Diff for /imach/src/imach.c between versions 1.21 and 1.118

version 1.21, 2002/02/21 18:42:24 version 1.118, 2006/03/14 18:20:07
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.118  2006/03/14 18:20:07  brouard
   individuals from different ages are interviewed on their health status    (Module): varevsij Comments added explaining the second
   or degree of  disability. At least a second wave of interviews    table of variances if popbased=1 .
   ("longitudinal") should  measure each new individual health status.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Health expectancies are computed from the transistions observed between    (Module): Function pstamp added
   waves and are computed for each degree of severity of disability (number    (Module): Version 0.98d
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.117  2006/03/14 17:16:22  brouard
   The simplest model is the multinomial logistic model where pij is    (Module): varevsij Comments added explaining the second
   the probabibility to be observed in state j at the second wave conditional    table of variances if popbased=1 .
   to be observed in state i at the first wave. Therefore the model is:    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    (Module): Function pstamp added
   is a covariate. If you want to have a more complex model than "constant and    (Module): Version 0.98d
   age", you should modify the program where the markup  
     *Covariates have to be included here again* invites you to do it.    Revision 1.116  2006/03/06 10:29:27  brouard
   More covariates you add, less is the speed of the convergence.    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.115  2006/02/27 12:17:45  brouard
   individual missed an interview, the information is not rounded or lost, but    (Module): One freematrix added in mlikeli! 0.98c
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.114  2006/02/26 12:57:58  brouard
   observed in state i at age x+h conditional to the observed state i at age    (Module): Some improvements in processing parameter
   x. The delay 'h' can be split into an exact number (nh*stepm) of    filename with strsep.
   unobserved intermediate  states. This elementary transition (by month or  
   quarter trimester, semester or year) is model as a multinomial logistic.    Revision 1.113  2006/02/24 14:20:24  brouard
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    (Module): Memory leaks checks with valgrind and:
   and the contribution of each individual to the likelihood is simply hPijx.    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.112  2006/01/30 09:55:26  brouard
      (Module): Back to gnuplot.exe instead of wgnuplot.exe
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.111  2006/01/25 20:38:18  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Lots of cleaning and bugs added (Gompertz)
   from the European Union.    (Module): Comments can be added in data file. Missing date values
   It is copyrighted identically to a GNU software product, ie programme and    can be a simple dot '.'.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.110  2006/01/25 00:51:50  brouard
   **********************************************************************/    (Module): Lots of cleaning and bugs added (Gompertz)
    
 #include <math.h>    Revision 1.109  2006/01/24 19:37:15  brouard
 #include <stdio.h>    (Module): Comments (lines starting with a #) are allowed in data.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 #define MAXLINE 256    To be fixed
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.107  2006/01/19 16:20:37  brouard
 #define windows    Test existence of gnuplot in imach path
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.104  2005/09/30 16:11:43  lievre
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): sump fixed, loop imx fixed, and simplifications.
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): If the status is missing at the last wave but we know
 #define MAXN 20000    that the person is alive, then we can code his/her status as -2
 #define YEARM 12. /* Number of months per year */    (instead of missing=-1 in earlier versions) and his/her
 #define AGESUP 130    contributions to the likelihood is 1 - Prob of dying from last
 #define AGEBASE 40    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
   
 int erreur; /* Error number */    Revision 1.103  2005/09/30 15:54:49  lievre
 int nvar;    (Module): sump fixed, loop imx fixed, and simplifications.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.102  2004/09/15 17:31:30  brouard
 int nlstate=2; /* Number of live states */    Add the possibility to read data file including tab characters.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.101  2004/09/15 10:38:38  brouard
 int popbased=0;    Fix on curr_time
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.100  2004/07/12 18:29:06  brouard
 int maxwav; /* Maxim number of waves */    Add version for Mac OS X. Just define UNIX in Makefile
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.99  2004/06/05 08:57:40  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    *** empty log message ***
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.98  2004/05/16 15:05:56  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    New version 0.97 . First attempt to estimate force of mortality
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    directly from the data i.e. without the need of knowing the health
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    state at each age, but using a Gompertz model: log u =a + b*age .
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    This is the basic analysis of mortality and should be done before any
 FILE *ficreseij;    other analysis, in order to test if the mortality estimated from the
   char filerese[FILENAMELENGTH];    cross-longitudinal survey is different from the mortality estimated
  FILE  *ficresvij;    from other sources like vital statistic data.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    The same imach parameter file can be used but the option for mle should be -3.
   char fileresvpl[FILENAMELENGTH];  
     Agnès, who wrote this part of the code, tried to keep most of the
 #define NR_END 1    former routines in order to include the new code within the former code.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 #define NRANSI  
 #define ITMAX 200    Current limitations:
     A) Even if you enter covariates, i.e. with the
 #define TOL 2.0e-4    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.97  2004/02/20 13:25:42  lievre
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.96  2003/07/15 15:38:55  brouard
 #define TINY 1.0e-20    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.95  2003/07/08 07:54:34  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Repository):
      (Repository): Using imachwizard code to output a more meaningful covariance
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    matrix (cov(a12,c31) instead of numbers.
 #define rint(a) floor(a+0.5)  
     Revision 1.94  2003/06/27 13:00:02  brouard
 static double sqrarg;    Just cleaning
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 int imx;    exist so I changed back to asctime which exists.
 int stepm;    (Module): Version 0.96b
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.92  2003/06/25 16:30:45  brouard
 int m,nb;    (Module): On windows (cygwin) function asctime_r doesn't
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    exist so I changed back to asctime which exists.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.91  2003/06/25 15:30:29  brouard
 double dateintmean=0;    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 double *weight;    helps to forecast when convergence will be reached. Elapsed time
 int **s; /* Status */    is stamped in powell.  We created a new html file for the graphs
 double *agedc, **covar, idx;    concerning matrix of covariance. It has extension -cov.htm.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.90  2003/06/24 12:34:15  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Module): Some bugs corrected for windows. Also, when
 double ftolhess; /* Tolerance for computing hessian */    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name )    Revision 1.89  2003/06/24 12:30:52  brouard
 {    (Module): Some bugs corrected for windows. Also, when
    char *s;                             /* pointer */    mle=-1 a template is output in file "or"mypar.txt with the design
    int  l1, l2;                         /* length counters */    of the covariance matrix to be input.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.88  2003/06/23 17:54:56  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    s = strrchr( path, '\\' );           /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.87  2003/06/18 12:26:01  brouard
 #if     defined(__bsd__)                /* get current working directory */    Version 0.96
       extern char       *getwd( );  
     Revision 1.86  2003/06/17 20:04:08  brouard
       if ( getwd( dirc ) == NULL ) {    (Module): Change position of html and gnuplot routines and added
 #else    routine fileappend.
       extern char       *getcwd( );  
     Revision 1.85  2003/06/17 13:12:43  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    * imach.c (Repository): Check when date of death was earlier that
 #endif    current date of interview. It may happen when the death was just
          return( GLOCK_ERROR_GETCWD );    prior to the death. In this case, dh was negative and likelihood
       }    was wrong (infinity). We still send an "Error" but patch by
       strcpy( name, path );             /* we've got it */    assuming that the date of death was just one stepm after the
    } else {                             /* strip direcotry from path */    interview.
       s++;                              /* after this, the filename */    (Repository): Because some people have very long ID (first column)
       l2 = strlen( s );                 /* length of filename */    we changed int to long in num[] and we added a new lvector for
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    memory allocation. But we also truncated to 8 characters (left
       strcpy( name, s );                /* save file name */    truncation)
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Repository): No more line truncation errors.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.84  2003/06/13 21:44:43  brouard
    l1 = strlen( dirc );                 /* length of directory */    * imach.c (Repository): Replace "freqsummary" at a correct
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    place. It differs from routine "prevalence" which may be called
    return( 0 );                         /* we're done */    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 /******************************************/    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 void replace(char *s, char*t)  
 {    Revision 1.82  2003/06/05 15:57:20  brouard
   int i;    Add log in  imach.c and  fullversion number is now printed.
   int lg=20;  
   i=0;  */
   lg=strlen(t);  /*
   for(i=0; i<= lg; i++) {     Interpolated Markov Chain
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Short summary of the programme:
   }    
 }    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int nbocc(char *s, char occ)    first survey ("cross") where individuals from different ages are
 {    interviewed on their health status or degree of disability (in the
   int i,j=0;    case of a health survey which is our main interest) -2- at least a
   int lg=20;    second wave of interviews ("longitudinal") which measure each change
   i=0;    (if any) in individual health status.  Health expectancies are
   lg=strlen(s);    computed from the time spent in each health state according to a
   for(i=0; i<= lg; i++) {    model. More health states you consider, more time is necessary to reach the
   if  (s[i] == occ ) j++;    Maximum Likelihood of the parameters involved in the model.  The
   }    simplest model is the multinomial logistic model where pij is the
   return j;    probability to be observed in state j at the second wave
 }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 void cutv(char *u,char *v, char*t, char occ)    'age' is age and 'sex' is a covariate. If you want to have a more
 {    complex model than "constant and age", you should modify the program
   int i,lg,j,p=0;    where the markup *Covariates have to be included here again* invites
   i=0;    you to do it.  More covariates you add, slower the
   for(j=0; j<=strlen(t)-1; j++) {    convergence.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
   lg=strlen(t);    identical for each individual. Also, if a individual missed an
   for(j=0; j<p; j++) {    intermediate interview, the information is lost, but taken into
     (u[j] = t[j]);    account using an interpolation or extrapolation.  
   }  
      u[p]='\0';    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
    for(j=0; j<= lg; j++) {    split into an exact number (nh*stepm) of unobserved intermediate
     if (j>=(p+1))(v[j-p-1] = t[j]);    states. This elementary transition (by month, quarter,
   }    semester or year) is modelled as a multinomial logistic.  The hPx
 }    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 /********************** nrerror ********************/    hPijx.
   
 void nrerror(char error_text[])    Also this programme outputs the covariance matrix of the parameters but also
 {    of the life expectancies. It also computes the period (stable) prevalence. 
   fprintf(stderr,"ERREUR ...\n");    
   fprintf(stderr,"%s\n",error_text);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   exit(1);             Institut national d'études démographiques, Paris.
 }    This software have been partly granted by Euro-REVES, a concerted action
 /*********************** vector *******************/    from the European Union.
 double *vector(int nl, int nh)    It is copyrighted identically to a GNU software product, ie programme and
 {    software can be distributed freely for non commercial use. Latest version
   double *v;    can be accessed at http://euroreves.ined.fr/imach .
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   return v-nl+NR_END;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
     **********************************************************************/
 /************************ free vector ******************/  /*
 void free_vector(double*v, int nl, int nh)    main
 {    read parameterfile
   free((FREE_ARG)(v+nl-NR_END));    read datafile
 }    concatwav
     freqsummary
 /************************ivector *******************************/    if (mle >= 1)
 int *ivector(long nl,long nh)      mlikeli
 {    print results files
   int *v;    if mle==1 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));       computes hessian
   if (!v) nrerror("allocation failure in ivector");    read end of parameter file: agemin, agemax, bage, fage, estepm
   return v-nl+NR_END;        begin-prev-date,...
 }    open gnuplot file
     open html file
 /******************free ivector **************************/    period (stable) prevalence
 void free_ivector(int *v, long nl, long nh)     for age prevalim()
 {    h Pij x
   free((FREE_ARG)(v+nl-NR_END));    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /******************* imatrix *******************************/    Variance-covariance of DFLE
 int **imatrix(long nrl, long nrh, long ncl, long nch)    prevalence()
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */     movingaverage()
 {    varevsij() 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    if popbased==1 varevsij(,popbased)
   int **m;    total life expectancies
      Variance of period (stable) prevalence
   /* allocate pointers to rows */   end
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  
   m -= nrl;  
     
    #include <math.h>
   /* allocate rows and set pointers to them */  #include <stdio.h>
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #include <stdlib.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <string.h>
   m[nrl] += NR_END;  #include <unistd.h>
   m[nrl] -= ncl;  
    #include <limits.h>
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #include <sys/types.h>
    #include <sys/stat.h>
   /* return pointer to array of pointers to rows */  #include <errno.h>
   return m;  extern int errno;
 }  
   /* #include <sys/time.h> */
 /****************** free_imatrix *************************/  #include <time.h>
 void free_imatrix(m,nrl,nrh,ncl,nch)  #include "timeval.h"
       int **m;  
       long nch,ncl,nrh,nrl;  /* #include <libintl.h> */
      /* free an int matrix allocated by imatrix() */  /* #define _(String) gettext (String) */
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define MAXLINE 256
   free((FREE_ARG) (m+nrl-NR_END));  
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /******************* matrix *******************************/  #define FILENAMELENGTH 132
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   double **m;  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define NINTERVMAX 8
   m -= nrl;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define NCOVMAX 8 /* Maximum number of covariates */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define MAXN 20000
   m[nrl] += NR_END;  #define YEARM 12. /* Number of months per year */
   m[nrl] -= ncl;  #define AGESUP 130
   #define AGEBASE 40
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   return m;  #ifdef UNIX
 }  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
 /*************************free matrix ************************/  #define ODIRSEPARATOR '\\'
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #else
 {  #define DIRSEPARATOR '\\'
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define CHARSEPARATOR "\\"
   free((FREE_ARG)(m+nrl-NR_END));  #define ODIRSEPARATOR '/'
 }  #endif
   
 /******************* ma3x *******************************/  /* $Id$ */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  /* $State$ */
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char version[]="Imach version 0.98d, March 2006, INED-EUROREVES-Institut de longevite ";
   double ***m;  char fullversion[]="$Revision$ $Date$"; 
   char strstart[80];
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m += NR_END;  int nvar;
   m -= nrl;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int nlstate=2; /* Number of live states */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int ndeath=1; /* Number of dead states */
   m[nrl] += NR_END;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m[nrl] -= ncl;  int popbased=0;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int jmin, jmax; /* min, max spacing between 2 waves */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   m[nrl][ncl] += NR_END;  int gipmx, gsw; /* Global variables on the number of contributions 
   m[nrl][ncl] -= nll;                     to the likelihood and the sum of weights (done by funcone)*/
   for (j=ncl+1; j<=nch; j++)  int mle, weightopt;
     m[nrl][j]=m[nrl][j-1]+nlay;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   for (i=nrl+1; i<=nrh; i++) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     for (j=ncl+1; j<=nch; j++)  double jmean; /* Mean space between 2 waves */
       m[i][j]=m[i][j-1]+nlay;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   return m;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 /*************************free ma3x ************************/  double fretone; /* Only one call to likelihood */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  long ipmx; /* Number of contributions */
 {  double sw; /* Sum of weights */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char filerespow[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   free((FREE_ARG)(m+nrl-NR_END));  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /***************** f1dim *************************/  FILE *fichtm, *fichtmcov; /* Html File */
 extern int ncom;  FILE *ficreseij;
 extern double *pcom,*xicom;  char filerese[FILENAMELENGTH];
 extern double (*nrfunc)(double []);  FILE *ficresstdeij;
    char fileresstde[FILENAMELENGTH];
 double f1dim(double x)  FILE *ficrescveij;
 {  char filerescve[FILENAMELENGTH];
   int j;  FILE  *ficresvij;
   double f;  char fileresv[FILENAMELENGTH];
   double *xt;  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
   xt=vector(1,ncom);  char title[MAXLINE];
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   f=(*nrfunc)(xt);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   free_vector(xt,1,ncom);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   return f;  char command[FILENAMELENGTH];
 }  int  outcmd=0;
   
