Diff for /imach/src/imach.c between versions 1.11 and 1.130

version 1.11, 2001/05/17 16:07:14 version 1.130, 2009/05/26 06:44:34
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.130  2009/05/26 06:44:34  brouard
   individuals from different ages are interviewed on their health status    (Module): Max Covariate is now set to 20 instead of 8. A
   or degree of  disability. At least a second wave of interviews    lot of cleaning with variables initialized to 0. Trying to make
   ("longitudinal") should  measure each new individual health status.    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.129  2007/08/31 13:49:27  lievre
   of life states). More degrees you consider, more time is necessary to    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Revision 1.128  2006/06/30 13:02:05  brouard
   the probabibility to be observed in state j at the second wave conditional    (Module): Clarifications on computing e.j
   to be observed in state i at the first wave. Therefore the model is:  
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Revision 1.127  2006/04/28 18:11:50  brouard
   is a covariate. If you want to have a more complex model than "constant and    (Module): Yes the sum of survivors was wrong since
   age", you should modify the program where the markup    imach-114 because nhstepm was no more computed in the age
     *Covariates have to be included here again* invites you to do it.    loop. Now we define nhstepma in the age loop.
   More covariates you add, less is the speed of the convergence.    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
   The advantage that this computer programme claims, comes from that if the    and then all the health expectancies with variances or standard
   delay between waves is not identical for each individual, or if some    deviation (needs data from the Hessian matrices) which slows the
   individual missed an interview, the information is not rounded or lost, but    computation.
   taken into account using an interpolation or extrapolation.    In the future we should be able to stop the program is only health
   hPijx is the probability to be    expectancies and graph are needed without standard deviations.
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.126  2006/04/28 17:23:28  brouard
   unobserved intermediate  states. This elementary transition (by month or    (Module): Yes the sum of survivors was wrong since
   quarter trimester, semester or year) is model as a multinomial logistic.    imach-114 because nhstepm was no more computed in the age
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    loop. Now we define nhstepma in the age loop.
   and the contribution of each individual to the likelihood is simply hPijx.    Version 0.98h
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.125  2006/04/04 15:20:31  lievre
   of the life expectancies. It also computes the prevalence limits.    Errors in calculation of health expectancies. Age was not initialized.
      Forecasting file added.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.124  2006/03/22 17:13:53  lievre
   This software have been partly granted by Euro-REVES, a concerted action    Parameters are printed with %lf instead of %f (more numbers after the comma).
   from the European Union.    The log-likelihood is printed in the log file
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.123  2006/03/20 10:52:43  brouard
   can be accessed at http://euroreves.ined.fr/imach .    * imach.c (Module): <title> changed, corresponds to .htm file
   **********************************************************************/    name. <head> headers where missing.
    
 #include <math.h>    * imach.c (Module): Weights can have a decimal point as for
 #include <stdio.h>    English (a comma might work with a correct LC_NUMERIC environment,
 #include <stdlib.h>    otherwise the weight is truncated).
 #include <unistd.h>    Modification of warning when the covariates values are not 0 or
     1.
 #define MAXLINE 256    Version 0.98g
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.122  2006/03/20 09:45:41  brouard
 #define windows    (Module): Weights can have a decimal point as for
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    English (a comma might work with a correct LC_NUMERIC environment,
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    1.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Version 0.98g
   
 #define NINTERVMAX 8    Revision 1.121  2006/03/16 17:45:01  lievre
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    * imach.c (Module): Comments concerning covariates added
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    * imach.c (Module): refinements in the computation of lli if
 #define MAXN 20000    status=-2 in order to have more reliable computation if stepm is
 #define YEARM 12. /* Number of months per year */    not 1 month. Version 0.98f
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 int nvar;    not 1 month. Version 0.98f
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.119  2006/03/15 17:42:26  brouard
 int nlstate=2; /* Number of live states */    (Module): Bug if status = -2, the loglikelihood was
 int ndeath=1; /* Number of dead states */    computed as likelihood omitting the logarithm. Version O.98e
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
     Revision 1.118  2006/03/14 18:20:07  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): varevsij Comments added explaining the second
 int maxwav; /* Maxim number of waves */    table of variances if popbased=1 .
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int mle, weightopt;    (Module): Function pstamp added
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Version 0.98d
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.117  2006/03/14 17:16:22  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): varevsij Comments added explaining the second
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    table of variances if popbased=1 .
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 FILE *ficgp, *fichtm;    (Module): Function pstamp added
 FILE *ficreseij;    (Module): Version 0.98d
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.116  2006/03/06 10:29:27  brouard
   char fileresv[FILENAMELENGTH];    (Module): Variance-covariance wrong links and
  FILE  *ficresvpl;    varian-covariance of ej. is needed (Saito).
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.115  2006/02/27 12:17:45  brouard
 #define NR_END 1    (Module): One freematrix added in mlikeli! 0.98c
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
 #define NRANSI    filename with strsep.
 #define ITMAX 200  
     Revision 1.113  2006/02/24 14:20:24  brouard
 #define TOL 2.0e-4    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 #define CGOLD 0.3819660    allocation too.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.111  2006/01/25 20:38:18  brouard
 #define TINY 1.0e-20    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 static double maxarg1,maxarg2;    can be a simple dot '.'.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.110  2006/01/25 00:51:50  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.108  2006/01/19 18:05:42  lievre
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Gnuplot problem appeared...
     To be fixed
 int imx;  
 int stepm;    Revision 1.107  2006/01/19 16:20:37  brouard
 /* Stepm, step in month: minimum step interpolation*/    Test existence of gnuplot in imach path
   
 int m,nb;    Revision 1.106  2006/01/19 13:24:36  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Some cleaning and links added in html output
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij;    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 double *weight;  
 int **s; /* Status */    Revision 1.104  2005/09/30 16:11:43  lievre
 double *agedc, **covar, idx;    (Module): sump fixed, loop imx fixed, and simplifications.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (instead of missing=-1 in earlier versions) and his/her
 double ftolhess; /* Tolerance for computing hessian */    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 /**************** split *************************/    the healthy state at last known wave). Version is 0.98
 static  int split( char *path, char *dirc, char *name )  
 {    Revision 1.103  2005/09/30 15:54:49  lievre
    char *s;                             /* pointer */    (Module): sump fixed, loop imx fixed, and simplifications.
    int  l1, l2;                         /* length counters */  
     Revision 1.102  2004/09/15 17:31:30  brouard
    l1 = strlen( path );                 /* length of path */    Add the possibility to read data file including tab characters.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.101  2004/09/15 10:38:38  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    Fix on curr_time
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.99  2004/06/05 08:57:40  brouard
       extern char       *getcwd( );    *** empty log message ***
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.98  2004/05/16 15:05:56  brouard
 #endif    New version 0.97 . First attempt to estimate force of mortality
          return( GLOCK_ERROR_GETCWD );    directly from the data i.e. without the need of knowing the health
       }    state at each age, but using a Gompertz model: log u =a + b*age .
       strcpy( name, path );             /* we've got it */    This is the basic analysis of mortality and should be done before any
    } else {                             /* strip direcotry from path */    other analysis, in order to test if the mortality estimated from the
       s++;                              /* after this, the filename */    cross-longitudinal survey is different from the mortality estimated
       l2 = strlen( s );                 /* length of filename */    from other sources like vital statistic data.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    The same imach parameter file can be used but the option for mle should be -3.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Agnès, who wrote this part of the code, tried to keep most of the
    }    former routines in order to include the new code within the former code.
    l1 = strlen( dirc );                 /* length of directory */  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    The output is very simple: only an estimate of the intercept and of
    return( 0 );                         /* we're done */    the slope with 95% confident intervals.
 }  
     Current limitations:
     A) Even if you enter covariates, i.e. with the
 /******************************************/    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 void replace(char *s, char*t)  
 {    Revision 1.97  2004/02/20 13:25:42  lievre
   int i;    Version 0.96d. Population forecasting command line is (temporarily)
   int lg=20;    suppressed.
   i=0;  
   lg=strlen(t);    Revision 1.96  2003/07/15 15:38:55  brouard
   for(i=0; i<= lg; i++) {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     (s[i] = t[i]);    rewritten within the same printf. Workaround: many printfs.
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.95  2003/07/08 07:54:34  brouard
 }    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 int nbocc(char *s, char occ)    matrix (cov(a12,c31) instead of numbers.
 {  
   int i,j=0;    Revision 1.94  2003/06/27 13:00:02  brouard
   int lg=20;    Just cleaning
   i=0;  
   lg=strlen(s);    Revision 1.93  2003/06/25 16:33:55  brouard
   for(i=0; i<= lg; i++) {    (Module): On windows (cygwin) function asctime_r doesn't
   if  (s[i] == occ ) j++;    exist so I changed back to asctime which exists.
   }    (Module): Version 0.96b
   return j;  
 }    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 void cutv(char *u,char *v, char*t, char occ)    exist so I changed back to asctime which exists.
 {  
   int i,lg,j,p=0;    Revision 1.91  2003/06/25 15:30:29  brouard
   i=0;    * imach.c (Repository): Duplicated warning errors corrected.
   for(j=0; j<=strlen(t)-1; j++) {    (Repository): Elapsed time after each iteration is now output. It
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    helps to forecast when convergence will be reached. Elapsed time
   }    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.90  2003/06/24 12:34:15  brouard
     (u[j] = t[j]);    (Module): Some bugs corrected for windows. Also, when
   }    mle=-1 a template is output in file "or"mypar.txt with the design
      u[p]='\0';    of the covariance matrix to be input.
   
    for(j=0; j<= lg; j++) {    Revision 1.89  2003/06/24 12:30:52  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    (Module): Some bugs corrected for windows. Also, when
   }    mle=-1 a template is output in file "or"mypar.txt with the design
 }    of the covariance matrix to be input.
   
 /********************** nrerror ********************/    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 void nrerror(char error_text[])  
 {    Revision 1.87  2003/06/18 12:26:01  brouard
   fprintf(stderr,"ERREUR ...\n");    Version 0.96
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.86  2003/06/17 20:04:08  brouard
 }    (Module): Change position of html and gnuplot routines and added
 /*********************** vector *******************/    routine fileappend.
 double *vector(int nl, int nh)  
 {    Revision 1.85  2003/06/17 13:12:43  brouard
   double *v;    * imach.c (Repository): Check when date of death was earlier that
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    current date of interview. It may happen when the death was just
   if (!v) nrerror("allocation failure in vector");    prior to the death. In this case, dh was negative and likelihood
   return v-nl+NR_END;    was wrong (infinity). We still send an "Error" but patch by
 }    assuming that the date of death was just one stepm after the
     interview.
 /************************ free vector ******************/    (Repository): Because some people have very long ID (first column)
 void free_vector(double*v, int nl, int nh)    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
   free((FREE_ARG)(v+nl-NR_END));    truncation)
 }    (Repository): No more line truncation errors.
   
 /************************ivector *******************************/    Revision 1.84  2003/06/13 21:44:43  brouard
 int *ivector(long nl,long nh)    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   int *v;    many times. Probs is memory consuming and must be used with
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    parcimony.
   if (!v) nrerror("allocation failure in ivector");    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   return v-nl+NR_END;  
 }    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.82  2003/06/05 15:57:20  brouard
 {    Add log in  imach.c and  fullversion number is now printed.
   free((FREE_ARG)(v+nl-NR_END));  
 }  */
   /*
 /******************* imatrix *******************************/     Interpolated Markov Chain
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Short summary of the programme:
 {    
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    This program computes Healthy Life Expectancies from
   int **m;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
      first survey ("cross") where individuals from different ages are
   /* allocate pointers to rows */    interviewed on their health status or degree of disability (in the
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    case of a health survey which is our main interest) -2- at least a
   if (!m) nrerror("allocation failure 1 in matrix()");    second wave of interviews ("longitudinal") which measure each change
   m += NR_END;    (if any) in individual health status.  Health expectancies are
   m -= nrl;    computed from the time spent in each health state according to a
      model. More health states you consider, more time is necessary to reach the
      Maximum Likelihood of the parameters involved in the model.  The
   /* allocate rows and set pointers to them */    simplest model is the multinomial logistic model where pij is the
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    probability to be observed in state j at the second wave
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    conditional to be observed in state i at the first wave. Therefore
   m[nrl] += NR_END;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m[nrl] -= ncl;    'age' is age and 'sex' is a covariate. If you want to have a more
      complex model than "constant and age", you should modify the program
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    where the markup *Covariates have to be included here again* invites
      you to do it.  More covariates you add, slower the
   /* return pointer to array of pointers to rows */    convergence.
   return m;  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 /****************** free_imatrix *************************/    identical for each individual. Also, if a individual missed an
 void free_imatrix(m,nrl,nrh,ncl,nch)    intermediate interview, the information is lost, but taken into
       int **m;    account using an interpolation or extrapolation.  
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    hPijx is the probability to be observed in state i at age x+h
 {    conditional to the observed state i at age x. The delay 'h' can be
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    split into an exact number (nh*stepm) of unobserved intermediate
   free((FREE_ARG) (m+nrl-NR_END));    states. This elementary transition (by month, quarter,
 }    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 /******************* matrix *******************************/    and the contribution of each individual to the likelihood is simply
 double **matrix(long nrl, long nrh, long ncl, long nch)    hPijx.
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Also this programme outputs the covariance matrix of the parameters but also
   double **m;    of the life expectancies. It also computes the period (stable) prevalence. 
     
