Diff for /imach/src/imach.c between versions 1.52 and 1.119

version 1.52, 2002/07/19 18:49:30 version 1.119, 2006/03/15 17:42:26
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.119  2006/03/15 17:42:26  brouard
      (Module): Bug if status = -2, the loglikelihood was
   This program computes Healthy Life Expectancies from    computed as likelihood omitting the logarithm. Version O.98e
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.118  2006/03/14 18:20:07  brouard
   interviewed on their health status or degree of disability (in the    (Module): varevsij Comments added explaining the second
   case of a health survey which is our main interest) -2- at least a    table of variances if popbased=1 .
   second wave of interviews ("longitudinal") which measure each change    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (if any) in individual health status.  Health expectancies are    (Module): Function pstamp added
   computed from the time spent in each health state according to a    (Module): Version 0.98d
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.117  2006/03/14 17:16:22  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): varevsij Comments added explaining the second
   probability to be observed in state j at the second wave    table of variances if popbased=1 .
   conditional to be observed in state i at the first wave. Therefore    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Function pstamp added
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Version 0.98d
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.116  2006/03/06 10:29:27  brouard
   you to do it.  More covariates you add, slower the    (Module): Variance-covariance wrong links and
   convergence.    varian-covariance of ej. is needed (Saito).
   
   The advantage of this computer programme, compared to a simple    Revision 1.115  2006/02/27 12:17:45  brouard
   multinomial logistic model, is clear when the delay between waves is not    (Module): One freematrix added in mlikeli! 0.98c
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.114  2006/02/26 12:57:58  brouard
   account using an interpolation or extrapolation.      (Module): Some improvements in processing parameter
     filename with strsep.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.113  2006/02/24 14:20:24  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    (Module): Memory leaks checks with valgrind and:
   states. This elementary transition (by month or quarter trimester,    datafile was not closed, some imatrix were not freed and on matrix
   semester or year) is model as a multinomial logistic.  The hPx    allocation too.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.112  2006/01/30 09:55:26  brouard
   hPijx.    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.111  2006/01/25 20:38:18  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Lots of cleaning and bugs added (Gompertz)
      (Module): Comments can be added in data file. Missing date values
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    can be a simple dot '.'.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.110  2006/01/25 00:51:50  brouard
   from the European Union.    (Module): Lots of cleaning and bugs added (Gompertz)
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.109  2006/01/24 19:37:15  brouard
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Comments (lines starting with a #) are allowed in data.
   **********************************************************************/  
      Revision 1.108  2006/01/19 18:05:42  lievre
 #include <math.h>    Gnuplot problem appeared...
 #include <stdio.h>    To be fixed
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.106  2006/01/19 13:24:36  brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Some cleaning and links added in html output
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.105  2006/01/05 20:23:19  lievre
 #define windows    *** empty log message ***
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): If the status is missing at the last wave but we know
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 #define NINTERVMAX 8    contributions to the likelihood is 1 - Prob of dying from last
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    the healthy state at last known wave). Version is 0.98
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.103  2005/09/30 15:54:49  lievre
 #define YEARM 12. /* Number of months per year */    (Module): sump fixed, loop imx fixed, and simplifications.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.102  2004/09/15 17:31:30  brouard
 #ifdef windows    Add the possibility to read data file including tab characters.
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.101  2004/09/15 10:38:38  brouard
 #else    Fix on curr_time
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.100  2004/07/12 18:29:06  brouard
 #endif    Add version for Mac OS X. Just define UNIX in Makefile
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Revision 1.99  2004/06/05 08:57:40  brouard
 int erreur; /* Error number */    *** empty log message ***
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.98  2004/05/16 15:05:56  brouard
 int npar=NPARMAX;    New version 0.97 . First attempt to estimate force of mortality
 int nlstate=2; /* Number of live states */    directly from the data i.e. without the need of knowing the health
 int ndeath=1; /* Number of dead states */    state at each age, but using a Gompertz model: log u =a + b*age .
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    This is the basic analysis of mortality and should be done before any
 int popbased=0;    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 int *wav; /* Number of waves for this individuual 0 is possible */    from other sources like vital statistic data.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    The same imach parameter file can be used but the option for mle should be -3.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Agnès, who wrote this part of the code, tried to keep most of the
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    former routines in order to include the new code within the former code.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    The output is very simple: only an estimate of the intercept and of
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    the slope with 95% confident intervals.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog;    Current limitations:
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    A) Even if you enter covariates, i.e. with the
 FILE *ficresprobmorprev;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 FILE *fichtm; /* Html File */    B) There is no computation of Life Expectancy nor Life Table.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.97  2004/02/20 13:25:42  lievre
 FILE  *ficresvij;    Version 0.96d. Population forecasting command line is (temporarily)
 char fileresv[FILENAMELENGTH];    suppressed.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.96  2003/07/15 15:38:55  brouard
 char title[MAXLINE];    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    rewritten within the same printf. Workaround: many printfs.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.95  2003/07/08 07:54:34  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    * imach.c (Repository):
 char filelog[FILENAMELENGTH]; /* Log file */    (Repository): Using imachwizard code to output a more meaningful covariance
 char filerest[FILENAMELENGTH];    matrix (cov(a12,c31) instead of numbers.
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.93  2003/06/25 16:33:55  brouard
 #define NR_END 1    (Module): On windows (cygwin) function asctime_r doesn't
 #define FREE_ARG char*    exist so I changed back to asctime which exists.
 #define FTOL 1.0e-10    (Module): Version 0.96b
   
 #define NRANSI    Revision 1.92  2003/06/25 16:30:45  brouard
 #define ITMAX 200    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 #define TOL 2.0e-4  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define CGOLD 0.3819660    * imach.c (Repository): Duplicated warning errors corrected.
 #define ZEPS 1.0e-10    (Repository): Elapsed time after each iteration is now output. It
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 #define GOLD 1.618034    concerning matrix of covariance. It has extension -cov.htm.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 static double maxarg1,maxarg2;    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    of the covariance matrix to be input.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.89  2003/06/24 12:30:52  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Module): Some bugs corrected for windows. Also, when
 #define rint(a) floor(a+0.5)    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.88  2003/06/23 17:54:56  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 int imx;    Revision 1.87  2003/06/18 12:26:01  brouard
 int stepm;    Version 0.96
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.86  2003/06/17 20:04:08  brouard
 int estepm;    (Module): Change position of html and gnuplot routines and added
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    routine fileappend.
   
 int m,nb;    Revision 1.85  2003/06/17 13:12:43  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    * imach.c (Repository): Check when date of death was earlier that
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    current date of interview. It may happen when the death was just
 double **pmmij, ***probs, ***mobaverage;    prior to the death. In this case, dh was negative and likelihood
 double dateintmean=0;    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 double *weight;    interview.
 int **s; /* Status */    (Repository): Because some people have very long ID (first column)
 double *agedc, **covar, idx;    we changed int to long in num[] and we added a new lvector for
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    memory allocation. But we also truncated to 8 characters (left
     truncation)
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Repository): No more line truncation errors.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.84  2003/06/13 21:44:43  brouard
 /**************** split *************************/    * imach.c (Repository): Replace "freqsummary" at a correct
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    place. It differs from routine "prevalence" which may be called
 {    many times. Probs is memory consuming and must be used with
    char *s;                             /* pointer */    parcimony.
    int  l1, l2;                         /* length counters */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
    l1 = strlen( path );                 /* length of path */    Revision 1.83  2003/06/10 13:39:11  lievre
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    *** empty log message ***
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.82  2003/06/05 15:57:20  brouard
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Add log in  imach.c and  fullversion number is now printed.
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
 #if     defined(__bsd__)                /* get current working directory */  */
       extern char       *getwd( );  /*
      Interpolated Markov Chain
       if ( getwd( dirc ) == NULL ) {  
 #else    Short summary of the programme:
       extern char       *getcwd( );    
     This program computes Healthy Life Expectancies from
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #endif    first survey ("cross") where individuals from different ages are
          return( GLOCK_ERROR_GETCWD );    interviewed on their health status or degree of disability (in the
       }    case of a health survey which is our main interest) -2- at least a
       strcpy( name, path );             /* we've got it */    second wave of interviews ("longitudinal") which measure each change
    } else {                             /* strip direcotry from path */    (if any) in individual health status.  Health expectancies are
       s++;                              /* after this, the filename */    computed from the time spent in each health state according to a
       l2 = strlen( s );                 /* length of filename */    model. More health states you consider, more time is necessary to reach the
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Maximum Likelihood of the parameters involved in the model.  The
       strcpy( name, s );                /* save file name */    simplest model is the multinomial logistic model where pij is the
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    probability to be observed in state j at the second wave
       dirc[l1-l2] = 0;                  /* add zero */    conditional to be observed in state i at the first wave. Therefore
    }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    l1 = strlen( dirc );                 /* length of directory */    'age' is age and 'sex' is a covariate. If you want to have a more
 #ifdef windows    complex model than "constant and age", you should modify the program
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    where the markup *Covariates have to be included here again* invites
 #else    you to do it.  More covariates you add, slower the
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    convergence.
 #endif  
    s = strrchr( name, '.' );            /* find last / */    The advantage of this computer programme, compared to a simple
    s++;    multinomial logistic model, is clear when the delay between waves is not
    strcpy(ext,s);                       /* save extension */    identical for each individual. Also, if a individual missed an
    l1= strlen( name);    intermediate interview, the information is lost, but taken into
    l2= strlen( s)+1;    account using an interpolation or extrapolation.  
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    hPijx is the probability to be observed in state i at age x+h
    return( 0 );                         /* we're done */    conditional to the observed state i at age x. The delay 'h' can be
 }    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 /******************************************/    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 void replace(char *s, char*t)    hPijx.
 {  
   int i;    Also this programme outputs the covariance matrix of the parameters but also
   int lg=20;    of the life expectancies. It also computes the period (stable) prevalence. 
   i=0;    
   lg=strlen(t);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   for(i=0; i<= lg; i++) {             Institut national d'études démographiques, Paris.
     (s[i] = t[i]);    This software have been partly granted by Euro-REVES, a concerted action
     if (t[i]== '\\') s[i]='/';    from the European Union.
   }    It is copyrighted identically to a GNU software product, ie programme and
 }    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 int nbocc(char *s, char occ)  
 {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   int i,j=0;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   int lg=20;    
   i=0;    **********************************************************************/
   lg=strlen(s);  /*
   for(i=0; i<= lg; i++) {    main
   if  (s[i] == occ ) j++;    read parameterfile
   }    read datafile
   return j;    concatwav
 }    freqsummary
     if (mle >= 1)
 void cutv(char *u,char *v, char*t, char occ)      mlikeli
 {    print results files
   /* cuts string t into u and v where u is ended by char occ excluding it    if mle==1 
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)       computes hessian
      gives u="abcedf" and v="ghi2j" */    read end of parameter file: agemin, agemax, bage, fage, estepm
   int i,lg,j,p=0;        begin-prev-date,...
   i=0;    open gnuplot file
   for(j=0; j<=strlen(t)-1; j++) {    open html file
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    period (stable) prevalence
   }     for age prevalim()
     h Pij x
   lg=strlen(t);    variance of p varprob
   for(j=0; j<p; j++) {    forecasting if prevfcast==1 prevforecast call prevalence()
     (u[j] = t[j]);    health expectancies
   }    Variance-covariance of DFLE
      u[p]='\0';    prevalence()
      movingaverage()
    for(j=0; j<= lg; j++) {    varevsij() 
     if (j>=(p+1))(v[j-p-1] = t[j]);    if popbased==1 varevsij(,popbased)
   }    total life expectancies
 }    Variance of period (stable) prevalence
    end
 /********************** nrerror ********************/  */
   
 void nrerror(char error_text[])  
 {  
   fprintf(stderr,"ERREUR ...\n");   
   fprintf(stderr,"%s\n",error_text);  #include <math.h>
   exit(1);  #include <stdio.h>
 }  #include <stdlib.h>
 /*********************** vector *******************/  #include <string.h>
 double *vector(int nl, int nh)  #include <unistd.h>
 {  
   double *v;  #include <limits.h>
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #include <sys/types.h>
   if (!v) nrerror("allocation failure in vector");  #include <sys/stat.h>
   return v-nl+NR_END;  #include <errno.h>
 }  extern int errno;
   
 /************************ free vector ******************/  /* #include <sys/time.h> */
 void free_vector(double*v, int nl, int nh)  #include <time.h>
 {  #include "timeval.h"
   free((FREE_ARG)(v+nl-NR_END));  
 }  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  #define MAXLINE 256
 {  
   int *v;  #define GNUPLOTPROGRAM "gnuplot"
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   if (!v) nrerror("allocation failure in ivector");  #define FILENAMELENGTH 132
   return v-nl+NR_END;  
 }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /******************* imatrix *******************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define NCOVMAX 8 /* Maximum number of covariates */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define AGESUP 130
   int **m;  #define AGEBASE 40
    #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   /* allocate pointers to rows */  #ifdef UNIX
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define DIRSEPARATOR '/'
   if (!m) nrerror("allocation failure 1 in matrix()");  #define CHARSEPARATOR "/"
   m += NR_END;  #define ODIRSEPARATOR '\\'
   m -= nrl;  #else
    #define DIRSEPARATOR '\\'
    #define CHARSEPARATOR "\\"
   /* allocate rows and set pointers to them */  #define ODIRSEPARATOR '/'
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #endif
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /* $Id$ */
   m[nrl] -= ncl;  /* $State$ */
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char version[]="Imach version 0.98e, March 2006, INED-EUROREVES-Institut de longevite ";
    char fullversion[]="$Revision$ $Date$"; 
   /* return pointer to array of pointers to rows */  char strstart[80];
   return m;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 /****************** free_imatrix *************************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 void free_imatrix(m,nrl,nrh,ncl,nch)  int npar=NPARMAX;
       int **m;  int nlstate=2; /* Number of live states */
       long nch,ncl,nrh,nrl;  int ndeath=1; /* Number of dead states */
      /* free an int matrix allocated by imatrix() */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 /******************* matrix *******************************/  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 double **matrix(long nrl, long nrh, long ncl, long nch)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int mle, weightopt;
   double **m;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   if (!m) nrerror("allocation failure 1 in matrix()");             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m += NR_END;  double jmean; /* Mean space between 2 waves */
   m -= nrl;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficlog, *ficrespow;
   m[nrl] += NR_END;  int globpr; /* Global variable for printing or not */
   m[nrl] -= ncl;  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double sw; /* Sum of weights */
   return m;  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /*************************free matrix ************************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  FILE *ficreseij;
   free((FREE_ARG)(m+nrl-NR_END));  char filerese[FILENAMELENGTH];
 }  FILE *ficresstdeij;
   char fileresstde[FILENAMELENGTH];
 /******************* ma3x *******************************/  FILE *ficrescveij;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char filerescve[FILENAMELENGTH];
 {  FILE  *ficresvij;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char fileresv[FILENAMELENGTH];
   double ***m;  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char title[MAXLINE];
   if (!m) nrerror("allocation failure 1 in matrix()");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m += NR_END;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   m -= nrl;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int  outcmd=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   m[nrl] -= ncl;  
   char filelog[FILENAMELENGTH]; /* Log file */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char popfile[FILENAMELENGTH];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     m[nrl][j]=m[nrl][j-1]+nlay;  struct timezone tzp;
    extern int gettimeofday();
   for (i=nrl+1; i<=nrh; i++) {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  long time_value;
     for (j=ncl+1; j<=nch; j++)  extern long time();
       m[i][j]=m[i][j-1]+nlay;  char strcurr[80], strfor[80];
   }  
   return m;  char *endptr;
 }  long lval;
   
 /*************************free ma3x ************************/  #define NR_END 1
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define NRANSI 
   free((FREE_ARG)(m+nrl-NR_END));  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /***************** f1dim *************************/  
 extern int ncom;  #define CGOLD 0.3819660 
 extern double *pcom,*xicom;  #define ZEPS 1.0e-10 
 extern double (*nrfunc)(double []);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    
 double f1dim(double x)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   int j;  #define TINY 1.0e-20 
   double f;  
   double *xt;  static double maxarg1,maxarg2;
    #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   xt=vector(1,ncom);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    
   f=(*nrfunc)(xt);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   free_vector(xt,1,ncom);  #define rint(a) floor(a+0.5)
   return f;  
 }  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 /*****************brent *************************/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int agegomp= AGEGOMP;
 {  
   int iter;  int imx; 
   double a,b,d,etemp;  int stepm=1;
   double fu,fv,fw,fx;  /* Stepm, step in month: minimum step interpolation*/
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int estepm;
   double e=0.0;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
    
   a=(ax < cx ? ax : cx);  int m,nb;
   b=(ax > cx ? ax : cx);  long *num;
   x=w=v=bx;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   fw=fv=fx=(*f)(x);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for (iter=1;iter<=ITMAX;iter++) {  double **pmmij, ***probs;
     xm=0.5*(a+b);  double *ageexmed,*agecens;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  double dateintmean=0;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  double *weight;
     fprintf(ficlog,".");fflush(ficlog);  int **s; /* Status */
 #ifdef DEBUG  double *agedc, **covar, idx;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double *lsurv, *lpop, *tpop;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  double ftolhess; /* Tolerance for computing hessian */
       *xmin=x;  
       return fx;  /**************** split *************************/
     }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     ftemp=fu;  {
     if (fabs(e) > tol1) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       r=(x-w)*(fx-fv);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       q=(x-v)*(fx-fw);    */ 
       p=(x-v)*q-(x-w)*r;    char  *ss;                            /* pointer */
       q=2.0*(q-r);    int   l1, l2;                         /* length counters */
       if (q > 0.0) p = -p;  
       q=fabs(q);    l1 = strlen(path );                   /* length of path */
       etemp=e;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       e=d;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      strcpy( name, path );               /* we got the fullname name because no directory */
       else {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         d=p/q;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         u=x+d;      /* get current working directory */
         if (u-a < tol2 || b-u < tol2)      /*    extern  char* getcwd ( char *buf , int len);*/
           d=SIGN(tol1,xm-x);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       }        return( GLOCK_ERROR_GETCWD );
     } else {      }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      /* got dirc from getcwd*/
     }      printf(" DIRC = %s \n",dirc);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    } else {                              /* strip direcotry from path */
     fu=(*f)(u);      ss++;                               /* after this, the filename */
     if (fu <= fx) {      l2 = strlen( ss );                  /* length of filename */
       if (u >= x) a=x; else b=x;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       SHFT(v,w,x,u)      strcpy( name, ss );         /* save file name */
         SHFT(fv,fw,fx,fu)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         } else {      dirc[l1-l2] = 0;                    /* add zero */
           if (u < x) a=u; else b=u;      printf(" DIRC2 = %s \n",dirc);
           if (fu <= fw || w == x) {    }
             v=w;    /* We add a separator at the end of dirc if not exists */
             w=u;    l1 = strlen( dirc );                  /* length of directory */
             fv=fw;    if( dirc[l1-1] != DIRSEPARATOR ){
             fw=fu;      dirc[l1] =  DIRSEPARATOR;
           } else if (fu <= fv || v == x || v == w) {      dirc[l1+1] = 0; 
             v=u;      printf(" DIRC3 = %s \n",dirc);
             fv=fu;    }
           }    ss = strrchr( name, '.' );            /* find last / */
         }    if (ss >0){
   }      ss++;
   nrerror("Too many iterations in brent");      strcpy(ext,ss);                     /* save extension */
   *xmin=x;      l1= strlen( name);
   return fx;      l2= strlen(ss)+1;
 }      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
 /****************** mnbrak ***********************/    }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    return( 0 );                          /* we're done */
             double (*func)(double))  }
 {  
   double ulim,u,r,q, dum;  
   double fu;  /******************************************/
    