 /*****************brent *************************/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  char filelog[FILENAMELENGTH]; /* Log file */
   int iter;  char filerest[FILENAMELENGTH];
   double a,b,d,etemp;  char fileregp[FILENAMELENGTH];
   double fu,fv,fw,fx;  char popfile[FILENAMELENGTH];
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double e=0.0;  
    struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   a=(ax < cx ? ax : cx);  struct timezone tzp;
   b=(ax > cx ? ax : cx);  extern int gettimeofday();
   x=w=v=bx;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   fw=fv=fx=(*f)(x);  long time_value;
   for (iter=1;iter<=ITMAX;iter++) {  extern long time();
     xm=0.5*(a+b);  char strcurr[80], strfor[80];
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char *endptr;
     printf(".");fflush(stdout);  long lval;
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define NR_END 1
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define FREE_ARG char*
 #endif  #define FTOL 1.0e-10
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  #define NRANSI 
       return fx;  #define ITMAX 200 
     }  
     ftemp=fu;  #define TOL 2.0e-4 
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  #define CGOLD 0.3819660 
       q=(x-v)*(fx-fw);  #define ZEPS 1.0e-10 
       p=(x-v)*q-(x-w)*r;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  #define GOLD 1.618034 
       q=fabs(q);  #define GLIMIT 100.0 
       etemp=e;  #define TINY 1.0e-20 
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  static double maxarg1,maxarg2;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       else {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         d=p/q;    
         u=x+d;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
         if (u-a < tol2 || b-u < tol2)  #define rint(a) floor(a+0.5)
           d=SIGN(tol1,xm-x);  
       }  static double sqrarg;
     } else {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     }  int agegomp= AGEGOMP;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  int imx; 
     if (fu <= fx) {  int stepm=1;
       if (u >= x) a=x; else b=x;  /* Stepm, step in month: minimum step interpolation*/
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  int estepm;
         } else {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  int m,nb;
             v=w;  long *num;
             w=u;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
             fv=fw;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
             fw=fu;  double **pmmij, ***probs;
           } else if (fu <= fv || v == x || v == w) {  double *ageexmed,*agecens;
             v=u;  double dateintmean=0;
             fv=fu;  
           }  double *weight;
         }  int **s; /* Status */
   }  double *agedc, **covar, idx;
   nrerror("Too many iterations in brent");  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   *xmin=x;  double *lsurv, *lpop, *tpop;
   return fx;  
 }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 /****************** mnbrak ***********************/  
   /**************** split *************************/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
             double (*func)(double))  {
 {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   double ulim,u,r,q, dum;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double fu;    */ 
      char  *ss;                            /* pointer */
   *fa=(*func)(*ax);    int   l1, l2;                         /* length counters */
   *fb=(*func)(*bx);  
   if (*fb > *fa) {    l1 = strlen(path );                   /* length of path */
     SHFT(dum,*ax,*bx,dum)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       SHFT(dum,*fb,*fa,dum)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   *cx=(*bx)+GOLD*(*bx-*ax);      strcpy( name, path );               /* we got the fullname name because no directory */
   *fc=(*func)(*cx);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   while (*fb > *fc) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     r=(*bx-*ax)*(*fb-*fc);      /* get current working directory */
     q=(*bx-*cx)*(*fb-*fa);      /*    extern  char* getcwd ( char *buf , int len);*/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));        return( GLOCK_ERROR_GETCWD );
     ulim=(*bx)+GLIMIT*(*cx-*bx);      }
     if ((*bx-u)*(u-*cx) > 0.0) {      /* got dirc from getcwd*/
       fu=(*func)(u);      printf(" DIRC = %s \n",dirc);
     } else if ((*cx-u)*(u-ulim) > 0.0) {    } else {                              /* strip direcotry from path */
       fu=(*func)(u);      ss++;                               /* after this, the filename */
       if (fu < *fc) {      l2 = strlen( ss );                  /* length of filename */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
           SHFT(*fb,*fc,fu,(*func)(u))      strcpy( name, ss );         /* save file name */
           }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      dirc[l1-l2] = 0;                    /* add zero */
       u=ulim;      printf(" DIRC2 = %s \n",dirc);
       fu=(*func)(u);    }
     } else {    /* We add a separator at the end of dirc if not exists */
       u=(*cx)+GOLD*(*cx-*bx);    l1 = strlen( dirc );                  /* length of directory */
       fu=(*func)(u);    if( dirc[l1-1] != DIRSEPARATOR ){
     }      dirc[l1] =  DIRSEPARATOR;
     SHFT(*ax,*bx,*cx,u)      dirc[l1+1] = 0; 
       SHFT(*fa,*fb,*fc,fu)      printf(" DIRC3 = %s \n",dirc);
       }    }
 }    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
 /*************** linmin ************************/      ss++;
       strcpy(ext,ss);                     /* save extension */
 int ncom;      l1= strlen( name);
 double *pcom,*xicom;      l2= strlen(ss)+1;
 double (*nrfunc)(double []);      strncpy( finame, name, l1-l2);
        finame[l1-l2]= 0;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    }
 {  
   double brent(double ax, double bx, double cx,    return( 0 );                          /* we're done */
                double (*f)(double), double tol, double *xmin);  }
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  /******************************************/
   int j;  
   double xx,xmin,bx,ax;  void replace_back_to_slash(char *s, char*t)
   double fx,fb,fa;  {
      int i;
   ncom=n;    int lg=0;
   pcom=vector(1,n);    i=0;
   xicom=vector(1,n);    lg=strlen(t);
   nrfunc=func;    for(i=0; i<= lg; i++) {
   for (j=1;j<=n;j++) {      (s[i] = t[i]);
     pcom[j]=p[j];      if (t[i]== '\\') s[i]='/';
     xicom[j]=xi[j];    }
   }  }
   ax=0.0;  
   xx=1.0;  int nbocc(char *s, char occ)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    int i,j=0;
 #ifdef DEBUG    int lg=20;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    i=0;
 #endif    lg=strlen(s);
   for (j=1;j<=n;j++) {    for(i=0; i<= lg; i++) {
     xi[j] *= xmin;    if  (s[i] == occ ) j++;
     p[j] += xi[j];    }
   }    return j;
   free_vector(xicom,1,n);  }
   free_vector(pcom,1,n);  
 }  void cutv(char *u,char *v, char*t, char occ)
   {
 /*************** powell ************************/    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
             double (*func)(double []))       gives u="abcedf" and v="ghi2j" */
 {    int i,lg,j,p=0;
   void linmin(double p[], double xi[], int n, double *fret,    i=0;
               double (*func)(double []));    for(j=0; j<=strlen(t)-1; j++) {
   int i,ibig,j;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   double del,t,*pt,*ptt,*xit;    }
   double fp,fptt;  
   double *xits;    lg=strlen(t);
   pt=vector(1,n);    for(j=0; j<p; j++) {
   ptt=vector(1,n);      (u[j] = t[j]);
   xit=vector(1,n);    }
   xits=vector(1,n);       u[p]='\0';
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];     for(j=0; j<= lg; j++) {
   for (*iter=1;;++(*iter)) {      if (j>=(p+1))(v[j-p-1] = t[j]);
     fp=(*fret);    }
     ibig=0;  }
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /********************** nrerror ********************/
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  void nrerror(char error_text[])
     printf("\n");  {
     for (i=1;i<=n;i++) {    fprintf(stderr,"ERREUR ...\n");
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    fprintf(stderr,"%s\n",error_text);
       fptt=(*fret);    exit(EXIT_FAILURE);
 #ifdef DEBUG  }
       printf("fret=%lf \n",*fret);  /*********************** vector *******************/
 #endif  double *vector(int nl, int nh)
       printf("%d",i);fflush(stdout);  {
       linmin(p,xit,n,fret,func);    double *v;
       if (fabs(fptt-(*fret)) > del) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         del=fabs(fptt-(*fret));    if (!v) nrerror("allocation failure in vector");
         ibig=i;    return v-nl+NR_END;
       }  }
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  /************************ free vector ******************/
       for (j=1;j<=n;j++) {  void free_vector(double*v, int nl, int nh)
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  {
         printf(" x(%d)=%.12e",j,xit[j]);    free((FREE_ARG)(v+nl-NR_END));
       }  }
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  /************************ivector *******************************/
       printf("\n");  int *ivector(long nl,long nh)
 #endif  {
     }    int *v;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 #ifdef DEBUG    if (!v) nrerror("allocation failure in ivector");
       int k[2],l;    return v-nl+NR_END;
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /******************free ivector **************************/
       for (j=1;j<=n;j++)  void free_ivector(int *v, long nl, long nh)
         printf(" %.12e",p[j]);  {
       printf("\n");    free((FREE_ARG)(v+nl-NR_END));
       for(l=0;l<=1;l++) {  }
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /************************lvector *******************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  long *lvector(long nl,long nh)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    long *v;
       }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 #endif    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   }
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /******************free lvector **************************/
       free_vector(ptt,1,n);  void free_lvector(long *v, long nl, long nh)
       free_vector(pt,1,n);  {
       return;    free((FREE_ARG)(v+nl-NR_END));
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /******************* imatrix *******************************/
       ptt[j]=2.0*p[j]-pt[j];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       xit[j]=p[j]-pt[j];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       pt[j]=p[j];  { 
     }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     fptt=(*func)(ptt);    int **m; 
     if (fptt < fp) {    
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    /* allocate pointers to rows */ 
       if (t < 0.0) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         linmin(p,xit,n,fret,func);    if (!m) nrerror("allocation failure 1 in matrix()"); 
         for (j=1;j<=n;j++) {    m += NR_END; 
           xi[j][ibig]=xi[j][n];    m -= nrl; 
           xi[j][n]=xit[j];    
         }    
 #ifdef DEBUG    /* allocate rows and set pointers to them */ 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         for(j=1;j<=n;j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
           printf(" %.12e",xit[j]);    m[nrl] += NR_END; 
         printf("\n");    m[nrl] -= ncl; 
 #endif    
       }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     }    
   }    /* return pointer to array of pointers to rows */ 
 }    return m; 
   } 
 /**** Prevalence limit ****************/  
   /****************** free_imatrix *************************/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  void free_imatrix(m,nrl,nrh,ncl,nch)
 {        int **m;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        long nch,ncl,nrh,nrl; 
      matrix by transitions matrix until convergence is reached */       /* free an int matrix allocated by imatrix() */ 
   { 
   int i, ii,j,k;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double min, max, maxmin, maxmax,sumnew=0.;    free((FREE_ARG) (m+nrl-NR_END)); 
   double **matprod2();  } 
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /******************* matrix *******************************/
   double agefin, delaymax=50 ; /* Max number of years to converge */  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
   for (ii=1;ii<=nlstate+ndeath;ii++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     for (j=1;j<=nlstate+ndeath;j++){    double **m;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
    cov[1]=1.;    m += NR_END;
      m -= nrl;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     newm=savm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     /* Covariates have to be included here again */    m[nrl] += NR_END;
      cov[2]=agefin;    m[nrl] -= ncl;
    
       for (k=1; k<=cptcovn;k++) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    return m;
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       }     */
       for (k=1; k<=cptcovage;k++)  }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /*************************free matrix ************************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    free((FREE_ARG)(m+nrl-NR_END));
   }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /******************* ma3x *******************************/
     savm=oldm;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     oldm=newm;  {
     maxmax=0.;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for(j=1;j<=nlstate;j++){    double ***m;
       min=1.;  
       max=0.;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for(i=1; i<=nlstate; i++) {    if (!m) nrerror("allocation failure 1 in matrix()");
         sumnew=0;    m += NR_END;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    m -= nrl;
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         min=FMIN(min,prlim[i][j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
       maxmin=max-min;    m[nrl] -= ncl;
       maxmax=FMAX(maxmax,maxmin);  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     if(maxmax < ftolpl){  
       return prlim;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   }    m[nrl][ncl] += NR_END;
 }    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
 /*************** transition probabilities ***************/      m[nrl][j]=m[nrl][j-1]+nlay;
     
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    for (i=nrl+1; i<=nrh; i++) {
 {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double s1, s2;      for (j=ncl+1; j<=nch; j++) 
   /*double t34;*/        m[i][j]=m[i][j-1]+nlay;
   int i,j,j1, nc, ii, jj;    }
     return m; 
     for(i=1; i<= nlstate; i++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for(j=1; j<i;j++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    */
         /*s2 += param[i][j][nc]*cov[nc];*/  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /*************************free ma3x ************************/
       }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       ps[i][j]=s2;  {
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for(j=i+1; j<=nlstate+ndeath;j++){    free((FREE_ARG)(m+nrl-NR_END));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /*************** function subdirf ***********/
       }  char *subdirf(char fileres[])
       ps[i][j]=(s2);  {
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
     /*ps[3][2]=1;*/    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   for(i=1; i<= nlstate; i++){    return tmpout;
      s1=0;  }
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  /*************** function subdirf2 ***********/
     for(j=i+1; j<=nlstate+ndeath; j++)  char *subdirf2(char fileres[], char *preop)
       s1+=exp(ps[i][j]);  {
     ps[i][i]=1./(s1+1.);    
     for(j=1; j<i; j++)    /* Caution optionfilefiname is hidden */
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcpy(tmpout,optionfilefiname);
     for(j=i+1; j<=nlstate+ndeath; j++)    strcat(tmpout,"/");
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcat(tmpout,preop);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    strcat(tmpout,fileres);
   } /* end i */    return tmpout;
   }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*************** function subdirf3 ***********/
       ps[ii][jj]=0;  char *subdirf3(char fileres[], char *preop, char *preop2)
       ps[ii][ii]=1;  {
     }    
   }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    strcat(tmpout,preop);
     for(jj=1; jj<= nlstate+ndeath; jj++){    strcat(tmpout,preop2);
      printf("%lf ",ps[ii][jj]);    strcat(tmpout,fileres);
    }    return tmpout;
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /***************** f1dim *************************/
 /*  extern int ncom; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  extern double *pcom,*xicom;
   goto end;*/  extern double (*nrfunc)(double []); 
     return ps;   
 }  double f1dim(double x) 
   { 
 /**************** Product of 2 matrices ******************/    int j; 
     double f;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double *xt; 
 {   
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    xt=vector(1,ncom); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   /* in, b, out are matrice of pointers which should have been initialized    f=(*nrfunc)(xt); 
      before: only the contents of out is modified. The function returns    free_vector(xt,1,ncom); 
      a pointer to pointers identical to out */    return f; 
   long i, j, k;  } 
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  /*****************brent *************************/
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         out[i][k] +=in[i][j]*b[j][k];  { 
     int iter; 
   return out;    double a,b,d,etemp;
 }    double fu,fv,fw,fx;
     double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
 /************* Higher Matrix Product ***************/    double e=0.0; 
    