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   if (!m) nrerror("allocation failure 1 in matrix()");             Institut national d'études démographiques, Paris.
   m += NR_END;    This software have been partly granted by Euro-REVES, a concerted action
   m -= nrl;    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    software can be distributed freely for non commercial use. Latest version
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    can be accessed at http://euroreves.ined.fr/imach .
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    
   return m;    **********************************************************************/
 }  /*
     main
 /*************************free matrix ************************/    read parameterfile
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    read datafile
 {    concatwav
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    freqsummary
   free((FREE_ARG)(m+nrl-NR_END));    if (mle >= 1)
 }      mlikeli
     print results files
 /******************* ma3x *******************************/    if mle==1 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)       computes hessian
 {    read end of parameter file: agemin, agemax, bage, fage, estepm
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;        begin-prev-date,...
   double ***m;    open gnuplot file
     open html file
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    period (stable) prevalence
   if (!m) nrerror("allocation failure 1 in matrix()");     for age prevalim()
   m += NR_END;    h Pij x
   m -= nrl;    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    health expectancies
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Variance-covariance of DFLE
   m[nrl] += NR_END;    prevalence()
   m[nrl] -= ncl;     movingaverage()
     varevsij() 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if popbased==1 varevsij(,popbased)
     total life expectancies
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Variance of period (stable) prevalence
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");   end
   m[nrl][ncl] += NR_END;  */
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  
     
   for (i=nrl+1; i<=nrh; i++) {  #include <math.h>
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #include <stdio.h>
     for (j=ncl+1; j<=nch; j++)  #include <stdlib.h>
       m[i][j]=m[i][j-1]+nlay;  #include <string.h>
   }  #include <unistd.h>
   return m;  
 }  #include <limits.h>
   #include <sys/types.h>
 /*************************free ma3x ************************/  #include <sys/stat.h>
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #include <errno.h>
 {  extern int errno;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /* #include <sys/time.h> */
   free((FREE_ARG)(m+nrl-NR_END));  #include <time.h>
 }  #include "timeval.h"
   
 /***************** f1dim *************************/  /* #include <libintl.h> */
 extern int ncom;  /* #define _(String) gettext (String) */
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  #define MAXLINE 256
    
 double f1dim(double x)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   int j;  #define FILENAMELENGTH 132
   double f;  
   double *xt;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   f=(*nrfunc)(xt);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   free_vector(xt,1,ncom);  
   return f;  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 /*****************brent *************************/  #define NCOVMAX 20 /* Maximum number of covariates */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   int iter;  #define AGESUP 130
   double a,b,d,etemp;  #define AGEBASE 40
   double fu,fv,fw,fx;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   double ftemp;  #ifdef UNIX
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define DIRSEPARATOR '/'
   double e=0.0;  #define CHARSEPARATOR "/"
    #define ODIRSEPARATOR '\\'
   a=(ax < cx ? ax : cx);  #else
   b=(ax > cx ? ax : cx);  #define DIRSEPARATOR '\\'
   x=w=v=bx;  #define CHARSEPARATOR "\\"
   fw=fv=fx=(*f)(x);  #define ODIRSEPARATOR '/'
   for (iter=1;iter<=ITMAX;iter++) {  #endif
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  /* $Id$ */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /* $State$ */
     printf(".");fflush(stdout);  
 #ifdef DEBUG  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char fullversion[]="$Revision$ $Date$"; 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char strstart[80];
 #endif  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       *xmin=x;  int nvar=0;
       return fx;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
     }  int npar=NPARMAX;
     ftemp=fu;  int nlstate=2; /* Number of live states */
     if (fabs(e) > tol1) {  int ndeath=1; /* Number of dead states */
       r=(x-w)*(fx-fv);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       q=(x-v)*(fx-fw);  int popbased=0;
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  int *wav; /* Number of waves for this individuual 0 is possible */
       if (q > 0.0) p = -p;  int maxwav=0; /* Maxim number of waves */
       q=fabs(q);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       etemp=e;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       e=d;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))                     to the likelihood and the sum of weights (done by funcone)*/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int mle=1, weightopt=0;
       else {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         d=p/q;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         u=x+d;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
         if (u-a < tol2 || b-u < tol2)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
           d=SIGN(tol1,xm-x);  double jmean=1; /* Mean space between 2 waves */
       }  double **oldm, **newm, **savm; /* Working pointers to matrices */
     } else {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     }  FILE *ficlog, *ficrespow;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int globpr=0; /* Global variable for printing or not */
     fu=(*f)(u);  double fretone; /* Only one call to likelihood */
     if (fu <= fx) {  long ipmx=0; /* Number of contributions */
       if (u >= x) a=x; else b=x;  double sw; /* Sum of weights */
       SHFT(v,w,x,u)  char filerespow[FILENAMELENGTH];
         SHFT(fv,fw,fx,fu)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
         } else {  FILE *ficresilk;
           if (u < x) a=u; else b=u;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
           if (fu <= fw || w == x) {  FILE *ficresprobmorprev;
             v=w;  FILE *fichtm, *fichtmcov; /* Html File */
             w=u;  FILE *ficreseij;
             fv=fw;  char filerese[FILENAMELENGTH];
             fw=fu;  FILE *ficresstdeij;
           } else if (fu <= fv || v == x || v == w) {  char fileresstde[FILENAMELENGTH];
             v=u;  FILE *ficrescveij;
             fv=fu;  char filerescve[FILENAMELENGTH];
           }  FILE  *ficresvij;
         }  char fileresv[FILENAMELENGTH];
   }  FILE  *ficresvpl;
   nrerror("Too many iterations in brent");  char fileresvpl[FILENAMELENGTH];
   *xmin=x;  char title[MAXLINE];
   return fx;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 /****************** mnbrak ***********************/  char command[FILENAMELENGTH];
   int  outcmd=0;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  
   double ulim,u,r,q, dum;  char filelog[FILENAMELENGTH]; /* Log file */
   double fu;  char filerest[FILENAMELENGTH];
    char fileregp[FILENAMELENGTH];
   *fa=(*func)(*ax);  char popfile[FILENAMELENGTH];
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       }  struct timezone tzp;
   *cx=(*bx)+GOLD*(*bx-*ax);  extern int gettimeofday();
   *fc=(*func)(*cx);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   while (*fb > *fc) {  long time_value;
     r=(*bx-*ax)*(*fb-*fc);  extern long time();
     q=(*bx-*cx)*(*fb-*fa);  char strcurr[80], strfor[80];
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  char *endptr;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  long lval;
     if ((*bx-u)*(u-*cx) > 0.0) {  double dval;
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define NR_END 1
       fu=(*func)(u);  #define FREE_ARG char*
       if (fu < *fc) {  #define FTOL 1.0e-10
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  #define NRANSI 
           }  #define ITMAX 200 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  #define TOL 2.0e-4 
       fu=(*func)(u);  
     } else {  #define CGOLD 0.3819660 
       u=(*cx)+GOLD*(*cx-*bx);  #define ZEPS 1.0e-10 
       fu=(*func)(u);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     }  
     SHFT(*ax,*bx,*cx,u)  #define GOLD 1.618034 
       SHFT(*fa,*fb,*fc,fu)  #define GLIMIT 100.0 
       }  #define TINY 1.0e-20 
 }  
   static double maxarg1,maxarg2;
 /*************** linmin ************************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 int ncom;    
 double *pcom,*xicom;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 double (*nrfunc)(double []);  #define rint(a) floor(a+0.5)
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double brent(double ax, double bx, double cx,  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
                double (*f)(double), double tol, double *xmin);  int agegomp= AGEGOMP;
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int imx; 
               double *fc, double (*func)(double));  int stepm=1;
   int j;  /* Stepm, step in month: minimum step interpolation*/
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  int estepm;
    /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   ncom=n;  
   pcom=vector(1,n);  int m,nb;
   xicom=vector(1,n);  long *num;
   nrfunc=func;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   for (j=1;j<=n;j++) {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     pcom[j]=p[j];  double **pmmij, ***probs;
     xicom[j]=xi[j];  double *ageexmed,*agecens;
   }  double dateintmean=0;
   ax=0.0;  
   xx=1.0;  double *weight;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  int **s; /* Status */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double *agedc, **covar, idx;
 #ifdef DEBUG  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  double *lsurv, *lpop, *tpop;
 #endif  
   for (j=1;j<=n;j++) {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     xi[j] *= xmin;  double ftolhess; /* Tolerance for computing hessian */
     p[j] += xi[j];  
   }  /**************** split *************************/
   free_vector(xicom,1,n);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   free_vector(pcom,1,n);  {
 }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
 /*************** powell ************************/    */ 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    char  *ss;                            /* pointer */
             double (*func)(double []))    int   l1, l2;                         /* length counters */
 {  
   void linmin(double p[], double xi[], int n, double *fret,    l1 = strlen(path );                   /* length of path */
               double (*func)(double []));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   int i,ibig,j;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double del,t,*pt,*ptt,*xit;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double fp,fptt;      strcpy( name, path );               /* we got the fullname name because no directory */
   double *xits;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   pt=vector(1,n);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   ptt=vector(1,n);      /* get current working directory */
   xit=vector(1,n);      /*    extern  char* getcwd ( char *buf , int len);*/
   xits=vector(1,n);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   *fret=(*func)(p);        return( GLOCK_ERROR_GETCWD );
   for (j=1;j<=n;j++) pt[j]=p[j];      }
   for (*iter=1;;++(*iter)) {      /* got dirc from getcwd*/
     fp=(*fret);      printf(" DIRC = %s \n",dirc);
     ibig=0;    } else {                              /* strip direcotry from path */
     del=0.0;      ss++;                               /* after this, the filename */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      l2 = strlen( ss );                  /* length of filename */
     for (i=1;i<=n;i++)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       printf(" %d %.12f",i, p[i]);      strcpy( name, ss );         /* save file name */
     printf("\n");      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     for (i=1;i<=n;i++) {      dirc[l1-l2] = 0;                    /* add zero */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      printf(" DIRC2 = %s \n",dirc);
       fptt=(*fret);    }
 #ifdef DEBUG    /* We add a separator at the end of dirc if not exists */
       printf("fret=%lf \n",*fret);    l1 = strlen( dirc );                  /* length of directory */
 #endif    if( dirc[l1-1] != DIRSEPARATOR ){
       printf("%d",i);fflush(stdout);      dirc[l1] =  DIRSEPARATOR;
       linmin(p,xit,n,fret,func);      dirc[l1+1] = 0; 
       if (fabs(fptt-(*fret)) > del) {      printf(" DIRC3 = %s \n",dirc);
         del=fabs(fptt-(*fret));    }
         ibig=i;    ss = strrchr( name, '.' );            /* find last / */
       }    if (ss >0){
 #ifdef DEBUG      ss++;
       printf("%d %.12e",i,(*fret));      strcpy(ext,ss);                     /* save extension */
       for (j=1;j<=n;j++) {      l1= strlen( name);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      l2= strlen(ss)+1;
         printf(" x(%d)=%.12e",j,xit[j]);      strncpy( finame, name, l1-l2);
       }      finame[l1-l2]= 0;
       for(j=1;j<=n;j++)    }
         printf(" p=%.12e",p[j]);  
       printf("\n");    return( 0 );                          /* we're done */
 #endif  }
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /******************************************/
       int k[2],l;  
       k[0]=1;  void replace_back_to_slash(char *s, char*t)
       k[1]=-1;  {
       printf("Max: %.12e",(*func)(p));    int i;
       for (j=1;j<=n;j++)    int lg=0;
         printf(" %.12e",p[j]);    i=0;
       printf("\n");    lg=strlen(t);
       for(l=0;l<=1;l++) {    for(i=0; i<= lg; i++) {
         for (j=1;j<=n;j++) {      (s[i] = t[i]);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      if (t[i]== '\\') s[i]='/';
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    }
         }  }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  int nbocc(char *s, char occ)
 #endif  {
     int i,j=0;
     int lg=20;
       free_vector(xit,1,n);    i=0;
       free_vector(xits,1,n);    lg=strlen(s);
       free_vector(ptt,1,n);    for(i=0; i<= lg; i++) {
       free_vector(pt,1,n);    if  (s[i] == occ ) j++;
       return;    }
     }    return j;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  void cutv(char *u,char *v, char*t, char occ)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     fptt=(*func)(ptt);       gives u="abcedf" and v="ghi2j" */
     if (fptt < fp) {    int i,lg,j,p=0;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    i=0;
       if (t < 0.0) {    for(j=0; j<=strlen(t)-1; j++) {
         linmin(p,xit,n,fret,func);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         for (j=1;j<=n;j++) {    }
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];    lg=strlen(t);
         }    for(j=0; j<p; j++) {
 #ifdef DEBUG      (u[j] = t[j]);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    }
         for(j=1;j<=n;j++)       u[p]='\0';
           printf(" %.12e",xit[j]);  
         printf("\n");     for(j=0; j<= lg; j++) {
 #endif      if (j>=(p+1))(v[j-p-1] = t[j]);
       }    }
     }  }
   }  
 }  /********************** nrerror ********************/
   
