Diff for /imach/src/imach.c between versions 1.48 and 1.118

version 1.48, 2002/06/10 13:12:49 version 1.118, 2006/03/14 18:20:07
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.118  2006/03/14 18:20:07  brouard
      (Module): varevsij Comments added explaining the second
   This program computes Healthy Life Expectancies from    table of variances if popbased=1 .
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   first survey ("cross") where individuals from different ages are    (Module): Function pstamp added
   interviewed on their health status or degree of disability (in the    (Module): Version 0.98d
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.117  2006/03/14 17:16:22  brouard
   (if any) in individual health status.  Health expectancies are    (Module): varevsij Comments added explaining the second
   computed from the time spent in each health state according to a    table of variances if popbased=1 .
   model. More health states you consider, more time is necessary to reach the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Maximum Likelihood of the parameters involved in the model.  The    (Module): Function pstamp added
   simplest model is the multinomial logistic model where pij is the    (Module): Version 0.98d
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.116  2006/03/06 10:29:27  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Variance-covariance wrong links and
   'age' is age and 'sex' is a covariate. If you want to have a more    varian-covariance of ej. is needed (Saito).
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.115  2006/02/27 12:17:45  brouard
   you to do it.  More covariates you add, slower the    (Module): One freematrix added in mlikeli! 0.98c
   convergence.  
     Revision 1.114  2006/02/26 12:57:58  brouard
   The advantage of this computer programme, compared to a simple    (Module): Some improvements in processing parameter
   multinomial logistic model, is clear when the delay between waves is not    filename with strsep.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.113  2006/02/24 14:20:24  brouard
   account using an interpolation or extrapolation.      (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
   hPijx is the probability to be observed in state i at age x+h    allocation too.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.112  2006/01/30 09:55:26  brouard
   states. This elementary transition (by month or quarter trimester,    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.111  2006/01/25 20:38:18  brouard
   and the contribution of each individual to the likelihood is simply    (Module): Lots of cleaning and bugs added (Gompertz)
   hPijx.    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.110  2006/01/25 00:51:50  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.109  2006/01/24 19:37:15  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Comments (lines starting with a #) are allowed in data.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.108  2006/01/19 18:05:42  lievre
   software can be distributed freely for non commercial use. Latest version    Gnuplot problem appeared...
   can be accessed at http://euroreves.ined.fr/imach .    To be fixed
   **********************************************************************/  
      Revision 1.107  2006/01/19 16:20:37  brouard
 #include <math.h>    Test existence of gnuplot in imach path
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.106  2006/01/19 13:24:36  brouard
 #include <unistd.h>    Some cleaning and links added in html output
   
 #define MAXLINE 256    Revision 1.105  2006/01/05 20:23:19  lievre
 #define GNUPLOTPROGRAM "gnuplot"    *** empty log message ***
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.104  2005/09/30 16:11:43  lievre
 /*#define DEBUG*/    (Module): sump fixed, loop imx fixed, and simplifications.
 #define windows    (Module): If the status is missing at the last wave but we know
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    that the person is alive, then we can code his/her status as -2
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    the healthy state at last known wave). Version is 0.98
   
 #define NINTERVMAX 8    Revision 1.103  2005/09/30 15:54:49  lievre
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): sump fixed, loop imx fixed, and simplifications.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.102  2004/09/15 17:31:30  brouard
 #define MAXN 20000    Add the possibility to read data file including tab characters.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.101  2004/09/15 10:38:38  brouard
 #define AGEBASE 40    Fix on curr_time
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.100  2004/07/12 18:29:06  brouard
 #else    Add version for Mac OS X. Just define UNIX in Makefile
 #define DIRSEPARATOR '/'  
 #endif    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.98  2004/05/16 15:05:56  brouard
 int nvar;    New version 0.97 . First attempt to estimate force of mortality
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    directly from the data i.e. without the need of knowing the health
 int npar=NPARMAX;    state at each age, but using a Gompertz model: log u =a + b*age .
 int nlstate=2; /* Number of live states */    This is the basic analysis of mortality and should be done before any
 int ndeath=1; /* Number of dead states */    other analysis, in order to test if the mortality estimated from the
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    cross-longitudinal survey is different from the mortality estimated
 int popbased=0;    from other sources like vital statistic data.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    The same imach parameter file can be used but the option for mle should be -3.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Agnès, who wrote this part of the code, tried to keep most of the
 int mle, weightopt;    former routines in order to include the new code within the former code.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    The output is very simple: only an estimate of the intercept and of
 double jmean; /* Mean space between 2 waves */    the slope with 95% confident intervals.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Current limitations:
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    A) Even if you enter covariates, i.e. with the
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 FILE *fichtm; /* Html File */    B) There is no computation of Life Expectancy nor Life Table.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.97  2004/02/20 13:25:42  lievre
 FILE  *ficresvij;    Version 0.96d. Population forecasting command line is (temporarily)
 char fileresv[FILENAMELENGTH];    suppressed.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.96  2003/07/15 15:38:55  brouard
 char title[MAXLINE];    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    rewritten within the same printf. Workaround: many printfs.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.95  2003/07/08 07:54:34  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 char filerest[FILENAMELENGTH];    matrix (cov(a12,c31) instead of numbers.
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.93  2003/06/25 16:33:55  brouard
 #define NR_END 1    (Module): On windows (cygwin) function asctime_r doesn't
 #define FREE_ARG char*    exist so I changed back to asctime which exists.
 #define FTOL 1.0e-10    (Module): Version 0.96b
   
 #define NRANSI    Revision 1.92  2003/06/25 16:30:45  brouard
 #define ITMAX 200    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 #define TOL 2.0e-4  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define CGOLD 0.3819660    * imach.c (Repository): Duplicated warning errors corrected.
 #define ZEPS 1.0e-10    (Repository): Elapsed time after each iteration is now output. It
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 #define GOLD 1.618034    concerning matrix of covariance. It has extension -cov.htm.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 static double maxarg1,maxarg2;    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    of the covariance matrix to be input.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.89  2003/06/24 12:30:52  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Module): Some bugs corrected for windows. Also, when
 #define rint(a) floor(a+0.5)    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.88  2003/06/23 17:54:56  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 int imx;    Revision 1.87  2003/06/18 12:26:01  brouard
 int stepm;    Version 0.96
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.86  2003/06/17 20:04:08  brouard
 int estepm;    (Module): Change position of html and gnuplot routines and added
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    routine fileappend.
   
 int m,nb;    Revision 1.85  2003/06/17 13:12:43  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    * imach.c (Repository): Check when date of death was earlier that
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    current date of interview. It may happen when the death was just
 double **pmmij, ***probs, ***mobaverage;    prior to the death. In this case, dh was negative and likelihood
 double dateintmean=0;    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 double *weight;    interview.
 int **s; /* Status */    (Repository): Because some people have very long ID (first column)
 double *agedc, **covar, idx;    we changed int to long in num[] and we added a new lvector for
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    memory allocation. But we also truncated to 8 characters (left
     truncation)
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Repository): No more line truncation errors.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.84  2003/06/13 21:44:43  brouard
 /**************** split *************************/    * imach.c (Repository): Replace "freqsummary" at a correct
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    place. It differs from routine "prevalence" which may be called
 {    many times. Probs is memory consuming and must be used with
    char *s;                             /* pointer */    parcimony.
    int  l1, l2;                         /* length counters */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
    l1 = strlen( path );                 /* length of path */    Revision 1.83  2003/06/10 13:39:11  lievre
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    *** empty log message ***
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.82  2003/06/05 15:57:20  brouard
 #if     defined(__bsd__)                /* get current working directory */    Add log in  imach.c and  fullversion number is now printed.
       extern char       *getwd( );  
   */
       if ( getwd( dirc ) == NULL ) {  /*
 #else     Interpolated Markov Chain
       extern char       *getcwd( );  
     Short summary of the programme:
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    
 #endif    This program computes Healthy Life Expectancies from
          return( GLOCK_ERROR_GETCWD );    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       }    first survey ("cross") where individuals from different ages are
       strcpy( name, path );             /* we've got it */    interviewed on their health status or degree of disability (in the
    } else {                             /* strip direcotry from path */    case of a health survey which is our main interest) -2- at least a
       s++;                              /* after this, the filename */    second wave of interviews ("longitudinal") which measure each change
       l2 = strlen( s );                 /* length of filename */    (if any) in individual health status.  Health expectancies are
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    computed from the time spent in each health state according to a
       strcpy( name, s );                /* save file name */    model. More health states you consider, more time is necessary to reach the
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Maximum Likelihood of the parameters involved in the model.  The
       dirc[l1-l2] = 0;                  /* add zero */    simplest model is the multinomial logistic model where pij is the
    }    probability to be observed in state j at the second wave
    l1 = strlen( dirc );                 /* length of directory */    conditional to be observed in state i at the first wave. Therefore
 #ifdef windows    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    'age' is age and 'sex' is a covariate. If you want to have a more
 #else    complex model than "constant and age", you should modify the program
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    where the markup *Covariates have to be included here again* invites
 #endif    you to do it.  More covariates you add, slower the
    s = strrchr( name, '.' );            /* find last / */    convergence.
    s++;  
    strcpy(ext,s);                       /* save extension */    The advantage of this computer programme, compared to a simple
    l1= strlen( name);    multinomial logistic model, is clear when the delay between waves is not
    l2= strlen( s)+1;    identical for each individual. Also, if a individual missed an
    strncpy( finame, name, l1-l2);    intermediate interview, the information is lost, but taken into
    finame[l1-l2]= 0;    account using an interpolation or extrapolation.  
    return( 0 );                         /* we're done */  
 }    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 /******************************************/    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 void replace(char *s, char*t)    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
   int i;    hPijx.
   int lg=20;  
   i=0;    Also this programme outputs the covariance matrix of the parameters but also
   lg=strlen(t);    of the life expectancies. It also computes the period (stable) prevalence. 
   for(i=0; i<= lg; i++) {    
     (s[i] = t[i]);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     if (t[i]== '\\') s[i]='/';             Institut national d'études démographiques, Paris.
   }    This software have been partly granted by Euro-REVES, a concerted action
 }    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 int nbocc(char *s, char occ)    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   int i,j=0;  
   int lg=20;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   i=0;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   lg=strlen(s);    
   for(i=0; i<= lg; i++) {    **********************************************************************/
   if  (s[i] == occ ) j++;  /*
   }    main
   return j;    read parameterfile
 }    read datafile
     concatwav
 void cutv(char *u,char *v, char*t, char occ)    freqsummary
 {    if (mle >= 1)
   int i,lg,j,p=0;      mlikeli
   i=0;    print results files
   for(j=0; j<=strlen(t)-1; j++) {    if mle==1 
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;       computes hessian
   }    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
   lg=strlen(t);    open gnuplot file
   for(j=0; j<p; j++) {    open html file
     (u[j] = t[j]);    period (stable) prevalence
   }     for age prevalim()
      u[p]='\0';    h Pij x
     variance of p varprob
    for(j=0; j<= lg; j++) {    forecasting if prevfcast==1 prevforecast call prevalence()
     if (j>=(p+1))(v[j-p-1] = t[j]);    health expectancies
   }    Variance-covariance of DFLE
 }    prevalence()
      movingaverage()
 /********************** nrerror ********************/    varevsij() 
     if popbased==1 varevsij(,popbased)
 void nrerror(char error_text[])    total life expectancies
 {    Variance of period (stable) prevalence
   fprintf(stderr,"ERREUR ...\n");   end
   fprintf(stderr,"%s\n",error_text);  */
   exit(1);  
 }  
 /*********************** vector *******************/  
 double *vector(int nl, int nh)   
 {  #include <math.h>
   double *v;  #include <stdio.h>
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #include <stdlib.h>
   if (!v) nrerror("allocation failure in vector");  #include <string.h>
   return v-nl+NR_END;  #include <unistd.h>
 }  
   #include <limits.h>
 /************************ free vector ******************/  #include <sys/types.h>
 void free_vector(double*v, int nl, int nh)  #include <sys/stat.h>
 {  #include <errno.h>
   free((FREE_ARG)(v+nl-NR_END));  extern int errno;
 }  
   /* #include <sys/time.h> */
 /************************ivector *******************************/  #include <time.h>
 int *ivector(long nl,long nh)  #include "timeval.h"
 {  
   int *v;  /* #include <libintl.h> */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /* #define _(String) gettext (String) */
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  #define MAXLINE 256
 }  
   #define GNUPLOTPROGRAM "gnuplot"
 /******************free ivector **************************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 void free_ivector(int *v, long nl, long nh)  #define FILENAMELENGTH 132
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /******************* imatrix *******************************/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  #define NINTERVMAX 8
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   int **m;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    #define NCOVMAX 8 /* Maximum number of covariates */
   /* allocate pointers to rows */  #define MAXN 20000
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define YEARM 12. /* Number of months per year */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define AGESUP 130
   m += NR_END;  #define AGEBASE 40
   m -= nrl;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
    #ifdef UNIX
    #define DIRSEPARATOR '/'
   /* allocate rows and set pointers to them */  #define CHARSEPARATOR "/"
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define ODIRSEPARATOR '\\'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #else
   m[nrl] += NR_END;  #define DIRSEPARATOR '\\'
   m[nrl] -= ncl;  #define CHARSEPARATOR "\\"
    #define ODIRSEPARATOR '/'
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #endif
    
   /* return pointer to array of pointers to rows */  /* $Id$ */
   return m;  /* $State$ */
 }  
   char version[]="Imach version 0.98d, March 2006, INED-EUROREVES-Institut de longevite ";
 /****************** free_imatrix *************************/  char fullversion[]="$Revision$ $Date$"; 
 void free_imatrix(m,nrl,nrh,ncl,nch)  char strstart[80];
       int **m;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
      /* free an int matrix allocated by imatrix() */  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int npar=NPARMAX;
   free((FREE_ARG) (m+nrl-NR_END));  int nlstate=2; /* Number of live states */
 }  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 /******************* matrix *******************************/  int popbased=0;
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int maxwav; /* Maxim number of waves */
   double **m;  int jmin, jmax; /* min, max spacing between 2 waves */
   int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int gipmx, gsw; /* Global variables on the number of contributions 
   if (!m) nrerror("allocation failure 1 in matrix()");                     to the likelihood and the sum of weights (done by funcone)*/
   m += NR_END;  int mle, weightopt;
   m -= nrl;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m[nrl] += NR_END;  double jmean; /* Mean space between 2 waves */
   m[nrl] -= ncl;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   return m;  FILE *ficlog, *ficrespow;
 }  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /*************************free matrix ************************/  long ipmx; /* Number of contributions */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   free((FREE_ARG)(m+nrl-NR_END));  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /******************* ma3x *******************************/  FILE *fichtm, *fichtmcov; /* Html File */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  FILE *ficresstdeij;
   double ***m;  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char filerescve[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE  *ficresvij;
   m += NR_END;  char fileresv[FILENAMELENGTH];
   m -= nrl;  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char title[MAXLINE];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m[nrl] += NR_END;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   m[nrl] -= ncl;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int  outcmd=0;
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  char filelog[FILENAMELENGTH]; /* Log file */
   m[nrl][ncl] -= nll;  char filerest[FILENAMELENGTH];
   for (j=ncl+1; j<=nch; j++)  char fileregp[FILENAMELENGTH];
     m[nrl][j]=m[nrl][j-1]+nlay;  char popfile[FILENAMELENGTH];
    