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    a=(ax < cx ? ax : cx); 
 {    b=(ax > cx ? ax : cx); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    x=w=v=bx; 
      duration (i.e. until    fw=fv=fx=(*f)(x); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    for (iter=1;iter<=ITMAX;iter++) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      xm=0.5*(a+b); 
      (typically every 2 years instead of every month which is too big).      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
      Model is determined by parameters x and covariates have to be      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
      included manually here.      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
      */  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int i, j, d, h, k;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double **out, cov[NCOVMAX];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double **newm;  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   /* Hstepm could be zero and should return the unit matrix */        *xmin=x; 
   for (i=1;i<=nlstate+ndeath;i++)        return fx; 
     for (j=1;j<=nlstate+ndeath;j++){      } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      ftemp=fu;
       po[i][j][0]=(i==j ? 1.0 : 0.0);      if (fabs(e) > tol1) { 
     }        r=(x-w)*(fx-fv); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        q=(x-v)*(fx-fw); 
   for(h=1; h <=nhstepm; h++){        p=(x-v)*q-(x-w)*r; 
     for(d=1; d <=hstepm; d++){        q=2.0*(q-r); 
       newm=savm;        if (q > 0.0) p = -p; 
       /* Covariates have to be included here again */        q=fabs(q); 
       cov[1]=1.;        etemp=e; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        e=d; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for (k=1; k<=cptcovage;k++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        else { 
       for (k=1; k<=cptcovprod;k++)          d=p/q; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        } 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      } else { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      } 
       savm=oldm;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       oldm=newm;      fu=(*f)(u); 
     }      if (fu <= fx) { 
     for(i=1; i<=nlstate+ndeath; i++)        if (u >= x) a=x; else b=x; 
       for(j=1;j<=nlstate+ndeath;j++) {        SHFT(v,w,x,u) 
         po[i][j][h]=newm[i][j];          SHFT(fv,fw,fx,fu) 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          } else { 
          */            if (u < x) a=u; else b=u; 
       }            if (fu <= fw || w == x) { 
   } /* end h */              v=w; 
   return po;              w=u; 
 }              fv=fw; 
               fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
 /*************** log-likelihood *************/              v=u; 
 double func( double *x)              fv=fu; 
 {            } 
   int i, ii, j, k, mi, d, kk;          } 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    } 
   double **out;    nrerror("Too many iterations in brent"); 
   double sw; /* Sum of weights */    *xmin=x; 
   double lli; /* Individual log likelihood */    return fx; 
   long ipmx;  } 
   /*extern weight */  
   /* We are differentiating ll according to initial status */  /****************** mnbrak ***********************/
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     printf(" %d\n",s[4][i]);              double (*func)(double)) 
   */  { 
   cov[1]=1.;    double ulim,u,r,q, dum;
     double fu; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;   
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    *fa=(*func)(*ax); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    *fb=(*func)(*bx); 
     for(mi=1; mi<= wav[i]-1; mi++){    if (*fb > *fa) { 
       for (ii=1;ii<=nlstate+ndeath;ii++)      SHFT(dum,*ax,*bx,dum) 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        SHFT(dum,*fb,*fa,dum) 
       for(d=0; d<dh[mi][i]; d++){        } 
         newm=savm;    *cx=(*bx)+GOLD*(*bx-*ax); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    *fc=(*func)(*cx); 
         for (kk=1; kk<=cptcovage;kk++) {    while (*fb > *fc) { 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      r=(*bx-*ax)*(*fb-*fc); 
         }      q=(*bx-*cx)*(*fb-*fa); 
              u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         savm=oldm;      if ((*bx-u)*(u-*cx) > 0.0) { 
         oldm=newm;        fu=(*func)(u); 
              } else if ((*cx-u)*(u-ulim) > 0.0) { 
                fu=(*func)(u); 
       } /* end mult */        if (fu < *fc) { 
                SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);            SHFT(*fb,*fc,fu,(*func)(u)) 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/            } 
       ipmx +=1;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       sw += weight[i];        u=ulim; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        fu=(*func)(u); 
     } /* end of wave */      } else { 
   } /* end of individual */        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      } 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      SHFT(*ax,*bx,*cx,u) 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        SHFT(*fa,*fb,*fc,fu) 
   return -l;        } 
 }  } 
   
   /*************** linmin ************************/
 /*********** Maximum Likelihood Estimation ***************/  
   int ncom; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  double *pcom,*xicom;
 {  double (*nrfunc)(double []); 
   int i,j, iter;   
   double **xi,*delti;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double fret;  { 
   xi=matrix(1,npar,1,npar);    double brent(double ax, double bx, double cx, 
   for (i=1;i<=npar;i++)                 double (*f)(double), double tol, double *xmin); 
     for (j=1;j<=npar;j++)    double f1dim(double x); 
       xi[i][j]=(i==j ? 1.0 : 0.0);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   printf("Powell\n");                double *fc, double (*func)(double)); 
   powell(p,xi,npar,ftol,&iter,&fret,func);    int j; 
     double xx,xmin,bx,ax; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    double fx,fb,fa;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));   
     ncom=n; 
 }    pcom=vector(1,n); 
     xicom=vector(1,n); 
 /**** Computes Hessian and covariance matrix ***/    nrfunc=func; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    for (j=1;j<=n;j++) { 
 {      pcom[j]=p[j]; 
   double  **a,**y,*x,pd;      xicom[j]=xi[j]; 
   double **hess;    } 
   int i, j,jk;    ax=0.0; 
   int *indx;    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double hessii(double p[], double delta, int theta, double delti[]);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   double hessij(double p[], double delti[], int i, int j);  #ifdef DEBUG
   void lubksb(double **a, int npar, int *indx, double b[]) ;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   void ludcmp(double **a, int npar, int *indx, double *d) ;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   hess=matrix(1,npar,1,npar);    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
   printf("\nCalculation of the hessian matrix. Wait...\n");      p[j] += xi[j]; 
   for (i=1;i<=npar;i++){    } 
     printf("%d",i);fflush(stdout);    free_vector(xicom,1,n); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    free_vector(pcom,1,n); 
     /*printf(" %f ",p[i]);*/  } 
     /*printf(" %lf ",hess[i][i]);*/  
   }  char *asc_diff_time(long time_sec, char ascdiff[])
    {
   for (i=1;i<=npar;i++) {    long sec_left, days, hours, minutes;
     for (j=1;j<=npar;j++)  {    days = (time_sec) / (60*60*24);
       if (j>i) {    sec_left = (time_sec) % (60*60*24);
         printf(".%d%d",i,j);fflush(stdout);    hours = (sec_left) / (60*60) ;
         hess[i][j]=hessij(p,delti,i,j);    sec_left = (sec_left) %(60*60);
         hess[j][i]=hess[i][j];        minutes = (sec_left) /60;
         /*printf(" %lf ",hess[i][j]);*/    sec_left = (sec_left) % (60);
       }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     }    return ascdiff;
   }  }
   printf("\n");  
   /*************** powell ************************/
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                double (*func)(double [])) 
   a=matrix(1,npar,1,npar);  { 
   y=matrix(1,npar,1,npar);    void linmin(double p[], double xi[], int n, double *fret, 
   x=vector(1,npar);                double (*func)(double [])); 
   indx=ivector(1,npar);    int i,ibig,j; 
   for (i=1;i<=npar;i++)    double del,t,*pt,*ptt,*xit;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    double fp,fptt;
   ludcmp(a,npar,indx,&pd);    double *xits;
     int niterf, itmp;
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    pt=vector(1,n); 
     x[j]=1;    ptt=vector(1,n); 
     lubksb(a,npar,indx,x);    xit=vector(1,n); 
     for (i=1;i<=npar;i++){    xits=vector(1,n); 
       matcov[i][j]=x[i];    *fret=(*func)(p); 
     }    for (j=1;j<=n;j++) pt[j]=p[j]; 
   }    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
   printf("\n#Hessian matrix#\n");      ibig=0; 
   for (i=1;i<=npar;i++) {      del=0.0; 
     for (j=1;j<=npar;j++) {      last_time=curr_time;
       printf("%.3e ",hess[i][j]);      (void) gettimeofday(&curr_time,&tzp);
     }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     printf("\n");      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   }      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
   /* Recompute Inverse */     for (i=1;i<=n;i++) {
   for (i=1;i<=npar;i++)        printf(" %d %.12f",i, p[i]);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        fprintf(ficlog," %d %.12lf",i, p[i]);
   ludcmp(a,npar,indx,&pd);        fprintf(ficrespow," %.12lf", p[i]);
       }
   /*  printf("\n#Hessian matrix recomputed#\n");      printf("\n");
       fprintf(ficlog,"\n");
   for (j=1;j<=npar;j++) {      fprintf(ficrespow,"\n");fflush(ficrespow);
     for (i=1;i<=npar;i++) x[i]=0;      if(*iter <=3){
     x[j]=1;        tm = *localtime(&curr_time.tv_sec);
     lubksb(a,npar,indx,x);        strcpy(strcurr,asctime(&tm));
     for (i=1;i<=npar;i++){  /*       asctime_r(&tm,strcurr); */
       y[i][j]=x[i];        forecast_time=curr_time; 
       printf("%.3e ",y[i][j]);        itmp = strlen(strcurr);
     }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     printf("\n");          strcurr[itmp-1]='\0';
   }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
   free_matrix(a,1,npar,1,npar);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   free_matrix(y,1,npar,1,npar);          tmf = *localtime(&forecast_time.tv_sec);
   free_vector(x,1,npar);  /*      asctime_r(&tmf,strfor); */
   free_ivector(indx,1,npar);          strcpy(strfor,asctime(&tmf));
   free_matrix(hess,1,npar,1,npar);          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
 }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 /*************** hessian matrix ****************/        }
 double hessii( double x[], double delta, int theta, double delti[])      }
 {      for (i=1;i<=n;i++) { 
   int i;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   int l=1, lmax=20;        fptt=(*fret); 
   double k1,k2;  #ifdef DEBUG
   double p2[NPARMAX+1];        printf("fret=%lf \n",*fret);
   double res;        fprintf(ficlog,"fret=%lf \n",*fret);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  #endif
   double fx;        printf("%d",i);fflush(stdout);
   int k=0,kmax=10;        fprintf(ficlog,"%d",i);fflush(ficlog);
   double l1;        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
   fx=func(x);          del=fabs(fptt-(*fret)); 
   for (i=1;i<=npar;i++) p2[i]=x[i];          ibig=i; 
   for(l=0 ; l <=lmax; l++){        } 
     l1=pow(10,l);  #ifdef DEBUG
     delts=delt;        printf("%d %.12e",i,(*fret));
     for(k=1 ; k <kmax; k=k+1){        fprintf(ficlog,"%d %.12e",i,(*fret));
       delt = delta*(l1*k);        for (j=1;j<=n;j++) {
       p2[theta]=x[theta] +delt;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       k1=func(p2)-fx;          printf(" x(%d)=%.12e",j,xit[j]);
       p2[theta]=x[theta]-delt;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       k2=func(p2)-fx;        }
       /*res= (k1-2.0*fx+k2)/delt/delt; */        for(j=1;j<=n;j++) {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          printf(" p=%.12e",p[j]);
                fprintf(ficlog," p=%.12e",p[j]);
 #ifdef DEBUG        }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        printf("\n");
 #endif        fprintf(ficlog,"\n");
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  #endif
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      } 
         k=kmax;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       }  #ifdef DEBUG
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        int k[2],l;
         k=kmax; l=lmax*10.;        k[0]=1;
       }        k[1]=-1;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        printf("Max: %.12e",(*func)(p));
         delts=delt;        fprintf(ficlog,"Max: %.12e",(*func)(p));
       }        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
   delti[theta]=delts;        }
   return res;        printf("\n");
          fprintf(ficlog,"\n");
 }        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
 double hessij( double x[], double delti[], int thetai,int thetaj)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int l=1, l1, lmax=20;          }
   double k1,k2,k3,k4,res,fx;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double p2[NPARMAX+1];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int k;        }
   #endif
   fx=func(x);  
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];        free_vector(xit,1,n); 
     p2[thetai]=x[thetai]+delti[thetai]/k;        free_vector(xits,1,n); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        free_vector(ptt,1,n); 
     k1=func(p2)-fx;        free_vector(pt,1,n); 
          return; 
     p2[thetai]=x[thetai]+delti[thetai]/k;      } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     k2=func(p2)-fx;      for (j=1;j<=n;j++) { 
          ptt[j]=2.0*p[j]-pt[j]; 
     p2[thetai]=x[thetai]-delti[thetai]/k;        xit[j]=p[j]-pt[j]; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        pt[j]=p[j]; 
     k3=func(p2)-fx;      } 
        fptt=(*func)(ptt); 
     p2[thetai]=x[thetai]-delti[thetai]/k;      if (fptt < fp) { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     k4=func(p2)-fx;        if (t < 0.0) { 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          linmin(p,xit,n,fret,func); 
 #ifdef DEBUG          for (j=1;j<=n;j++) { 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            xi[j][ibig]=xi[j][n]; 
 #endif            xi[j][n]=xit[j]; 
   }          }
   return res;  #ifdef DEBUG
 }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /************** Inverse of matrix **************/          for(j=1;j<=n;j++){
 void ludcmp(double **a, int n, int *indx, double *d)            printf(" %.12e",xit[j]);
 {            fprintf(ficlog," %.12e",xit[j]);
   int i,imax,j,k;          }
   double big,dum,sum,temp;          printf("\n");
   double *vv;          fprintf(ficlog,"\n");
    #endif
   vv=vector(1,n);        }
   *d=1.0;      } 
   for (i=1;i<=n;i++) {    } 
     big=0.0;  } 
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  /**** Prevalence limit (stable or period prevalence)  ****************/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   }  {
   for (j=1;j<=n;j++) {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for (i=1;i<j;i++) {       matrix by transitions matrix until convergence is reached */
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    int i, ii,j,k;
       a[i][j]=sum;    double min, max, maxmin, maxmax,sumnew=0.;
     }    double **matprod2();
     big=0.0;    double **out, cov[NCOVMAX], **pmij();
     for (i=j;i<=n;i++) {    double **newm;
       sum=a[i][j];    double agefin, delaymax=50 ; /* Max number of years to converge */
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];    for (ii=1;ii<=nlstate+ndeath;ii++)
       a[i][j]=sum;      for (j=1;j<=nlstate+ndeath;j++){
       if ( (dum=vv[i]*fabs(sum)) >= big) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         big=dum;      }
         imax=i;  
       }     cov[1]=1.;
     }   
     if (j != imax) {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (k=1;k<=n;k++) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         dum=a[imax][k];      newm=savm;
         a[imax][k]=a[j][k];      /* Covariates have to be included here again */
         a[j][k]=dum;       cov[2]=agefin;
       }    
       *d = -(*d);        for (k=1; k<=cptcovn;k++) {
       vv[imax]=vv[j];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     indx[j]=imax;        }
     if (a[j][j] == 0.0) a[j][j]=TINY;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     if (j != n) {        for (k=1; k<=cptcovprod;k++)
       dum=1.0/(a[j][j]);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   free_vector(vv,1,n);  /* Doesn't work */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 ;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 }  
       savm=oldm;
 void lubksb(double **a, int n, int *indx, double b[])      oldm=newm;
 {      maxmax=0.;
   int i,ii=0,ip,j;      for(j=1;j<=nlstate;j++){
   double sum;        min=1.;
          max=0.;
   for (i=1;i<=n;i++) {        for(i=1; i<=nlstate; i++) {
     ip=indx[i];          sumnew=0;
     sum=b[ip];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     b[ip]=b[i];          prlim[i][j]= newm[i][j]/(1-sumnew);
     if (ii)          max=FMAX(max,prlim[i][j]);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          min=FMIN(min,prlim[i][j]);
     else if (sum) ii=i;        }
     b[i]=sum;        maxmin=max-min;
   }        maxmax=FMAX(maxmax,maxmin);
   for (i=n;i>=1;i--) {      }
     sum=b[i];      if(maxmax < ftolpl){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        return prlim;
     b[i]=sum/a[i][i];      }
   }    }
 }  }
   