 /**** Prevalence limit ****************/  void nrerror(char error_text[])
   {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    fprintf(stderr,"ERREUR ...\n");
 {    fprintf(stderr,"%s\n",error_text);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    exit(EXIT_FAILURE);
      matrix by transitions matrix until convergence is reached */  }
   /*********************** vector *******************/
   int i, ii,j,k;  double *vector(int nl, int nh)
   double min, max, maxmin, maxmax,sumnew=0.;  {
   double **matprod2();    double *v;
   double **out, cov[NCOVMAX], **pmij();    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double **newm;    if (!v) nrerror("allocation failure in vector");
   double agefin, delaymax=50 ; /* Max number of years to converge */    return v-nl+NR_END;
   }
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /************************ free vector ******************/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  void free_vector(double*v, int nl, int nh)
     }  {
     free((FREE_ARG)(v+nl-NR_END));
    cov[1]=1.;  }
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /************************ivector *******************************/
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  int *ivector(long nl,long nh)
     newm=savm;  {
     /* Covariates have to be included here again */    int *v;
      cov[2]=agefin;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      if (!v) nrerror("allocation failure in ivector");
       for (k=1; k<=cptcovn;k++) {    return v-nl+NR_END;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  
       }  /******************free ivector **************************/
       for (k=1; k<=cptcovage;k++)  void free_ivector(int *v, long nl, long nh)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    free((FREE_ARG)(v+nl-NR_END));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /************************lvector *******************************/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  long *lvector(long nl,long nh)
   {
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     savm=oldm;    if (!v) nrerror("allocation failure in ivector");
     oldm=newm;    return v-nl+NR_END;
     maxmax=0.;  }
     for(j=1;j<=nlstate;j++){  
       min=1.;  /******************free lvector **************************/
       max=0.;  void free_lvector(long *v, long nl, long nh)
       for(i=1; i<=nlstate; i++) {  {
         sumnew=0;    free((FREE_ARG)(v+nl-NR_END));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  }
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  /******************* imatrix *******************************/
         min=FMIN(min,prlim[i][j]);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       maxmin=max-min;  { 
       maxmax=FMAX(maxmax,maxmin);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     }    int **m; 
     if(maxmax < ftolpl){    
       return prlim;    /* allocate pointers to rows */ 
     }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   }    if (!m) nrerror("allocation failure 1 in matrix()"); 
 }    m += NR_END; 
     m -= nrl; 
 /*************** transition probabilities **********/    
     
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    /* allocate rows and set pointers to them */ 
 {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double s1, s2;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   /*double t34;*/    m[nrl] += NR_END; 
   int i,j,j1, nc, ii, jj;    m[nrl] -= ncl; 
     
     for(i=1; i<= nlstate; i++){    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     for(j=1; j<i;j++){    
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* return pointer to array of pointers to rows */ 
         /*s2 += param[i][j][nc]*cov[nc];*/    return m; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /****************** free_imatrix *************************/
       ps[i][j]=s2;  void free_imatrix(m,nrl,nrh,ncl,nch)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        int **m;
     }        long nch,ncl,nrh,nrl; 
     for(j=i+1; j<=nlstate+ndeath;j++){       /* free an int matrix allocated by imatrix() */ 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    free((FREE_ARG) (m+nrl-NR_END)); 
       }  } 
       ps[i][j]=s2;  
     }  /******************* matrix *******************************/
   }  double **matrix(long nrl, long nrh, long ncl, long nch)
   for(i=1; i<= nlstate; i++){  {
      s1=0;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     for(j=1; j<i; j++)    double **m;
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       s1+=exp(ps[i][j]);    if (!m) nrerror("allocation failure 1 in matrix()");
     ps[i][i]=1./(s1+1.);    m += NR_END;
     for(j=1; j<i; j++)    m -= nrl;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       ps[i][j]= exp(ps[i][j])*ps[i][i];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    m[nrl] += NR_END;
   } /* end i */    m[nrl] -= ncl;
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for(jj=1; jj<= nlstate+ndeath; jj++){    return m;
       ps[ii][jj]=0;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       ps[ii][ii]=1;     */
     }  }
   }  
   /*************************free matrix ************************/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
      printf("%lf ",ps[ii][jj]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
    }    free((FREE_ARG)(m+nrl-NR_END));
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /******************* ma3x *******************************/
 /*  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  {
   goto end;*/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     return ps;    double ***m;
 }  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 /**************** Product of 2 matrices ******************/    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    m -= nrl;
 {  
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   /* in, b, out are matrice of pointers which should have been initialized    m[nrl] += NR_END;
      before: only the contents of out is modified. The function returns    m[nrl] -= ncl;
      a pointer to pointers identical to out */  
   long i, j, k;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         out[i][k] +=in[i][j]*b[j][k];    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
   return out;    for (j=ncl+1; j<=nch; j++) 
 }      m[nrl][j]=m[nrl][j-1]+nlay;
     
     for (i=nrl+1; i<=nrh; i++) {
 /************* Higher Matrix Product ***************/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        m[i][j]=m[i][j-1]+nlay;
 {    }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    return m; 
      duration (i.e. until    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    */
      (typically every 2 years instead of every month which is too big).  }
      Model is determined by parameters x and covariates have to be  
      included manually here.  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
      */  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   int i, j, d, h, k;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double **out, cov[NCOVMAX];    free((FREE_ARG)(m+nrl-NR_END));
   double **newm;  }
   
   /* Hstepm could be zero and should return the unit matrix */  /*************** function subdirf ***********/
   for (i=1;i<=nlstate+ndeath;i++)  char *subdirf(char fileres[])
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[i][j]=(i==j ? 1.0 : 0.0);    /* Caution optionfilefiname is hidden */
       po[i][j][0]=(i==j ? 1.0 : 0.0);    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/"); /* Add to the right */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    strcat(tmpout,fileres);
   for(h=1; h <=nhstepm; h++){    return tmpout;
     for(d=1; d <=hstepm; d++){  }
       newm=savm;  
       /* Covariates have to be included here again */  /*************** function subdirf2 ***********/
       cov[1]=1.;  char *subdirf2(char fileres[], char *preop)
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    
 for (k=1; k<=cptcovage;k++)    /* Caution optionfilefiname is hidden */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    strcpy(tmpout,optionfilefiname);
    for (k=1; k<=cptcovprod;k++)    strcat(tmpout,"/");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcat(tmpout,preop);
     strcat(tmpout,fileres);
     return tmpout;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /*************** function subdirf3 ***********/
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  char *subdirf3(char fileres[], char *preop, char *preop2)
       savm=oldm;  {
       oldm=newm;    
     }    /* Caution optionfilefiname is hidden */
     for(i=1; i<=nlstate+ndeath; i++)    strcpy(tmpout,optionfilefiname);
       for(j=1;j<=nlstate+ndeath;j++) {    strcat(tmpout,"/");
         po[i][j][h]=newm[i][j];    strcat(tmpout,preop);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    strcat(tmpout,preop2);
          */    strcat(tmpout,fileres);
       }    return tmpout;
   } /* end h */  }
   return po;  
 }  /***************** f1dim *************************/
   extern int ncom; 
   extern double *pcom,*xicom;
 /*************** log-likelihood *************/  extern double (*nrfunc)(double []); 
 double func( double *x)   
 {  double f1dim(double x) 
   int i, ii, j, k, mi, d, kk;  { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    int j; 
   double **out;    double f;
   double sw; /* Sum of weights */    double *xt; 
   double lli; /* Individual log likelihood */   
   long ipmx;    xt=vector(1,ncom); 
   /*extern weight */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   /* We are differentiating ll according to initial status */    f=(*nrfunc)(xt); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    free_vector(xt,1,ncom); 
   /*for(i=1;i<imx;i++)    return f; 
     printf(" %d\n",s[4][i]);  } 
   */  
   cov[1]=1.;  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   for(k=1; k<=nlstate; k++) ll[k]=0.;  { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    int iter; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    double a,b,d,etemp;
     for(mi=1; mi<= wav[i]-1; mi++){    double fu,fv,fw,fx;
       for (ii=1;ii<=nlstate+ndeath;ii++)    double ftemp;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       for(d=0; d<dh[mi][i]; d++){    double e=0.0; 
         newm=savm;   
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    a=(ax < cx ? ax : cx); 
         for (kk=1; kk<=cptcovage;kk++) {    b=(ax > cx ? ax : cx); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    x=w=v=bx; 
         }    fw=fv=fx=(*f)(x); 
            for (iter=1;iter<=ITMAX;iter++) { 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      xm=0.5*(a+b); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         savm=oldm;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         oldm=newm;      printf(".");fflush(stdout);
              fprintf(ficlog,".");fflush(ficlog);
          #ifdef DEBUG
       } /* end mult */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
            fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  #endif
       ipmx +=1;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       sw += weight[i];        *xmin=x; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        return fx; 
     } /* end of wave */      } 
   } /* end of individual */      ftemp=fu;
       if (fabs(e) > tol1) { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        r=(x-w)*(fx-fv); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        q=(x-v)*(fx-fw); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        p=(x-v)*q-(x-w)*r; 
   return -l;        q=2.0*(q-r); 
 }        if (q > 0.0) p = -p; 
         q=fabs(q); 
         etemp=e; 
 /*********** Maximum Likelihood Estimation ***************/        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {        else { 
   int i,j, iter;          d=p/q; 
   double **xi,*delti;          u=x+d; 
   double fret;          if (u-a < tol2 || b-u < tol2) 
   xi=matrix(1,npar,1,npar);            d=SIGN(tol1,xm-x); 
   for (i=1;i<=npar;i++)        } 
     for (j=1;j<=npar;j++)      } else { 
       xi[i][j]=(i==j ? 1.0 : 0.0);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   printf("Powell\n");      } 
   powell(p,xi,npar,ftol,&iter,&fret,func);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      if (fu <= fx) { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
 }          SHFT(fv,fw,fx,fu) 
           } else { 
 /**** Computes Hessian and covariance matrix ***/            if (u < x) a=u; else b=u; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            if (fu <= fw || w == x) { 
 {              v=w; 
   double  **a,**y,*x,pd;              w=u; 
   double **hess;              fv=fw; 
   int i, j,jk;              fw=fu; 
   int *indx;            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
   double hessii(double p[], double delta, int theta, double delti[]);              fv=fu; 
   double hessij(double p[], double delti[], int i, int j);            } 
   void lubksb(double **a, int npar, int *indx, double b[]) ;          } 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    } 
     nrerror("Too many iterations in brent"); 
     *xmin=x; 
   hess=matrix(1,npar,1,npar);    return fx; 
   } 
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  /****************** mnbrak ***********************/
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     /*printf(" %f ",p[i]);*/              double (*func)(double)) 
   }  { 
     double ulim,u,r,q, dum;
   for (i=1;i<=npar;i++) {    double fu; 
     for (j=1;j<=npar;j++)  {   
       if (j>i) {    *fa=(*func)(*ax); 
         printf(".%d%d",i,j);fflush(stdout);    *fb=(*func)(*bx); 
         hess[i][j]=hessij(p,delti,i,j);    if (*fb > *fa) { 
         hess[j][i]=hess[i][j];      SHFT(dum,*ax,*bx,dum) 
       }        SHFT(dum,*fb,*fa,dum) 
     }        } 
   }    *cx=(*bx)+GOLD*(*bx-*ax); 
   printf("\n");    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      r=(*bx-*ax)*(*fb-*fc); 
        q=(*bx-*cx)*(*fb-*fa); 
   a=matrix(1,npar,1,npar);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   y=matrix(1,npar,1,npar);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   x=vector(1,npar);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   indx=ivector(1,npar);      if ((*bx-u)*(u-*cx) > 0.0) { 
   for (i=1;i<=npar;i++)        fu=(*func)(u); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   ludcmp(a,npar,indx,&pd);        fu=(*func)(u); 
         if (fu < *fc) { 
   for (j=1;j<=npar;j++) {          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     for (i=1;i<=npar;i++) x[i]=0;            SHFT(*fb,*fc,fu,(*func)(u)) 
     x[j]=1;            } 
     lubksb(a,npar,indx,x);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for (i=1;i<=npar;i++){        u=ulim; 
       matcov[i][j]=x[i];        fu=(*func)(u); 
     }      } else { 
   }        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   printf("\n#Hessian matrix#\n");      } 
   for (i=1;i<=npar;i++) {      SHFT(*ax,*bx,*cx,u) 
     for (j=1;j<=npar;j++) {        SHFT(*fa,*fb,*fc,fu) 
       printf("%.3e ",hess[i][j]);        } 
     }  } 
     printf("\n");  
   }  /*************** linmin ************************/
   
