Diff for /imach/src/imach.c between versions 1.17 and 1.119

version 1.17, 2002/02/20 17:15:02 version 1.119, 2006/03/15 17:42:26
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.119  2006/03/15 17:42:26  brouard
   individuals from different ages are interviewed on their health status    (Module): Bug if status = -2, the loglikelihood was
   or degree of  disability. At least a second wave of interviews    computed as likelihood omitting the logarithm. Version O.98e
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Revision 1.118  2006/03/14 18:20:07  brouard
   waves and are computed for each degree of severity of disability (number    (Module): varevsij Comments added explaining the second
   of life states). More degrees you consider, more time is necessary to    table of variances if popbased=1 .
   reach the Maximum Likelihood of the parameters involved in the model.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   The simplest model is the multinomial logistic model where pij is    (Module): Function pstamp added
   the probabibility to be observed in state j at the second wave conditional    (Module): Version 0.98d
   to be observed in state i at the first wave. Therefore the model is:  
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Revision 1.117  2006/03/14 17:16:22  brouard
   is a covariate. If you want to have a more complex model than "constant and    (Module): varevsij Comments added explaining the second
   age", you should modify the program where the markup    table of variances if popbased=1 .
     *Covariates have to be included here again* invites you to do it.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   More covariates you add, less is the speed of the convergence.    (Module): Function pstamp added
     (Module): Version 0.98d
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.116  2006/03/06 10:29:27  brouard
   individual missed an interview, the information is not rounded or lost, but    (Module): Variance-covariance wrong links and
   taken into account using an interpolation or extrapolation.    varian-covariance of ej. is needed (Saito).
   hPijx is the probability to be  
   observed in state i at age x+h conditional to the observed state i at age    Revision 1.115  2006/02/27 12:17:45  brouard
   x. The delay 'h' can be split into an exact number (nh*stepm) of    (Module): One freematrix added in mlikeli! 0.98c
   unobserved intermediate  states. This elementary transition (by month or  
   quarter trimester, semester or year) is model as a multinomial logistic.    Revision 1.114  2006/02/26 12:57:58  brouard
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    (Module): Some improvements in processing parameter
   and the contribution of each individual to the likelihood is simply hPijx.    filename with strsep.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.113  2006/02/24 14:20:24  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Memory leaks checks with valgrind and:
      datafile was not closed, some imatrix were not freed and on matrix
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    allocation too.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.112  2006/01/30 09:55:26  brouard
   from the European Union.    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.111  2006/01/25 20:38:18  brouard
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Lots of cleaning and bugs added (Gompertz)
   **********************************************************************/    (Module): Comments can be added in data file. Missing date values
      can be a simple dot '.'.
 #include <math.h>  
 #include <stdio.h>    Revision 1.110  2006/01/25 00:51:50  brouard
 #include <stdlib.h>    (Module): Lots of cleaning and bugs added (Gompertz)
 #include <unistd.h>  
     Revision 1.109  2006/01/24 19:37:15  brouard
 #define MAXLINE 256    (Module): Comments (lines starting with a #) are allowed in data.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.108  2006/01/19 18:05:42  lievre
 #define windows    Gnuplot problem appeared...
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    To be fixed
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.107  2006/01/19 16:20:37  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Test existence of gnuplot in imach path
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.106  2006/01/19 13:24:36  brouard
 #define NINTERVMAX 8    Some cleaning and links added in html output
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.105  2006/01/05 20:23:19  lievre
 #define NCOVMAX 8 /* Maximum number of covariates */    *** empty log message ***
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.104  2005/09/30 16:11:43  lievre
 #define AGESUP 130    (Module): sump fixed, loop imx fixed, and simplifications.
 #define AGEBASE 40    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 int nvar;    contributions to the likelihood is 1 - Prob of dying from last
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int npar=NPARMAX;    the healthy state at last known wave). Version is 0.98
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.103  2005/09/30 15:54:49  lievre
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): sump fixed, loop imx fixed, and simplifications.
 int popbased=0;  
     Revision 1.102  2004/09/15 17:31:30  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Add the possibility to read data file including tab characters.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.101  2004/09/15 10:38:38  brouard
 int mle, weightopt;    Fix on curr_time
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.100  2004/07/12 18:29:06  brouard
 double jmean; /* Mean space between 2 waves */    Add version for Mac OS X. Just define UNIX in Makefile
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.99  2004/06/05 08:57:40  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    *** empty log message ***
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.98  2004/05/16 15:05:56  brouard
   char filerese[FILENAMELENGTH];    New version 0.97 . First attempt to estimate force of mortality
  FILE  *ficresvij;    directly from the data i.e. without the need of knowing the health
   char fileresv[FILENAMELENGTH];    state at each age, but using a Gompertz model: log u =a + b*age .
  FILE  *ficresvpl;    This is the basic analysis of mortality and should be done before any
   char fileresvpl[FILENAMELENGTH];    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 #define NR_END 1    from other sources like vital statistic data.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    The same imach parameter file can be used but the option for mle should be -3.
   
 #define NRANSI    Agnès, who wrote this part of the code, tried to keep most of the
 #define ITMAX 200    former routines in order to include the new code within the former code.
   
 #define TOL 2.0e-4    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Current limitations:
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define GOLD 1.618034    B) There is no computation of Life Expectancy nor Life Table.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 static double maxarg1,maxarg2;    suppressed.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.96  2003/07/15 15:38:55  brouard
      * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    rewritten within the same printf. Workaround: many printfs.
 #define rint(a) floor(a+0.5)  
     Revision 1.95  2003/07/08 07:54:34  brouard
 static double sqrarg;    * imach.c (Repository):
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Repository): Using imachwizard code to output a more meaningful covariance
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    matrix (cov(a12,c31) instead of numbers.
   
 int imx;    Revision 1.94  2003/06/27 13:00:02  brouard
 int stepm;    Just cleaning
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.93  2003/06/25 16:33:55  brouard
 int m,nb;    (Module): On windows (cygwin) function asctime_r doesn't
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    exist so I changed back to asctime which exists.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Version 0.96b
 double **pmmij, ***probs, ***mobaverage;  
     Revision 1.92  2003/06/25 16:30:45  brouard
 double *weight;    (Module): On windows (cygwin) function asctime_r doesn't
 int **s; /* Status */    exist so I changed back to asctime which exists.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Repository): Elapsed time after each iteration is now output. It
 double ftolhess; /* Tolerance for computing hessian */    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 /**************** split *************************/    concerning matrix of covariance. It has extension -cov.htm.
 static  int split( char *path, char *dirc, char *name )  
 {    Revision 1.90  2003/06/24 12:34:15  brouard
    char *s;                             /* pointer */    (Module): Some bugs corrected for windows. Also, when
    int  l1, l2;                         /* length counters */    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.89  2003/06/24 12:30:52  brouard
    s = strrchr( path, '\\' );           /* find last / */    (Module): Some bugs corrected for windows. Also, when
    if ( s == NULL ) {                   /* no directory, so use current */    mle=-1 a template is output in file "or"mypar.txt with the design
 #if     defined(__bsd__)                /* get current working directory */    of the covariance matrix to be input.
       extern char       *getwd( );  
     Revision 1.88  2003/06/23 17:54:56  brouard
       if ( getwd( dirc ) == NULL ) {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #else  
       extern char       *getcwd( );    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.86  2003/06/17 20:04:08  brouard
          return( GLOCK_ERROR_GETCWD );    (Module): Change position of html and gnuplot routines and added
       }    routine fileappend.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.85  2003/06/17 13:12:43  brouard
       s++;                              /* after this, the filename */    * imach.c (Repository): Check when date of death was earlier that
       l2 = strlen( s );                 /* length of filename */    current date of interview. It may happen when the death was just
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    prior to the death. In this case, dh was negative and likelihood
       strcpy( name, s );                /* save file name */    was wrong (infinity). We still send an "Error" but patch by
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    assuming that the date of death was just one stepm after the
       dirc[l1-l2] = 0;                  /* add zero */    interview.
    }    (Repository): Because some people have very long ID (first column)
    l1 = strlen( dirc );                 /* length of directory */    we changed int to long in num[] and we added a new lvector for
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    memory allocation. But we also truncated to 8 characters (left
    return( 0 );                         /* we're done */    truncation)
 }    (Repository): No more line truncation errors.
   
     Revision 1.84  2003/06/13 21:44:43  brouard
 /******************************************/    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 void replace(char *s, char*t)    many times. Probs is memory consuming and must be used with
 {    parcimony.
   int i;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   int lg=20;  
   i=0;    Revision 1.83  2003/06/10 13:39:11  lievre
   lg=strlen(t);    *** empty log message ***
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.82  2003/06/05 15:57:20  brouard
     if (t[i]== '\\') s[i]='/';    Add log in  imach.c and  fullversion number is now printed.
   }  
 }  */
   /*
 int nbocc(char *s, char occ)     Interpolated Markov Chain
 {  
   int i,j=0;    Short summary of the programme:
   int lg=20;    
   i=0;    This program computes Healthy Life Expectancies from
   lg=strlen(s);    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   for(i=0; i<= lg; i++) {    first survey ("cross") where individuals from different ages are
   if  (s[i] == occ ) j++;    interviewed on their health status or degree of disability (in the
   }    case of a health survey which is our main interest) -2- at least a
   return j;    second wave of interviews ("longitudinal") which measure each change
 }    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 void cutv(char *u,char *v, char*t, char occ)    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   int i,lg,j,p=0;    simplest model is the multinomial logistic model where pij is the
   i=0;    probability to be observed in state j at the second wave
   for(j=0; j<=strlen(t)-1; j++) {    conditional to be observed in state i at the first wave. Therefore
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   }    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
   lg=strlen(t);    where the markup *Covariates have to be included here again* invites
   for(j=0; j<p; j++) {    you to do it.  More covariates you add, slower the
     (u[j] = t[j]);    convergence.
   }  
      u[p]='\0';    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
    for(j=0; j<= lg; j++) {    identical for each individual. Also, if a individual missed an
     if (j>=(p+1))(v[j-p-1] = t[j]);    intermediate interview, the information is lost, but taken into
   }    account using an interpolation or extrapolation.  
 }  
     hPijx is the probability to be observed in state i at age x+h
 /********************** nrerror ********************/    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 void nrerror(char error_text[])    states. This elementary transition (by month, quarter,
 {    semester or year) is modelled as a multinomial logistic.  The hPx
   fprintf(stderr,"ERREUR ...\n");    matrix is simply the matrix product of nh*stepm elementary matrices
   fprintf(stderr,"%s\n",error_text);    and the contribution of each individual to the likelihood is simply
   exit(1);    hPijx.
 }  
 /*********************** vector *******************/    Also this programme outputs the covariance matrix of the parameters but also
 double *vector(int nl, int nh)    of the life expectancies. It also computes the period (stable) prevalence. 
 {    
   double *v;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));             Institut national d'études démographiques, Paris.
   if (!v) nrerror("allocation failure in vector");    This software have been partly granted by Euro-REVES, a concerted action
   return v-nl+NR_END;    from the European Union.
 }    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 /************************ free vector ******************/    can be accessed at http://euroreves.ined.fr/imach .
 void free_vector(double*v, int nl, int nh)  
 {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   free((FREE_ARG)(v+nl-NR_END));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
     **********************************************************************/
 /************************ivector *******************************/  /*
 int *ivector(long nl,long nh)    main
 {    read parameterfile
   int *v;    read datafile
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    concatwav
   if (!v) nrerror("allocation failure in ivector");    freqsummary
   return v-nl+NR_END;    if (mle >= 1)
 }      mlikeli
     print results files
 /******************free ivector **************************/    if mle==1 
 void free_ivector(int *v, long nl, long nh)       computes hessian
 {    read end of parameter file: agemin, agemax, bage, fage, estepm
   free((FREE_ARG)(v+nl-NR_END));        begin-prev-date,...
 }    open gnuplot file
     open html file
 /******************* imatrix *******************************/    period (stable) prevalence
 int **imatrix(long nrl, long nrh, long ncl, long nch)     for age prevalim()
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    h Pij x
 {    variance of p varprob
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    forecasting if prevfcast==1 prevforecast call prevalence()
   int **m;    health expectancies
      Variance-covariance of DFLE
   /* allocate pointers to rows */    prevalence()
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));     movingaverage()
   if (!m) nrerror("allocation failure 1 in matrix()");    varevsij() 
   m += NR_END;    if popbased==1 varevsij(,popbased)
   m -= nrl;    total life expectancies
      Variance of period (stable) prevalence
     end
   /* allocate rows and set pointers to them */  */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  
   m[nrl] -= ncl;   
    #include <math.h>
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #include <stdio.h>
    #include <stdlib.h>
   /* return pointer to array of pointers to rows */  #include <string.h>
   return m;  #include <unistd.h>
 }  
   #include <limits.h>
 /****************** free_imatrix *************************/  #include <sys/types.h>
 void free_imatrix(m,nrl,nrh,ncl,nch)  #include <sys/stat.h>
       int **m;  #include <errno.h>
       long nch,ncl,nrh,nrl;  extern int errno;
      /* free an int matrix allocated by imatrix() */  
 {  /* #include <sys/time.h> */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #include <time.h>
   free((FREE_ARG) (m+nrl-NR_END));  #include "timeval.h"
 }  
   /* #include <libintl.h> */
 /******************* matrix *******************************/  /* #define _(String) gettext (String) */
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  #define MAXLINE 256
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define FILENAMELENGTH 132
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   m -= nrl;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   return m;  #define NCOVMAX 8 /* Maximum number of covariates */
 }  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 /*************************free matrix ************************/  #define AGESUP 130
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define AGEBASE 40
 {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #ifdef UNIX
   free((FREE_ARG)(m+nrl-NR_END));  #define DIRSEPARATOR '/'
 }  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
 /******************* ma3x *******************************/  #else
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define DIRSEPARATOR '\\'
 {  #define CHARSEPARATOR "\\"
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define ODIRSEPARATOR '/'
   double ***m;  #endif
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /* $Id$ */
   if (!m) nrerror("allocation failure 1 in matrix()");  /* $State$ */
   m += NR_END;  
   m -= nrl;  char version[]="Imach version 0.98e, March 2006, INED-EUROREVES-Institut de longevite ";
   char fullversion[]="$Revision$ $Date$"; 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char strstart[80];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   m[nrl] += NR_END;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m[nrl] -= ncl;  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int ndeath=1; /* Number of dead states */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m[nrl][ncl] += NR_END;  int popbased=0;
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  int *wav; /* Number of waves for this individuual 0 is possible */
     m[nrl][j]=m[nrl][j-1]+nlay;  int maxwav; /* Maxim number of waves */
    int jmin, jmax; /* min, max spacing between 2 waves */
   for (i=nrl+1; i<=nrh; i++) {  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int gipmx, gsw; /* Global variables on the number of contributions 
     for (j=ncl+1; j<=nch; j++)                     to the likelihood and the sum of weights (done by funcone)*/
       m[i][j]=m[i][j-1]+nlay;  int mle, weightopt;
   }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   return m;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /*************************free ma3x ************************/  double jmean; /* Mean space between 2 waves */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  FILE *ficlog, *ficrespow;
   free((FREE_ARG)(m+nrl-NR_END));  int globpr; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 /***************** f1dim *************************/  double sw; /* Sum of weights */
 extern int ncom;  char filerespow[FILENAMELENGTH];
 extern double *pcom,*xicom;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 extern double (*nrfunc)(double []);  FILE *ficresilk;
    FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 double f1dim(double x)  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   int j;  FILE *ficreseij;
   double f;  char filerese[FILENAMELENGTH];
   double *xt;  FILE *ficresstdeij;
    char fileresstde[FILENAMELENGTH];
   xt=vector(1,ncom);  FILE *ficrescveij;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char filerescve[FILENAMELENGTH];
   f=(*nrfunc)(xt);  FILE  *ficresvij;
   free_vector(xt,1,ncom);  char fileresv[FILENAMELENGTH];
   return f;  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /*****************brent *************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   int iter;  char command[FILENAMELENGTH];
   double a,b,d,etemp;  int  outcmd=0;
   double fu,fv,fw,fx;  
   double ftemp;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  char filelog[FILENAMELENGTH]; /* Log file */
    char filerest[FILENAMELENGTH];
   a=(ax < cx ? ax : cx);  char fileregp[FILENAMELENGTH];
   b=(ax > cx ? ax : cx);  char popfile[FILENAMELENGTH];
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  struct timezone tzp;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  extern int gettimeofday();
     printf(".");fflush(stdout);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 #ifdef DEBUG  long time_value;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  extern long time();
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char strcurr[80], strfor[80];
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char *endptr;
       *xmin=x;  long lval;
       return fx;  
     }  #define NR_END 1
     ftemp=fu;  #define FREE_ARG char*
     if (fabs(e) > tol1) {  #define FTOL 1.0e-10
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  #define NRANSI 
       p=(x-v)*q-(x-w)*r;  #define ITMAX 200 
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  #define TOL 2.0e-4 
       q=fabs(q);  
       etemp=e;  #define CGOLD 0.3819660 
       e=d;  #define ZEPS 1.0e-10 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  #define GOLD 1.618034 
         d=p/q;  #define GLIMIT 100.0 
         u=x+d;  #define TINY 1.0e-20 
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  static double maxarg1,maxarg2;
       }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     } else {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    
     }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define rint(a) floor(a+0.5)
     fu=(*f)(u);  
     if (fu <= fx) {  static double sqrarg;
       if (u >= x) a=x; else b=x;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       SHFT(v,w,x,u)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
         SHFT(fv,fw,fx,fu)  int agegomp= AGEGOMP;
         } else {  
           if (u < x) a=u; else b=u;  int imx; 
           if (fu <= fw || w == x) {  int stepm=1;
             v=w;  /* Stepm, step in month: minimum step interpolation*/
             w=u;  
             fv=fw;  int estepm;
             fw=fu;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  int m,nb;
             fv=fu;  long *num;
           }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
         }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   }  double **pmmij, ***probs;
   nrerror("Too many iterations in brent");  double *ageexmed,*agecens;
   *xmin=x;  double dateintmean=0;
   return fx;  
 }  double *weight;
   int **s; /* Status */
 /****************** mnbrak ***********************/  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  double *lsurv, *lpop, *tpop;
             double (*func)(double))  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ulim,u,r,q, dum;  double ftolhess; /* Tolerance for computing hessian */
   double fu;  
    /**************** split *************************/
   *fa=(*func)(*ax);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   *fb=(*func)(*bx);  {
   if (*fb > *fa) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     SHFT(dum,*ax,*bx,dum)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       SHFT(dum,*fb,*fa,dum)    */ 
       }    char  *ss;                            /* pointer */
   *cx=(*bx)+GOLD*(*bx-*ax);    int   l1, l2;                         /* length counters */
   *fc=(*func)(*cx);  
   while (*fb > *fc) {    l1 = strlen(path );                   /* length of path */
     r=(*bx-*ax)*(*fb-*fc);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     q=(*bx-*cx)*(*fb-*fa);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      strcpy( name, path );               /* we got the fullname name because no directory */
     ulim=(*bx)+GLIMIT*(*cx-*bx);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     if ((*bx-u)*(u-*cx) > 0.0) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       fu=(*func)(u);      /* get current working directory */
     } else if ((*cx-u)*(u-ulim) > 0.0) {      /*    extern  char* getcwd ( char *buf , int len);*/
       fu=(*func)(u);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       if (fu < *fc) {        return( GLOCK_ERROR_GETCWD );
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      }
           SHFT(*fb,*fc,fu,(*func)(u))      /* got dirc from getcwd*/
           }      printf(" DIRC = %s \n",dirc);
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    } else {                              /* strip direcotry from path */
       u=ulim;      ss++;                               /* after this, the filename */
       fu=(*func)(u);      l2 = strlen( ss );                  /* length of filename */
     } else {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       u=(*cx)+GOLD*(*cx-*bx);      strcpy( name, ss );         /* save file name */
       fu=(*func)(u);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     }      dirc[l1-l2] = 0;                    /* add zero */
     SHFT(*ax,*bx,*cx,u)      printf(" DIRC2 = %s \n",dirc);
       SHFT(*fa,*fb,*fc,fu)    }
       }    /* We add a separator at the end of dirc if not exists */
 }    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
 /*************** linmin ************************/      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
 int ncom;      printf(" DIRC3 = %s \n",dirc);
 double *pcom,*xicom;    }
 double (*nrfunc)(double []);    ss = strrchr( name, '.' );            /* find last / */
      if (ss >0){
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      ss++;
 {      strcpy(ext,ss);                     /* save extension */
   double brent(double ax, double bx, double cx,      l1= strlen( name);
                double (*f)(double), double tol, double *xmin);      l2= strlen(ss)+1;
   double f1dim(double x);      strncpy( finame, name, l1-l2);
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      finame[l1-l2]= 0;
               double *fc, double (*func)(double));    }
   int j;  
   double xx,xmin,bx,ax;    return( 0 );                          /* we're done */
   double fx,fb,fa;  }
    