   *fa=(*func)(*ax);  void replace_back_to_slash(char *s, char*t)
   *fb=(*func)(*bx);  {
   if (*fb > *fa) {    int i;
     SHFT(dum,*ax,*bx,dum)    int lg=0;
       SHFT(dum,*fb,*fa,dum)    i=0;
       }    lg=strlen(t);
   *cx=(*bx)+GOLD*(*bx-*ax);    for(i=0; i<= lg; i++) {
   *fc=(*func)(*cx);      (s[i] = t[i]);
   while (*fb > *fc) {      if (t[i]== '\\') s[i]='/';
     r=(*bx-*ax)*(*fb-*fc);    }
     q=(*bx-*cx)*(*fb-*fa);  }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  int nbocc(char *s, char occ)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    int i,j=0;
       fu=(*func)(u);    int lg=20;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    i=0;
       fu=(*func)(u);    lg=strlen(s);
       if (fu < *fc) {    for(i=0; i<= lg; i++) {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    if  (s[i] == occ ) j++;
           SHFT(*fb,*fc,fu,(*func)(u))    }
           }    return j;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  }
       u=ulim;  
       fu=(*func)(u);  void cutv(char *u,char *v, char*t, char occ)
     } else {  {
       u=(*cx)+GOLD*(*cx-*bx);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       fu=(*func)(u);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     }       gives u="abcedf" and v="ghi2j" */
     SHFT(*ax,*bx,*cx,u)    int i,lg,j,p=0;
       SHFT(*fa,*fb,*fc,fu)    i=0;
       }    for(j=0; j<=strlen(t)-1; j++) {
 }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
 /*************** linmin ************************/  
     lg=strlen(t);
 int ncom;    for(j=0; j<p; j++) {
 double *pcom,*xicom;      (u[j] = t[j]);
 double (*nrfunc)(double []);    }
         u[p]='\0';
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {     for(j=0; j<= lg; j++) {
   double brent(double ax, double bx, double cx,      if (j>=(p+1))(v[j-p-1] = t[j]);
                double (*f)(double), double tol, double *xmin);    }
   double f1dim(double x);  }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  /********************** nrerror ********************/
   int j;  
   double xx,xmin,bx,ax;  void nrerror(char error_text[])
   double fx,fb,fa;  {
      fprintf(stderr,"ERREUR ...\n");
   ncom=n;    fprintf(stderr,"%s\n",error_text);
   pcom=vector(1,n);    exit(EXIT_FAILURE);
   xicom=vector(1,n);  }
   nrfunc=func;  /*********************** vector *******************/
   for (j=1;j<=n;j++) {  double *vector(int nl, int nh)
     pcom[j]=p[j];  {
     xicom[j]=xi[j];    double *v;
   }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   ax=0.0;    if (!v) nrerror("allocation failure in vector");
   xx=1.0;    return v-nl+NR_END;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  /************************ free vector ******************/
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  void free_vector(double*v, int nl, int nh)
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  {
 #endif    free((FREE_ARG)(v+nl-NR_END));
   for (j=1;j<=n;j++) {  }
     xi[j] *= xmin;  
     p[j] += xi[j];  /************************ivector *******************************/
   }  int *ivector(long nl,long nh)
   free_vector(xicom,1,n);  {
   free_vector(pcom,1,n);    int *v;
 }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
 /*************** powell ************************/    return v-nl+NR_END;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  }
             double (*func)(double []))  
 {  /******************free ivector **************************/
   void linmin(double p[], double xi[], int n, double *fret,  void free_ivector(int *v, long nl, long nh)
               double (*func)(double []));  {
   int i,ibig,j;    free((FREE_ARG)(v+nl-NR_END));
   double del,t,*pt,*ptt,*xit;  }
   double fp,fptt;  
   double *xits;  /************************lvector *******************************/
   pt=vector(1,n);  long *lvector(long nl,long nh)
   ptt=vector(1,n);  {
   xit=vector(1,n);    long *v;
   xits=vector(1,n);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   *fret=(*func)(p);    if (!v) nrerror("allocation failure in ivector");
   for (j=1;j<=n;j++) pt[j]=p[j];    return v-nl+NR_END;
   for (*iter=1;;++(*iter)) {  }
     fp=(*fret);  
     ibig=0;  /******************free lvector **************************/
     del=0.0;  void free_lvector(long *v, long nl, long nh)
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  {
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    free((FREE_ARG)(v+nl-NR_END));
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     fprintf(ficlog," %d %.12f",i, p[i]);  /******************* imatrix *******************************/
     printf("\n");  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     fprintf(ficlog,"\n");       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     for (i=1;i<=n;i++) {  { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       fptt=(*fret);    int **m; 
 #ifdef DEBUG    
       printf("fret=%lf \n",*fret);    /* allocate pointers to rows */ 
       fprintf(ficlog,"fret=%lf \n",*fret);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 #endif    if (!m) nrerror("allocation failure 1 in matrix()"); 
       printf("%d",i);fflush(stdout);    m += NR_END; 
       fprintf(ficlog,"%d",i);fflush(ficlog);    m -= nrl; 
       linmin(p,xit,n,fret,func);    
       if (fabs(fptt-(*fret)) > del) {    
         del=fabs(fptt-(*fret));    /* allocate rows and set pointers to them */ 
         ibig=i;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 #ifdef DEBUG    m[nrl] += NR_END; 
       printf("%d %.12e",i,(*fret));    m[nrl] -= ncl; 
       fprintf(ficlog,"%d %.12e",i,(*fret));    
       for (j=1;j<=n;j++) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    
         printf(" x(%d)=%.12e",j,xit[j]);    /* return pointer to array of pointers to rows */ 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    return m; 
       }  } 
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);  /****************** free_imatrix *************************/
         fprintf(ficlog," p=%.12e",p[j]);  void free_imatrix(m,nrl,nrh,ncl,nch)
       }        int **m;
       printf("\n");        long nch,ncl,nrh,nrl; 
       fprintf(ficlog,"\n");       /* free an int matrix allocated by imatrix() */ 
 #endif  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    free((FREE_ARG) (m+nrl-NR_END)); 
 #ifdef DEBUG  } 
       int k[2],l;  
       k[0]=1;  /******************* matrix *******************************/
       k[1]=-1;  double **matrix(long nrl, long nrh, long ncl, long nch)
       printf("Max: %.12e",(*func)(p));  {
       fprintf(ficlog,"Max: %.12e",(*func)(p));    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       for (j=1;j<=n;j++) {    double **m;
         printf(" %.12e",p[j]);  
         fprintf(ficlog," %.12e",p[j]);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("\n");    m += NR_END;
       fprintf(ficlog,"\n");    m -= nrl;
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl] += NR_END;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl] -= ncl;
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    return m;
       }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 #endif     */
   }
   
       free_vector(xit,1,n);  /*************************free matrix ************************/
       free_vector(xits,1,n);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       free_vector(ptt,1,n);  {
       free_vector(pt,1,n);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       return;    free((FREE_ARG)(m+nrl-NR_END));
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /******************* ma3x *******************************/
       ptt[j]=2.0*p[j]-pt[j];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     }    double ***m;
     fptt=(*func)(ptt);  
     if (fptt < fp) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    if (!m) nrerror("allocation failure 1 in matrix()");
       if (t < 0.0) {    m += NR_END;
         linmin(p,xit,n,fret,func);    m -= nrl;
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           xi[j][n]=xit[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         }    m[nrl] += NR_END;
 #ifdef DEBUG    m[nrl] -= ncl;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         for(j=1;j<=n;j++){  
           printf(" %.12e",xit[j]);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
           fprintf(ficlog," %.12e",xit[j]);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         }    m[nrl][ncl] += NR_END;
         printf("\n");    m[nrl][ncl] -= nll;
         fprintf(ficlog,"\n");    for (j=ncl+1; j<=nch; j++) 
 #endif      m[nrl][j]=m[nrl][j-1]+nlay;
       }    
     }    for (i=nrl+1; i<=nrh; i++) {
   }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 }      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
 /**** Prevalence limit ****************/    }
     return m; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    */
      matrix by transitions matrix until convergence is reached */  }
   
   int i, ii,j,k;  /*************************free ma3x ************************/
   double min, max, maxmin, maxmax,sumnew=0.;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double **matprod2();  {
   double **out, cov[NCOVMAX], **pmij();    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   double **newm;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double agefin, delaymax=50 ; /* Max number of years to converge */    free((FREE_ARG)(m+nrl-NR_END));
   }
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /*************** function subdirf ***********/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  char *subdirf(char fileres[])
     }  {
     /* Caution optionfilefiname is hidden */
    cov[1]=1.;    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/"); /* Add to the right */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    strcat(tmpout,fileres);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    return tmpout;
     newm=savm;  }
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /*************** function subdirf2 ***********/
    char *subdirf2(char fileres[], char *preop)
       for (k=1; k<=cptcovn;k++) {  {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    strcat(tmpout,"/");
       for (k=1; k<=cptcovprod;k++)    strcat(tmpout,preop);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcat(tmpout,fileres);
     return tmpout;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  }
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /*************** function subdirf3 ***********/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
     savm=oldm;    
     oldm=newm;    /* Caution optionfilefiname is hidden */
     maxmax=0.;    strcpy(tmpout,optionfilefiname);
     for(j=1;j<=nlstate;j++){    strcat(tmpout,"/");
       min=1.;    strcat(tmpout,preop);
       max=0.;    strcat(tmpout,preop2);
       for(i=1; i<=nlstate; i++) {    strcat(tmpout,fileres);
         sumnew=0;    return tmpout;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  }
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  /***************** f1dim *************************/
         min=FMIN(min,prlim[i][j]);  extern int ncom; 
       }  extern double *pcom,*xicom;
       maxmin=max-min;  extern double (*nrfunc)(double []); 
       maxmax=FMAX(maxmax,maxmin);   
     }  double f1dim(double x) 
     if(maxmax < ftolpl){  { 
       return prlim;    int j; 
     }    double f;
   }    double *xt; 
 }   
     xt=vector(1,ncom); 
 /*************** transition probabilities ***************/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    free_vector(xt,1,ncom); 
 {    return f; 
   double s1, s2;  } 
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     for(i=1; i<= nlstate; i++){  { 
     for(j=1; j<i;j++){    int iter; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double a,b,d,etemp;
         /*s2 += param[i][j][nc]*cov[nc];*/    double fu,fv,fw,fx;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double ftemp;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       }    double e=0.0; 
       ps[i][j]=s2;   
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    a=(ax < cx ? ax : cx); 
     }    b=(ax > cx ? ax : cx); 
     for(j=i+1; j<=nlstate+ndeath;j++){    x=w=v=bx; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    fw=fv=fx=(*f)(x); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (iter=1;iter<=ITMAX;iter++) { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      xm=0.5*(a+b); 
       }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       ps[i][j]=s2;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
   }      fprintf(ficlog,".");fflush(ficlog);
     /*ps[3][2]=1;*/  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for(i=1; i<= nlstate; i++){      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      s1=0;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for(j=1; j<i; j++)  #endif
       s1+=exp(ps[i][j]);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for(j=i+1; j<=nlstate+ndeath; j++)        *xmin=x; 
       s1+=exp(ps[i][j]);        return fx; 
     ps[i][i]=1./(s1+1.);      } 
     for(j=1; j<i; j++)      ftemp=fu;
       ps[i][j]= exp(ps[i][j])*ps[i][i];      if (fabs(e) > tol1) { 
     for(j=i+1; j<=nlstate+ndeath; j++)        r=(x-w)*(fx-fv); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        q=(x-v)*(fx-fw); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        p=(x-v)*q-(x-w)*r; 
   } /* end i */        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        q=fabs(q); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        etemp=e; 
       ps[ii][jj]=0;        e=d; 
       ps[ii][ii]=1;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   }        else { 
           d=p/q; 
           u=x+d; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          if (u-a < tol2 || b-u < tol2) 
     for(jj=1; jj<= nlstate+ndeath; jj++){            d=SIGN(tol1,xm-x); 
      printf("%lf ",ps[ii][jj]);        } 
    }      } else { 
     printf("\n ");        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
     printf("\n ");printf("%lf ",cov[2]);*/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 /*      fu=(*f)(u); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      if (fu <= fx) { 
   goto end;*/        if (u >= x) a=x; else b=x; 
     return ps;        SHFT(v,w,x,u) 
 }          SHFT(fv,fw,fx,fu) 
           } else { 
 /**************** Product of 2 matrices ******************/            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)              v=w; 
 {              w=u; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times              fv=fw; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */              fw=fu; 
   /* in, b, out are matrice of pointers which should have been initialized            } else if (fu <= fv || v == x || v == w) { 
      before: only the contents of out is modified. The function returns              v=u; 
      a pointer to pointers identical to out */              fv=fu; 
   long i, j, k;            } 
   for(i=nrl; i<= nrh; i++)          } 
     for(k=ncolol; k<=ncoloh; k++)    } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    nrerror("Too many iterations in brent"); 
         out[i][k] +=in[i][j]*b[j][k];    *xmin=x; 
     return fx; 
   return out;  } 
 }  
   /****************** mnbrak ***********************/
   
 /************* Higher Matrix Product ***************/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  { 
 {    double ulim,u,r,q, dum;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    double fu; 
      duration (i.e. until   
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    *fa=(*func)(*ax); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    *fb=(*func)(*bx); 
      (typically every 2 years instead of every month which is too big).    if (*fb > *fa) { 
      Model is determined by parameters x and covariates have to be      SHFT(dum,*ax,*bx,dum) 
      included manually here.        SHFT(dum,*fb,*fa,dum) 
         } 
      */    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
   int i, j, d, h, k;    while (*fb > *fc) { 
   double **out, cov[NCOVMAX];      r=(*bx-*ax)*(*fb-*fc); 
   double **newm;      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   /* Hstepm could be zero and should return the unit matrix */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   for (i=1;i<=nlstate+ndeath;i++)      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     for (j=1;j<=nlstate+ndeath;j++){      if ((*bx-u)*(u-*cx) > 0.0) { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        fu=(*func)(u); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     }        fu=(*func)(u); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        if (fu < *fc) { 
   for(h=1; h <=nhstepm; h++){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     for(d=1; d <=hstepm; d++){            SHFT(*fb,*fc,fu,(*func)(u)) 
       newm=savm;            } 
       /* Covariates have to be included here again */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       cov[1]=1.;        u=ulim; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        fu=(*func)(u); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      } else { 
       for (k=1; k<=cptcovage;k++)        u=(*cx)+GOLD*(*cx-*bx); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        fu=(*func)(u); 
       for (k=1; k<=cptcovprod;k++)      } 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
         } 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  } 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /*************** linmin ************************/
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  int ncom; 
       oldm=newm;  double *pcom,*xicom;
     }  double (*nrfunc)(double []); 
     for(i=1; i<=nlstate+ndeath; i++)   
       for(j=1;j<=nlstate+ndeath;j++) {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         po[i][j][h]=newm[i][j];  { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    double brent(double ax, double bx, double cx, 
          */                 double (*f)(double), double tol, double *xmin); 
       }    double f1dim(double x); 
   } /* end h */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   return po;                double *fc, double (*func)(double)); 
 }    int j; 
     double xx,xmin,bx,ax; 
     double fx,fb,fa;
 /*************** log-likelihood *************/   
 double func( double *x)    ncom=n; 
 {    pcom=vector(1,n); 
   int i, ii, j, k, mi, d, kk;    xicom=vector(1,n); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    nrfunc=func; 
   double **out;    for (j=1;j<=n;j++) { 
   double sw; /* Sum of weights */      pcom[j]=p[j]; 
   double lli; /* Individual log likelihood */      xicom[j]=xi[j]; 
   long ipmx;    } 
   /*extern weight */    ax=0.0; 
   /* We are differentiating ll according to initial status */    xx=1.0; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   /*for(i=1;i<imx;i++)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     printf(" %d\n",s[4][i]);  #ifdef DEBUG
   */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   cov[1]=1.;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for (j=1;j<=n;j++) { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      xi[j] *= xmin; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      p[j] += xi[j]; 
     for(mi=1; mi<= wav[i]-1; mi++){    } 
       for (ii=1;ii<=nlstate+ndeath;ii++)    free_vector(xicom,1,n); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free_vector(pcom,1,n); 
       for(d=0; d<dh[mi][i]; d++){  } 
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  char *asc_diff_time(long time_sec, char ascdiff[])
         for (kk=1; kk<=cptcovage;kk++) {  {
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    long sec_left, days, hours, minutes;
         }    days = (time_sec) / (60*60*24);
            sec_left = (time_sec) % (60*60*24);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    hours = (sec_left) / (60*60) ;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    sec_left = (sec_left) %(60*60);
         savm=oldm;    minutes = (sec_left) /60;
         oldm=newm;    sec_left = (sec_left) % (60);
            sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
            return ascdiff;
       } /* end mult */  }
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /*************** powell ************************/
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       ipmx +=1;              double (*func)(double [])) 
       sw += weight[i];  { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    void linmin(double p[], double xi[], int n, double *fret, 
     } /* end of wave */                double (*func)(double [])); 
   } /* end of individual */    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    double fp,fptt;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    double *xits;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    int niterf, itmp;
   return -l;  
 }    pt=vector(1,n); 
     ptt=vector(1,n); 
     xit=vector(1,n); 
 /*********** Maximum Likelihood Estimation ***************/    xits=vector(1,n); 
     *fret=(*func)(p); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    for (j=1;j<=n;j++) pt[j]=p[j]; 
 {    for (*iter=1;;++(*iter)) { 
   int i,j, iter;      fp=(*fret); 
   double **xi,*delti;      ibig=0; 
   double fret;      del=0.0; 
   xi=matrix(1,npar,1,npar);      last_time=curr_time;
   for (i=1;i<=npar;i++)      (void) gettimeofday(&curr_time,&tzp);
     for (j=1;j<=npar;j++)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       xi[i][j]=(i==j ? 1.0 : 0.0);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   powell(p,xi,npar,ftol,&iter,&fret,func);      */
      for (i=1;i<=n;i++) {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        printf(" %d %.12f",i, p[i]);
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        fprintf(ficlog," %d %.12lf",i, p[i]);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        fprintf(ficrespow," %.12lf", p[i]);
       }
 }      printf("\n");
       fprintf(ficlog,"\n");
 /**** Computes Hessian and covariance matrix ***/      fprintf(ficrespow,"\n");fflush(ficrespow);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      if(*iter <=3){
 {        tm = *localtime(&curr_time.tv_sec);
   double  **a,**y,*x,pd;        strcpy(strcurr,asctime(&tm));
   double **hess;  /*       asctime_r(&tm,strcurr); */
   int i, j,jk;        forecast_time=curr_time; 
   int *indx;        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   double hessii(double p[], double delta, int theta, double delti[]);          strcurr[itmp-1]='\0';
   double hessij(double p[], double delti[], int i, int j);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   void lubksb(double **a, int npar, int *indx, double b[]) ;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   hess=matrix(1,npar,1,npar);          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
   printf("\nCalculation of the hessian matrix. Wait...\n");          strcpy(strfor,asctime(&tmf));
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          itmp = strlen(strfor);
   for (i=1;i<=npar;i++){          if(strfor[itmp-1]=='\n')
     printf("%d",i);fflush(stdout);          strfor[itmp-1]='\0';
     fprintf(ficlog,"%d",i);fflush(ficlog);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     hess[i][i]=hessii(p,ftolhess,i,delti);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     /*printf(" %f ",p[i]);*/        }
     /*printf(" %lf ",hess[i][i]);*/      }
   }      for (i=1;i<=n;i++) { 
          for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for (i=1;i<=npar;i++) {        fptt=(*fret); 
     for (j=1;j<=npar;j++)  {  #ifdef DEBUG
       if (j>i) {        printf("fret=%lf \n",*fret);
         printf(".%d%d",i,j);fflush(stdout);        fprintf(ficlog,"fret=%lf \n",*fret);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  #endif
         hess[i][j]=hessij(p,delti,i,j);        printf("%d",i);fflush(stdout);
         hess[j][i]=hess[i][j];            fprintf(ficlog,"%d",i);fflush(ficlog);
         /*printf(" %lf ",hess[i][j]);*/        linmin(p,xit,n,fret,func); 
       }        if (fabs(fptt-(*fret)) > del) { 
     }          del=fabs(fptt-(*fret)); 
   }          ibig=i; 
   printf("\n");        } 
   fprintf(ficlog,"\n");  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        fprintf(ficlog,"%d %.12e",i,(*fret));
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        for (j=1;j<=n;j++) {
            xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   a=matrix(1,npar,1,npar);          printf(" x(%d)=%.12e",j,xit[j]);
   y=matrix(1,npar,1,npar);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   x=vector(1,npar);        }
   indx=ivector(1,npar);        for(j=1;j<=n;j++) {
   for (i=1;i<=npar;i++)          printf(" p=%.12e",p[j]);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          fprintf(ficlog," p=%.12e",p[j]);
   ludcmp(a,npar,indx,&pd);        }
         printf("\n");
   for (j=1;j<=npar;j++) {        fprintf(ficlog,"\n");
     for (i=1;i<=npar;i++) x[i]=0;  #endif
     x[j]=1;      } 
     lubksb(a,npar,indx,x);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (i=1;i<=npar;i++){  #ifdef DEBUG
       matcov[i][j]=x[i];        int k[2],l;
     }        k[0]=1;
   }        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
   printf("\n#Hessian matrix#\n");        fprintf(ficlog,"Max: %.12e",(*func)(p));
   fprintf(ficlog,"\n#Hessian matrix#\n");        for (j=1;j<=n;j++) {
   for (i=1;i<=npar;i++) {          printf(" %.12e",p[j]);
     for (j=1;j<=npar;j++) {          fprintf(ficlog," %.12e",p[j]);
       printf("%.3e ",hess[i][j]);        }
       fprintf(ficlog,"%.3e ",hess[i][j]);        printf("\n");
     }        fprintf(ficlog,"\n");
     printf("\n");        for(l=0;l<=1;l++) {
     fprintf(ficlog,"\n");          for (j=1;j<=n;j++) {
   }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /* Recompute Inverse */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (i=1;i<=npar;i++)          }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   /*  printf("\n#Hessian matrix recomputed#\n");  #endif
   