   /* Recompute Inverse */  int ncom; 
   for (i=1;i<=npar;i++)  double *pcom,*xicom;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  double (*nrfunc)(double []); 
   ludcmp(a,npar,indx,&pd);   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   /*  printf("\n#Hessian matrix recomputed#\n");  { 
     double brent(double ax, double bx, double cx, 
   for (j=1;j<=npar;j++) {                 double (*f)(double), double tol, double *xmin); 
     for (i=1;i<=npar;i++) x[i]=0;    double f1dim(double x); 
     x[j]=1;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     lubksb(a,npar,indx,x);                double *fc, double (*func)(double)); 
     for (i=1;i<=npar;i++){    int j; 
       y[i][j]=x[i];    double xx,xmin,bx,ax; 
       printf("%.3e ",y[i][j]);    double fx,fb,fa;
     }   
     printf("\n");    ncom=n; 
   }    pcom=vector(1,n); 
   */    xicom=vector(1,n); 
     nrfunc=func; 
   free_matrix(a,1,npar,1,npar);    for (j=1;j<=n;j++) { 
   free_matrix(y,1,npar,1,npar);      pcom[j]=p[j]; 
   free_vector(x,1,npar);      xicom[j]=xi[j]; 
   free_ivector(indx,1,npar);    } 
   free_matrix(hess,1,npar,1,npar);    ax=0.0; 
     xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
 /*************** hessian matrix ****************/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 double hessii( double x[], double delta, int theta, double delti[])    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 {  #endif
   int i;    for (j=1;j<=n;j++) { 
   int l=1, lmax=20;      xi[j] *= xmin; 
   double k1,k2;      p[j] += xi[j]; 
   double p2[NPARMAX+1];    } 
   double res;    free_vector(xicom,1,n); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    free_vector(pcom,1,n); 
   double fx;  } 
   int k=0,kmax=10;  
   double l1;  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   fx=func(x);    long sec_left, days, hours, minutes;
   for (i=1;i<=npar;i++) p2[i]=x[i];    days = (time_sec) / (60*60*24);
   for(l=0 ; l <=lmax; l++){    sec_left = (time_sec) % (60*60*24);
     l1=pow(10,l);    hours = (sec_left) / (60*60) ;
     delts=delt;    sec_left = (sec_left) %(60*60);
     for(k=1 ; k <kmax; k=k+1){    minutes = (sec_left) /60;
       delt = delta*(l1*k);    sec_left = (sec_left) % (60);
       p2[theta]=x[theta] +delt;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       k1=func(p2)-fx;    return ascdiff;
       p2[theta]=x[theta]-delt;  }
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*************** powell ************************/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                    double (*func)(double [])) 
 #ifdef DEBUG  { 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    void linmin(double p[], double xi[], int n, double *fret, 
 #endif                double (*func)(double [])); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    int i,ibig,j; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    double del,t,*pt,*ptt,*xit;
         k=kmax;    double fp,fptt;
       }    double *xits;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    int niterf, itmp;
         k=kmax; l=lmax*10.;  
       }    pt=vector(1,n); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    ptt=vector(1,n); 
         delts=delt;    xit=vector(1,n); 
       }    xits=vector(1,n); 
     }    *fret=(*func)(p); 
   }    for (j=1;j<=n;j++) pt[j]=p[j]; 
   delti[theta]=delts;    for (*iter=1;;++(*iter)) { 
   return res;      fp=(*fret); 
        ibig=0; 
 }      del=0.0; 
       last_time=curr_time;
 double hessij( double x[], double delti[], int thetai,int thetaj)      (void) gettimeofday(&curr_time,&tzp);
 {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   int i;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   int l=1, l1, lmax=20;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   double k1,k2,k3,k4,res,fx;     for (i=1;i<=n;i++) {
   double p2[NPARMAX+1];        printf(" %d %.12f",i, p[i]);
   int k;        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   fx=func(x);      }
   for (k=1; k<=2; k++) {      printf("\n");
     for (i=1;i<=npar;i++) p2[i]=x[i];      fprintf(ficlog,"\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;      fprintf(ficrespow,"\n");fflush(ficrespow);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      if(*iter <=3){
     k1=func(p2)-fx;        tm = *localtime(&curr_time.tv_sec);
          strcpy(strcurr,asctime(&tm));
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*       asctime_r(&tm,strcurr); */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        forecast_time=curr_time; 
     k2=func(p2)-fx;        itmp = strlen(strcurr);
          if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     p2[thetai]=x[thetai]-delti[thetai]/k;          strcurr[itmp-1]='\0';
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     k3=func(p2)-fx;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          for(niterf=10;niterf<=30;niterf+=10){
     p2[thetai]=x[thetai]-delti[thetai]/k;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          tmf = *localtime(&forecast_time.tv_sec);
     k4=func(p2)-fx;  /*      asctime_r(&tmf,strfor); */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          strcpy(strfor,asctime(&tmf));
 #ifdef DEBUG          itmp = strlen(strfor);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          if(strfor[itmp-1]=='\n')
 #endif          strfor[itmp-1]='\0';
   }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   return res;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 }        }
       }
 /************** Inverse of matrix **************/      for (i=1;i<=n;i++) { 
 void ludcmp(double **a, int n, int *indx, double *d)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 {        fptt=(*fret); 
   int i,imax,j,k;  #ifdef DEBUG
   double big,dum,sum,temp;        printf("fret=%lf \n",*fret);
   double *vv;        fprintf(ficlog,"fret=%lf \n",*fret);
    #endif
   vv=vector(1,n);        printf("%d",i);fflush(stdout);
   *d=1.0;        fprintf(ficlog,"%d",i);fflush(ficlog);
   for (i=1;i<=n;i++) {        linmin(p,xit,n,fret,func); 
     big=0.0;        if (fabs(fptt-(*fret)) > del) { 
     for (j=1;j<=n;j++)          del=fabs(fptt-(*fret)); 
       if ((temp=fabs(a[i][j])) > big) big=temp;          ibig=i; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        } 
     vv[i]=1.0/big;  #ifdef DEBUG
   }        printf("%d %.12e",i,(*fret));
   for (j=1;j<=n;j++) {        fprintf(ficlog,"%d %.12e",i,(*fret));
     for (i=1;i<j;i++) {        for (j=1;j<=n;j++) {
       sum=a[i][j];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          printf(" x(%d)=%.12e",j,xit[j]);
       a[i][j]=sum;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     }        }
     big=0.0;        for(j=1;j<=n;j++) {
     for (i=j;i<=n;i++) {          printf(" p=%.12e",p[j]);
       sum=a[i][j];          fprintf(ficlog," p=%.12e",p[j]);
       for (k=1;k<j;k++)        }
         sum -= a[i][k]*a[k][j];        printf("\n");
       a[i][j]=sum;        fprintf(ficlog,"\n");
       if ( (dum=vv[i]*fabs(sum)) >= big) {  #endif
         big=dum;      } 
         imax=i;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       }  #ifdef DEBUG
     }        int k[2],l;
     if (j != imax) {        k[0]=1;
       for (k=1;k<=n;k++) {        k[1]=-1;
         dum=a[imax][k];        printf("Max: %.12e",(*func)(p));
         a[imax][k]=a[j][k];        fprintf(ficlog,"Max: %.12e",(*func)(p));
         a[j][k]=dum;        for (j=1;j<=n;j++) {
       }          printf(" %.12e",p[j]);
       *d = -(*d);          fprintf(ficlog," %.12e",p[j]);
       vv[imax]=vv[j];        }
     }        printf("\n");
     indx[j]=imax;        fprintf(ficlog,"\n");
     if (a[j][j] == 0.0) a[j][j]=TINY;        for(l=0;l<=1;l++) {
     if (j != n) {          for (j=1;j<=n;j++) {
       dum=1.0/(a[j][j]);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }          }
   free_vector(vv,1,n);  /* Doesn't work */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 ;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 }        }
   #endif
 void lubksb(double **a, int n, int *indx, double b[])  
 {  
   int i,ii=0,ip,j;        free_vector(xit,1,n); 
   double sum;        free_vector(xits,1,n); 
          free_vector(ptt,1,n); 
   for (i=1;i<=n;i++) {        free_vector(pt,1,n); 
     ip=indx[i];        return; 
     sum=b[ip];      } 
     b[ip]=b[i];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     if (ii)      for (j=1;j<=n;j++) { 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        ptt[j]=2.0*p[j]-pt[j]; 
     else if (sum) ii=i;        xit[j]=p[j]-pt[j]; 
     b[i]=sum;        pt[j]=p[j]; 
   }      } 
   for (i=n;i>=1;i--) {      fptt=(*func)(ptt); 
     sum=b[i];      if (fptt < fp) { 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     b[i]=sum/a[i][i];        if (t < 0.0) { 
   }          linmin(p,xit,n,fret,func); 
 }          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
 /************ Frequencies ********************/            xi[j][n]=xit[j]; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          }
 {  /* Some frequencies */  #ifdef DEBUG
            printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double ***freq; /* Frequencies */          for(j=1;j<=n;j++){
   double *pp;            printf(" %.12e",xit[j]);
   double pos;            fprintf(ficlog," %.12e",xit[j]);
   FILE *ficresp;          }
   char fileresp[FILENAMELENGTH];          printf("\n");
           fprintf(ficlog,"\n");
   pp=vector(1,nlstate);  #endif
         }
   strcpy(fileresp,"p");      } 
   strcat(fileresp,fileres);    } 
   if((ficresp=fopen(fileresp,"w"))==NULL) {  } 
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  /**** Prevalence limit (stable or period prevalence)  ****************/
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   j1=0;  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   j=cptcoveff;       matrix by transitions matrix until convergence is reached */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
     int i, ii,j,k;
   for(k1=1; k1<=j;k1++){    double min, max, maxmin, maxmax,sumnew=0.;
    for(i1=1; i1<=ncodemax[k1];i1++){    double **matprod2();
        j1++;    double **out, cov[NCOVMAX], **pmij();
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    double **newm;
          scanf("%d", i);*/    double agefin, delaymax=50 ; /* Max number of years to converge */
         for (i=-1; i<=nlstate+ndeath; i++)    
          for (jk=-1; jk<=nlstate+ndeath; jk++)      for (ii=1;ii<=nlstate+ndeath;ii++)
            for(m=agemin; m <= agemax+3; m++)      for (j=1;j<=nlstate+ndeath;j++){
              freq[i][jk][m]=0;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
        for (i=1; i<=imx; i++) {  
          bool=1;     cov[1]=1.;
          if  (cptcovn>0) {   
            for (z1=1; z1<=cptcoveff; z1++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
                bool=0;      newm=savm;
          }      /* Covariates have to be included here again */
           if (bool==1) {       cov[2]=agefin;
            for(m=firstpass; m<=lastpass-1; m++){    
              if(agev[m][i]==0) agev[m][i]=agemax+1;        for (k=1; k<=cptcovn;k++) {
              if(agev[m][i]==1) agev[m][i]=agemax+2;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        }
            }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          }        for (k=1; k<=cptcovprod;k++)
        }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         if  (cptcovn>0) {  
          fprintf(ficresp, "\n#********** Variable ");        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
        fprintf(ficresp, "**********\n#");        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
        for(i=1; i<=nlstate;i++)  
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      savm=oldm;
        fprintf(ficresp, "\n");      oldm=newm;
              maxmax=0.;
   for(i=(int)agemin; i <= (int)agemax+3; i++){      for(j=1;j<=nlstate;j++){
     if(i==(int)agemax+3)        min=1.;
       printf("Total");        max=0.;
     else        for(i=1; i<=nlstate; i++) {
       printf("Age %d", i);          sumnew=0;
     for(jk=1; jk <=nlstate ; jk++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          prlim[i][j]= newm[i][j]/(1-sumnew);
         pp[jk] += freq[jk][m][i];          max=FMAX(max,prlim[i][j]);
     }          min=FMIN(min,prlim[i][j]);
     for(jk=1; jk <=nlstate ; jk++){        }
       for(m=-1, pos=0; m <=0 ; m++)        maxmin=max-min;
         pos += freq[jk][m][i];        maxmax=FMAX(maxmax,maxmin);
       if(pp[jk]>=1.e-10)      }
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      if(maxmax < ftolpl){
       else        return prlim;
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      }
     }    }
     for(jk=1; jk <=nlstate ; jk++){  }
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)  
         pp[jk] += freq[jk][m][i];  /*************** transition probabilities ***************/ 
     }  
     for(jk=1,pos=0; jk <=nlstate ; jk++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       pos += pp[jk];  {
     for(jk=1; jk <=nlstate ; jk++){    double s1, s2;
       if(pos>=1.e-5)    /*double t34;*/
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    int i,j,j1, nc, ii, jj;
       else  
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for(i=1; i<= nlstate; i++){
       if( i <= (int) agemax){        for(j=1; j<i;j++){
         if(pos>=1.e-5)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            /*s2 += param[i][j][nc]*cov[nc];*/
       else            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       }          }
     }          ps[i][j]=s2;
     for(jk=-1; jk <=nlstate+ndeath; jk++)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       for(m=-1; m <=nlstate+ndeath; m++)        }
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for(j=i+1; j<=nlstate+ndeath;j++){
     if(i <= (int) agemax)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       fprintf(ficresp,"\n");            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     printf("\n");  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     }          }
     }          ps[i][j]=s2;
  }        }
        }
   fclose(ficresp);      /*ps[3][2]=1;*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      
   free_vector(pp,1,nlstate);      for(i=1; i<= nlstate; i++){
         s1=0;
 }  /* End of Freq */        for(j=1; j<i; j++)
           s1+=exp(ps[i][j]);
 /************* Waves Concatenation ***************/        for(j=i+1; j<=nlstate+ndeath; j++)
           s1+=exp(ps[i][j]);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        ps[i][i]=1./(s1+1.);
 {        for(j=1; j<i; j++)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          ps[i][j]= exp(ps[i][j])*ps[i][i];
      Death is a valid wave (if date is known).        for(j=i+1; j<=nlstate+ndeath; j++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          ps[i][j]= exp(ps[i][j])*ps[i][i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
      and mw[mi+1][i]. dh depends on stepm.      } /* end i */
      */      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   int i, mi, m;        for(jj=1; jj<= nlstate+ndeath; jj++){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          ps[ii][jj]=0;
      double sum=0., jmean=0.;*/          ps[ii][ii]=1;
         }
   int j, k=0,jk, ju, jl;      }
   double sum=0.;      
   jmin=1e+5;  
   jmax=-1;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   jmean=0.;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   for(i=1; i<=imx; i++){  /*         printf("ddd %lf ",ps[ii][jj]); */
     mi=0;  /*       } */
     m=firstpass;  /*       printf("\n "); */
     while(s[m][i] <= nlstate){  /*        } */
       if(s[m][i]>=1)  /*        printf("\n ");printf("%lf ",cov[2]); */
         mw[++mi][i]=m;         /*
       if(m >=lastpass)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         break;        goto end;*/
       else      return ps;
         m++;  }
     }/* end while */  
     if (s[m][i] > nlstate){  /**************** Product of 2 matrices ******************/
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
          /* Only death is a correct wave */  {
       mw[mi][i]=m;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
     wav[i]=mi;       before: only the contents of out is modified. The function returns
     if(mi==0)       a pointer to pointers identical to out */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    long i, j, k;
   }    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
   for(i=1; i<=imx; i++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     for(mi=1; mi<wav[i];mi++){          out[i][k] +=in[i][j]*b[j][k];
       if (stepm <=0)  
         dh[mi][i]=1;    return out;
       else{  }
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {  
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  /************* Higher Matrix Product ***************/
           if(j==0) j=1;  /* Survives at least one month after exam */  
           k=k+1;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           if (j >= jmax) jmax=j;  {
           if (j <= jmin) jmin=j;    /* Computes the transition matrix starting at age 'age' over 
           sum=sum+j;       'nhstepm*hstepm*stepm' months (i.e. until
           if (j<0) printf("j=%d num=%d ",j,i);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
           }       nhstepm*hstepm matrices. 
         }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         else{       (typically every 2 years instead of every month which is too big 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));       for the memory).
           k=k+1;       Model is determined by parameters x and covariates have to be 
           if (j >= jmax) jmax=j;       included manually here. 
           else if (j <= jmin)jmin=j;  
           sum=sum+j;       */
         }  
         jk= j/stepm;    int i, j, d, h, k;
         jl= j -jk*stepm;    double **out, cov[NCOVMAX];
         ju= j -(jk+1)*stepm;    double **newm;
         if(jl <= -ju)  
           dh[mi][i]=jk;    /* Hstepm could be zero and should return the unit matrix */
         else    for (i=1;i<=nlstate+ndeath;i++)
           dh[mi][i]=jk+1;      for (j=1;j<=nlstate+ndeath;j++){
         if(dh[mi][i]==0)        oldm[i][j]=(i==j ? 1.0 : 0.0);
           dh[mi][i]=1; /* At least one step */        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }      }
     }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(h=1; h <=nhstepm; h++){
   jmean=sum/k;      for(d=1; d <=hstepm; d++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        newm=savm;
 }        /* Covariates have to be included here again */
 /*********** Tricode ****************************/        cov[1]=1.;
 void tricode(int *Tvar, int **nbcode, int imx)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int Ndum[20],ij=1, k, j, i;        for (k=1; k<=cptcovage;k++)
   int cptcode=0;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   cptcoveff=0;        for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     for (i=1; i<=imx; i++) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       ij=(int)(covar[Tvar[j]][i]);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       Ndum[ij]++;        savm=oldm;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        oldm=newm;
       if (ij > cptcode) cptcode=ij;      }
     }      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
     for (i=0; i<=cptcode; i++) {          po[i][j][h]=newm[i][j];
       if(Ndum[i]!=0) ncodemax[j]++;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     }        }
     ij=1;      /*printf("h=%d ",h);*/
     } /* end h */
   /*     printf("\n H=%d \n",h); */
     for (i=1; i<=ncodemax[j]; i++) {    return po;
       for (k=0; k<=19; k++) {  }
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;  
           ij++;  /*************** log-likelihood *************/
         }  double func( double *x)
         if (ij > ncodemax[j]) break;  {
       }      int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   }      double **out;
     double sw; /* Sum of weights */
  for (k=0; k<19; k++) Ndum[k]=0;    double lli; /* Individual log likelihood */
     int s1, s2;
  for (i=1; i<=ncovmodel; i++) {    double bbh, survp;
       ij=Tvar[i];    long ipmx;
       Ndum[ij]++;    /*extern weight */
     }    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
  ij=1;    /*for(i=1;i<imx;i++) 
  for (i=1; i<=10; i++) {      printf(" %d\n",s[4][i]);
    if((Ndum[i]!=0) && (i<=ncov)){    */
      Tvaraff[ij]=i;    cov[1]=1.;
      ij++;  
    }    for(k=1; k<=nlstate; k++) ll[k]=0.;
  }  
      if(mle==1){
     cptcoveff=ij-1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /*********** Health Expectancies ****************/          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Health expectancies */            }
   int i, j, nhstepm, hstepm, h;          for(d=0; d<dh[mi][i]; d++){
   double age, agelim,hf;            newm=savm;
   double ***p3mat;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficreseij,"# Health expectancies\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficreseij,"# Age");            }
   for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(j=1; j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficreseij," %1d-%1d",i,j);            savm=oldm;
   fprintf(ficreseij,"\n");            oldm=newm;
           } /* end mult */
   hstepm=1*YEARM; /*  Every j years of age (in month) */        
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
   agelim=AGESUP;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */           * (in months) between two waves is not a multiple of stepm, we rounded to 
     /* nhstepm age range expressed in number of stepm */           * the nearest (and in case of equal distance, to the lowest) interval but now
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     /* Typically if 20 years = 20*12/6=40 stepm */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     if (stepm >= YEARM) hstepm=1;           * probability in order to take into account the bias as a fraction of the way
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           * -stepm/2 to stepm/2 .
     /* Computed by stepm unit matrices, product of hstepm matrices, stored           * For stepm=1 the results are the same as for previous versions of Imach.
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */           * For stepm > 1 the results are less biased than in previous versions. 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);             */
           s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1; j<=nlstate;j++)          /* bias bh is positive if real duration
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){           * is higher than the multiple of stepm and negative otherwise.
           eij[i][j][(int)age] +=p3mat[i][j][h];           */
         }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
              if( s2 > nlstate){ 
     hf=1;            /* i.e. if s2 is a death state and if the date of death is known 
     if (stepm >= YEARM) hf=stepm/YEARM;               then the contribution to the likelihood is the probability to 
     fprintf(ficreseij,"%.0f",age );               die between last step unit time and current  step unit time, 
     for(i=1; i<=nlstate;i++)               which is also equal to probability to die before dh 
       for(j=1; j<=nlstate;j++){               minus probability to die before dh-stepm . 
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);               In version up to 0.92 likelihood was computed
       }          as if date of death was unknown. Death was treated as any other
     fprintf(ficreseij,"\n");          health state: the date of the interview describes the actual state
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          and not the date of a change in health state. The former idea was
   }          to consider that at each interview the state was recorded
 }          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
 /************ Variance ******************/          the contribution of an exact death to the likelihood. This new
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          contribution is smaller and very dependent of the step unit
 {          stepm. It is no more the probability to die between last interview
   /* Variance of health expectancies */          and month of death but the probability to survive from last
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          interview up to one month before death multiplied by the
   double **newm;          probability to die within a month. Thanks to Chris
   double **dnewm,**doldm;          Jackson for correcting this bug.  Former versions increased
   int i, j, nhstepm, hstepm, h;          mortality artificially. The bad side is that we add another loop
   int k, cptcode;          which slows down the processing. The difference can be up to 10%
    double *xp;          lower mortality.
   double **gp, **gm;            */
   double ***gradg, ***trgradg;            lli=log(out[s1][s2] - savm[s1][s2]);
   double ***p3mat;  
   double age,agelim;  
   int theta;          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
    fprintf(ficresvij,"# Covariances of life expectancies\n");              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   fprintf(ficresvij,"# Age");            /*survp += out[s1][j]; */
   for(i=1; i<=nlstate;i++)            lli= log(survp);
     for(j=1; j<=nlstate;j++)          }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          
   fprintf(ficresvij,"\n");          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
   xp=vector(1,npar);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   dnewm=matrix(1,nlstate,1,npar);            lli= log(survp); 
   doldm=matrix(1,nlstate,1,nlstate);          } 
    