   ncom=n;  
   pcom=vector(1,n);  /******************************************/
   xicom=vector(1,n);  
   nrfunc=func;  void replace_back_to_slash(char *s, char*t)
   for (j=1;j<=n;j++) {  {
     pcom[j]=p[j];    int i;
     xicom[j]=xi[j];    int lg=0;
   }    i=0;
   ax=0.0;    lg=strlen(t);
   xx=1.0;    for(i=0; i<= lg; i++) {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      (s[i] = t[i]);
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      if (t[i]== '\\') s[i]='/';
 #ifdef DEBUG    }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  
   for (j=1;j<=n;j++) {  int nbocc(char *s, char occ)
     xi[j] *= xmin;  {
     p[j] += xi[j];    int i,j=0;
   }    int lg=20;
   free_vector(xicom,1,n);    i=0;
   free_vector(pcom,1,n);    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /*************** powell ************************/    }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    return j;
             double (*func)(double []))  }
 {  
   void linmin(double p[], double xi[], int n, double *fret,  void cutv(char *u,char *v, char*t, char occ)
               double (*func)(double []));  {
   int i,ibig,j;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   double del,t,*pt,*ptt,*xit;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   double fp,fptt;       gives u="abcedf" and v="ghi2j" */
   double *xits;    int i,lg,j,p=0;
   pt=vector(1,n);    i=0;
   ptt=vector(1,n);    for(j=0; j<=strlen(t)-1; j++) {
   xit=vector(1,n);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   xits=vector(1,n);    }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];    lg=strlen(t);
   for (*iter=1;;++(*iter)) {    for(j=0; j<p; j++) {
     fp=(*fret);      (u[j] = t[j]);
     ibig=0;    }
     del=0.0;       u[p]='\0';
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)     for(j=0; j<= lg; j++) {
       printf(" %d %.12f",i, p[i]);      if (j>=(p+1))(v[j-p-1] = t[j]);
     printf("\n");    }
     for (i=1;i<=n;i++) {  }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  /********************** nrerror ********************/
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  void nrerror(char error_text[])
 #endif  {
       printf("%d",i);fflush(stdout);    fprintf(stderr,"ERREUR ...\n");
       linmin(p,xit,n,fret,func);    fprintf(stderr,"%s\n",error_text);
       if (fabs(fptt-(*fret)) > del) {    exit(EXIT_FAILURE);
         del=fabs(fptt-(*fret));  }
         ibig=i;  /*********************** vector *******************/
       }  double *vector(int nl, int nh)
 #ifdef DEBUG  {
       printf("%d %.12e",i,(*fret));    double *v;
       for (j=1;j<=n;j++) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    if (!v) nrerror("allocation failure in vector");
         printf(" x(%d)=%.12e",j,xit[j]);    return v-nl+NR_END;
       }  }
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  /************************ free vector ******************/
       printf("\n");  void free_vector(double*v, int nl, int nh)
 #endif  {
     }    free((FREE_ARG)(v+nl-NR_END));
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  }
 #ifdef DEBUG  
       int k[2],l;  /************************ivector *******************************/
       k[0]=1;  int *ivector(long nl,long nh)
       k[1]=-1;  {
       printf("Max: %.12e",(*func)(p));    int *v;
       for (j=1;j<=n;j++)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         printf(" %.12e",p[j]);    if (!v) nrerror("allocation failure in ivector");
       printf("\n");    return v-nl+NR_END;
       for(l=0;l<=1;l++) {  }
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /******************free ivector **************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  void free_ivector(int *v, long nl, long nh)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    free((FREE_ARG)(v+nl-NR_END));
       }  }
 #endif  
   /************************lvector *******************************/
   long *lvector(long nl,long nh)
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    long *v;
       free_vector(ptt,1,n);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       free_vector(pt,1,n);    if (!v) nrerror("allocation failure in ivector");
       return;    return v-nl+NR_END;
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /******************free lvector **************************/
       ptt[j]=2.0*p[j]-pt[j];  void free_lvector(long *v, long nl, long nh)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    free((FREE_ARG)(v+nl-NR_END));
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /******************* imatrix *******************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       if (t < 0.0) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         linmin(p,xit,n,fret,func);  { 
         for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           xi[j][ibig]=xi[j][n];    int **m; 
           xi[j][n]=xit[j];    
         }    /* allocate pointers to rows */ 
 #ifdef DEBUG    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    if (!m) nrerror("allocation failure 1 in matrix()"); 
         for(j=1;j<=n;j++)    m += NR_END; 
           printf(" %.12e",xit[j]);    m -= nrl; 
         printf("\n");    
 #endif    
       }    /* allocate rows and set pointers to them */ 
     }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 }    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
 /**** Prevalence limit ****************/    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    
 {    /* return pointer to array of pointers to rows */ 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    return m; 
      matrix by transitions matrix until convergence is reached */  } 
   
   int i, ii,j,k;  /****************** free_imatrix *************************/
   double min, max, maxmin, maxmax,sumnew=0.;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double **matprod2();        int **m;
   double **out, cov[NCOVMAX], **pmij();        long nch,ncl,nrh,nrl; 
   double **newm;       /* free an int matrix allocated by imatrix() */ 
   double agefin, delaymax=50 ; /* Max number of years to converge */  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   for (ii=1;ii<=nlstate+ndeath;ii++)    free((FREE_ARG) (m+nrl-NR_END)); 
     for (j=1;j<=nlstate+ndeath;j++){  } 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
    cov[1]=1.;  {
      long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double **m;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     /* Covariates have to be included here again */    if (!m) nrerror("allocation failure 1 in matrix()");
      cov[2]=agefin;    m += NR_END;
      m -= nrl;
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
       for (k=1; k<=cptcovage;k++)    m[nrl] -= ncl;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/     */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  }
   
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     savm=oldm;  {
     oldm=newm;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     maxmax=0.;    free((FREE_ARG)(m+nrl-NR_END));
     for(j=1;j<=nlstate;j++){  }
       min=1.;  
       max=0.;  /******************* ma3x *******************************/
       for(i=1; i<=nlstate; i++) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         sumnew=0;  {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         prlim[i][j]= newm[i][j]/(1-sumnew);    double ***m;
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
       maxmin=max-min;    m += NR_END;
       maxmax=FMAX(maxmax,maxmin);    m -= nrl;
     }  
     if(maxmax < ftolpl){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       return prlim;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 /*************** transition probabilities ***************/  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 {    m[nrl][ncl] += NR_END;
   double s1, s2;    m[nrl][ncl] -= nll;
   /*double t34;*/    for (j=ncl+1; j<=nch; j++) 
   int i,j,j1, nc, ii, jj;      m[nrl][j]=m[nrl][j-1]+nlay;
     
     for(i=1; i<= nlstate; i++){    for (i=nrl+1; i<=nrh; i++) {
     for(j=1; j<i;j++){      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      for (j=ncl+1; j<=nch; j++) 
         /*s2 += param[i][j][nc]*cov[nc];*/        m[i][j]=m[i][j-1]+nlay;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    return m; 
       }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       ps[i][j]=s2;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    */
     }  }
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*************************free ma3x ************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  {
       }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       ps[i][j]=(s2);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }  }
     /*ps[3][2]=1;*/  
   /*************** function subdirf ***********/
   for(i=1; i<= nlstate; i++){  char *subdirf(char fileres[])
      s1=0;  {
     for(j=1; j<i; j++)    /* Caution optionfilefiname is hidden */
       s1+=exp(ps[i][j]);    strcpy(tmpout,optionfilefiname);
     for(j=i+1; j<=nlstate+ndeath; j++)    strcat(tmpout,"/"); /* Add to the right */
       s1+=exp(ps[i][j]);    strcat(tmpout,fileres);
     ps[i][i]=1./(s1+1.);    return tmpout;
     for(j=1; j<i; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)  /*************** function subdirf2 ***********/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  char *subdirf2(char fileres[], char *preop)
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  {
   } /* end i */    
     /* Caution optionfilefiname is hidden */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    strcpy(tmpout,optionfilefiname);
     for(jj=1; jj<= nlstate+ndeath; jj++){    strcat(tmpout,"/");
       ps[ii][jj]=0;    strcat(tmpout,preop);
       ps[ii][ii]=1;    strcat(tmpout,fileres);
     }    return tmpout;
   }  }
   