 /************ Frequencies ********************/  /*************** transition probabilities ***************/ 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)  
 {  /* Some frequencies */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
    {
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    double s1, s2;
   double ***freq; /* Frequencies */    /*double t34;*/
   double *pp;    int i,j,j1, nc, ii, jj;
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;      for(i=1; i<= nlstate; i++){
   char fileresp[FILENAMELENGTH];        for(j=1; j<i;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   pp=vector(1,nlstate);            /*s2 += param[i][j][nc]*cov[nc];*/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   strcpy(fileresp,"p");  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   strcat(fileresp,fileres);          }
   if((ficresp=fopen(fileresp,"w"))==NULL) {          ps[i][j]=s2;
     printf("Problem with prevalence resultfile: %s\n", fileresp);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     exit(0);        }
   }        for(j=i+1; j<=nlstate+ndeath;j++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   j1=0;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   j=cptcoveff;          }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ps[i][j]=s2;
         }
   for(k1=1; k1<=j;k1++){      }
    for(i1=1; i1<=ncodemax[k1];i1++){      /*ps[3][2]=1;*/
        j1++;      
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      for(i=1; i<= nlstate; i++){
          scanf("%d", i);*/        s1=0;
         for (i=-1; i<=nlstate+ndeath; i++)          for(j=1; j<i; j++)
          for (jk=-1; jk<=nlstate+ndeath; jk++)            s1+=exp(ps[i][j]);
            for(m=agemin; m <= agemax+3; m++)        for(j=i+1; j<=nlstate+ndeath; j++)
              freq[i][jk][m]=0;          s1+=exp(ps[i][j]);
         ps[i][i]=1./(s1+1.);
         dateintsum=0;        for(j=1; j<i; j++)
         k2cpt=0;          ps[i][j]= exp(ps[i][j])*ps[i][i];
        for (i=1; i<=imx; i++) {        for(j=i+1; j<=nlstate+ndeath; j++)
          bool=1;          ps[i][j]= exp(ps[i][j])*ps[i][i];
          if  (cptcovn>0) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
            for (z1=1; z1<=cptcoveff; z1++)      } /* end i */
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      
                bool=0;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          }        for(jj=1; jj<= nlstate+ndeath; jj++){
          if (bool==1) {          ps[ii][jj]=0;
            for(m=firstpass; m<=lastpass; m++){          ps[ii][ii]=1;
              k2=anint[m][i]+(mint[m][i]/12.);        }
              if ((k2>=dateprev1) && (k2<=dateprev2)) {      }
                if(agev[m][i]==0) agev[m][i]=agemax+1;      
                if(agev[m][i]==1) agev[m][i]=agemax+2;  
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  /*         printf("ddd %lf ",ps[ii][jj]); */
                  dateintsum=dateintsum+k2;  /*       } */
                  k2cpt++;  /*       printf("\n "); */
                }  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
              }         /*
            }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
          }        goto end;*/
        }      return ps;
         if  (cptcovn>0) {  }
          fprintf(ficresp, "\n#********** Variable ");  
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /**************** Product of 2 matrices ******************/
        fprintf(ficresp, "**********\n#");  
         }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
        for(i=1; i<=nlstate;i++)  {
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        fprintf(ficresp, "\n");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
            /* in, b, out are matrice of pointers which should have been initialized 
   for(i=(int)agemin; i <= (int)agemax+3; i++){       before: only the contents of out is modified. The function returns
     if(i==(int)agemax+3)       a pointer to pointers identical to out */
       printf("Total");    long i, j, k;
     else    for(i=nrl; i<= nrh; i++)
       printf("Age %d", i);      for(k=ncolol; k<=ncoloh; k++)
     for(jk=1; jk <=nlstate ; jk++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          out[i][k] +=in[i][j]*b[j][k];
         pp[jk] += freq[jk][m][i];  
     }    return out;
     for(jk=1; jk <=nlstate ; jk++){  }
       for(m=-1, pos=0; m <=0 ; m++)  
         pos += freq[jk][m][i];  
       if(pp[jk]>=1.e-10)  /************* Higher Matrix Product ***************/
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
       else  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  {
     }    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
      for(jk=1; jk <=nlstate ; jk++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)       nhstepm*hstepm matrices. 
         pp[jk] += freq[jk][m][i];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
      }       (typically every 2 years instead of every month which is too big 
        for the memory).
     for(jk=1,pos=0; jk <=nlstate ; jk++)       Model is determined by parameters x and covariates have to be 
       pos += pp[jk];       included manually here. 
     for(jk=1; jk <=nlstate ; jk++){  
       if(pos>=1.e-5)       */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
       else    int i, j, d, h, k;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    double **out, cov[NCOVMAX];
       if( i <= (int) agemax){    double **newm;
         if(pos>=1.e-5){  
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    /* Hstepm could be zero and should return the unit matrix */
           probs[i][jk][j1]= pp[jk]/pos;    for (i=1;i<=nlstate+ndeath;i++)
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      for (j=1;j<=nlstate+ndeath;j++){
         }        oldm[i][j]=(i==j ? 1.0 : 0.0);
       else        po[i][j][0]=(i==j ? 1.0 : 0.0);
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      }
       }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(h=1; h <=nhstepm; h++){
     for(jk=-1; jk <=nlstate+ndeath; jk++)      for(d=1; d <=hstepm; d++){
       for(m=-1; m <=nlstate+ndeath; m++)        newm=savm;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        /* Covariates have to be included here again */
     if(i <= (int) agemax)        cov[1]=1.;
       fprintf(ficresp,"\n");        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     printf("\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }        for (k=1; k<=cptcovage;k++)
     }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
  }        for (k=1; k<=cptcovprod;k++)
   dateintmean=dateintsum/k2cpt;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   free_vector(pp,1,nlstate);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   /* End of Freq */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
 }        savm=oldm;
         oldm=newm;
 /************ Prevalence ********************/      }
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      for(i=1; i<=nlstate+ndeath; i++)
 {  /* Some frequencies */        for(j=1;j<=nlstate+ndeath;j++) {
            po[i][j][h]=newm[i][j];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   double ***freq; /* Frequencies */           */
   double *pp;        }
   double pos, k2;    } /* end h */
     return po;
   pp=vector(1,nlstate);  }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*************** log-likelihood *************/
   j1=0;  double func( double *x)
    {
   j=cptcoveff;    int i, ii, j, k, mi, d, kk;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      double **out;
  for(k1=1; k1<=j;k1++){    double sw; /* Sum of weights */
     for(i1=1; i1<=ncodemax[k1];i1++){    double lli; /* Individual log likelihood */
       j1++;    int s1, s2;
      double bbh, survp;
       for (i=-1; i<=nlstate+ndeath; i++)      long ipmx;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      /*extern weight */
           for(m=agemin; m <= agemax+3; m++)    /* We are differentiating ll according to initial status */
             freq[i][jk][m]=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
          /*for(i=1;i<imx;i++) 
       for (i=1; i<=imx; i++) {      printf(" %d\n",s[4][i]);
         bool=1;    */
         if  (cptcovn>0) {    cov[1]=1.;
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    for(k=1; k<=nlstate; k++) ll[k]=0.;
               bool=0;  
         }    if(mle==1){
         if (bool==1) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=firstpass; m<=lastpass; m++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             k2=anint[m][i]+(mint[m][i]/12.);        for(mi=1; mi<= wav[i]-1; mi++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          for (ii=1;ii<=nlstate+ndeath;ii++)
               if(agev[m][i]==0) agev[m][i]=agemax+1;            for (j=1;j<=nlstate+ndeath;j++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];              }
             }          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(i=(int)agemin; i <= (int)agemax+3; i++){            }
           for(jk=1; jk <=nlstate ; jk++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               pp[jk] += freq[jk][m][i];            savm=oldm;
           }            oldm=newm;
           for(jk=1; jk <=nlstate ; jk++){          } /* end mult */
             for(m=-1, pos=0; m <=0 ; m++)        
             pos += freq[jk][m][i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         }          /* But now since version 0.9 we anticipate for bias at large stepm.
                   * If stepm is larger than one month (smallest stepm) and if the exact delay 
          for(jk=1; jk <=nlstate ; jk++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           * the nearest (and in case of equal distance, to the lowest) interval but now
              pp[jk] += freq[jk][m][i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                     * probability in order to take into account the bias as a fraction of the way
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
          for(jk=1; jk <=nlstate ; jk++){                     * For stepm=1 the results are the same as for previous versions of Imach.
            if( i <= (int) agemax){           * For stepm > 1 the results are less biased than in previous versions. 
              if(pos>=1.e-5){           */
                probs[i][jk][j1]= pp[jk]/pos;          s1=s[mw[mi][i]][i];
              }          s2=s[mw[mi+1][i]][i];
            }          bbh=(double)bh[mi][i]/(double)stepm; 
          }          /* bias bh is positive if real duration
                     * is higher than the multiple of stepm and negative otherwise.
         }           */
     }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   }          if( s2 > nlstate){ 
              /* i.e. if s2 is a death state and if the date of death is known 
                 then the contribution to the likelihood is the probability to 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);               die between last step unit time and current  step unit time, 
   free_vector(pp,1,nlstate);               which is also equal to probability to die before dh 
                 minus probability to die before dh-stepm . 
 }  /* End of Freq */               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
 /************* Waves Concatenation ***************/          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          to consider that at each interview the state was recorded
 {          (healthy, disable or death) and IMaCh was corrected; but when we
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          introduced the exact date of death then we should have modified
      Death is a valid wave (if date is known).          the contribution of an exact death to the likelihood. This new
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          contribution is smaller and very dependent of the step unit
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          stepm. It is no more the probability to die between last interview
      and mw[mi+1][i]. dh depends on stepm.          and month of death but the probability to survive from last
      */          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
   int i, mi, m;          Jackson for correcting this bug.  Former versions increased
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          mortality artificially. The bad side is that we add another loop
      double sum=0., jmean=0.;*/          which slows down the processing. The difference can be up to 10%
           lower mortality.
   int j, k=0,jk, ju, jl;            */
   double sum=0.;            lli=log(out[s1][s2] - savm[s1][s2]);
   jmin=1e+5;  
   jmax=-1;  
   jmean=0.;          } else if  (s2==-2) {
   for(i=1; i<=imx; i++){            for (j=1,survp=0. ; j<=nlstate; j++) 
     mi=0;              survp += out[s1][j];
     m=firstpass;            lli= survp;
     while(s[m][i] <= nlstate){          }
       if(s[m][i]>=1)          
         mw[++mi][i]=m;          else if  (s2==-4) {
       if(m >=lastpass)            for (j=3,survp=0. ; j<=nlstate; j++) 
         break;              survp += out[s1][j];
       else            lli= survp;
         m++;          }
     }/* end while */          
     if (s[m][i] > nlstate){          else if  (s2==-5) {
       mi++;     /* Death is another wave */            for (j=1,survp=0. ; j<=2; j++) 
       /* if(mi==0)  never been interviewed correctly before death */              survp += out[s1][j];
          /* Only death is a correct wave */            lli= survp;
       mw[mi][i]=m;          }
     }  
   
     wav[i]=mi;          else{
     if(mi==0)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   }          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   for(i=1; i<=imx; i++){          /*if(lli ==000.0)*/
     for(mi=1; mi<wav[i];mi++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       if (stepm <=0)          ipmx +=1;
         dh[mi][i]=1;          sw += weight[i];
       else{          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (s[mw[mi+1][i]][i] > nlstate) {        } /* end of wave */
           if (agedc[i] < 2*AGESUP) {      } /* end of individual */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    }  else if(mle==2){
           if(j==0) j=1;  /* Survives at least one month after exam */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           k=k+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (j >= jmax) jmax=j;        for(mi=1; mi<= wav[i]-1; mi++){
           if (j <= jmin) jmin=j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           sum=sum+j;            for (j=1;j<=nlstate+ndeath;j++){
           /* if (j<10) printf("j=%d num=%d ",j,i); */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         else{          for(d=0; d<=dh[mi][i]; d++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            newm=savm;
           k=k+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if (j >= jmax) jmax=j;            for (kk=1; kk<=cptcovage;kk++) {
           else if (j <= jmin)jmin=j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            }
           sum=sum+j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         jk= j/stepm;            savm=oldm;
         jl= j -jk*stepm;            oldm=newm;
         ju= j -(jk+1)*stepm;          } /* end mult */
         if(jl <= -ju)        
           dh[mi][i]=jk;          s1=s[mw[mi][i]][i];
         else          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=jk+1;          bbh=(double)bh[mi][i]/(double)stepm; 
         if(dh[mi][i]==0)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           dh[mi][i]=1; /* At least one step */          ipmx +=1;
       }          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   jmean=sum/k;      } /* end of individual */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    }  else if(mle==3){  /* exponential inter-extrapolation */
  }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*********** Tricode ****************************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void tricode(int *Tvar, int **nbcode, int imx)        for(mi=1; mi<= wav[i]-1; mi++){
 {          for (ii=1;ii<=nlstate+ndeath;ii++)
   int Ndum[20],ij=1, k, j, i;            for (j=1;j<=nlstate+ndeath;j++){
   int cptcode=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   cptcoveff=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   for (k=0; k<19; k++) Ndum[k]=0;          for(d=0; d<dh[mi][i]; d++){
   for (k=1; k<=7; k++) ncodemax[k]=0;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            for (kk=1; kk<=cptcovage;kk++) {
     for (i=1; i<=imx; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       ij=(int)(covar[Tvar[j]][i]);            }
       Ndum[ij]++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (ij > cptcode) cptcode=ij;            savm=oldm;
     }            oldm=newm;
           } /* end mult */
     for (i=0; i<=cptcode; i++) {        
       if(Ndum[i]!=0) ncodemax[j]++;          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
     ij=1;          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
     for (i=1; i<=ncodemax[j]; i++) {          sw += weight[i];
       for (k=0; k<=19; k++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (Ndum[k] != 0) {        } /* end of wave */
           nbcode[Tvar[j]][ij]=k;      } /* end of individual */
           ij++;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if (ij > ncodemax[j]) break;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }          for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
   }              for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (k=0; k<19; k++) Ndum[k]=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
  for (i=1; i<=ncovmodel-2; i++) {          for(d=0; d<dh[mi][i]; d++){
       ij=Tvar[i];            newm=savm;
       Ndum[ij]++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  ij=1;            }
  for (i=1; i<=10; i++) {          
    if((Ndum[i]!=0) && (i<=ncov)){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Tvaraff[ij]=i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      ij++;            savm=oldm;
    }            oldm=newm;
  }          } /* end mult */
          
     cptcoveff=ij-1;          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
 /*********** Health Expectancies ****************/            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 {          }
   /* Health expectancies */          ipmx +=1;
   int i, j, nhstepm, hstepm, h;          sw += weight[i];
   double age, agelim,hf;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***p3mat;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          } /* end of wave */
   fprintf(ficreseij,"# Health expectancies\n");      } /* end of individual */
   fprintf(ficreseij,"# Age");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(j=1; j<=nlstate;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficreseij," %1d-%1d",i,j);        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficreseij,"\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   hstepm=1*YEARM; /*  Every j years of age (in month) */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   agelim=AGESUP;          for(d=0; d<dh[mi][i]; d++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            newm=savm;
     /* nhstepm age range expressed in number of stepm */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);            for (kk=1; kk<=cptcovage;kk++) {
     /* Typically if 20 years = 20*12/6=40 stepm */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (stepm >= YEARM) hstepm=1;            }
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     /* Computed by stepm unit matrices, product of hstepm matrices, stored                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            savm=oldm;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              oldm=newm;
           } /* end mult */
         
