic frequencies. Computes observed prevalence at single age       for(k=1; k <=cptcovn; k++){
      and prints on file fileres'p'. */       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);       }
        printf("\n");
   fprintf(fichtm,"\n");       }
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\       scanf("%d",i);*/
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\     
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\    /*------------ gnuplot -------------*/
           imx,agemin,agemax,jmin,jmax,jmean);    strcpy(optionfilegnuplot,optionfilefiname);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if(mle==-3)
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      strcat(optionfilegnuplot,"-mort");
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcat(optionfilegnuplot,".gp");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
           printf("Problem with file %s",optionfilegnuplot);
        }
   /* For Powell, parameters are in a vector p[] starting at p[1]    else{
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      fprintf(ficgp,"\n# %s\n", version);
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */      fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/    }
     /*  fclose(ficgp);*/
   if (mle==-3){    /*--------- index.htm --------*/
     ximort=matrix(1,NDIM,1,NDIM);  
     cens=ivector(1,n);    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     ageexmed=vector(1,n);    if(mle==-3)
     agecens=vector(1,n);      strcat(optionfilehtm,"-mort");
     dcwave=ivector(1,n);    strcat(optionfilehtm,".htm");
      if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
     for (i=1; i<=imx; i++){      printf("Problem with %s \n",optionfilehtm), exit(0);
       dcwave[i]=-1;    }
       for (m=firstpass; m<=lastpass; m++)  
         if (s[m][i]>nlstate) {    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
           dcwave[i]=m;    strcat(optionfilehtmcov,"-cov.htm");
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
           break;      printf("Problem with %s \n",optionfilehtmcov), exit(0);
         }    }
     }    else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     for (i=1; i<=imx; i++) {  <hr size=\"2\" color=\"#EC5E5E\"> \n\
       if (wav[i]>0){  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
         ageexmed[i]=agev[mw[1][i]][i];            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
         j=wav[i];    }
         agecens[i]=1.;   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
         if (ageexmed[i]> 1 && wav[i] > 0){  <hr size=\"2\" color=\"#EC5E5E\"> \n\
           agecens[i]=agev[mw[j][i]][i];  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
           cens[i]= 1;  \n\
         }else if (ageexmed[i]< 1)   <hr  size=\"2\" color=\"#EC5E5E\">\
           cens[i]= -1;   <ul><li><h4>Parameter files</h4>\n\
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
           cens[i]=0 ;   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
       }   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
       else cens[i]=-1;   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
     }   - Date and time at start: %s</ul>\n",\
                 optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
     for (i=1;i<=NDIM;i++) {            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
       for (j=1;j<=NDIM;j++)            fileres,fileres,\
         ximort[i][j]=(i == j ? 1.0 : 0.0);            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     }    fflush(fichtm);
       
     p[1]=0.0268; p[NDIM]=0.083;    strcpy(pathr,path);
     /*printf("%lf %lf", p[1], p[2]);*/    strcat(pathr,optionfilefiname);
         chdir(optionfilefiname); /* Move to directory named optionfile */
        
     printf("Powell\n");  fprintf(ficlog,"Powell\n");    /* Calculates basic frequencies. Computes observed prevalence at single age
     strcpy(filerespow,"pow-mort");        and prints on file fileres'p'. */
     strcat(filerespow,fileres);    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {  
       printf("Problem with resultfile: %s\n", filerespow);    fprintf(fichtm,"\n");
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
     }  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
     fprintf(ficrespow,"# Powell\n# iter -2*LL");  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
     /*  for (i=1;i<=nlstate;i++)            imx,agemin,agemax,jmin,jmax,jmean);
         for(j=1;j<=nlstate+ndeath;j++)    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     */      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     fprintf(ficrespow,"\n");      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);     
     fclose(ficrespow);     
         /* For Powell, parameters are in a vector p[] starting at p[1]
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
     for(i=1; i <=NDIM; i++)  
       for(j=i+1;j<=NDIM;j++)    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
         matcov[i][j]=matcov[j][i];  
         if (mle==-3){
     printf("\nCovariance matrix\n ");      ximort=matrix(1,NDIM,1,NDIM);
     for(i=1; i <=NDIM; i++) {      cens=ivector(1,n);
       for(j=1;j<=NDIM;j++){       ageexmed=vector(1,n);
         printf("%f ",matcov[i][j]);      agecens=vector(1,n);
       }      dcwave=ivector(1,n);
       printf("\n ");   
     }      for (i=1; i<=imx; i++){
             dcwave[i]=-1;
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);        for (m=firstpass; m<=lastpass; m++)
     for (i=1;i<=NDIM;i++)           if (s[m][i]>nlstate) {
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));            dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
     lsurv=vector(1,AGESUP);            break;
     lpop=vector(1,AGESUP);          }
     tpop=vector(1,AGESUP);      }
     lsurv[agegomp]=100000;  