   /*************** function subdirf3 ***********/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  char *subdirf3(char fileres[], char *preop, char *preop2)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
      printf("%lf ",ps[ii][jj]);    
    }    /* Caution optionfilefiname is hidden */
     printf("\n ");    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
     printf("\n ");printf("%lf ",cov[2]);*/    strcat(tmpout,preop);
 /*    strcat(tmpout,preop2);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    strcat(tmpout,fileres);
   goto end;*/    return tmpout;
     return ps;  }
 }  
   /***************** f1dim *************************/
 /**************** Product of 2 matrices ******************/  extern int ncom; 
   extern double *pcom,*xicom;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  extern double (*nrfunc)(double []); 
 {   
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  double f1dim(double x) 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  { 
   /* in, b, out are matrice of pointers which should have been initialized    int j; 
      before: only the contents of out is modified. The function returns    double f;
      a pointer to pointers identical to out */    double *xt; 
   long i, j, k;   
   for(i=nrl; i<= nrh; i++)    xt=vector(1,ncom); 
     for(k=ncolol; k<=ncoloh; k++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    f=(*nrfunc)(xt); 
         out[i][k] +=in[i][j]*b[j][k];    free_vector(xt,1,ncom); 
     return f; 
   return out;  } 
 }  
   /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 /************* Higher Matrix Product ***************/  { 
     int iter; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    double a,b,d,etemp;
 {    double fu,fv,fw,fx;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    double ftemp;
      duration (i.e. until    double p,q,r,tol1,tol2,u,v,w,x,xm; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    double e=0.0; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   
      (typically every 2 years instead of every month which is too big).    a=(ax < cx ? ax : cx); 
      Model is determined by parameters x and covariates have to be    b=(ax > cx ? ax : cx); 
      included manually here.    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
      */    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
   int i, j, d, h, k;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double **out, cov[NCOVMAX];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   double **newm;      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
   /* Hstepm could be zero and should return the unit matrix */  #ifdef DEBUG
   for (i=1;i<=nlstate+ndeath;i++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for (j=1;j<=nlstate+ndeath;j++){      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       oldm[i][j]=(i==j ? 1.0 : 0.0);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  #endif
     }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        *xmin=x; 
   for(h=1; h <=nhstepm; h++){        return fx; 
     for(d=1; d <=hstepm; d++){      } 
       newm=savm;      ftemp=fu;
       /* Covariates have to be included here again */      if (fabs(e) > tol1) { 
       cov[1]=1.;        r=(x-w)*(fx-fv); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        q=(x-v)*(fx-fw); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        p=(x-v)*q-(x-w)*r; 
       for (k=1; k<=cptcovage;k++)        q=2.0*(q-r); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        if (q > 0.0) p = -p; 
       for (k=1; k<=cptcovprod;k++)        q=fabs(q); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        etemp=e; 
         e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        else { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          d=p/q; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          u=x+d; 
       savm=oldm;          if (u-a < tol2 || b-u < tol2) 
       oldm=newm;            d=SIGN(tol1,xm-x); 
     }        } 
     for(i=1; i<=nlstate+ndeath; i++)      } else { 
       for(j=1;j<=nlstate+ndeath;j++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         po[i][j][h]=newm[i][j];      } 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
          */      fu=(*f)(u); 
       }      if (fu <= fx) { 
   } /* end h */        if (u >= x) a=x; else b=x; 
   return po;        SHFT(v,w,x,u) 
 }          SHFT(fv,fw,fx,fu) 
           } else { 
             if (u < x) a=u; else b=u; 
 /*************** log-likelihood *************/            if (fu <= fw || w == x) { 
 double func( double *x)              v=w; 
 {              w=u; 
   int i, ii, j, k, mi, d, kk;              fv=fw; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];              fw=fu; 
   double **out;            } else if (fu <= fv || v == x || v == w) { 
   double sw; /* Sum of weights */              v=u; 
   double lli; /* Individual log likelihood */              fv=fu; 
   long ipmx;            } 
   /*extern weight */          } 
   /* We are differentiating ll according to initial status */    } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    nrerror("Too many iterations in brent"); 
   /*for(i=1;i<imx;i++)    *xmin=x; 
     printf(" %d\n",s[4][i]);    return fx; 
   */  } 
   cov[1]=1.;  
   /****************** mnbrak ***********************/
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];              double (*func)(double)) 
     for(mi=1; mi<= wav[i]-1; mi++){  { 
       for (ii=1;ii<=nlstate+ndeath;ii++)    double ulim,u,r,q, dum;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double fu; 
       for(d=0; d<dh[mi][i]; d++){   
         newm=savm;    *fa=(*func)(*ax); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    *fb=(*func)(*bx); 
         for (kk=1; kk<=cptcovage;kk++) {    if (*fb > *fa) { 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      SHFT(dum,*ax,*bx,dum) 
         }        SHFT(dum,*fb,*fa,dum) 
                } 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    *cx=(*bx)+GOLD*(*bx-*ax); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    *fc=(*func)(*cx); 
         savm=oldm;    while (*fb > *fc) { 
         oldm=newm;      r=(*bx-*ax)*(*fb-*fc); 
              q=(*bx-*cx)*(*fb-*fa); 
              u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       } /* end mult */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
            ulim=(*bx)+GLIMIT*(*cx-*bx); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      if ((*bx-u)*(u-*cx) > 0.0) { 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        fu=(*func)(u); 
       ipmx +=1;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       sw += weight[i];        fu=(*func)(u); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        if (fu < *fc) { 
     } /* end of wave */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   } /* end of individual */            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        u=ulim; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        fu=(*func)(u); 
   return -l;      } else { 
 }        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
       } 
 /*********** Maximum Likelihood Estimation ***************/      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        } 
 {  } 
   int i,j, iter;  
   double **xi,*delti;  /*************** linmin ************************/
   double fret;  
   xi=matrix(1,npar,1,npar);  int ncom; 
   for (i=1;i<=npar;i++)  double *pcom,*xicom;
     for (j=1;j<=npar;j++)  double (*nrfunc)(double []); 
       xi[i][j]=(i==j ? 1.0 : 0.0);   
   printf("Powell\n");  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   powell(p,xi,npar,ftol,&iter,&fret,func);  { 
     double brent(double ax, double bx, double cx, 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));                 double (*f)(double), double tol, double *xmin); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 }                double *fc, double (*func)(double)); 
     int j; 
 /**** Computes Hessian and covariance matrix ***/    double xx,xmin,bx,ax; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    double fx,fb,fa;
 {   
   double  **a,**y,*x,pd;    ncom=n; 
   double **hess;    pcom=vector(1,n); 
   int i, j,jk;    xicom=vector(1,n); 
   int *indx;    nrfunc=func; 
     for (j=1;j<=n;j++) { 
   double hessii(double p[], double delta, int theta, double delti[]);      pcom[j]=p[j]; 
   double hessij(double p[], double delti[], int i, int j);      xicom[j]=xi[j]; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    } 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    ax=0.0; 
     xx=1.0; 
   hess=matrix(1,npar,1,npar);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   printf("\nCalculation of the hessian matrix. Wait...\n");  #ifdef DEBUG
   for (i=1;i<=npar;i++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     printf("%d",i);fflush(stdout);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     hess[i][i]=hessii(p,ftolhess,i,delti);  #endif
     /*printf(" %f ",p[i]);*/    for (j=1;j<=n;j++) { 
     /*printf(" %lf ",hess[i][i]);*/      xi[j] *= xmin; 
   }      p[j] += xi[j]; 
      } 
   for (i=1;i<=npar;i++) {    free_vector(xicom,1,n); 
     for (j=1;j<=npar;j++)  {    free_vector(pcom,1,n); 
       if (j>i) {  } 
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);  char *asc_diff_time(long time_sec, char ascdiff[])
         hess[j][i]=hess[i][j];      {
         /*printf(" %lf ",hess[i][j]);*/    long sec_left, days, hours, minutes;
       }    days = (time_sec) / (60*60*24);
     }    sec_left = (time_sec) % (60*60*24);
   }    hours = (sec_left) / (60*60) ;
   printf("\n");    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    sec_left = (sec_left) % (60);
      sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   a=matrix(1,npar,1,npar);    return ascdiff;
   y=matrix(1,npar,1,npar);  }
   x=vector(1,npar);  
   indx=ivector(1,npar);  /*************** powell ************************/
   for (i=1;i<=npar;i++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];              double (*func)(double [])) 
   ludcmp(a,npar,indx,&pd);  { 
     void linmin(double p[], double xi[], int n, double *fret, 
   for (j=1;j<=npar;j++) {                double (*func)(double [])); 
     for (i=1;i<=npar;i++) x[i]=0;    int i,ibig,j; 
     x[j]=1;    double del,t,*pt,*ptt,*xit;
     lubksb(a,npar,indx,x);    double fp,fptt;
     for (i=1;i<=npar;i++){    double *xits;
       matcov[i][j]=x[i];    int niterf, itmp;
     }  
   }    pt=vector(1,n); 
     ptt=vector(1,n); 
   printf("\n#Hessian matrix#\n");    xit=vector(1,n); 
   for (i=1;i<=npar;i++) {    xits=vector(1,n); 
     for (j=1;j<=npar;j++) {    *fret=(*func)(p); 
       printf("%.3e ",hess[i][j]);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     }    for (*iter=1;;++(*iter)) { 
     printf("\n");      fp=(*fret); 
   }      ibig=0; 
       del=0.0; 
   /* Recompute Inverse */      last_time=curr_time;
   for (i=1;i<=npar;i++)      (void) gettimeofday(&curr_time,&tzp);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   ludcmp(a,npar,indx,&pd);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   /*  printf("\n#Hessian matrix recomputed#\n");      */
      for (i=1;i<=n;i++) {
   for (j=1;j<=npar;j++) {        printf(" %d %.12f",i, p[i]);
     for (i=1;i<=npar;i++) x[i]=0;        fprintf(ficlog," %d %.12lf",i, p[i]);
     x[j]=1;        fprintf(ficrespow," %.12lf", p[i]);
     lubksb(a,npar,indx,x);      }
     for (i=1;i<=npar;i++){      printf("\n");
       y[i][j]=x[i];      fprintf(ficlog,"\n");
       printf("%.3e ",y[i][j]);      fprintf(ficrespow,"\n");fflush(ficrespow);
     }      if(*iter <=3){
     printf("\n");        tm = *localtime(&curr_time.tv_sec);
   }        strcpy(strcurr,asctime(&tm));
   */  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
   free_matrix(a,1,npar,1,npar);        itmp = strlen(strcurr);
   free_matrix(y,1,npar,1,npar);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   free_vector(x,1,npar);          strcurr[itmp-1]='\0';
   free_ivector(indx,1,npar);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   free_matrix(hess,1,npar,1,npar);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 }          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
 /*************** hessian matrix ****************/          strcpy(strfor,asctime(&tmf));
 double hessii( double x[], double delta, int theta, double delti[])          itmp = strlen(strfor);
 {          if(strfor[itmp-1]=='\n')
   int i;          strfor[itmp-1]='\0';
   int l=1, lmax=20;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double k1,k2;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double p2[NPARMAX+1];        }
   double res;      }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      for (i=1;i<=n;i++) { 
   double fx;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   int k=0,kmax=10;        fptt=(*fret); 
   double l1;  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
   fx=func(x);        fprintf(ficlog,"fret=%lf \n",*fret);
   for (i=1;i<=npar;i++) p2[i]=x[i];  #endif
   for(l=0 ; l <=lmax; l++){        printf("%d",i);fflush(stdout);
     l1=pow(10,l);        fprintf(ficlog,"%d",i);fflush(ficlog);
     delts=delt;        linmin(p,xit,n,fret,func); 
     for(k=1 ; k <kmax; k=k+1){        if (fabs(fptt-(*fret)) > del) { 
       delt = delta*(l1*k);          del=fabs(fptt-(*fret)); 
       p2[theta]=x[theta] +delt;          ibig=i; 
       k1=func(p2)-fx;        } 
       p2[theta]=x[theta]-delt;  #ifdef DEBUG
       k2=func(p2)-fx;        printf("%d %.12e",i,(*fret));
       /*res= (k1-2.0*fx+k2)/delt/delt; */        fprintf(ficlog,"%d %.12e",i,(*fret));
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        for (j=1;j<=n;j++) {
                xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 #ifdef DEBUG          printf(" x(%d)=%.12e",j,xit[j]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 #endif        }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        for(j=1;j<=n;j++) {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          printf(" p=%.12e",p[j]);
         k=kmax;          fprintf(ficlog," p=%.12e",p[j]);
       }        }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        printf("\n");
         k=kmax; l=lmax*10.;        fprintf(ficlog,"\n");
       }  #endif
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      } 
         delts=delt;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       }  #ifdef DEBUG
     }        int k[2],l;
   }        k[0]=1;
   delti[theta]=delts;        k[1]=-1;
   return res;        printf("Max: %.12e",(*func)(p));
          fprintf(ficlog,"Max: %.12e",(*func)(p));
 }        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
 double hessij( double x[], double delti[], int thetai,int thetaj)          fprintf(ficlog," %.12e",p[j]);
 {        }
   int i;        printf("\n");
   int l=1, l1, lmax=20;        fprintf(ficlog,"\n");
   double k1,k2,k3,k4,res,fx;        for(l=0;l<=1;l++) {
   double p2[NPARMAX+1];          for (j=1;j<=n;j++) {
   int k;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   fx=func(x);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (k=1; k<=2; k++) {          }
     for (i=1;i<=npar;i++) p2[i]=x[i];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     p2[thetai]=x[thetai]+delti[thetai]/k;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k1=func(p2)-fx;  #endif
    
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        free_vector(xit,1,n); 
     k2=func(p2)-fx;        free_vector(xits,1,n); 
          free_vector(ptt,1,n); 
     p2[thetai]=x[thetai]-delti[thetai]/k;        free_vector(pt,1,n); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        return; 
     k3=func(p2)-fx;      } 
        if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     p2[thetai]=x[thetai]-delti[thetai]/k;      for (j=1;j<=n;j++) { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        ptt[j]=2.0*p[j]-pt[j]; 
     k4=func(p2)-fx;        xit[j]=p[j]-pt[j]; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        pt[j]=p[j]; 
 #ifdef DEBUG      } 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      fptt=(*func)(ptt); 
 #endif      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   return res;        if (t < 0.0) { 
 }          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
 /************** Inverse of matrix **************/            xi[j][ibig]=xi[j][n]; 
 void ludcmp(double **a, int n, int *indx, double *d)            xi[j][n]=xit[j]; 
 {          }
   int i,imax,j,k;  #ifdef DEBUG
   double big,dum,sum,temp;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double *vv;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            for(j=1;j<=n;j++){
   vv=vector(1,n);            printf(" %.12e",xit[j]);
   *d=1.0;            fprintf(ficlog," %.12e",xit[j]);
   for (i=1;i<=n;i++) {          }
     big=0.0;          printf("\n");
     for (j=1;j<=n;j++)          fprintf(ficlog,"\n");
       if ((temp=fabs(a[i][j])) > big) big=temp;  #endif
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        }
     vv[i]=1.0/big;      } 
   }    } 
   for (j=1;j<=n;j++) {  } 
     for (i=1;i<j;i++) {  
       sum=a[i][j];  /**** Prevalence limit (stable or period prevalence)  ****************/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     }  {
     big=0.0;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for (i=j;i<=n;i++) {       matrix by transitions matrix until convergence is reached */
       sum=a[i][j];  
       for (k=1;k<j;k++)    int i, ii,j,k;
         sum -= a[i][k]*a[k][j];    double min, max, maxmin, maxmax,sumnew=0.;
       a[i][j]=sum;    double **matprod2();
       if ( (dum=vv[i]*fabs(sum)) >= big) {    double **out, cov[NCOVMAX], **pmij();
         big=dum;    double **newm;
         imax=i;    double agefin, delaymax=50 ; /* Max number of years to converge */
       }  
     }    for (ii=1;ii<=nlstate+ndeath;ii++)
     if (j != imax) {      for (j=1;j<=nlstate+ndeath;j++){
       for (k=1;k<=n;k++) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         dum=a[imax][k];      }
         a[imax][k]=a[j][k];  
         a[j][k]=dum;     cov[1]=1.;
       }   
       *d = -(*d);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       vv[imax]=vv[j];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     }      newm=savm;
     indx[j]=imax;      /* Covariates have to be included here again */
     if (a[j][j] == 0.0) a[j][j]=TINY;       cov[2]=agefin;
     if (j != n) {    
       dum=1.0/(a[j][j]);        for (k=1; k<=cptcovn;k++) {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   }        }
   free_vector(vv,1,n);  /* Doesn't work */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 ;        for (k=1; k<=cptcovprod;k++)
 }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 void lubksb(double **a, int n, int *indx, double b[])        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   int i,ii=0,ip,j;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double sum;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
    