     for(i=1; i<=nlstate;i++)          s1=s[mw[mi][i]][i];
       for(j=1; j<=nlstate;j++)          s2=s[mw[mi+1][i]][i];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           eij[i][j][(int)age] +=p3mat[i][j][h];          ipmx +=1;
         }          sw += weight[i];
              ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     hf=1;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     if (stepm >= YEARM) hf=stepm/YEARM;        } /* end of wave */
     fprintf(ficreseij,"%.0f",age );      } /* end of individual */
     for(i=1; i<=nlstate;i++)    } /* End of if */
       for(j=1; j<=nlstate;j++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     fprintf(ficreseij,"\n");    return -l;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
   }  
 }  /*************** log-likelihood *************/
   double funcone( double *x)
 /************ Variance ******************/  {
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    /* Same as likeli but slower because of a lot of printf and if */
 {    int i, ii, j, k, mi, d, kk;
   /* Variance of health expectancies */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double **out;
   double **newm;    double lli; /* Individual log likelihood */
   double **dnewm,**doldm;    double llt;
   int i, j, nhstepm, hstepm, h;    int s1, s2;
   int k, cptcode;    double bbh, survp;
   double *xp;    /*extern weight */
   double **gp, **gm;    /* We are differentiating ll according to initial status */
   double ***gradg, ***trgradg;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double ***p3mat;    /*for(i=1;i<imx;i++) 
   double age,agelim;      printf(" %d\n",s[4][i]);
   int theta;    */
     cov[1]=1.;
    fprintf(ficresvij,"# Covariances of life expectancies\n");  
   fprintf(ficresvij,"# Age");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficresvij,"\n");      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
   xp=vector(1,npar);          for (j=1;j<=nlstate+ndeath;j++){
   dnewm=matrix(1,nlstate,1,npar);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate,1,nlstate);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
            }
   hstepm=1*YEARM; /* Every year of age */        for(d=0; d<dh[mi][i]; d++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          newm=savm;
   agelim = AGESUP;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for (kk=1; kk<=cptcovage;kk++) {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (stepm >= YEARM) hstepm=1;          }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          savm=oldm;
     gp=matrix(0,nhstepm,1,nlstate);          oldm=newm;
     gm=matrix(0,nhstepm,1,nlstate);        } /* end mult */
         
     for(theta=1; theta <=npar; theta++){        s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */        s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        bbh=(double)bh[mi][i]/(double)stepm; 
       }        /* bias is positive if real duration
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);           * is higher than the multiple of stepm and negative otherwise.
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
       if (popbased==1) {          lli=log(out[s1][s2] - savm[s1][s2]);
         for(i=1; i<=nlstate;i++)        } else if (mle==1){
           prlim[i][i]=probs[(int)age][i][ij];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }        } else if(mle==2){
                lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(j=1; j<= nlstate; j++){        } else if(mle==3){  /* exponential inter-extrapolation */
         for(h=0; h<=nhstepm; h++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          lli=log(out[s1][s2]); /* Original formula */
         }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       }          lli=log(out[s1][s2]); /* Original formula */
            } /* End of if */
       for(i=1; i<=npar; i++) /* Computes gradient */        ipmx +=1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        sw += weight[i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
       if (popbased==1) {          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         for(i=1; i<=nlstate;i++)   %10.6f %10.6f %10.6f ", \
           prlim[i][i]=probs[(int)age][i][ij];                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for(j=1; j<= nlstate; j++){            llt +=ll[k]*gipmx/gsw;
         for(h=0; h<=nhstepm; h++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          fprintf(ficresilk," %10.6f\n", -llt);
         }        }
       }      } /* end of wave */
     } /* end of individual */
       for(j=1; j<= nlstate; j++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for(h=0; h<=nhstepm; h++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         }    if(globpr==0){ /* First time we count the contributions and weights */
     } /* End theta */      gipmx=ipmx;
       gsw=sw;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    }
     return -l;
     for(h=0; h<=nhstepm; h++)  }
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     for(i=1;i<=nlstate;i++)  {
       for(j=1;j<=nlstate;j++)    /* This routine should help understanding what is done with 
         vareij[i][j][(int)age] =0.;       the selection of individuals/waves and
     for(h=0;h<=nhstepm;h++){       to check the exact contribution to the likelihood.
       for(k=0;k<=nhstepm;k++){       Plotting could be done.
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);     */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    int k;
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)    if(*globpri !=0){ /* Just counts and sums, no printings */
             vareij[i][j][(int)age] += doldm[i][j];      strcpy(fileresilk,"ilk"); 
       }      strcat(fileresilk,fileres);
     }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     h=1;        printf("Problem with resultfile: %s\n", fileresilk);
     if (stepm >= YEARM) h=stepm/YEARM;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     fprintf(ficresvij,"%.0f ",age );      }
     for(i=1; i<=nlstate;i++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       for(j=1; j<=nlstate;j++){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       }      for(k=1; k<=nlstate; k++) 
     fprintf(ficresvij,"\n");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     free_matrix(gp,0,nhstepm,1,nlstate);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     free_matrix(gm,0,nhstepm,1,nlstate);    }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    *fretone=(*funcone)(p);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(*globpri !=0){
   } /* End age */      fclose(ficresilk);
        fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   free_vector(xp,1,npar);      fflush(fichtm); 
   free_matrix(doldm,1,nlstate,1,npar);    } 
   free_matrix(dnewm,1,nlstate,1,nlstate);    return;
   }
 }  
   
 /************ Variance of prevlim ******************/  /*********** Maximum Likelihood Estimation ***************/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   /* Variance of prevalence limit */  {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int i,j, iter;
   double **newm;    double **xi;
   double **dnewm,**doldm;    double fret;
   int i, j, nhstepm, hstepm;    double fretone; /* Only one call to likelihood */
   int k, cptcode;    /*  char filerespow[FILENAMELENGTH];*/
   double *xp;    xi=matrix(1,npar,1,npar);
   double *gp, *gm;    for (i=1;i<=npar;i++)
   double **gradg, **trgradg;      for (j=1;j<=npar;j++)
   double age,agelim;        xi[i][j]=(i==j ? 1.0 : 0.0);
   int theta;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
        strcpy(filerespow,"pow"); 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    strcat(filerespow,fileres);
   fprintf(ficresvpl,"# Age");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   for(i=1; i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficresvpl," %1d-%1d",i,i);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   fprintf(ficresvpl,"\n");    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
   xp=vector(1,npar);    for (i=1;i<=nlstate;i++)
   dnewm=matrix(1,nlstate,1,npar);      for(j=1;j<=nlstate+ndeath;j++)
   doldm=matrix(1,nlstate,1,nlstate);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      fprintf(ficrespow,"\n");
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    powell(p,xi,npar,ftol,&iter,&fret,func);
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    free_matrix(xi,1,npar,1,npar);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fclose(ficrespow);
     if (stepm >= YEARM) hstepm=1;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     gradg=matrix(1,npar,1,nlstate);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);  }
   
     for(theta=1; theta <=npar; theta++){  /**** Computes Hessian and covariance matrix ***/
       for(i=1; i<=npar; i++){ /* Computes gradient */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  {
       }    double  **a,**y,*x,pd;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double **hess;
       for(i=1;i<=nlstate;i++)    int i, j,jk;
         gp[i] = prlim[i][i];    int *indx;
      
       for(i=1; i<=npar; i++) /* Computes gradient */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(i=1;i<=nlstate;i++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
         gm[i] = prlim[i][i];    double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    printf("\nCalculation of the hessian matrix. Wait...\n");
     } /* End theta */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
     trgradg =matrix(1,nlstate,1,npar);      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
     for(j=1; j<=nlstate;j++)     
       for(theta=1; theta <=npar; theta++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         trgradg[j][theta]=gradg[theta][j];      
       /*  printf(" %f ",p[i]);
     for(i=1;i<=nlstate;i++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       varpl[i][(int)age] =0.;    }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    for (i=1;i<=npar;i++) {
     for(i=1;i<=nlstate;i++)      for (j=1;j<=npar;j++)  {
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
     fprintf(ficresvpl,"%.0f ",age );          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     for(i=1; i<=nlstate;i++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          
     fprintf(ficresvpl,"\n");          hess[j][i]=hess[i][j];    
     free_vector(gp,1,nlstate);          /*printf(" %lf ",hess[i][j]);*/
     free_vector(gm,1,nlstate);        }
     free_matrix(gradg,1,npar,1,nlstate);      }
     free_matrix(trgradg,1,nlstate,1,npar);    }
   } /* End age */    printf("\n");
     fprintf(ficlog,"\n");
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
 }    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
 /************ Variance of one-step probabilities  ******************/    x=vector(1,npar);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    indx=ivector(1,npar);
 {    for (i=1;i<=npar;i++)
   int i, j;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   int k=0, cptcode;    ludcmp(a,npar,indx,&pd);
   double **dnewm,**doldm;  
   double *xp;    for (j=1;j<=npar;j++) {
   double *gp, *gm;      for (i=1;i<=npar;i++) x[i]=0;
   double **gradg, **trgradg;      x[j]=1;
   double age,agelim, cov[NCOVMAX];      lubksb(a,npar,indx,x);
   int theta;      for (i=1;i<=npar;i++){ 
   char fileresprob[FILENAMELENGTH];        matcov[i][j]=x[i];
       }
   strcpy(fileresprob,"prob");    }
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    printf("\n#Hessian matrix#\n");
     printf("Problem with resultfile: %s\n", fileresprob);    fprintf(ficlog,"\n#Hessian matrix#\n");
   }    for (i=1;i<=npar;i++) { 
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);      for (j=1;j<=npar;j++) { 
          printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
   xp=vector(1,npar);      }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      printf("\n");
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      fprintf(ficlog,"\n");
      }
   cov[1]=1;  
   for (age=bage; age<=fage; age ++){    /* Recompute Inverse */
     cov[2]=age;    for (i=1;i<=npar;i++)
     gradg=matrix(1,npar,1,9);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     trgradg=matrix(1,9,1,npar);    ludcmp(a,npar,indx,&pd);
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    /*  printf("\n#Hessian matrix recomputed#\n");
      
     for(theta=1; theta <=npar; theta++){    for (j=1;j<=npar;j++) {
       for(i=1; i<=npar; i++)      for (i=1;i<=npar;i++) x[i]=0;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      x[j]=1;
            lubksb(a,npar,indx,x);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      for (i=1;i<=npar;i++){ 
            y[i][j]=x[i];
       k=0;        printf("%.3e ",y[i][j]);
       for(i=1; i<= (nlstate+ndeath); i++){        fprintf(ficlog,"%.3e ",y[i][j]);
         for(j=1; j<=(nlstate+ndeath);j++){      }
            k=k+1;      printf("\n");
           gp[k]=pmmij[i][j];      fprintf(ficlog,"\n");
         }    }
       }    */
   
       for(i=1; i<=npar; i++)    free_matrix(a,1,npar,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_matrix(y,1,npar,1,npar);
        free_vector(x,1,npar);
     free_ivector(indx,1,npar);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    free_matrix(hess,1,npar,1,npar);
       k=0;  
       for(i=1; i<=(nlstate+ndeath); i++){  
         for(j=1; j<=(nlstate+ndeath);j++){  }
           k=k+1;  
           gm[k]=pmmij[i][j];  /*************** hessian matrix ****************/
         }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       }  {
          int i;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    int l=1, lmax=20;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      double k1,k2;
     }    double p2[NPARMAX+1];
     double res;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(theta=1; theta <=npar; theta++)    double fx;
       trgradg[j][theta]=gradg[theta][j];    int k=0,kmax=10;
      double l1;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);  
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
      pmij(pmmij,cov,ncovmodel,x,nlstate);    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
      k=0;      delts=delt;
      for(i=1; i<=(nlstate+ndeath); i++){      for(k=1 ; k <kmax; k=k+1){
        for(j=1; j<=(nlstate+ndeath);j++){        delt = delta*(l1*k);
          k=k+1;        p2[theta]=x[theta] +delt;
          gm[k]=pmmij[i][j];        k1=func(p2)-fx;
         }        p2[theta]=x[theta]-delt;
      }        k2=func(p2)-fx;
              /*res= (k1-2.0*fx+k2)/delt/delt; */
      /*printf("\n%d ",(int)age);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        
          #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      }*/  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   fprintf(ficresprob,"\n%d ",(int)age);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        }
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          k=kmax; l=lmax*10.;
   }        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          delts=delt;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    }
 }    delti[theta]=delts;
  free_vector(xp,1,npar);    return res; 
 fclose(ficresprob);    
  exit(0);  }
 }  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 /***********************************************/  {
 /**************** Main Program *****************/    int i;
 /***********************************************/    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
 /*int main(int argc, char *argv[])*/    double p2[NPARMAX+1];
 int main()    int k;
 {  
     fx=func(x);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    for (k=1; k<=2; k++) {
   double agedeb, agefin,hf;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double agemin=1.e20, agemax=-1.e20;      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double fret;      k1=func(p2)-fx;
   double **xi,tmp,delta;    
       p2[thetai]=x[thetai]+delti[thetai]/k;
   double dum; /* Dummy variable */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double ***p3mat;      k2=func(p2)-fx;
   int *indx;    
   char line[MAXLINE], linepar[MAXLINE];      p2[thetai]=x[thetai]-delti[thetai]/k;
   char title[MAXLINE];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];      k3=func(p2)-fx;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];    
   char filerest[FILENAMELENGTH];      p2[thetai]=x[thetai]-delti[thetai]/k;
   char fileregp[FILENAMELENGTH];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   char popfile[FILENAMELENGTH];      k4=func(p2)-fx;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   int firstobs=1, lastobs=10;  #ifdef DEBUG
   int sdeb, sfin; /* Status at beginning and end */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int c,  h , cpt,l;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int ju,jl, mi;  #endif
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    return res;
   int mobilav=0,popforecast=0;  }
   int hstepm, nhstepm;  
   int *popage;/*boolprev=0 if date and zero if wave*/  /************** Inverse of matrix **************/
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
   double bage, fage, age, agelim, agebase;    int i,imax,j,k; 
   double ftolpl=FTOL;    double big,dum,sum,temp; 
   double **prlim;    double *vv; 
   double *severity;   
   double ***param; /* Matrix of parameters */    vv=vector(1,n); 
   double  *p;    *d=1.0; 
   double **matcov; /* Matrix of covariance */    for (i=1;i<=n;i++) { 
   double ***delti3; /* Scale */      big=0.0; 
   double *delti; /* Scale */      for (j=1;j<=n;j++) 
   double ***eij, ***vareij;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   double **varpl; /* Variances of prevalence limits by age */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double *epj, vepp;      vv[i]=1.0/big; 
   double kk1, kk2;    } 
   double *popeffectif,*popcount;    for (j=1;j<=n;j++) { 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;      for (i=1;i<j;i++) { 
   double yp,yp1,yp2;        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";        a[i][j]=sum; 
   char *alph[]={"a","a","b","c","d","e"}, str[4];      } 
       big=0.0; 
       for (i=j;i<=n;i++) { 
   char z[1]="c", occ;        sum=a[i][j]; 
 #include <sys/time.h>        for (k=1;k<j;k++) 
 #include <time.h>          sum -= a[i][k]*a[k][j]; 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        a[i][j]=sum; 
          if ( (dum=vv[i]*fabs(sum)) >= big) { 
   /* long total_usecs;          big=dum; 
   struct timeval start_time, end_time;          imax=i; 
          } 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      } 
       if (j != imax) { 
         for (k=1;k<=n;k++) { 
   printf("\nIMACH, Version 0.7");          dum=a[imax][k]; 
   printf("\nEnter the parameter file name: ");          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
 #ifdef windows        } 
   scanf("%s",pathtot);        *d = -(*d); 
   getcwd(pathcd, size);        vv[imax]=vv[j]; 
   /*cygwin_split_path(pathtot,path,optionfile);      } 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      indx[j]=imax; 
   /* cutv(path,optionfile,pathtot,'\\');*/      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
 split(pathtot, path,optionfile);        dum=1.0/(a[j][j]); 
   chdir(path);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   replace(pathc,path);      } 
 #endif    } 
 #ifdef unix    free_vector(vv,1,n);  /* Doesn't work */
   scanf("%s",optionfile);  ;
 #endif  } 
   