           for (i=1; i<=imx; i++) {
     for (k=agegomp;k<=AGESUP;k++) {        if (wav[i]>0){
       agemortsup=k;          ageexmed[i]=agev[mw[1][i]][i];
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;          j=wav[i];
     }          agecens[i]=1.;
       
     for (k=agegomp;k<agemortsup;k++)          if (ageexmed[i]> 1 && wav[i] > 0){
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));            agecens[i]=agev[mw[j][i]][i];
                 cens[i]= 1;
     for (k=agegomp;k<agemortsup;k++){          }else if (ageexmed[i]< 1)
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;            cens[i]= -1;
       sumlpop=sumlpop+lpop[k];          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
     }            cens[i]=0 ;
             }
     tpop[agegomp]=sumlpop;        else cens[i]=-1;
     for (k=agegomp;k<(agemortsup-3);k++){      }
       /*  tpop[k+1]=2;*/     
       tpop[k+1]=tpop[k]-lpop[k];      for (i=1;i<=NDIM;i++) {
     }        for (j=1;j<=NDIM;j++)
               ximort[i][j]=(i == j ? 1.0 : 0.0);
           }
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");     
     for (k=agegomp;k<(agemortsup-2);k++)       p[1]=0.0268; p[NDIM]=0.083;
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);      /*printf("%lf %lf", p[1], p[2]);*/
          
          
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      strcpy(filerespow,"pow-mort");
           strcat(filerespow,fileres);
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \      if((ficrespow=fopen(filerespow,"w"))==NULL) {
                      stepm, weightopt,\        printf("Problem with resultfile: %s\n", filerespow);
                      model,imx,p,matcov,agemortsup);        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           }
     free_vector(lsurv,1,AGESUP);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
     free_vector(lpop,1,AGESUP);      /*  for (i=1;i<=nlstate;i++)
     free_vector(tpop,1,AGESUP);          for(j=1;j<=nlstate+ndeath;j++)
   } /* Endof if mle==-3 */          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         */
   else{ /* For mle >=1 */      fprintf(ficrespow,"\n");
        
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      fclose(ficrespow);
     for (k=1; k<=npar;k++)     
       printf(" %d %8.5f",k,p[k]);      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
     printf("\n");  
     globpr=1; /* to print the contributions */      for(i=1; i <=NDIM; i++)
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */        for(j=i+1;j<=NDIM;j++)
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);          matcov[i][j]=matcov[j][i];
     for (k=1; k<=npar;k++)     
       printf(" %d %8.5f",k,p[k]);      printf("\nCovariance matrix\n ");
     printf("\n");      for(i=1; i <=NDIM; i++) {
     if(mle>=1){ /* Could be 1 or 2 */        for(j=1;j<=NDIM;j++){
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          printf("%f ",matcov[i][j]);
     }        }
             printf("\n ");
     /*--------- results files --------------*/      }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);     
           printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
           for (i=1;i<=NDIM;i++)
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      lsurv=vector(1,AGESUP);
     for(i=1,jk=1; i <=nlstate; i++){      lpop=vector(1,AGESUP);
       for(k=1; k <=(nlstate+ndeath); k++){      tpop=vector(1,AGESUP);
         if (k != i) {      lsurv[agegomp]=100000;
           printf("%d%d ",i,k);     
           fprintf(ficlog,"%d%d ",i,k);      for (k=agegomp;k<=AGESUP;k++) {
           fprintf(ficres,"%1d%1d ",i,k);        agemortsup=k;
           for(j=1; j <=ncovmodel; j++){        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
             printf("%f ",p[jk]);      }
             fprintf(ficlog,"%f ",p[jk]);     
             fprintf(ficres,"%f ",p[jk]);      for (k=agegomp;k<agemortsup;k++)
             jk++;         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
           }     
           printf("\n");      for (k=agegomp;k<agemortsup;k++){
           fprintf(ficlog,"\n");        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
           fprintf(ficres,"\n");        sumlpop=sumlpop+lpop[k];
         }      }
       }     
     }      tpop[agegomp]=sumlpop;
     if(mle!=0){      for (k=agegomp;k<(agemortsup-3);k++){
       /* Computing hessian and covariance matrix */        /*  tpop[k+1]=2;*/
       ftolhess=ftol; /* Usually correct */        tpop[k+1]=tpop[k]-lpop[k];
       hesscov(matcov, p, npar, delti, ftolhess, func);      }
     }     
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");     
     printf("# Scales (for hessian or gradient estimation)\n");      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      for (k=agegomp;k<(agemortsup-2);k++)
     for(i=1,jk=1; i <=nlstate; i++){        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       for(j=1; j <=nlstate+ndeath; j++){     
         if (j!=i) {     
           fprintf(ficres,"%1d%1d",i,j);      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
           printf("%1d%1d",i,j);      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
           fprintf(ficlog,"%1d%1d",i,j);     
           for(k=1; k<=ncovmodel;k++){      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
             printf(" %.5e",delti[jk]);                       stepm, weightopt,\
             fprintf(ficlog," %.5e",delti[jk]);                       model,imx,p,matcov,agemortsup);
             fprintf(ficres," %.5e",delti[jk]);     
             jk++;      free_vector(lsurv,1,AGESUP);
           }      free_vector(lpop,1,AGESUP);
           printf("\n");      free_vector(tpop,1,AGESUP);
           fprintf(ficlog,"\n");    } /* Endof if mle==-3 */
           fprintf(ficres,"\n");   
         }    else{ /* For mle >=1 */
       }   