   for (i=nrl+1; i<=nrh; i++) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       m[i][j]=m[i][j-1]+nlay;  struct timezone tzp;
   }  extern int gettimeofday();
   return m;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 }  long time_value;
   extern long time();
 /*************************free ma3x ************************/  char strcurr[80], strfor[80];
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  char *endptr;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  long lval;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 /***************** f1dim *************************/  
 extern int ncom;  #define NRANSI 
 extern double *pcom,*xicom;  #define ITMAX 200 
 extern double (*nrfunc)(double []);  
    #define TOL 2.0e-4 
 double f1dim(double x)  
 {  #define CGOLD 0.3819660 
   int j;  #define ZEPS 1.0e-10 
   double f;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double *xt;  
    #define GOLD 1.618034 
   xt=vector(1,ncom);  #define GLIMIT 100.0 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define TINY 1.0e-20 
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  static double maxarg1,maxarg2;
   return f;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 /*****************brent *************************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define rint(a) floor(a+0.5)
 {  
   int iter;  static double sqrarg;
   double a,b,d,etemp;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double fu,fv,fw,fx;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double ftemp;  int agegomp= AGEGOMP;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  int imx; 
    int stepm=1;
   a=(ax < cx ? ax : cx);  /* Stepm, step in month: minimum step interpolation*/
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  int estepm;
   fw=fv=fx=(*f)(x);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  int m,nb;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  long *num;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     printf(".");fflush(stdout);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 #ifdef DEBUG  double **pmmij, ***probs;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double *ageexmed,*agecens;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  double dateintmean=0;
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  double *weight;
       *xmin=x;  int **s; /* Status */
       return fx;  double *agedc, **covar, idx;
     }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     ftemp=fu;  double *lsurv, *lpop, *tpop;
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       q=(x-v)*(fx-fw);  double ftolhess; /* Tolerance for computing hessian */
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  /**************** split *************************/
       if (q > 0.0) p = -p;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       q=fabs(q);  {
       etemp=e;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       e=d;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    */ 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    char  *ss;                            /* pointer */
       else {    int   l1, l2;                         /* length counters */
         d=p/q;  
         u=x+d;    l1 = strlen(path );                   /* length of path */
         if (u-a < tol2 || b-u < tol2)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
           d=SIGN(tol1,xm-x);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     } else {      strcpy( name, path );               /* we got the fullname name because no directory */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      /* get current working directory */
     fu=(*f)(u);      /*    extern  char* getcwd ( char *buf , int len);*/
     if (fu <= fx) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       if (u >= x) a=x; else b=x;        return( GLOCK_ERROR_GETCWD );
       SHFT(v,w,x,u)      }
         SHFT(fv,fw,fx,fu)      /* got dirc from getcwd*/
         } else {      printf(" DIRC = %s \n",dirc);
           if (u < x) a=u; else b=u;    } else {                              /* strip direcotry from path */
           if (fu <= fw || w == x) {      ss++;                               /* after this, the filename */
             v=w;      l2 = strlen( ss );                  /* length of filename */
             w=u;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
             fv=fw;      strcpy( name, ss );         /* save file name */
             fw=fu;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
           } else if (fu <= fv || v == x || v == w) {      dirc[l1-l2] = 0;                    /* add zero */
             v=u;      printf(" DIRC2 = %s \n",dirc);
             fv=fu;    }
           }    /* We add a separator at the end of dirc if not exists */
         }    l1 = strlen( dirc );                  /* length of directory */
   }    if( dirc[l1-1] != DIRSEPARATOR ){
   nrerror("Too many iterations in brent");      dirc[l1] =  DIRSEPARATOR;
   *xmin=x;      dirc[l1+1] = 0; 
   return fx;      printf(" DIRC3 = %s \n",dirc);
 }    }
     ss = strrchr( name, '.' );            /* find last / */
 /****************** mnbrak ***********************/    if (ss >0){
       ss++;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      strcpy(ext,ss);                     /* save extension */
             double (*func)(double))      l1= strlen( name);
 {      l2= strlen(ss)+1;
   double ulim,u,r,q, dum;      strncpy( finame, name, l1-l2);
   double fu;      finame[l1-l2]= 0;
      }
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);    return( 0 );                          /* we're done */
   if (*fb > *fa) {  }
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  
       }  /******************************************/
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  void replace_back_to_slash(char *s, char*t)
   while (*fb > *fc) {  {
     r=(*bx-*ax)*(*fb-*fc);    int i;
     q=(*bx-*cx)*(*fb-*fa);    int lg=0;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    i=0;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    lg=strlen(t);
     ulim=(*bx)+GLIMIT*(*cx-*bx);    for(i=0; i<= lg; i++) {
     if ((*bx-u)*(u-*cx) > 0.0) {      (s[i] = t[i]);
       fu=(*func)(u);      if (t[i]== '\\') s[i]='/';
     } else if ((*cx-u)*(u-ulim) > 0.0) {    }
       fu=(*func)(u);  }
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  int nbocc(char *s, char occ)
           SHFT(*fb,*fc,fu,(*func)(u))  {
           }    int i,j=0;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    int lg=20;
       u=ulim;    i=0;
       fu=(*func)(u);    lg=strlen(s);
     } else {    for(i=0; i<= lg; i++) {
       u=(*cx)+GOLD*(*cx-*bx);    if  (s[i] == occ ) j++;
       fu=(*func)(u);    }
     }    return j;
     SHFT(*ax,*bx,*cx,u)  }
       SHFT(*fa,*fb,*fc,fu)  
       }  void cutv(char *u,char *v, char*t, char occ)
 }  {
     /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 /*************** linmin ************************/       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
        gives u="abcedf" and v="ghi2j" */
 int ncom;    int i,lg,j,p=0;
 double *pcom,*xicom;    i=0;
 double (*nrfunc)(double []);    for(j=0; j<=strlen(t)-1; j++) {
        if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    }
 {  
   double brent(double ax, double bx, double cx,    lg=strlen(t);
                double (*f)(double), double tol, double *xmin);    for(j=0; j<p; j++) {
   double f1dim(double x);      (u[j] = t[j]);
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    }
               double *fc, double (*func)(double));       u[p]='\0';
   int j;  
   double xx,xmin,bx,ax;     for(j=0; j<= lg; j++) {
   double fx,fb,fa;      if (j>=(p+1))(v[j-p-1] = t[j]);
      }
   ncom=n;  }
   pcom=vector(1,n);  
   xicom=vector(1,n);  /********************** nrerror ********************/
   nrfunc=func;  
   for (j=1;j<=n;j++) {  void nrerror(char error_text[])
     pcom[j]=p[j];  {
     xicom[j]=xi[j];    fprintf(stderr,"ERREUR ...\n");
   }    fprintf(stderr,"%s\n",error_text);
   ax=0.0;    exit(EXIT_FAILURE);
   xx=1.0;  }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /*********************** vector *******************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double *vector(int nl, int nh)
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double *v;
 #endif    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in vector");
     xi[j] *= xmin;    return v-nl+NR_END;
     p[j] += xi[j];  }
   }  
   free_vector(xicom,1,n);  /************************ free vector ******************/
   free_vector(pcom,1,n);  void free_vector(double*v, int nl, int nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /*************** powell ************************/  }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  /************************ivector *******************************/
 {  int *ivector(long nl,long nh)
   void linmin(double p[], double xi[], int n, double *fret,  {
               double (*func)(double []));    int *v;
   int i,ibig,j;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double del,t,*pt,*ptt,*xit;    if (!v) nrerror("allocation failure in ivector");
   double fp,fptt;    return v-nl+NR_END;
   double *xits;  }
   pt=vector(1,n);  
   ptt=vector(1,n);  /******************free ivector **************************/
   xit=vector(1,n);  void free_ivector(int *v, long nl, long nh)
   xits=vector(1,n);  {
   *fret=(*func)(p);    free((FREE_ARG)(v+nl-NR_END));
   for (j=1;j<=n;j++) pt[j]=p[j];  }
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /************************lvector *******************************/
     ibig=0;  long *lvector(long nl,long nh)
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    long *v;
     for (i=1;i<=n;i++)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       printf(" %d %.12f",i, p[i]);    if (!v) nrerror("allocation failure in ivector");
     printf("\n");    return v-nl+NR_END;
     for (i=1;i<=n;i++) {  }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  /******************free lvector **************************/
 #ifdef DEBUG  void free_lvector(long *v, long nl, long nh)
       printf("fret=%lf \n",*fret);  {
 #endif    free((FREE_ARG)(v+nl-NR_END));
       printf("%d",i);fflush(stdout);  }
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /******************* imatrix *******************************/
         del=fabs(fptt-(*fret));  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         ibig=i;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       }  { 
 #ifdef DEBUG    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       printf("%d %.12e",i,(*fret));    int **m; 
       for (j=1;j<=n;j++) {    
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    /* allocate pointers to rows */ 
         printf(" x(%d)=%.12e",j,xit[j]);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       }    if (!m) nrerror("allocation failure 1 in matrix()"); 
       for(j=1;j<=n;j++)    m += NR_END; 
         printf(" p=%.12e",p[j]);    m -= nrl; 
       printf("\n");    
 #endif    
     }    /* allocate rows and set pointers to them */ 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       int k[2],l;    m[nrl] += NR_END; 
       k[0]=1;    m[nrl] -= ncl; 
       k[1]=-1;    
       printf("Max: %.12e",(*func)(p));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       for (j=1;j<=n;j++)    
         printf(" %.12e",p[j]);    /* return pointer to array of pointers to rows */ 
       printf("\n");    return m; 
       for(l=0;l<=1;l++) {  } 
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /****************** free_imatrix *************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  void free_imatrix(m,nrl,nrh,ncl,nch)
         }        int **m;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        long nch,ncl,nrh,nrl; 
       }       /* free an int matrix allocated by imatrix() */ 
 #endif  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
       free_vector(xit,1,n);  } 
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  /******************* matrix *******************************/
       free_vector(pt,1,n);  double **matrix(long nrl, long nrh, long ncl, long nch)
       return;  {
     }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    double **m;
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       xit[j]=p[j]-pt[j];    if (!m) nrerror("allocation failure 1 in matrix()");
       pt[j]=p[j];    m += NR_END;
     }    m -= nrl;
     fptt=(*func)(ptt);  
     if (fptt < fp) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       if (t < 0.0) {    m[nrl] += NR_END;
         linmin(p,xit,n,fret,func);    m[nrl] -= ncl;
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           xi[j][n]=xit[j];    return m;
         }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 #ifdef DEBUG     */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /*************************free matrix ************************/
         printf("\n");  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 #endif  {
       }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }  }
 }  
   /******************* ma3x *******************************/
 /**** Prevalence limit ****************/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 {    double ***m;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   int i, ii,j,k;    m += NR_END;
   double min, max, maxmin, maxmax,sumnew=0.;    m -= nrl;
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double **newm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double agefin, delaymax=50 ; /* Max number of years to converge */    m[nrl] += NR_END;
     m[nrl] -= ncl;
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
    cov[1]=1.;    m[nrl][ncl] += NR_END;
      m[nrl][ncl] -= nll;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    for (j=ncl+1; j<=nch; j++) 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      m[nrl][j]=m[nrl][j-1]+nlay;
     newm=savm;    
     /* Covariates have to be included here again */    for (i=nrl+1; i<=nrh; i++) {
      cov[2]=agefin;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
        for (j=ncl+1; j<=nch; j++) 
       for (k=1; k<=cptcovn;k++) {        m[i][j]=m[i][j-1]+nlay;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    return m; 
       }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       for (k=1; k<=cptcovprod;k++)    */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /*************************free ma3x ************************/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  {
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     savm=oldm;    free((FREE_ARG)(m+nrl-NR_END));
     oldm=newm;  }
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /*************** function subdirf ***********/
       min=1.;  char *subdirf(char fileres[])
       max=0.;  {
       for(i=1; i<=nlstate; i++) {    /* Caution optionfilefiname is hidden */
         sumnew=0;    strcpy(tmpout,optionfilefiname);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    strcat(tmpout,"/"); /* Add to the right */
         prlim[i][j]= newm[i][j]/(1-sumnew);    strcat(tmpout,fileres);
         max=FMAX(max,prlim[i][j]);    return tmpout;
         min=FMIN(min,prlim[i][j]);  }
       }  
       maxmin=max-min;  /*************** function subdirf2 ***********/
       maxmax=FMAX(maxmax,maxmin);  char *subdirf2(char fileres[], char *preop)
     }  {
     if(maxmax < ftolpl){    
       return prlim;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
 }    strcat(tmpout,preop);
     strcat(tmpout,fileres);
 /*************** transition probabilities ***************/    return tmpout;
   }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  /*************** function subdirf3 ***********/
   double s1, s2;  char *subdirf3(char fileres[], char *preop, char *preop2)
   /*double t34;*/  {
   int i,j,j1, nc, ii, jj;    
     /* Caution optionfilefiname is hidden */
     for(i=1; i<= nlstate; i++){    strcpy(tmpout,optionfilefiname);
     for(j=1; j<i;j++){    strcat(tmpout,"/");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcat(tmpout,preop);
         /*s2 += param[i][j][nc]*cov[nc];*/    strcat(tmpout,preop2);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcat(tmpout,fileres);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    return tmpout;
       }  }
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  /***************** f1dim *************************/
     }  extern int ncom; 
     for(j=i+1; j<=nlstate+ndeath;j++){  extern double *pcom,*xicom;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  extern double (*nrfunc)(double []); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];   
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  double f1dim(double x) 
       }  { 
       ps[i][j]=s2;    int j; 
     }    double f;
   }    double *xt; 
     /*ps[3][2]=1;*/   
     xt=vector(1,ncom); 
   for(i=1; i<= nlstate; i++){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
      s1=0;    f=(*nrfunc)(xt); 
     for(j=1; j<i; j++)    free_vector(xt,1,ncom); 
       s1+=exp(ps[i][j]);    return f; 
     for(j=i+1; j<=nlstate+ndeath; j++)  } 
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  /*****************brent *************************/
     for(j=1; j<i; j++)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  { 
     for(j=i+1; j<=nlstate+ndeath; j++)    int iter; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double a,b,d,etemp;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    double fu,fv,fw,fx;
   } /* end i */    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    double e=0.0; 
     for(jj=1; jj<= nlstate+ndeath; jj++){   
       ps[ii][jj]=0;    a=(ax < cx ? ax : cx); 
       ps[ii][ii]=1;    b=(ax > cx ? ax : cx); 
     }    x=w=v=bx; 
   }    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
      printf("%lf ",ps[ii][jj]);      printf(".");fflush(stdout);
    }      fprintf(ficlog,".");fflush(ficlog);
     printf("\n ");  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     printf("\n ");printf("%lf ",cov[2]);*/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 /*      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  #endif
   goto end;*/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     return ps;        *xmin=x; 
 }        return fx; 
       } 
 /**************** Product of 2 matrices ******************/      ftemp=fu;
       if (fabs(e) > tol1) { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        r=(x-w)*(fx-fv); 
 {        q=(x-v)*(fx-fw); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        p=(x-v)*q-(x-w)*r; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        q=2.0*(q-r); 
   /* in, b, out are matrice of pointers which should have been initialized        if (q > 0.0) p = -p; 
      before: only the contents of out is modified. The function returns        q=fabs(q); 
      a pointer to pointers identical to out */        etemp=e; 
   long i, j, k;        e=d; 
   for(i=nrl; i<= nrh; i++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(k=ncolol; k<=ncoloh; k++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        else { 
         out[i][k] +=in[i][j]*b[j][k];          d=p/q; 
           u=x+d; 
   return out;          if (u-a < tol2 || b-u < tol2) 
 }            d=SIGN(tol1,xm-x); 
         } 
       } else { 
 /************* Higher Matrix Product ***************/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 {      fu=(*f)(u); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      if (fu <= fx) { 
      duration (i.e. until        if (u >= x) a=x; else b=x; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        SHFT(v,w,x,u) 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          SHFT(fv,fw,fx,fu) 
      (typically every 2 years instead of every month which is too big).          } else { 
      Model is determined by parameters x and covariates have to be            if (u < x) a=u; else b=u; 
      included manually here.            if (fu <= fw || w == x) { 
               v=w; 
      */              w=u; 
               fv=fw; 
   int i, j, d, h, k;              fw=fu; 
   double **out, cov[NCOVMAX];            } else if (fu <= fv || v == x || v == w) { 
   double **newm;              v=u; 
               fv=fu; 
   /* Hstepm could be zero and should return the unit matrix */            } 
   for (i=1;i<=nlstate+ndeath;i++)          } 
     for (j=1;j<=nlstate+ndeath;j++){    } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    nrerror("Too many iterations in brent"); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    *xmin=x; 
     }    return fx; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  } 
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  /****************** mnbrak ***********************/
       newm=savm;  
       /* Covariates have to be included here again */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       cov[1]=1.;              double (*func)(double)) 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double ulim,u,r,q, dum;
       for (k=1; k<=cptcovage;k++)    double fu; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];   
       for (k=1; k<=cptcovprod;k++)    *fa=(*func)(*ax); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        SHFT(dum,*fb,*fa,dum) 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        } 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    *cx=(*bx)+GOLD*(*bx-*ax); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    *fc=(*func)(*cx); 
       savm=oldm;    while (*fb > *fc) { 
       oldm=newm;      r=(*bx-*ax)*(*fb-*fc); 
     }      q=(*bx-*cx)*(*fb-*fa); 
     for(i=1; i<=nlstate+ndeath; i++)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       for(j=1;j<=nlstate+ndeath;j++) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         po[i][j][h]=newm[i][j];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      if ((*bx-u)*(u-*cx) > 0.0) { 
          */        fu=(*func)(u); 
       }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   } /* end h */        fu=(*func)(u); 
   return po;        if (fu < *fc) { 
 }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
 /*************** log-likelihood *************/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 double func( double *x)        u=ulim; 
 {        fu=(*func)(u); 
   int i, ii, j, k, mi, d, kk;      } else { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        u=(*cx)+GOLD*(*cx-*bx); 
   double **out;        fu=(*func)(u); 
   double sw; /* Sum of weights */      } 
   double lli; /* Individual log likelihood */      SHFT(*ax,*bx,*cx,u) 
   long ipmx;        SHFT(*fa,*fb,*fc,fu) 
   /*extern weight */        } 
   /* We are differentiating ll according to initial status */  } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  /*************** linmin ************************/
     printf(" %d\n",s[4][i]);  
   */  int ncom; 
   cov[1]=1.;  double *pcom,*xicom;
   double (*nrfunc)(double []); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;   
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  { 
     for(mi=1; mi<= wav[i]-1; mi++){    double brent(double ax, double bx, double cx, 
       for (ii=1;ii<=nlstate+ndeath;ii++)                 double (*f)(double), double tol, double *xmin); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double f1dim(double x); 
       for(d=0; d<dh[mi][i]; d++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         newm=savm;                double *fc, double (*func)(double)); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    int j; 
         for (kk=1; kk<=cptcovage;kk++) {    double xx,xmin,bx,ax; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double fx,fb,fa;
         }   
            ncom=n; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    pcom=vector(1,n); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    xicom=vector(1,n); 
         savm=oldm;    nrfunc=func; 
         oldm=newm;    for (j=1;j<=n;j++) { 
              pcom[j]=p[j]; 
              xicom[j]=xi[j]; 
       } /* end mult */    } 
          ax=0.0; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    xx=1.0; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       ipmx +=1;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       sw += weight[i];  #ifdef DEBUG
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     } /* end of wave */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   } /* end of individual */  #endif
     for (j=1;j<=n;j++) { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      xi[j] *= xmin; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      p[j] += xi[j]; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    } 
   return -l;    free_vector(xicom,1,n); 
 }    free_vector(pcom,1,n); 
   } 
   