 /*-------- arguments in the command line --------*/  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
   strcpy(fileres,"r");    int i,ii=0,ip,j; 
   strcat(fileres, optionfile);    double sum; 
    
   /*---------arguments file --------*/    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      sum=b[ip]; 
     printf("Problem with optionfile %s\n",optionfile);      b[ip]=b[i]; 
     goto end;      if (ii) 
   }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
   strcpy(filereso,"o");      b[i]=sum; 
   strcat(filereso,fileres);    } 
   if((ficparo=fopen(filereso,"w"))==NULL) {    for (i=n;i>=1;i--) { 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      sum=b[i]; 
   }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
   /* Reads comments: lines beginning with '#' */    } 
   while((c=getc(ficpar))=='#' && c!= EOF){  } 
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  void pstamp(FILE *fichier)
     puts(line);  {
     fputs(line,ficparo);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }  }
   ungetc(c,ficpar);  
   /************ Frequencies ********************/
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  {  /* Some frequencies */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    
 while((c=getc(ficpar))=='#' && c!= EOF){    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     ungetc(c,ficpar);    int first;
     fgets(line, MAXLINE, ficpar);    double ***freq; /* Frequencies */
     puts(line);    double *pp, **prop;
     fputs(line,ficparo);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   }    char fileresp[FILENAMELENGTH];
   ungetc(c,ficpar);    
      pp=vector(1,nlstate);
        prop=matrix(1,nlstate,iagemin,iagemax+3);
   covar=matrix(0,NCOVMAX,1,n);    strcpy(fileresp,"p");
   cptcovn=0;    strcat(fileresp,fileres);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
   ncovmodel=2+cptcovn;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      exit(0);
      }
   /* Read guess parameters */    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   /* Reads comments: lines beginning with '#' */    j1=0;
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    j=cptcoveff;
     fgets(line, MAXLINE, ficpar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     puts(line);  
     fputs(line,ficparo);    first=1;
   }  
   ungetc(c,ficpar);    for(k1=1; k1<=j;k1++){
        for(i1=1; i1<=ncodemax[k1];i1++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        j1++;
     for(i=1; i <=nlstate; i++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     for(j=1; j <=nlstate+ndeath-1; j++){          scanf("%d", i);*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);        for (i=-5; i<=nlstate+ndeath; i++)  
       fprintf(ficparo,"%1d%1d",i1,j1);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       printf("%1d%1d",i,j);            for(m=iagemin; m <= iagemax+3; m++)
       for(k=1; k<=ncovmodel;k++){              freq[i][jk][m]=0;
         fscanf(ficpar," %lf",&param[i][j][k]);  
         printf(" %lf",param[i][j][k]);      for (i=1; i<=nlstate; i++)  
         fprintf(ficparo," %lf",param[i][j][k]);        for(m=iagemin; m <= iagemax+3; m++)
       }          prop[i][m]=0;
       fscanf(ficpar,"\n");        
       printf("\n");        dateintsum=0;
       fprintf(ficparo,"\n");        k2cpt=0;
     }        for (i=1; i<=imx; i++) {
            bool=1;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   p=param[1][1];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
   /* Reads comments: lines beginning with '#' */          }
   while((c=getc(ficpar))=='#' && c!= EOF){          if (bool==1){
     ungetc(c,ficpar);            for(m=firstpass; m<=lastpass; m++){
     fgets(line, MAXLINE, ficpar);              k2=anint[m][i]+(mint[m][i]/12.);
     puts(line);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     fputs(line,ficparo);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   ungetc(c,ficpar);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   for(i=1; i <=nlstate; i++){                }
     for(j=1; j <=nlstate+ndeath-1; j++){                
       fscanf(ficpar,"%1d%1d",&i1,&j1);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       printf("%1d%1d",i,j);                  dateintsum=dateintsum+k2;
       fprintf(ficparo,"%1d%1d",i1,j1);                  k2cpt++;
       for(k=1; k<=ncovmodel;k++){                }
         fscanf(ficpar,"%le",&delti3[i][j][k]);                /*}*/
         printf(" %le",delti3[i][j][k]);            }
         fprintf(ficparo," %le",delti3[i][j][k]);          }
       }        }
       fscanf(ficpar,"\n");         
       printf("\n");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       fprintf(ficparo,"\n");        pstamp(ficresp);
     }        if  (cptcovn>0) {
   }          fprintf(ficresp, "\n#********** Variable "); 
   delti=delti3[1][1];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresp, "**********\n#");
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=nlstate;i++) 
     ungetc(c,ficpar);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fgets(line, MAXLINE, ficpar);        fprintf(ficresp, "\n");
     puts(line);        
     fputs(line,ficparo);        for(i=iagemin; i <= iagemax+3; i++){
   }          if(i==iagemax+3){
   ungetc(c,ficpar);            fprintf(ficlog,"Total");
            }else{
   matcov=matrix(1,npar,1,npar);            if(first==1){
   for(i=1; i <=npar; i++){              first=0;
     fscanf(ficpar,"%s",&str);              printf("See log file for details...\n");
     printf("%s",str);            }
     fprintf(ficparo,"%s",str);            fprintf(ficlog,"Age %d", i);
     for(j=1; j <=i; j++){          }
       fscanf(ficpar," %le",&matcov[i][j]);          for(jk=1; jk <=nlstate ; jk++){
       printf(" %.5le",matcov[i][j]);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       fprintf(ficparo," %.5le",matcov[i][j]);              pp[jk] += freq[jk][m][i]; 
     }          }
     fscanf(ficpar,"\n");          for(jk=1; jk <=nlstate ; jk++){
     printf("\n");            for(m=-1, pos=0; m <=0 ; m++)
     fprintf(ficparo,"\n");              pos += freq[jk][m][i];
   }            if(pp[jk]>=1.e-10){
   for(i=1; i <=npar; i++)              if(first==1){
     for(j=i+1;j<=npar;j++)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       matcov[i][j]=matcov[j][i];              }
                  fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   printf("\n");            }else{
               if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     /*-------- data file ----------*/              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     if((ficres =fopen(fileres,"w"))==NULL) {            }
       printf("Problem with resultfile: %s\n", fileres);goto end;          }
     }  
     fprintf(ficres,"#%s\n",version);          for(jk=1; jk <=nlstate ; jk++){
                for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     if((fic=fopen(datafile,"r"))==NULL)    {              pp[jk] += freq[jk][m][i];
       printf("Problem with datafile: %s\n", datafile);goto end;          }       
     }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
     n= lastobs;            posprop += prop[jk][i];
     severity = vector(1,maxwav);          }
     outcome=imatrix(1,maxwav+1,1,n);          for(jk=1; jk <=nlstate ; jk++){
     num=ivector(1,n);            if(pos>=1.e-5){
     moisnais=vector(1,n);              if(first==1)
     annais=vector(1,n);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     moisdc=vector(1,n);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     andc=vector(1,n);            }else{
     agedc=vector(1,n);              if(first==1)
     cod=ivector(1,n);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     weight=vector(1,n);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            }
     mint=matrix(1,maxwav,1,n);            if( i <= iagemax){
     anint=matrix(1,maxwav,1,n);              if(pos>=1.e-5){
     s=imatrix(1,maxwav+1,1,n);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     adl=imatrix(1,maxwav+1,1,n);                    /*probs[i][jk][j1]= pp[jk]/pos;*/
     tab=ivector(1,NCOVMAX);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     ncodemax=ivector(1,8);              }
               else
     i=1;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     while (fgets(line, MAXLINE, fic) != NULL)    {            }
       if ((i >= firstobs) && (i <=lastobs)) {          }
                  
         for (j=maxwav;j>=1;j--){          for(jk=-1; jk <=nlstate+ndeath; jk++)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            for(m=-1; m <=nlstate+ndeath; m++)
           strcpy(line,stra);              if(freq[jk][m][i] !=0 ) {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              if(first==1)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                      }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          if(i <= iagemax)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficresp,"\n");
           if(first==1)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            printf("Others in log...\n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficlog,"\n");
         }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      }
         for (j=ncov;j>=1;j--){    }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    dateintmean=dateintsum/k2cpt; 
         }   
         num[i]=atol(stra);    fclose(ficresp);
            free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    free_vector(pp,1,nlstate);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
         i=i+1;  }
       }  
     }  /************ Prevalence ********************/
     /* printf("ii=%d", ij);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
        scanf("%d",i);*/  {  
   imx=i-1; /* Number of individuals */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
   /* for (i=1; i<=imx; i++){       We still use firstpass and lastpass as another selection.
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;   
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     }    double ***freq; /* Frequencies */
     double *pp, **prop;
     for (i=1; i<=imx; i++)    double pos,posprop; 
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    double  y2; /* in fractional years */
     int iagemin, iagemax;
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);    iagemin= (int) agemin;
   Tprod=ivector(1,15);    iagemax= (int) agemax;
   Tvaraff=ivector(1,15);    /*pp=vector(1,nlstate);*/
   Tvard=imatrix(1,15,1,2);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   Tage=ivector(1,15);          /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
        j1=0;
   if (strlen(model) >1){    
     j=0, j1=0, k1=1, k2=1;    j=cptcoveff;
     j=nbocc(model,'+');    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     j1=nbocc(model,'*');    
     cptcovn=j+1;    for(k1=1; k1<=j;k1++){
     cptcovprod=j1;      for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
            
     strcpy(modelsav,model);        for (i=1; i<=nlstate; i++)  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          for(m=iagemin; m <= iagemax+3; m++)
       printf("Error. Non available option model=%s ",model);            prop[i][m]=0.0;
       goto end;       
     }        for (i=1; i<=imx; i++) { /* Each individual */
              bool=1;
     for(i=(j+1); i>=1;i--){          if  (cptcovn>0) {
       cutv(stra,strb,modelsav,'+');            for (z1=1; z1<=cptcoveff; z1++) 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                bool=0;
       /*scanf("%d",i);*/          } 
       if (strchr(strb,'*')) {          if (bool==1) { 
         cutv(strd,strc,strb,'*');            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         if (strcmp(strc,"age")==0) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           cptcovprod--;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           cutv(strb,stre,strd,'V');                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           Tvar[i]=atoi(stre);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           cptcovage++;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             Tage[cptcovage]=i;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             /*printf("stre=%s ", stre);*/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         else if (strcmp(strd,"age")==0) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
           cptcovprod--;                } 
           cutv(strb,stre,strc,'V');              }
           Tvar[i]=atoi(stre);            } /* end selection of waves */
           cptcovage++;          }
           Tage[cptcovage]=i;        }
         }        for(i=iagemin; i <= iagemax+3; i++){  
         else {          
           cutv(strb,stre,strc,'V');          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           Tvar[i]=ncov+k1;            posprop += prop[jk][i]; 
           cutv(strb,strc,strd,'V');          } 
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc);          for(jk=1; jk <=nlstate ; jk++){     
           Tvard[k1][2]=atoi(stre);            if( i <=  iagemax){ 
           Tvar[cptcovn+k2]=Tvard[k1][1];              if(posprop>=1.e-5){ 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                probs[i][jk][j1]= prop[jk][i]/posprop;
           for (k=1; k<=lastobs;k++)              } 
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            } 
           k1++;          }/* end jk */ 
           k2=k2+2;        }/* end i */ 
         }      } /* end i1 */
       }    } /* end k1 */
       else {    
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
        /*  scanf("%d",i);*/    /*free_vector(pp,1,nlstate);*/
       cutv(strd,strc,strb,'V');    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       Tvar[i]=atoi(strc);  }  /* End of prevalence */
       }  
       strcpy(modelsav,stra);    /************* Waves Concatenation ***************/
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     }  {
 }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         Death is a valid wave (if date is known).
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   printf("cptcovprod=%d ", cptcovprod);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   scanf("%d ",i);*/       and mw[mi+1][i]. dh depends on stepm.
     fclose(fic);       */
   