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;        free_vector(xit,1,n); 
     x[j]=1;        free_vector(xits,1,n); 
     lubksb(a,npar,indx,x);        free_vector(ptt,1,n); 
     for (i=1;i<=npar;i++){        free_vector(pt,1,n); 
       y[i][j]=x[i];        return; 
       printf("%.3e ",y[i][j]);      } 
       fprintf(ficlog,"%.3e ",y[i][j]);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     }      for (j=1;j<=n;j++) { 
     printf("\n");        ptt[j]=2.0*p[j]-pt[j]; 
     fprintf(ficlog,"\n");        xit[j]=p[j]-pt[j]; 
   }        pt[j]=p[j]; 
   */      } 
       fptt=(*func)(ptt); 
   free_matrix(a,1,npar,1,npar);      if (fptt < fp) { 
   free_matrix(y,1,npar,1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   free_vector(x,1,npar);        if (t < 0.0) { 
   free_ivector(indx,1,npar);          linmin(p,xit,n,fret,func); 
   free_matrix(hess,1,npar,1,npar);          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
 }          }
   #ifdef DEBUG
 /*************** hessian matrix ****************/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 double hessii( double x[], double delta, int theta, double delti[])          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 {          for(j=1;j<=n;j++){
   int i;            printf(" %.12e",xit[j]);
   int l=1, lmax=20;            fprintf(ficlog," %.12e",xit[j]);
   double k1,k2;          }
   double p2[NPARMAX+1];          printf("\n");
   double res;          fprintf(ficlog,"\n");
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  #endif
   double fx;        }
   int k=0,kmax=10;      } 
   double l1;    } 
   } 
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];  /**** Prevalence limit (stable or period prevalence)  ****************/
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     delts=delt;  {
     for(k=1 ; k <kmax; k=k+1){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       delt = delta*(l1*k);       matrix by transitions matrix until convergence is reached */
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;    int i, ii,j,k;
       p2[theta]=x[theta]-delt;    double min, max, maxmin, maxmax,sumnew=0.;
       k2=func(p2)-fx;    double **matprod2();
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double **out, cov[NCOVMAX], **pmij();
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double **newm;
          double agefin, delaymax=50 ; /* Max number of years to converge */
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for (j=1;j<=nlstate+ndeath;j++){
 #endif        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;     cov[1]=1.;
       }   
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         k=kmax; l=lmax*10.;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       }      newm=savm;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      /* Covariates have to be included here again */
         delts=delt;       cov[2]=agefin;
       }    
     }        for (k=1; k<=cptcovn;k++) {
   }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   delti[theta]=delts;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   return res;        }
          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int i;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   int l=1, l1, lmax=20;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double k1,k2,k3,k4,res,fx;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double p2[NPARMAX+1];  
   int k;      savm=oldm;
       oldm=newm;
   fx=func(x);      maxmax=0.;
   for (k=1; k<=2; k++) {      for(j=1;j<=nlstate;j++){
     for (i=1;i<=npar;i++) p2[i]=x[i];        min=1.;
     p2[thetai]=x[thetai]+delti[thetai]/k;        max=0.;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for(i=1; i<=nlstate; i++) {
     k1=func(p2)-fx;          sumnew=0;
            for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     p2[thetai]=x[thetai]+delti[thetai]/k;          prlim[i][j]= newm[i][j]/(1-sumnew);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          max=FMAX(max,prlim[i][j]);
     k2=func(p2)-fx;          min=FMIN(min,prlim[i][j]);
          }
     p2[thetai]=x[thetai]-delti[thetai]/k;        maxmin=max-min;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        maxmax=FMAX(maxmax,maxmin);
     k3=func(p2)-fx;      }
        if(maxmax < ftolpl){
     p2[thetai]=x[thetai]-delti[thetai]/k;        return prlim;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      }
     k4=func(p2)-fx;    }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  }
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*************** transition probabilities ***************/ 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   }  {
   return res;    double s1, s2;
 }    /*double t34;*/
     int i,j,j1, nc, ii, jj;
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)      for(i=1; i<= nlstate; i++){
 {        for(j=1; j<i;j++){
   int i,imax,j,k;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double big,dum,sum,temp;            /*s2 += param[i][j][nc]*cov[nc];*/
   double *vv;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
    /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   vv=vector(1,n);          }
   *d=1.0;          ps[i][j]=s2;
   for (i=1;i<=n;i++) {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     big=0.0;        }
     for (j=1;j<=n;j++)        for(j=i+1; j<=nlstate+ndeath;j++){
       if ((temp=fabs(a[i][j])) > big) big=temp;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     vv[i]=1.0/big;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   }          }
   for (j=1;j<=n;j++) {          ps[i][j]=s2;
     for (i=1;i<j;i++) {        }
       sum=a[i][j];      }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      /*ps[3][2]=1;*/
       a[i][j]=sum;      
     }      for(i=1; i<= nlstate; i++){
     big=0.0;        s1=0;
     for (i=j;i<=n;i++) {        for(j=1; j<i; j++)
       sum=a[i][j];          s1+=exp(ps[i][j]);
       for (k=1;k<j;k++)        for(j=i+1; j<=nlstate+ndeath; j++)
         sum -= a[i][k]*a[k][j];          s1+=exp(ps[i][j]);
       a[i][j]=sum;        ps[i][i]=1./(s1+1.);
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for(j=1; j<i; j++)
         big=dum;          ps[i][j]= exp(ps[i][j])*ps[i][i];
         imax=i;        for(j=i+1; j<=nlstate+ndeath; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     if (j != imax) {      } /* end i */
       for (k=1;k<=n;k++) {      
         dum=a[imax][k];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         a[imax][k]=a[j][k];        for(jj=1; jj<= nlstate+ndeath; jj++){
         a[j][k]=dum;          ps[ii][jj]=0;
       }          ps[ii][ii]=1;
       *d = -(*d);        }
       vv[imax]=vv[j];      }
     }      
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     if (j != n) {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       dum=1.0/(a[j][j]);  /*         printf("ddd %lf ",ps[ii][jj]); */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*       } */
     }  /*       printf("\n "); */
   }  /*        } */
   free_vector(vv,1,n);  /* Doesn't work */  /*        printf("\n ");printf("%lf ",cov[2]); */
 ;         /*
 }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
 void lubksb(double **a, int n, int *indx, double b[])      return ps;
 {  }
   int i,ii=0,ip,j;  
   double sum;  /**************** Product of 2 matrices ******************/
    
   for (i=1;i<=n;i++) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     ip=indx[i];  {
     sum=b[ip];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     b[ip]=b[i];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     if (ii)    /* in, b, out are matrice of pointers which should have been initialized 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       before: only the contents of out is modified. The function returns
     else if (sum) ii=i;       a pointer to pointers identical to out */
     b[i]=sum;    long i, j, k;
   }    for(i=nrl; i<= nrh; i++)
   for (i=n;i>=1;i--) {      for(k=ncolol; k<=ncoloh; k++)
     sum=b[i];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          out[i][k] +=in[i][j]*b[j][k];
     b[i]=sum/a[i][i];  
   }    return out;
 }  }
   
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  /************* Higher Matrix Product ***************/
 {  /* Some frequencies */  
    double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  {
   int first;    /* Computes the transition matrix starting at age 'age' over 
   double ***freq; /* Frequencies */       'nhstepm*hstepm*stepm' months (i.e. until
   double *pp;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   double pos, k2, dateintsum=0,k2cpt=0;       nhstepm*hstepm matrices. 
   FILE *ficresp;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   char fileresp[FILENAMELENGTH];       (typically every 2 years instead of every month which is too big 
         for the memory).
   pp=vector(1,nlstate);       Model is determined by parameters x and covariates have to be 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       included manually here. 
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);       */
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);    int i, j, d, h, k;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    double **out, cov[NCOVMAX];
     exit(0);    double **newm;
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* Hstepm could be zero and should return the unit matrix */
   j1=0;    for (i=1;i<=nlstate+ndeath;i++)
        for (j=1;j<=nlstate+ndeath;j++){
   j=cptcoveff;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
   first=1;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
   for(k1=1; k1<=j;k1++){      for(d=1; d <=hstepm; d++){
     for(i1=1; i1<=ncodemax[k1];i1++){        newm=savm;
       j1++;        /* Covariates have to be included here again */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        cov[1]=1.;
         scanf("%d", i);*/        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for (k=1; k<=cptcovage;k++)
           for(m=agemin; m <= agemax+3; m++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             freq[i][jk][m]=0;        for (k=1; k<=cptcovprod;k++)
                cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       dateintsum=0;  
       k2cpt=0;  
       for (i=1; i<=imx; i++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         bool=1;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         if  (cptcovn>0) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           for (z1=1; z1<=cptcoveff; z1++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        savm=oldm;
               bool=0;        oldm=newm;
         }      }
         if (bool==1) {      for(i=1; i<=nlstate+ndeath; i++)
           for(m=firstpass; m<=lastpass; m++){        for(j=1;j<=nlstate+ndeath;j++) {
             k2=anint[m][i]+(mint[m][i]/12.);          po[i][j][h]=newm[i][j];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
               if(agev[m][i]==0) agev[m][i]=agemax+1;           */
               if(agev[m][i]==1) agev[m][i]=agemax+2;        }
               if (m<lastpass) {    } /* end h */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    return po;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  }
               }  
                
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  /*************** log-likelihood *************/
                 dateintsum=dateintsum+k2;  double func( double *x)
                 k2cpt++;  {
               }    int i, ii, j, k, mi, d, kk;
             }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           }    double **out;
         }    double sw; /* Sum of weights */
       }    double lli; /* Individual log likelihood */
            int s1, s2;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double bbh, survp;
     long ipmx;
       if  (cptcovn>0) {    /*extern weight */
         fprintf(ficresp, "\n#********** Variable ");    /* We are differentiating ll according to initial status */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         fprintf(ficresp, "**********\n#");    /*for(i=1;i<imx;i++) 
       }      printf(" %d\n",s[4][i]);
       for(i=1; i<=nlstate;i++)    */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    cov[1]=1.;
       fprintf(ficresp, "\n");  
          for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         if(i==(int)agemax+3){    if(mle==1){
           fprintf(ficlog,"Total");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }else{        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if(first==1){        for(mi=1; mi<= wav[i]-1; mi++){
             first=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
             printf("See log file for details...\n");            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficlog,"Age %d", i);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            newm=savm;
             pp[jk] += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=-1, pos=0; m <=0 ; m++)            }
             pos += freq[jk][m][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if(pp[jk]>=1.e-10){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if(first==1){            savm=oldm;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            oldm=newm;
             }          } /* end mult */
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        
           }else{          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             if(first==1)          /* But now since version 0.9 we anticipate for bias at large stepm.
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);           * (in months) between two waves is not a multiple of stepm, we rounded to 
           }           * the nearest (and in case of equal distance, to the lowest) interval but now
         }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         for(jk=1; jk <=nlstate ; jk++){           * probability in order to take into account the bias as a fraction of the way
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             pp[jk] += freq[jk][m][i];           * -stepm/2 to stepm/2 .
         }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
         for(jk=1,pos=0; jk <=nlstate ; jk++)           */
           pos += pp[jk];          s1=s[mw[mi][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          s2=s[mw[mi+1][i]][i];
           if(pos>=1.e-5){          bbh=(double)bh[mi][i]/(double)stepm; 
             if(first==1)          /* bias bh is positive if real duration
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           * is higher than the multiple of stepm and negative otherwise.
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           */
           }else{          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             if(first==1)          if( s2 > nlstate){ 
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            /* i.e. if s2 is a death state and if the date of death is known 
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);               then the contribution to the likelihood is the probability to 
           }               die between last step unit time and current  step unit time, 
           if( i <= (int) agemax){               which is also equal to probability to die before dh 
             if(pos>=1.e-5){               minus probability to die before dh-stepm . 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);               In version up to 0.92 likelihood was computed
               probs[i][jk][j1]= pp[jk]/pos;          as if date of death was unknown. Death was treated as any other
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          health state: the date of the interview describes the actual state
             }          and not the date of a change in health state. The former idea was
             else          to consider that at each interview the state was recorded
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          (healthy, disable or death) and IMaCh was corrected; but when we
           }          introduced the exact date of death then we should have modified
         }          the contribution of an exact death to the likelihood. This new
                  contribution is smaller and very dependent of the step unit
         for(jk=-1; jk <=nlstate+ndeath; jk++)          stepm. It is no more the probability to die between last interview
           for(m=-1; m <=nlstate+ndeath; m++)          and month of death but the probability to survive from last
             if(freq[jk][m][i] !=0 ) {          interview up to one month before death multiplied by the
             if(first==1)          probability to die within a month. Thanks to Chris
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          Jackson for correcting this bug.  Former versions increased
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          mortality artificially. The bad side is that we add another loop
             }          which slows down the processing. The difference can be up to 10%
         if(i <= (int) agemax)          lower mortality.
           fprintf(ficresp,"\n");            */
         if(first==1)            lli=log(out[s1][s2] - savm[s1][s2]);
           printf("Others in log...\n");  
         fprintf(ficlog,"\n");  
       }          } else if  (s2==-2) {
     }            for (j=1,survp=0. ; j<=nlstate; j++) 
   }              survp += out[s1][j];
   dateintmean=dateintsum/k2cpt;            lli= log(survp);
            }
   fclose(ficresp);          
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*      else if  (s2==-4) { */
   free_vector(pp,1,nlstate);  /*        for (j=3,survp=0. ; j<=nlstate; j++)  */
    /*          survp += out[s1][j]; */
   /* End of Freq */  /*        lli= survp; */
 }  /*      } */
           
 /************ Prevalence ********************/  /*      else if  (s2==-5) { */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  /*        for (j=1,survp=0. ; j<=2; j++)  */
 {  /* Some frequencies */  /*          survp += out[s1][j]; */
    /*        lli= survp; */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /*      } */
   double ***freq; /* Frequencies */  
   double *pp;  
   double pos, k2;          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   pp=vector(1,nlstate);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          } 
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /*if(lli ==000.0)*/
   j1=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            ipmx +=1;
   j=cptcoveff;          sw += weight[i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   for(k1=1; k1<=j;k1++){      } /* end of individual */
     for(i1=1; i1<=ncodemax[k1];i1++){    }  else if(mle==2){
       j1++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (i=-1; i<=nlstate+ndeath; i++)          for(mi=1; mi<= wav[i]-1; mi++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=agemin; m <= agemax+3; m++)            for (j=1;j<=nlstate+ndeath;j++){
             freq[i][jk][m]=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=1; i<=imx; i++) {            }
         bool=1;          for(d=0; d<=dh[mi][i]; d++){
         if  (cptcovn>0) {            newm=savm;
           for (z1=1; z1<=cptcoveff; z1++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            for (kk=1; kk<=cptcovage;kk++) {
               bool=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
         if (bool==1) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(m=firstpass; m<=lastpass; m++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             k2=anint[m][i]+(mint[m][i]/12.);            savm=oldm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            oldm=newm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;          } /* end mult */
               if(agev[m][i]==1) agev[m][i]=agemax+2;        
               if (m<lastpass) {          s1=s[mw[mi][i]][i];
                 if (calagedate>0)          s2=s[mw[mi+1][i]][i];
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          bbh=(double)bh[mi][i]/(double)stepm; 
                 else          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ipmx +=1;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          sw += weight[i];
               }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             }        } /* end of wave */
           }      } /* end of individual */
         }    }  else if(mle==3){  /* exponential inter-extrapolation */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             pp[jk] += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1, pos=0; m <=0 ; m++)            }
             pos += freq[jk][m][i];          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
                    cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             pp[jk] += freq[jk][m][i];            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            savm=oldm;
                    oldm=newm;
         for(jk=1; jk <=nlstate ; jk++){              } /* end mult */
           if( i <= (int) agemax){        
             if(pos>=1.e-5){          s1=s[mw[mi][i]][i];
               probs[i][jk][j1]= pp[jk]/pos;          s2=s[mw[mi+1][i]][i];
             }          bbh=(double)bh[mi][i]/(double)stepm; 
           }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         }/* end jk */          ipmx +=1;
       }/* end i */          sw += weight[i];
     } /* end i1 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   } /* end k1 */        } /* end of wave */
       } /* end of individual */
      }else if (mle==4){  /* ml=4 no inter-extrapolation */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_vector(pp,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
 }  /* End of Freq */          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /************* Waves Concatenation ***************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            }
 {          for(d=0; d<dh[mi][i]; d++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            newm=savm;
      Death is a valid wave (if date is known).            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            for (kk=1; kk<=cptcovage;kk++) {
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      and mw[mi+1][i]. dh depends on stepm.            }
      */          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, mi, m;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            savm=oldm;
      double sum=0., jmean=0.;*/            oldm=newm;
   int first;          } /* end mult */
   int j, k=0,jk, ju, jl;        
   double sum=0.;          s1=s[mw[mi][i]][i];
   first=0;          s2=s[mw[mi+1][i]][i];
   jmin=1e+5;          if( s2 > nlstate){ 
   jmax=-1;            lli=log(out[s1][s2] - savm[s1][s2]);
   jmean=0.;          }else{
   for(i=1; i<=imx; i++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     mi=0;          }
     m=firstpass;          ipmx +=1;
     while(s[m][i] <= nlstate){          sw += weight[i];
       if(s[m][i]>=1)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         mw[++mi][i]=m;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if(m >=lastpass)        } /* end of wave */
         break;      } /* end of individual */
       else    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         m++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }/* end while */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (s[m][i] > nlstate){        for(mi=1; mi<= wav[i]-1; mi++){
       mi++;     /* Death is another wave */          for (ii=1;ii<=nlstate+ndeath;ii++)
       /* if(mi==0)  never been interviewed correctly before death */            for (j=1;j<=nlstate+ndeath;j++){
          /* Only death is a correct wave */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       mw[mi][i]=m;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
           for(d=0; d<dh[mi][i]; d++){
     wav[i]=mi;            newm=savm;
     if(mi==0){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(first==0){            for (kk=1; kk<=cptcovage;kk++) {
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         first=1;            }
       }          
       if(first==1){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     } /* end mi==0 */            oldm=newm;
   }          } /* end mult */
         