   for (i=1;i<=n;i++) {      savm=oldm;
     ip=indx[i];      oldm=newm;
     sum=b[ip];      maxmax=0.;
     b[ip]=b[i];      for(j=1;j<=nlstate;j++){
     if (ii)        min=1.;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        max=0.;
     else if (sum) ii=i;        for(i=1; i<=nlstate; i++) {
     b[i]=sum;          sumnew=0;
   }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for (i=n;i>=1;i--) {          prlim[i][j]= newm[i][j]/(1-sumnew);
     sum=b[i];          max=FMAX(max,prlim[i][j]);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          min=FMIN(min,prlim[i][j]);
     b[i]=sum/a[i][i];        }
   }        maxmin=max-min;
 }        maxmax=FMAX(maxmax,maxmin);
       }
 /************ Frequencies ********************/      if(maxmax < ftolpl){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1,double **mint,double **anint)        return prlim;
 {  /* Some frequencies */      }
      }
   int i, m, jk, k1, k2,i1, j1, bool, z1,z2,j;  }
   double ***freq; /* Frequencies */  
   double *pp;  /*************** transition probabilities ***************/ 
   double pos;  
   FILE *ficresp;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   char fileresp[FILENAMELENGTH];  {
     double s1, s2;
   pp=vector(1,nlstate);    /*double t34;*/
   probs= ma3x(1,130 ,1,8, 1,8);    int i,j,j1, nc, ii, jj;
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);      for(i=1; i<= nlstate; i++){
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for(j=1; j<i;j++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     exit(0);            /*s2 += param[i][j][nc]*cov[nc];*/
   }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   j1=0;          }
           ps[i][j]=s2;
   j=cptcoveff;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        }
         for(j=i+1; j<=nlstate+ndeath;j++){
   for(k1=1; k1<=j;k1++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
    for(i1=1; i1<=ncodemax[k1];i1++){            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
        j1++;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          }
          scanf("%d", i);*/          ps[i][j]=s2;
         for (i=-1; i<=nlstate+ndeath; i++)          }
          for (jk=-1; jk<=nlstate+ndeath; jk++)        }
            for(m=agemin; m <= agemax+3; m++)      /*ps[3][2]=1;*/
              freq[i][jk][m]=0;      
              for(i=1; i<= nlstate; i++){
        for (i=1; i<=imx; i++) {        s1=0;
          bool=1;        for(j=1; j<i; j++)
          if  (cptcovn>0) {          s1+=exp(ps[i][j]);
            for (z1=1; z1<=cptcoveff; z1++)        for(j=i+1; j<=nlstate+ndeath; j++)
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s1+=exp(ps[i][j]);
                bool=0;        ps[i][i]=1./(s1+1.);
          }        for(j=1; j<i; j++)
           if (bool==1) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
             for(m=fprev1; m<=lprev1; m++){        for(j=i+1; j<=nlstate+ndeath; j++)
              k2=anint[m][i]+(mint[m][i]/12.);          ps[i][j]= exp(ps[i][j])*ps[i][i];
              if ((k2>=1984) && (k2<=1988.5)) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
              if(agev[m][i]==0) agev[m][i]=agemax+1;      } /* end i */
              if(agev[m][i]==1) agev[m][i]=agemax+2;      
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for(jj=1; jj<= nlstate+ndeath; jj++){
              }          ps[ii][jj]=0;
             }          ps[ii][ii]=1;
           }        }
        }      }
         if  (cptcovn>0) {      
          fprintf(ficresp, "\n#********** Variable ");  
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
        fprintf(ficresp, "**********\n#");  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         }  /*         printf("ddd %lf ",ps[ii][jj]); */
        for(i=1; i<=nlstate;i++)  /*       } */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  /*       printf("\n "); */
        fprintf(ficresp, "\n");  /*        } */
          /*        printf("\n ");printf("%lf ",cov[2]); */
   for(i=(int)agemin; i <= (int)agemax+3; i++){         /*
     if(i==(int)agemax+3)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       printf("Total");        goto end;*/
     else      return ps;
       printf("Age %d", i);  }
     for(jk=1; jk <=nlstate ; jk++){  
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /**************** Product of 2 matrices ******************/
         pp[jk] += freq[jk][m][i];  
     }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for(jk=1; jk <=nlstate ; jk++){  {
       for(m=-1, pos=0; m <=0 ; m++)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         pos += freq[jk][m][i];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       if(pp[jk]>=1.e-10)    /* in, b, out are matrice of pointers which should have been initialized 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);       before: only the contents of out is modified. The function returns
       else       a pointer to pointers identical to out */
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    long i, j, k;
     }    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
      for(jk=1; jk <=nlstate ; jk++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          out[i][k] +=in[i][j]*b[j][k];
         pp[jk] += freq[jk][m][i];  
      }    return out;
   }
     for(jk=1,pos=0; jk <=nlstate ; jk++)  
       pos += pp[jk];  
     for(jk=1; jk <=nlstate ; jk++){  /************* Higher Matrix Product ***************/
       if(pos>=1.e-5)  
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       else  {
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    /* Computes the transition matrix starting at age 'age' over 
       if( i <= (int) agemax){       'nhstepm*hstepm*stepm' months (i.e. until
         if(pos>=1.e-5){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);       nhstepm*hstepm matrices. 
           probs[i][jk][j1]= pp[jk]/pos;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/       (typically every 2 years instead of every month which is too big 
         }       for the memory).
       else       Model is determined by parameters x and covariates have to be 
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);       included manually here. 
       }  
     }       */
     for(jk=-1; jk <=nlstate+ndeath; jk++)  
       for(m=-1; m <=nlstate+ndeath; m++)    int i, j, d, h, k;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double **out, cov[NCOVMAX];
     if(i <= (int) agemax)    double **newm;
       fprintf(ficresp,"\n");  
     printf("\n");    /* Hstepm could be zero and should return the unit matrix */
     }    for (i=1;i<=nlstate+ndeath;i++)
     }      for (j=1;j<=nlstate+ndeath;j++){
  }        oldm[i][j]=(i==j ? 1.0 : 0.0);
          po[i][j][0]=(i==j ? 1.0 : 0.0);
   fclose(ficresp);      }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   free_vector(pp,1,nlstate);    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
 }  /* End of Freq */        newm=savm;
         /* Covariates have to be included here again */
 /************ Prevalence ********************/        cov[1]=1.;
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 {  /* Some frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          for (k=1; k<=cptcovage;k++)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double ***freq; /* Frequencies */        for (k=1; k<=cptcovprod;k++)
   double *pp;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double pos;  
   
   pp=vector(1,nlstate);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   probs= ma3x(1,130 ,1,8, 1,8);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   j1=0;        savm=oldm;
          oldm=newm;
   j=cptcoveff;      }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
  for(k1=1; k1<=j;k1++){          po[i][j][h]=newm[i][j];
     for(i1=1; i1<=ncodemax[k1];i1++){          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       j1++;           */
          }
       for (i=-1; i<=nlstate+ndeath; i++)      } /* end h */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      return po;
           for(m=agemin; m <= agemax+3; m++)  }
           freq[i][jk][m]=0;  
        
       for (i=1; i<=imx; i++) {  /*************** log-likelihood *************/
         bool=1;  double func( double *x)
         if  (cptcovn>0) {  {
           for (z1=1; z1<=cptcoveff; z1++)    int i, ii, j, k, mi, d, kk;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double l, ll[NLSTATEMAX], cov[NCOVMAX];
               bool=0;    double **out;
               }    double sw; /* Sum of weights */
         if (bool==1) {    double lli; /* Individual log likelihood */
           for(m=fprev1; m<=lprev1; m++){    int s1, s2;
             if(agev[m][i]==0) agev[m][i]=agemax+1;    double bbh, survp;
             if(agev[m][i]==1) agev[m][i]=agemax+2;    long ipmx;
             freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    /*extern weight */
             freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    /* We are differentiating ll according to initial status */
           }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++) 
       }      printf(" %d\n",s[4][i]);
        for(i=(int)agemin; i <= (int)agemax+3; i++){    */
         for(jk=1; jk <=nlstate ; jk++){    cov[1]=1.;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
         for(jk=1; jk <=nlstate ; jk++){    if(mle==1){
           for(m=-1, pos=0; m <=0 ; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             pos += freq[jk][m][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
                  for (ii=1;ii<=nlstate+ndeath;ii++)
          for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          }            }
                    for(d=0; d<dh[mi][i]; d++){
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          for(jk=1; jk <=nlstate ; jk++){                      for (kk=1; kk<=cptcovage;kk++) {
            if( i <= (int) agemax){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              if(pos>=1.e-5){            }
                probs[i][jk][j1]= pp[jk]/pos;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
              }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            }            savm=oldm;
          }            oldm=newm;
                    } /* end mult */
          }        
     }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   }          /* But now since version 0.9 we anticipate for bias at large stepm.
             * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           * the nearest (and in case of equal distance, to the lowest) interval but now
   free_vector(pp,1,nlstate);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 }  /* End of Freq */           * probability in order to take into account the bias as a fraction of the way
 /************* Waves Concatenation ***************/           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)           * For stepm=1 the results are the same as for previous versions of Imach.
 {           * For stepm > 1 the results are less biased than in previous versions. 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.           */
      Death is a valid wave (if date is known).          s1=s[mw[mi][i]][i];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          s2=s[mw[mi+1][i]][i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          bbh=(double)bh[mi][i]/(double)stepm; 
      and mw[mi+1][i]. dh depends on stepm.          /* bias bh is positive if real duration
      */           * is higher than the multiple of stepm and negative otherwise.
            */
   int i, mi, m;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          if( s2 > nlstate){ 
      double sum=0., jmean=0.;*/            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
   int j, k=0,jk, ju, jl;               die between last step unit time and current  step unit time, 
   double sum=0.;               which is also equal to probability to die before dh 
   jmin=1e+5;               minus probability to die before dh-stepm . 
   jmax=-1;               In version up to 0.92 likelihood was computed
   jmean=0.;          as if date of death was unknown. Death was treated as any other
   for(i=1; i<=imx; i++){          health state: the date of the interview describes the actual state
     mi=0;          and not the date of a change in health state. The former idea was
     m=firstpass;          to consider that at each interview the state was recorded
     while(s[m][i] <= nlstate){          (healthy, disable or death) and IMaCh was corrected; but when we
       if(s[m][i]>=1)          introduced the exact date of death then we should have modified
         mw[++mi][i]=m;          the contribution of an exact death to the likelihood. This new
       if(m >=lastpass)          contribution is smaller and very dependent of the step unit
         break;          stepm. It is no more the probability to die between last interview
       else          and month of death but the probability to survive from last
         m++;          interview up to one month before death multiplied by the
     }/* end while */          probability to die within a month. Thanks to Chris
     if (s[m][i] > nlstate){          Jackson for correcting this bug.  Former versions increased
       mi++;     /* Death is another wave */          mortality artificially. The bad side is that we add another loop
       /* if(mi==0)  never been interviewed correctly before death */          which slows down the processing. The difference can be up to 10%
          /* Only death is a correct wave */          lower mortality.
       mw[mi][i]=m;            */
     }            lli=log(out[s1][s2] - savm[s1][s2]);
   