   hstepm=1*YEARM; /* Every year of age */          else if  (s2==-5) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            for (j=1,survp=0. ; j<=2; j++)  
   agelim = AGESUP;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            lli= log(survp); 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          } 
     if (stepm >= YEARM) hstepm=1;          
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          else{
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     gp=matrix(0,nhstepm,1,nlstate);          } 
     gm=matrix(0,nhstepm,1,nlstate);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
     for(theta=1; theta <=npar; theta++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for(i=1; i<=npar; i++){ /* Computes gradient */          ipmx +=1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          } /* end of wave */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      } /* end of individual */
       for(j=1; j<= nlstate; j++){    }  else if(mle==2){
         for(h=0; h<=nhstepm; h++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++) /* Computes gradient */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(d=0; d<=dh[mi][i]; d++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            newm=savm;
       for(j=1; j<= nlstate; j++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(h=0; h<=nhstepm; h++){            for (kk=1; kk<=cptcovage;kk++) {
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<= nlstate; j++)            savm=oldm;
         for(h=0; h<=nhstepm; h++){            oldm=newm;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          } /* end mult */
         }        
     } /* End theta */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(h=0; h<=nhstepm; h++)          ipmx +=1;
       for(j=1; j<=nlstate;j++)          sw += weight[i];
         for(theta=1; theta <=npar; theta++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           trgradg[h][j][theta]=gradg[h][theta][j];        } /* end of wave */
       } /* end of individual */
     for(i=1;i<=nlstate;i++)    }  else if(mle==3){  /* exponential inter-extrapolation */
       for(j=1;j<=nlstate;j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         vareij[i][j][(int)age] =0.;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(h=0;h<=nhstepm;h++){        for(mi=1; mi<= wav[i]-1; mi++){
       for(k=0;k<=nhstepm;k++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            for (j=1;j<=nlstate+ndeath;j++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1;i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(j=1;j<=nlstate;j++)            }
             vareij[i][j][(int)age] += doldm[i][j];          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     h=1;            for (kk=1; kk<=cptcovage;kk++) {
     if (stepm >= YEARM) h=stepm/YEARM;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fprintf(ficresvij,"%.0f ",age );            }
     for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<=nlstate;j++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);            savm=oldm;
       }            oldm=newm;
     fprintf(ficresvij,"\n");          } /* end mult */
     free_matrix(gp,0,nhstepm,1,nlstate);        
     free_matrix(gm,0,nhstepm,1,nlstate);          s1=s[mw[mi][i]][i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          s2=s[mw[mi+1][i]][i];
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          bbh=(double)bh[mi][i]/(double)stepm; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   } /* End age */          ipmx +=1;
            sw += weight[i];
   free_vector(xp,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_matrix(doldm,1,nlstate,1,npar);        } /* end of wave */
   free_matrix(dnewm,1,nlstate,1,nlstate);      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /************ Variance of prevlim ******************/        for(mi=1; mi<= wav[i]-1; mi++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Variance of prevalence limit */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **newm;            }
   double **dnewm,**doldm;          for(d=0; d<dh[mi][i]; d++){
   int i, j, nhstepm, hstepm;            newm=savm;
   int k, cptcode;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double *xp;            for (kk=1; kk<=cptcovage;kk++) {
   double *gp, *gm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **gradg, **trgradg;            }
   double age,agelim;          
   int theta;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                             1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            savm=oldm;
   fprintf(ficresvpl,"# Age");            oldm=newm;
   for(i=1; i<=nlstate;i++)          } /* end mult */
       fprintf(ficresvpl," %1d-%1d",i,i);        
   fprintf(ficresvpl,"\n");          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   xp=vector(1,npar);          if( s2 > nlstate){ 
   dnewm=matrix(1,nlstate,1,npar);            lli=log(out[s1][s2] - savm[s1][s2]);
   doldm=matrix(1,nlstate,1,nlstate);          }else{
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   hstepm=1*YEARM; /* Every year of age */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          ipmx +=1;
   agelim = AGESUP;          sw += weight[i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     if (stepm >= YEARM) hstepm=1;        } /* end of wave */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      } /* end of individual */
     gradg=matrix(1,npar,1,nlstate);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     gp=vector(1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gm=vector(1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     for(theta=1; theta <=npar; theta++){          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1; i<=npar; i++){ /* Computes gradient */            for (j=1;j<=nlstate+ndeath;j++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
       for(i=1;i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
         gp[i] = prlim[i][i];            newm=savm;
                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(i=1; i<=npar; i++) /* Computes gradient */            for (kk=1; kk<=cptcovage;kk++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
       for(i=1;i<=nlstate;i++)          
         gm[i] = prlim[i][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1;i<=nlstate;i++)            savm=oldm;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            oldm=newm;
     } /* End theta */          } /* end mult */
         
     trgradg =matrix(1,nlstate,1,npar);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     for(j=1; j<=nlstate;j++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(theta=1; theta <=npar; theta++)          ipmx +=1;
         trgradg[j][theta]=gradg[theta][j];          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(i=1;i<=nlstate;i++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       varpl[i][(int)age] =0.;        } /* end of wave */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      } /* end of individual */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    } /* End of if */
     for(i=1;i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     fprintf(ficresvpl,"%.0f ",age );    return -l;
     for(i=1; i<=nlstate;i++)  }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");  /*************** log-likelihood *************/
     free_vector(gp,1,nlstate);  double funcone( double *x)
     free_vector(gm,1,nlstate);  {
     free_matrix(gradg,1,npar,1,nlstate);    /* Same as likeli but slower because of a lot of printf and if */
     free_matrix(trgradg,1,nlstate,1,npar);    int i, ii, j, k, mi, d, kk;
   } /* End age */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   free_vector(xp,1,npar);    double lli; /* Individual log likelihood */
   free_matrix(doldm,1,nlstate,1,npar);    double llt;
   free_matrix(dnewm,1,nlstate,1,nlstate);    int s1, s2;
     double bbh, survp;
 }    /*extern weight */
     /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
 /***********************************************/      printf(" %d\n",s[4][i]);
 /**************** Main Program *****************/    */
 /***********************************************/    cov[1]=1.;
   