   for(i=1; i<=imx; i++){          s1=s[mw[mi][i]][i];
     for(mi=1; mi<wav[i];mi++){          s2=s[mw[mi+1][i]][i];
       if (stepm <=0)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         dh[mi][i]=1;          ipmx +=1;
       else{          sw += weight[i];
         if (s[mw[mi+1][i]][i] > nlstate) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if (agedc[i] < 2*AGESUP) {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        } /* end of wave */
           if(j==0) j=1;  /* Survives at least one month after exam */      } /* end of individual */
           k=k+1;    } /* End of if */
           if (j >= jmax) jmax=j;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           if (j <= jmin) jmin=j;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           sum=sum+j;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    return -l;
           }  }
         }  
         else{  /*************** log-likelihood *************/
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  double funcone( double *x)
           k=k+1;  {
           if (j >= jmax) jmax=j;    /* Same as likeli but slower because of a lot of printf and if */
           else if (j <= jmin)jmin=j;    int i, ii, j, k, mi, d, kk;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           sum=sum+j;    double **out;
         }    double lli; /* Individual log likelihood */
         jk= j/stepm;    double llt;
         jl= j -jk*stepm;    int s1, s2;
         ju= j -(jk+1)*stepm;    double bbh, survp;
         if(jl <= -ju)    /*extern weight */
           dh[mi][i]=jk;    /* We are differentiating ll according to initial status */
         else    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           dh[mi][i]=jk+1;    /*for(i=1;i<imx;i++) 
         if(dh[mi][i]==0)      printf(" %d\n",s[4][i]);
           dh[mi][i]=1; /* At least one step */    */
       }    cov[1]=1.;
     }  
   }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  }      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
 /*********** Tricode ****************************/          for (j=1;j<=nlstate+ndeath;j++){
 void tricode(int *Tvar, int **nbcode, int imx)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int Ndum[20],ij=1, k, j, i;          }
   int cptcode=0;        for(d=0; d<dh[mi][i]; d++){
   cptcoveff=0;          newm=savm;
            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (k=0; k<19; k++) Ndum[k]=0;          for (kk=1; kk<=cptcovage;kk++) {
   for (k=1; k<=7; k++) ncodemax[k]=0;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1; i<=imx; i++) {                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       ij=(int)(covar[Tvar[j]][i]);          savm=oldm;
       Ndum[ij]++;          oldm=newm;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        } /* end mult */
       if (ij > cptcode) cptcode=ij;        
     }        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
     for (i=0; i<=cptcode; i++) {        bbh=(double)bh[mi][i]/(double)stepm; 
       if(Ndum[i]!=0) ncodemax[j]++;        /* bias is positive if real duration
     }         * is higher than the multiple of stepm and negative otherwise.
     ij=1;         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
     for (i=1; i<=ncodemax[j]; i++) {        } else if  (s2==-2) {
       for (k=0; k<=19; k++) {          for (j=1,survp=0. ; j<=nlstate; j++) 
         if (Ndum[k] != 0) {            survp += out[s1][j];
           nbcode[Tvar[j]][ij]=k;          lli= log(survp);
                  }else if (mle==1){
           ij++;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }        } else if(mle==2){
         if (ij > ncodemax[j]) break;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       }          } else if(mle==3){  /* exponential inter-extrapolation */
     }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }          } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
  for (k=0; k<19; k++) Ndum[k]=0;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
  for (i=1; i<=ncovmodel-2; i++) {        } /* End of if */
    ij=Tvar[i];        ipmx +=1;
    Ndum[ij]++;        sw += weight[i];
  }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
  ij=1;        if(globpr){
  for (i=1; i<=10; i++) {          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    if((Ndum[i]!=0) && (i<=ncovcol)){   %11.6f %11.6f %11.6f ", \
      Tvaraff[ij]=i;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
      ij++;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
    }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
  }            llt +=ll[k]*gipmx/gsw;
              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
  cptcoveff=ij-1;          }
 }          fprintf(ficresilk," %10.6f\n", -llt);
         }
 /*********** Health Expectancies ****************/      } /* end of wave */
     } /* end of individual */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /* Health expectancies */    if(globpr==0){ /* First time we count the contributions and weights */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      gipmx=ipmx;
   double age, agelim, hf;      gsw=sw;
   double ***p3mat,***varhe;    }
   double **dnewm,**doldm;    return -l;
   double *xp;  }
   double **gp, **gm;  
   double ***gradg, ***trgradg;  
   int theta;  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  {
   xp=vector(1,npar);    /* This routine should help understanding what is done with 
   dnewm=matrix(1,nlstate*2,1,npar);       the selection of individuals/waves and
   doldm=matrix(1,nlstate*2,1,nlstate*2);       to check the exact contribution to the likelihood.
         Plotting could be done.
   fprintf(ficreseij,"# Health expectancies\n");     */
   fprintf(ficreseij,"# Age");    int k;
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    if(*globpri !=0){ /* Just counts and sums, no printings */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      strcpy(fileresilk,"ilk"); 
   fprintf(ficreseij,"\n");      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   if(estepm < stepm){        printf("Problem with resultfile: %s\n", fileresilk);
     printf ("Problem %d lower than %d\n",estepm, stepm);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   }      }
   else  hstepm=estepm;        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   /* We compute the life expectancy from trapezoids spaced every estepm months      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
    * This is mainly to measure the difference between two models: for example      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
    * if stepm=24 months pijx are given only every 2 years and by summing them      for(k=1; k<=nlstate; k++) 
    * we are calculating an estimate of the Life Expectancy assuming a linear        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
    * progression inbetween and thus overestimating or underestimating according      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
    * to the curvature of the survival function. If, for the same date, we    }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear    *fretone=(*funcone)(p);
    * hypothesis. A more precise result, taking into account a more precise    if(*globpri !=0){
    * curvature will be obtained if estepm is as small as stepm. */      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   /* For example we decided to compute the life expectancy with the smallest unit */      fflush(fichtm); 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    } 
      nhstepm is the number of hstepm from age to agelim    return;
      nstepm is the number of stepm from age to agelin.  }
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  /*********** Maximum Likelihood Estimation ***************/
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  {
      results. So we changed our mind and took the option of the best precision.    int i,j, iter;
   */    double **xi;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double fret;
     double fretone; /* Only one call to likelihood */
   agelim=AGESUP;    /*  char filerespow[FILENAMELENGTH];*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    xi=matrix(1,npar,1,npar);
     /* nhstepm age range expressed in number of stepm */    for (i=1;i<=npar;i++)
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      for (j=1;j<=npar;j++)
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        xi[i][j]=(i==j ? 1.0 : 0.0);
     /* if (stepm >= YEARM) hstepm=1;*/    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    strcpy(filerespow,"pow"); 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(filerespow,fileres);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     gp=matrix(0,nhstepm,1,nlstate*2);      printf("Problem with resultfile: %s\n", filerespow);
     gm=matrix(0,nhstepm,1,nlstate*2);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    fprintf(ficrespow,"# Powell\n# iter -2*LL");
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for (i=1;i<=nlstate;i++)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        for(j=1;j<=nlstate+ndeath;j++)
          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     powell(p,xi,npar,ftol,&iter,&fret,func);
     /* Computing Variances of health expectancies */  
     free_matrix(xi,1,npar,1,npar);
      for(theta=1; theta <=npar; theta++){    fclose(ficrespow);
       for(i=1; i<=npar; i++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
    }
       cptj=0;  
       for(j=1; j<= nlstate; j++){  /**** Computes Hessian and covariance matrix ***/
         for(i=1; i<=nlstate; i++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           cptj=cptj+1;  {
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    double  **a,**y,*x,pd;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double **hess;
           }    int i, j,jk;
         }    int *indx;
       }  
          double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
          double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       for(i=1; i<=npar; i++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    void ludcmp(double **a, int npar, int *indx, double *d) ;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double gompertz(double p[]);
          hess=matrix(1,npar,1,npar);
       cptj=0;  
       for(j=1; j<= nlstate; j++){    printf("\nCalculation of the hessian matrix. Wait...\n");
         for(i=1;i<=nlstate;i++){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           cptj=cptj+1;    for (i=1;i<=npar;i++){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      printf("%d",i);fflush(stdout);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      fprintf(ficlog,"%d",i);fflush(ficlog);
           }     
         }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       }      
       for(j=1; j<= nlstate*2; j++)      /*  printf(" %f ",p[i]);
         for(h=0; h<=nhstepm-1; h++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    }
         }    
      }    for (i=1;i<=npar;i++) {
          for (j=1;j<=npar;j++)  {
 /* End theta */        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
      for(h=0; h<=nhstepm-1; h++)          
       for(j=1; j<=nlstate*2;j++)          hess[j][i]=hess[i][j];    
         for(theta=1; theta <=npar; theta++)          /*printf(" %lf ",hess[i][j]);*/
           trgradg[h][j][theta]=gradg[h][theta][j];        }
            }
     }
      for(i=1;i<=nlstate*2;i++)    printf("\n");
       for(j=1;j<=nlstate*2;j++)    fprintf(ficlog,"\n");
         varhe[i][j][(int)age] =0.;  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      printf("%d|",(int)age);fflush(stdout);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    
      for(h=0;h<=nhstepm-1;h++){    a=matrix(1,npar,1,npar);
       for(k=0;k<=nhstepm-1;k++){    y=matrix(1,npar,1,npar);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    x=vector(1,npar);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    indx=ivector(1,npar);
         for(i=1;i<=nlstate*2;i++)    for (i=1;i<=npar;i++)
           for(j=1;j<=nlstate*2;j++)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    ludcmp(a,npar,indx,&pd);
       }  
     }    for (j=1;j<=npar;j++) {
     /* Computing expectancies */      for (i=1;i<=npar;i++) x[i]=0;
     for(i=1; i<=nlstate;i++)      x[j]=1;
       for(j=1; j<=nlstate;j++)      lubksb(a,npar,indx,x);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      for (i=1;i<=npar;i++){ 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        matcov[i][j]=x[i];
                }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    }
   
         }    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
     fprintf(ficreseij,"%3.0f",age );    for (i=1;i<=npar;i++) { 
     cptj=0;      for (j=1;j<=npar;j++) { 
     for(i=1; i<=nlstate;i++)        printf("%.3e ",hess[i][j]);
       for(j=1; j<=nlstate;j++){        fprintf(ficlog,"%.3e ",hess[i][j]);
         cptj++;      }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      printf("\n");
       }      fprintf(ficlog,"\n");
     fprintf(ficreseij,"\n");    }
      
     free_matrix(gm,0,nhstepm,1,nlstate*2);    /* Recompute Inverse */
     free_matrix(gp,0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    ludcmp(a,npar,indx,&pd);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }    /*  printf("\n#Hessian matrix recomputed#\n");
   printf("\n");  
   fprintf(ficlog,"\n");    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   free_vector(xp,1,npar);      x[j]=1;
   free_matrix(dnewm,1,nlstate*2,1,npar);      lubksb(a,npar,indx,x);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      for (i=1;i<=npar;i++){ 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        y[i][j]=x[i];
 }        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
 /************ Variance ******************/      }
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)      printf("\n");
 {      fprintf(ficlog,"\n");
   /* Variance of health expectancies */    }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    */
   /* double **newm;*/  
   double **dnewm,**doldm;    free_matrix(a,1,npar,1,npar);
   double **dnewmp,**doldmp;    free_matrix(y,1,npar,1,npar);
   int i, j, nhstepm, hstepm, h, nstepm ;    free_vector(x,1,npar);
   int k, cptcode;    free_ivector(indx,1,npar);
   double *xp;    free_matrix(hess,1,npar,1,npar);
   double **gp, **gm;  /* for var eij */  
   double ***gradg, ***trgradg; /*for var eij */  
   double **gradgp, **trgradgp; /* for var p point j */  }
   double *gpp, *gmp; /* for var p point j */  
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */  /*************** hessian matrix ****************/
   double ***p3mat;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   double age,agelim, hf;  {
   int theta;    int i;
   char digit[4];    int l=1, lmax=20;
   char digitp[16];    double k1,k2;
     double p2[NPARMAX+1];
   char fileresprobmorprev[FILENAMELENGTH];    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   if(popbased==1)    double fx;
     strcpy(digitp,"-populbased-");    int k=0,kmax=10;
   else    double l1;
     strcpy(digitp,"-stablbased-");  
     fx=func(x);
   strcpy(fileresprobmorprev,"prmorprev");    for (i=1;i<=npar;i++) p2[i]=x[i];
   sprintf(digit,"%-d",ij);    for(l=0 ; l <=lmax; l++){
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      l1=pow(10,l);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */      delts=delt;
   strcat(fileresprobmorprev,digitp); /* Popbased or not */      for(k=1 ; k <kmax; k=k+1){
   strcat(fileresprobmorprev,fileres);        delt = delta*(l1*k);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        p2[theta]=x[theta] +delt;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);        k1=func(p2)-fx;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);        p2[theta]=x[theta]-delt;
   }        k2=func(p2)-fx;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");        
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  #ifdef DEBUG
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fprintf(ficresprobmorprev," p.%-d SE",j);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(i=1; i<=nlstate;i++)  #endif
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   }          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   fprintf(ficresprobmorprev,"\n");          k=kmax;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);          k=kmax; l=lmax*10.;
     exit(0);        }
   }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   else{          delts=delt;
     fprintf(ficgp,"\n# Routine varevsij");        }
   }      }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    }
     printf("Problem with html file: %s\n", optionfilehtm);    delti[theta]=delts;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    return res; 
     exit(0);    
   }  }
   else{  
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   }  {
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    int i;
     int l=1, l1, lmax=20;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    double k1,k2,k3,k4,res,fx;
   fprintf(ficresvij,"# Age");    double p2[NPARMAX+1];
   for(i=1; i<=nlstate;i++)    int k;
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    fx=func(x);
   fprintf(ficresvij,"\n");    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
   xp=vector(1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   dnewm=matrix(1,nlstate,1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   doldm=matrix(1,nlstate,1,nlstate);      k1=func(p2)-fx;
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);      k2=func(p2)-fx;
   gpp=vector(nlstate+1,nlstate+ndeath);    
   gmp=vector(nlstate+1,nlstate+ndeath);      p2[thetai]=x[thetai]-delti[thetai]/k;
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k3=func(p2)-fx;
   if(estepm < stepm){    
     printf ("Problem %d lower than %d\n",estepm, stepm);      p2[thetai]=x[thetai]-delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   else  hstepm=estepm;        k4=func(p2)-fx;
   /* For example we decided to compute the life expectancy with the smallest unit */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  #ifdef DEBUG
      nhstepm is the number of hstepm from age to agelim      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      nstepm is the number of stepm from age to agelin.      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      Look at hpijx to understand the reason of that which relies in memory size  #endif
      and note for a fixed period like k years */    }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    return res;
      survival function given by stepm (the optimization length). Unfortunately it  }
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  /************** Inverse of matrix **************/
      results. So we changed our mind and took the option of the best precision.  void ludcmp(double **a, int n, int *indx, double *d) 
   */  { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int i,imax,j,k; 
   agelim = AGESUP;    double big,dum,sum,temp; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double *vv; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    vv=vector(1,n); 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    *d=1.0; 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    for (i=1;i<=n;i++) { 
     gp=matrix(0,nhstepm,1,nlstate);      big=0.0; 
     gm=matrix(0,nhstepm,1,nlstate);      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     for(theta=1; theta <=npar; theta++){      vv[i]=1.0/big; 
       for(i=1; i<=npar; i++){ /* Computes gradient */    } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (j=1;j<=n;j++) { 
       }      for (i=1;i<j;i++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          sum=a[i][j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
       if (popbased==1) {      } 
         for(i=1; i<=nlstate;i++)      big=0.0; 
           prlim[i][i]=probs[(int)age][i][ij];      for (i=j;i<=n;i++) { 
       }        sum=a[i][j]; 
          for (k=1;k<j;k++) 
       for(j=1; j<= nlstate; j++){          sum -= a[i][k]*a[k][j]; 
         for(h=0; h<=nhstepm; h++){        a[i][j]=sum; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          big=dum; 
         }          imax=i; 
       }        } 
       /* This for computing forces of mortality (h=1)as a weighted average */      } 
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){      if (j != imax) { 
         for(i=1; i<= nlstate; i++)        for (k=1;k<=n;k++) { 
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          dum=a[imax][k]; 
       }              a[imax][k]=a[j][k]; 
       /* end force of mortality */          a[j][k]=dum; 
         } 
       for(i=1; i<=npar; i++) /* Computes gradient */        *d = -(*d); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        vv[imax]=vv[j]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (popbased==1) {      if (j != n) { 
         for(i=1; i<=nlstate;i++)        dum=1.0/(a[j][j]); 
           prlim[i][i]=probs[(int)age][i][ij];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       }      } 
     } 
       for(j=1; j<= nlstate; j++){    free_vector(vv,1,n);  /* Doesn't work */
         for(h=0; h<=nhstepm; h++){  ;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  } 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  void lubksb(double **a, int n, int *indx, double b[]) 
       }  { 
       /* This for computing force of mortality (h=1)as a weighted average */    int i,ii=0,ip,j; 
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    double sum; 
         for(i=1; i<= nlstate; i++)   
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    for (i=1;i<=n;i++) { 
       }          ip=indx[i]; 
       /* end force of mortality */      sum=b[ip]; 
       b[ip]=b[i]; 
       for(j=1; j<= nlstate; j++) /* vareij */      if (ii) 
         for(h=0; h<=nhstepm; h++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      else if (sum) ii=i; 
         }      b[i]=sum; 
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    } 
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    for (i=n;i>=1;i--) { 
       }      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     } /* End theta */      b[i]=sum/a[i][i]; 
     } 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  } 
   
     for(h=0; h<=nhstepm; h++) /* veij */  void pstamp(FILE *fichier)
       for(j=1; j<=nlstate;j++)  {
         for(theta=1; theta <=npar; theta++)    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           trgradg[h][j][theta]=gradg[h][theta][j];  }
   
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */  /************ Frequencies ********************/
       for(theta=1; theta <=npar; theta++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         trgradgp[j][theta]=gradgp[theta][j];  {  /* Some frequencies */
     