     wav[i]=mi;  
     if(mi==0)          } else if  (s2==-2) {
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            for (j=1,survp=0. ; j<=nlstate; j++) 
   }              survp += out[s1][j];
             lli= log(survp);
   for(i=1; i<=imx; i++){          }
     for(mi=1; mi<wav[i];mi++){          
       if (stepm <=0)  /*      else if  (s2==-4) { */
         dh[mi][i]=1;  /*        for (j=3,survp=0. ; j<=nlstate; j++)  */
       else{  /*          survp += out[s1][j]; */
         if (s[mw[mi+1][i]][i] > nlstate) {  /*        lli= survp; */
           if (agedc[i] < 2*AGESUP) {  /*      } */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          
           if(j==0) j=1;  /* Survives at least one month after exam */  /*      else if  (s2==-5) { */
           k=k+1;  /*        for (j=1,survp=0. ; j<=2; j++)  */
           if (j >= jmax) jmax=j;  /*          survp += out[s1][j]; */
           if (j <= jmin) jmin=j;  /*        lli= survp; */
           sum=sum+j;  /*      } */
           /* if (j<10) printf("j=%d num=%d ",j,i); */  
           }  
         }          else{
         else{            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           k=k+1;          } 
           if (j >= jmax) jmax=j;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           else if (j <= jmin)jmin=j;          /*if(lli ==000.0)*/
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           sum=sum+j;          ipmx +=1;
         }          sw += weight[i];
         jk= j/stepm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         jl= j -jk*stepm;        } /* end of wave */
         ju= j -(jk+1)*stepm;      } /* end of individual */
         if(jl <= -ju)    }  else if(mle==2){
           dh[mi][i]=jk;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         else        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           dh[mi][i]=jk+1;        for(mi=1; mi<= wav[i]-1; mi++){
         if(dh[mi][i]==0)          for (ii=1;ii<=nlstate+ndeath;ii++)
           dh[mi][i]=1; /* At least one step */            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   jmean=sum/k;          for(d=0; d<=dh[mi][i]; d++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            newm=savm;
  }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /*********** Tricode ****************************/            for (kk=1; kk<=cptcovage;kk++) {
 void tricode(int *Tvar, int **nbcode, int imx)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   int Ndum[20],ij=1, k, j, i;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int cptcode=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   cptcoveff=0;            savm=oldm;
              oldm=newm;
   for (k=0; k<19; k++) Ndum[k]=0;          } /* end mult */
   for (k=1; k<=7; k++) ncodemax[k]=0;        
           s1=s[mw[mi][i]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          s2=s[mw[mi+1][i]][i];
     for (i=1; i<=imx; i++) {          bbh=(double)bh[mi][i]/(double)stepm; 
       ij=(int)(covar[Tvar[j]][i]);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       Ndum[ij]++;          ipmx +=1;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          sw += weight[i];
       if (ij > cptcode) cptcode=ij;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
       } /* end of individual */
     for (i=0; i<=cptcode; i++) {    }  else if(mle==3){  /* exponential inter-extrapolation */
       if(Ndum[i]!=0) ncodemax[j]++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     ij=1;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     for (i=1; i<=ncodemax[j]; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=0; k<=19; k++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (Ndum[k] != 0) {            }
           nbcode[Tvar[j]][ij]=k;          for(d=0; d<dh[mi][i]; d++){
           ij++;            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (ij > ncodemax[j]) break;            for (kk=1; kk<=cptcovage;kk++) {
       }                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
   }              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  for (k=0; k<19; k++) Ndum[k]=0;            savm=oldm;
             oldm=newm;
  for (i=1; i<=ncovmodel-2; i++) {          } /* end mult */
       ij=Tvar[i];        
       Ndum[ij]++;          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
  ij=1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
  for (i=1; i<=10; i++) {          ipmx +=1;
    if((Ndum[i]!=0) && (i<=ncov)){          sw += weight[i];
      Tvaraff[ij]=i;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      ij++;        } /* end of wave */
    }      } /* end of individual */
  }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     cptcoveff=ij-1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 /*********** Health Expectancies ****************/            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   /* Health expectancies */          for(d=0; d<dh[mi][i]; d++){
   int i, j, nhstepm, hstepm, h;            newm=savm;
   double age, agelim,hf;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double ***p3mat;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficreseij,"# Health expectancies\n");            }
   fprintf(ficreseij,"# Age");          
   for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(j=1; j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficreseij," %1d-%1d",i,j);            savm=oldm;
   fprintf(ficreseij,"\n");            oldm=newm;
           } /* end mult */
   hstepm=1*YEARM; /*  Every j years of age (in month) */        
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   agelim=AGESUP;          if( s2 > nlstate){ 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            lli=log(out[s1][s2] - savm[s1][s2]);
     /* nhstepm age range expressed in number of stepm */          }else{
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     /* Typically if 20 years = 20*12/6=40 stepm */          }
     if (stepm >= YEARM) hstepm=1;          ipmx +=1;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          sw += weight[i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        } /* end of wave */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(j=1; j<=nlstate;j++)        for(mi=1; mi<= wav[i]-1; mi++){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           eij[i][j][(int)age] +=p3mat[i][j][h];            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
     hf=1;            }
     if (stepm >= YEARM) hf=stepm/YEARM;          for(d=0; d<dh[mi][i]; d++){
     fprintf(ficreseij,"%.0f",age );            newm=savm;
     for(i=1; i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(j=1; j<=nlstate;j++){            for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     fprintf(ficreseij,"\n");          
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
             oldm=newm;
 /************ Variance ******************/          } /* end mult */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        
 {          s1=s[mw[mi][i]][i];
   /* Variance of health expectancies */          s2=s[mw[mi+1][i]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double **newm;          ipmx +=1;
   double **dnewm,**doldm;          sw += weight[i];
   int i, j, nhstepm, hstepm, h;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int k, cptcode;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double *xp;        } /* end of wave */
   double **gp, **gm;      } /* end of individual */
   double ***gradg, ***trgradg;    } /* End of if */
   double ***p3mat;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double age,agelim;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int theta;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
    fprintf(ficresvij,"# Covariances of life expectancies\n");  }
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)  /*************** log-likelihood *************/
     for(j=1; j<=nlstate;j++)  double funcone( double *x)
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  {
   fprintf(ficresvij,"\n");    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
   xp=vector(1,npar);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   dnewm=matrix(1,nlstate,1,npar);    double **out;
   doldm=matrix(1,nlstate,1,nlstate);    double lli; /* Individual log likelihood */
      double llt;
   hstepm=1*YEARM; /* Every year of age */    int s1, s2;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double bbh, survp;
   agelim = AGESUP;    /*extern weight */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* We are differentiating ll according to initial status */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     if (stepm >= YEARM) hstepm=1;    /*for(i=1;i<imx;i++) 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      printf(" %d\n",s[4][i]);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    cov[1]=1.;
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
     for(theta=1; theta <=npar; theta++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for(mi=1; mi<= wav[i]-1; mi++){
       }        for (ii=1;ii<=nlstate+ndeath;ii++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for (j=1;j<=nlstate+ndeath;j++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (popbased==1) {          }
         for(i=1; i<=nlstate;i++)        for(d=0; d<dh[mi][i]; d++){
           prlim[i][i]=probs[(int)age][i][ij];          newm=savm;
       }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<= nlstate; j++){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(h=0; h<=nhstepm; h++){          }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }          savm=oldm;
       }          oldm=newm;
            } /* end mult */
       for(i=1; i<=npar; i++) /* Computes gradient */        
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        s1=s[mw[mi][i]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          s2=s[mw[mi+1][i]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
       if (popbased==1) {         * is higher than the multiple of stepm and negative otherwise.
         for(i=1; i<=nlstate;i++)         */
           prlim[i][i]=probs[(int)age][i][ij];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       }          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
       for(j=1; j<= nlstate; j++){          for (j=1,survp=0. ; j<=nlstate; j++) 
         for(h=0; h<=nhstepm; h++){            survp += out[s1][j];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          lli= log(survp);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        }else if (mle==1){
         }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(j=1; j<= nlstate; j++)        } else if(mle==3){  /* exponential inter-extrapolation */
         for(h=0; h<=nhstepm; h++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         }          lli=log(out[s1][s2]); /* Original formula */
     } /* End theta */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        } /* End of if */
         ipmx +=1;
     for(h=0; h<=nhstepm; h++)        sw += weight[i];
       for(j=1; j<=nlstate;j++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(theta=1; theta <=npar; theta++)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           trgradg[h][j][theta]=gradg[h][theta][j];        if(globpr){
           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     for(i=1;i<=nlstate;i++)   %11.6f %11.6f %11.6f ", \
       for(j=1;j<=nlstate;j++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         vareij[i][j][(int)age] =0.;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     for(h=0;h<=nhstepm;h++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for(k=0;k<=nhstepm;k++){            llt +=ll[k]*gipmx/gsw;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          }
         for(i=1;i<=nlstate;i++)          fprintf(ficresilk," %10.6f\n", -llt);
           for(j=1;j<=nlstate;j++)        }
             vareij[i][j][(int)age] += doldm[i][j];      } /* end of wave */
       }    } /* end of individual */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     h=1;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     if (stepm >= YEARM) h=stepm/YEARM;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     fprintf(ficresvij,"%.0f ",age );    if(globpr==0){ /* First time we count the contributions and weights */
     for(i=1; i<=nlstate;i++)      gipmx=ipmx;
       for(j=1; j<=nlstate;j++){      gsw=sw;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    }
       }    return -l;
     fprintf(ficresvij,"\n");  }
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  /*************** function likelione ***********/
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
   } /* End age */    /* This routine should help understanding what is done with 
         the selection of individuals/waves and
   free_vector(xp,1,npar);       to check the exact contribution to the likelihood.
   free_matrix(doldm,1,nlstate,1,npar);       Plotting could be done.
   free_matrix(dnewm,1,nlstate,1,nlstate);     */
     int k;
 }  
     if(*globpri !=0){ /* Just counts and sums, no printings */
 /************ Variance of prevlim ******************/      strcpy(fileresilk,"ilk"); 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      strcat(fileresilk,fileres);
 {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   /* Variance of prevalence limit */        printf("Problem with resultfile: %s\n", fileresilk);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double **newm;      }
   double **dnewm,**doldm;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int i, j, nhstepm, hstepm;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int k, cptcode;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double *xp;      for(k=1; k<=nlstate; k++) 
   double *gp, *gm;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double **gradg, **trgradg;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   double age,agelim;    }
   int theta;  
        *fretone=(*funcone)(p);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    if(*globpri !=0){
   fprintf(ficresvpl,"# Age");      fclose(ficresilk);
   for(i=1; i<=nlstate;i++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fprintf(ficresvpl," %1d-%1d",i,i);      fflush(fichtm); 
   fprintf(ficresvpl,"\n");    } 
     return;
   xp=vector(1,npar);  }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  
    /*********** Maximum Likelihood Estimation ***************/
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   agelim = AGESUP;  {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i,j, iter;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double **xi;
     if (stepm >= YEARM) hstepm=1;    double fret;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double fretone; /* Only one call to likelihood */
     gradg=matrix(1,npar,1,nlstate);    /*  char filerespow[FILENAMELENGTH];*/
     gp=vector(1,nlstate);    xi=matrix(1,npar,1,npar);
     gm=vector(1,nlstate);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
     for(theta=1; theta <=npar; theta++){        xi[i][j]=(i==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++){ /* Computes gradient */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    strcpy(filerespow,"pow"); 
       }    strcat(filerespow,fileres);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(i=1;i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
         gp[i] = prlim[i][i];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
        }
       for(i=1; i<=npar; i++) /* Computes gradient */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=nlstate;i++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(j=1;j<=nlstate+ndeath;j++)
       for(i=1;i<=nlstate;i++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         gm[i] = prlim[i][i];    fprintf(ficrespow,"\n");
   
       for(i=1;i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
     trgradg =matrix(1,nlstate,1,npar);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(j=1; j<=nlstate;j++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];  }
   
     for(i=1;i<=nlstate;i++)  /**** Computes Hessian and covariance matrix ***/
       varpl[i][(int)age] =0.;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  {
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double  **a,**y,*x,pd;
     for(i=1;i<=nlstate;i++)    double **hess;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int i, j,jk;
     int *indx;
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     fprintf(ficresvpl,"\n");    void lubksb(double **a, int npar, int *indx, double b[]) ;
     free_vector(gp,1,nlstate);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     free_vector(gm,1,nlstate);    double gompertz(double p[]);
     free_matrix(gradg,1,npar,1,nlstate);    hess=matrix(1,npar,1,npar);
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   free_vector(xp,1,npar);    for (i=1;i<=npar;i++){
   free_matrix(doldm,1,nlstate,1,npar);      printf("%d",i);fflush(stdout);
   free_matrix(dnewm,1,nlstate,1,nlstate);      fprintf(ficlog,"%d",i);fflush(ficlog);
      
 }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
 /************ Variance of one-step probabilities  ******************/      /*  printf(" %f ",p[i]);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 {    }
   int i, j;    
   int k=0, cptcode;    for (i=1;i<=npar;i++) {
   double **dnewm,**doldm;      for (j=1;j<=npar;j++)  {
   double *xp;        if (j>i) { 
   double *gp, *gm;          printf(".%d%d",i,j);fflush(stdout);
   double **gradg, **trgradg;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   double age,agelim, cov[NCOVMAX];          hess[i][j]=hessij(p,delti,i,j,func,npar);
   int theta;          
   char fileresprob[FILENAMELENGTH];          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
   strcpy(fileresprob,"prob");        }
   strcat(fileresprob,fileres);      }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprob);    printf("\n");
   }    fprintf(ficlog,"\n");
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   xp=vector(1,npar);    
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    a=matrix(1,npar,1,npar);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    y=matrix(1,npar,1,npar);
      x=vector(1,npar);
   cov[1]=1;    indx=ivector(1,npar);
   for (age=bage; age<=fage; age ++){    for (i=1;i<=npar;i++)
     cov[2]=age;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     gradg=matrix(1,npar,1,9);    ludcmp(a,npar,indx,&pd);
     trgradg=matrix(1,9,1,npar);  
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    for (j=1;j<=npar;j++) {
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1;i<=npar;i++) x[i]=0;
          x[j]=1;
     for(theta=1; theta <=npar; theta++){      lubksb(a,npar,indx,x);
       for(i=1; i<=npar; i++)      for (i=1;i<=npar;i++){ 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        matcov[i][j]=x[i];
            }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    }
      
       k=0;    printf("\n#Hessian matrix#\n");
       for(i=1; i<= (nlstate+ndeath); i++){    fprintf(ficlog,"\n#Hessian matrix#\n");
         for(j=1; j<=(nlstate+ndeath);j++){    for (i=1;i<=npar;i++) { 
            k=k+1;      for (j=1;j<=npar;j++) { 
           gp[k]=pmmij[i][j];        printf("%.3e ",hess[i][j]);
         }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }      }
       printf("\n");
       for(i=1; i<=npar; i++)      fprintf(ficlog,"\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
      
     /* Recompute Inverse */
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    for (i=1;i<=npar;i++)
       k=0;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       for(i=1; i<=(nlstate+ndeath); i++){    ludcmp(a,npar,indx,&pd);
         for(j=1; j<=(nlstate+ndeath);j++){  
           k=k+1;    /*  printf("\n#Hessian matrix recomputed#\n");
           gm[k]=pmmij[i][j];  
         }    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
            x[j]=1;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      lubksb(a,npar,indx,x);
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        for (i=1;i<=npar;i++){ 
     }        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        fprintf(ficlog,"%.3e ",y[i][j]);
       for(theta=1; theta <=npar; theta++)      }
       trgradg[j][theta]=gradg[theta][j];      printf("\n");
        fprintf(ficlog,"\n");
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    }
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    */
   
      pmij(pmmij,cov,ncovmodel,x,nlstate);    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
      k=0;    free_vector(x,1,npar);
      for(i=1; i<=(nlstate+ndeath); i++){    free_ivector(indx,1,npar);
        for(j=1; j<=(nlstate+ndeath);j++){    free_matrix(hess,1,npar,1,npar);
          k=k+1;  
          gm[k]=pmmij[i][j];  
         }  }
      }  
        /*************** hessian matrix ****************/
      /*printf("\n%d ",(int)age);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  {
            int i;
     int l=1, lmax=20;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    double k1,k2;
      }*/    double p2[NPARMAX+1];
     double res;
   fprintf(ficresprob,"\n%d ",(int)age);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    int k=0,kmax=10;
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    double l1;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  
   }    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    for(l=0 ; l <=lmax; l++){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      l1=pow(10,l);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      delts=delt;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for(k=1 ; k <kmax; k=k+1){
 }        delt = delta*(l1*k);
  free_vector(xp,1,npar);        p2[theta]=x[theta] +delt;
 fclose(ficresprob);        k1=func(p2)-fx;
  exit(0);        p2[theta]=x[theta]-delt;
 }        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
 /***********************************************/        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 /**************** Main Program *****************/        
 /***********************************************/  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 /*int main(int argc, char *argv[])*/        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 int main()  #endif
 {        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          k=kmax;
   double agedeb, agefin,hf;        }
   double agemin=1.e20, agemax=-1.e20;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
   double fret;        }
   double **xi,tmp,delta;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
   double dum; /* Dummy variable */        }
   double ***p3mat;      }
   int *indx;    }
   char line[MAXLINE], linepar[MAXLINE];    delti[theta]=delts;
   char title[MAXLINE];    return res; 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];  }
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   char popfile[FILENAMELENGTH];  {
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    int i;
   int firstobs=1, lastobs=10;    int l=1, l1, lmax=20;
   int sdeb, sfin; /* Status at beginning and end */    double k1,k2,k3,k4,res,fx;
   int c,  h , cpt,l;    double p2[NPARMAX+1];
   int ju,jl, mi;    int k;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    fx=func(x);
   int mobilav=0, fprev, lprev ,fprevfore=1, lprevfore=1,nforecast,popforecast=0;    for (k=1; k<=2; k++) {
   int hstepm, nhstepm;      for (i=1;i<=npar;i++) p2[i]=x[i];
   int *popage;      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double bage, fage, age, agelim, agebase;      k1=func(p2)-fx;
   double ftolpl=FTOL;    
   double **prlim;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double *severity;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double ***param; /* Matrix of parameters */      k2=func(p2)-fx;
   double  *p;    
   double **matcov; /* Matrix of covariance */      p2[thetai]=x[thetai]-delti[thetai]/k;
   double ***delti3; /* Scale */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double *delti; /* Scale */      k3=func(p2)-fx;
   double ***eij, ***vareij;    
   double **varpl; /* Variances of prevalence limits by age */      p2[thetai]=x[thetai]-delti[thetai]/k;
   double *epj, vepp;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double kk1, kk2;      k4=func(p2)-fx;
   double *popeffectif,*popcount;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   char *alph[]={"a","a","b","c","d","e"}, str[4];      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
     }
   char z[1]="c", occ;    return res;
 #include <sys/time.h>  }
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  /************** Inverse of matrix **************/
   /* long total_usecs;  void ludcmp(double **a, int n, int *indx, double *d) 
   struct timeval start_time, end_time;  { 
      int i,imax,j,k; 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double big,dum,sum,temp; 
     double *vv; 
    