 /*int main(int argc, char *argv[])*/    for(k=1; k<=nlstate; k++) ll[k]=0.;
 int main()  
 {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      for(mi=1; mi<= wav[i]-1; mi++){
   double agedeb, agefin,hf;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double agemin=1.e20, agemax=-1.e20;          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double fret;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **xi,tmp,delta;          }
         for(d=0; d<dh[mi][i]; d++){
   double dum; /* Dummy variable */          newm=savm;
   double ***p3mat;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int *indx;          for (kk=1; kk<=cptcovage;kk++) {
   char line[MAXLINE], linepar[MAXLINE];            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   char title[MAXLINE];          }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   char filerest[FILENAMELENGTH];          savm=oldm;
   char fileregp[FILENAMELENGTH];          oldm=newm;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        } /* end mult */
   int firstobs=1, lastobs=10;        
   int sdeb, sfin; /* Status at beginning and end */        s1=s[mw[mi][i]][i];
   int c,  h , cpt,l;        s2=s[mw[mi+1][i]][i];
   int ju,jl, mi;        bbh=(double)bh[mi][i]/(double)stepm; 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        /* bias is positive if real duration
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;         * is higher than the multiple of stepm and negative otherwise.
           */
   int hstepm, nhstepm;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   double bage, fage, age, agelim, agebase;          lli=log(out[s1][s2] - savm[s1][s2]);
   double ftolpl=FTOL;        } else if  (s2==-2) {
   double **prlim;          for (j=1,survp=0. ; j<=nlstate; j++) 
   double *severity;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double ***param; /* Matrix of parameters */          lli= log(survp);
   double  *p;        }else if (mle==1){
   double **matcov; /* Matrix of covariance */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double ***delti3; /* Scale */        } else if(mle==2){
   double *delti; /* Scale */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double ***eij, ***vareij;        } else if(mle==3){  /* exponential inter-extrapolation */
   double **varpl; /* Variances of prevalence limits by age */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double *epj, vepp;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";          lli=log(out[s1][s2]); /* Original formula */
   char *alph[]={"a","a","b","c","d","e"}, str[4];        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
   char z[1]="c", occ;        } /* End of if */
 #include <sys/time.h>        ipmx +=1;
 #include <time.h>        sw += weight[i];
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* long total_usecs;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   struct timeval start_time, end_time;        if(globpr){
            fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   printf("\nIMACH, Version 0.64b");          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   printf("\nEnter the parameter file name: ");            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 #ifdef windows          }
   scanf("%s",pathtot);          fprintf(ficresilk," %10.6f\n", -llt);
   getcwd(pathcd, size);        }
   /*cygwin_split_path(pathtot,path,optionfile);      } /* end of wave */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    } /* end of individual */
   /* cutv(path,optionfile,pathtot,'\\');*/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 split(pathtot, path,optionfile);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   chdir(path);    if(globpr==0){ /* First time we count the contributions and weights */
   replace(pathc,path);      gipmx=ipmx;
 #endif      gsw=sw;
 #ifdef unix    }
   scanf("%s",optionfile);    return -l;
 #endif  }
   
 /*-------- arguments in the command line --------*/  
   /*************** function likelione ***********/
   strcpy(fileres,"r");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   strcat(fileres, optionfile);  {
     /* This routine should help understanding what is done with 
   /*---------arguments file --------*/       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       Plotting could be done.
     printf("Problem with optionfile %s\n",optionfile);     */
     goto end;    int k;
   }  
     if(*globpri !=0){ /* Just counts and sums, no printings */
   strcpy(filereso,"o");      strcpy(fileresilk,"ilk"); 
   strcat(filereso,fileres);      strcat(fileresilk,fileres);
   if((ficparo=fopen(filereso,"w"))==NULL) {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        printf("Problem with resultfile: %s\n", fileresilk);
   }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
   /* Reads comments: lines beginning with '#' */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     ungetc(c,ficpar);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     fgets(line, MAXLINE, ficpar);      for(k=1; k<=nlstate; k++) 
     puts(line);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     fputs(line,ficparo);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   }    }
   ungetc(c,ficpar);  
     *fretone=(*funcone)(p);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    if(*globpri !=0){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      fclose(ficresilk);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
   covar=matrix(0,NCOVMAX,1,n);    } 
   cptcovn=0;    return;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  }
   
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  /*********** Maximum Likelihood Estimation ***************/
    
   /* Read guess parameters */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   /* Reads comments: lines beginning with '#' */  {
   while((c=getc(ficpar))=='#' && c!= EOF){    int i,j, iter;
     ungetc(c,ficpar);    double **xi;
     fgets(line, MAXLINE, ficpar);    double fret;
     puts(line);    double fretone; /* Only one call to likelihood */
     fputs(line,ficparo);    /*  char filerespow[FILENAMELENGTH];*/
   }    xi=matrix(1,npar,1,npar);
   ungetc(c,ficpar);    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        xi[i][j]=(i==j ? 1.0 : 0.0);
     for(i=1; i <=nlstate; i++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     for(j=1; j <=nlstate+ndeath-1; j++){    strcpy(filerespow,"pow"); 
       fscanf(ficpar,"%1d%1d",&i1,&j1);    strcat(filerespow,fileres);
       fprintf(ficparo,"%1d%1d",i1,j1);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("%1d%1d",i,j);      printf("Problem with resultfile: %s\n", filerespow);
       for(k=1; k<=ncovmodel;k++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         fscanf(ficpar," %lf",&param[i][j][k]);    }
         printf(" %lf",param[i][j][k]);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         fprintf(ficparo," %lf",param[i][j][k]);    for (i=1;i<=nlstate;i++)
       }      for(j=1;j<=nlstate+ndeath;j++)
       fscanf(ficpar,"\n");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       printf("\n");    fprintf(ficrespow,"\n");
       fprintf(ficparo,"\n");  
     }    powell(p,xi,npar,ftol,&iter,&fret,func);
    
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    free_matrix(xi,1,npar,1,npar);
   p=param[1][1];    fclose(ficrespow);
      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   /* Reads comments: lines beginning with '#' */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  }
     puts(line);  
     fputs(line,ficparo);  /**** Computes Hessian and covariance matrix ***/
   }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   ungetc(c,ficpar);  {
     double  **a,**y,*x,pd;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double **hess;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    int i, j,jk;
   for(i=1; i <=nlstate; i++){    int *indx;
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       printf("%1d%1d",i,j);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(k=1; k<=ncovmodel;k++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    double gompertz(double p[]);
         printf(" %le",delti3[i][j][k]);    hess=matrix(1,npar,1,npar);
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }    printf("\nCalculation of the hessian matrix. Wait...\n");
       fscanf(ficpar,"\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       printf("\n");    for (i=1;i<=npar;i++){
       fprintf(ficparo,"\n");      printf("%d",i);fflush(stdout);
     }      fprintf(ficlog,"%d",i);fflush(ficlog);
   }     
   delti=delti3[1][1];       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
        