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     for(i=1;i<=nlstate;i++)    int first;
       for(j=1;j<=nlstate;j++)    double ***freq; /* Frequencies */
         vareij[i][j][(int)age] =0.;    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
     for(h=0;h<=nhstepm;h++){    char fileresp[FILENAMELENGTH];
       for(k=0;k<=nhstepm;k++){    
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    pp=vector(1,nlstate);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    prop=matrix(1,nlstate,iagemin,iagemax+3);
         for(i=1;i<=nlstate;i++)    strcpy(fileresp,"p");
           for(j=1;j<=nlstate;j++)    strcat(fileresp,fileres);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    if((ficresp=fopen(fileresp,"w"))==NULL) {
       }      printf("Problem with prevalence resultfile: %s\n", fileresp);
     }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
     /* pptj */    }
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    j1=0;
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    j=cptcoveff;
         varppt[j][i]=doldmp[j][i];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     /* end ppptj */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      first=1;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);  
      for(k1=1; k1<=j;k1++){
     if (popbased==1) {      for(i1=1; i1<=ncodemax[k1];i1++){
       for(i=1; i<=nlstate;i++)        j1++;
         prlim[i][i]=probs[(int)age][i][ij];        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     }          scanf("%d", i);*/
            for (i=-5; i<=nlstate+ndeath; i++)  
     /* This for computing force of mortality (h=1)as a weighted average */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){            for(m=iagemin; m <= iagemax+3; m++)
       for(i=1; i<= nlstate; i++)              freq[i][jk][m]=0;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];  
     }          for (i=1; i<=nlstate; i++)  
     /* end force of mortality */        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);        
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        dateintsum=0;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        k2cpt=0;
       for(i=1; i<=nlstate;i++){        for (i=1; i<=imx; i++) {
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);          bool=1;
       }          if  (cptcovn>0) {
     }            for (z1=1; z1<=cptcoveff; z1++) 
     fprintf(ficresprobmorprev,"\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
     fprintf(ficresvij,"%.0f ",age );          }
     for(i=1; i<=nlstate;i++)          if (bool==1){
       for(j=1; j<=nlstate;j++){            for(m=firstpass; m<=lastpass; m++){
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              k2=anint[m][i]+(mint[m][i]/12.);
       }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     fprintf(ficresvij,"\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     free_matrix(gp,0,nhstepm,1,nlstate);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     free_matrix(gm,0,nhstepm,1,nlstate);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);                if (m<lastpass) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   } /* End age */                }
   free_vector(gpp,nlstate+1,nlstate+ndeath);                
   free_vector(gmp,nlstate+1,nlstate+ndeath);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);                  dateintsum=dateintsum+k2;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/                  k2cpt++;
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");                }
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */                /*}*/
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");            }
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);          }
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);        }
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);         
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);        pstamp(ficresp);
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);        if  (cptcovn>0) {
 */          fprintf(ficresp, "\n#********** Variable "); 
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
   free_vector(xp,1,npar);        }
   free_matrix(doldm,1,nlstate,1,nlstate);        for(i=1; i<=nlstate;i++) 
   free_matrix(dnewm,1,nlstate,1,npar);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        fprintf(ficresp, "\n");
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);        
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        for(i=iagemin; i <= iagemax+3; i++){
   fclose(ficresprobmorprev);          if(i==iagemax+3){
   fclose(ficgp);            fprintf(ficlog,"Total");
   fclose(fichtm);          }else{
             if(first==1){
 }              first=0;
               printf("See log file for details...\n");
 /************ Variance of prevlim ******************/            }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            fprintf(ficlog,"Age %d", i);
 {          }
   /* Variance of prevalence limit */          for(jk=1; jk <=nlstate ; jk++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   double **newm;              pp[jk] += freq[jk][m][i]; 
   double **dnewm,**doldm;          }
   int i, j, nhstepm, hstepm;          for(jk=1; jk <=nlstate ; jk++){
   int k, cptcode;            for(m=-1, pos=0; m <=0 ; m++)
   double *xp;              pos += freq[jk][m][i];
   double *gp, *gm;            if(pp[jk]>=1.e-10){
   double **gradg, **trgradg;              if(first==1){
   double age,agelim;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   int theta;              }
                  fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");            }else{
   fprintf(ficresvpl,"# Age");              if(first==1)
   for(i=1; i<=nlstate;i++)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficresvpl," %1d-%1d",i,i);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficresvpl,"\n");            }
           }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){
   doldm=matrix(1,nlstate,1,nlstate);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                pp[jk] += freq[jk][m][i];
   hstepm=1*YEARM; /* Every year of age */          }       
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   agelim = AGESUP;            pos += pp[jk];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            posprop += prop[jk][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          }
     if (stepm >= YEARM) hstepm=1;          for(jk=1; jk <=nlstate ; jk++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            if(pos>=1.e-5){
     gradg=matrix(1,npar,1,nlstate);              if(first==1)
     gp=vector(1,nlstate);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     gm=vector(1,nlstate);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
     for(theta=1; theta <=npar; theta++){              if(first==1)
       for(i=1; i<=npar; i++){ /* Computes gradient */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            if( i <= iagemax){
       for(i=1;i<=nlstate;i++)              if(pos>=1.e-5){
         gp[i] = prlim[i][i];                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                    /*probs[i][jk][j1]= pp[jk]/pos;*/
       for(i=1; i<=npar; i++) /* Computes gradient */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              else
       for(i=1;i<=nlstate;i++)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         gm[i] = prlim[i][i];            }
           }
       for(i=1;i<=nlstate;i++)          
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          for(jk=-1; jk <=nlstate+ndeath; jk++)
     } /* End theta */            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
     trgradg =matrix(1,nlstate,1,npar);              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(j=1; j<=nlstate;j++)                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(theta=1; theta <=npar; theta++)              }
         trgradg[j][theta]=gradg[theta][j];          if(i <= iagemax)
             fprintf(ficresp,"\n");
     for(i=1;i<=nlstate;i++)          if(first==1)
       varpl[i][(int)age] =0.;            printf("Others in log...\n");
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          fprintf(ficlog,"\n");
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        }
     for(i=1;i<=nlstate;i++)      }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    }
     dateintmean=dateintsum/k2cpt; 
     fprintf(ficresvpl,"%.0f ",age );   
     for(i=1; i<=nlstate;i++)    fclose(ficresp);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     fprintf(ficresvpl,"\n");    free_vector(pp,1,nlstate);
     free_vector(gp,1,nlstate);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     free_vector(gm,1,nlstate);    /* End of Freq */
     free_matrix(gradg,1,npar,1,nlstate);  }
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   free_vector(xp,1,npar);  {  
   free_matrix(doldm,1,nlstate,1,npar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   free_matrix(dnewm,1,nlstate,1,nlstate);       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
 }    */
    
 /************ Variance of one-step probabilities  ******************/    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    double ***freq; /* Frequencies */
 {    double *pp, **prop;
   int i, j=0,  i1, k1, l1, t, tj;    double pos,posprop; 
   int k2, l2, j1,  z1;    double  y2; /* in fractional years */
   int k=0,l, cptcode;    int iagemin, iagemax;
   int first=1, first1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    iagemin= (int) agemin;
   double **dnewm,**doldm;    iagemax= (int) agemax;
   double *xp;    /*pp=vector(1,nlstate);*/
   double *gp, *gm;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   double **gradg, **trgradg;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   double **mu;    j1=0;
   double age,agelim, cov[NCOVMAX];    
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    j=cptcoveff;
   int theta;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   char fileresprob[FILENAMELENGTH];    
   char fileresprobcov[FILENAMELENGTH];    for(k1=1; k1<=j;k1++){
   char fileresprobcor[FILENAMELENGTH];      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   double ***varpij;        
         for (i=1; i<=nlstate; i++)  
   strcpy(fileresprob,"prob");          for(m=iagemin; m <= iagemax+3; m++)
   strcat(fileresprob,fileres);            prop[i][m]=0.0;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {       
     printf("Problem with resultfile: %s\n", fileresprob);        for (i=1; i<=imx; i++) { /* Each individual */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);          bool=1;
   }          if  (cptcovn>0) {
   strcpy(fileresprobcov,"probcov");            for (z1=1; z1<=cptcoveff; z1++) 
   strcat(fileresprobcov,fileres);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {                bool=0;
     printf("Problem with resultfile: %s\n", fileresprobcov);          } 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);          if (bool==1) { 
   }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   strcpy(fileresprobcor,"probcor");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   strcat(fileresprobcor,fileres);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     printf("Problem with resultfile: %s\n", fileresprobcor);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                  prop[s[m][i]][iagemax+3] += weight[i]; 
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                } 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              }
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            } /* end selection of waves */
            }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        }
   fprintf(ficresprob,"# Age");        for(i=iagemin; i <= iagemax+3; i++){  
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          
   fprintf(ficresprobcov,"# Age");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");            posprop += prop[jk][i]; 
   fprintf(ficresprobcov,"# Age");          } 
   
           for(jk=1; jk <=nlstate ; jk++){     
   for(i=1; i<=nlstate;i++)            if( i <=  iagemax){ 
     for(j=1; j<=(nlstate+ndeath);j++){              if(posprop>=1.e-5){ 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                probs[i][jk][j1]= prop[jk][i]/posprop;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);              } 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);            } 
     }            }/* end jk */ 
   fprintf(ficresprob,"\n");        }/* end i */ 
   fprintf(ficresprobcov,"\n");      } /* end i1 */
   fprintf(ficresprobcor,"\n");    } /* end k1 */
   xp=vector(1,npar);    
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    /*free_vector(pp,1,nlstate);*/
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  }  /* End of prevalence */
   first=1;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  /************* Waves Concatenation ***************/
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     exit(0);  {
   }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   else{       Death is a valid wave (if date is known).
     fprintf(ficgp,"\n# Routine varprob");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {       and mw[mi+1][i]. dh depends on stepm.
     printf("Problem with html file: %s\n", optionfilehtm);       */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  
     exit(0);    int i, mi, m;
   }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   else{       double sum=0., jmean=0.;*/
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    int first;
     fprintf(fichtm,"\n");    int j, k=0,jk, ju, jl;
     double sum=0.;
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    first=0;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    jmin=1e+5;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    jmax=-1;
     jmean=0.;
   }    for(i=1; i<=imx; i++){
       mi=0;
        m=firstpass;
   cov[1]=1;      while(s[m][i] <= nlstate){
   tj=cptcoveff;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}          mw[++mi][i]=m;
   j1=0;        if(m >=lastpass)
   for(t=1; t<=tj;t++){          break;
     for(i1=1; i1<=ncodemax[t];i1++){        else
       j1++;          m++;
            }/* end while */
       if  (cptcovn>0) {      if (s[m][i] > nlstate){
         fprintf(ficresprob, "\n#********** Variable ");        mi++;     /* Death is another wave */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        /* if(mi==0)  never been interviewed correctly before death */
         fprintf(ficresprob, "**********\n#");           /* Only death is a correct wave */
         fprintf(ficresprobcov, "\n#********** Variable ");        mw[mi][i]=m;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      }
         fprintf(ficresprobcov, "**********\n#");  
              wav[i]=mi;
         fprintf(ficgp, "\n#********** Variable ");      if(mi==0){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        nbwarn++;
         fprintf(ficgp, "**********\n#");        if(first==0){
                  printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                  first=1;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");        }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if(first==1){
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
                }
         fprintf(ficresprobcor, "\n#********** Variable ");          } /* end mi==0 */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    } /* End individuals */
         fprintf(ficgp, "**********\n#");      
       }    for(i=1; i<=imx; i++){
            for(mi=1; mi<wav[i];mi++){
       for (age=bage; age<=fage; age ++){        if (stepm <=0)
         cov[2]=age;          dh[mi][i]=1;
         for (k=1; k<=cptcovn;k++) {        else{
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         }            if (agedc[i] < 2*AGESUP) {
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         for (k=1; k<=cptcovprod;k++)              if(j==0) j=1;  /* Survives at least one month after exam */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              else if(j<0){
                        nberr++;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);                j=1; /* Temporary Dangerous patch */
         gp=vector(1,(nlstate)*(nlstate+ndeath));                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         gm=vector(1,(nlstate)*(nlstate+ndeath));                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                    fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         for(theta=1; theta <=npar; theta++){              }
           for(i=1; i<=npar; i++)              k=k+1;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              if (j >= jmax){
                          jmax=j;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                ijmax=i;
                        }
           k=0;              if (j <= jmin){
           for(i=1; i<= (nlstate); i++){                jmin=j;
             for(j=1; j<=(nlstate+ndeath);j++){                ijmin=i;
               k=k+1;              }
               gp[k]=pmmij[i][j];              sum=sum+j;
             }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                      }
           for(i=1; i<=npar; i++)          }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          else{
                j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           k=0;  
           for(i=1; i<=(nlstate); i++){            k=k+1;
             for(j=1; j<=(nlstate+ndeath);j++){            if (j >= jmax) {
               k=k+1;              jmax=j;
               gm[k]=pmmij[i][j];              ijmax=i;
             }            }
           }            else if (j <= jmin){
                    jmin=j;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)              ijmin=i;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              }
         }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            if(j<0){
           for(theta=1; theta <=npar; theta++)              nberr++;
             trgradg[j][theta]=gradg[theta][j];              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                      fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            sum=sum+j;
                  }
         pmij(pmmij,cov,ncovmodel,x,nlstate);          jk= j/stepm;
                  jl= j -jk*stepm;
         k=0;          ju= j -(jk+1)*stepm;
         for(i=1; i<=(nlstate); i++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           for(j=1; j<=(nlstate+ndeath);j++){            if(jl==0){
             k=k+1;              dh[mi][i]=jk;
             mu[k][(int) age]=pmmij[i][j];              bh[mi][i]=0;
           }            }else{ /* We want a negative bias in order to only have interpolation ie
         }                    * at the price of an extra matrix product in likelihood */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              dh[mi][i]=jk+1;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)              bh[mi][i]=ju;
             varpij[i][j][(int)age] = doldm[i][j];            }
           }else{
         /*printf("\n%d ",(int)age);            if(jl <= -ju){
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              dh[mi][i]=jk;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              bh[mi][i]=jl;       /* bias is positive if real duration
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                                   * is higher than the multiple of stepm and negative otherwise.
      }*/                                   */
             }
         fprintf(ficresprob,"\n%d ",(int)age);            else{
         fprintf(ficresprobcov,"\n%d ",(int)age);              dh[mi][i]=jk+1;
         fprintf(ficresprobcor,"\n%d ",(int)age);              bh[mi][i]=ju;
             }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            if(dh[mi][i]==0){
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              dh[mi][i]=1; /* At least one step */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              bh[mi][i]=ju; /* At least one step */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            }
         }          } /* end if mle */
         i=0;        }
         for (k=1; k<=(nlstate);k++){      } /* end wave */
           for (l=1; l<=(nlstate+ndeath);l++){    }
             i=i++;    jmean=sum/k;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
             for (j=1; j<=i;j++){   }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  /*********** Tricode ****************************/
             }  void tricode(int *Tvar, int **nbcode, int imx)
           }  {
         }/* end of loop for state */    
       } /* end of loop for age */    int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
       /* Confidence intervalle of pij  */    cptcoveff=0; 
       /*   
       fprintf(ficgp,"\nset noparametric;unset label");    for (k=0; k<maxncov; k++) Ndum[k]=0;
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    for (k=1; k<=7; k++) ncodemax[k]=0;
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);                                 modality*/ 
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       */        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       first1=1;                                         Tvar[j]. If V=sex and male is 0 and 
       for (k2=1; k2<=(nlstate);k2++){                                         female is 1, then  cptcode=1.*/
         for (l2=1; l2<=(nlstate+ndeath);l2++){      }
           if(l2==k2) continue;  
           j=(k2-1)*(nlstate+ndeath)+l2;      for (i=0; i<=cptcode; i++) {
           for (k1=1; k1<=(nlstate);k1++){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
             for (l1=1; l1<=(nlstate+ndeath);l1++){      }
               if(l1==k1) continue;  
               i=(k1-1)*(nlstate+ndeath)+l1;      ij=1; 
               if(i<=j) continue;      for (i=1; i<=ncodemax[j]; i++) {
               for (age=bage; age<=fage; age ++){        for (k=0; k<= maxncov; k++) {
                 if ((int)age %5==0){          if (Ndum[k] != 0) {
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            nbcode[Tvar[j]][ij]=k; 
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;            
                   mu1=mu[i][(int) age]/stepm*YEARM ;            ij++;
                   mu2=mu[j][(int) age]/stepm*YEARM;          }
                   c12=cv12/sqrt(v1*v2);          if (ij > ncodemax[j]) break; 
                   /* Computing eigen value of matrix of covariance */        }  
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      } 
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    }  
                   /* Eigen vectors */  
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));   for (k=0; k< maxncov; k++) Ndum[k]=0;
                   /*v21=sqrt(1.-v11*v11); *//* error */  
                   v21=(lc1-v1)/cv12*v11;   for (i=1; i<=ncovmodel-2; i++) { 
                   v12=-v21;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
                   v22=v11;     ij=Tvar[i];
                   tnalp=v21/v11;     Ndum[ij]++;
                   if(first1==1){   }
                     first1=0;  
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);   ij=1;
                   }   for (i=1; i<= maxncov; i++) {
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);     if((Ndum[i]!=0) && (i<=ncovcol)){
                   /*printf(fignu*/       Tvaraff[ij]=i; /*For printing */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */       ij++;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */     }
                   if(first==1){   }
                     first=0;   
                     fprintf(ficgp,"\nset parametric;unset label");   cptcoveff=ij-1; /*Number of simple covariates*/
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);  }
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);  /*********** Health Expectancies ****************/
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);  
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  {
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    /* Health expectancies, no variances */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    double age, agelim, hf;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    double ***p3mat;
                   }else{    double eip;
                     first=0;  
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);    pstamp(ficreseij);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    fprintf(ficreseij,"# Age");
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    for(i=1; i<=nlstate;i++){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      for(j=1; j<=nlstate;j++){
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        fprintf(ficreseij," e%1d%1d ",i,j);
                   }/* if first */      }
                 } /* age mod 5 */      fprintf(ficreseij," e%1d. ",i);
               } /* end loop age */    }
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);    fprintf(ficreseij,"\n");
               first=1;  
             } /*l12 */    
           } /* k12 */    if(estepm < stepm){
         } /*l1 */      printf ("Problem %d lower than %d\n",estepm, stepm);
       }/* k1 */    }
     } /* loop covariates */    else  hstepm=estepm;   
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    /* We compute the life expectancy from trapezoids spaced every estepm months
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));     * This is mainly to measure the difference between two models: for example
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));     * if stepm=24 months pijx are given only every 2 years and by summing them
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);     * we are calculating an estimate of the Life Expectancy assuming a linear 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);     * progression in between and thus overestimating or underestimating according
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   free_vector(xp,1,npar);     * to compare the new estimate of Life expectancy with the same linear 
   fclose(ficresprob);     * hypothesis. A more precise result, taking into account a more precise
   fclose(ficresprobcov);     * curvature will be obtained if estepm is as small as stepm. */
   fclose(ficresprobcor);  
   fclose(ficgp);    /* For example we decided to compute the life expectancy with the smallest unit */
   fclose(fichtm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 }       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
 /******************* Printing html file ***********/       and note for a fixed period like estepm months */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   int lastpass, int stepm, int weightopt, char model[],\       survival function given by stepm (the optimization length). Unfortunately it
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\       means that if the survival funtion is printed only each two years of age and if
                   int popforecast, int estepm ,\       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   double jprev1, double mprev1,double anprev1, \       results. So we changed our mind and took the option of the best precision.
                   double jprev2, double mprev2,double anprev2){    */
   int jj1, k1, i1, cpt;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /*char optionfilehtm[FILENAMELENGTH];*/  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    agelim=AGESUP;
     printf("Problem with %s \n",optionfilehtm), exit(0);    /* nhstepm age range expressed in number of stepm */
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  - Life expectancies by age and initial health status (estepm=%2d months):      /* Computed by stepm unit matrices, product of hstepm matrices, stored
    <a href=\"e%s\">e%s</a> <br>\n</li>", \         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  m=cptcoveff;      
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
  jj1=0;      
  for(k1=1; k1<=m;k1++){      /* Computing expectancies */
    for(i1=1; i1<=ncodemax[k1];i1++){      for(i=1; i<=nlstate;i++)
      jj1++;        for(j=1; j<=nlstate;j++)
      if (cptcovn > 0) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
        for (cpt=1; cpt<=cptcoveff;cpt++)            
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }          }
      /* Pij */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      fprintf(ficreseij,"%3.0f",age );
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          for(i=1; i<=nlstate;i++){
      /* Quasi-incidences */        eip=0;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        for(j=1; j<=nlstate;j++){
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          eip +=eij[i][j][(int)age];
        /* Stable prevalence in each health state */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
        for(cpt=1; cpt<nlstate;cpt++){        }
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        fprintf(ficreseij,"%9.4f", eip );
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      }
        }      fprintf(ficreseij,"\n");
      for(cpt=1; cpt<=nlstate;cpt++) {      
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    }
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }    printf("\n");
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    fprintf(ficlog,"\n");
 health expectancies in states (1) and (2): e%s%d.png<br>    
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  }
    } /* end i1 */  
  }/* End k1 */  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
  fprintf(fichtm,"</ul>");  
   {
     /* Covariances of health expectancies eij and of total life expectancies according
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n     to initial status i, ei. .
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    double age, agelim, hf;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    double ***p3matp, ***p3matm, ***varhe;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    double **dnewm,**doldm;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    double *xp, *xm;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    double **gp, **gm;
     double ***gradg, ***trgradg;
  if(popforecast==1) fprintf(fichtm,"\n    int theta;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    double eip, vip;
         <br>",fileres,fileres,fileres,fileres);  
  else    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    xp=vector(1,npar);
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
  m=cptcoveff;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    
     pstamp(ficresstdeij);
  jj1=0;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
  for(k1=1; k1<=m;k1++){    fprintf(ficresstdeij,"# Age");
    for(i1=1; i1<=ncodemax[k1];i1++){    for(i=1; i<=nlstate;i++){
      jj1++;      for(j=1; j<=nlstate;j++)
      if (cptcovn > 0) {        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      fprintf(ficresstdeij," e%1d. ",i);
        for (cpt=1; cpt<=cptcoveff;cpt++)    }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fprintf(ficresstdeij,"\n");
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }    pstamp(ficrescveij);
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    fprintf(ficrescveij,"# Age");
 interval) in state (%d): v%s%d%d.png <br>    for(i=1; i<=nlstate;i++)
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(j=1; j<=nlstate;j++){
      }        cptj= (j-1)*nlstate+i;
    } /* end i1 */        for(i2=1; i2<=nlstate;i2++)
  }/* End k1 */          for(j2=1; j2<=nlstate;j2++){
  fprintf(fichtm,"</ul>");            cptj2= (j2-1)*nlstate+i2;
 fclose(fichtm);            if(cptj2 <= cptj)
 }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
 /******************* Gnuplot file **************/      }
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    fprintf(ficrescveij,"\n");
     