   printf("\nIMACH, Version 0.7");    vv=vector(1,n); 
   printf("\nEnter the parameter file name: ");    *d=1.0; 
     for (i=1;i<=n;i++) { 
 #ifdef windows      big=0.0; 
   scanf("%s",pathtot);      for (j=1;j<=n;j++) 
   getcwd(pathcd, size);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   /*cygwin_split_path(pathtot,path,optionfile);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      vv[i]=1.0/big; 
   /* cutv(path,optionfile,pathtot,'\\');*/    } 
     for (j=1;j<=n;j++) { 
 split(pathtot, path,optionfile);      for (i=1;i<j;i++) { 
   chdir(path);        sum=a[i][j]; 
   replace(pathc,path);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 #endif        a[i][j]=sum; 
 #ifdef unix      } 
   scanf("%s",optionfile);      big=0.0; 
 #endif      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
 /*-------- arguments in the command line --------*/        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   strcpy(fileres,"r");        a[i][j]=sum; 
   strcat(fileres, optionfile);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
   /*---------arguments file --------*/          imax=i; 
         } 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      } 
     printf("Problem with optionfile %s\n",optionfile);      if (j != imax) { 
     goto end;        for (k=1;k<=n;k++) { 
   }          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
   strcpy(filereso,"o");          a[j][k]=dum; 
   strcat(filereso,fileres);        } 
   if((ficparo=fopen(filereso,"w"))==NULL) {        *d = -(*d); 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        vv[imax]=vv[j]; 
   }      } 
       indx[j]=imax; 
   /* Reads comments: lines beginning with '#' */      if (a[j][j] == 0.0) a[j][j]=TINY; 
   while((c=getc(ficpar))=='#' && c!= EOF){      if (j != n) { 
     ungetc(c,ficpar);        dum=1.0/(a[j][j]); 
     fgets(line, MAXLINE, ficpar);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     puts(line);      } 
     fputs(line,ficparo);    } 
   }    free_vector(vv,1,n);  /* Doesn't work */
   ungetc(c,ficpar);  ;
   } 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  void lubksb(double **a, int n, int *indx, double b[]) 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);  { 
 while((c=getc(ficpar))=='#' && c!= EOF){    int i,ii=0,ip,j; 
     ungetc(c,ficpar);    double sum; 
     fgets(line, MAXLINE, ficpar);   
     puts(line);    for (i=1;i<=n;i++) { 
     fputs(line,ficparo);      ip=indx[i]; 
   }      sum=b[ip]; 
   ungetc(c,ficpar);      b[ip]=b[i]; 
        if (ii) 
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   fprintf(ficparo,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);      else if (sum) ii=i; 
        b[i]=sum; 
  while((c=getc(ficpar))=='#' && c!= EOF){    } 
     ungetc(c,ficpar);    for (i=n;i>=1;i--) { 
     fgets(line, MAXLINE, ficpar);      sum=b[i]; 
     puts(line);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     fputs(line,ficparo);      b[i]=sum/a[i][i]; 
   }    } 
   ungetc(c,ficpar);  } 
    
   fscanf(ficpar,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",&fprevfore,&lprevfore,&nforecast,&mobilav);  void pstamp(FILE *fichier)
   fprintf(ficparo,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);  {
          fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
    }
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************ Frequencies ********************/
     fgets(line, MAXLINE, ficpar);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     puts(line);  {  /* Some frequencies */
     fputs(line,ficparo);    
   }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   ungetc(c,ficpar);    int first;
      double ***freq; /* Frequencies */
   fscanf(ficpar,"popforecast=%d popfile=%s\n",&popforecast,popfile);    double *pp, **prop;
      double pos,posprop, k2, dateintsum=0,k2cpt=0;
   covar=matrix(0,NCOVMAX,1,n);    char fileresp[FILENAMELENGTH];
   cptcovn=0;    
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
   ncovmodel=2+cptcovn;    strcpy(fileresp,"p");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    strcat(fileresp,fileres);
      if((ficresp=fopen(fileresp,"w"))==NULL) {
   /* Read guess parameters */      printf("Problem with prevalence resultfile: %s\n", fileresp);
   /* Reads comments: lines beginning with '#' */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   while((c=getc(ficpar))=='#' && c!= EOF){      exit(0);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     puts(line);    j1=0;
     fputs(line,ficparo);    
   }    j=cptcoveff;
   ungetc(c,ficpar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    first=1;
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){    for(k1=1; k1<=j;k1++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficparo,"%1d%1d",i1,j1);        j1++;
       printf("%1d%1d",i,j);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for(k=1; k<=ncovmodel;k++){          scanf("%d", i);*/
         fscanf(ficpar," %lf",&param[i][j][k]);        for (i=-5; i<=nlstate+ndeath; i++)  
         printf(" %lf",param[i][j][k]);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         fprintf(ficparo," %lf",param[i][j][k]);            for(m=iagemin; m <= iagemax+3; m++)
       }              freq[i][jk][m]=0;
       fscanf(ficpar,"\n");  
       printf("\n");      for (i=1; i<=nlstate; i++)  
       fprintf(ficparo,"\n");        for(m=iagemin; m <= iagemax+3; m++)
     }          prop[i][m]=0;
          
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        dateintsum=0;
         k2cpt=0;
   p=param[1][1];        for (i=1; i<=imx; i++) {
            bool=1;
   /* Reads comments: lines beginning with '#' */          if  (cptcovn>0) {
   while((c=getc(ficpar))=='#' && c!= EOF){            for (z1=1; z1<=cptcoveff; z1++) 
     ungetc(c,ficpar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     fgets(line, MAXLINE, ficpar);                bool=0;
     puts(line);          }
     fputs(line,ficparo);          if (bool==1){
   }            for(m=firstpass; m<=lastpass; m++){
   ungetc(c,ficpar);              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   for(i=1; i <=nlstate; i++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(j=1; j <=nlstate+ndeath-1; j++){                if (m<lastpass) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       printf("%1d%1d",i,j);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       fprintf(ficparo,"%1d%1d",i1,j1);                }
       for(k=1; k<=ncovmodel;k++){                
         fscanf(ficpar,"%le",&delti3[i][j][k]);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         printf(" %le",delti3[i][j][k]);                  dateintsum=dateintsum+k2;
         fprintf(ficparo," %le",delti3[i][j][k]);                  k2cpt++;
       }                }
       fscanf(ficpar,"\n");                /*}*/
       printf("\n");            }
       fprintf(ficparo,"\n");          }
     }        }
   }         
   delti=delti3[1][1];        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
          pstamp(ficresp);
   /* Reads comments: lines beginning with '#' */        if  (cptcovn>0) {
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresp, "\n#********** Variable "); 
     ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fgets(line, MAXLINE, ficpar);          fprintf(ficresp, "**********\n#");
     puts(line);        }
     fputs(line,ficparo);        for(i=1; i<=nlstate;i++) 
   }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   ungetc(c,ficpar);        fprintf(ficresp, "\n");
          
   matcov=matrix(1,npar,1,npar);        for(i=iagemin; i <= iagemax+3; i++){
   for(i=1; i <=npar; i++){          if(i==iagemax+3){
     fscanf(ficpar,"%s",&str);            fprintf(ficlog,"Total");
     printf("%s",str);          }else{
     fprintf(ficparo,"%s",str);            if(first==1){
     for(j=1; j <=i; j++){              first=0;
       fscanf(ficpar," %le",&matcov[i][j]);              printf("See log file for details...\n");
       printf(" %.5le",matcov[i][j]);            }
       fprintf(ficparo," %.5le",matcov[i][j]);            fprintf(ficlog,"Age %d", i);
     }          }
     fscanf(ficpar,"\n");          for(jk=1; jk <=nlstate ; jk++){
     printf("\n");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     fprintf(ficparo,"\n");              pp[jk] += freq[jk][m][i]; 
   }          }
   for(i=1; i <=npar; i++)          for(jk=1; jk <=nlstate ; jk++){
     for(j=i+1;j<=npar;j++)            for(m=-1, pos=0; m <=0 ; m++)
       matcov[i][j]=matcov[j][i];              pos += freq[jk][m][i];
                if(pp[jk]>=1.e-10){
   printf("\n");              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
     /*-------- data file ----------*/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     if((ficres =fopen(fileres,"w"))==NULL) {            }else{
       printf("Problem with resultfile: %s\n", fileres);goto end;              if(first==1)
     }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficres,"#%s\n",version);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                }
     if((fic=fopen(datafile,"r"))==NULL)    {          }
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     n= lastobs;              pp[jk] += freq[jk][m][i];
     severity = vector(1,maxwav);          }       
     outcome=imatrix(1,maxwav+1,1,n);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     num=ivector(1,n);            pos += pp[jk];
     moisnais=vector(1,n);            posprop += prop[jk][i];
     annais=vector(1,n);          }
     moisdc=vector(1,n);          for(jk=1; jk <=nlstate ; jk++){
     andc=vector(1,n);            if(pos>=1.e-5){
     agedc=vector(1,n);              if(first==1)
     cod=ivector(1,n);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     weight=vector(1,n);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            }else{
     mint=matrix(1,maxwav,1,n);              if(first==1)
     anint=matrix(1,maxwav,1,n);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     s=imatrix(1,maxwav+1,1,n);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     adl=imatrix(1,maxwav+1,1,n);                }
     tab=ivector(1,NCOVMAX);            if( i <= iagemax){
     ncodemax=ivector(1,8);              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     i=1;                /*probs[i][jk][j1]= pp[jk]/pos;*/
     while (fgets(line, MAXLINE, fic) != NULL)    {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       if ((i >= firstobs) && (i <=lastobs)) {              }
                      else
         for (j=maxwav;j>=1;j--){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            }
           strcpy(line,stra);          }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(jk=-1; jk <=nlstate+ndeath; jk++)
         }            for(m=-1; m <=nlstate+ndeath; m++)
                      if(freq[jk][m][i] !=0 ) {
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              if(first==1)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);              }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          if(i <= iagemax)
             fprintf(ficresp,"\n");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          if(first==1)
         for (j=ncov;j>=1;j--){            printf("Others in log...\n");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficlog,"\n");
         }        }
         num[i]=atol(stra);      }
            }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    dateintmean=dateintsum/k2cpt; 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/   
     fclose(ficresp);
         i=i+1;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       }    free_vector(pp,1,nlstate);
     }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* printf("ii=%d", ij);    /* End of Freq */
        scanf("%d",i);*/  }
   imx=i-1; /* Number of individuals */  
   /************ Prevalence ********************/
   /* for (i=1; i<=imx; i++){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  {  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;       in each health status at the date of interview (if between dateprev1 and dateprev2).
     }       We still use firstpass and lastpass as another selection.
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    */
    
   /* Calculation of the number of parameter from char model*/    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   Tvar=ivector(1,15);    double ***freq; /* Frequencies */
   Tprod=ivector(1,15);    double *pp, **prop;
   Tvaraff=ivector(1,15);    double pos,posprop; 
   Tvard=imatrix(1,15,1,2);    double  y2; /* in fractional years */
   Tage=ivector(1,15);          int iagemin, iagemax;
      
   if (strlen(model) >1){    iagemin= (int) agemin;
     j=0, j1=0, k1=1, k2=1;    iagemax= (int) agemax;
     j=nbocc(model,'+');    /*pp=vector(1,nlstate);*/
     j1=nbocc(model,'*');    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     cptcovn=j+1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     cptcovprod=j1;    j1=0;
        
        j=cptcoveff;
     strcpy(modelsav,model);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    
       printf("Error. Non available option model=%s ",model);    for(k1=1; k1<=j;k1++){
       goto end;      for(i1=1; i1<=ncodemax[k1];i1++){
     }        j1++;
            
     for(i=(j+1); i>=1;i--){        for (i=1; i<=nlstate; i++)  
       cutv(stra,strb,modelsav,'+');          for(m=iagemin; m <= iagemax+3; m++)
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            prop[i][m]=0.0;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/       
       /*scanf("%d",i);*/        for (i=1; i<=imx; i++) { /* Each individual */
       if (strchr(strb,'*')) {          bool=1;
         cutv(strd,strc,strb,'*');          if  (cptcovn>0) {
         if (strcmp(strc,"age")==0) {            for (z1=1; z1<=cptcoveff; z1++) 
           cptcovprod--;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           cutv(strb,stre,strd,'V');                bool=0;
           Tvar[i]=atoi(stre);          } 
           cptcovage++;          if (bool==1) { 
             Tage[cptcovage]=i;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             /*printf("stre=%s ", stre);*/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         else if (strcmp(strd,"age")==0) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           cptcovprod--;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           cutv(strb,stre,strc,'V');                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           Tvar[i]=atoi(stre);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           cptcovage++;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           Tage[cptcovage]=i;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         }                  prop[s[m][i]][iagemax+3] += weight[i]; 
         else {                } 
           cutv(strb,stre,strc,'V');              }
           Tvar[i]=ncov+k1;            } /* end selection of waves */
           cutv(strb,strc,strd,'V');          }
           Tprod[k1]=i;        }
           Tvard[k1][1]=atoi(strc);        for(i=iagemin; i <= iagemax+3; i++){  
           Tvard[k1][2]=atoi(stre);          
           Tvar[cptcovn+k2]=Tvard[k1][1];          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            posprop += prop[jk][i]; 
           for (k=1; k<=lastobs;k++)          } 
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;          for(jk=1; jk <=nlstate ; jk++){     
           k2=k2+2;            if( i <=  iagemax){ 
         }              if(posprop>=1.e-5){ 
       }                probs[i][jk][j1]= prop[jk][i]/posprop;
       else {              } 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            } 
        /*  scanf("%d",i);*/          }/* end jk */ 
       cutv(strd,strc,strb,'V');        }/* end i */ 
       Tvar[i]=atoi(strc);      } /* end i1 */
       }    } /* end k1 */
       strcpy(modelsav,stra);      
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         scanf("%d",i);*/    /*free_vector(pp,1,nlstate);*/
     }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 }  }  /* End of prevalence */
    