     }      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
           printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      for (k=1; k<=npar;k++)
     if(mle>=1)        printf(" %d %8.5f",k,p[k]);
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      printf("\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      globpr=1; /* to print the contributions */
     /* # 121 Var(a12)\n\ */      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */      for (k=1; k<=npar;k++)
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */        printf(" %d %8.5f",k,p[k]);
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */      printf("\n");
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */      if(mle>=1){ /* Could be 1 or 2 */
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */      }
          
           /*--------- results files --------------*/
     /* Just to have a covariance matrix which will be more understandable      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
        even is we still don't want to manage dictionary of variables     
     */     
     for(itimes=1;itimes<=2;itimes++){      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       jj=0;      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1; i <=nlstate; i++){      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         for(j=1; j <=nlstate+ndeath; j++){      for(i=1,jk=1; i <=nlstate; i++){
           if(j==i) continue;        for(k=1; k <=(nlstate+ndeath); k++){
           for(k=1; k<=ncovmodel;k++){          if (k != i) {
             jj++;            printf("%d%d ",i,k);
             ca[0]= k+'a'-1;ca[1]='\0';            fprintf(ficlog,"%d%d ",i,k);
             if(itimes==1){            fprintf(ficres,"%1d%1d ",i,k);
               if(mle>=1)            for(j=1; j <=ncovmodel; j++){
                 printf("#%1d%1d%d",i,j,k);              printf("%lf ",p[jk]);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);              fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"#%1d%1d%d",i,j,k);              fprintf(ficres,"%lf ",p[jk]);
             }else{              jk++;
               if(mle>=1)            }
                 printf("%1d%1d%d",i,j,k);            printf("\n");
               fprintf(ficlog,"%1d%1d%d",i,j,k);            fprintf(ficlog,"\n");
               fprintf(ficres,"%1d%1d%d",i,j,k);            fprintf(ficres,"\n");
             }          }
             ll=0;        }
             for(li=1;li <=nlstate; li++){      }
               for(lj=1;lj <=nlstate+ndeath; lj++){      if(mle!=0){
                 if(lj==li) continue;        /* Computing hessian and covariance matrix */
                 for(lk=1;lk<=ncovmodel;lk++){        ftolhess=ftol; /* Usually correct */
                   ll++;        hesscov(matcov, p, npar, delti, ftolhess, func);
                   if(ll<=jj){      }
                     cb[0]= lk +'a'-1;cb[1]='\0';      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
                     if(ll<jj){      printf("# Scales (for hessian or gradient estimation)\n");
                       if(itimes==1){      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
                         if(mle>=1)      for(i=1,jk=1; i <=nlstate; i++){
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        for(j=1; j <=nlstate+ndeath; j++){
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          if (j!=i) {
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            fprintf(ficres,"%1d%1d",i,j);
                       }else{            printf("%1d%1d",i,j);
                         if(mle>=1)            fprintf(ficlog,"%1d%1d",i,j);
                           printf(" %.5e",matcov[jj][ll]);             for(k=1; k<=ncovmodel;k++){
                         fprintf(ficlog," %.5e",matcov[jj][ll]);               printf(" %.5e",delti[jk]);
                         fprintf(ficres," %.5e",matcov[jj][ll]);               fprintf(ficlog," %.5e",delti[jk]);
                       }              fprintf(ficres," %.5e",delti[jk]);
                     }else{              jk++;
                       if(itimes==1){            }
                         if(mle>=1)            printf("\n");
                           printf(" Var(%s%1d%1d)",ca,i,j);            fprintf(ficlog,"\n");
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);            fprintf(ficres,"\n");
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);          }
                       }else{        }
                         if(mle>=1)      }
                           printf(" %.5e",matcov[jj][ll]);      
                         fprintf(ficlog," %.5e",matcov[jj][ll]);       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                         fprintf(ficres," %.5e",matcov[jj][ll]);       if(mle>=1)
                       }        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                     }      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   }      /* # 121 Var(a12)\n\ */
                 } /* end lk */      /* # 122 Cov(b12,a12) Var(b12)\n\ */
               } /* end lj */      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
             } /* end li */      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
             if(mle>=1)      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
               printf("\n");      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
             fprintf(ficlog,"\n");      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
             fprintf(ficres,"\n");      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
             numlinepar++;     
           } /* end k*/     
         } /*end j */      /* Just to have a covariance matrix which will be more understandable
       } /* end i */         even is we still don't want to manage dictionary of variables
     } /* end itimes */      */