   /* Reads comments: lines beginning with '#' */      /*  printf(" %f ",p[i]);
   while((c=getc(ficpar))=='#' && c!= EOF){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    
     puts(line);    for (i=1;i<=npar;i++) {
     fputs(line,ficparo);      for (j=1;j<=npar;j++)  {
   }        if (j>i) { 
   ungetc(c,ficpar);          printf(".%d%d",i,j);fflush(stdout);
            fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   matcov=matrix(1,npar,1,npar);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   for(i=1; i <=npar; i++){          
     fscanf(ficpar,"%s",&str);          hess[j][i]=hess[i][j];    
     printf("%s",str);          /*printf(" %lf ",hess[i][j]);*/
     fprintf(ficparo,"%s",str);        }
     for(j=1; j <=i; j++){      }
       fscanf(ficpar," %le",&matcov[i][j]);    }
       printf(" %.5le",matcov[i][j]);    printf("\n");
       fprintf(ficparo," %.5le",matcov[i][j]);    fprintf(ficlog,"\n");
     }  
     fscanf(ficpar,"\n");    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     printf("\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficparo,"\n");    
   }    a=matrix(1,npar,1,npar);
   for(i=1; i <=npar; i++)    y=matrix(1,npar,1,npar);
     for(j=i+1;j<=npar;j++)    x=vector(1,npar);
       matcov[i][j]=matcov[j][i];    indx=ivector(1,npar);
        for (i=1;i<=npar;i++)
   printf("\n");      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   
     /*-------- data file ----------*/    for (j=1;j<=npar;j++) {
     if((ficres =fopen(fileres,"w"))==NULL) {      for (i=1;i<=npar;i++) x[i]=0;
       printf("Problem with resultfile: %s\n", fileres);goto end;      x[j]=1;
     }      lubksb(a,npar,indx,x);
     fprintf(ficres,"#%s\n",version);      for (i=1;i<=npar;i++){ 
            matcov[i][j]=x[i];
     if((fic=fopen(datafile,"r"))==NULL)    {      }
       printf("Problem with datafile: %s\n", datafile);goto end;    }
     }  
     printf("\n#Hessian matrix#\n");
     n= lastobs;    fprintf(ficlog,"\n#Hessian matrix#\n");
     severity = vector(1,maxwav);    for (i=1;i<=npar;i++) { 
     outcome=imatrix(1,maxwav+1,1,n);      for (j=1;j<=npar;j++) { 
     num=ivector(1,n);        printf("%.3e ",hess[i][j]);
     moisnais=vector(1,n);        fprintf(ficlog,"%.3e ",hess[i][j]);
     annais=vector(1,n);      }
     moisdc=vector(1,n);      printf("\n");
     andc=vector(1,n);      fprintf(ficlog,"\n");
     agedc=vector(1,n);    }
     cod=ivector(1,n);  
     weight=vector(1,n);    /* Recompute Inverse */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    for (i=1;i<=npar;i++)
     mint=matrix(1,maxwav,1,n);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     anint=matrix(1,maxwav,1,n);    ludcmp(a,npar,indx,&pd);
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);        /*  printf("\n#Hessian matrix recomputed#\n");
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     i=1;      x[j]=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {      lubksb(a,npar,indx,x);
       if ((i >= firstobs) && (i <=lastobs)) {      for (i=1;i<=npar;i++){ 
                y[i][j]=x[i];
         for (j=maxwav;j>=1;j--){        printf("%.3e ",y[i][j]);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        fprintf(ficlog,"%.3e ",y[i][j]);
           strcpy(line,stra);      }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      printf("\n");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"\n");
         }    }
            */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_vector(x,1,npar);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncov;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  }
         }  
         num[i]=atol(stra);  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  {
     int i;
         i=i+1;    int l=1, lmax=20;
       }    double k1,k2;
     }    double p2[NPARMAX+1];
     double res;
     /*scanf("%d",i);*/    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   imx=i-1; /* Number of individuals */    double fx;
     int k=0,kmax=10;
   /* Calculation of the number of parameter from char model*/    double l1;
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);    fx=func(x);
   Tvaraff=ivector(1,15);    for (i=1;i<=npar;i++) p2[i]=x[i];
   Tvard=imatrix(1,15,1,2);    for(l=0 ; l <=lmax; l++){
   Tage=ivector(1,15);            l1=pow(10,l);
          delts=delt;
   if (strlen(model) >1){      for(k=1 ; k <kmax; k=k+1){
     j=0, j1=0, k1=1, k2=1;        delt = delta*(l1*k);
     j=nbocc(model,'+');        p2[theta]=x[theta] +delt;
     j1=nbocc(model,'*');        k1=func(p2)-fx;
     cptcovn=j+1;        p2[theta]=x[theta]-delt;
     cptcovprod=j1;        k2=func(p2)-fx;
            /*res= (k1-2.0*fx+k2)/delt/delt; */
            res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     strcpy(modelsav,model);        
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  #ifdef DEBUG
       printf("Error. Non available option model=%s ",model);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       goto end;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     }  #endif
            /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     for(i=(j+1); i>=1;i--){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       cutv(stra,strb,modelsav,'+');          k=kmax;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       /*scanf("%d",i);*/          k=kmax; l=lmax*10.;
       if (strchr(strb,'*')) {        }
         cutv(strd,strc,strb,'*');        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         if (strcmp(strc,"age")==0) {          delts=delt;
           cptcovprod--;        }
           cutv(strb,stre,strd,'V');      }
           Tvar[i]=atoi(stre);    }
           cptcovage++;    delti[theta]=delts;
             Tage[cptcovage]=i;    return res; 
             /*printf("stre=%s ", stre);*/    
         }  }
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           cutv(strb,stre,strc,'V');  {
           Tvar[i]=atoi(stre);    int i;
           cptcovage++;    int l=1, l1, lmax=20;
           Tage[cptcovage]=i;    double k1,k2,k3,k4,res,fx;
         }    double p2[NPARMAX+1];
         else {    int k;
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncov+k1;    fx=func(x);
           cutv(strb,strc,strd,'V');    for (k=1; k<=2; k++) {
           Tprod[k1]=i;      for (i=1;i<=npar;i++) p2[i]=x[i];
           Tvard[k1][1]=atoi(strc);      p2[thetai]=x[thetai]+delti[thetai]/k;
           Tvard[k1][2]=atoi(stre);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           Tvar[cptcovn+k2]=Tvard[k1][1];      k1=func(p2)-fx;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    
           for (k=1; k<=lastobs;k++)      p2[thetai]=x[thetai]+delti[thetai]/k;
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           k1++;      k2=func(p2)-fx;
           k2=k2+2;    
         }      p2[thetai]=x[thetai]-delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       else {      k3=func(p2)-fx;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    
        /*  scanf("%d",i);*/      p2[thetai]=x[thetai]-delti[thetai]/k;
       cutv(strd,strc,strb,'V');      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       Tvar[i]=atoi(strc);      k4=func(p2)-fx;
       }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       strcpy(modelsav,stra);    #ifdef DEBUG
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         scanf("%d",i);*/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     }  #endif
 }    }
      return res;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  }
   printf("cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/  /************** Inverse of matrix **************/
     fclose(fic);  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
     /*  if(mle==1){*/    int i,imax,j,k; 
     if (weightopt != 1) { /* Maximisation without weights*/    double big,dum,sum,temp; 
       for(i=1;i<=n;i++) weight[i]=1.0;    double *vv; 
     }   
     /*-calculation of age at interview from date of interview and age at death -*/    vv=vector(1,n); 
     agev=matrix(1,maxwav,1,imx);    *d=1.0; 
        for (i=1;i<=n;i++) { 
     for (i=1; i<=imx; i++)  {      big=0.0; 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      for (j=1;j<=n;j++) 
       for(m=1; (m<= maxwav); m++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
         if(s[m][i] >0){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           if (s[m][i] == nlstate+1) {      vv[i]=1.0/big; 
             if(agedc[i]>0)    } 
               if(moisdc[i]!=99 && andc[i]!=9999)    for (j=1;j<=n;j++) { 
               agev[m][i]=agedc[i];      for (i=1;i<j;i++) { 
             else {        sum=a[i][j]; 
               if (andc[i]!=9999){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        a[i][j]=sum; 
               agev[m][i]=-1;      } 
               }      big=0.0; 
             }      for (i=j;i<=n;i++) { 
           }        sum=a[i][j]; 
           else if(s[m][i] !=9){ /* Should no more exist */        for (k=1;k<j;k++) 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          sum -= a[i][k]*a[k][j]; 
             if(mint[m][i]==99 || anint[m][i]==9999)        a[i][j]=sum; 
               agev[m][i]=1;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
             else if(agev[m][i] <agemin){          big=dum; 
               agemin=agev[m][i];          imax=i; 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        } 
             }      } 
             else if(agev[m][i] >agemax){      if (j != imax) { 
               agemax=agev[m][i];        for (k=1;k<=n;k++) { 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          dum=a[imax][k]; 
             }          a[imax][k]=a[j][k]; 
             /*agev[m][i]=anint[m][i]-annais[i];*/          a[j][k]=dum; 
             /*   agev[m][i] = age[i]+2*m;*/        } 
           }        *d = -(*d); 
           else { /* =9 */        vv[imax]=vv[j]; 
             agev[m][i]=1;      } 
             s[m][i]=-1;      indx[j]=imax; 
           }      if (a[j][j] == 0.0) a[j][j]=TINY; 
         }      if (j != n) { 
         else /*= 0 Unknown */        dum=1.0/(a[j][j]); 
           agev[m][i]=1;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       }      } 
        } 
     }    free_vector(vv,1,n);  /* Doesn't work */
     for (i=1; i<=imx; i++)  {  ;
       for(m=1; (m<= maxwav); m++){  } 
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: Wrong value in nlstate or ndeath\n");    void lubksb(double **a, int n, int *indx, double b[]) 
           goto end;  { 
         }    int i,ii=0,ip,j; 
       }    double sum; 
     }   
     for (i=1;i<=n;i++) { 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      ip=indx[i]; 
       sum=b[ip]; 
     free_vector(severity,1,maxwav);      b[ip]=b[i]; 
     free_imatrix(outcome,1,maxwav+1,1,n);      if (ii) 
     free_vector(moisnais,1,n);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     free_vector(annais,1,n);      else if (sum) ii=i; 
     free_matrix(mint,1,maxwav,1,n);      b[i]=sum; 
     free_matrix(anint,1,maxwav,1,n);    } 
     free_vector(moisdc,1,n);    for (i=n;i>=1;i--) { 
     free_vector(andc,1,n);      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
          b[i]=sum/a[i][i]; 
     wav=ivector(1,imx);    } 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  } 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
      void pstamp(FILE *fichier)
     /* Concatenates waves */  {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
   
       Tcode=ivector(1,100);  /************ Frequencies ********************/
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       ncodemax[1]=1;  {  /* Some frequencies */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    
          int i, m, jk, k1,i1, j1, bool, z1,j;
    codtab=imatrix(1,100,1,10);    int first;
    h=0;    double ***freq; /* Frequencies */
    m=pow(2,cptcoveff);    double *pp, **prop;
      double pos,posprop, k2, dateintsum=0,k2cpt=0;
    for(k=1;k<=cptcoveff; k++){    char fileresp[FILENAMELENGTH];
      for(i=1; i <=(m/pow(2,k));i++){    
        for(j=1; j <= ncodemax[k]; j++){    pp=vector(1,nlstate);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
            h++;    strcpy(fileresp,"p");
            if (h>m) h=1;codtab[h][k]=j;    strcat(fileresp,fileres);
          }    if((ficresp=fopen(fileresp,"w"))==NULL) {
        }      printf("Problem with prevalence resultfile: %s\n", fileresp);
      }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
    }      exit(0);
     }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
    /*for(i=1; i <=m ;i++){    j1=0;
      for(k=1; k <=cptcovn; k++){    
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);    j=cptcoveff;
      }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      printf("\n");  
    }    first=1;
    scanf("%d",i);*/  
        for(k1=1; k1<=j;k1++){
    /* Calculates basic frequencies. Computes observed prevalence at single age      for(i1=1; i1<=ncodemax[k1];i1++){
        and prints on file fileres'p'. */        j1++;
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (i=-5; i<=nlstate+ndeath; i++)  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(m=iagemin; m <= iagemax+3; m++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              freq[i][jk][m]=0;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
          for (i=1; i<=nlstate; i++)  
     /* For Powell, parameters are in a vector p[] starting at p[1]        for(m=iagemin; m <= iagemax+3; m++)
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          prop[i][m]=0;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        
         dateintsum=0;
     if(mle==1){        k2cpt=0;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        for (i=1; i<=imx; i++) {
     }          bool=1;
              if  (cptcovn>0) {
     /*--------- results files --------------*/            for (z1=1; z1<=cptcoveff; z1++) 
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                    bool=0;
    jk=1;          }
    fprintf(ficres,"# Parameters\n");          if (bool==1){
    printf("# Parameters\n");            for(m=firstpass; m<=lastpass; m++){
    for(i=1,jk=1; i <=nlstate; i++){              k2=anint[m][i]+(mint[m][i]/12.);
      for(k=1; k <=(nlstate+ndeath); k++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
        if (k != i)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
          {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
            printf("%d%d ",i,k);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
            fprintf(ficres,"%1d%1d ",i,k);                if (m<lastpass) {
            for(j=1; j <=ncovmodel; j++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
              printf("%f ",p[jk]);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
              fprintf(ficres,"%f ",p[jk]);                }
              jk++;                
            }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
            printf("\n");                  dateintsum=dateintsum+k2;
            fprintf(ficres,"\n");                  k2cpt++;
          }                }
      }                /*}*/
    }            }
  if(mle==1){          }
     /* Computing hessian and covariance matrix */        }
     ftolhess=ftol; /* Usually correct */         
     hesscov(matcov, p, npar, delti, ftolhess, func);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
  }        pstamp(ficresp);
     fprintf(ficres,"# Scales\n");        if  (cptcovn>0) {
     printf("# Scales\n");          fprintf(ficresp, "\n#********** Variable "); 
      for(i=1,jk=1; i <=nlstate; i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(j=1; j <=nlstate+ndeath; j++){          fprintf(ficresp, "**********\n#");
         if (j!=i) {        }
           fprintf(ficres,"%1d%1d",i,j);        for(i=1; i<=nlstate;i++) 
           printf("%1d%1d",i,j);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           for(k=1; k<=ncovmodel;k++){        fprintf(ficresp, "\n");
             printf(" %.5e",delti[jk]);        
             fprintf(ficres," %.5e",delti[jk]);        for(i=iagemin; i <= iagemax+3; i++){
             jk++;          if(i==iagemax+3){
           }            fprintf(ficlog,"Total");
           printf("\n");          }else{
           fprintf(ficres,"\n");            if(first==1){
         }              first=0;
       }              printf("See log file for details...\n");
       }            }
                fprintf(ficlog,"Age %d", i);
     k=1;          }
     fprintf(ficres,"# Covariance\n");          for(jk=1; jk <=nlstate ; jk++){
     printf("# Covariance\n");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     for(i=1;i<=npar;i++){              pp[jk] += freq[jk][m][i]; 
       /*  if (k>nlstate) k=1;          }
       i1=(i-1)/(ncovmodel*nlstate)+1;          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            for(m=-1, pos=0; m <=0 ; m++)
       printf("%s%d%d",alph[k],i1,tab[i]);*/              pos += freq[jk][m][i];
       fprintf(ficres,"%3d",i);            if(pp[jk]>=1.e-10){
       printf("%3d",i);              if(first==1){
       for(j=1; j<=i;j++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         fprintf(ficres," %.5e",matcov[i][j]);              }
         printf(" %.5e",matcov[i][j]);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }            }else{
       fprintf(ficres,"\n");              if(first==1)
       printf("\n");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       k++;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }            }
              }
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);          for(jk=1; jk <=nlstate ; jk++){
       fgets(line, MAXLINE, ficpar);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       puts(line);              pp[jk] += freq[jk][m][i];
       fputs(line,ficparo);          }       
     }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     ungetc(c,ficpar);            pos += pp[jk];
              posprop += prop[jk][i];
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          }
              for(jk=1; jk <=nlstate ; jk++){
     if (fage <= 2) {            if(pos>=1.e-5){
       bage = agemin;              if(first==1)
       fage = agemax;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              if(first==1)
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                }
 /*------------ gnuplot -------------*/            if( i <= iagemax){
 chdir(pathcd);              if(pos>=1.e-5){
   if((ficgp=fopen("graph.plt","w"))==NULL) {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     printf("Problem with file graph.gp");goto end;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 #ifdef windows              }
   fprintf(ficgp,"cd \"%s\" \n",pathc);              else
 #endif                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 m=pow(2,cptcoveff);            }
            }
  /* 1eme*/          
   for (cpt=1; cpt<= nlstate ; cpt ++) {          for(jk=-1; jk <=nlstate+ndeath; jk++)
    for (k1=1; k1<= m ; k1 ++) {            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
 #ifdef windows              if(first==1)
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 #endif                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 #ifdef unix              }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);          if(i <= iagemax)
 #endif            fprintf(ficresp,"\n");
           if(first==1)
 for (i=1; i<= nlstate ; i ++) {            printf("Others in log...\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficlog,"\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }      }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    }
     for (i=1; i<= nlstate ; i ++) {    dateintmean=dateintsum/k2cpt; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fclose(ficresp);
 }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    free_vector(pp,1,nlstate);
      for (i=1; i<= nlstate ; i ++) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* End of Freq */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  /************ Prevalence ********************/
 #ifdef unix  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 fprintf(ficgp,"\nset ter gif small size 400,300");  {  
 #endif    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       in each health status at the date of interview (if between dateprev1 and dateprev2).
    }       We still use firstpass and lastpass as another selection.
   }    */
   /*2 eme*/   
     int i, m, jk, k1, i1, j1, bool, z1,j;
   for (k1=1; k1<= m ; k1 ++) {    double ***freq; /* Frequencies */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    double *pp, **prop;
        double pos,posprop; 
     for (i=1; i<= nlstate+1 ; i ++) {    double  y2; /* in fractional years */
       k=2*i;    int iagemin, iagemax;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    iagemin= (int) agemin;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    iagemax= (int) agemax;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /*pp=vector(1,nlstate);*/
 }      prop=matrix(1,nlstate,iagemin,iagemax+3); 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    j1=0;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    
       for (j=1; j<= nlstate+1 ; j ++) {    j=cptcoveff;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      for(k1=1; k1<=j;k1++){
       fprintf(ficgp,"\" t\"\" w l 0,");      for(i1=1; i1<=ncodemax[k1];i1++){
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        j1++;
       for (j=1; j<= nlstate+1 ; j ++) {        
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for (i=1; i<=nlstate; i++)  
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(m=iagemin; m <= iagemax+3; m++)
 }              prop[i][m]=0.0;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");       
       else fprintf(ficgp,"\" t\"\" w l 0,");        for (i=1; i<=imx; i++) { /* Each individual */
     }          bool=1;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++) 
                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   /*3eme*/                bool=0;
           } 
   for (k1=1; k1<= m ; k1 ++) {          if (bool==1) { 
     for (cpt=1; cpt<= nlstate ; cpt ++) {            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       k=2+nlstate*(cpt-1);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       for (i=1; i< nlstate ; i ++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                    prop[s[m][i]][iagemax+3] += weight[i]; 
   /* CV preval stat */                } 
   for (k1=1; k1<= m ; k1 ++) {              }
     for (cpt=1; cpt<nlstate ; cpt ++) {            } /* end selection of waves */
       k=3;          }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);        }
       for (i=1; i< nlstate ; i ++)        for(i=iagemin; i <= iagemax+3; i++){  
         fprintf(ficgp,"+$%d",k+i+1);          
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                  posprop += prop[jk][i]; 
       l=3+(nlstate+ndeath)*cpt;          } 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {          for(jk=1; jk <=nlstate ; jk++){     
         l=3+(nlstate+ndeath)*cpt;            if( i <=  iagemax){ 
         fprintf(ficgp,"+$%d",l+i+1);              if(posprop>=1.e-5){ 
       }                probs[i][jk][j1]= prop[jk][i]/posprop;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                } else
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
     }            } 
   }          }/* end jk */ 
         }/* end i */ 
   /* proba elementaires */      } /* end i1 */
    for(i=1,jk=1; i <=nlstate; i++){    } /* end k1 */
     for(k=1; k <=(nlstate+ndeath); k++){    
       if (k != i) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         for(j=1; j <=ncovmodel; j++){    /*free_vector(pp,1,nlstate);*/
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           /*fprintf(ficgp,"%s",alph[1]);*/  }  /* End of prevalence */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;  /************* Waves Concatenation ***************/
           fprintf(ficgp,"\n");  
         }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       }  {
     }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     }       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   for(jk=1; jk <=m; jk++) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);       and mw[mi+1][i]. dh depends on stepm.
    i=1;       */
    for(k2=1; k2<=nlstate; k2++) {  
      k3=i;    int i, mi, m;
      for(k=1; k<=(nlstate+ndeath); k++) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        if (k != k2){       double sum=0., jmean=0.;*/
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    int first;
 ij=1;    int j, k=0,jk, ju, jl;
         for(j=3; j <=ncovmodel; j++) {    double sum=0.;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    first=0;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    jmin=1e+5;
             ij++;    jmax=-1;
           }    jmean=0.;
           else    for(i=1; i<=imx; i++){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      mi=0;
         }      m=firstpass;
           fprintf(ficgp,")/(1");      while(s[m][i] <= nlstate){
                if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         for(k1=1; k1 <=nlstate; k1++){            mw[++mi][i]=m;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        if(m >=lastpass)
 ij=1;          break;
           for(j=3; j <=ncovmodel; j++){        else
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          m++;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      }/* end while */
             ij++;      if (s[m][i] > nlstate){
           }        mi++;     /* Death is another wave */
           else        /* if(mi==0)  never been interviewed correctly before death */
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);           /* Only death is a correct wave */
           }        mw[mi][i]=m;
           fprintf(ficgp,")");      }
         }  
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      wav[i]=mi;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      if(mi==0){
         i=i+ncovmodel;        nbwarn++;
        }        if(first==0){
      }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
    }          first=1;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        }
   }        if(first==1){
              fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   fclose(ficgp);        }
          } /* end mi==0 */
 chdir(path);    } /* End individuals */
     free_matrix(agev,1,maxwav,1,imx);  
     free_ivector(wav,1,imx);    for(i=1; i<=imx; i++){
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      for(mi=1; mi<wav[i];mi++){
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        if (stepm <=0)
              dh[mi][i]=1;
     free_imatrix(s,1,maxwav+1,1,n);        else{
              if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                if (agedc[i] < 2*AGESUP) {
     free_ivector(num,1,n);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     free_vector(agedc,1,n);              if(j==0) j=1;  /* Survives at least one month after exam */
     free_vector(weight,1,n);              else if(j<0){
     /*free_matrix(covar,1,NCOVMAX,1,n);*/                nberr++;
     fclose(ficparo);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fclose(ficres);                j=1; /* Temporary Dangerous patch */
     /*  }*/                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                    fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    /*________fin mle=1_________*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                  }
               k=k+1;
                if (j >= jmax){
     /* No more information from the sample is required now */                jmax=j;
   /* Reads comments: lines beginning with '#' */                ijmax=i;
   while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);              if (j <= jmin){
     fgets(line, MAXLINE, ficpar);                jmin=j;
     puts(line);                ijmin=i;
     fputs(line,ficparo);              }
   }              sum=sum+j;
   ungetc(c,ficpar);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);            }
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          }
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          else{
 /*--------- index.htm --------*/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   strcpy(optionfilehtm,optionfile);  
   strcat(optionfilehtm,".htm");            k=k+1;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            if (j >= jmax) {
     printf("Problem with %s \n",optionfilehtm);goto end;              jmax=j;
   }              ijmax=i;
             }
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64b </font> <hr size=\"2\" color=\"#EC5E5E\">            else if (j <= jmin){
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>              jmin=j;
 Total number of observations=%d <br>              ijmin=i;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>            }
 <hr  size=\"2\" color=\"#EC5E5E\">            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 <li>Outputs files<br><br>\n            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            if(j<0){
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>              nberr++;
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>            }
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>            sum=sum+j;
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>          }
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>          jk= j/stepm;
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
  fprintf(fichtm," <li>Graphs</li><p>");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
  m=cptcoveff;              dh[mi][i]=jk;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
  j1=0;                    * at the price of an extra matrix product in likelihood */
  for(k1=1; k1<=m;k1++){              dh[mi][i]=jk+1;
    for(i1=1; i1<=ncodemax[k1];i1++){              bh[mi][i]=ju;
        j1++;            }
        if (cptcovn > 0) {          }else{
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            if(jl <= -ju){
          for (cpt=1; cpt<=cptcoveff;cpt++)              dh[mi][i]=jk;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);              bh[mi][i]=jl;       /* bias is positive if real duration
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                                   * is higher than the multiple of stepm and negative otherwise.
        }                                   */
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                else{
        for(cpt=1; cpt<nlstate;cpt++){              dh[mi][i]=jk+1;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              bh[mi][i]=ju;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            }
        }            if(dh[mi][i]==0){
     for(cpt=1; cpt<=nlstate;cpt++) {              dh[mi][i]=1; /* At least one step */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              bh[mi][i]=ju; /* At least one step */
 interval) in state (%d): v%s%d%d.gif <br>              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              }
      }          } /* end if mle */
      for(cpt=1; cpt<=nlstate;cpt++) {        }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      } /* end wave */
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    }
      }    jmean=sum/k;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 health expectancies in states (1) and (2): e%s%d.gif<br>    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);   }
 fprintf(fichtm,"\n</body>");  
    }  /*********** Tricode ****************************/
  }  void tricode(int *Tvar, int **nbcode, int imx)
 fclose(fichtm);  {
     