 /*********** Maximum Likelihood Estimation ***************/  char *asc_diff_time(long time_sec, char ascdiff[])
   {
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    long sec_left, days, hours, minutes;
 {    days = (time_sec) / (60*60*24);
   int i,j, iter;    sec_left = (time_sec) % (60*60*24);
   double **xi,*delti;    hours = (sec_left) / (60*60) ;
   double fret;    sec_left = (sec_left) %(60*60);
   xi=matrix(1,npar,1,npar);    minutes = (sec_left) /60;
   for (i=1;i<=npar;i++)    sec_left = (sec_left) % (60);
     for (j=1;j<=npar;j++)    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       xi[i][j]=(i==j ? 1.0 : 0.0);    return ascdiff;
   printf("Powell\n");  }
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   /*************** powell ************************/
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));              double (*func)(double [])) 
   { 
 }    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
 /**** Computes Hessian and covariance matrix ***/    int i,ibig,j; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    double del,t,*pt,*ptt,*xit;
 {    double fp,fptt;
   double  **a,**y,*x,pd;    double *xits;
   double **hess;    int niterf, itmp;
   int i, j,jk;  
   int *indx;    pt=vector(1,n); 
     ptt=vector(1,n); 
   double hessii(double p[], double delta, int theta, double delti[]);    xit=vector(1,n); 
   double hessij(double p[], double delti[], int i, int j);    xits=vector(1,n); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    *fret=(*func)(p); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
   hess=matrix(1,npar,1,npar);      fp=(*fret); 
       ibig=0; 
   printf("\nCalculation of the hessian matrix. Wait...\n");      del=0.0; 
   for (i=1;i<=npar;i++){      last_time=curr_time;
     printf("%d",i);fflush(stdout);      (void) gettimeofday(&curr_time,&tzp);
     hess[i][i]=hessii(p,ftolhess,i,delti);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     /*printf(" %f ",p[i]);*/      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
     /*printf(" %lf ",hess[i][i]);*/      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   }      */
       for (i=1;i<=n;i++) {
   for (i=1;i<=npar;i++) {        printf(" %d %.12f",i, p[i]);
     for (j=1;j<=npar;j++)  {        fprintf(ficlog," %d %.12lf",i, p[i]);
       if (j>i) {        fprintf(ficrespow," %.12lf", p[i]);
         printf(".%d%d",i,j);fflush(stdout);      }
         hess[i][j]=hessij(p,delti,i,j);      printf("\n");
         hess[j][i]=hess[i][j];          fprintf(ficlog,"\n");
         /*printf(" %lf ",hess[i][j]);*/      fprintf(ficrespow,"\n");fflush(ficrespow);
       }      if(*iter <=3){
     }        tm = *localtime(&curr_time.tv_sec);
   }        strcpy(strcurr,asctime(&tm));
   printf("\n");  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        itmp = strlen(strcurr);
          if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   a=matrix(1,npar,1,npar);          strcurr[itmp-1]='\0';
   y=matrix(1,npar,1,npar);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   x=vector(1,npar);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   indx=ivector(1,npar);        for(niterf=10;niterf<=30;niterf+=10){
   for (i=1;i<=npar;i++)          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          tmf = *localtime(&forecast_time.tv_sec);
   ludcmp(a,npar,indx,&pd);  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
   for (j=1;j<=npar;j++) {          itmp = strlen(strfor);
     for (i=1;i<=npar;i++) x[i]=0;          if(strfor[itmp-1]=='\n')
     x[j]=1;          strfor[itmp-1]='\0';
     lubksb(a,npar,indx,x);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (i=1;i<=npar;i++){          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       matcov[i][j]=x[i];        }
     }      }
   }      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   printf("\n#Hessian matrix#\n");        fptt=(*fret); 
   for (i=1;i<=npar;i++) {  #ifdef DEBUG
     for (j=1;j<=npar;j++) {        printf("fret=%lf \n",*fret);
       printf("%.3e ",hess[i][j]);        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
     printf("\n");        printf("%d",i);fflush(stdout);
   }        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
   /* Recompute Inverse */        if (fabs(fptt-(*fret)) > del) { 
   for (i=1;i<=npar;i++)          del=fabs(fptt-(*fret)); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          ibig=i; 
   ludcmp(a,npar,indx,&pd);        } 
   #ifdef DEBUG
   /*  printf("\n#Hessian matrix recomputed#\n");        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   for (j=1;j<=npar;j++) {        for (j=1;j<=n;j++) {
     for (i=1;i<=npar;i++) x[i]=0;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     x[j]=1;          printf(" x(%d)=%.12e",j,xit[j]);
     lubksb(a,npar,indx,x);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for (i=1;i<=npar;i++){        }
       y[i][j]=x[i];        for(j=1;j<=n;j++) {
       printf("%.3e ",y[i][j]);          printf(" p=%.12e",p[j]);
     }          fprintf(ficlog," p=%.12e",p[j]);
     printf("\n");        }
   }        printf("\n");
   */        fprintf(ficlog,"\n");
   #endif
   free_matrix(a,1,npar,1,npar);      } 
   free_matrix(y,1,npar,1,npar);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   free_vector(x,1,npar);  #ifdef DEBUG
   free_ivector(indx,1,npar);        int k[2],l;
   free_matrix(hess,1,npar,1,npar);        k[0]=1;
         k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
 /*************** hessian matrix ****************/          printf(" %.12e",p[j]);
 double hessii( double x[], double delta, int theta, double delti[])          fprintf(ficlog," %.12e",p[j]);
 {        }
   int i;        printf("\n");
   int l=1, lmax=20;        fprintf(ficlog,"\n");
   double k1,k2;        for(l=0;l<=1;l++) {
   double p2[NPARMAX+1];          for (j=1;j<=n;j++) {
   double res;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double fx;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int k=0,kmax=10;          }
   double l1;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   fx=func(x);        }
   for (i=1;i<=npar;i++) p2[i]=x[i];  #endif
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  
     delts=delt;        free_vector(xit,1,n); 
     for(k=1 ; k <kmax; k=k+1){        free_vector(xits,1,n); 
       delt = delta*(l1*k);        free_vector(ptt,1,n); 
       p2[theta]=x[theta] +delt;        free_vector(pt,1,n); 
       k1=func(p2)-fx;        return; 
       p2[theta]=x[theta]-delt;      } 
       k2=func(p2)-fx;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      for (j=1;j<=n;j++) { 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        ptt[j]=2.0*p[j]-pt[j]; 
              xit[j]=p[j]-pt[j]; 
 #ifdef DEBUG        pt[j]=p[j]; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      } 
 #endif      fptt=(*func)(ptt); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      if (fptt < fp) { 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         k=kmax;        if (t < 0.0) { 
       }          linmin(p,xit,n,fret,func); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          for (j=1;j<=n;j++) { 
         k=kmax; l=lmax*10.;            xi[j][ibig]=xi[j][n]; 
       }            xi[j][n]=xit[j]; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          }
         delts=delt;  #ifdef DEBUG
       }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          for(j=1;j<=n;j++){
   delti[theta]=delts;            printf(" %.12e",xit[j]);
   return res;            fprintf(ficlog," %.12e",xit[j]);
            }
 }          printf("\n");
           fprintf(ficlog,"\n");
 double hessij( double x[], double delti[], int thetai,int thetaj)  #endif
 {        }
   int i;      } 
   int l=1, l1, lmax=20;    } 
   double k1,k2,k3,k4,res,fx;  } 
   double p2[NPARMAX+1];  
   int k;  /**** Prevalence limit (stable or period prevalence)  ****************/
   
   fx=func(x);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for (k=1; k<=2; k++) {  {
     for (i=1;i<=npar;i++) p2[i]=x[i];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     p2[thetai]=x[thetai]+delti[thetai]/k;       matrix by transitions matrix until convergence is reached */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;    int i, ii,j,k;
      double min, max, maxmin, maxmax,sumnew=0.;
     p2[thetai]=x[thetai]+delti[thetai]/k;    double **matprod2();
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double **out, cov[NCOVMAX], **pmij();
     k2=func(p2)-fx;    double **newm;
      double agefin, delaymax=50 ; /* Max number of years to converge */
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (ii=1;ii<=nlstate+ndeath;ii++)
     k3=func(p2)-fx;      for (j=1;j<=nlstate+ndeath;j++){
          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]-delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;     cov[1]=1.;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */   
 #ifdef DEBUG   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 #endif      newm=savm;
   }      /* Covariates have to be included here again */
   return res;       cov[2]=agefin;
 }    
         for (k=1; k<=cptcovn;k++) {
 /************** Inverse of matrix **************/          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 void ludcmp(double **a, int n, int *indx, double *d)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 {        }
   int i,imax,j,k;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double big,dum,sum,temp;        for (k=1; k<=cptcovprod;k++)
   double *vv;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
   vv=vector(1,n);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   *d=1.0;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   for (i=1;i<=n;i++) {        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     big=0.0;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;      savm=oldm;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      oldm=newm;
     vv[i]=1.0/big;      maxmax=0.;
   }      for(j=1;j<=nlstate;j++){
   for (j=1;j<=n;j++) {        min=1.;
     for (i=1;i<j;i++) {        max=0.;
       sum=a[i][j];        for(i=1; i<=nlstate; i++) {
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          sumnew=0;
       a[i][j]=sum;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     }          prlim[i][j]= newm[i][j]/(1-sumnew);
     big=0.0;          max=FMAX(max,prlim[i][j]);
     for (i=j;i<=n;i++) {          min=FMIN(min,prlim[i][j]);
       sum=a[i][j];        }
       for (k=1;k<j;k++)        maxmin=max-min;
         sum -= a[i][k]*a[k][j];        maxmax=FMAX(maxmax,maxmin);
       a[i][j]=sum;      }
       if ( (dum=vv[i]*fabs(sum)) >= big) {      if(maxmax < ftolpl){
         big=dum;        return prlim;
         imax=i;      }
       }    }
     }  }
     if (j != imax) {  
       for (k=1;k<=n;k++) {  /*************** transition probabilities ***************/ 
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         a[j][k]=dum;  {
       }    double s1, s2;
       *d = -(*d);    /*double t34;*/
       vv[imax]=vv[j];    int i,j,j1, nc, ii, jj;
     }  
     indx[j]=imax;      for(i=1; i<= nlstate; i++){
     if (a[j][j] == 0.0) a[j][j]=TINY;        for(j=1; j<i;j++){
     if (j != n) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       dum=1.0/(a[j][j]);            /*s2 += param[i][j][nc]*cov[nc];*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   }          }
   free_vector(vv,1,n);  /* Doesn't work */          ps[i][j]=s2;
 ;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 }        }
         for(j=i+1; j<=nlstate+ndeath;j++){
 void lubksb(double **a, int n, int *indx, double b[])          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 {            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   int i,ii=0,ip,j;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   double sum;          }
            ps[i][j]=s2;
   for (i=1;i<=n;i++) {        }
     ip=indx[i];      }
     sum=b[ip];      /*ps[3][2]=1;*/
     b[ip]=b[i];      
     if (ii)      for(i=1; i<= nlstate; i++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        s1=0;
     else if (sum) ii=i;        for(j=1; j<i; j++)
     b[i]=sum;          s1+=exp(ps[i][j]);
   }        for(j=i+1; j<=nlstate+ndeath; j++)
   for (i=n;i>=1;i--) {          s1+=exp(ps[i][j]);
     sum=b[i];        ps[i][i]=1./(s1+1.);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for(j=1; j<i; j++)
     b[i]=sum/a[i][i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
   }        for(j=i+1; j<=nlstate+ndeath; j++)
 }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 /************ Frequencies ********************/      } /* end i */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      
 {  /* Some frequencies */      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          for(jj=1; jj<= nlstate+ndeath; jj++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          ps[ii][jj]=0;
   double ***freq; /* Frequencies */          ps[ii][ii]=1;
   double *pp;        }
   double pos, k2, dateintsum=0,k2cpt=0;      }
   FILE *ficresp;      
   char fileresp[FILENAMELENGTH];  
    /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   pp=vector(1,nlstate);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*         printf("ddd %lf ",ps[ii][jj]); */
   strcpy(fileresp,"p");  /*       } */
   strcat(fileresp,fileres);  /*       printf("\n "); */
   if((ficresp=fopen(fileresp,"w"))==NULL) {  /*        } */
     printf("Problem with prevalence resultfile: %s\n", fileresp);  /*        printf("\n ");printf("%lf ",cov[2]); */
     exit(0);         /*
   }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        goto end;*/
   j1=0;      return ps;
    }
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /**************** Product of 2 matrices ******************/
    
   for(k1=1; k1<=j;k1++){  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for(i1=1; i1<=ncodemax[k1];i1++){  {
       j1++;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         scanf("%d", i);*/    /* in, b, out are matrice of pointers which should have been initialized 
       for (i=-1; i<=nlstate+ndeath; i++)         before: only the contents of out is modified. The function returns
         for (jk=-1; jk<=nlstate+ndeath; jk++)         a pointer to pointers identical to out */
           for(m=agemin; m <= agemax+3; m++)    long i, j, k;
             freq[i][jk][m]=0;    for(i=nrl; i<= nrh; i++)
            for(k=ncolol; k<=ncoloh; k++)
       dateintsum=0;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       k2cpt=0;          out[i][k] +=in[i][j]*b[j][k];
       for (i=1; i<=imx; i++) {  
         bool=1;    return out;
         if  (cptcovn>0) {  }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;  /************* Higher Matrix Product ***************/
         }  
         if (bool==1) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           for(m=firstpass; m<=lastpass; m++){  {
             k2=anint[m][i]+(mint[m][i]/12.);    /* Computes the transition matrix starting at age 'age' over 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {       'nhstepm*hstepm*stepm' months (i.e. until
               if(agev[m][i]==0) agev[m][i]=agemax+1;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
               if(agev[m][i]==1) agev[m][i]=agemax+2;       nhstepm*hstepm matrices. 
               if (m<lastpass) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];       (typically every 2 years instead of every month which is too big 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];       for the memory).
               }       Model is determined by parameters x and covariates have to be 
                     included manually here. 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;       */
                 k2cpt++;  
               }    int i, j, d, h, k;
             }    double **out, cov[NCOVMAX];
           }    double **newm;
         }  
       }    /* Hstepm could be zero and should return the unit matrix */
            for (i=1;i<=nlstate+ndeath;i++)
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
       if  (cptcovn>0) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
         fprintf(ficresp, "\n#********** Variable ");      }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         fprintf(ficresp, "**********\n#");    for(h=1; h <=nhstepm; h++){
       }      for(d=1; d <=hstepm; d++){
       for(i=1; i<=nlstate;i++)        newm=savm;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        /* Covariates have to be included here again */
       fprintf(ficresp, "\n");        cov[1]=1.;
              cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         if(i==(int)agemax+3)        for (k=1; k<=cptcovage;k++)
           printf("Total");          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         else        for (k=1; k<=cptcovprod;k++)
           printf("Age %d", i);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         for(jk=1; jk <=nlstate ; jk++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           for(m=-1, pos=0; m <=0 ; m++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             pos += freq[jk][m][i];        savm=oldm;
           if(pp[jk]>=1.e-10)        oldm=newm;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      }
           else      for(i=1; i<=nlstate+ndeath; i++)
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for(j=1;j<=nlstate+ndeath;j++) {
         }          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         for(jk=1; jk <=nlstate ; jk++){           */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        }
             pp[jk] += freq[jk][m][i];    } /* end h */
         }    return po;
   }
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];  
         for(jk=1; jk <=nlstate ; jk++){  /*************** log-likelihood *************/
           if(pos>=1.e-5)  double func( double *x)
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  {
           else    int i, ii, j, k, mi, d, kk;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           if( i <= (int) agemax){    double **out;
             if(pos>=1.e-5){    double sw; /* Sum of weights */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    double lli; /* Individual log likelihood */
               probs[i][jk][j1]= pp[jk]/pos;    int s1, s2;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    double bbh, survp;
             }    long ipmx;
             else    /*extern weight */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    /* We are differentiating ll according to initial status */
           }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++) 
              printf(" %d\n",s[4][i]);
         for(jk=-1; jk <=nlstate+ndeath; jk++)    */
           for(m=-1; m <=nlstate+ndeath; m++)    cov[1]=1.;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
         if(i <= (int) agemax)    for(k=1; k<=nlstate; k++) ll[k]=0.;
           fprintf(ficresp,"\n");  
         printf("\n");    if(mle==1){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   dateintmean=dateintsum/k2cpt;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   fclose(ficresp);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);            }
            for(d=0; d<dh[mi][i]; d++){
   /* End of Freq */            newm=savm;
 }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /************ Prevalence ********************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            }
 {  /* Some frequencies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            savm=oldm;
   double ***freq; /* Frequencies */            oldm=newm;
   double *pp;          } /* end mult */
   double pos, k2;        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   pp=vector(1,nlstate);          /* But now since version 0.9 we anticipate for bias at large stepm.
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * the nearest (and in case of equal distance, to the lowest) interval but now
   j1=0;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   j=cptcoveff;           * probability in order to take into account the bias as a fraction of the way
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             * -stepm/2 to stepm/2 .
   for(k1=1; k1<=j;k1++){           * For stepm=1 the results are the same as for previous versions of Imach.
     for(i1=1; i1<=ncodemax[k1];i1++){           * For stepm > 1 the results are less biased than in previous versions. 
       j1++;           */
                s1=s[mw[mi][i]][i];
       for (i=-1; i<=nlstate+ndeath; i++)            s2=s[mw[mi+1][i]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            bbh=(double)bh[mi][i]/(double)stepm; 
           for(m=agemin; m <= agemax+3; m++)          /* bias bh is positive if real duration
             freq[i][jk][m]=0;           * is higher than the multiple of stepm and negative otherwise.
                 */
       for (i=1; i<=imx; i++) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         bool=1;          if( s2 > nlstate){ 
         if  (cptcovn>0) {            /* i.e. if s2 is a death state and if the date of death is known 
           for (z1=1; z1<=cptcoveff; z1++)               then the contribution to the likelihood is the probability to 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])               die between last step unit time and current  step unit time, 
               bool=0;               which is also equal to probability to die before dh 
         }               minus probability to die before dh-stepm . 
         if (bool==1) {               In version up to 0.92 likelihood was computed
           for(m=firstpass; m<=lastpass; m++){          as if date of death was unknown. Death was treated as any other
             k2=anint[m][i]+(mint[m][i]/12.);          health state: the date of the interview describes the actual state
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          and not the date of a change in health state. The former idea was
               if(agev[m][i]==0) agev[m][i]=agemax+1;          to consider that at each interview the state was recorded
               if(agev[m][i]==1) agev[m][i]=agemax+2;          (healthy, disable or death) and IMaCh was corrected; but when we
               if (m<lastpass) {          introduced the exact date of death then we should have modified
                 if (calagedate>0)          the contribution of an exact death to the likelihood. This new
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          contribution is smaller and very dependent of the step unit
                 else          stepm. It is no more the probability to die between last interview
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          and month of death but the probability to survive from last
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          interview up to one month before death multiplied by the
               }          probability to die within a month. Thanks to Chris
             }          Jackson for correcting this bug.  Former versions increased
           }          mortality artificially. The bad side is that we add another loop
         }          which slows down the processing. The difference can be up to 10%
       }          lower mortality.
       for(i=(int)agemin; i <= (int)agemax+3; i++){            */
         for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];  
         }          } else if  (s2==-2) {
         for(jk=1; jk <=nlstate ; jk++){            for (j=1,survp=0. ; j<=nlstate; j++) 
           for(m=-1, pos=0; m <=0 ; m++)              survp += out[s1][j];
             pos += freq[jk][m][i];            lli= survp;
         }          }
                  