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  /************* Waves Concatenation ***************/
   printf("cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     fclose(fic);  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     /*  if(mle==1){*/       Death is a valid wave (if date is known).
     if (weightopt != 1) { /* Maximisation without weights*/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       for(i=1;i<=n;i++) weight[i]=1.0;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     }       and mw[mi+1][i]. dh depends on stepm.
     /*-calculation of age at interview from date of interview and age at death -*/       */
     agev=matrix(1,maxwav,1,imx);  
     int i, mi, m;
    for (i=1; i<=imx; i++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
      for(m=2; (m<= maxwav); m++)       double sum=0., jmean=0.;*/
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    int first;
          anint[m][i]=9999;    int j, k=0,jk, ju, jl;
          s[m][i]=-1;    double sum=0.;
        }    first=0;
        jmin=1e+5;
     for (i=1; i<=imx; i++)  {    jmax=-1;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    jmean=0.;
       for(m=1; (m<= maxwav); m++){    for(i=1; i<=imx; i++){
         if(s[m][i] >0){      mi=0;
           if (s[m][i] == nlstate+1) {      m=firstpass;
             if(agedc[i]>0)      while(s[m][i] <= nlstate){
               if(moisdc[i]!=99 && andc[i]!=9999)        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
               agev[m][i]=agedc[i];          mw[++mi][i]=m;
             else {        if(m >=lastpass)
               if (andc[i]!=9999){          break;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        else
               agev[m][i]=-1;          m++;
               }      }/* end while */
             }      if (s[m][i] > nlstate){
           }        mi++;     /* Death is another wave */
           else if(s[m][i] !=9){ /* Should no more exist */        /* if(mi==0)  never been interviewed correctly before death */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);           /* Only death is a correct wave */
             if(mint[m][i]==99 || anint[m][i]==9999)        mw[mi][i]=m;
               agev[m][i]=1;      }
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];      wav[i]=mi;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      if(mi==0){
             }        nbwarn++;
             else if(agev[m][i] >agemax){        if(first==0){
               agemax=agev[m][i];          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          first=1;
             }        }
             /*agev[m][i]=anint[m][i]-annais[i];*/        if(first==1){
             /*   agev[m][i] = age[i]+2*m;*/          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           }        }
           else { /* =9 */      } /* end mi==0 */
             agev[m][i]=1;    } /* End individuals */
             s[m][i]=-1;  
           }    for(i=1; i<=imx; i++){
         }      for(mi=1; mi<wav[i];mi++){
         else /*= 0 Unknown */        if (stepm <=0)
           agev[m][i]=1;          dh[mi][i]=1;
       }        else{
              if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     }            if (agedc[i] < 2*AGESUP) {
     for (i=1; i<=imx; i++)  {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       for(m=1; (m<= maxwav); m++){              if(j==0) j=1;  /* Survives at least one month after exam */
         if (s[m][i] > (nlstate+ndeath)) {              else if(j<0){
           printf("Error: Wrong value in nlstate or ndeath\n");                  nberr++;
           goto end;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }                j=1; /* Temporary Dangerous patch */
       }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);              }
               k=k+1;
     free_vector(severity,1,maxwav);              if (j >= jmax){
     free_imatrix(outcome,1,maxwav+1,1,n);                jmax=j;
     free_vector(moisnais,1,n);                ijmax=i;
     free_vector(annais,1,n);              }
     /* free_matrix(mint,1,maxwav,1,n);              if (j <= jmin){
        free_matrix(anint,1,maxwav,1,n);*/                jmin=j;
     free_vector(moisdc,1,n);                ijmin=i;
     free_vector(andc,1,n);              }
               sum=sum+j;
                  /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     wav=ivector(1,imx);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          }
              else{
     /* Concatenates waves */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
             k=k+1;
       Tcode=ivector(1,100);            if (j >= jmax) {
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);              jmax=j;
       ncodemax[1]=1;              ijmax=i;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            }
                  else if (j <= jmin){
    codtab=imatrix(1,100,1,10);              jmin=j;
    h=0;              ijmin=i;
    m=pow(2,cptcoveff);            }
              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
    for(k=1;k<=cptcoveff; k++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      for(i=1; i <=(m/pow(2,k));i++){            if(j<0){
        for(j=1; j <= ncodemax[k]; j++){              nberr++;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
            h++;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
            if (h>m) h=1;codtab[h][k]=j;            }
          }            sum=sum+j;
        }          }
      }          jk= j/stepm;
    }          jl= j -jk*stepm;
              ju= j -(jk+1)*stepm;
    /* Calculates basic frequencies. Computes observed prevalence at single age          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
        and prints on file fileres'p'. */            if(jl==0){
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprev, lprev,mint,anint);              dh[mi][i]=jk;
                bh[mi][i]=0;
   free_matrix(mint,1,maxwav,1,n);            }else{ /* We want a negative bias in order to only have interpolation ie
   free_matrix(anint,1,maxwav,1,n);                    * at the price of an extra matrix product in likelihood */
                dh[mi][i]=jk+1;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              bh[mi][i]=ju;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }else{
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if(jl <= -ju){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              dh[mi][i]=jk;
                    bh[mi][i]=jl;       /* bias is positive if real duration
     /* For Powell, parameters are in a vector p[] starting at p[1]                                   * is higher than the multiple of stepm and negative otherwise.
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                                   */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            }
             else{
     if(mle==1){              dh[mi][i]=jk+1;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              bh[mi][i]=ju;
     }            }
                if(dh[mi][i]==0){
     /*--------- results files --------------*/              dh[mi][i]=1; /* At least one step */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);              bh[mi][i]=ju; /* At least one step */
    fprintf(ficres,"fprevalence=%d lprevalence=%d pop_based=%d\n",fprev,lprev,popbased);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
    fprintf(ficres,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",fprevfore,lprevfore,nforecast,mobilav);            }
           } /* end if mle */
    jk=1;        }
    fprintf(ficres,"# Parameters\n");      } /* end wave */
    printf("# Parameters\n");    }
    for(i=1,jk=1; i <=nlstate; i++){    jmean=sum/k;
      for(k=1; k <=(nlstate+ndeath); k++){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
        if (k != i)    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
          {   }
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);  /*********** Tricode ****************************/
            for(j=1; j <=ncovmodel; j++){  void tricode(int *Tvar, int **nbcode, int imx)
              printf("%f ",p[jk]);  {
              fprintf(ficres,"%f ",p[jk]);    
              jk++;    int Ndum[20],ij=1, k, j, i, maxncov=19;
            }    int cptcode=0;
            printf("\n");    cptcoveff=0; 
            fprintf(ficres,"\n");   
          }    for (k=0; k<maxncov; k++) Ndum[k]=0;
      }    for (k=1; k<=7; k++) ncodemax[k]=0;
    }  
  if(mle==1){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     /* Computing hessian and covariance matrix */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     ftolhess=ftol; /* Usually correct */                                 modality*/ 
     hesscov(matcov, p, npar, delti, ftolhess, func);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
  }        Ndum[ij]++; /*store the modality */
     fprintf(ficres,"# Scales\n");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     printf("# Scales\n");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
      for(i=1,jk=1; i <=nlstate; i++){                                         Tvar[j]. If V=sex and male is 0 and 
       for(j=1; j <=nlstate+ndeath; j++){                                         female is 1, then  cptcode=1.*/
         if (j!=i) {      }
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);      for (i=0; i<=cptcode; i++) {
           for(k=1; k<=ncovmodel;k++){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
             printf(" %.5e",delti[jk]);      }
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;      ij=1; 
           }      for (i=1; i<=ncodemax[j]; i++) {
           printf("\n");        for (k=0; k<= maxncov; k++) {
           fprintf(ficres,"\n");          if (Ndum[k] != 0) {
         }            nbcode[Tvar[j]][ij]=k; 
       }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       }            
                ij++;
     k=1;          }
     fprintf(ficres,"# Covariance\n");          if (ij > ncodemax[j]) break; 
     printf("# Covariance\n");        }  
     for(i=1;i<=npar;i++){      } 
       /*  if (k>nlstate) k=1;    }  
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   for (k=0; k< maxncov; k++) Ndum[k]=0;
       printf("%s%d%d",alph[k],i1,tab[i]);*/  
       fprintf(ficres,"%3d",i);   for (i=1; i<=ncovmodel-2; i++) { 
       printf("%3d",i);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       for(j=1; j<=i;j++){     ij=Tvar[i];
         fprintf(ficres," %.5e",matcov[i][j]);     Ndum[ij]++;
         printf(" %.5e",matcov[i][j]);   }
       }  
       fprintf(ficres,"\n");   ij=1;
       printf("\n");   for (i=1; i<= maxncov; i++) {
       k++;     if((Ndum[i]!=0) && (i<=ncovcol)){
     }       Tvaraff[ij]=i; /*For printing */
           ij++;
     while((c=getc(ficpar))=='#' && c!= EOF){     }
       ungetc(c,ficpar);   }
       fgets(line, MAXLINE, ficpar);   
       puts(line);   cptcoveff=ij-1; /*Number of simple covariates*/
       fputs(line,ficparo);  }
     }  
     ungetc(c,ficpar);  /*********** Health Expectancies ****************/
    
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
      
     if (fage <= 2) {  {
       bage = agemin;    /* Health expectancies, no variances */
       fage = agemax;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     }    double age, agelim, hf;
     double ***p3mat;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    double eip;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
     pstamp(ficreseij);
        fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 /*------------ gnuplot -------------*/    fprintf(ficreseij,"# Age");
 chdir(pathcd);    for(i=1; i<=nlstate;i++){
   if((ficgp=fopen("graph.plt","w"))==NULL) {      for(j=1; j<=nlstate;j++){
     printf("Problem with file graph.gp");goto end;        fprintf(ficreseij," e%1d%1d ",i,j);
   }      }
 #ifdef windows      fprintf(ficreseij," e%1d. ",i);
   fprintf(ficgp,"cd \"%s\" \n",pathc);    }
 #endif    fprintf(ficreseij,"\n");
 m=pow(2,cptcoveff);  
      
  /* 1eme*/    if(estepm < stepm){
   for (cpt=1; cpt<= nlstate ; cpt ++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
    for (k1=1; k1<= m ; k1 ++) {    }
     else  hstepm=estepm;   
 #ifdef windows    /* We compute the life expectancy from trapezoids spaced every estepm months
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);     * This is mainly to measure the difference between two models: for example
 #endif     * if stepm=24 months pijx are given only every 2 years and by summing them
 #ifdef unix     * we are calculating an estimate of the Life Expectancy assuming a linear 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);     * progression in between and thus overestimating or underestimating according
 #endif     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
 for (i=1; i<= nlstate ; i ++) {     * to compare the new estimate of Life expectancy with the same linear 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     * hypothesis. A more precise result, taking into account a more precise
   else fprintf(ficgp," \%%*lf (\%%*lf)");     * curvature will be obtained if estepm is as small as stepm. */
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* For example we decided to compute the life expectancy with the smallest unit */
     for (i=1; i<= nlstate ; i ++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       nhstepm is the number of hstepm from age to agelim 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       nstepm is the number of stepm from age to agelin. 
 }       Look at hpijx to understand the reason of that which relies in memory size
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);       and note for a fixed period like estepm months */
      for (i=1; i<= nlstate ; i ++) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       survival function given by stepm (the optimization length). Unfortunately it
   else fprintf(ficgp," \%%*lf (\%%*lf)");       means that if the survival funtion is printed only each two years of age and if
 }         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));       results. So we changed our mind and took the option of the best precision.
 #ifdef unix    */
 fprintf(ficgp,"\nset ter gif small size 400,300");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 #endif  
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    agelim=AGESUP;
    }    /* nhstepm age range expressed in number of stepm */
   }    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   /*2 eme*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   for (k1=1; k1<= m ; k1 ++) {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      
     for (i=1; i<= nlstate+1 ; i ++) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       k=2*i;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       for (j=1; j<= nlstate+1 ; j ++) {      
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      
 }        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      printf("%d|",(int)age);fflush(stdout);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for (j=1; j<= nlstate+1 ; j ++) {      
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      /* Computing expectancies */
         else fprintf(ficgp," \%%*lf (\%%*lf)");      for(i=1; i<=nlstate;i++)
 }          for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"\" t\"\" w l 0,");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       for (j=1; j<= nlstate+1 ; j ++) {            
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }            }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficreseij,"%3.0f",age );
     }      for(i=1; i<=nlstate;i++){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        eip=0;
   }        for(j=1; j<=nlstate;j++){
            eip +=eij[i][j][(int)age];
   /*3eme*/          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
   for (k1=1; k1<= m ; k1 ++) {        fprintf(ficreseij,"%9.4f", eip );
     for (cpt=1; cpt<= nlstate ; cpt ++) {      }
       k=2+nlstate*(cpt-1);      fprintf(ficreseij,"\n");
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);      
       for (i=1; i< nlstate ; i ++) {    }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    printf("\n");
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    fprintf(ficlog,"\n");
     }    
   }  }
    
   /* CV preval stat */  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {  {
       k=3;    /* Covariances of health expectancies eij and of total life expectancies according
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);     to initial status i, ei. .
       for (i=1; i< nlstate ; i ++)    */
         fprintf(ficgp,"+$%d",k+i+1);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    double age, agelim, hf;
          double ***p3matp, ***p3matm, ***varhe;
       l=3+(nlstate+ndeath)*cpt;    double **dnewm,**doldm;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    double *xp, *xm;
       for (i=1; i< nlstate ; i ++) {    double **gp, **gm;
         l=3+(nlstate+ndeath)*cpt;    double ***gradg, ***trgradg;
         fprintf(ficgp,"+$%d",l+i+1);    int theta;
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      double eip, vip;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }      xp=vector(1,npar);
     xm=vector(1,npar);
   /* proba elementaires */    dnewm=matrix(1,nlstate*nlstate,1,npar);
    for(i=1,jk=1; i <=nlstate; i++){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     for(k=1; k <=(nlstate+ndeath); k++){    
       if (k != i) {    pstamp(ficresstdeij);
         for(j=1; j <=ncovmodel; j++){    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    fprintf(ficresstdeij,"# Age");
           /*fprintf(ficgp,"%s",alph[1]);*/    for(i=1; i<=nlstate;i++){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      for(j=1; j<=nlstate;j++)
           jk++;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
           fprintf(ficgp,"\n");      fprintf(ficresstdeij," e%1d. ",i);
         }    }
       }    fprintf(ficresstdeij,"\n");
     }  
     }    pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   for(jk=1; jk <=m; jk++) {    fprintf(ficrescveij,"# Age");
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    for(i=1; i<=nlstate;i++)
    i=1;      for(j=1; j<=nlstate;j++){
    for(k2=1; k2<=nlstate; k2++) {        cptj= (j-1)*nlstate+i;
      k3=i;        for(i2=1; i2<=nlstate;i2++)
      for(k=1; k<=(nlstate+ndeath); k++) {          for(j2=1; j2<=nlstate;j2++){
        if (k != k2){            cptj2= (j2-1)*nlstate+i2;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            if(cptj2 <= cptj)
 ij=1;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         for(j=3; j <=ncovmodel; j++) {          }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    fprintf(ficrescveij,"\n");
             ij++;    
           }    if(estepm < stepm){
           else      printf ("Problem %d lower than %d\n",estepm, stepm);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    }
         }    else  hstepm=estepm;   
           fprintf(ficgp,")/(1");    /* We compute the life expectancy from trapezoids spaced every estepm months
             * This is mainly to measure the difference between two models: for example
         for(k1=1; k1 <=nlstate; k1++){       * if stepm=24 months pijx are given only every 2 years and by summing them
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
 ij=1;     * progression in between and thus overestimating or underestimating according
           for(j=3; j <=ncovmodel; j++){     * to the curvature of the survival function. If, for the same date, we 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     * to compare the new estimate of Life expectancy with the same linear 
             ij++;     * hypothesis. A more precise result, taking into account a more precise
           }     * curvature will be obtained if estepm is as small as stepm. */
           else  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /* For example we decided to compute the life expectancy with the smallest unit */
           }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           fprintf(ficgp,")");       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);       Look at hpijx to understand the reason of that which relies in memory size
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");       and note for a fixed period like estepm months */
         i=i+ncovmodel;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        }       survival function given by stepm (the optimization length). Unfortunately it
      }       means that if the survival funtion is printed only each two years of age and if
    }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);       results. So we changed our mind and took the option of the best precision.
   }    */
        hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fclose(ficgp);  
        /* If stepm=6 months */
 chdir(path);    /* nhstepm age range expressed in number of stepm */
        agelim=AGESUP;
     free_ivector(wav,1,imx);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      /* if (stepm >= YEARM) hstepm=1;*/
     free_ivector(num,1,n);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     free_vector(agedc,1,n);    
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fclose(ficparo);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fclose(ficres);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     /*  }*/    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
        gp=matrix(0,nhstepm,1,nlstate*nlstate);
    /*________fin mle=1_________*/    gm=matrix(0,nhstepm,1,nlstate*nlstate);
      