           for(itimes=1;itimes<=2;itimes++){
     fflush(ficlog);        jj=0;
     fflush(ficres);        for(i=1; i <=nlstate; i++){
               for(j=1; j <=nlstate+ndeath; j++){
     while((c=getc(ficpar))=='#' && c!= EOF){            if(j==i) continue;
       ungetc(c,ficpar);            for(k=1; k<=ncovmodel;k++){
       fgets(line, MAXLINE, ficpar);              jj++;
       puts(line);              ca[0]= k+'a'-1;ca[1]='\0';
       fputs(line,ficparo);              if(itimes==1){
     }                if(mle>=1)
     ungetc(c,ficpar);                  printf("#%1d%1d%d",i,j,k);
                     fprintf(ficlog,"#%1d%1d%d",i,j,k);
     estepm=0;                fprintf(ficres,"#%1d%1d%d",i,j,k);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);              }else{
     if (estepm==0 || estepm < stepm) estepm=stepm;                if(mle>=1)
     if (fage <= 2) {                  printf("%1d%1d%d",i,j,k);
       bage = ageminpar;                fprintf(ficlog,"%1d%1d%d",i,j,k);
       fage = agemaxpar;                fprintf(ficres,"%1d%1d%d",i,j,k);
     }              }
                   ll=0;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              for(li=1;li <=nlstate; li++){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                for(lj=1;lj <=nlstate+ndeath; lj++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                  if(lj==li) continue;
                       for(lk=1;lk<=ncovmodel;lk++){
     while((c=getc(ficpar))=='#' && c!= EOF){                    ll++;
       ungetc(c,ficpar);                    if(ll<=jj){
       fgets(line, MAXLINE, ficpar);                      cb[0]= lk +'a'-1;cb[1]='\0';
       puts(line);                      if(ll<jj){
       fputs(line,ficparo);                        if(itimes==1){
     }                          if(mle>=1)
     ungetc(c,ficpar);                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                               fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                        }else{
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                          if(mle>=1)
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                            printf(" %.5e",matcov[jj][ll]);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                          fprintf(ficlog," %.5e",matcov[jj][ll]);
                               fprintf(ficres," %.5e",matcov[jj][ll]);
     while((c=getc(ficpar))=='#' && c!= EOF){                        }
       ungetc(c,ficpar);                      }else{
       fgets(line, MAXLINE, ficpar);                        if(itimes==1){
       puts(line);                          if(mle>=1)
       fputs(line,ficparo);                            printf(" Var(%s%1d%1d)",ca,i,j);
     }                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
     ungetc(c,ficpar);                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                             }else{
                               if(mle>=1)
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;                            printf(" %.5e",matcov[jj][ll]);
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;                          fprintf(ficlog," %.5e",matcov[jj][ll]);
                               fprintf(ficres," %.5e",matcov[jj][ll]);
     fscanf(ficpar,"pop_based=%d\n",&popbased);                        }
     fprintf(ficparo,"pop_based=%d\n",popbased);                         }
     fprintf(ficres,"pop_based=%d\n",popbased);                       }
                       } /* end lk */
     while((c=getc(ficpar))=='#' && c!= EOF){                } /* end lj */
       ungetc(c,ficpar);              } /* end li */
       fgets(line, MAXLINE, ficpar);              if(mle>=1)
       puts(line);                printf("\n");
       fputs(line,ficparo);              fprintf(ficlog,"\n");
     }              fprintf(ficres,"\n");
     ungetc(c,ficpar);              numlinepar++;
                 } /* end k*/
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);          } /*end j */
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        } /* end i */
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      } /* end itimes */
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fflush(ficlog);
     /* day and month of proj2 are not used but only year anproj2.*/      fflush(ficres);
          
           while((c=getc(ficpar))=='#' && c!= EOF){
             ungetc(c,ficpar);
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/        fgets(line, MAXLINE, ficpar);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/        puts(line);
             fputs(line,ficparo);
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */      }
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      ungetc(c,ficpar);
          
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\      estepm=0;
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      if (estepm==0 || estepm < stepm) estepm=stepm;
             if (fage <= 2) {
    /*------------ free_vector  -------------*/        bage = ageminpar;
    /*  chdir(path); */        fage = agemaxpar;
        }
     free_ivector(wav,1,imx);     
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     free_lvector(num,1,n);     
     free_vector(agedc,1,n);      while((c=getc(ficpar))=='#' && c!= EOF){
     /*free_matrix(covar,0,NCOVMAX,1,n);*/        ungetc(c,ficpar);
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        fgets(line, MAXLINE, ficpar);
     fclose(ficparo);        puts(line);
     fclose(ficres);        fputs(line,ficparo);
       }
       ungetc(c,ficpar);
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/     
         fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     strcpy(filerespl,"pl");      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     strcat(filerespl,fileres);      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {      printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;      fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;     
     }      while((c=getc(ficpar))=='#' && c!= EOF){
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);        ungetc(c,ficpar);
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);        fgets(line, MAXLINE, ficpar);
     pstamp(ficrespl);        puts(line);
     fprintf(ficrespl,"# Period (stable) prevalence \n");        fputs(line,ficparo);
     fprintf(ficrespl,"#Age ");      }
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      ungetc(c,ficpar);
     fprintf(ficrespl,"\n");     
        
     prlim=matrix(1,nlstate,1,nlstate);      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
     agebase=ageminpar;     
     agelim=agemaxpar;      fscanf(ficpar,"pop_based=%d\n",&popbased);
     ftolpl=1.e-10;      fprintf(ficparo,"pop_based=%d\n",popbased);  
     i1=cptcoveff;      fprintf(ficres,"pop_based=%d\n",popbased);  
     if (cptcovn < 1){i1=1;}     
       while((c=getc(ficpar))=='#' && c!= EOF){
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){        ungetc(c,ficpar);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fgets(line, MAXLINE, ficpar);
         k=k+1;        puts(line);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        fputs(line,ficparo);
         fprintf(ficrespl,"\n#******");      }
         printf("\n#******");      ungetc(c,ficpar);
         fprintf(ficlog,"\n#******");     
         for(j=1;j<=cptcoveff;j++) {      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
         }      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
         fprintf(ficrespl,"******\n");      /* day and month of proj2 are not used but only year anproj2.*/
         printf("******\n");     
         fprintf(ficlog,"******\n");     
              
         for (age=agebase; age<=agelim; age++){      /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           fprintf(ficrespl,"%.0f ",age );     
           for(j=1;j<=cptcoveff;j++)      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
           for(i=1; i<=nlstate;i++)     
             fprintf(ficrespl," %.5f", prlim[i][i]);      printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
           fprintf(ficrespl,"\n");                   model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
         }                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
       }       
     }     /*------------ free_vector  -------------*/
     fclose(ficrespl);     /*  chdir(path); */
    
     /*------------- h Pij x at various ages ------------*/      free_ivector(wav,1,imx);
         free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);      free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {      free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      free_lvector(num,1,n);
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;      free_vector(agedc,1,n);
     }      /*free_matrix(covar,0,NCOVMAX,1,n);*/
     printf("Computing pij: result on file '%s' \n", filerespij);      /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      fclose(ficparo);
         fclose(ficres);
     stepsize=(int) (stepm+YEARM-1)/YEARM;  
     /*if (stepm<=24) stepsize=2;*/  
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     agelim=AGESUP;   
     hstepm=stepsize*YEARM; /* Every year of age */      strcpy(filerespl,"pl");
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
     /* hstepm=1;   aff par mois*/        printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
     pstamp(ficrespij);        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      }
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
         k=k+1;      pstamp(ficrespl);
         fprintf(ficrespij,"\n#****** ");      fprintf(ficrespl,"# Period (stable) prevalence \n");
         for(j=1;j<=cptcoveff;j++)       fprintf(ficrespl,"#Age ");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
         fprintf(ficrespij,"******\n");      fprintf(ficrespl,"\n");
            
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      prlim=matrix(1,nlstate,1,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      agebase=ageminpar;
       agelim=agemaxpar;
           /*      nhstepm=nhstepm*YEARM; aff par mois*/      ftolpl=1.e-10;
       i1=cptcoveff;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (cptcovn < 1){i1=1;}
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(cptcov=1,k=0;cptcov<=i1;cptcov++){
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           for(i=1; i<=nlstate;i++)          k=k+1;
             for(j=1; j<=nlstate+ndeath;j++)          /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
               fprintf(ficrespij," %1d-%1d",i,j);          fprintf(ficrespl,"\n#******");
           fprintf(ficrespij,"\n");          printf("\n#******");
           for (h=0; h<=nhstepm; h++){          fprintf(ficlog,"\n#******");
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          for(j=1;j<=cptcoveff;j++) {
             for(i=1; i<=nlstate;i++)            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
               for(j=1; j<=nlstate+ndeath;j++)            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrespij,"\n");          }
           }          fprintf(ficrespl,"******\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf("******\n");
           fprintf(ficrespij,"\n");          fprintf(ficlog,"******\n");
         }         
       }          for (age=agebase; age<=agelim; age++){
     }            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);            for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fclose(ficrespij);            for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficrespl,"\n");