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    if(estepm < stepm){
   int ng;      printf ("Problem %d lower than %d\n",estepm, stepm);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    }
     printf("Problem with file %s",optionfilegnuplot);    else  hstepm=estepm;   
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    /* We compute the life expectancy from trapezoids spaced every estepm months
   }     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
 #ifdef windows     * we are calculating an estimate of the Life Expectancy assuming a linear 
     fprintf(ficgp,"cd \"%s\" \n",pathc);     * progression in between and thus overestimating or underestimating according
 #endif     * to the curvature of the survival function. If, for the same date, we 
 m=pow(2,cptcoveff);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
  /* 1eme*/     * hypothesis. A more precise result, taking into account a more precise
   for (cpt=1; cpt<= nlstate ; cpt ++) {     * curvature will be obtained if estepm is as small as stepm. */
    for (k1=1; k1<= m ; k1 ++) {  
     /* For example we decided to compute the life expectancy with the smallest unit */
 #ifdef windows    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       nhstepm is the number of hstepm from age to agelim 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);       nstepm is the number of stepm from age to agelin. 
 #endif       Look at hpijx to understand the reason of that which relies in memory size
 #ifdef unix       and note for a fixed period like estepm months */
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);       survival function given by stepm (the optimization length). Unfortunately it
 #endif       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 for (i=1; i<= nlstate ; i ++) {       results. So we changed our mind and took the option of the best precision.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* If stepm=6 months */
     for (i=1; i<= nlstate ; i ++) {    /* nhstepm age range expressed in number of stepm */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    agelim=AGESUP;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* if (stepm >= YEARM) hstepm=1;*/
      for (i=1; i<= nlstate ; i ++) {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }      p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 #ifdef unix    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    gp=matrix(0,nhstepm,1,nlstate*nlstate);
 #endif    gm=matrix(0,nhstepm,1,nlstate*nlstate);
    }  
   }    for (age=bage; age<=fage; age ++){ 
   /*2 eme*/  
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   for (k1=1; k1<= m ; k1 ++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);   
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      
     for (i=1; i<= nlstate+1 ; i ++) {      /* Computing  Variances of health expectancies */
       k=2*i;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);         decrease memory allocation */
       for (j=1; j<= nlstate+1 ; j ++) {      for(theta=1; theta <=npar; theta++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(i=1; i<=npar; i++){ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 }            xm[i] = x[i] - (i==theta ?delti[theta]:0);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       for (j=1; j<= nlstate+1 ; j ++) {    
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1; j<= nlstate; j++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(i=1; i<=nlstate; i++){
 }              for(h=0; h<=nhstepm-1; h++){
       fprintf(ficgp,"\" t\"\" w l 0,");              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       for (j=1; j<= nlstate+1 ; j ++) {            }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }         
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for(ij=1; ij<= nlstate*nlstate; ij++)
       else fprintf(ficgp,"\" t\"\" w l 0,");          for(h=0; h<=nhstepm-1; h++){
     }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   }          }
        }/* End theta */
   /*3eme*/      
       
   for (k1=1; k1<= m ; k1 ++) {      for(h=0; h<=nhstepm-1; h++)
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for(j=1; j<=nlstate*nlstate;j++)
       k=2+nlstate*(2*cpt-2);          for(theta=1; theta <=npar; theta++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       for(ij=1;ij<=nlstate*nlstate;ij++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for(ji=1;ji<=nlstate*nlstate;ji++)
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          varhe[ij][ji][(int)age] =0.;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 */       for(h=0;h<=nhstepm-1;h++){
       for (i=1; i< nlstate ; i ++) {        for(k=0;k<=nhstepm-1;k++){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       }          for(ij=1;ij<=nlstate*nlstate;ij++)
     }            for(ji=1;ji<=nlstate*nlstate;ji++)
   }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
          }
   /* CV preval stat */      }
     for (k1=1; k1<= m ; k1 ++) {      /* Computing expectancies */
     for (cpt=1; cpt<nlstate ; cpt ++) {      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       k=3;      for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(j=1; j<=nlstate;j++)
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       for (i=1; i< nlstate ; i ++)            
         fprintf(ficgp,"+$%d",k+i+1);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
                }
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      fprintf(ficresstdeij,"%3.0f",age );
       for (i=1; i< nlstate ; i ++) {      for(i=1; i<=nlstate;i++){
         l=3+(nlstate+ndeath)*cpt;        eip=0.;
         fprintf(ficgp,"+$%d",l+i+1);        vip=0.;
       }        for(j=1; j<=nlstate;j++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            eip += eij[i][j][(int)age];
     }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   }              vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
            fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   /* proba elementaires */        }
    for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     for(k=1; k <=(nlstate+ndeath); k++){      }
       if (k != i) {      fprintf(ficresstdeij,"\n");
         for(j=1; j <=ncovmodel; j++){  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      fprintf(ficrescveij,"%3.0f",age );
           jk++;      for(i=1; i<=nlstate;i++)
           fprintf(ficgp,"\n");        for(j=1; j<=nlstate;j++){
         }          cptj= (j-1)*nlstate+i;
       }          for(i2=1; i2<=nlstate;i2++)
     }            for(j2=1; j2<=nlstate;j2++){
    }              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
      for(jk=1; jk <=m; jk++) {            }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        }
        if (ng==2)      fprintf(ficrescveij,"\n");
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");     
        else    }
          fprintf(ficgp,"\nset title \"Probability\"\n");    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
        i=1;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
        for(k2=1; k2<=nlstate; k2++) {    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
          k3=i;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          for(k=1; k<=(nlstate+ndeath); k++) {    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            if (k != k2){    printf("\n");
              if(ng==2)    fprintf(ficlog,"\n");
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  
              else    free_vector(xm,1,npar);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    free_vector(xp,1,npar);
              ij=1;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
              for(j=3; j <=ncovmodel; j++) {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  }
                  ij++;  
                }  /************ Variance ******************/
                else  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  {
              }    /* Variance of health expectancies */
              fprintf(ficgp,")/(1");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                  /* double **newm;*/
              for(k1=1; k1 <=nlstate; k1++){      double **dnewm,**doldm;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    double **dnewmp,**doldmp;
                ij=1;    int i, j, nhstepm, hstepm, h, nstepm ;
                for(j=3; j <=ncovmodel; j++){    int k, cptcode;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double *xp;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double **gp, **gm;  /* for var eij */
                    ij++;    double ***gradg, ***trgradg; /*for var eij */
                  }    double **gradgp, **trgradgp; /* for var p point j */
                  else    double *gpp, *gmp; /* for var p point j */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                }    double ***p3mat;
                fprintf(ficgp,")");    double age,agelim, hf;
              }    double ***mobaverage;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    int theta;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    char digit[4];
              i=i+ncovmodel;    char digitp[25];
            }  
          } /* end k */    char fileresprobmorprev[FILENAMELENGTH];
        } /* end k2 */  
      } /* end jk */    if(popbased==1){
    } /* end ng */      if(mobilav!=0)
    fclose(ficgp);        strcpy(digitp,"-populbased-mobilav-");
 }  /* end gnuplot */      else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
 /*************** Moving average **************/      strcpy(digitp,"-stablbased-");
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  
     if (mobilav!=0) {
   int i, cpt, cptcod;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       for (i=1; i<=nlstate;i++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           mobaverage[(int)agedeb][i][cptcod]=0.;      }
        }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){    strcpy(fileresprobmorprev,"prmorprev"); 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    sprintf(digit,"%-d",ij);
           for (cpt=0;cpt<=4;cpt++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    strcat(fileresprobmorprev,fileres);
         }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
        }
 }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 /************** Forecasting ******************/    pstamp(ficresprobmorprev);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   int *popage;      fprintf(ficresprobmorprev," p.%-d SE",j);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      for(i=1; i<=nlstate;i++)
   double *popeffectif,*popcount;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   double ***p3mat;    }  
   char fileresf[FILENAMELENGTH];    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
  agelim=AGESUP;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  /*   } */
      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      pstamp(ficresvij);
   strcpy(fileresf,"f");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   strcat(fileresf,fileres);    if(popbased==1)
   if((ficresf=fopen(fileresf,"w"))==NULL) {      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     printf("Problem with forecast resultfile: %s\n", fileresf);    else
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   }    fprintf(ficresvij,"# Age");
   printf("Computing forecasting: result on file '%s' \n", fileresf);    for(i=1; i<=nlstate;i++)
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(ficresvij,"\n");
   
   if (mobilav==1) {    xp=vector(1,npar);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    dnewm=matrix(1,nlstate,1,npar);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    doldm=matrix(1,nlstate,1,nlstate);
   }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
   agelim=AGESUP;    gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   hstepm=1;    
   hstepm=hstepm/stepm;    if(estepm < stepm){
   yp1=modf(dateintmean,&yp);      printf ("Problem %d lower than %d\n",estepm, stepm);
   anprojmean=yp;    }
   yp2=modf((yp1*12),&yp);    else  hstepm=estepm;   
   mprojmean=yp;    /* For example we decided to compute the life expectancy with the smallest unit */
   yp1=modf((yp2*30.5),&yp);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   jprojmean=yp;       nhstepm is the number of hstepm from age to agelim 
   if(jprojmean==0) jprojmean=1;       nstepm is the number of stepm from age to agelin. 
   if(mprojmean==0) jprojmean=1;       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like k years */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   for(cptcov=1;cptcov<=i2;cptcov++){       means that if the survival funtion is printed every two years of age and if
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       k=k+1;       results. So we changed our mind and took the option of the best precision.
       fprintf(ficresf,"\n#******");    */
       for(j=1;j<=cptcoveff;j++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    agelim = AGESUP;
       }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       fprintf(ficresf,"******\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fprintf(ficresf,"# StartingAge FinalAge");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
            gp=matrix(0,nhstepm,1,nlstate);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      gm=matrix(0,nhstepm,1,nlstate);
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
       for(theta=1; theta <=npar; theta++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           nhstepm = nhstepm/hstepm;        }
                  hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          if (popbased==1) {
                  if(mobilav ==0){
           for (h=0; h<=nhstepm; h++){            for(i=1; i<=nlstate;i++)
             if (h==(int) (calagedate+YEARM*cpt)) {              prlim[i][i]=probs[(int)age][i][ij];
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          }else{ /* mobilav */ 
             }            for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
               kk1=0.;kk2=0;          }
               for(i=1; i<=nlstate;i++) {                      }
                 if (mobilav==1)    
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(j=1; j<= nlstate; j++){
                 else {          for(h=0; h<=nhstepm; h++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                 }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                          }
               }        }
               if (h==(int)(calagedate+12*cpt)){        /* This for computing probability of death (h=1 means
                 fprintf(ficresf," %.3f", kk1);           computed over hstepm matrices product = hstepm*stepm months) 
                                   as a weighted average of prlim.
               }        */
             }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }        }    
       }        /* end probability of death */
     }  
   }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                  xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fclose(ficresf);   
 }        if (popbased==1) {
 /************** Forecasting ******************/          if(mobilav ==0){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          }else{ /* mobilav */ 
   int *popage;            for(i=1; i<=nlstate;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              prlim[i][i]=mobaverage[(int)age][i][ij];
   double *popeffectif,*popcount;          }
   double ***p3mat,***tabpop,***tabpopprev;        }
   char filerespop[FILENAMELENGTH];  
         for(j=1; j<= nlstate; j++){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(h=0; h<=nhstepm; h++){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   agelim=AGESUP;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          }
          }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
   strcpy(filerespop,"pop");        */
   strcat(filerespop,fileres);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     printf("Problem with forecast resultfile: %s\n", filerespop);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);        }    
   }        /* end probability of death */
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     movingaverage(agedeb, fage, ageminpar, mobaverage);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   }        }
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;      } /* End theta */
   if (stepm<=12) stepsize=1;  
        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   agelim=AGESUP;  
        for(h=0; h<=nhstepm; h++) /* veij */
   hstepm=1;        for(j=1; j<=nlstate;j++)
   hstepm=hstepm/stepm;          for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       printf("Problem with population file : %s\n",popfile);exit(0);        for(theta=1; theta <=npar; theta++)
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          trgradgp[j][theta]=gradgp[theta][j];
     }    
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     popcount=vector(0,AGESUP);      for(i=1;i<=nlstate;i++)
            for(j=1;j<=nlstate;j++)
     i=1;            vareij[i][j][(int)age] =0.;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
          for(h=0;h<=nhstepm;h++){
     imx=i;        for(k=0;k<=nhstepm;k++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
   for(cptcov=1;cptcov<=i2;cptcov++){            for(j=1;j<=nlstate;j++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       k=k+1;        }
       fprintf(ficrespop,"\n#******");      }
       for(j=1;j<=cptcoveff;j++) {    
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* pptj */
       }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       fprintf(ficrespop,"******\n");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       fprintf(ficrespop,"# Age");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");          varppt[j][i]=doldmp[j][i];
            /* end ppptj */
       for (cpt=0; cpt<=0;cpt++) {      /*  x centered again */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
              prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      if (popbased==1) {
           nhstepm = nhstepm/hstepm;        if(mobilav ==0){
                    for(i=1; i<=nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            prlim[i][i]=probs[(int)age][i][ij];
           oldm=oldms;savm=savms;        }else{ /* mobilav */ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(i=1; i<=nlstate;i++)
                    prlim[i][i]=mobaverage[(int)age][i][ij];
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedate+YEARM*cpt)) {      }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);               
             }      /* This for computing probability of death (h=1 means
             for(j=1; j<=nlstate+ndeath;j++) {         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
               kk1=0.;kk2=0;         as a weighted average of prlim.
               for(i=1; i<=nlstate;i++) {                    */
                 if (mobilav==1)      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
                 else {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      }    
                 }      /* end probability of death */
               }  
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   /*fprintf(ficrespop," %.3f", kk1);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        for(i=1; i<=nlstate;i++){
               }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
             }        }
             for(i=1; i<=nlstate;i++){      } 
               kk1=0.;      fprintf(ficresprobmorprev,"\n");
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      fprintf(ficresvij,"%.0f ",age );
                 }      for(i=1; i<=nlstate;i++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        for(j=1; j<=nlstate;j++){
             }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      fprintf(ficresvij,"\n");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      free_matrix(gp,0,nhstepm,1,nlstate);
           }      free_matrix(gm,0,nhstepm,1,nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      } /* End age */
   /******/    free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           nhstepm = nhstepm/hstepm;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
            /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           oldm=oldms;savm=savms;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           for (h=0; h<=nhstepm; h++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
             }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             for(j=1; j<=nlstate+ndeath;j++) {    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
               kk1=0.;kk2=0;  */
               for(i=1; i<=nlstate;i++) {                /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
               }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    free_vector(xp,1,npar);
             }    free_matrix(doldm,1,nlstate,1,nlstate);
           }    free_matrix(dnewm,1,nlstate,1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    fclose(ficresprobmorprev);
      fflush(ficgp);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fflush(fichtm); 
   }  /* end varevsij */
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);  /************ Variance of prevlim ******************/
     free_vector(popeffectif,0,AGESUP);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     free_vector(popcount,0,AGESUP);  {
   }    /* Variance of prevalence limit */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **newm;
   fclose(ficrespop);    double **dnewm,**doldm;
 }    int i, j, nhstepm, hstepm;
     int k, cptcode;
 /***********************************************/    double *xp;
 /**************** Main Program *****************/    double *gp, *gm;
 /***********************************************/    double **gradg, **trgradg;
     double age,agelim;
 int main(int argc, char *argv[])    int theta;
 {    
     pstamp(ficresvpl);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   double agedeb, agefin,hf;    fprintf(ficresvpl,"# Age");
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
   double fret;    fprintf(ficresvpl,"\n");
   double **xi,tmp,delta;  
     xp=vector(1,npar);
   double dum; /* Dummy variable */    dnewm=matrix(1,nlstate,1,npar);
   double ***p3mat;    doldm=matrix(1,nlstate,1,nlstate);
   int *indx;    
   char line[MAXLINE], linepar[MAXLINE];    hstepm=1*YEARM; /* Every year of age */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   int firstobs=1, lastobs=10;    agelim = AGESUP;
   int sdeb, sfin; /* Status at beginning and end */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   int c,  h , cpt,l;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   int ju,jl, mi;      if (stepm >= YEARM) hstepm=1;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      gradg=matrix(1,npar,1,nlstate);
   int mobilav=0,popforecast=0;      gp=vector(1,nlstate);
   int hstepm, nhstepm;      gm=vector(1,nlstate);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
       for(theta=1; theta <=npar; theta++){
   double bage, fage, age, agelim, agebase;        for(i=1; i<=npar; i++){ /* Computes gradient */
   double ftolpl=FTOL;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double **prlim;        }
   double *severity;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double ***param; /* Matrix of parameters */        for(i=1;i<=nlstate;i++)
   double  *p;          gp[i] = prlim[i][i];
   double **matcov; /* Matrix of covariance */      
   double ***delti3; /* Scale */        for(i=1; i<=npar; i++) /* Computes gradient */
   double *delti; /* Scale */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double ***eij, ***vareij;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double **varpl; /* Variances of prevalence limits by age */        for(i=1;i<=nlstate;i++)
   double *epj, vepp;          gm[i] = prlim[i][i];
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
       trgradg =matrix(1,nlstate,1,npar);
   
   char z[1]="c", occ;      for(j=1; j<=nlstate;j++)
 #include <sys/time.h>        for(theta=1; theta <=npar; theta++)
 #include <time.h>          trgradg[j][theta]=gradg[theta][j];
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
        for(i=1;i<=nlstate;i++)
   /* long total_usecs;        varpl[i][(int)age] =0.;
   struct timeval start_time, end_time;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      for(i=1;i<=nlstate;i++)
   getcwd(pathcd, size);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
   printf("\n%s",version);      fprintf(ficresvpl,"%.0f ",age );
   if(argc <=1){      for(i=1; i<=nlstate;i++)
     printf("\nEnter the parameter file name: ");        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     scanf("%s",pathtot);      fprintf(ficresvpl,"\n");
   }      free_vector(gp,1,nlstate);
   else{      free_vector(gm,1,nlstate);
     strcpy(pathtot,argv[1]);      free_matrix(gradg,1,npar,1,nlstate);
   }      free_matrix(trgradg,1,nlstate,1,npar);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    } /* End age */
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    free_vector(xp,1,npar);
   /* cutv(path,optionfile,pathtot,'\\');*/    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  }
   chdir(path);  
   replace(pathc,path);  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 /*-------- arguments in the command line --------*/  {
     int i, j=0,  i1, k1, l1, t, tj;
   /* Log file */    int k2, l2, j1,  z1;
   strcat(filelog, optionfilefiname);    int k=0,l, cptcode;
   strcat(filelog,".log");    /* */    int first=1, first1;
   if((ficlog=fopen(filelog,"w"))==NULL)    {    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     printf("Problem with logfile %s\n",filelog);    double **dnewm,**doldm;
     goto end;    double *xp;
   }    double *gp, *gm;
   fprintf(ficlog,"Log filename:%s\n",filelog);    double **gradg, **trgradg;
   fprintf(ficlog,"\n%s",version);    double **mu;
   fprintf(ficlog,"\nEnter the parameter file name: ");    double age,agelim, cov[NCOVMAX];
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   fflush(ficlog);    int theta;
     char fileresprob[FILENAMELENGTH];
   /* */    char fileresprobcov[FILENAMELENGTH];
   strcpy(fileres,"r");    char fileresprobcor[FILENAMELENGTH];
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */    double ***varpij;
   