         for(jk=1; jk <=nlstate ; jk++){          else if  (s2==-4) {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            for (j=3,survp=0. ; j<=nlstate; j++) 
             pp[jk] += freq[jk][m][i];              survp += out[s1][j];
         }            lli= survp;
                  }
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          
                  else if  (s2==-5) {
         for(jk=1; jk <=nlstate ; jk++){                for (j=1,survp=0. ; j<=2; j++) 
           if( i <= (int) agemax){              survp += out[s1][j];
             if(pos>=1.e-5){            lli= survp;
               probs[i][jk][j1]= pp[jk]/pos;          }
             }  
           }  
         }          else{
                    lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     }          } 
   }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ipmx +=1;
   free_vector(pp,1,nlstate);          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }  /* End of Freq */        } /* end of wave */
       } /* end of individual */
 /************* Waves Concatenation ***************/    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          for (ii=1;ii<=nlstate+ndeath;ii++)
      Death is a valid wave (if date is known).            for (j=1;j<=nlstate+ndeath;j++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      and mw[mi+1][i]. dh depends on stepm.            }
      */          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
   int i, mi, m;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            for (kk=1; kk<=cptcovage;kk++) {
      double sum=0., jmean=0.;*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   int j, k=0,jk, ju, jl;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double sum=0.;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   jmin=1e+5;            savm=oldm;
   jmax=-1;            oldm=newm;
   jmean=0.;          } /* end mult */
   for(i=1; i<=imx; i++){        
     mi=0;          s1=s[mw[mi][i]][i];
     m=firstpass;          s2=s[mw[mi+1][i]][i];
     while(s[m][i] <= nlstate){          bbh=(double)bh[mi][i]/(double)stepm; 
       if(s[m][i]>=1)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         mw[++mi][i]=m;          ipmx +=1;
       if(m >=lastpass)          sw += weight[i];
         break;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       else        } /* end of wave */
         m++;      } /* end of individual */
     }/* end while */    }  else if(mle==3){  /* exponential inter-extrapolation */
     if (s[m][i] > nlstate){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       mi++;     /* Death is another wave */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       /* if(mi==0)  never been interviewed correctly before death */        for(mi=1; mi<= wav[i]-1; mi++){
          /* Only death is a correct wave */          for (ii=1;ii<=nlstate+ndeath;ii++)
       mw[mi][i]=m;            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     wav[i]=mi;            }
     if(mi==0)          for(d=0; d<dh[mi][i]; d++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   for(i=1; i<=imx; i++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(mi=1; mi<wav[i];mi++){            }
       if (stepm <=0)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         dh[mi][i]=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       else{            savm=oldm;
         if (s[mw[mi+1][i]][i] > nlstate) {            oldm=newm;
           if (agedc[i] < 2*AGESUP) {          } /* end mult */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        
           if(j==0) j=1;  /* Survives at least one month after exam */          s1=s[mw[mi][i]][i];
           k=k+1;          s2=s[mw[mi+1][i]][i];
           if (j >= jmax) jmax=j;          bbh=(double)bh[mi][i]/(double)stepm; 
           if (j <= jmin) jmin=j;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           sum=sum+j;          ipmx +=1;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
         else{      } /* end of individual */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           k=k+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (j >= jmax) jmax=j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           else if (j <= jmin)jmin=j;        for(mi=1; mi<= wav[i]-1; mi++){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          for (ii=1;ii<=nlstate+ndeath;ii++)
           sum=sum+j;            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         jk= j/stepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         jl= j -jk*stepm;            }
         ju= j -(jk+1)*stepm;          for(d=0; d<dh[mi][i]; d++){
         if(jl <= -ju)            newm=savm;
           dh[mi][i]=jk;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         else            for (kk=1; kk<=cptcovage;kk++) {
           dh[mi][i]=jk+1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(dh[mi][i]==0)            }
           dh[mi][i]=1; /* At least one step */          
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   jmean=sum/k;            oldm=newm;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          } /* end mult */
  }        
 /*********** Tricode ****************************/          s1=s[mw[mi][i]][i];
 void tricode(int *Tvar, int **nbcode, int imx)          s2=s[mw[mi+1][i]][i];
 {          if( s2 > nlstate){ 
   int Ndum[20],ij=1, k, j, i;            lli=log(out[s1][s2] - savm[s1][s2]);
   int cptcode=0;          }else{
   cptcoveff=0;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            }
   for (k=0; k<19; k++) Ndum[k]=0;          ipmx +=1;
   for (k=1; k<=7; k++) ncodemax[k]=0;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for (i=1; i<=imx; i++) {        } /* end of wave */
       ij=(int)(covar[Tvar[j]][i]);      } /* end of individual */
       Ndum[ij]++;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if (ij > cptcode) cptcode=ij;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=0; i<=cptcode; i++) {            for (j=1;j<=nlstate+ndeath;j++){
       if(Ndum[i]!=0) ncodemax[j]++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     ij=1;            }
           for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     for (i=1; i<=ncodemax[j]; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for (k=0; k<=19; k++) {            for (kk=1; kk<=cptcovage;kk++) {
         if (Ndum[k] != 0) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           nbcode[Tvar[j]][ij]=k;            }
                    
           ij++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if (ij > ncodemax[j]) break;            savm=oldm;
       }              oldm=newm;
     }          } /* end mult */
   }          
           s1=s[mw[mi][i]][i];
  for (k=0; k<19; k++) Ndum[k]=0;          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
  for (i=1; i<=ncovmodel-2; i++) {          ipmx +=1;
       ij=Tvar[i];          sw += weight[i];
       Ndum[ij]++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
  ij=1;      } /* end of individual */
  for (i=1; i<=10; i++) {    } /* End of if */
    if((Ndum[i]!=0) && (i<=ncovcol)){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      Tvaraff[ij]=i;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      ij++;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
    }    return -l;
  }  }
    
     cptcoveff=ij-1;  /*************** log-likelihood *************/
 }  double funcone( double *x)
   {
 /*********** Health Expectancies ****************/    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
 {    double lli; /* Individual log likelihood */
   /* Health expectancies */    double llt;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    int s1, s2;
   double age, agelim, hf;    double bbh, survp;
   double ***p3mat,***varhe;    /*extern weight */
   double **dnewm,**doldm;    /* We are differentiating ll according to initial status */
   double *xp;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double **gp, **gm;    /*for(i=1;i<imx;i++) 
   double ***gradg, ***trgradg;      printf(" %d\n",s[4][i]);
   int theta;    */
     cov[1]=1.;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  
   xp=vector(1,npar);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficreseij,"# Health expectancies\n");      for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficreseij,"# Age");        for (ii=1;ii<=nlstate+ndeath;ii++)
   for(i=1; i<=nlstate;i++)          for (j=1;j<=nlstate+ndeath;j++){
     for(j=1; j<=nlstate;j++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"\n");          }
         for(d=0; d<dh[mi][i]; d++){
   if(estepm < stepm){          newm=savm;
     printf ("Problem %d lower than %d\n",estepm, stepm);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }          for (kk=1; kk<=cptcovage;kk++) {
   else  hstepm=estepm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* We compute the life expectancy from trapezoids spaced every estepm months          }
    * This is mainly to measure the difference between two models: for example          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    * if stepm=24 months pijx are given only every 2 years and by summing them                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    * we are calculating an estimate of the Life Expectancy assuming a linear          savm=oldm;
    * progression inbetween and thus overestimating or underestimating according          oldm=newm;
    * to the curvature of the survival function. If, for the same date, we        } /* end mult */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        
    * to compare the new estimate of Life expectancy with the same linear        s1=s[mw[mi][i]][i];
    * hypothesis. A more precise result, taking into account a more precise        s2=s[mw[mi+1][i]][i];
    * curvature will be obtained if estepm is as small as stepm. */        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
   /* For example we decided to compute the life expectancy with the smallest unit */         * is higher than the multiple of stepm and negative otherwise.
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.         */
      nhstepm is the number of hstepm from age to agelim        if( s2 > nlstate && (mle <5) ){  /* Jackson */
      nstepm is the number of stepm from age to agelin.          lli=log(out[s1][s2] - savm[s1][s2]);
      Look at hpijx to understand the reason of that which relies in memory size        } else if (mle==1){
      and note for a fixed period like estepm months */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        } else if(mle==2){
      survival function given by stepm (the optimization length). Unfortunately it          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      means that if the survival funtion is printed only each two years of age and if        } else if(mle==3){  /* exponential inter-extrapolation */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      results. So we changed our mind and took the option of the best precision.        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   */          lli=log(out[s1][s2]); /* Original formula */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
   agelim=AGESUP;        } /* End of if */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        ipmx +=1;
     /* nhstepm age range expressed in number of stepm */        sw += weight[i];
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     /* if (stepm >= YEARM) hstepm=1;*/        if(globpr){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   %10.6f %10.6f %10.6f ", \
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     gp=matrix(0,nhstepm,1,nlstate*2);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     gm=matrix(0,nhstepm,1,nlstate*2);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            fprintf(ficresilk," %10.6f\n", -llt);
          }
       } /* end of wave */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* Computing Variances of health expectancies */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      for(theta=1; theta <=npar; theta++){    if(globpr==0){ /* First time we count the contributions and weights */
       for(i=1; i<=npar; i++){      gipmx=ipmx;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      gsw=sw;
       }    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      return -l;
    }
       cptj=0;  
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){  /*************** function likelione ***********/
           cptj=cptj+1;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  {
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    /* This routine should help understanding what is done with 
           }       the selection of individuals/waves and
         }       to check the exact contribution to the likelihood.
       }       Plotting could be done.
           */
          int k;
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    if(*globpri !=0){ /* Just counts and sums, no printings */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        strcpy(fileresilk,"ilk"); 
            strcat(fileresilk,fileres);
       cptj=0;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for(j=1; j<= nlstate; j++){        printf("Problem with resultfile: %s\n", fileresilk);
         for(i=1;i<=nlstate;i++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           cptj=cptj+1;      }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         }      for(k=1; k<=nlstate; k++) 
       }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       for(j=1; j<= nlstate*2; j++)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         for(h=0; h<=nhstepm-1; h++){    }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    *fretone=(*funcone)(p);
      }    if(*globpri !=0){
          fclose(ficresilk);
 /* End theta */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    } 
     return;
      for(h=0; h<=nhstepm-1; h++)  }
       for(j=1; j<=nlstate*2;j++)  
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  /*********** Maximum Likelihood Estimation ***************/
        
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      for(i=1;i<=nlstate*2;i++)  {
       for(j=1;j<=nlstate*2;j++)    int i,j, iter;
         varhe[i][j][(int)age] =0.;    double **xi;
     double fret;
      printf("%d|",(int)age);fflush(stdout);    double fretone; /* Only one call to likelihood */
      for(h=0;h<=nhstepm-1;h++){    /*  char filerespow[FILENAMELENGTH];*/
       for(k=0;k<=nhstepm-1;k++){    xi=matrix(1,npar,1,npar);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    for (i=1;i<=npar;i++)
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      for (j=1;j<=npar;j++)
         for(i=1;i<=nlstate*2;i++)        xi[i][j]=(i==j ? 1.0 : 0.0);
           for(j=1;j<=nlstate*2;j++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    strcpy(filerespow,"pow"); 
       }    strcat(filerespow,fileres);
     }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     /* Computing expectancies */      printf("Problem with resultfile: %s\n", filerespow);
     for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(j=1; j<=nlstate;j++)    }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    for (i=1;i<=nlstate;i++)
                for(j=1;j<=nlstate+ndeath;j++)
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
         }  
     powell(p,xi,npar,ftol,&iter,&fret,func);
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;    free_matrix(xi,1,npar,1,npar);
     for(i=1; i<=nlstate;i++)    fclose(ficrespow);
       for(j=1; j<=nlstate;j++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         cptj++;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       }  
     fprintf(ficreseij,"\n");  }
      
     free_matrix(gm,0,nhstepm,1,nlstate*2);  /**** Computes Hessian and covariance matrix ***/
     free_matrix(gp,0,nhstepm,1,nlstate*2);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  {
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    double  **a,**y,*x,pd;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **hess;
   }    int i, j,jk;
   printf("\n");    int *indx;
   
   free_vector(xp,1,npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   free_matrix(dnewm,1,nlstate*2,1,npar);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    void ludcmp(double **a, int npar, int *indx, double *d) ;
 }    double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
 /************ Variance ******************/  
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    printf("\nCalculation of the hessian matrix. Wait...\n");
 {    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   /* Variance of health expectancies */    for (i=1;i<=npar;i++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      printf("%d",i);fflush(stdout);
   double **newm;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double **dnewm,**doldm;     
   int i, j, nhstepm, hstepm, h, nstepm ;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   int k, cptcode;      
   double *xp;      /*  printf(" %f ",p[i]);
   double **gp, **gm;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double ***gradg, ***trgradg;    }
   double ***p3mat;    
   double age,agelim, hf;    for (i=1;i<=npar;i++) {
   int theta;      for (j=1;j<=npar;j++)  {
         if (j>i) { 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          printf(".%d%d",i,j);fflush(stdout);
   fprintf(ficresvij,"# Age");          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   for(i=1; i<=nlstate;i++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
     for(j=1; j<=nlstate;j++)          
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          hess[j][i]=hess[i][j];    
   fprintf(ficresvij,"\n");          /*printf(" %lf ",hess[i][j]);*/
         }
   xp=vector(1,npar);      }
   dnewm=matrix(1,nlstate,1,npar);    }
   doldm=matrix(1,nlstate,1,nlstate);    printf("\n");
      fprintf(ficlog,"\n");
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   else  hstepm=estepm;      
   /* For example we decided to compute the life expectancy with the smallest unit */    a=matrix(1,npar,1,npar);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    y=matrix(1,npar,1,npar);
      nhstepm is the number of hstepm from age to agelim    x=vector(1,npar);
      nstepm is the number of stepm from age to agelin.    indx=ivector(1,npar);
      Look at hpijx to understand the reason of that which relies in memory size    for (i=1;i<=npar;i++)
      and note for a fixed period like k years */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    ludcmp(a,npar,indx,&pd);
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if    for (j=1;j<=npar;j++) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (i=1;i<=npar;i++) x[i]=0;
      results. So we changed our mind and took the option of the best precision.      x[j]=1;
   */      lubksb(a,npar,indx,x);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for (i=1;i<=npar;i++){ 
   agelim = AGESUP;        matcov[i][j]=x[i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\n#Hessian matrix#\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    fprintf(ficlog,"\n#Hessian matrix#\n");
     gp=matrix(0,nhstepm,1,nlstate);    for (i=1;i<=npar;i++) { 
     gm=matrix(0,nhstepm,1,nlstate);      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
     for(theta=1; theta <=npar; theta++){        fprintf(ficlog,"%.3e ",hess[i][j]);
       for(i=1; i<=npar; i++){ /* Computes gradient */      }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf("\n");
       }      fprintf(ficlog,"\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
     /* Recompute Inverse */
       if (popbased==1) {    for (i=1;i<=npar;i++)
         for(i=1; i<=nlstate;i++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           prlim[i][i]=probs[(int)age][i][ij];    ludcmp(a,npar,indx,&pd);
       }  
      /*  printf("\n#Hessian matrix recomputed#\n");
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    for (j=1;j<=npar;j++) {
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for (i=1;i<=npar;i++) x[i]=0;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      x[j]=1;
         }      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
            y[i][j]=x[i];
       for(i=1; i<=npar; i++) /* Computes gradient */        printf("%.3e ",y[i][j]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        fprintf(ficlog,"%.3e ",y[i][j]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      printf("\n");
        fprintf(ficlog,"\n");
       if (popbased==1) {    }
         for(i=1; i<=nlstate;i++)    */
           prlim[i][i]=probs[(int)age][i][ij];  
       }    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
       for(j=1; j<= nlstate; j++){    free_vector(x,1,npar);
         for(h=0; h<=nhstepm; h++){    free_ivector(indx,1,npar);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    free_matrix(hess,1,npar,1,npar);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  
       }  }
   