     /*  if(mle==1){*/    int i, mi, m;
     if (weightopt != 1) { /* Maximisation without weights*/    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       for(i=1;i<=n;i++) weight[i]=1.0;       double sum=0., jmean=0.;*/
     }    int first;
     /*-calculation of age at interview from date of interview and age at death -*/    int j, k=0,jk, ju, jl;
     agev=matrix(1,maxwav,1,imx);    double sum=0.;
     first=0;
    for (i=1; i<=imx; i++)    jmin=1e+5;
      for(m=2; (m<= maxwav); m++)    jmax=-1;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    jmean=0.;
          anint[m][i]=9999;    for(i=1; i<=imx; i++){
          s[m][i]=-1;      mi=0;
        }      m=firstpass;
          while(s[m][i] <= nlstate){
     for (i=1; i<=imx; i++)  {        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          mw[++mi][i]=m;
       for(m=1; (m<= maxwav); m++){        if(m >=lastpass)
         if(s[m][i] >0){          break;
           if (s[m][i] == nlstate+1) {        else
             if(agedc[i]>0)          m++;
               if(moisdc[i]!=99 && andc[i]!=9999)      }/* end while */
               agev[m][i]=agedc[i];      if (s[m][i] > nlstate){
             else {        mi++;     /* Death is another wave */
               if (andc[i]!=9999){        /* if(mi==0)  never been interviewed correctly before death */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);           /* Only death is a correct wave */
               agev[m][i]=-1;        mw[mi][i]=m;
               }      }
             }  
           }      wav[i]=mi;
           else if(s[m][i] !=9){ /* Should no more exist */      if(mi==0){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        nbwarn++;
             if(mint[m][i]==99 || anint[m][i]==9999)        if(first==0){
               agev[m][i]=1;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
             else if(agev[m][i] <agemin){          first=1;
               agemin=agev[m][i];        }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        if(first==1){
             }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
             else if(agev[m][i] >agemax){        }
               agemax=agev[m][i];      } /* end mi==0 */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    } /* End individuals */
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/    for(i=1; i<=imx; i++){
             /*   agev[m][i] = age[i]+2*m;*/      for(mi=1; mi<wav[i];mi++){
           }        if (stepm <=0)
           else { /* =9 */          dh[mi][i]=1;
             agev[m][i]=1;        else{
             s[m][i]=-1;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           }            if (agedc[i] < 2*AGESUP) {
         }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         else /*= 0 Unknown */              if(j==0) j=1;  /* Survives at least one month after exam */
           agev[m][i]=1;              else if(j<0){
       }                nberr++;
                    printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }                j=1; /* Temporary Dangerous patch */
     for (i=1; i<=imx; i++)  {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for(m=1; (m<= maxwav); m++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         if (s[m][i] > (nlstate+ndeath)) {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           printf("Error: Wrong value in nlstate or ndeath\n");                }
           goto end;              k=k+1;
         }              if (j >= jmax){
       }                jmax=j;
     }                ijmax=i;
               }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);              if (j <= jmin){
                 jmin=j;
     free_vector(severity,1,maxwav);                ijmin=i;
     free_imatrix(outcome,1,maxwav+1,1,n);              }
     free_vector(moisnais,1,n);              sum=sum+j;
     free_vector(annais,1,n);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     /* free_matrix(mint,1,maxwav,1,n);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
        free_matrix(anint,1,maxwav,1,n);*/            }
     free_vector(moisdc,1,n);          }
     free_vector(andc,1,n);          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            k=k+1;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            if (j >= jmax) {
                  jmax=j;
     /* Concatenates waves */              ijmax=i;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            }
             else if (j <= jmin){
               jmin=j;
       Tcode=ivector(1,100);              ijmin=i;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            }
       ncodemax[1]=1;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                  if(j<0){
    codtab=imatrix(1,100,1,10);              nberr++;
    h=0;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    m=pow(2,cptcoveff);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              }
    for(k=1;k<=cptcoveff; k++){            sum=sum+j;
      for(i=1; i <=(m/pow(2,k));i++){          }
        for(j=1; j <= ncodemax[k]; j++){          jk= j/stepm;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          jl= j -jk*stepm;
            h++;          ju= j -(jk+1)*stepm;
            if (h>m) h=1;codtab[h][k]=j;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
          }            if(jl==0){
        }              dh[mi][i]=jk;
      }              bh[mi][i]=0;
    }            }else{ /* We want a negative bias in order to only have interpolation ie
                        * at the price of an extra matrix product in likelihood */
    /* Calculates basic frequencies. Computes observed prevalence at single age              dh[mi][i]=jk+1;
        and prints on file fileres'p'. */              bh[mi][i]=ju;
             }
              }else{
                if(jl <= -ju){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              dh[mi][i]=jk;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              bh[mi][i]=jl;       /* bias is positive if real duration
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                                   * is higher than the multiple of stepm and negative otherwise.
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                                   */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            }
                  else{
     /* For Powell, parameters are in a vector p[] starting at p[1]              dh[mi][i]=jk+1;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              bh[mi][i]=ju;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            }
             if(dh[mi][i]==0){
     if(mle==1){              dh[mi][i]=1; /* At least one step */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              bh[mi][i]=ju; /* At least one step */
     }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                }
     /*--------- results files --------------*/          } /* end if mle */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);        }
        } /* end wave */
     }
    jk=1;    jmean=sum/k;
    fprintf(ficres,"# Parameters\n");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
    printf("# Parameters\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    for(i=1,jk=1; i <=nlstate; i++){   }
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)  /*********** Tricode ****************************/
          {  void tricode(int *Tvar, int **nbcode, int imx)
            printf("%d%d ",i,k);  {
            fprintf(ficres,"%1d%1d ",i,k);    
            for(j=1; j <=ncovmodel; j++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
              printf("%f ",p[jk]);    int cptcode=0;
              fprintf(ficres,"%f ",p[jk]);    cptcoveff=0; 
              jk++;   
            }    for (k=0; k<maxncov; k++) Ndum[k]=0;
            printf("\n");    for (k=1; k<=7; k++) ncodemax[k]=0;
            fprintf(ficres,"\n");  
          }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
      }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
    }                                 modality*/ 
  if(mle==1){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     /* Computing hessian and covariance matrix */        Ndum[ij]++; /*store the modality */
     ftolhess=ftol; /* Usually correct */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     hesscov(matcov, p, npar, delti, ftolhess, func);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
  }                                         Tvar[j]. If V=sex and male is 0 and 
     fprintf(ficres,"# Scales\n");                                         female is 1, then  cptcode=1.*/
     printf("# Scales\n");      }
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){      for (i=0; i<=cptcode; i++) {
         if (j!=i) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           fprintf(ficres,"%1d%1d",i,j);      }
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){      ij=1; 
             printf(" %.5e",delti[jk]);      for (i=1; i<=ncodemax[j]; i++) {
             fprintf(ficres," %.5e",delti[jk]);        for (k=0; k<= maxncov; k++) {
             jk++;          if (Ndum[k] != 0) {
           }            nbcode[Tvar[j]][ij]=k; 
           printf("\n");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           fprintf(ficres,"\n");            
         }            ij++;
       }          }
      }          if (ij > ncodemax[j]) break; 
            }  
     k=1;      } 
     fprintf(ficres,"# Covariance\n");    }  
     printf("# Covariance\n");  
     for(i=1;i<=npar;i++){   for (k=0; k< maxncov; k++) Ndum[k]=0;
       /*  if (k>nlstate) k=1;  
       i1=(i-1)/(ncovmodel*nlstate)+1;   for (i=1; i<=ncovmodel-2; i++) { 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       printf("%s%d%d",alph[k],i1,tab[i]);*/     ij=Tvar[i];
       fprintf(ficres,"%3d",i);     Ndum[ij]++;
       printf("%3d",i);   }
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);   ij=1;
         printf(" %.5e",matcov[i][j]);   for (i=1; i<= maxncov; i++) {
       }     if((Ndum[i]!=0) && (i<=ncovcol)){
       fprintf(ficres,"\n");       Tvaraff[ij]=i; /*For printing */
       printf("\n");       ij++;
       k++;     }
     }   }
       
     while((c=getc(ficpar))=='#' && c!= EOF){   cptcoveff=ij-1; /*Number of simple covariates*/
       ungetc(c,ficpar);  }
       fgets(line, MAXLINE, ficpar);  
       puts(line);  /*********** Health Expectancies ****************/
       fputs(line,ficparo);  
     }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     ungetc(c,ficpar);  
    {
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    /* Health expectancies, no variances */
        int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     if (fage <= 2) {    double age, agelim, hf;
       bage = agemin;    double ***p3mat;
       fage = agemax;    double eip;
     }  
     pstamp(ficreseij);
     fprintf(ficres,"# agemin agemax for life expectancy.\n");    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    for(i=1; i<=nlstate;i++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      for(j=1; j<=nlstate;j++){
          fprintf(ficreseij," e%1d%1d ",i,j);
     while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);      fprintf(ficreseij," e%1d. ",i);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    fprintf(ficreseij,"\n");
     fputs(line,ficparo);  
   }    
   ungetc(c,ficpar);    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);    }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    else  hstepm=estepm;   
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    /* We compute the life expectancy from trapezoids spaced every estepm months
           * This is mainly to measure the difference between two models: for example
   while((c=getc(ficpar))=='#' && c!= EOF){     * if stepm=24 months pijx are given only every 2 years and by summing them
     ungetc(c,ficpar);     * we are calculating an estimate of the Life Expectancy assuming a linear 
     fgets(line, MAXLINE, ficpar);     * progression in between and thus overestimating or underestimating according
     puts(line);     * to the curvature of the survival function. If, for the same date, we 
     fputs(line,ficparo);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   }     * to compare the new estimate of Life expectancy with the same linear 
   ungetc(c,ficpar);     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    /* For example we decided to compute the life expectancy with the smallest unit */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   fscanf(ficpar,"pop_based=%d\n",&popbased);       nstepm is the number of stepm from age to agelin. 
    fprintf(ficparo,"pop_based=%d\n",popbased);         Look at hpijx to understand the reason of that which relies in memory size
    fprintf(ficres,"pop_based=%d\n",popbased);         and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   while((c=getc(ficpar))=='#' && c!= EOF){       survival function given by stepm (the optimization length). Unfortunately it
     ungetc(c,ficpar);       means that if the survival funtion is printed only each two years of age and if
     fgets(line, MAXLINE, ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     puts(line);       results. So we changed our mind and took the option of the best precision.
     fputs(line,ficparo);    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   ungetc(c,ficpar);  
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);    agelim=AGESUP;
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    /* nhstepm age range expressed in number of stepm */
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  /*------------ gnuplot -------------*/    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 chdir(pathcd);  
   if((ficgp=fopen("graph.plt","w"))==NULL) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     printf("Problem with file graph.gp");goto end;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 #ifdef windows  
   fprintf(ficgp,"cd \"%s\" \n",pathc);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 #endif   
 m=pow(2,cptcoveff);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    
  /* 1eme*/      /* Computing  Variances of health expectancies */
   for (cpt=1; cpt<= nlstate ; cpt ++) {      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
    for (k1=1; k1<= m ; k1 ++) {         decrease memory allocation */
        printf("%d|",(int)age);fflush(stdout);
 #ifdef windows       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      /* Computing expectancies */
 #endif      for(i=1; i<=nlstate;i++)
 #ifdef unix        for(j=1; j<=nlstate;j++)
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 #endif            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
 for (i=1; i<= nlstate ; i ++) {  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficreseij,"%3.0f",age );
     for (i=1; i<= nlstate ; i ++) {      for(i=1; i<=nlstate;i++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        eip=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<=nlstate;j++){
 }          eip +=eij[i][j][(int)age];
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
      for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        fprintf(ficreseij,"%9.4f", eip );
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }        fprintf(ficreseij,"\n");
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix    }
 fprintf(ficgp,"\nset ter gif small size 400,300");    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #endif    printf("\n");
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    fprintf(ficlog,"\n");
    }  
   }  }
   /*2 eme*/  
   void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  {
        /* Covariances of health expectancies eij and of total life expectancies according
     for (i=1; i<= nlstate+1 ; i ++) {     to initial status i, ei. .
       k=2*i;    */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       for (j=1; j<= nlstate+1 ; j ++) {    double age, agelim, hf;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double ***p3matp, ***p3matm, ***varhe;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double **dnewm,**doldm;
 }      double *xp, *xm;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    double **gp, **gm;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    double ***gradg, ***trgradg;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    int theta;
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double eip, vip;
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       fprintf(ficgp,"\" t\"\" w l 0,");    xp=vector(1,npar);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    xm=vector(1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      pstamp(ficresstdeij);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       else fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficresstdeij,"# Age");
     }    for(i=1; i<=nlstate;i++){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      for(j=1; j<=nlstate;j++)
   }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
        fprintf(ficresstdeij," e%1d. ",i);
   /*3eme*/    }
     fprintf(ficresstdeij,"\n");
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {    pstamp(ficrescveij);
       k=2+nlstate*(cpt-1);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    fprintf(ficrescveij,"# Age");
       for (i=1; i< nlstate ; i ++) {    for(i=1; i<=nlstate;i++)
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      for(j=1; j<=nlstate;j++){
       }        cptj= (j-1)*nlstate+i;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for(i2=1; i2<=nlstate;i2++)
     }          for(j2=1; j2<=nlstate;j2++){
   }            cptj2= (j2-1)*nlstate+i2;
              if(cptj2 <= cptj)
   /* CV preval stat */              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   for (k1=1; k1<= m ; k1 ++) {          }
     for (cpt=1; cpt<nlstate ; cpt ++) {      }
       k=3;    fprintf(ficrescveij,"\n");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    
       for (i=1; i< nlstate ; i ++)    if(estepm < stepm){
         fprintf(ficgp,"+$%d",k+i+1);      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    }
          else  hstepm=estepm;   
       l=3+(nlstate+ndeath)*cpt;    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);     * This is mainly to measure the difference between two models: for example
       for (i=1; i< nlstate ; i ++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
         l=3+(nlstate+ndeath)*cpt;     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficgp,"+$%d",l+i+1);     * progression in between and thus overestimating or underestimating according
       }     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);     * to compare the new estimate of Life expectancy with the same linear 
     }     * hypothesis. A more precise result, taking into account a more precise
   }       * curvature will be obtained if estepm is as small as stepm. */
   
   /* proba elementaires */    /* For example we decided to compute the life expectancy with the smallest unit */
    for(i=1,jk=1; i <=nlstate; i++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for(k=1; k <=(nlstate+ndeath); k++){       nhstepm is the number of hstepm from age to agelim 
       if (k != i) {       nstepm is the number of stepm from age to agelin. 
         for(j=1; j <=ncovmodel; j++){       Look at hpijx to understand the reason of that which relies in memory size
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/       and note for a fixed period like estepm months */
           /*fprintf(ficgp,"%s",alph[1]);*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);       survival function given by stepm (the optimization length). Unfortunately it
           jk++;       means that if the survival funtion is printed only each two years of age and if
           fprintf(ficgp,"\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         }       results. So we changed our mind and took the option of the best precision.
       }    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }  
     /* If stepm=6 months */
   for(jk=1; jk <=m; jk++) {    /* nhstepm age range expressed in number of stepm */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    agelim=AGESUP;
    i=1;    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
    for(k2=1; k2<=nlstate; k2++) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      k3=i;    /* if (stepm >= YEARM) hstepm=1;*/
      for(k=1; k<=(nlstate+ndeath); k++) {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        if (k != k2){    
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 ij=1;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(j=3; j <=ncovmodel; j++) {    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
             ij++;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
           }  
           else    for (age=bage; age<=fage; age ++){ 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           fprintf(ficgp,")/(1");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           
         for(k1=1; k1 <=nlstate; k1++){        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
 ij=1;      /* Computing  Variances of health expectancies */
           for(j=3; j <=ncovmodel; j++){      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {         decrease memory allocation */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for(theta=1; theta <=npar; theta++){
             ij++;        for(i=1; i<=npar; i++){ 
           }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           else          xm[i] = x[i] - (i==theta ?delti[theta]:0);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }
           }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
           fprintf(ficgp,")");        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         }    
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        for(j=1; j<= nlstate; j++){
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          for(i=1; i<=nlstate; i++){
         i=i+ncovmodel;            for(h=0; h<=nhstepm-1; h++){
        }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
      }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
    }            }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          }
   }        }
           
   fclose(ficgp);        for(ij=1; ij<= nlstate*nlstate; ij++)
   /* end gnuplot */          for(h=0; h<=nhstepm-1; h++){
                gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 chdir(path);          }
          }/* End theta */
     free_ivector(wav,1,imx);      
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        for(h=0; h<=nhstepm-1; h++)
     free_ivector(num,1,n);        for(j=1; j<=nlstate*nlstate;j++)
     free_vector(agedc,1,n);          for(theta=1; theta <=npar; theta++)
     /*free_matrix(covar,1,NCOVMAX,1,n);*/            trgradg[h][j][theta]=gradg[h][theta][j];
     fclose(ficparo);      
     fclose(ficres);  
     /*  }*/       for(ij=1;ij<=nlstate*nlstate;ij++)
            for(ji=1;ji<=nlstate*nlstate;ji++)
    /*________fin mle=1_________*/          varhe[ij][ji][(int)age] =0.;
      