     for(i=1;i<=AGESUP;i++)          }
       for(j=1;j<=NCOVMAX;j++)        }
         for(k=1;k<=NCOVMAX;k++)      }
           probs[i][j][k]=0.;      fclose(ficrespl);
   
     /*---------- Forecasting ------------------*/      /*------------- h Pij x at various ages ------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/   
     if(prevfcast==1){      strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       /*    if(stepm ==1){*/      if((ficrespij=fopen(filerespij,"w"))==NULL) {
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);        printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       /*      }  */      }
       /*      else{ */      printf("Computing pij: result on file '%s' \n", filerespij);
       /*        erreur=108; */      fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */   
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*      } */      /*if (stepm<=24) stepsize=2;*/
     }  
         agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
     /*---------- Health expectancies and variances ------------*/      hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
     strcpy(filerest,"t");      /* hstepm=1;   aff par mois*/
     strcat(filerest,fileres);      pstamp(ficrespij);
     if((ficrest=fopen(filerest,"w"))==NULL) {      fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     }          k=k+1;
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);           fprintf(ficrespij,"\n#****** ");
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
     strcpy(filerese,"e");         
     strcat(filerese,fileres);          for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
     if((ficreseij=fopen(filerese,"w"))==NULL) {            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
     }            /*      nhstepm=nhstepm*YEARM; aff par mois*/
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
     strcpy(fileresstde,"stde");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     strcat(fileresstde,fileres);            fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {            for(i=1; i<=nlstate;i++)
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);              for(j=1; j<=nlstate+ndeath;j++)
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);                fprintf(ficrespij," %1d-%1d",i,j);
     }            fprintf(ficrespij,"\n");
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);            for (h=0; h<=nhstepm; h++){
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);              fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
     strcpy(filerescve,"cve");                for(j=1; j<=nlstate+ndeath;j++)
     strcat(filerescve,fileres);                  fprintf(ficrespij," %.5f", p3mat[i][j][h]);
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {              fprintf(ficrespij,"\n");
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);            }
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }            fprintf(ficrespij,"\n");
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);          }
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);        }
       }
     strcpy(fileresv,"v");  
     strcat(fileresv,fileres);      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {  
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      fclose(ficrespij);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  
     }      probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      for(i=1;i<=AGESUP;i++)
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */            probs[i][j][k]=0.;
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\      /*---------- Forecasting ------------------*/
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);      /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     */      if(prevfcast==1){
         /*    if(stepm ==1){*/
     if (mobilav!=0) {        prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){        /*      }  */
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        /*      else{ */
         printf(" Error in movingaverage mobilav=%d\n",mobilav);        /*        erreur=108; */
       }        /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
     }        /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      }
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   
         k=k+1;   
         fprintf(ficrest,"\n#****** ");      /*---------- Health expectancies and variances ------------*/
         for(j=1;j<=cptcoveff;j++)   
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcpy(filerest,"t");
         fprintf(ficrest,"******\n");      strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         fprintf(ficreseij,"\n#****** ");        printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficresstdeij,"\n#****** ");        fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficrescveij,"\n#****** ");      }
         for(j=1;j<=cptcoveff;j++) {      printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         }      strcpy(filerese,"e");
         fprintf(ficreseij,"******\n");      strcat(filerese,fileres);
         fprintf(ficresstdeij,"******\n");      if((ficreseij=fopen(filerese,"w"))==NULL) {
         fprintf(ficrescveij,"******\n");        printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficresvij,"\n#****** ");      }
         for(j=1;j<=cptcoveff;j++)       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
         fprintf(ficresvij,"******\n");  
       strcpy(fileresstde,"stde");
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      strcat(fileresstde,fileres);
         oldm=oldms;savm=savms;      if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);          printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);          fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
        }
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