       for(j=1; j<= nlstate; j++)  /*************** hessian matrix ****************/
         for(h=0; h<=nhstepm; h++){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  {
         }    int i;
     } /* End theta */    int l=1, lmax=20;
     double k1,k2;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double p2[NPARMAX+1];
     double res;
     for(h=0; h<=nhstepm; h++)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(j=1; j<=nlstate;j++)    double fx;
         for(theta=1; theta <=npar; theta++)    int k=0,kmax=10;
           trgradg[h][j][theta]=gradg[h][theta][j];    double l1;
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    fx=func(x);
     for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(j=1;j<=nlstate;j++)    for(l=0 ; l <=lmax; l++){
         vareij[i][j][(int)age] =0.;      l1=pow(10,l);
       delts=delt;
     for(h=0;h<=nhstepm;h++){      for(k=1 ; k <kmax; k=k+1){
       for(k=0;k<=nhstepm;k++){        delt = delta*(l1*k);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        p2[theta]=x[theta] +delt;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        k1=func(p2)-fx;
         for(i=1;i<=nlstate;i++)        p2[theta]=x[theta]-delt;
           for(j=1;j<=nlstate;j++)        k2=func(p2)-fx;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        /*res= (k1-2.0*fx+k2)/delt/delt; */
       }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     }        
   #ifdef DEBUG
     fprintf(ficresvij,"%.0f ",age );        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(i=1; i<=nlstate;i++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(j=1; j<=nlstate;j++){  #endif
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     fprintf(ficresvij,"\n");          k=kmax;
     free_matrix(gp,0,nhstepm,1,nlstate);        }
     free_matrix(gm,0,nhstepm,1,nlstate);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          k=kmax; l=lmax*10.;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   } /* End age */          delts=delt;
          }
   free_vector(xp,1,npar);      }
   free_matrix(doldm,1,nlstate,1,npar);    }
   free_matrix(dnewm,1,nlstate,1,nlstate);    delti[theta]=delts;
     return res; 
 }    
   }
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 {  {
   /* Variance of prevalence limit */    int i;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int l=1, l1, lmax=20;
   double **newm;    double k1,k2,k3,k4,res,fx;
   double **dnewm,**doldm;    double p2[NPARMAX+1];
   int i, j, nhstepm, hstepm;    int k;
   int k, cptcode;  
   double *xp;    fx=func(x);
   double *gp, *gm;    for (k=1; k<=2; k++) {
   double **gradg, **trgradg;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double age,agelim;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int theta;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k1=func(p2)-fx;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    
   fprintf(ficresvpl,"# Age");      p2[thetai]=x[thetai]+delti[thetai]/k;
   for(i=1; i<=nlstate;i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       fprintf(ficresvpl," %1d-%1d",i,i);      k2=func(p2)-fx;
   fprintf(ficresvpl,"\n");    
       p2[thetai]=x[thetai]-delti[thetai]/k;
   xp=vector(1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   dnewm=matrix(1,nlstate,1,npar);      k3=func(p2)-fx;
   doldm=matrix(1,nlstate,1,nlstate);    
        p2[thetai]=x[thetai]-delti[thetai]/k;
   hstepm=1*YEARM; /* Every year of age */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      k4=func(p2)-fx;
   agelim = AGESUP;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  #ifdef DEBUG
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     if (stepm >= YEARM) hstepm=1;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  #endif
     gradg=matrix(1,npar,1,nlstate);    }
     gp=vector(1,nlstate);    return res;
     gm=vector(1,nlstate);  }
   
     for(theta=1; theta <=npar; theta++){  /************** Inverse of matrix **************/
       for(i=1; i<=npar; i++){ /* Computes gradient */  void ludcmp(double **a, int n, int *indx, double *d) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  { 
       }    int i,imax,j,k; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double big,dum,sum,temp; 
       for(i=1;i<=nlstate;i++)    double *vv; 
         gp[i] = prlim[i][i];   
        vv=vector(1,n); 
       for(i=1; i<=npar; i++) /* Computes gradient */    *d=1.0; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=n;i++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      big=0.0; 
       for(i=1;i<=nlstate;i++)      for (j=1;j<=n;j++) 
         gm[i] = prlim[i][i];        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for(i=1;i<=nlstate;i++)      vv[i]=1.0/big; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    } 
     } /* End theta */    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
     trgradg =matrix(1,nlstate,1,npar);        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     for(j=1; j<=nlstate;j++)        a[i][j]=sum; 
       for(theta=1; theta <=npar; theta++)      } 
         trgradg[j][theta]=gradg[theta][j];      big=0.0; 
       for (i=j;i<=n;i++) { 
     for(i=1;i<=nlstate;i++)        sum=a[i][j]; 
       varpl[i][(int)age] =0.;        for (k=1;k<j;k++) 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          sum -= a[i][k]*a[k][j]; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        a[i][j]=sum; 
     for(i=1;i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          big=dum; 
           imax=i; 
     fprintf(ficresvpl,"%.0f ",age );        } 
     for(i=1; i<=nlstate;i++)      } 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      if (j != imax) { 
     fprintf(ficresvpl,"\n");        for (k=1;k<=n;k++) { 
     free_vector(gp,1,nlstate);          dum=a[imax][k]; 
     free_vector(gm,1,nlstate);          a[imax][k]=a[j][k]; 
     free_matrix(gradg,1,npar,1,nlstate);          a[j][k]=dum; 
     free_matrix(trgradg,1,nlstate,1,npar);        } 
   } /* End age */        *d = -(*d); 
         vv[imax]=vv[j]; 
   free_vector(xp,1,npar);      } 
   free_matrix(doldm,1,nlstate,1,npar);      indx[j]=imax; 
   free_matrix(dnewm,1,nlstate,1,nlstate);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
 }        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 /************ Variance of one-step probabilities  ******************/      } 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    } 
 {    free_vector(vv,1,n);  /* Doesn't work */
   int i, j,  i1, k1, l1;  ;
   int k2, l2, j1,  z1;  } 
   int k=0,l, cptcode;  
   int first=1;  void lubksb(double **a, int n, int *indx, double b[]) 
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;  { 
   double **dnewm,**doldm;    int i,ii=0,ip,j; 
   double *xp;    double sum; 
   double *gp, *gm;   
   double **gradg, **trgradg;    for (i=1;i<=n;i++) { 
   double **mu;      ip=indx[i]; 
   double age,agelim, cov[NCOVMAX];      sum=b[ip]; 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      b[ip]=b[i]; 
   int theta;      if (ii) 
   char fileresprob[FILENAMELENGTH];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   char fileresprobcov[FILENAMELENGTH];      else if (sum) ii=i; 
   char fileresprobcor[FILENAMELENGTH];      b[i]=sum; 
     } 
   double ***varpij;    for (i=n;i>=1;i--) { 
       sum=b[i]; 
   strcpy(fileresprob,"prob");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   strcat(fileresprob,fileres);      b[i]=sum/a[i][i]; 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    } 
     printf("Problem with resultfile: %s\n", fileresprob);  } 
   }  
   strcpy(fileresprobcov,"probcov");  void pstamp(FILE *fichier)
   strcat(fileresprobcov,fileres);  {
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     printf("Problem with resultfile: %s\n", fileresprobcov);  }
   }  
   strcpy(fileresprobcor,"probcor");  /************ Frequencies ********************/
   strcat(fileresprobcor,fileres);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  {  /* Some frequencies */
     printf("Problem with resultfile: %s\n", fileresprobcor);    
   }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    int first;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double ***freq; /* Frequencies */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    double *pp, **prop;
      double pos,posprop, k2, dateintsum=0,k2cpt=0;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    char fileresp[FILENAMELENGTH];
   fprintf(ficresprob,"# Age");    
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    pp=vector(1,nlstate);
   fprintf(ficresprobcov,"# Age");    prop=matrix(1,nlstate,iagemin,iagemax+3);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    strcpy(fileresp,"p");
   fprintf(ficresprobcov,"# Age");    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
   for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     for(j=1; j<=(nlstate+ndeath);j++){      exit(0);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    }
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    j1=0;
     }      
   fprintf(ficresprob,"\n");    j=cptcoveff;
   fprintf(ficresprobcov,"\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficresprobcor,"\n");  
   xp=vector(1,npar);    first=1;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    for(k1=1; k1<=j;k1++){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      for(i1=1; i1<=ncodemax[k1];i1++){
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        j1++;
   first=1;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          scanf("%d", i);*/
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        for (i=-5; i<=nlstate+ndeath; i++)  
     exit(0);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   }            for(m=iagemin; m <= iagemax+3; m++)
   else{              freq[i][jk][m]=0;
     fprintf(ficgp,"\n# Routine varprob");  
   }      for (i=1; i<=nlstate; i++)  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        for(m=iagemin; m <= iagemax+3; m++)
     printf("Problem with html file: %s\n", optionfilehtm);          prop[i][m]=0;
     exit(0);        
   }        dateintsum=0;
   else{        k2cpt=0;
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");        for (i=1; i<=imx; i++) {
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          bool=1;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   cov[1]=1;                bool=0;
   j=cptcoveff;          }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          if (bool==1){
   j1=0;            for(m=firstpass; m<=lastpass; m++){
   for(k1=1; k1<=1;k1++){              k2=anint[m][i]+(mint[m][i]/12.);
     for(i1=1; i1<=ncodemax[k1];i1++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     j1++;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
     if  (cptcovn>0) {                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficresprob, "\n#********** Variable ");                if (m<lastpass) {
       fprintf(ficresprobcov, "\n#********** Variable ");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficgp, "\n#********** Variable ");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");                }
       fprintf(ficresprobcor, "\n#********** Variable ");                
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       fprintf(ficresprob, "**********\n#");                  dateintsum=dateintsum+k2;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                  k2cpt++;
       fprintf(ficresprobcov, "**********\n#");                }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                /*}*/
       fprintf(ficgp, "**********\n#");            }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
       fprintf(ficgp, "**********\n#");        }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);         
       fprintf(fichtm, "**********\n#");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     }        pstamp(ficresp);
            if  (cptcovn>0) {
       for (age=bage; age<=fage; age ++){          fprintf(ficresp, "\n#********** Variable "); 
         cov[2]=age;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (k=1; k<=cptcovn;k++) {          fprintf(ficresp, "**********\n#");
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        }
         }        for(i=1; i<=nlstate;i++) 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         for (k=1; k<=cptcovprod;k++)        fprintf(ficresp, "\n");
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        
                for(i=iagemin; i <= iagemax+3; i++){
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          if(i==iagemax+3){
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            fprintf(ficlog,"Total");
         gp=vector(1,(nlstate)*(nlstate+ndeath));          }else{
         gm=vector(1,(nlstate)*(nlstate+ndeath));            if(first==1){
                  first=0;
         for(theta=1; theta <=npar; theta++){              printf("See log file for details...\n");
           for(i=1; i<=npar; i++)            }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            fprintf(ficlog,"Age %d", i);
                    }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for(jk=1; jk <=nlstate ; jk++){
                      for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           k=0;              pp[jk] += freq[jk][m][i]; 
           for(i=1; i<= (nlstate); i++){          }
             for(j=1; j<=(nlstate+ndeath);j++){          for(jk=1; jk <=nlstate ; jk++){
               k=k+1;            for(m=-1, pos=0; m <=0 ; m++)
               gp[k]=pmmij[i][j];              pos += freq[jk][m][i];
             }            if(pp[jk]>=1.e-10){
           }              if(first==1){
                        printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for(i=1; i<=npar; i++)              }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }else{
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              if(first==1)
           k=0;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           for(i=1; i<=(nlstate); i++){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             for(j=1; j<=(nlstate+ndeath);j++){            }
               k=k+1;          }
               gm[k]=pmmij[i][j];  
             }          for(jk=1; jk <=nlstate ; jk++){
           }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                    pp[jk] += freq[jk][m][i];
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          }       
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         }            pos += pp[jk];
             posprop += prop[jk][i];
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          }
           for(theta=1; theta <=npar; theta++)          for(jk=1; jk <=nlstate ; jk++){
             trgradg[j][theta]=gradg[theta][j];            if(pos>=1.e-5){
                      if(first==1)
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                    }else{
         pmij(pmmij,cov,ncovmodel,x,nlstate);              if(first==1)
                        printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         k=0;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for(i=1; i<=(nlstate); i++){            }
           for(j=1; j<=(nlstate+ndeath);j++){            if( i <= iagemax){
             k=k+1;              if(pos>=1.e-5){
             mu[k][(int) age]=pmmij[i][j];                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           }                /*probs[i][jk][j1]= pp[jk]/pos;*/
         }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)              else
             varpij[i][j][(int)age] = doldm[i][j];                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
         /*printf("\n%d ",(int)age);          }
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(jk=-1; jk <=nlstate+ndeath; jk++)
      }*/            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
         fprintf(ficresprob,"\n%d ",(int)age);              if(first==1)
         fprintf(ficresprobcov,"\n%d ",(int)age);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         fprintf(ficresprobcor,"\n%d ",(int)age);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          if(i <= iagemax)
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            fprintf(ficresp,"\n");
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          if(first==1)
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            printf("Others in log...\n");
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          fprintf(ficlog,"\n");
         }        }
         i=0;      }
         for (k=1; k<=(nlstate);k++){    }
           for (l=1; l<=(nlstate+ndeath);l++){    dateintmean=dateintsum/k2cpt; 
             i=i++;   
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    fclose(ficresp);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
             for (j=1; j<=i;j++){    free_vector(pp,1,nlstate);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    /* End of Freq */
             }  }
           }  
         }/* end of loop for state */  /************ Prevalence ********************/
       } /* end of loop for age */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  {  
       for (k1=1; k1<=(nlstate);k1++){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         for (l1=1; l1<=(nlstate+ndeath);l1++){       in each health status at the date of interview (if between dateprev1 and dateprev2).
           if(l1==k1) continue;       We still use firstpass and lastpass as another selection.
           i=(k1-1)*(nlstate+ndeath)+l1;    */
           for (k2=1; k2<=(nlstate);k2++){   
             for (l2=1; l2<=(nlstate+ndeath);l2++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
               if(l2==k2) continue;    double ***freq; /* Frequencies */
               j=(k2-1)*(nlstate+ndeath)+l2;    double *pp, **prop;
               if(j<=i) continue;    double pos,posprop; 
               for (age=bage; age<=fage; age ++){    double  y2; /* in fractional years */
                 if ((int)age %5==0){    int iagemin, iagemax;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    iagemin= (int) agemin;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    iagemax= (int) agemax;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    /*pp=vector(1,nlstate);*/
                   mu2=mu[j][(int) age]/stepm*YEARM;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
                   /* Computing eigen value of matrix of covariance */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    j1=0;
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    j=cptcoveff;
                   /* Eigen vectors */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    
                   v21=sqrt(1.-v11*v11);    for(k1=1; k1<=j;k1++){
                   v12=-v21;      for(i1=1; i1<=ncodemax[k1];i1++){
                   v22=v11;        j1++;
                   /*printf(fignu*/        
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        for (i=1; i<=nlstate; i++)  
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */          for(m=iagemin; m <= iagemax+3; m++)
                   if(first==1){            prop[i][m]=0.0;
                     first=0;       
                     fprintf(ficgp,"\nset parametric;set nolabel");        for (i=1; i<=imx; i++) { /* Each individual */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);          bool=1;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          if  (cptcovn>0) {
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);            for (z1=1; z1<=cptcoveff; z1++) 
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);                bool=0;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          } 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);          if (bool==1) { 
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                   }else{                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                     first=0;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                   }/* if first */                } 
                 } /* age mod 5 */              }
               } /* end loop age */            } /* end selection of waves */
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);          }
               first=1;        }
             } /*l12 */        for(i=iagemin; i <= iagemax+3; i++){  
           } /* k12 */          
         } /*l1 */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       }/* k1 */            posprop += prop[jk][i]; 
     } /* loop covariates */          } 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          for(jk=1; jk <=nlstate ; jk++){     
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            if( i <=  iagemax){ 
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);              if(posprop>=1.e-5){ 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                probs[i][jk][j1]= prop[jk][i]/posprop;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              } 
   }            } 
   free_vector(xp,1,npar);          }/* end jk */ 
   fclose(ficresprob);        }/* end i */ 
   fclose(ficresprobcov);      } /* end i1 */
   fclose(ficresprobcor);    } /* end k1 */
   fclose(ficgp);    
   fclose(fichtm);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 }    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  /************* Waves Concatenation ***************/
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                   int popforecast, int estepm ,\  {
                   double jprev1, double mprev1,double anprev1, \    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   double jprev2, double mprev2,double anprev2){       Death is a valid wave (if date is known).
   int jj1, k1, i1, cpt;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   /*char optionfilehtm[FILENAMELENGTH];*/       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {       and mw[mi+1][i]. dh depends on stepm.
     printf("Problem with %s \n",optionfilehtm), exit(0);       */
   }  
     int i, mi, m;
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n       double sum=0., jmean=0.;*/
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    int first;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    int j, k=0,jk, ju, jl;
  - Life expectancies by age and initial health status (estepm=%2d months):    double sum=0.;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    first=0;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    jmin=1e+5;
     jmax=-1;
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    jmean=0.;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    for(i=1; i<=imx; i++){
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      mi=0;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      m=firstpass;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      while(s[m][i] <= nlstate){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          mw[++mi][i]=m;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        if(m >=lastpass)
           break;
  if(popforecast==1) fprintf(fichtm,"\n        else
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          m++;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      }/* end while */
         <br>",fileres,fileres,fileres,fileres);      if (s[m][i] > nlstate){
  else        mi++;     /* Death is another wave */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        /* if(mi==0)  never been interviewed correctly before death */
 fprintf(fichtm," <li>Graphs</li><p>");           /* Only death is a correct wave */
         mw[mi][i]=m;
  m=cptcoveff;      }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
       wav[i]=mi;
  jj1=0;      if(mi==0){
  for(k1=1; k1<=m;k1++){        nbwarn++;
    for(i1=1; i1<=ncodemax[k1];i1++){        if(first==0){
      jj1++;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
      if (cptcovn > 0) {          first=1;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        }
        for (cpt=1; cpt<=cptcoveff;cpt++)        if(first==1){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        }
      }      } /* end mi==0 */
      /* Pij */    } /* End individuals */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>  
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(i=1; i<=imx; i++){
      /* Quasi-incidences */      for(mi=1; mi<wav[i];mi++){
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        if (stepm <=0)
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          dh[mi][i]=1;
        /* Stable prevalence in each health state */        else{
        for(cpt=1; cpt<nlstate;cpt++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>            if (agedc[i] < 2*AGESUP) {
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
        }              if(j==0) j=1;  /* Survives at least one month after exam */
     for(cpt=1; cpt<=nlstate;cpt++) {              else if(j<0){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                nberr++;
 interval) in state (%d): v%s%d%d.png <br>                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  j=1; /* Temporary Dangerous patch */
      }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
      for(cpt=1; cpt<=nlstate;cpt++) {                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              }
      }              k=k+1;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              if (j >= jmax){
 health expectancies in states (1) and (2): e%s%d.png<br>                jmax=j;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                ijmax=i;
    }              }
  }              if (j <= jmin){
 fclose(fichtm);                jmin=j;
 }                ijmin=i;
               }
 /******************* Gnuplot file **************/              sum=sum+j;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            }
   int ng;          }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          else{
     printf("Problem with file %s",optionfilegnuplot);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
 #ifdef windows            k=k+1;
     fprintf(ficgp,"cd \"%s\" \n",pathc);            if (j >= jmax) {
 #endif              jmax=j;
 m=pow(2,cptcoveff);              ijmax=i;
              }
  /* 1eme*/            else if (j <= jmin){
   for (cpt=1; cpt<= nlstate ; cpt ++) {              jmin=j;
    for (k1=1; k1<= m ; k1 ++) {              ijmin=i;
             }
 #ifdef windows            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            if(j<0){
 #endif              nberr++;
 #ifdef unix              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);            }
 #endif            sum=sum+j;
           }
 for (i=1; i<= nlstate ; i ++) {          jk= j/stepm;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          jl= j -jk*stepm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          ju= j -(jk+1)*stepm;
 }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            if(jl==0){
     for (i=1; i<= nlstate ; i ++) {              dh[mi][i]=jk;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              bh[mi][i]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }else{ /* We want a negative bias in order to only have interpolation ie
 }                    * at the price of an extra matrix product in likelihood */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              dh[mi][i]=jk+1;
      for (i=1; i<= nlstate ; i ++) {              bh[mi][i]=ju;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }else{
 }              if(jl <= -ju){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              dh[mi][i]=jk;
 #ifdef unix              bh[mi][i]=jl;       /* bias is positive if real duration
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");                                   * is higher than the multiple of stepm and negative otherwise.
 #endif                                   */
    }            }
   }            else{
   /*2 eme*/              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   for (k1=1; k1<= m ; k1 ++) {            }
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);            if(dh[mi][i]==0){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);              dh[mi][i]=1; /* At least one step */
                  bh[mi][i]=ju; /* At least one step */
     for (i=1; i<= nlstate+1 ; i ++) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       k=2*i;            }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          } /* end if mle */
       for (j=1; j<= nlstate+1 ; j ++) {        }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      } /* end wave */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      jmean=sum/k;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);   }
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /*********** Tricode ****************************/
         else fprintf(ficgp," \%%*lf (\%%*lf)");  void tricode(int *Tvar, int **nbcode, int imx)
 }    {
       fprintf(ficgp,"\" t\"\" w l 0,");    
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    int Ndum[20],ij=1, k, j, i, maxncov=19;
       for (j=1; j<= nlstate+1 ; j ++) {    int cptcode=0;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    cptcoveff=0; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");   
 }      for (k=0; k<maxncov; k++) Ndum[k]=0;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    for (k=1; k<=7; k++) ncodemax[k]=0;
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                   modality*/ 
   /*3eme*/        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
   for (k1=1; k1<= m ; k1 ++) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       k=2+nlstate*(2*cpt-2);                                         Tvar[j]. If V=sex and male is 0 and 
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                                         female is 1, then  cptcode=1.*/
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      for (i=0; i<=cptcode; i++) {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
 */        for (k=0; k<= maxncov; k++) {
       for (i=1; i< nlstate ; i ++) {          if (Ndum[k] != 0) {
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       }            
     }            ij++;
   }          }
            if (ij > ncodemax[j]) break; 
   /* CV preval stat */        }  
     for (k1=1; k1<= m ; k1 ++) {      } 
     for (cpt=1; cpt<nlstate ; cpt ++) {    }  
       k=3;  
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);   for (k=0; k< maxncov; k++) Ndum[k]=0;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
    for (i=1; i<=ncovmodel-2; i++) { 
       for (i=1; i< nlstate ; i ++)     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         fprintf(ficgp,"+$%d",k+i+1);     ij=Tvar[i];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);     Ndum[ij]++;
         }
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);   ij=1;
       for (i=1; i< nlstate ; i ++) {   for (i=1; i<= maxncov; i++) {
         l=3+(nlstate+ndeath)*cpt;     if((Ndum[i]!=0) && (i<=ncovcol)){
         fprintf(ficgp,"+$%d",l+i+1);       Tvaraff[ij]=i; /*For printing */
       }       ij++;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       }
     }   }
   }     
     cptcoveff=ij-1; /*Number of simple covariates*/
   /* proba elementaires */  }
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){  /*********** Health Expectancies ****************/
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
          