        printf("%d|",(int)age);fflush(stdout);
         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     /* No more information from the sample is required now */       for(h=0;h<=nhstepm-1;h++){
   /* Reads comments: lines beginning with '#' */        for(k=0;k<=nhstepm-1;k++){
   while((c=getc(ficpar))=='#' && c!= EOF){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     ungetc(c,ficpar);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     fgets(line, MAXLINE, ficpar);          for(ij=1;ij<=nlstate*nlstate;ij++)
     puts(line);            for(ji=1;ji<=nlstate*nlstate;ji++)
     fputs(line,ficparo);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   }        }
   ungetc(c,ficpar);      }
        /* Computing expectancies */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);      for(i=1; i<=nlstate;i++)
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        for(j=1; j<=nlstate;j++)
 /*--------- index.htm --------*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   strcpy(optionfilehtm,optionfile);            
   strcat(optionfilehtm,".htm");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm);goto end;          }
   }  
       fprintf(ficresstdeij,"%3.0f",age );
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">      for(i=1; i<=nlstate;i++){
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>        eip=0.;
 Total number of observations=%d <br>        vip=0.;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>        for(j=1; j<=nlstate;j++){
 <hr  size=\"2\" color=\"#EC5E5E\">          eip += eij[i][j][(int)age];
 <li>Outputs files<br><br>\n          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>        }
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      }
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      fprintf(ficresstdeij,"\n");
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>      fprintf(ficrescveij,"%3.0f",age );
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>      for(i=1; i<=nlstate;i++)
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>        for(j=1; j<=nlstate;j++){
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
  fprintf(fichtm," <li>Graphs</li><p>");            for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
  m=cptcoveff;              if(cptj2 <= cptj)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
  j1=0;        }
  for(k1=1; k1<=m;k1++){      fprintf(ficrescveij,"\n");
    for(i1=1; i1<=ncodemax[k1];i1++){     
        j1++;    }
        if (cptcovn > 0) {    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
          for (cpt=1; cpt<=cptcoveff;cpt++)    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    printf("\n");
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        fprintf(ficlog,"\n");
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    free_vector(xm,1,npar);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    free_vector(xp,1,npar);
        }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     for(cpt=1; cpt<=nlstate;cpt++) {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 interval) in state (%d): v%s%d%d.gif <br>  }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    
      }  /************ Variance ******************/
      for(cpt=1; cpt<=nlstate;cpt++) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  {
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    /* Variance of health expectancies */
      }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    /* double **newm;*/
 health expectancies in states (1) and (2): e%s%d.gif<br>    double **dnewm,**doldm;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    double **dnewmp,**doldmp;
 fprintf(fichtm,"\n</body>");    int i, j, nhstepm, hstepm, h, nstepm ;
    }    int k, cptcode;
  }    double *xp;
 fclose(fichtm);    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
   /*--------------- Prevalence limit --------------*/    double **gradgp, **trgradgp; /* for var p point j */
      double *gpp, *gmp; /* for var p point j */
   strcpy(filerespl,"pl");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   strcat(filerespl,fileres);    double ***p3mat;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    double age,agelim, hf;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    double ***mobaverage;
   }    int theta;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    char digit[4];
   fprintf(ficrespl,"#Prevalence limit\n");    char digitp[25];
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    char fileresprobmorprev[FILENAMELENGTH];
   fprintf(ficrespl,"\n");  
      if(popbased==1){
   prlim=matrix(1,nlstate,1,nlstate);      if(mobilav!=0)
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        strcpy(digitp,"-populbased-mobilav-");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      else strcpy(digitp,"-populbased-nomobil-");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    else 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      strcpy(digitp,"-stablbased-");
   k=0;  
   agebase=agemin;    if (mobilav!=0) {
   agelim=agemax;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ftolpl=1.e-10;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   i1=cptcoveff;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   if (cptcovn < 1){i1=1;}        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   for(cptcov=1;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;    strcpy(fileresprobmorprev,"prmorprev"); 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    sprintf(digit,"%-d",ij);
         fprintf(ficrespl,"\n#******");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         for(j=1;j<=cptcoveff;j++)    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         fprintf(ficrespl,"******\n");    strcat(fileresprobmorprev,fileres);
            if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         for (age=agebase; age<=agelim; age++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           fprintf(ficrespl,"%.0f",age );    }
           for(i=1; i<=nlstate;i++)    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           fprintf(ficrespl," %.5f", prlim[i][i]);   
           fprintf(ficrespl,"\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         }    pstamp(ficresprobmorprev);
       }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fclose(ficrespl);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
   /*------------- h Pij x at various ages ------------*/      for(i=1; i<=nlstate;i++)
          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    }  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    fprintf(ficresprobmorprev,"\n");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    fprintf(ficgp,"\n# Routine varevsij");
   }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   printf("Computing pij: result on file '%s' \n", filerespij);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /*   } */
   /*if (stepm<=24) stepsize=2;*/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
   agelim=AGESUP;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   hstepm=stepsize*YEARM; /* Every year of age */    if(popbased==1)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
      else
   k=0;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresvij,"# Age");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(i=1; i<=nlstate;i++)
       k=k+1;      for(j=1; j<=nlstate;j++)
         fprintf(ficrespij,"\n#****** ");        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         for(j=1;j<=cptcoveff;j++)    fprintf(ficresvij,"\n");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");    xp=vector(1,npar);
            dnewm=matrix(1,nlstate,1,npar);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    doldm=matrix(1,nlstate,1,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      gpp=vector(nlstate+1,nlstate+ndeath);
           fprintf(ficrespij,"# Age");    gmp=vector(nlstate+1,nlstate+ndeath);
           for(i=1; i<=nlstate;i++)    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             for(j=1; j<=nlstate+ndeath;j++)    
               fprintf(ficrespij," %1d-%1d",i,j);    if(estepm < stepm){
           fprintf(ficrespij,"\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
           for (h=0; h<=nhstepm; h++){    }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    else  hstepm=estepm;   
             for(i=1; i<=nlstate;i++)    /* For example we decided to compute the life expectancy with the smallest unit */
               for(j=1; j<=nlstate+ndeath;j++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);       nhstepm is the number of hstepm from age to agelim 
             fprintf(ficrespij,"\n");       nstepm is the number of stepm from age to agelin. 
           }       Look at hpijx to understand the reason of that which relies in memory size
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       and note for a fixed period like k years */
           fprintf(ficrespij,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
     }       means that if the survival funtion is printed every two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fclose(ficrespij);    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   if(stepm == 1) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   /*---------- Forecasting ------------------*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   /*printf("calage= %f", calagedate);*/      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
   
       for(theta=1; theta <=npar; theta++){
   strcpy(fileresf,"f");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   strcat(fileresf,fileres);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if((ficresf=fopen(fileresf,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
         if (popbased==1) {
   free_matrix(mint,1,maxwav,1,n);          if(mobilav ==0){
   free_matrix(anint,1,maxwav,1,n);            for(i=1; i<=nlstate;i++)
   free_matrix(agev,1,maxwav,1,imx);              prlim[i][i]=probs[(int)age][i][ij];
   /* Mobile average */          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   if (mobilav==1) {        }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)        for(j=1; j<= nlstate; j++){
       for (i=1; i<=nlstate;i++)          for(h=0; h<=nhstepm; h++){
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           mobaverage[(int)agedeb][i][cptcod]=0.;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
              }
     for (agedeb=bage+4; agedeb<=fage; agedeb++){        }
       for (i=1; i<=nlstate;i++){        /* This for computing probability of death (h=1 means
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){           computed over hstepm matrices product = hstepm*stepm months) 
           for (cpt=0;cpt<=4;cpt++){           as a weighted average of prlim.
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        */
           }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
     }          /* end probability of death */
   }  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   stepsize=(int) (stepm+YEARM-1)/YEARM;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if (stepm<=12) stepsize=1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   agelim=AGESUP;   
   /*hstepm=stepsize*YEARM; *//* Every year of age */        if (popbased==1) {
   hstepm=1;          if(mobilav ==0){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */            for(i=1; i<=nlstate;i++)
   yp1=modf(dateintmean,&yp);              prlim[i][i]=probs[(int)age][i][ij];
   anprojmean=yp;          }else{ /* mobilav */ 
   yp2=modf((yp1*12),&yp);            for(i=1; i<=nlstate;i++)
   mprojmean=yp;              prlim[i][i]=mobaverage[(int)age][i][ij];
   yp1=modf((yp2*30.5),&yp);          }
   jprojmean=yp;        }
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   if (popforecast==1) {          }
     if((ficpop=fopen(popfile,"r"))==NULL)    {        }
       printf("Problem with population file : %s\n",popfile);goto end;        /* This for computing probability of death (h=1 means
     }           computed over hstepm matrices product = hstepm*stepm months) 
     popage=ivector(0,AGESUP);           as a weighted average of prlim.
     popeffectif=vector(0,AGESUP);        */
     popcount=vector(0,AGESUP);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
     i=1;             gmp[j] += prlim[i][i]*p3mat[i][j][1];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)        }    
       {        /* end probability of death */
         i=i+1;  
       }        for(j=1; j<= nlstate; j++) /* vareij */
     imx=i;          for(h=0; h<=nhstepm; h++){
                gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          }
   }  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   for(cptcov=1;cptcov<=i1;cptcov++){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
       k=k+1;  
       fprintf(ficresf,"\n#******");      } /* End theta */
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       }  
       fprintf(ficresf,"******\n");      for(h=0; h<=nhstepm; h++) /* veij */
       fprintf(ficresf,"# StartingAge FinalAge");        for(j=1; j<=nlstate;j++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          for(theta=1; theta <=npar; theta++)
       if (popforecast==1)  fprintf(ficresf," [Population]");            trgradg[h][j][theta]=gradg[h][theta][j];
      
       for (cpt=0; cpt<4;cpt++) {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         fprintf(ficresf,"\n");        for(theta=1; theta <=npar; theta++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            trgradgp[j][theta]=gradgp[theta][j];
     
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */  
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         nhstepm = nhstepm/hstepm;      for(i=1;i<=nlstate;i++)
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         oldm=oldms;savm=savms;      for(h=0;h<=nhstepm;h++){
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(k=0;k<=nhstepm;k++){
                  matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         for (h=0; h<=nhstepm; h++){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           if (h==(int) (calagedate+YEARM*cpt)) {          for(i=1;i<=nlstate;i++)
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);            for(j=1;j<=nlstate;j++)
           }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           for(j=1; j<=nlstate+ndeath;j++) {        }
             kk1=0.;kk2=0;      }
             for(i=1; i<=nlstate;i++) {            
               if (mobilav==1)      /* pptj */
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
               else {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/        for(i=nlstate+1;i<=nlstate+ndeath;i++)
               }          varppt[j][i]=doldmp[j][i];
       /* end ppptj */
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];      /*  x centered again */
             }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
                prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
             if (h==(int)(calagedate+12*cpt)){   
               fprintf(ficresf," %.3f", kk1);      if (popbased==1) {
                      if(mobilav ==0){
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);          for(i=1; i<=nlstate;i++)
             }            prlim[i][i]=probs[(int)age][i][ij];
           }        }else{ /* mobilav */ 
         }          for(i=1; i<=nlstate;i++)
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            prlim[i][i]=mobaverage[(int)age][i][ij];
       }        }
       }      }
     }               
   }      /* This for computing probability of death (h=1 means
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   if (popforecast==1) {         as a weighted average of prlim.
     free_ivector(popage,0,AGESUP);      */
     free_vector(popeffectif,0,AGESUP);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     free_vector(popcount,0,AGESUP);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   free_imatrix(s,1,maxwav+1,1,n);      }    
   free_vector(weight,1,n);      /* end probability of death */
   fclose(ficresf);  
   }/* End forecasting */      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   else{      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     erreur=108;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);        for(i=1; i<=nlstate;i++){
   }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
   /*---------- Health expectancies and variances ------------*/      } 
       fprintf(ficresprobmorprev,"\n");
   strcpy(filerest,"t");  
   strcat(filerest,fileres);      fprintf(ficresvij,"%.0f ",age );
   if((ficrest=fopen(filerest,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        for(j=1; j<=nlstate;j++){
   }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
   strcpy(filerese,"e");      free_matrix(gm,0,nhstepm,1,nlstate);
   strcat(filerese,fileres);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   if((ficreseij=fopen(filerese,"w"))==NULL) {      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    } /* End age */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
  strcpy(fileresv,"v");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   strcat(fileresv,fileres);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   k=0;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       k=k+1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       fprintf(ficrest,"\n#****** ");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       fprintf(ficrest,"******\n");  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       fprintf(ficreseij,"\n#****** ");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    free_vector(xp,1,npar);
       fprintf(ficreseij,"******\n");    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
       fprintf(ficresvij,"\n#****** ");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(j=1;j<=cptcoveff;j++)    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficresvij,"******\n");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fflush(ficgp);
       oldm=oldms;savm=savms;    fflush(fichtm); 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);    }  /* end varevsij */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  /************ Variance of prevlim ******************/
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
        {
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    /* Variance of prevalence limit */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       fprintf(ficrest,"\n");    double **newm;
            double **dnewm,**doldm;
       hf=1;    int i, j, nhstepm, hstepm;
       if (stepm >= YEARM) hf=stepm/YEARM;    int k, cptcode;
       epj=vector(1,nlstate+1);    double *xp;
       for(age=bage; age <=fage ;age++){    double *gp, *gm;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    double **gradg, **trgradg;
         if (popbased==1) {    double age,agelim;
           for(i=1; i<=nlstate;i++)    int theta;
             prlim[i][i]=probs[(int)age][i][k];    
         }    pstamp(ficresvpl);
            fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
         fprintf(ficrest," %.0f",age);    fprintf(ficresvpl,"# Age");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    for(i=1; i<=nlstate;i++)
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        fprintf(ficresvpl," %1d-%1d",i,i);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    fprintf(ficresvpl,"\n");
           }  
           epj[nlstate+1] +=epj[j];    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate,1,npar);
         for(i=1, vepp=0.;i <=nlstate;i++)    doldm=matrix(1,nlstate,1,nlstate);
           for(j=1;j <=nlstate;j++)    
             vepp += vareij[i][j][(int)age];    hstepm=1*YEARM; /* Every year of age */
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         for(j=1;j <=nlstate;j++){    agelim = AGESUP;
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         fprintf(ficrest,"\n");      if (stepm >= YEARM) hstepm=1;
       }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     }      gradg=matrix(1,npar,1,nlstate);
   }      gp=vector(1,nlstate);
              gm=vector(1,nlstate);
          
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
  fclose(ficreseij);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
  fclose(ficresvij);        }
   fclose(ficrest);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fclose(ficpar);        for(i=1;i<=nlstate;i++)
   free_vector(epj,1,nlstate+1);          gp[i] = prlim[i][i];
   /*  scanf("%d ",i); */      
         for(i=1; i<=npar; i++) /* Computes gradient */
   /*------- Variance limit prevalence------*/            xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 strcpy(fileresvpl,"vpl");        for(i=1;i<=nlstate;i++)
   strcat(fileresvpl,fileres);          gm[i] = prlim[i][i];
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        for(i=1;i<=nlstate;i++)
     exit(0);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   }      } /* End theta */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
       trgradg =matrix(1,nlstate,1,npar);
  k=0;  
  for(cptcov=1;cptcov<=i1;cptcov++){      for(j=1; j<=nlstate;j++)
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(theta=1; theta <=npar; theta++)
      k=k+1;          trgradg[j][theta]=gradg[theta][j];
      fprintf(ficresvpl,"\n#****** ");  
      for(j=1;j<=cptcoveff;j++)      for(i=1;i<=nlstate;i++)
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        varpl[i][(int)age] =0.;
      fprintf(ficresvpl,"******\n");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);      for(i=1;i<=nlstate;i++)
      oldm=oldms;savm=savms;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
    }      fprintf(ficresvpl,"%.0f ",age );
  }      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   fclose(ficresvpl);      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
   /*---------- End : free ----------------*/      free_vector(gm,1,nlstate);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      free_matrix(gradg,1,npar,1,nlstate);
        free_matrix(trgradg,1,nlstate,1,npar);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    } /* End age */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
      free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(dnewm,1,nlstate,1,nlstate);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
    /************ Variance of one-step probabilities  ******************/
   free_matrix(matcov,1,npar,1,npar);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   free_vector(delti,1,npar);  {
      int i, j=0,  i1, k1, l1, t, tj;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
   if(erreur >0)    int first=1, first1;
     printf("End of Imach with error %d\n",erreur);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   else   printf("End of Imach\n");    double **dnewm,**doldm;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    double *xp;
      double *gp, *gm;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    double **gradg, **trgradg;
   /*printf("Total time was %d uSec.\n", total_usecs);*/    double **mu;
   /*------ End -----------*/    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
  end:    char fileresprob[FILENAMELENGTH];
 #ifdef windows    char fileresprobcov[FILENAMELENGTH];
  chdir(pathcd);    char fileresprobcor[FILENAMELENGTH];
 #endif  
      double ***varpij;
  system("..\\gp37mgw\\wgnuplot graph.plt");  
     strcpy(fileresprob,"prob"); 
 #ifdef windows    strcat(fileresprob,fileres);
   while (z[0] != 'q') {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     chdir(pathcd);      printf("Problem with resultfile: %s\n", fileresprob);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     scanf("%s",z);    }
     if (z[0] == 'c') system("./imach");    strcpy(fileresprobcov,"probcov"); 
     else if (z[0] == 'e') {    strcat(fileresprobcov,fileres);
       chdir(path);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       system(optionfilehtm);      printf("Problem with resultfile: %s\n", fileresprobcov);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     else if (z[0] == 'q') exit(0);    }
   }    strcpy(fileresprobcor,"probcor"); 
 #endif    strcat(fileresprobcor,fileres);
 }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.21  
changed lines
  Added in v.1.118


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>