         oldm=oldms;savm=savms;      fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);  
         if(popbased==1){      strcpy(filerescve,"cve");
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);      strcat(filerescve,fileres);
         }      if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         pstamp(ficrest);        fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");      }
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
         fprintf(ficrest,"\n");      fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
         epj=vector(1,nlstate+1);      strcpy(fileresv,"v");
         for(age=bage; age <=fage ;age++){      strcat(fileresv,fileres);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      if((ficresvij=fopen(fileresv,"w"))==NULL) {
           if (popbased==1) {        printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
             if(mobilav ==0){        fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
               for(i=1; i<=nlstate;i++)      }
                 prlim[i][i]=probs[(int)age][i][k];      printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
             }else{ /* mobilav */       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
               for(i=1; i<=nlstate;i++)  
                 prlim[i][i]=mobaverage[(int)age][i][k];      /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
             }      prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           }      /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
                   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
           fprintf(ficrest," %4.0f",age);      */
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      if (mobilav!=0) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
             }          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             epj[nlstate+1] +=epj[j];          printf(" Error in movingaverage mobilav=%d\n",mobilav);
           }        }
       }
           for(i=1, vepp=0.;i <=nlstate;i++)  
             for(j=1;j <=nlstate;j++)      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
               vepp += vareij[i][j][(int)age];        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          k=k+1;
           for(j=1;j <=nlstate;j++){          fprintf(ficrest,"\n#****** ");
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          for(j=1;j<=cptcoveff;j++)
           }            fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"\n");          fprintf(ficrest,"******\n");
         }  
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          fprintf(ficreseij,"\n#****** ");
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          fprintf(ficresstdeij,"\n#****** ");
         free_vector(epj,1,nlstate+1);          fprintf(ficrescveij,"\n#****** ");
       }          for(j=1;j<=cptcoveff;j++) {
     }            fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     free_vector(weight,1,n);            fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     free_imatrix(Tvard,1,15,1,2);            fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     free_imatrix(s,1,maxwav+1,1,n);          }
     free_matrix(anint,1,maxwav,1,n);           fprintf(ficreseij,"******\n");
     free_matrix(mint,1,maxwav,1,n);          fprintf(ficresstdeij,"******\n");
     free_ivector(cod,1,n);          fprintf(ficrescveij,"******\n");
     free_ivector(tab,1,NCOVMAX);  
     fclose(ficreseij);          fprintf(ficresvij,"\n#****** ");
     fclose(ficresstdeij);          for(j=1;j<=cptcoveff;j++)
     fclose(ficrescveij);            fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fclose(ficresvij);          fprintf(ficresvij,"******\n");
     fclose(ficrest);  
     fclose(ficpar);          eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
             oldm=oldms;savm=savms;
     /*------- Variance of period (stable) prevalence------*/             evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
     strcpy(fileresvpl,"vpl");   
     strcat(fileresvpl,fileres);          vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          oldm=oldms;savm=savms;
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);          varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
       exit(0);          if(popbased==1){
     }            varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);          }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){          pstamp(ficrest);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
         k=k+1;          for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficresvpl,"\n#****** ");          fprintf(ficrest,"\n");
         for(j=1;j<=cptcoveff;j++)   
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          epj=vector(1,nlstate+1);
         fprintf(ficresvpl,"******\n");          for(age=bage; age <=fage ;age++){
                   prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
         varpl=matrix(1,nlstate,(int) bage, (int) fage);            if (popbased==1) {
         oldm=oldms;savm=savms;              if(mobilav ==0){
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);                for(i=1; i<=nlstate;i++)
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                  prlim[i][i]=probs[(int)age][i][k];
       }              }else{ /* mobilav */
     }                for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
     fclose(ficresvpl);              }
             }
     /*---------- End : free ----------------*/         
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficrest," %4.0f",age);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
   }  /* mle==-3 arrives here for freeing */                epj[j] += prlim[i][i]*eij[i][j][(int)age];