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  {
           jk++;    /* Health expectancies, no variances */
           fprintf(ficgp,"\n");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
         }    double age, agelim, hf;
       }    double ***p3mat;
     }    double eip;
    }  
     pstamp(ficreseij);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
      for(jk=1; jk <=m; jk++) {    fprintf(ficreseij,"# Age");
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    for(i=1; i<=nlstate;i++){
        if (ng==2)      for(j=1; j<=nlstate;j++){
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        fprintf(ficreseij," e%1d%1d ",i,j);
        else      }
          fprintf(ficgp,"\nset title \"Probability\"\n");      fprintf(ficreseij," e%1d. ",i);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    }
        i=1;    fprintf(ficreseij,"\n");
        for(k2=1; k2<=nlstate; k2++) {  
          k3=i;    
          for(k=1; k<=(nlstate+ndeath); k++) {    if(estepm < stepm){
            if (k != k2){      printf ("Problem %d lower than %d\n",estepm, stepm);
              if(ng==2)    }
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    else  hstepm=estepm;   
              else    /* We compute the life expectancy from trapezoids spaced every estepm months
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);     * This is mainly to measure the difference between two models: for example
              ij=1;     * if stepm=24 months pijx are given only every 2 years and by summing them
              for(j=3; j <=ncovmodel; j++) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     * progression in between and thus overestimating or underestimating according
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     * to the curvature of the survival function. If, for the same date, we 
                  ij++;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                }     * to compare the new estimate of Life expectancy with the same linear 
                else     * hypothesis. A more precise result, taking into account a more precise
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     * curvature will be obtained if estepm is as small as stepm. */
              }  
              fprintf(ficgp,")/(1");    /* For example we decided to compute the life expectancy with the smallest unit */
                  /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
              for(k1=1; k1 <=nlstate; k1++){         nhstepm is the number of hstepm from age to agelim 
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       nstepm is the number of stepm from age to agelin. 
                ij=1;       Look at hpijx to understand the reason of that which relies in memory size
                for(j=3; j <=ncovmodel; j++){       and note for a fixed period like estepm months */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       survival function given by stepm (the optimization length). Unfortunately it
                    ij++;       means that if the survival funtion is printed only each two years of age and if
                  }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                  else       results. So we changed our mind and took the option of the best precision.
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    */
                }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                fprintf(ficgp,")");  
              }    agelim=AGESUP;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    /* nhstepm age range expressed in number of stepm */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
              i=i+ncovmodel;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
            }    /* if (stepm >= YEARM) hstepm=1;*/
          }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }  
    }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    fclose(ficgp);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 }  /* end gnuplot */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 /*************** Moving average **************/   
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
   int i, cpt, cptcod;      /* Computing  Variances of health expectancies */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       for (i=1; i<=nlstate;i++)         decrease memory allocation */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)       printf("%d|",(int)age);fflush(stdout);
           mobaverage[(int)agedeb][i][cptcod]=0.;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
          /* Computing expectancies */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      for(i=1; i<=nlstate;i++)
       for (i=1; i<=nlstate;i++){        for(j=1; j<=nlstate;j++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           for (cpt=0;cpt<=4;cpt++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            
           }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }          }
       }  
     }      fprintf(ficreseij,"%3.0f",age );
          for(i=1; i<=nlstate;i++){
 }        eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
 /************** Forecasting ******************/          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        }
          fprintf(ficreseij,"%9.4f", eip );
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      }
   int *popage;      fprintf(ficreseij,"\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    }
   double ***p3mat;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char fileresf[FILENAMELENGTH];    printf("\n");
     fprintf(ficlog,"\n");
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  }
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
    
    {
   strcpy(fileresf,"f");    /* Covariances of health expectancies eij and of total life expectancies according
   strcat(fileresf,fileres);     to initial status i, ei. .
   if((ficresf=fopen(fileresf,"w"))==NULL) {    */
     printf("Problem with forecast resultfile: %s\n", fileresf);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   }    double age, agelim, hf;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double *xp, *xm;
     double **gp, **gm;
   if (mobilav==1) {    double ***gradg, ***trgradg;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int theta;
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }    double eip, vip;
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   if (stepm<=12) stepsize=1;    xp=vector(1,npar);
      xm=vector(1,npar);
   agelim=AGESUP;    dnewm=matrix(1,nlstate*nlstate,1,npar);
      doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   hstepm=1;    
   hstepm=hstepm/stepm;    pstamp(ficresstdeij);
   yp1=modf(dateintmean,&yp);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   anprojmean=yp;    fprintf(ficresstdeij,"# Age");
   yp2=modf((yp1*12),&yp);    for(i=1; i<=nlstate;i++){
   mprojmean=yp;      for(j=1; j<=nlstate;j++)
   yp1=modf((yp2*30.5),&yp);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   jprojmean=yp;      fprintf(ficresstdeij," e%1d. ",i);
   if(jprojmean==0) jprojmean=1;    }
   if(mprojmean==0) jprojmean=1;    fprintf(ficresstdeij,"\n");
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    pstamp(ficrescveij);
      fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficrescveij,"# Age");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    for(i=1; i<=nlstate;i++)
       k=k+1;      for(j=1; j<=nlstate;j++){
       fprintf(ficresf,"\n#******");        cptj= (j-1)*nlstate+i;
       for(j=1;j<=cptcoveff;j++) {        for(i2=1; i2<=nlstate;i2++)
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(j2=1; j2<=nlstate;j2++){
       }            cptj2= (j2-1)*nlstate+i2;
       fprintf(ficresf,"******\n");            if(cptj2 <= cptj)
       fprintf(ficresf,"# StartingAge FinalAge");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          }
            }
          fprintf(ficrescveij,"\n");
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    
         fprintf(ficresf,"\n");    if(estepm < stepm){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        printf ("Problem %d lower than %d\n",estepm, stepm);
     }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    else  hstepm=estepm;   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /* We compute the life expectancy from trapezoids spaced every estepm months
           nhstepm = nhstepm/hstepm;     * This is mainly to measure the difference between two models: for example
               * if stepm=24 months pijx are given only every 2 years and by summing them
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           oldm=oldms;savm=savms;     * progression in between and thus overestimating or underestimating according
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * to the curvature of the survival function. If, for the same date, we 
             * estimate the model with stepm=1 month, we can keep estepm to 24 months
           for (h=0; h<=nhstepm; h++){     * to compare the new estimate of Life expectancy with the same linear 
             if (h==(int) (calagedate+YEARM*cpt)) {     * hypothesis. A more precise result, taking into account a more precise
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);     * curvature will be obtained if estepm is as small as stepm. */
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    /* For example we decided to compute the life expectancy with the smallest unit */
               kk1=0.;kk2=0;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               for(i=1; i<=nlstate;i++) {                     nhstepm is the number of hstepm from age to agelim 
                 if (mobilav==1)       nstepm is the number of stepm from age to agelin. 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       Look at hpijx to understand the reason of that which relies in memory size
                 else {       and note for a fixed period like estepm months */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 }       survival function given by stepm (the optimization length). Unfortunately it
                       means that if the survival funtion is printed only each two years of age and if
               }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               if (h==(int)(calagedate+12*cpt)){       results. So we changed our mind and took the option of the best precision.
                 fprintf(ficresf," %.3f", kk1);    */
                            hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               }  
             }    /* If stepm=6 months */
           }    /* nhstepm age range expressed in number of stepm */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    agelim=AGESUP;
         }    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }    /* if (stepm >= YEARM) hstepm=1;*/
   }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
            
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficresf);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 /************** Forecasting ******************/    gp=matrix(0,nhstepm,1,nlstate*nlstate);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    gm=matrix(0,nhstepm,1,nlstate*nlstate);
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    for (age=bage; age<=fage; age ++){ 
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   double *popeffectif,*popcount;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   double ***p3mat,***tabpop,***tabpopprev;   
   char filerespop[FILENAMELENGTH];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Computing  Variances of health expectancies */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   agelim=AGESUP;         decrease memory allocation */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            xm[i] = x[i] - (i==theta ?delti[theta]:0);
          }
   strcpy(filerespop,"pop");        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   strcat(filerespop,fileres);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    
     printf("Problem with forecast resultfile: %s\n", filerespop);        for(j=1; j<= nlstate; j++){
   }          for(i=1; i<=nlstate; i++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);            for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
   if (mobilav==1) {          }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
     movingaverage(agedeb, fage, ageminpar, mobaverage);       
   }        for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   if (stepm<=12) stepsize=1;          }
        }/* End theta */
   agelim=AGESUP;      
        
   hstepm=1;      for(h=0; h<=nhstepm-1; h++)
   hstepm=hstepm/stepm;        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   if (popforecast==1) {            trgradg[h][j][theta]=gradg[h][theta][j];
     if((ficpop=fopen(popfile,"r"))==NULL) {      
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }       for(ij=1;ij<=nlstate*nlstate;ij++)
     popage=ivector(0,AGESUP);        for(ji=1;ji<=nlstate*nlstate;ji++)
     popeffectif=vector(0,AGESUP);          varhe[ij][ji][(int)age] =0.;
     popcount=vector(0,AGESUP);  
           printf("%d|",(int)age);fflush(stdout);
     i=1;         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;       for(h=0;h<=nhstepm-1;h++){
            for(k=0;k<=nhstepm-1;k++){
     imx=i;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   }          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
   for(cptcov=1;cptcov<=i2;cptcov++){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
       k=k+1;      }
       fprintf(ficrespop,"\n#******");      /* Computing expectancies */
       for(j=1;j<=cptcoveff;j++) {      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++)
       fprintf(ficrespop,"******\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       fprintf(ficrespop,"# Age");            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            
       if (popforecast==1)  fprintf(ficrespop," [Population]");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        
       for (cpt=0; cpt<=0;cpt++) {          }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
              fprintf(ficresstdeij,"%3.0f",age );
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(i=1; i<=nlstate;i++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        eip=0.;
           nhstepm = nhstepm/hstepm;        vip=0.;
                  for(j=1; j<=nlstate;j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          eip += eij[i][j][(int)age];
           oldm=oldms;savm=savms;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                  fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedate+YEARM*cpt)) {        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      }
             }      fprintf(ficresstdeij,"\n");
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;      fprintf(ficrescveij,"%3.0f",age );
               for(i=1; i<=nlstate;i++) {                    for(i=1; i<=nlstate;i++)
                 if (mobilav==1)        for(j=1; j<=nlstate;j++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          cptj= (j-1)*nlstate+i;
                 else {          for(i2=1; i2<=nlstate;i2++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            for(j2=1; j2<=nlstate;j2++){
                 }              cptj2= (j2-1)*nlstate+i2;
               }              if(cptj2 <= cptj)
               if (h==(int)(calagedate+12*cpt)){                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            }
                   /*fprintf(ficrespop," %.3f", kk1);        }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      fprintf(ficrescveij,"\n");
               }     
             }    }
             for(i=1; i<=nlstate;i++){    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
               kk1=0.;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                 for(j=1; j<=nlstate;j++){    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                 }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }    printf("\n");
     fprintf(ficlog,"\n");
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    free_vector(xm,1,npar);
           }    free_vector(xp,1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    }
   /******/  
   /************ Variance ******************/
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* Variance of health expectancies */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           nhstepm = nhstepm/hstepm;    /* double **newm;*/
              double **dnewm,**doldm;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **dnewmp,**doldmp;
           oldm=oldms;savm=savms;    int i, j, nhstepm, hstepm, h, nstepm ;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int k, cptcode;
           for (h=0; h<=nhstepm; h++){    double *xp;
             if (h==(int) (calagedate+YEARM*cpt)) {    double **gp, **gm;  /* for var eij */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double ***gradg, ***trgradg; /*for var eij */
             }    double **gradgp, **trgradgp; /* for var p point j */
             for(j=1; j<=nlstate+ndeath;j++) {    double *gpp, *gmp; /* for var p point j */
               kk1=0.;kk2=0;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
               for(i=1; i<=nlstate;i++) {                  double ***p3mat;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        double age,agelim, hf;
               }    double ***mobaverage;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    int theta;
             }    char digit[4];
           }    char digitp[25];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    char fileresprobmorprev[FILENAMELENGTH];
       }  
    }    if(popbased==1){
   }      if(mobilav!=0)
          strcpy(digitp,"-populbased-mobilav-");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      else strcpy(digitp,"-populbased-nomobil-");
     }
   if (popforecast==1) {    else 
     free_ivector(popage,0,AGESUP);      strcpy(digitp,"-stablbased-");
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficrespop);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 }      }
     }
 /***********************************************/  
 /**************** Main Program *****************/    strcpy(fileresprobmorprev,"prmorprev"); 
 /***********************************************/    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 int main(int argc, char *argv[])    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   double agedeb, agefin,hf;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
   double fret;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   double **xi,tmp,delta;   
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   double dum; /* Dummy variable */    pstamp(ficresprobmorprev);
   double ***p3mat;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   int *indx;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   char line[MAXLINE], linepar[MAXLINE];    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      fprintf(ficresprobmorprev," p.%-d SE",j);
   int firstobs=1, lastobs=10;      for(i=1; i<=nlstate;i++)
   int sdeb, sfin; /* Status at beginning and end */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   int c,  h , cpt,l;    }  
   int ju,jl, mi;    fprintf(ficresprobmorprev,"\n");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fprintf(ficgp,"\n# Routine varevsij");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   int mobilav=0,popforecast=0;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   int hstepm, nhstepm;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double bage, fage, age, agelim, agebase;    pstamp(ficresvij);
   double ftolpl=FTOL;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   double **prlim;    if(popbased==1)
   double *severity;      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   double ***param; /* Matrix of parameters */    else
   double  *p;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   double **matcov; /* Matrix of covariance */    fprintf(ficresvij,"# Age");
   double ***delti3; /* Scale */    for(i=1; i<=nlstate;i++)
   double *delti; /* Scale */      for(j=1; j<=nlstate;j++)
   double ***eij, ***vareij;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   double **varpl; /* Variances of prevalence limits by age */    fprintf(ficresvij,"\n");
   double *epj, vepp;  
   double kk1, kk2;    xp=vector(1,npar);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   char z[1]="c", occ;    gpp=vector(nlstate+1,nlstate+ndeath);
 #include <sys/time.h>    gmp=vector(nlstate+1,nlstate+ndeath);
 #include <time.h>    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    
      if(estepm < stepm){
   /* long total_usecs;      printf ("Problem %d lower than %d\n",estepm, stepm);
   struct timeval start_time, end_time;    }
      else  hstepm=estepm;   
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    /* For example we decided to compute the life expectancy with the smallest unit */
   getcwd(pathcd, size);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   printf("\n%s",version);       nstepm is the number of stepm from age to agelin. 
   if(argc <=1){       Look at hpijx to understand the reason of that which relies in memory size
     printf("\nEnter the parameter file name: ");       and note for a fixed period like k years */
     scanf("%s",pathtot);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   else{       means that if the survival funtion is printed every two years of age and if
     strcpy(pathtot,argv[1]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    */
   /*cygwin_split_path(pathtot,path,optionfile);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    agelim = AGESUP;
   /* cutv(path,optionfile,pathtot,'\\');*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   chdir(path);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   replace(pathc,path);      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
 /*-------- arguments in the command line --------*/  
   
   strcpy(fileres,"r");      for(theta=1; theta <=npar; theta++){
   strcat(fileres, optionfilefiname);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   strcat(fileres,".txt");    /* Other files have txt extension */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   /*---------arguments file --------*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);        if (popbased==1) {
     goto end;          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   strcpy(filereso,"o");          }else{ /* mobilav */ 
   strcat(filereso,fileres);            for(i=1; i<=nlstate;i++)
   if((ficparo=fopen(filereso,"w"))==NULL) {              prlim[i][i]=mobaverage[(int)age][i][ij];
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          }
   }        }
     