     for (age=bage; age<=fage; age ++){ 
    
     /* No more information from the sample is required now */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /* Reads comments: lines beginning with '#' */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fgets(line, MAXLINE, ficpar);  
     puts(line);      /* Computing  Variances of health expectancies */
     fputs(line,ficparo);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   }         decrease memory allocation */
   ungetc(c,ficpar);      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ 
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        }
 /*--------- index.htm --------*/        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   strcpy(optionfilehtm,optionfile);    
   strcat(optionfilehtm,".htm");        for(j=1; j<= nlstate; j++){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          for(i=1; i<=nlstate; i++){
     printf("Problem with %s \n",optionfilehtm);goto end;            for(h=0; h<=nhstepm-1; h++){
   }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">            }
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>          }
 Total number of observations=%d <br>        }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>       
 <hr  size=\"2\" color=\"#EC5E5E\">        for(ij=1; ij<= nlstate*nlstate; ij++)
 <li>Outputs files<br><br>\n          for(h=0; h<=nhstepm-1; h++){
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          }
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      }/* End theta */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      for(h=0; h<=nhstepm-1; h++)
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        for(j=1; j<=nlstate*nlstate;j++)
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>          for(theta=1; theta <=npar; theta++)
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>            trgradg[h][j][theta]=gradg[h][theta][j];
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>      
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  
        for(ij=1;ij<=nlstate*nlstate;ij++)
  fprintf(fichtm," <li>Graphs</li><p>");        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
  j1=0;       for(h=0;h<=nhstepm-1;h++){
  for(k1=1; k1<=m;k1++){        for(k=0;k<=nhstepm-1;k++){
    for(i1=1; i1<=ncodemax[k1];i1++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
        j1++;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
        if (cptcovn > 0) {          for(ij=1;ij<=nlstate*nlstate;ij++)
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            for(ji=1;ji<=nlstate*nlstate;ji++)
          for (cpt=1; cpt<=cptcoveff;cpt++)              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);        }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      }
        }      /* Computing expectancies */
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          for(i=1; i<=nlstate;i++)
        for(cpt=1; cpt<nlstate;cpt++){        for(j=1; j<=nlstate;j++)
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
        }            
     for(cpt=1; cpt<=nlstate;cpt++) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.gif <br>          }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    
      }      fprintf(ficresstdeij,"%3.0f",age );
      for(cpt=1; cpt<=nlstate;cpt++) {      for(i=1; i<=nlstate;i++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        eip=0.;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        vip=0.;
      }        for(j=1; j<=nlstate;j++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          eip += eij[i][j][(int)age];
 health expectancies in states (1) and (2): e%s%d.gif<br>          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
 fprintf(fichtm,"\n</body>");          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
    }        }
  }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 fclose(fichtm);      }
       fprintf(ficresstdeij,"\n");
   /*--------------- Prevalence limit --------------*/  
        fprintf(ficrescveij,"%3.0f",age );
   strcpy(filerespl,"pl");      for(i=1; i<=nlstate;i++)
   strcat(filerespl,fileres);        for(j=1; j<=nlstate;j++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          cptj= (j-1)*nlstate+i;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          for(i2=1; i2<=nlstate;i2++)
   }            for(j2=1; j2<=nlstate;j2++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              cptj2= (j2-1)*nlstate+i2;
   fprintf(ficrespl,"#Prevalence limit\n");              if(cptj2 <= cptj)
   fprintf(ficrespl,"#Age ");                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            }
   fprintf(ficrespl,"\n");        }
        fprintf(ficrescveij,"\n");
   prlim=matrix(1,nlstate,1,nlstate);     
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   k=0;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   agebase=agemin;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   agelim=agemax;    printf("\n");
   ftolpl=1.e-10;    fprintf(ficlog,"\n");
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}    free_vector(xm,1,npar);
     free_vector(xp,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         k=k+1;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  }
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)  /************ Variance ******************/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         fprintf(ficrespl,"******\n");  {
            /* Variance of health expectancies */
         for (age=agebase; age<=agelim; age++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /* double **newm;*/
           fprintf(ficrespl,"%.0f",age );    double **dnewm,**doldm;
           for(i=1; i<=nlstate;i++)    double **dnewmp,**doldmp;
           fprintf(ficrespl," %.5f", prlim[i][i]);    int i, j, nhstepm, hstepm, h, nstepm ;
           fprintf(ficrespl,"\n");    int k, cptcode;
         }    double *xp;
       }    double **gp, **gm;  /* for var eij */
     }    double ***gradg, ***trgradg; /*for var eij */
   fclose(ficrespl);    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
   /*------------- h Pij x at various ages ------------*/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      double ***p3mat;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double age,agelim, hf;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    double ***mobaverage;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    int theta;
   }    char digit[4];
   printf("Computing pij: result on file '%s' \n", filerespij);    char digitp[25];
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;    char fileresprobmorprev[FILENAMELENGTH];
   /*if (stepm<=24) stepsize=2;*/  
     if(popbased==1){
   agelim=AGESUP;      if(mobilav!=0)
   hstepm=stepsize*YEARM; /* Every year of age */        strcpy(digitp,"-populbased-mobilav-");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      else strcpy(digitp,"-populbased-nomobil-");
      }
   k=0;    else 
   for(cptcov=1;cptcov<=i1;cptcov++){      strcpy(digitp,"-stablbased-");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    if (mobilav!=0) {
         fprintf(ficrespij,"\n#****** ");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for(j=1;j<=cptcoveff;j++)      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficrespij,"******\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
              }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    strcpy(fileresprobmorprev,"prmorprev"); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    sprintf(digit,"%-d",ij);
           oldm=oldms;savm=savms;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      strcat(fileresprobmorprev,digit); /* Tvar to be done */
           fprintf(ficrespij,"# Age");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           for(i=1; i<=nlstate;i++)    strcat(fileresprobmorprev,fileres);
             for(j=1; j<=nlstate+ndeath;j++)    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
               fprintf(ficrespij," %1d-%1d",i,j);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           fprintf(ficrespij,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           for (h=0; h<=nhstepm; h++){    }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             for(i=1; i<=nlstate;i++)   
               for(j=1; j<=nlstate+ndeath;j++)    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    pstamp(ficresprobmorprev);
             fprintf(ficrespij,"\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           fprintf(ficrespij,"\n");      fprintf(ficresprobmorprev," p.%-d SE",j);
         }      for(i=1; i<=nlstate;i++)
     }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   }    }  
     fprintf(ficresprobmorprev,"\n");
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   fclose(ficrespij);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*---------- Forecasting ------------------*/  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcpy(fileresf,"f");    pstamp(ficresvij);
   strcat(fileresf,fileres);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   if((ficresf=fopen(fileresf,"w"))==NULL) {    if(popbased==1)
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   }    else
   printf("Computing forecasting: result on file '%s' \n", fileresf);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprevfore, lprevfore);    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
  free_matrix(agev,1,maxwav,1,imx);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   /* Mobile average */    fprintf(ficresvij,"\n");
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   if (mobilav==1) {    doldm=matrix(1,nlstate,1,nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           mobaverage[(int)agedeb][i][cptcod]=0.;    gpp=vector(nlstate+1,nlstate+ndeath);
        gmp=vector(nlstate+1,nlstate+ndeath);
     for (agedeb=bage+4; agedeb<=fage; agedeb++){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for (i=1; i<=nlstate;i++){    
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    if(estepm < stepm){
           for (cpt=0;cpt<=4;cpt++){      printf ("Problem %d lower than %d\n",estepm, stepm);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    }
           }    else  hstepm=estepm;   
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    /* For example we decided to compute the life expectancy with the smallest unit */
         }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
     }         nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if (stepm<=12) stepsize=1;       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
   agelim=AGESUP;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   hstepm=stepsize*YEARM; /* Every year of age */       results. So we changed our mind and took the option of the best precision.
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if (popforecast==1) {    agelim = AGESUP;
     if((ficpop=fopen(popfile,"r"))==NULL)    {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       printf("Problem with population file : %s\n",popfile);goto end;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     popage=ivector(0,AGESUP);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     popeffectif=vector(0,AGESUP);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     popcount=vector(0,AGESUP);      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)  
       {      for(theta=1; theta <=npar; theta++){
         i=i+1;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     imx=i;        }
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }  
         if (popbased==1) {
   for(cptcov=1;cptcov<=i1;cptcov++){          if(mobilav ==0){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            for(i=1; i<=nlstate;i++)
       k=k+1;              prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficresf,"\n#****** ");          }else{ /* mobilav */ 
       for(j=1;j<=cptcoveff;j++) {            for(i=1; i<=nlstate;i++)
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
       fprintf(ficresf,"******\n");        }
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");    
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        for(j=1; j<= nlstate; j++){
       if (popforecast==1)  fprintf(ficresf," [Population]");          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       for (agedeb=fage; agedeb>=bage; agedeb--){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(ficresf,"\n%.f %.f 0",agedeb, agedeb);          }
        if (mobilav==1) {        }
         for(j=1; j<=nlstate;j++)        /* This for computing probability of death (h=1 means
           fprintf(ficresf," %.3f",mobaverage[(int)agedeb][j][cptcod]);           computed over hstepm matrices product = hstepm*stepm months) 
         }           as a weighted average of prlim.
         else {        */
           for(j=1; j<=nlstate;j++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           fprintf(ficresf," %.3f",probs[(int)agedeb][j][cptcod]);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         }              gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
        for(j=1; j<=ndeath;j++) fprintf(ficresf," 0.00000");        /* end probability of death */
        if (popforecast==1) fprintf(ficresf," [%.f] ",popeffectif[(int)agedeb]);  
       }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                xp[i] = x[i] - (i==theta ?delti[theta]:0);
       for (cpt=1; cpt<=nforecast;cpt++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficresf,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        if (popbased==1) {
         nhstepm = nhstepm/hstepm;          if(mobilav ==0){
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }else{ /* mobilav */ 
         oldm=oldms;savm=savms;            for(i=1; i<=nlstate;i++)
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                prlim[i][i]=mobaverage[(int)age][i][ij];
                          }
         for (h=0; h<=nhstepm; h++){        }
          
          if (h*hstepm/YEARM*stepm==cpt)        for(j=1; j<= nlstate; j++){
             fprintf(ficresf,"\n%.f %.f %.f",agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);          for(h=0; h<=nhstepm; h++){
                      for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                        gm[h][j] += prlim[i][i]*p3mat[i][j][h];
          for(j=1; j<=nlstate+ndeath;j++) {          }
            kk1=0.;kk2=0;        }
            for(i=1; i<=nlstate;i++) {                /* This for computing probability of death (h=1 means
              if (mobilav==1)           computed over hstepm matrices product = hstepm*stepm months) 
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];           as a weighted average of prlim.
              else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];        */
              if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            if (h*hstepm/YEARM*stepm==cpt) {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
              fprintf(ficresf," %.3f", kk1);        }    
                if (popforecast==1) fprintf(ficresf," [%.f]", kk2);        /* end probability of death */
            }  
           }        for(j=1; j<= nlstate; j++) /* vareij */
         }          for(h=0; h<=nhstepm; h++){
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                  }
       }  
       }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   }        }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   if (popforecast==1) {      } /* End theta */
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     free_vector(popcount,0,AGESUP);  
   }      for(h=0; h<=nhstepm; h++) /* veij */
   free_imatrix(s,1,maxwav+1,1,n);        for(j=1; j<=nlstate;j++)
   free_vector(weight,1,n);          for(theta=1; theta <=npar; theta++)
   fclose(ficresf);            trgradg[h][j][theta]=gradg[h][theta][j];
   /*---------- Health expectancies and variances ------------*/  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   strcpy(filerest,"t");        for(theta=1; theta <=npar; theta++)
   strcat(filerest,fileres);          trgradgp[j][theta]=gradgp[theta][j];
   if((ficrest=fopen(filerest,"w"))==NULL) {    
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   strcpy(filerese,"e");  
   strcat(filerese,fileres);      for(h=0;h<=nhstepm;h++){
   if((ficreseij=fopen(filerese,"w"))==NULL) {        for(k=0;k<=nhstepm;k++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
  strcpy(fileresv,"v");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   strcat(fileresv,fileres);        }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    
   }      /* pptj */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   k=0;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   for(cptcov=1;cptcov<=i1;cptcov++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          varppt[j][i]=doldmp[j][i];
       k=k+1;      /* end ppptj */
       fprintf(ficrest,"\n#****** ");      /*  x centered again */
       for(j=1;j<=cptcoveff;j++)      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       fprintf(ficrest,"******\n");   
       if (popbased==1) {
       fprintf(ficreseij,"\n#****** ");        if(mobilav ==0){
       for(j=1;j<=cptcoveff;j++)          for(i=1; i<=nlstate;i++)
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficreseij,"******\n");        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
       fprintf(ficresvij,"\n#****** ");            prlim[i][i]=mobaverage[(int)age][i][ij];
       for(j=1;j<=cptcoveff;j++)        }
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      }
       fprintf(ficresvij,"******\n");               
       /* This for computing probability of death (h=1 means
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       oldm=oldms;savm=savms;         as a weighted average of prlim.
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);        */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       oldm=oldms;savm=savms;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
            }    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      /* end probability of death */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
              for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       hf=1;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       if (stepm >= YEARM) hf=stepm/YEARM;        for(i=1; i<=nlstate;i++){
       epj=vector(1,nlstate+1);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       for(age=bage; age <=fage ;age++){        }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      } 
         if (popbased==1) {      fprintf(ficresprobmorprev,"\n");
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];      fprintf(ficresvij,"%.0f ",age );
         }      for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++){
         fprintf(ficrest," %.0f",age);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      fprintf(ficresvij,"\n");
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];      free_matrix(gp,0,nhstepm,1,nlstate);
           }      free_matrix(gm,0,nhstepm,1,nlstate);
           epj[nlstate+1] +=epj[j];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         for(i=1, vepp=0.;i <=nlstate;i++)      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(j=1;j <=nlstate;j++)    } /* End age */
             vepp += vareij[i][j][(int)age];    free_vector(gpp,nlstate+1,nlstate+ndeath);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    free_vector(gmp,nlstate+1,nlstate+ndeath);
         for(j=1;j <=nlstate;j++){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         fprintf(ficrest,"\n");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
          /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
            fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
  fclose(ficreseij);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
  fclose(ficresvij);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   fclose(ficrest);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   fclose(ficpar);  */
   free_vector(epj,1,nlstate+1);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   /*  scanf("%d ",i); */    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
   /*------- Variance limit prevalence------*/      free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
 strcpy(fileresvpl,"vpl");    free_matrix(dnewm,1,nlstate,1,npar);
   strcat(fileresvpl,fileres);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     exit(0);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    fclose(ficresprobmorprev);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    fflush(ficgp);
     fflush(fichtm); 
  k=0;  }  /* end varevsij */
  for(cptcov=1;cptcov<=i1;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /************ Variance of prevlim ******************/
      k=k+1;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
      fprintf(ficresvpl,"\n#****** ");  {
      for(j=1;j<=cptcoveff;j++)    /* Variance of prevalence limit */
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
      fprintf(ficresvpl,"******\n");    double **newm;
          double **dnewm,**doldm;
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    int i, j, nhstepm, hstepm;
      oldm=oldms;savm=savms;    int k, cptcode;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    double *xp;
    }    double *gp, *gm;
  }    double **gradg, **trgradg;
     double age,agelim;
   fclose(ficresvpl);    int theta;
     
   /*---------- End : free ----------------*/    pstamp(ficresvpl);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
      fprintf(ficresvpl,"# Age");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    for(i=1; i<=nlstate;i++)
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficresvpl," %1d-%1d",i,i);
      fprintf(ficresvpl,"\n");
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    xp=vector(1,npar);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    dnewm=matrix(1,nlstate,1,npar);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    doldm=matrix(1,nlstate,1,nlstate);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    
      hstepm=1*YEARM; /* Every year of age */
   free_matrix(matcov,1,npar,1,npar);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   free_vector(delti,1,npar);    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
   printf("End of Imach\n");      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      gradg=matrix(1,npar,1,nlstate);
        gp=vector(1,nlstate);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      gm=vector(1,nlstate);
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
  end:        }
 #ifdef windows        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  chdir(pathcd);        for(i=1;i<=nlstate;i++)
 #endif          gp[i] = prlim[i][i];
        
  system("..\\gp37mgw\\wgnuplot graph.plt");        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
 #ifdef windows        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   while (z[0] != 'q') {        for(i=1;i<=nlstate;i++)
     chdir(pathcd);          gm[i] = prlim[i][i];
     printf("\nType e to edit output files, c to start again, and q for exiting: ");  
     scanf("%s",z);        for(i=1;i<=nlstate;i++)
     if (z[0] == 'c') system("./imach");          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     else if (z[0] == 'e') {      } /* End theta */
       chdir(path);  
       system(optionfilehtm);      trgradg =matrix(1,nlstate,1,npar);
     }  
     else if (z[0] == 'q') exit(0);      for(j=1; j<=nlstate;j++)
   }        for(theta=1; theta <=npar; theta++)
 #endif          trgradg[j][theta]=gradg[theta][j];
 }  
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.17  
changed lines
  Added in v.1.119


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>