   /*---------arguments file --------*/    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     printf("Problem with optionfile %s\n",optionfile);      printf("Problem with resultfile: %s\n", fileresprob);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     goto end;    }
   }    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
   strcpy(filereso,"o");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   strcat(filereso,fileres);      printf("Problem with resultfile: %s\n", fileresprobcov);
   if((ficparo=fopen(filereso,"w"))==NULL) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     printf("Problem with Output resultfile: %s\n", filereso);    }
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    strcpy(fileresprobcor,"probcor"); 
     goto end;    strcat(fileresprobcor,fileres);
   }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
   /* Reads comments: lines beginning with '#' */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     puts(line);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fputs(line,ficparo);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   ungetc(c,ficpar);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    fprintf(ficresprob,"# Age");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    pstamp(ficresprobcov);
 while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     ungetc(c,ficpar);    fprintf(ficresprobcov,"# Age");
     fgets(line, MAXLINE, ficpar);    pstamp(ficresprobcor);
     puts(line);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fputs(line,ficparo);    fprintf(ficresprobcor,"# Age");
   }  
   ungetc(c,ficpar);  
      for(i=1; i<=nlstate;i++)
          for(j=1; j<=(nlstate+ndeath);j++){
   covar=matrix(0,NCOVMAX,1,n);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   cptcovn=0;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
   ncovmodel=2+cptcovn;   /* fprintf(ficresprob,"\n");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    fprintf(ficresprobcov,"\n");
      fprintf(ficresprobcor,"\n");
   /* Read guess parameters */   */
   /* Reads comments: lines beginning with '#' */   xp=vector(1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     ungetc(c,ficpar);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     fgets(line, MAXLINE, ficpar);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     puts(line);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     fputs(line,ficparo);    first=1;
   }    fprintf(ficgp,"\n# Routine varprob");
   ungetc(c,ficpar);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
      fprintf(fichtm,"\n");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       fscanf(ficpar,"%1d%1d",&i1,&j1);    file %s<br>\n",optionfilehtmcov);
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       if(mle==1)  and drawn. It helps understanding how is the covariance between two incidences.\
         printf("%1d%1d",i,j);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(ficlog,"%1d%1d",i,j);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       for(k=1; k<=ncovmodel;k++){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         fscanf(ficpar," %lf",&param[i][j][k]);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         if(mle==1){  standard deviations wide on each axis. <br>\
           printf(" %lf",param[i][j][k]);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           fprintf(ficlog," %lf",param[i][j][k]);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
         }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         else  
           fprintf(ficlog," %lf",param[i][j][k]);    cov[1]=1;
         fprintf(ficparo," %lf",param[i][j][k]);    tj=cptcoveff;
       }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       fscanf(ficpar,"\n");    j1=0;
       if(mle==1)    for(t=1; t<=tj;t++){
         printf("\n");      for(i1=1; i1<=ncodemax[t];i1++){ 
       fprintf(ficlog,"\n");        j1++;
       fprintf(ficparo,"\n");        if  (cptcovn>0) {
     }          fprintf(ficresprob, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
   p=param[1][1];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprobcov, "**********\n#\n");
   /* Reads comments: lines beginning with '#' */          
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp, "\n#********** Variable "); 
     ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp, "**********\n#\n");
     puts(line);          
     fputs(line,ficparo);          
   }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          fprintf(ficresprobcor, "\n#********** Variable ");    
   for(i=1; i <=nlstate; i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(j=1; j <=nlstate+ndeath-1; j++){          fprintf(ficresprobcor, "**********\n#");    
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }
       printf("%1d%1d",i,j);        
       fprintf(ficparo,"%1d%1d",i1,j1);        for (age=bage; age<=fage; age ++){ 
       for(k=1; k<=ncovmodel;k++){          cov[2]=age;
         fscanf(ficpar,"%le",&delti3[i][j][k]);          for (k=1; k<=cptcovn;k++) {
         printf(" %le",delti3[i][j][k]);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         fprintf(ficparo," %le",delti3[i][j][k]);          }
       }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       fscanf(ficpar,"\n");          for (k=1; k<=cptcovprod;k++)
       printf("\n");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       fprintf(ficparo,"\n");          
     }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   delti=delti3[1][1];          gp=vector(1,(nlstate)*(nlstate+ndeath));
            gm=vector(1,(nlstate)*(nlstate+ndeath));
   /* Reads comments: lines beginning with '#' */      
   while((c=getc(ficpar))=='#' && c!= EOF){          for(theta=1; theta <=npar; theta++){
     ungetc(c,ficpar);            for(i=1; i<=npar; i++)
     fgets(line, MAXLINE, ficpar);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     puts(line);            
     fputs(line,ficparo);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   }            
   ungetc(c,ficpar);            k=0;
              for(i=1; i<= (nlstate); i++){
   matcov=matrix(1,npar,1,npar);              for(j=1; j<=(nlstate+ndeath);j++){
   for(i=1; i <=npar; i++){                k=k+1;
     fscanf(ficpar,"%s",&str);                gp[k]=pmmij[i][j];
     if(mle==1)              }
       printf("%s",str);            }
     fprintf(ficlog,"%s",str);            
     fprintf(ficparo,"%s",str);            for(i=1; i<=npar; i++)
     for(j=1; j <=i; j++){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       fscanf(ficpar," %le",&matcov[i][j]);      
       if(mle==1){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         printf(" %.5le",matcov[i][j]);            k=0;
         fprintf(ficlog," %.5le",matcov[i][j]);            for(i=1; i<=(nlstate); i++){
       }              for(j=1; j<=(nlstate+ndeath);j++){
       else                k=k+1;
         fprintf(ficlog," %.5le",matcov[i][j]);                gm[k]=pmmij[i][j];
       fprintf(ficparo," %.5le",matcov[i][j]);              }
     }            }
     fscanf(ficpar,"\n");       
     if(mle==1)            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       printf("\n");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     fprintf(ficlog,"\n");          }
     fprintf(ficparo,"\n");  
   }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   for(i=1; i <=npar; i++)            for(theta=1; theta <=npar; theta++)
     for(j=i+1;j<=npar;j++)              trgradg[j][theta]=gradg[theta][j];
       matcov[i][j]=matcov[j][i];          
              matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   if(mle==1)          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     printf("\n");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   fprintf(ficlog,"\n");          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */          pmij(pmmij,cov,ncovmodel,x,nlstate);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          
      strcat(rfileres,".");    /* */          k=0;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          for(i=1; i<=(nlstate); i++){
     if((ficres =fopen(rfileres,"w"))==NULL) {            for(j=1; j<=(nlstate+ndeath);j++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;              k=k+1;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;              mu[k][(int) age]=pmmij[i][j];
     }            }
     fprintf(ficres,"#%s\n",version);          }
              for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     /*-------- data file ----------*/            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     if((fic=fopen(datafile,"r"))==NULL)    {              varpij[i][j][(int)age] = doldm[i][j];
       printf("Problem with datafile: %s\n", datafile);goto end;  
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;          /*printf("\n%d ",(int)age);
     }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     n= lastobs;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     severity = vector(1,maxwav);            }*/
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);          fprintf(ficresprob,"\n%d ",(int)age);
     moisnais=vector(1,n);          fprintf(ficresprobcov,"\n%d ",(int)age);
     annais=vector(1,n);          fprintf(ficresprobcor,"\n%d ",(int)age);
     moisdc=vector(1,n);  
     andc=vector(1,n);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     agedc=vector(1,n);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     cod=ivector(1,n);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     weight=vector(1,n);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     mint=matrix(1,maxwav,1,n);          }
     anint=matrix(1,maxwav,1,n);          i=0;
     s=imatrix(1,maxwav+1,1,n);          for (k=1; k<=(nlstate);k++){
     adl=imatrix(1,maxwav+1,1,n);                for (l=1; l<=(nlstate+ndeath);l++){ 
     tab=ivector(1,NCOVMAX);              i=i++;
     ncodemax=ivector(1,8);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     i=1;              for (j=1; j<=i;j++){
     while (fgets(line, MAXLINE, fic) != NULL)    {                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       if ((i >= firstobs) && (i <=lastobs)) {                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                      }
         for (j=maxwav;j>=1;j--){            }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          }/* end of loop for state */
           strcpy(line,stra);        } /* end of loop for age */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        /* Confidence intervalle of pij  */
         }        /*
                  fprintf(ficgp,"\nset noparametric;unset label");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        */
         for (j=ncovcol;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         }        first1=1;
         num[i]=atol(stra);        for (k2=1; k2<=(nlstate);k2++){
                  for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            if(l2==k2) continue;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
         i=i+1;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       }                if(l1==k1) continue;
     }                i=(k1-1)*(nlstate+ndeath)+l1;
     /* printf("ii=%d", ij);                if(i<=j) continue;
        scanf("%d",i);*/                for (age=bage; age<=fage; age ++){ 
   imx=i-1; /* Number of individuals */                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   /* for (i=1; i<=imx; i++){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                    mu1=mu[i][(int) age]/stepm*YEARM ;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                    mu2=mu[j][(int) age]/stepm*YEARM;
     }*/                    c12=cv12/sqrt(v1*v2);
    /*  for (i=1; i<=imx; i++){                    /* Computing eigen value of matrix of covariance */
      if (s[4][i]==9)  s[4][i]=-1;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      /* Eigen vectors */
                      v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   /* Calculation of the number of parameter from char model*/                    /*v21=sqrt(1.-v11*v11); *//* error */
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                    v21=(lc1-v1)/cv12*v11;
   Tprod=ivector(1,15);                    v12=-v21;
   Tvaraff=ivector(1,15);                    v22=v11;
   Tvard=imatrix(1,15,1,2);                    tnalp=v21/v11;
   Tage=ivector(1,15);                          if(first1==1){
                          first1=0;
   if (strlen(model) >1){                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     j=0, j1=0, k1=1, k2=1;                    }
     j=nbocc(model,'+');                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     j1=nbocc(model,'*');                    /*printf(fignu*/
     cptcovn=j+1;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     cptcovprod=j1;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                        if(first==1){
     strcpy(modelsav,model);                      first=0;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                      fprintf(ficgp,"\nset parametric;unset label");
       printf("Error. Non available option model=%s ",model);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       fprintf(ficlog,"Error. Non available option model=%s ",model);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       goto end;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
      %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     for(i=(j+1); i>=1;i--){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       /*scanf("%d",i);*/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       if (strchr(strb,'*')) {  /* Model includes a product */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         if (strcmp(strc,"age")==0) { /* Vn*age */                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           cptcovprod--;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           cutv(strb,stre,strd,'V');                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/                    }else{
           cptcovage++;                      first=0;
             Tage[cptcovage]=i;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
             /*printf("stre=%s ", stre);*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           cptcovprod--;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           cutv(strb,stre,strc,'V');                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           Tvar[i]=atoi(stre);                    }/* if first */
           cptcovage++;                  } /* age mod 5 */
           Tage[cptcovage]=i;                } /* end loop age */
         }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         else {  /* Age is not in the model */                first=1;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/              } /*l12 */
           Tvar[i]=ncovcol+k1;            } /* k12 */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */          } /*l1 */
           Tprod[k1]=i;        }/* k1 */
           Tvard[k1][1]=atoi(strc); /* m*/      } /* loop covariates */
           Tvard[k1][2]=atoi(stre); /* n */    }
           Tvar[cptcovn+k2]=Tvard[k1][1];    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           for (k=1; k<=lastobs;k++)    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
           k1++;    free_vector(xp,1,npar);
           k2=k2+2;    fclose(ficresprob);
         }    fclose(ficresprobcov);
       }    fclose(ficresprobcor);
       else { /* no more sum */    fflush(ficgp);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    fflush(fichtmcov);
        /*  scanf("%d",i);*/  }
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);  
       }  /******************* Printing html file ***********/
       strcpy(modelsav,stra);    void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                    int lastpass, int stepm, int weightopt, char model[],\
         scanf("%d",i);*/                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     } /* end of loop + */                    int popforecast, int estepm ,\
   } /* end model */                    double jprev1, double mprev1,double anprev1, \
                      double jprev2, double mprev2,double anprev2){
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    int jj1, k1, i1, cpt;
   printf("cptcovprod=%d ", cptcovprod);  
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   scanf("%d ",i);*/     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     fclose(fic);  </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     /*  if(mle==1){*/   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     if (weightopt != 1) { /* Maximisation without weights*/             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       for(i=1;i<=n;i++) weight[i]=1.0;     fprintf(fichtm,"\
     }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     /*-calculation of age at interview from date of interview and age at death -*/             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     agev=matrix(1,maxwav,1,imx);     fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     for (i=1; i<=imx; i++) {             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       for(m=2; (m<= maxwav); m++) {     fprintf(fichtm,"\
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
          anint[m][i]=9999;     <a href=\"%s\">%s</a> <br>\n</li>",
          s[m][i]=-1;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     }  
    m=cptcoveff;
     for (i=1; i<=imx; i++)  {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){   jj1=0;
         if(s[m][i] >0){   for(k1=1; k1<=m;k1++){
           if (s[m][i] >= nlstate+1) {     for(i1=1; i1<=ncodemax[k1];i1++){
             if(agedc[i]>0)       jj1++;
               if(moisdc[i]!=99 && andc[i]!=9999)       if (cptcovn > 0) {
                 agev[m][i]=agedc[i];         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
            else {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
               if (andc[i]!=9999){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
               printf("Warning negative age at death: %d line:%d\n",num[i],i);       }
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);       /* Pij */
               agev[m][i]=-1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
               }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
             }       /* Quasi-incidences */
           }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
           else if(s[m][i] !=9){ /* Should no more exist */   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
             if(mint[m][i]==99 || anint[m][i]==9999)         /* Period (stable) prevalence in each health state */
               agev[m][i]=1;         for(cpt=1; cpt<nlstate;cpt++){
             else if(agev[m][i] <agemin){           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
               agemin=agev[m][i];  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/         }
             }       for(cpt=1; cpt<=nlstate;cpt++) {
             else if(agev[m][i] >agemax){          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
               agemax=agev[m][i];  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/       }
             }     } /* end i1 */
             /*agev[m][i]=anint[m][i]-annais[i];*/   }/* End k1 */
             /*   agev[m][i] = age[i]+2*m;*/   fprintf(fichtm,"</ul>");
           }  
           else { /* =9 */  
             agev[m][i]=1;   fprintf(fichtm,"\
             s[m][i]=-1;  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
           }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
         }  
         else /*= 0 Unknown */   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           agev[m][i]=1;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       }   fprintf(fichtm,"\
       - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){   fprintf(fichtm,"\
         if (s[m][i] > (nlstate+ndeath)) {   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     fprintf(fichtm,"\
           goto end;   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
         }     <a href=\"%s\">%s</a> <br>\n</li>",
       }             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     }   fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);     <a href=\"%s\">%s</a> <br>\n</li>",
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
     free_vector(severity,1,maxwav);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     free_imatrix(outcome,1,maxwav+1,1,n);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     free_vector(moisnais,1,n);   fprintf(fichtm,"\
     free_vector(annais,1,n);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
     /* free_matrix(mint,1,maxwav,1,n);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
        free_matrix(anint,1,maxwav,1,n);*/   fprintf(fichtm,"\
     free_vector(moisdc,1,n);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
     free_vector(andc,1,n);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
      /*  if(popforecast==1) fprintf(fichtm,"\n */
     wav=ivector(1,imx);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  /*      <br>",fileres,fileres,fileres,fileres); */
      /*  else  */
     /* Concatenates waves */  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);   fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
       Tcode=ivector(1,100);   m=cptcoveff;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);   jj1=0;
         for(k1=1; k1<=m;k1++){
    codtab=imatrix(1,100,1,10);     for(i1=1; i1<=ncodemax[k1];i1++){
    h=0;       jj1++;
    m=pow(2,cptcoveff);       if (cptcovn > 0) {
           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
    for(k=1;k<=cptcoveff; k++){         for (cpt=1; cpt<=cptcoveff;cpt++) 
      for(i=1; i <=(m/pow(2,k));i++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
        for(j=1; j <= ncodemax[k]; j++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){       }
            h++;       for(cpt=1; cpt<=nlstate;cpt++) {
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
          }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }       }
      }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    }  health expectancies in states (1) and (2): %s%d.png<br>\
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       codtab[1][2]=1;codtab[2][2]=2; */     } /* end i1 */
    /* for(i=1; i <=m ;i++){   }/* End k1 */
       for(k=1; k <=cptcovn; k++){   fprintf(fichtm,"</ul>");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);   fflush(fichtm);
       }  }
       printf("\n");  
       }  /******************* Gnuplot file **************/
       scanf("%d",i);*/  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
      