   /* Reads comments: lines beginning with '#' */        for(j=1; j<= nlstate; j++){
   while((c=getc(ficpar))=='#' && c!= EOF){          for(h=0; h<=nhstepm; h++){
     ungetc(c,ficpar);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     puts(line);          }
     fputs(line,ficparo);        }
   }        /* This for computing probability of death (h=1 means
   ungetc(c,ficpar);           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
 while((c=getc(ficpar))=='#' && c!= EOF){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     ungetc(c,ficpar);        }    
     fgets(line, MAXLINE, ficpar);        /* end probability of death */
     puts(line);  
     fputs(line,ficparo);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   ungetc(c,ficpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       
   covar=matrix(0,NCOVMAX,1,n);        if (popbased==1) {
   cptcovn=0;          if(mobilav ==0){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   ncovmodel=2+cptcovn;          }else{ /* mobilav */ 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   /* Read guess parameters */          }
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);        for(j=1; j<= nlstate; j++){
     fgets(line, MAXLINE, ficpar);          for(h=0; h<=nhstepm; h++){
     puts(line);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     fputs(line,ficparo);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   }          }
   ungetc(c,ficpar);        }
          /* This for computing probability of death (h=1 means
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);           computed over hstepm matrices product = hstepm*stepm months) 
     for(i=1; i <=nlstate; i++)           as a weighted average of prlim.
     for(j=1; j <=nlstate+ndeath-1; j++){        */
       fscanf(ficpar,"%1d%1d",&i1,&j1);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficparo,"%1d%1d",i1,j1);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       printf("%1d%1d",i,j);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       for(k=1; k<=ncovmodel;k++){        }    
         fscanf(ficpar," %lf",&param[i][j][k]);        /* end probability of death */
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);        for(j=1; j<= nlstate; j++) /* vareij */
       }          for(h=0; h<=nhstepm; h++){
       fscanf(ficpar,"\n");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       printf("\n");          }
       fprintf(ficparo,"\n");  
     }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        }
   
   p=param[1][1];      } /* End theta */
    
   /* Reads comments: lines beginning with '#' */      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for(h=0; h<=nhstepm; h++) /* veij */
     fgets(line, MAXLINE, ficpar);        for(j=1; j<=nlstate;j++)
     puts(line);          for(theta=1; theta <=npar; theta++)
     fputs(line,ficparo);            trgradg[h][j][theta]=gradg[h][theta][j];
   }  
   ungetc(c,ficpar);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          trgradgp[j][theta]=gradgp[theta][j];
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(i=1;i<=nlstate;i++)
       printf("%1d%1d",i,j);        for(j=1;j<=nlstate;j++)
       fprintf(ficparo,"%1d%1d",i1,j1);          vareij[i][j][(int)age] =0.;
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);      for(h=0;h<=nhstepm;h++){
         printf(" %le",delti3[i][j][k]);        for(k=0;k<=nhstepm;k++){
         fprintf(ficparo," %le",delti3[i][j][k]);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       fscanf(ficpar,"\n");          for(i=1;i<=nlstate;i++)
       printf("\n");            for(j=1;j<=nlstate;j++)
       fprintf(ficparo,"\n");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     }        }
   }      }
   delti=delti3[1][1];    
        /* pptj */
   /* Reads comments: lines beginning with '#' */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   while((c=getc(ficpar))=='#' && c!= EOF){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     ungetc(c,ficpar);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     fgets(line, MAXLINE, ficpar);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     puts(line);          varppt[j][i]=doldmp[j][i];
     fputs(line,ficparo);      /* end ppptj */
   }      /*  x centered again */
   ungetc(c,ficpar);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   matcov=matrix(1,npar,1,npar);   
   for(i=1; i <=npar; i++){      if (popbased==1) {
     fscanf(ficpar,"%s",&str);        if(mobilav ==0){
     printf("%s",str);          for(i=1; i<=nlstate;i++)
     fprintf(ficparo,"%s",str);            prlim[i][i]=probs[(int)age][i][ij];
     for(j=1; j <=i; j++){        }else{ /* mobilav */ 
       fscanf(ficpar," %le",&matcov[i][j]);          for(i=1; i<=nlstate;i++)
       printf(" %.5le",matcov[i][j]);            prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficparo," %.5le",matcov[i][j]);        }
     }      }
     fscanf(ficpar,"\n");               
     printf("\n");      /* This for computing probability of death (h=1 means
     fprintf(ficparo,"\n");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   }         as a weighted average of prlim.
   for(i=1; i <=npar; i++)      */
     for(j=i+1;j<=npar;j++)      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       matcov[i][j]=matcov[j][i];        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
              gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   printf("\n");      }    
       /* end probability of death */
   
     /*-------- Rewriting paramater file ----------*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
      strcpy(rfileres,"r");    /* "Rparameterfile */      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
      strcat(rfileres,".");    /* */        for(i=1; i<=nlstate;i++){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     if((ficres =fopen(rfileres,"w"))==NULL) {        }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      } 
     }      fprintf(ficresprobmorprev,"\n");
     fprintf(ficres,"#%s\n",version);  
          fprintf(ficresvij,"%.0f ",age );
     /*-------- data file ----------*/      for(i=1; i<=nlstate;i++)
     if((fic=fopen(datafile,"r"))==NULL)    {        for(j=1; j<=nlstate;j++){
       printf("Problem with datafile: %s\n", datafile);goto end;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     }        }
       fprintf(ficresvij,"\n");
     n= lastobs;      free_matrix(gp,0,nhstepm,1,nlstate);
     severity = vector(1,maxwav);      free_matrix(gm,0,nhstepm,1,nlstate);
     outcome=imatrix(1,maxwav+1,1,n);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     num=ivector(1,n);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     moisnais=vector(1,n);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     annais=vector(1,n);    } /* End age */
     moisdc=vector(1,n);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     andc=vector(1,n);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     agedc=vector(1,n);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     cod=ivector(1,n);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     weight=vector(1,n);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     mint=matrix(1,maxwav,1,n);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     anint=matrix(1,maxwav,1,n);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     s=imatrix(1,maxwav+1,1,n);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     adl=imatrix(1,maxwav+1,1,n);      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     tab=ivector(1,NCOVMAX);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     ncodemax=ivector(1,8);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     i=1;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     while (fgets(line, MAXLINE, fic) != NULL)    {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       if ((i >= firstobs) && (i <=lastobs)) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
          */
         for (j=maxwav;j>=1;j--){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           strcpy(line,stra);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_vector(xp,1,npar);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(doldm,1,nlstate,1,nlstate);
         }    free_matrix(dnewm,1,nlstate,1,npar);
            free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fclose(ficresprobmorprev);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    fflush(ficgp);
     fflush(fichtm); 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  }  /* end varevsij */
         for (j=ncovcol;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /************ Variance of prevlim ******************/
         }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         num[i]=atol(stra);  {
            /* Variance of prevalence limit */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    double **newm;
     double **dnewm,**doldm;
         i=i+1;    int i, j, nhstepm, hstepm;
       }    int k, cptcode;
     }    double *xp;
     /* printf("ii=%d", ij);    double *gp, *gm;
        scanf("%d",i);*/    double **gradg, **trgradg;
   imx=i-1; /* Number of individuals */    double age,agelim;
     int theta;
   /* for (i=1; i<=imx; i++){    
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    pstamp(ficresvpl);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    fprintf(ficresvpl,"# Age");
     }*/    for(i=1; i<=nlstate;i++)
    /*  for (i=1; i<=imx; i++){        fprintf(ficresvpl," %1d-%1d",i,i);
      if (s[4][i]==9)  s[4][i]=-1;    fprintf(ficresvpl,"\n");
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  
      xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
   /* Calculation of the number of parameter from char model*/    doldm=matrix(1,nlstate,1,nlstate);
   Tvar=ivector(1,15);    
   Tprod=ivector(1,15);    hstepm=1*YEARM; /* Every year of age */
   Tvaraff=ivector(1,15);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   Tvard=imatrix(1,15,1,2);    agelim = AGESUP;
   Tage=ivector(1,15);          for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   if (strlen(model) >1){      if (stepm >= YEARM) hstepm=1;
     j=0, j1=0, k1=1, k2=1;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     j=nbocc(model,'+');      gradg=matrix(1,npar,1,nlstate);
     j1=nbocc(model,'*');      gp=vector(1,nlstate);
     cptcovn=j+1;      gm=vector(1,nlstate);
     cptcovprod=j1;  
          for(theta=1; theta <=npar; theta++){
     strcpy(modelsav,model);        for(i=1; i<=npar; i++){ /* Computes gradient */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       printf("Error. Non available option model=%s ",model);        }
       goto end;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }        for(i=1;i<=nlstate;i++)
              gp[i] = prlim[i][i];
     for(i=(j+1); i>=1;i--){      
       cutv(stra,strb,modelsav,'+');        for(i=1; i<=npar; i++) /* Computes gradient */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       /*scanf("%d",i);*/        for(i=1;i<=nlstate;i++)
       if (strchr(strb,'*')) {          gm[i] = prlim[i][i];
         cutv(strd,strc,strb,'*');  
         if (strcmp(strc,"age")==0) {        for(i=1;i<=nlstate;i++)
           cptcovprod--;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           cutv(strb,stre,strd,'V');      } /* End theta */
           Tvar[i]=atoi(stre);  
           cptcovage++;      trgradg =matrix(1,nlstate,1,npar);
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/      for(j=1; j<=nlstate;j++)
         }        for(theta=1; theta <=npar; theta++)
         else if (strcmp(strd,"age")==0) {          trgradg[j][theta]=gradg[theta][j];
           cptcovprod--;  
           cutv(strb,stre,strc,'V');      for(i=1;i<=nlstate;i++)
           Tvar[i]=atoi(stre);        varpl[i][(int)age] =0.;
           cptcovage++;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           Tage[cptcovage]=i;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         }      for(i=1;i<=nlstate;i++)
         else {        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncovcol+k1;      fprintf(ficresvpl,"%.0f ",age );
           cutv(strb,strc,strd,'V');      for(i=1; i<=nlstate;i++)
           Tprod[k1]=i;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           Tvard[k1][1]=atoi(strc);      fprintf(ficresvpl,"\n");
           Tvard[k1][2]=atoi(stre);      free_vector(gp,1,nlstate);
           Tvar[cptcovn+k2]=Tvard[k1][1];      free_vector(gm,1,nlstate);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      free_matrix(gradg,1,npar,1,nlstate);
           for (k=1; k<=lastobs;k++)      free_matrix(trgradg,1,nlstate,1,npar);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    } /* End age */
           k1++;  
           k2=k2+2;    free_vector(xp,1,npar);
         }    free_matrix(doldm,1,nlstate,1,npar);
       }    free_matrix(dnewm,1,nlstate,1,nlstate);
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  }
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');  /************ Variance of one-step probabilities  ******************/
       Tvar[i]=atoi(strc);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       }  {
       strcpy(modelsav,stra);      int i, j=0,  i1, k1, l1, t, tj;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    int k2, l2, j1,  z1;
         scanf("%d",i);*/    int k=0,l, cptcode;
     }    int first=1, first1;
 }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      double **dnewm,**doldm;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    double *xp;
   printf("cptcovprod=%d ", cptcovprod);    double *gp, *gm;
   scanf("%d ",i);*/    double **gradg, **trgradg;
     fclose(fic);    double **mu;
     double age,agelim, cov[NCOVMAX];
     /*  if(mle==1){*/    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     if (weightopt != 1) { /* Maximisation without weights*/    int theta;
       for(i=1;i<=n;i++) weight[i]=1.0;    char fileresprob[FILENAMELENGTH];
     }    char fileresprobcov[FILENAMELENGTH];
     /*-calculation of age at interview from date of interview and age at death -*/    char fileresprobcor[FILENAMELENGTH];
     agev=matrix(1,maxwav,1,imx);  
     double ***varpij;
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {    strcpy(fileresprob,"prob"); 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    strcat(fileresprob,fileres);
          anint[m][i]=9999;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
          s[m][i]=-1;      printf("Problem with resultfile: %s\n", fileresprob);
        }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    }
       }    strcpy(fileresprobcov,"probcov"); 
     }    strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     for (i=1; i<=imx; i++)  {      printf("Problem with resultfile: %s\n", fileresprobcov);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       for(m=1; (m<= maxwav); m++){    }
         if(s[m][i] >0){    strcpy(fileresprobcor,"probcor"); 
           if (s[m][i] >= nlstate+1) {    strcat(fileresprobcor,fileres);
             if(agedc[i]>0)    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
               if(moisdc[i]!=99 && andc[i]!=9999)      printf("Problem with resultfile: %s\n", fileresprobcor);
                 agev[m][i]=agedc[i];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    }
            else {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               if (andc[i]!=9999){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
               agev[m][i]=-1;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
               }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           }    pstamp(ficresprob);
           else if(s[m][i] !=9){ /* Should no more exist */    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(ficresprob,"# Age");
             if(mint[m][i]==99 || anint[m][i]==9999)    pstamp(ficresprobcov);
               agev[m][i]=1;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
             else if(agev[m][i] <agemin){    fprintf(ficresprobcov,"# Age");
               agemin=agev[m][i];    pstamp(ficresprobcor);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
             }    fprintf(ficresprobcor,"# Age");
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    for(i=1; i<=nlstate;i++)
             }      for(j=1; j<=(nlstate+ndeath);j++){
             /*agev[m][i]=anint[m][i]-annais[i];*/        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
             /*   agev[m][i] = age[i]+2*m;*/        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           else { /* =9 */      }  
             agev[m][i]=1;   /* fprintf(ficresprob,"\n");
             s[m][i]=-1;    fprintf(ficresprobcov,"\n");
           }    fprintf(ficresprobcor,"\n");
         }   */
         else /*= 0 Unknown */   xp=vector(1,npar);
           agev[m][i]=1;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
        mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     for (i=1; i<=imx; i++)  {    first=1;
       for(m=1; (m<= maxwav); m++){    fprintf(ficgp,"\n# Routine varprob");
         if (s[m][i] > (nlstate+ndeath)) {    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           printf("Error: Wrong value in nlstate or ndeath\n");      fprintf(fichtm,"\n");
           goto end;  
         }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     }    file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     free_vector(severity,1,maxwav);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     free_imatrix(outcome,1,maxwav+1,1,n);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     free_vector(moisnais,1,n);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     free_vector(annais,1,n);  standard deviations wide on each axis. <br>\
     /* free_matrix(mint,1,maxwav,1,n);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
        free_matrix(anint,1,maxwav,1,n);*/   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     free_vector(moisdc,1,n);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     free_vector(andc,1,n);  
     cov[1]=1;
        tj=cptcoveff;
     wav=ivector(1,imx);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    j1=0;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    for(t=1; t<=tj;t++){
          for(i1=1; i1<=ncodemax[t];i1++){ 
     /* Concatenates waves */        j1++;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       Tcode=ivector(1,100);          fprintf(ficresprob, "**********\n#\n");
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          fprintf(ficresprobcov, "\n#********** Variable "); 
       ncodemax[1]=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          fprintf(ficresprobcov, "**********\n#\n");
                
    codtab=imatrix(1,100,1,10);          fprintf(ficgp, "\n#********** Variable "); 
    h=0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    m=pow(2,cptcoveff);          fprintf(ficgp, "**********\n#\n");
            