   free_matrix(prlim,1,nlstate,1,nlstate);                /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              }
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);              epj[nlstate+1] +=epj[j];
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            }
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
     free_matrix(covar,0,NCOVMAX,1,n);            for(i=1, vepp=0.;i <=nlstate;i++)
     free_matrix(matcov,1,npar,1,npar);              for(j=1;j <=nlstate;j++)
     /*free_vector(delti,1,npar);*/                vepp += vareij[i][j][(int)age];
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
     free_matrix(agev,1,maxwav,1,imx);            for(j=1;j <=nlstate;j++){
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);              fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
     free_ivector(ncodemax,1,8);            fprintf(ficrest,"\n");
     free_ivector(Tvar,1,15);          }
     free_ivector(Tprod,1,15);          free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     free_ivector(Tvaraff,1,15);          free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     free_ivector(Tage,1,15);          free_vector(epj,1,nlstate+1);
     free_ivector(Tcode,1,100);        }
       }
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);      free_vector(weight,1,n);
     free_imatrix(codtab,1,100,1,10);      free_imatrix(Tvard,1,15,1,2);
   fflush(fichtm);      free_imatrix(s,1,maxwav+1,1,n);
   fflush(ficgp);      free_matrix(anint,1,maxwav,1,n);
         free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
   if((nberr >0) || (nbwarn>0)){      free_ivector(tab,1,NCOVMAX);
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);      fclose(ficreseij);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);      fclose(ficresstdeij);
   }else{      fclose(ficrescveij);
     printf("End of Imach\n");      fclose(ficresvij);
     fprintf(ficlog,"End of Imach\n");      fclose(ficrest);
   }      fclose(ficpar);
   printf("See log file on %s\n",filelog);   
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      /*------- Variance of period (stable) prevalence------*/  
   (void) gettimeofday(&end_time,&tzp);  
   tm = *localtime(&end_time.tv_sec);      strcpy(fileresvpl,"vpl");
   tmg = *gmtime(&end_time.tv_sec);      strcat(fileresvpl,fileres);
   strcpy(strtend,asctime(&tm));      if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);         exit(0);
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);  
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
   /*  printf("Total time was %d uSec.\n", total_usecs);*/          k=k+1;
 /*   if(fileappend(fichtm,optionfilehtm)){ */          fprintf(ficresvpl,"\n#****** ");
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);          for(j=1;j<=cptcoveff;j++)
   fclose(fichtm);            fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fclose(fichtmcov);          fprintf(ficresvpl,"******\n");
   fclose(ficgp);       
   fclose(ficlog);          varpl=matrix(1,nlstate,(int) bage, (int) fage);
   /*------ End -----------*/          oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
   chdir(path);          free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
   /*strcat(plotcmd,CHARSEPARATOR);*/        }
   sprintf(plotcmd,"gnuplot");      }
 #ifndef UNIX  
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);      fclose(ficresvpl);
 #endif  
   if(!stat(plotcmd,&info)){      /*---------- End : free ----------------*/
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if(!stat(getenv("GNUPLOTBIN"),&info)){      free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);  
     }else    }  /* mle==-3 arrives here for freeing */
       strcpy(pplotcmd,plotcmd);    free_matrix(prlim,1,nlstate,1,nlstate);
 #ifdef UNIX      free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     strcpy(plotcmd,GNUPLOTPROGRAM);      free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     if(!stat(plotcmd,&info)){      free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     }else      free_matrix(covar,0,NCOVMAX,1,n);
       strcpy(pplotcmd,plotcmd);      free_matrix(matcov,1,npar,1,npar);
 #endif      /*free_vector(delti,1,npar);*/
   }else      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     strcpy(pplotcmd,plotcmd);      free_matrix(agev,1,maxwav,1,imx);
         free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);  
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);      free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
   if((outcmd=system(plotcmd)) != 0){      free_ivector(Tprod,1,15);
     printf("\n Problem with gnuplot\n");      free_ivector(Tvaraff,1,15);
   }      free_ivector(Tage,1,15);
   printf(" Wait...");      free_ivector(Tcode,1,100);
   while (z[0] != 'q') {  
     /* chdir(path); */      free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
     printf("\nType e to edit output files, g to graph again and q for exiting: ");      free_imatrix(codtab,1,100,1,10);
     scanf("%s",z);    fflush(fichtm);
 /*     if (z[0] == 'c') system("./imach"); */    fflush(ficgp);
     if (z[0] == 'e') {   
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);  
       system(optionfilehtm);    if((nberr >0) || (nbwarn>0)){
     }      printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
     else if (z[0] == 'g') system(plotcmd);      fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     else if (z[0] == 'q') exit(0);    }else{
   }      printf("End of Imach\n");
   end:      fprintf(ficlog,"End of Imach\n");
   while (z[0] != 'q') {    }
     printf("\nType  q for exiting: ");    printf("See log file on %s\n",filelog);
     scanf("%s",z);    /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
   }    (void) gettimeofday(&end_time,&tzp);
 }    tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.118  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>