    /* Calculates basic frequencies. Computes observed prevalence at single age    char dirfileres[132],optfileres[132];
        and prints on file fileres'p'. */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
      /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
      /*     printf("Problem with file %s",optionfilegnuplot); */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   } */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*#ifdef windows */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficgp,"cd \"%s\" \n",pathc);
            /*#endif */
     /* For Powell, parameters are in a vector p[] starting at p[1]    m=pow(2,cptcoveff);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     if(mle==1){   /* 1eme*/
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    for (cpt=1; cpt<= nlstate ; cpt ++) {
     }     for (k1=1; k1<= m ; k1 ++) {
           fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     /*--------- results files --------------*/       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);       fprintf(ficgp,"set xlabel \"Age\" \n\
    set ylabel \"Probability\" \n\
   set ter png small\n\
    jk=1;  set size 0.65,0.65\n\
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       for (i=1; i<= nlstate ; i ++) {
    for(i=1,jk=1; i <=nlstate; i++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      for(k=1; k <=(nlstate+ndeath); k++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
        if (k != i)       }
          {       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
            printf("%d%d ",i,k);       for (i=1; i<= nlstate ; i ++) {
            fprintf(ficlog,"%d%d ",i,k);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
            fprintf(ficres,"%1d%1d ",i,k);         else fprintf(ficgp," \%%*lf (\%%*lf)");
            for(j=1; j <=ncovmodel; j++){       } 
              printf("%f ",p[jk]);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
              fprintf(ficlog,"%f ",p[jk]);       for (i=1; i<= nlstate ; i ++) {
              fprintf(ficres,"%f ",p[jk]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
              jk++;         else fprintf(ficgp," \%%*lf (\%%*lf)");
            }       }  
            printf("\n");       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
            fprintf(ficlog,"\n");     }
            fprintf(ficres,"\n");    }
          }    /*2 eme*/
      }    
    }    for (k1=1; k1<= m ; k1 ++) { 
    if(mle==1){      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
      /* Computing hessian and covariance matrix */      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
      ftolhess=ftol; /* Usually correct */      
      hesscov(matcov, p, npar, delti, ftolhess, func);      for (i=1; i<= nlstate+1 ; i ++) {
    }        k=2*i;
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
    printf("# Scales (for hessian or gradient estimation)\n");        for (j=1; j<= nlstate+1 ; j ++) {
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
    for(i=1,jk=1; i <=nlstate; i++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
      for(j=1; j <=nlstate+ndeath; j++){        }   
        if (j!=i) {        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
          fprintf(ficres,"%1d%1d",i,j);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
          printf("%1d%1d",i,j);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          fprintf(ficlog,"%1d%1d",i,j);        for (j=1; j<= nlstate+1 ; j ++) {
          for(k=1; k<=ncovmodel;k++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            printf(" %.5e",delti[jk]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
            fprintf(ficlog," %.5e",delti[jk]);        }   
            fprintf(ficres," %.5e",delti[jk]);        fprintf(ficgp,"\" t\"\" w l 0,");
            jk++;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          }        for (j=1; j<= nlstate+1 ; j ++) {
          printf("\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
          fprintf(ficlog,"\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
          fprintf(ficres,"\n");        }   
        }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
      }        else fprintf(ficgp,"\" t\"\" w l 0,");
    }      }
        }
    k=1;    
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    /*3eme*/
    if(mle==1)    
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    for (k1=1; k1<= m ; k1 ++) { 
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      for (cpt=1; cpt<= nlstate ; cpt ++) {
    for(i=1;i<=npar;i++){        /*       k=2+nlstate*(2*cpt-2); */
      /*  if (k>nlstate) k=1;        k=2+(nlstate+1)*(cpt-1);
          i1=(i-1)/(ncovmodel*nlstate)+1;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        fprintf(ficgp,"set ter png small\n\
          printf("%s%d%d",alph[k],i1,tab[i]);*/  set size 0.65,0.65\n\
      fprintf(ficres,"%3d",i);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
      if(mle==1)        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
        printf("%3d",i);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
      fprintf(ficlog,"%3d",i);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
      for(j=1; j<=i;j++){          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
        fprintf(ficres," %.5e",matcov[i][j]);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
        if(mle==1)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
          printf(" %.5e",matcov[i][j]);          
        fprintf(ficlog," %.5e",matcov[i][j]);        */
      }        for (i=1; i< nlstate ; i ++) {
      fprintf(ficres,"\n");          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
      if(mle==1)          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
        printf("\n");          
      fprintf(ficlog,"\n");        } 
      k++;        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
    }      }
        }
    while((c=getc(ficpar))=='#' && c!= EOF){    
      ungetc(c,ficpar);    /* CV preval stable (period) */
      fgets(line, MAXLINE, ficpar);    for (k1=1; k1<= m ; k1 ++) { 
      puts(line);      for (cpt=1; cpt<=nlstate ; cpt ++) {
      fputs(line,ficparo);        k=3;
    }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
    ungetc(c,ficpar);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
    estepm=0;  set ter png small\nset size 0.65,0.65\n\
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  unset log y\n\
    if (estepm==0 || estepm < stepm) estepm=stepm;  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
    if (fage <= 2) {        
      bage = ageminpar;        for (i=1; i< nlstate ; i ++)
      fage = agemaxpar;          fprintf(ficgp,"+$%d",k+i+1);
    }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
            
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        l=3+(nlstate+ndeath)*cpt;
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for (i=1; i< nlstate ; i ++) {
              l=3+(nlstate+ndeath)*cpt;
    while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"+$%d",l+i+1);
      ungetc(c,ficpar);        }
      fgets(line, MAXLINE, ficpar);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
      puts(line);      } 
      fputs(line,ficparo);    }  
    }    
    ungetc(c,ficpar);    /* proba elementaires */
      for(i=1,jk=1; i <=nlstate; i++){
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      for(k=1; k <=(nlstate+ndeath); k++){
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        if (k != i) {
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for(j=1; j <=ncovmodel; j++){
                fprintf(ficgp,"p%d=%f ",jk,p[jk]);
    while((c=getc(ficpar))=='#' && c!= EOF){            jk++; 
      ungetc(c,ficpar);            fprintf(ficgp,"\n");
      fgets(line, MAXLINE, ficpar);          }
      puts(line);        }
      fputs(line,ficparo);      }
    }     }
    ungetc(c,ficpar);  
       for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
    dateprev1=anprev1+mprev1/12.+jprev1/365.;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;         if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   fscanf(ficpar,"pop_based=%d\n",&popbased);         else
   fprintf(ficparo,"pop_based=%d\n",popbased);             fprintf(ficgp,"\nset title \"Probability\"\n");
   fprintf(ficres,"pop_based=%d\n",popbased);           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           i=1;
   while((c=getc(ficpar))=='#' && c!= EOF){         for(k2=1; k2<=nlstate; k2++) {
     ungetc(c,ficpar);           k3=i;
     fgets(line, MAXLINE, ficpar);           for(k=1; k<=(nlstate+ndeath); k++) {
     puts(line);             if (k != k2){
     fputs(line,ficparo);               if(ng==2)
   }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   ungetc(c,ficpar);               else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);               ij=1;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);               for(j=3; j <=ncovmodel; j++) {
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
 while((c=getc(ficpar))=='#' && c!= EOF){                 }
     ungetc(c,ficpar);                 else
     fgets(line, MAXLINE, ficpar);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     puts(line);               }
     fputs(line,ficparo);               fprintf(ficgp,")/(1");
   }               
   ungetc(c,ficpar);               for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                 ij=1;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                 for(j=3; j <=ncovmodel; j++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                     ij++;
                    }
 /*------------ gnuplot -------------*/                   else
   strcpy(optionfilegnuplot,optionfilefiname);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   strcat(optionfilegnuplot,".gp");                 }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                 fprintf(ficgp,")");
     printf("Problem with file %s",optionfilegnuplot);               }
   }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   fclose(ficgp);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);               i=i+ncovmodel;
 /*--------- index.htm --------*/             }
            } /* end k */
   strcpy(optionfilehtm,optionfile);         } /* end k2 */
   strcat(optionfilehtm,".htm");       } /* end jk */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {     } /* end ng */
     printf("Problem with %s \n",optionfilehtm), exit(0);     fflush(ficgp); 
   }  }  /* end gnuplot */
   
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  /*************** Moving average **************/
 \n  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 Total number of observations=%d <br>\n  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    int i, cpt, cptcod;
 <hr  size=\"2\" color=\"#EC5E5E\">    int modcovmax =1;
  <ul><li><h4>Parameter files</h4>\n    int mobilavrange, mob;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    double age;
  - Log file of the run: <a href=\"%s\">%s</a><br>\n  
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   fclose(fichtm);                             a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  
      if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 /*------------ free_vector  -------------*/      if(mobilav==1) mobilavrange=5; /* default */
  chdir(path);      else mobilavrange=mobilav;
        for (age=bage; age<=fage; age++)
  free_ivector(wav,1,imx);        for (i=1; i<=nlstate;i++)
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
  free_ivector(num,1,n);      /* We keep the original values on the extreme ages bage, fage and for 
  free_vector(agedc,1,n);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
  /*free_matrix(covar,1,NCOVMAX,1,n);*/         we use a 5 terms etc. until the borders are no more concerned. 
  fclose(ficparo);      */ 
  fclose(ficres);      for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
   /*--------------- Prevalence limit --------------*/            for (cptcod=1;cptcod<=modcovmax;cptcod++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   strcpy(filerespl,"pl");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   strcat(filerespl,fileres);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                }
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   }            }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          }
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);        }/* end age */
   fprintf(ficrespl,"#Prevalence limit\n");      }/* end mob */
   fprintf(ficrespl,"#Age ");    }else return -1;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    return 0;
   fprintf(ficrespl,"\n");  }/* End movingaverage */
    
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /************** Forecasting ******************/
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* proj1, year, month, day of starting projection 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       agemin, agemax range of age
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       dateprev1 dateprev2 range of dates during which prevalence is computed
   k=0;       anproj2 year of en of projection (same day and month as proj1).
   agebase=ageminpar;    */
   agelim=agemaxpar;    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   ftolpl=1.e-10;    int *popage;
   i1=cptcoveff;    double agec; /* generic age */
   if (cptcovn < 1){i1=1;}    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
   for(cptcov=1;cptcov<=i1;cptcov++){    double ***p3mat;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double ***mobaverage;
         k=k+1;    char fileresf[FILENAMELENGTH];
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");    agelim=AGESUP;
         printf("\n#******");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         fprintf(ficlog,"\n#******");   
         for(j=1;j<=cptcoveff;j++) {    strcpy(fileresf,"f"); 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(fileresf,fileres);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if((ficresf=fopen(fileresf,"w"))==NULL) {
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Problem with forecast resultfile: %s\n", fileresf);
         }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         fprintf(ficrespl,"******\n");    }
         printf("******\n");    printf("Computing forecasting: result on file '%s' \n", fileresf);
         fprintf(ficlog,"******\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
          
         for (age=agebase; age<=agelim; age++){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );    if (mobilav!=0) {
           for(i=1; i<=nlstate;i++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespl," %.5f", prlim[i][i]);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           fprintf(ficrespl,"\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }      }
     }    }
   fclose(ficrespl);  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
   /*------------- h Pij x at various ages ------------*/    if (stepm<=12) stepsize=1;
      if(estepm < stepm){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      printf ("Problem %d lower than %d\n",estepm, stepm);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    else  hstepm=estepm;   
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }    hstepm=hstepm/stepm; 
   printf("Computing pij: result on file '%s' \n", filerespij);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);                                 fractional in yp1 */
      anprojmean=yp;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    yp2=modf((yp1*12),&yp);
   /*if (stepm<=24) stepsize=2;*/    mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
   agelim=AGESUP;    jprojmean=yp;
   hstepm=stepsize*YEARM; /* Every year of age */    if(jprojmean==0) jprojmean=1;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    if(mprojmean==0) jprojmean=1;
   
   /* hstepm=1;   aff par mois*/    i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   k=0;    
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;    fprintf(ficresf,"#****** Routine prevforecast **\n");
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)  /*            if (h==(int)(YEARM*yearp)){ */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
         fprintf(ficrespij,"******\n");      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                k=k+1;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        fprintf(ficresf,"\n#******");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(j=1;j<=cptcoveff;j++) {
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
           /*      nhstepm=nhstepm*YEARM; aff par mois*/        fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<=nlstate+ndeath;j++){ 
           oldm=oldms;savm=savms;          for(i=1; i<=nlstate;i++)              
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              fprintf(ficresf," p%d%d",i,j);
           fprintf(ficrespij,"# Age");          fprintf(ficresf," p.%d",j);
           for(i=1; i<=nlstate;i++)        }
             for(j=1; j<=nlstate+ndeath;j++)        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
               fprintf(ficrespij," %1d-%1d",i,j);          fprintf(ficresf,"\n");
           fprintf(ficrespij,"\n");          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
            for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          for (agec=fage; agec>=(ageminpar-1); agec--){ 
             for(i=1; i<=nlstate;i++)            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
               for(j=1; j<=nlstate+ndeath;j++)            nhstepm = nhstepm/hstepm; 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");            oldm=oldms;savm=savms;
              }            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
           fprintf(ficrespij,"\n");            for (h=0; h<=nhstepm; h++){
         }              if (h*hstepm/YEARM*stepm ==yearp) {
     }                fprintf(ficresf,"\n");
   }                for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
   fclose(ficrespij);              for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
   /*---------- Forecasting ------------------*/                  if (mobilav==1) 
   if((stepm == 1) && (strcmp(model,".")==0)){                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                  else {
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   }                  }
   else{                  if (h*hstepm/YEARM*stepm== yearp) {
     erreur=108;                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                  }
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                } /* end i */
   }                if (h*hstepm/YEARM*stepm==yearp) {
                    fprintf(ficresf," %.3f", ppij);
                 }
   /*---------- Health expectancies and variances ------------*/              }/* end j */
             } /* end h */
   strcpy(filerest,"t");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(filerest,fileres);          } /* end agec */
   if((ficrest=fopen(filerest,"w"))==NULL) {        } /* end yearp */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      } /* end cptcod */
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    } /* end  cptcov */
   }         
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);  
     fclose(ficresf);
   }
   strcpy(filerese,"e");  
   strcat(filerese,fileres);  /************** Forecasting *****not tested NB*************/
   if((ficreseij=fopen(filerese,"w"))==NULL) {  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   }    int *popage;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double calagedatem, agelim, kk1, kk2;
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
   strcpy(fileresv,"v");    double ***mobaverage;
   strcat(fileresv,fileres);    char filerespop[FILENAMELENGTH];
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    agelim=AGESUP;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    
   calagedate=-1;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    
     
   k=0;    strcpy(filerespop,"pop"); 
   for(cptcov=1;cptcov<=i1;cptcov++){    strcat(filerespop,fileres);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if((ficrespop=fopen(filerespop,"w"))==NULL) {
       k=k+1;      printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficrest,"\n#****** ");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("Computing forecasting: result on file '%s' \n", filerespop);
       fprintf(ficrest,"******\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
       fprintf(ficreseij,"\n#****** ");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (mobilav!=0) {
       fprintf(ficreseij,"******\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       fprintf(ficresvij,"\n#****** ");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       for(j=1;j<=cptcoveff;j++)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       fprintf(ficresvij,"******\n");    }
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    stepsize=(int) (stepm+YEARM-1)/YEARM;
       oldm=oldms;savm=savms;    if (stepm<=12) stepsize=1;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      
      agelim=AGESUP;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    
       oldm=oldms;savm=savms;    hstepm=1;
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    hstepm=hstepm/stepm; 
       if(popbased==1){    
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    if (popforecast==1) {
        }      if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
          fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      } 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      popage=ivector(0,AGESUP);
       fprintf(ficrest,"\n");      popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       epj=vector(1,nlstate+1);      
       for(age=bage; age <=fage ;age++){      i=1;   
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
         if (popbased==1) {     
           for(i=1; i<=nlstate;i++)      imx=i;
             prlim[i][i]=probs[(int)age][i][k];      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
         }    }
          
         fprintf(ficrest," %4.0f",age);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        k=k+1;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        fprintf(ficrespop,"\n#******");
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        for(j=1;j<=cptcoveff;j++) {
           }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           epj[nlstate+1] +=epj[j];        }
         }        fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(i=1, vepp=0.;i <=nlstate;i++)        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
           for(j=1;j <=nlstate;j++)        if (popforecast==1)  fprintf(ficrespop," [Population]");
             vepp += vareij[i][j][(int)age];        
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        for (cpt=0; cpt<=0;cpt++) { 
         for(j=1;j <=nlstate;j++){          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          
         }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
         fprintf(ficrest,"\n");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
       }            nhstepm = nhstepm/hstepm; 
     }            
   }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 free_matrix(mint,1,maxwav,1,n);            oldm=oldms;savm=savms;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     free_vector(weight,1,n);          
   fclose(ficreseij);            for (h=0; h<=nhstepm; h++){
   fclose(ficresvij);              if (h==(int) (calagedatem+YEARM*cpt)) {
   fclose(ficrest);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   fclose(ficpar);              } 
   free_vector(epj,1,nlstate+1);              for(j=1; j<=nlstate+ndeath;j++) {
                  kk1=0.;kk2=0;
   /*------- Variance limit prevalence------*/                  for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
   strcpy(fileresvpl,"vpl");                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   strcat(fileresvpl,fileres);                  else {
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                  }
     exit(0);                }
   }                if (h==(int)(calagedatem+12*cpt)){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
   k=0;                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   for(cptcov=1;cptcov<=i1;cptcov++){                }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              }
       k=k+1;              for(i=1; i<=nlstate;i++){
       fprintf(ficresvpl,"\n#****** ");                kk1=0.;
       for(j=1;j<=cptcoveff;j++)                  for(j=1; j<=nlstate;j++){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
       fprintf(ficresvpl,"******\n");                  }
                          tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
       varpl=matrix(1,nlstate,(int) bage, (int) fage);              }
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
     }                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
  }            }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficresvpl);          }
         }
   /*---------- End : free ----------------*/   
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    /******/
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
            for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
              nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            nhstepm = nhstepm/hstepm; 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            oldm=oldms;savm=savms;
              hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   free_matrix(matcov,1,npar,1,npar);            for (h=0; h<=nhstepm; h++){
   free_vector(delti,1,npar);              if (h==(int) (calagedatem+YEARM*cpt)) {
   free_matrix(agev,1,maxwav,1,imx);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);              } 
               for(j=1; j<=nlstate+ndeath;j++) {
   fprintf(fichtm,"\n</body>");                kk1=0.;kk2=0;
   fclose(fichtm);                for(i=1; i<=nlstate;i++) {              
   fclose(ficgp);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                  }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   if(erreur >0){              }
     printf("End of Imach with error or warning %d\n",erreur);            }
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }else{          }
    printf("End of Imach\n");        }
    fprintf(ficlog,"End of Imach\n");     } 
   }    }
   printf("See log file on %s\n",filelog);   
   fclose(ficlog);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
      if (popforecast==1) {
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      free_ivector(popage,0,AGESUP);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      free_vector(popeffectif,0,AGESUP);
   /*------ End -----------*/      free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  end:    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 #ifdef windows    fclose(ficrespop);
   /* chdir(pathcd);*/  } /* End of popforecast */
 #endif  
  /*system("wgnuplot graph.plt");*/  int fileappend(FILE *fichier, char *optionfich)
  /*system("../gp37mgw/wgnuplot graph.plt");*/  {
  /*system("cd ../gp37mgw");*/    if((fichier=fopen(optionfich,"a"))==NULL) {
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      printf("Problem with file: %s\n", optionfich);
  strcpy(plotcmd,GNUPLOTPROGRAM);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
  strcat(plotcmd," ");      return (0);
  strcat(plotcmd,optionfilegnuplot);    }
  system(plotcmd);    fflush(fichier);
     return (1);
 #ifdef windows  }
   while (z[0] != 'q') {  
     /* chdir(path); */  
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  /**************** function prwizard **********************/
     scanf("%s",z);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
     if (z[0] == 'c') system("./imach");  {
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);    /* Wizard to print covariance matrix template */
     else if (z[0] == 'q') exit(0);  
   }    char ca[32], cb[32], cc[32];
 #endif    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 }    int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.52  
changed lines
  Added in v.1.119


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>