    for(k=1;k<=cptcoveff; k++){          
      for(i=1; i <=(m/pow(2,k));i++){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
        for(j=1; j <= ncodemax[k]; j++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            h++;          
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          fprintf(ficresprobcor, "\n#********** Variable ");    
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          }          fprintf(ficresprobcor, "**********\n#");    
        }        }
      }        
    }        for (age=bage; age<=fage; age ++){ 
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          cov[2]=age;
       codtab[1][2]=1;codtab[2][2]=2; */          for (k=1; k<=cptcovn;k++) {
    /* for(i=1; i <=m ;i++){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       for(k=1; k <=cptcovn; k++){          }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }          for (k=1; k<=cptcovprod;k++)
       printf("\n");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }          
       scanf("%d",i);*/          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
              trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    /* Calculates basic frequencies. Computes observed prevalence at single age          gp=vector(1,(nlstate)*(nlstate+ndeath));
        and prints on file fileres'p'. */          gm=vector(1,(nlstate)*(nlstate+ndeath));
       
              for(theta=1; theta <=npar; theta++){
                for(i=1; i<=npar; i++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            k=0;
                  for(i=1; i<= (nlstate); i++){
     /* For Powell, parameters are in a vector p[] starting at p[1]              for(j=1; j<=(nlstate+ndeath);j++){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                k=k+1;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                gp[k]=pmmij[i][j];
               }
     if(mle==1){            }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            
     }            for(i=1; i<=npar; i++)
                  xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     /*--------- results files --------------*/      
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              k=0;
             for(i=1; i<=(nlstate); i++){
    jk=1;              for(j=1; j<=(nlstate+ndeath);j++){
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                k=k+1;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                gm[k]=pmmij[i][j];
    for(i=1,jk=1; i <=nlstate; i++){              }
      for(k=1; k <=(nlstate+ndeath); k++){            }
        if (k != i)       
          {            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
            printf("%d%d ",i,k);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
            fprintf(ficres,"%1d%1d ",i,k);          }
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
              fprintf(ficres,"%f ",p[jk]);            for(theta=1; theta <=npar; theta++)
              jk++;              trgradg[j][theta]=gradg[theta][j];
            }          
            printf("\n");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
            fprintf(ficres,"\n");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
          }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
      }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
    }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  if(mle==1){          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */          pmij(pmmij,cov,ncovmodel,x,nlstate);
     hesscov(matcov, p, npar, delti, ftolhess, func);          
  }          k=0;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          for(i=1; i<=(nlstate); i++){
     printf("# Scales (for hessian or gradient estimation)\n");            for(j=1; j<=(nlstate+ndeath);j++){
      for(i=1,jk=1; i <=nlstate; i++){              k=k+1;
       for(j=1; j <=nlstate+ndeath; j++){              mu[k][(int) age]=pmmij[i][j];
         if (j!=i) {            }
           fprintf(ficres,"%1d%1d",i,j);          }
           printf("%1d%1d",i,j);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           for(k=1; k<=ncovmodel;k++){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
             printf(" %.5e",delti[jk]);              varpij[i][j][(int)age] = doldm[i][j];
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;          /*printf("\n%d ",(int)age);
           }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           printf("\n");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           fprintf(ficres,"\n");            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         }            }*/
       }  
      }          fprintf(ficresprob,"\n%d ",(int)age);
              fprintf(ficresprobcov,"\n%d ",(int)age);
     k=1;          fprintf(ficresprobcor,"\n%d ",(int)age);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     for(i=1;i<=npar;i++){            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       /*  if (k>nlstate) k=1;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       i1=(i-1)/(ncovmodel*nlstate)+1;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       printf("%s%d%d",alph[k],i1,tab[i]);*/          }
       fprintf(ficres,"%3d",i);          i=0;
       printf("%3d",i);          for (k=1; k<=(nlstate);k++){
       for(j=1; j<=i;j++){            for (l=1; l<=(nlstate+ndeath);l++){ 
         fprintf(ficres," %.5e",matcov[i][j]);              i=i++;
         printf(" %.5e",matcov[i][j]);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       fprintf(ficres,"\n");              for (j=1; j<=i;j++){
       printf("\n");                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       k++;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     }              }
                }
     while((c=getc(ficpar))=='#' && c!= EOF){          }/* end of loop for state */
       ungetc(c,ficpar);        } /* end of loop for age */
       fgets(line, MAXLINE, ficpar);  
       puts(line);        /* Confidence intervalle of pij  */
       fputs(line,ficparo);        /*
     }          fprintf(ficgp,"\nset noparametric;unset label");
     ungetc(c,ficpar);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     estepm=0;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     if (estepm==0 || estepm < stepm) estepm=stepm;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     if (fage <= 2) {          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       bage = ageminpar;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       fage = agemaxpar;        */
     }  
            /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        first1=1;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for (k2=1; k2<=(nlstate);k2++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
              if(l2==k2) continue;
     while((c=getc(ficpar))=='#' && c!= EOF){            j=(k2-1)*(nlstate+ndeath)+l2;
     ungetc(c,ficpar);            for (k1=1; k1<=(nlstate);k1++){
     fgets(line, MAXLINE, ficpar);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     puts(line);                if(l1==k1) continue;
     fputs(line,ficparo);                i=(k1-1)*(nlstate+ndeath)+l1;
   }                if(i<=j) continue;
   ungetc(c,ficpar);                for (age=bage; age<=fage; age ++){ 
                    if ((int)age %5==0){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                          mu1=mu[i][(int) age]/stepm*YEARM ;
   while((c=getc(ficpar))=='#' && c!= EOF){                    mu2=mu[j][(int) age]/stepm*YEARM;
     ungetc(c,ficpar);                    c12=cv12/sqrt(v1*v2);
     fgets(line, MAXLINE, ficpar);                    /* Computing eigen value of matrix of covariance */
     puts(line);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     fputs(line,ficparo);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   }                    /* Eigen vectors */
   ungetc(c,ficpar);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                      /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                    v12=-v21;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                    v22=v11;
                     tnalp=v21/v11;
   fscanf(ficpar,"pop_based=%d\n",&popbased);                    if(first1==1){
   fprintf(ficparo,"pop_based=%d\n",popbased);                        first1=0;
   fprintf(ficres,"pop_based=%d\n",popbased);                        printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                      }
   while((c=getc(ficpar))=='#' && c!= EOF){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     ungetc(c,ficpar);                    /*printf(fignu*/
     fgets(line, MAXLINE, ficpar);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     puts(line);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     fputs(line,ficparo);                    if(first==1){
   }                      first=0;
   ungetc(c,ficpar);                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
 while((c=getc(ficpar))=='#' && c!= EOF){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     ungetc(c,ficpar);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fgets(line, MAXLINE, ficpar);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     puts(line);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fputs(line,ficparo);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   ungetc(c,ficpar);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    }else{
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                      first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 /*------------ gnuplot -------------*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   strcpy(optionfilegnuplot,optionfilefiname);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   strcat(optionfilegnuplot,".gp");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                    }/* if first */
     printf("Problem with file %s",optionfilegnuplot);                  } /* age mod 5 */
   }                } /* end loop age */
   fclose(ficgp);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                first=1;
 /*--------- index.htm --------*/              } /*l12 */
             } /* k12 */
   strcpy(optionfilehtm,optionfile);          } /*l1 */
   strcat(optionfilehtm,".htm");        }/* k1 */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      } /* loop covariates */
     printf("Problem with %s \n",optionfilehtm), exit(0);    }
   }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 \n    free_vector(xp,1,npar);
 Total number of observations=%d <br>\n    fclose(ficresprob);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    fclose(ficresprobcov);
 <hr  size=\"2\" color=\"#EC5E5E\">    fclose(ficresprobcor);
  <ul><li>Parameter files<br>\n    fflush(ficgp);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    fflush(fichtmcov);
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);  }
   fclose(fichtm);  
   
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  /******************* Printing html file ***********/
    void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 /*------------ free_vector  -------------*/                    int lastpass, int stepm, int weightopt, char model[],\
  chdir(path);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                      int popforecast, int estepm ,\
  free_ivector(wav,1,imx);                    double jprev1, double mprev1,double anprev1, \
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                    double jprev2, double mprev2,double anprev2){
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      int jj1, k1, i1, cpt;
  free_ivector(num,1,n);  
  free_vector(agedc,1,n);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
  /*free_matrix(covar,1,NCOVMAX,1,n);*/     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
  fclose(ficparo);  </ul>");
  fclose(ficres);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   /*--------------- Prevalence limit --------------*/     fprintf(fichtm,"\
     - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   strcpy(filerespl,"pl");             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   strcat(filerespl,fileres);     fprintf(fichtm,"\
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   }     fprintf(fichtm,"\
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
   fprintf(ficrespl,"#Prevalence limit\n");     <a href=\"%s\">%s</a> <br>\n</li>",
   fprintf(ficrespl,"#Age ");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");  
    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   m=cptcoveff;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   jj1=0;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   for(k1=1; k1<=m;k1++){
   k=0;     for(i1=1; i1<=ncodemax[k1];i1++){
   agebase=ageminpar;       jj1++;
   agelim=agemaxpar;       if (cptcovn > 0) {
   ftolpl=1.e-10;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   i1=cptcoveff;         for (cpt=1; cpt<=cptcoveff;cpt++) 
   if (cptcovn < 1){i1=1;}           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   for(cptcov=1;cptcov<=i1;cptcov++){       }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       /* Pij */
         k=k+1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         fprintf(ficrespl,"\n#******");       /* Quasi-incidences */
         for(j=1;j<=cptcoveff;j++)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
         fprintf(ficrespl,"******\n");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
                 /* Period (stable) prevalence in each health state */
         for (age=agebase; age<=agelim; age++){         for(cpt=1; cpt<nlstate;cpt++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
           fprintf(ficrespl,"%.0f",age );  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           for(i=1; i<=nlstate;i++)         }
           fprintf(ficrespl," %.5f", prlim[i][i]);       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(ficrespl,"\n");          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
         }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       }       }
     }     } /* end i1 */
   fclose(ficrespl);   }/* End k1 */
    fprintf(fichtm,"</ul>");
   /*------------- h Pij x at various ages ------------*/  
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   fprintf(fichtm,"\
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   stepsize=(int) (stepm+YEARM-1)/YEARM;   fprintf(fichtm,"\
   /*if (stepm<=24) stepsize=2;*/   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */   fprintf(fichtm,"\
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   k=0;   fprintf(fichtm,"\
   for(cptcov=1;cptcov<=i1;cptcov++){   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     <a href=\"%s\">%s</a> <br>\n</li>",
       k=k+1;             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
         fprintf(ficrespij,"\n#****** ");   fprintf(fichtm,"\
         for(j=1;j<=cptcoveff;j++)   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     <a href=\"%s\">%s</a> <br>\n</li>",
         fprintf(ficrespij,"******\n");             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
           fprintf(fichtm,"\
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */   fprintf(fichtm,"\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
           oldm=oldms;savm=savms;           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     fprintf(fichtm,"\
           fprintf(ficrespij,"# Age");   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
           for(i=1; i<=nlstate;i++)           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);  /*  if(popforecast==1) fprintf(fichtm,"\n */
           fprintf(ficrespij,"\n");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
            for (h=0; h<=nhstepm; h++){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  /*      <br>",fileres,fileres,fileres,fileres); */
             for(i=1; i<=nlstate;i++)  /*  else  */
               for(j=1; j<=nlstate+ndeath;j++)  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);   fflush(fichtm);
             fprintf(ficrespij,"\n");   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
              }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   m=cptcoveff;
           fprintf(ficrespij,"\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         }  
     }   jj1=0;
   }   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);       jj1++;
        if (cptcovn > 0) {
   fclose(ficrespij);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   /*---------- Forecasting ------------------*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   if((stepm == 1) && (strcmp(model,".")==0)){       }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);       for(cpt=1; cpt<=nlstate;cpt++) {
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   }  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   else{  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     erreur=108;       }
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   }  health expectancies in states (1) and (2): %s%d.png<br>\
    <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
   /*---------- Health expectancies and variances ------------*/   }/* End k1 */
    fprintf(fichtm,"</ul>");
   strcpy(filerest,"t");   fflush(fichtm);
   strcat(filerest,fileres);  }
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /******************* Gnuplot file **************/
   }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   strcpy(filerese,"e");    int ng;
   strcat(filerese,fileres);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  /*     printf("Problem with file %s",optionfilegnuplot); */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   }  /*   } */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
     /*#ifdef windows */
  strcpy(fileresv,"v");    fprintf(ficgp,"cd \"%s\" \n",pathc);
   strcat(fileresv,fileres);      /*#endif */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    m=pow(2,cptcoveff);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }    strcpy(dirfileres,optionfilefiname);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    strcpy(optfileres,"vpl");
   calagedate=-1;   /* 1eme*/
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
   k=0;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   for(cptcov=1;cptcov<=i1;cptcov++){       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       fprintf(ficgp,"set xlabel \"Age\" \n\
       k=k+1;  set ylabel \"Probability\" \n\
       fprintf(ficrest,"\n#****** ");  set ter png small\n\
       for(j=1;j<=cptcoveff;j++)  set size 0.65,0.65\n\
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       fprintf(ficrest,"******\n");  
        for (i=1; i<= nlstate ; i ++) {
       fprintf(ficreseij,"\n#****** ");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       for(j=1;j<=cptcoveff;j++)         else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       }
       fprintf(ficreseij,"******\n");       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
       fprintf(ficresvij,"\n#****** ");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       for(j=1;j<=cptcoveff;j++)         else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       } 
       fprintf(ficresvij,"******\n");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       oldm=oldms;savm=savms;         else fprintf(ficgp," \%%*lf (\%%*lf)");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);         }  
         fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     }
       oldm=oldms;savm=savms;    }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    /*2 eme*/
        
     for (k1=1; k1<= m ; k1 ++) { 
        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      
       fprintf(ficrest,"\n");      for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
       epj=vector(1,nlstate+1);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(age=bage; age <=fage ;age++){        for (j=1; j<= nlstate+1 ; j ++) {
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         if (popbased==1) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
           for(i=1; i<=nlstate;i++)        }   
             prlim[i][i]=probs[(int)age][i][k];        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
                fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         fprintf(ficrest," %4.0f",age);        for (j=1; j<= nlstate+1 ; j ++) {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        }   
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        fprintf(ficgp,"\" t\"\" w l 0,");
           }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           epj[nlstate+1] +=epj[j];        for (j=1; j<= nlstate+1 ; j ++) {
         }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         for(i=1, vepp=0.;i <=nlstate;i++)        }   
           for(j=1;j <=nlstate;j++)        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
             vepp += vareij[i][j][(int)age];        else fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      }
         for(j=1;j <=nlstate;j++){    }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    
         }    /*3eme*/
         fprintf(ficrest,"\n");    
       }    for (k1=1; k1<= m ; k1 ++) { 
     }      for (cpt=1; cpt<= nlstate ; cpt ++) {
   }        /*       k=2+nlstate*(2*cpt-2); */
 free_matrix(mint,1,maxwav,1,n);        k=2+(nlstate+1)*(cpt-1);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     free_vector(weight,1,n);        fprintf(ficgp,"set ter png small\n\
   fclose(ficreseij);  set size 0.65,0.65\n\
   fclose(ficresvij);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   fclose(ficrest);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   fclose(ficpar);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   free_vector(epj,1,nlstate+1);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
            fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   /*------- Variance limit prevalence------*/            for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   strcpy(fileresvpl,"vpl");          
   strcat(fileresvpl,fileres);        */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        for (i=1; i< nlstate ; i ++) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
     exit(0);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   }          
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   k=0;      }
   for(cptcov=1;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;    /* CV preval stable (period) */
       fprintf(ficresvpl,"\n#****** ");    for (k1=1; k1<= m ; k1 ++) { 
       for(j=1;j<=cptcoveff;j++)      for (cpt=1; cpt<=nlstate ; cpt ++) {
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        k=3;
       fprintf(ficresvpl,"******\n");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
              fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  set ter png small\nset size 0.65,0.65\n\
       oldm=oldms;savm=savms;  unset log y\n\
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     }        
  }        for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
   fclose(ficresvpl);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
   /*---------- End : free ----------------*/        l=3+(nlstate+ndeath)*cpt;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
          for (i=1; i< nlstate ; i ++) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          l=3+(nlstate+ndeath)*cpt;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          fprintf(ficgp,"+$%d",l+i+1);
          }
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      } 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    }  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* proba elementaires */
      for(i=1,jk=1; i <=nlstate; i++){
   free_matrix(matcov,1,npar,1,npar);      for(k=1; k <=(nlstate+ndeath); k++){
   free_vector(delti,1,npar);        if (k != i) {
   free_matrix(agev,1,maxwav,1,imx);          for(j=1; j <=ncovmodel; j++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
   fprintf(fichtm,"\n</body>");            fprintf(ficgp,"\n");
   fclose(fichtm);          }
   fclose(ficgp);        }
        }
      }
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   else   printf("End of Imach\n");       for(jk=1; jk <=m; jk++) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           if (ng==2)
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   /*printf("Total time was %d uSec.\n", total_usecs);*/         else
   /*------ End -----------*/           fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
  end:         for(k2=1; k2<=nlstate; k2++) {
 #ifdef windows           k3=i;
   /* chdir(pathcd);*/           for(k=1; k<=(nlstate+ndeath); k++) {
 #endif             if (k != k2){
  /*system("wgnuplot graph.plt");*/               if(ng==2)
  /*system("../gp37mgw/wgnuplot graph.plt");*/                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
  /*system("cd ../gp37mgw");*/               else
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
  strcpy(plotcmd,GNUPLOTPROGRAM);               ij=1;
  strcat(plotcmd," ");               for(j=3; j <=ncovmodel; j++) {
  strcat(plotcmd,optionfilegnuplot);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
  system(plotcmd);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
 #ifdef windows                 }
   while (z[0] != 'q') {                 else
     /* chdir(path); */                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");               }
     scanf("%s",z);               fprintf(ficgp,")/(1");
     if (z[0] == 'c') system("./imach");               
     else if (z[0] == 'e') system(optionfilehtm);               for(k1=1; k1 <=nlstate; k1++){   
     else if (z[0] == 'g') system(plotcmd);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     else if (z[0] == 'q') exit(0);                 ij=1;
   }                 for(j=3; j <=ncovmodel; j++){
 #endif                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.118


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>