   /*--------------- Prevalence limit --------------*/    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
    
   strcpy(filerespl,"pl");    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=19;
   strcat(filerespl,fileres);    int cptcode=0;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    cptcoveff=0; 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;   
   }    for (k=0; k<maxncov; k++) Ndum[k]=0;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    for (k=1; k<=7; k++) ncodemax[k]=0;
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   fprintf(ficrespl,"\n");                                 modality*/ 
          ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   prlim=matrix(1,nlstate,1,nlstate);        Ndum[ij]++; /*store the modality */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                                         Tvar[j]. If V=sex and male is 0 and 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                                         female is 1, then  cptcode=1.*/
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      }
   k=0;  
   agebase=agemin;      for (i=0; i<=cptcode; i++) {
   agelim=agemax;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   ftolpl=1.e-10;      }
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
   for(cptcov=1;cptcov<=i1;cptcov++){        for (k=0; k<= maxncov; k++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          if (Ndum[k] != 0) {
         k=k+1;            nbcode[Tvar[j]][ij]=k; 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         fprintf(ficrespl,"\n#******");            
         for(j=1;j<=cptcoveff;j++)            ij++;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
         fprintf(ficrespl,"******\n");          if (ij > ncodemax[j]) break; 
                }  
         for (age=agebase; age<=agelim; age++){      } 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }  
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)   for (k=0; k< maxncov; k++) Ndum[k]=0;
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");   for (i=1; i<=ncovmodel-2; i++) { 
         }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       }     ij=Tvar[i];
     }     Ndum[ij]++;
   fclose(ficrespl);   }
   /*------------- h Pij x at various ages ------------*/  
     ij=1;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   for (i=1; i<= maxncov; i++) {
   if((ficrespij=fopen(filerespij,"w"))==NULL) {     if((Ndum[i]!=0) && (i<=ncovcol)){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;       Tvaraff[ij]=i; /*For printing */
   }       ij++;
   printf("Computing pij: result on file '%s' \n", filerespij);     }
     }
   stepsize=(int) (stepm+YEARM-1)/YEARM;   
   if (stepm<=24) stepsize=2;   cptcoveff=ij-1; /*Number of simple covariates*/
   }
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */  /*********** Health Expectancies ****************/
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
    void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){  {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* Health expectancies, no variances */
       k=k+1;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
         fprintf(ficrespij,"\n#****** ");    int nhstepma, nstepma; /* Decreasing with age */
         for(j=1;j<=cptcoveff;j++)    double age, agelim, hf;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***p3mat;
         fprintf(ficrespij,"******\n");    double eip;
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    pstamp(ficreseij);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficreseij,"# Age");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=nlstate;i++){
           oldm=oldms;savm=savms;      for(j=1; j<=nlstate;j++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficreseij," e%1d%1d ",i,j);
           fprintf(ficrespij,"# Age");      }
           for(i=1; i<=nlstate;i++)      fprintf(ficreseij," e%1d. ",i);
             for(j=1; j<=nlstate+ndeath;j++)    }
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(ficreseij,"\n");
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){    
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    if(estepm < stepm){
             for(i=1; i<=nlstate;i++)      printf ("Problem %d lower than %d\n",estepm, stepm);
               for(j=1; j<=nlstate+ndeath;j++)    }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    else  hstepm=estepm;   
             fprintf(ficrespij,"\n");    /* We compute the life expectancy from trapezoids spaced every estepm months
           }     * This is mainly to measure the difference between two models: for example
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * if stepm=24 months pijx are given only every 2 years and by summing them
           fprintf(ficrespij,"\n");     * we are calculating an estimate of the Life Expectancy assuming a linear 
         }     * progression in between and thus overestimating or underestimating according
     }     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
   fclose(ficrespij);     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   /*---------- Health expectancies and variances ------------*/  
     /* For example we decided to compute the life expectancy with the smallest unit */
   strcpy(filerest,"t");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   strcat(filerest,fileres);       nhstepm is the number of hstepm from age to agelim 
   if((ficrest=fopen(filerest,"w"))==NULL) {       nstepm is the number of stepm from age to agelin. 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like estepm months */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   strcpy(filerese,"e");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   strcat(filerese,fileres);       results. So we changed our mind and took the option of the best precision.
   if((ficreseij=fopen(filerese,"w"))==NULL) {    */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    agelim=AGESUP;
     /* If stepm=6 months */
  strcpy(fileresv,"v");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   strcat(fileresv,fileres);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  /* nhstepm age range expressed in number of stepm */
   }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   k=0;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   for(cptcov=1;cptcov<=i1;cptcov++){    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    for (age=bage; age<=fage; age ++){ 
       fprintf(ficrest,"\n#****** ");      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       for(j=1;j<=cptcoveff;j++)      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficrest,"******\n");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       fprintf(ficreseij,"\n#****** ");      /* If stepm=6 months */
       for(j=1;j<=cptcoveff;j++)      /* Computed by stepm unit matrices, product of hstepma matrices, stored
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       fprintf(ficreseij,"******\n");      
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       fprintf(ficresvij,"\n#****** ");      
       for(j=1;j<=cptcoveff;j++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      
       fprintf(ficresvij,"******\n");      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      
       oldm=oldms;savm=savms;      /* Computing expectancies */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);        for(i=1; i<=nlstate;i++)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for(j=1; j<=nlstate;j++)
       oldm=oldms;savm=savms;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                  
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");          }
          
       hf=1;      fprintf(ficreseij,"%3.0f",age );
       if (stepm >= YEARM) hf=stepm/YEARM;      for(i=1; i<=nlstate;i++){
       epj=vector(1,nlstate+1);        eip=0;
       for(age=bage; age <=fage ;age++){        for(j=1; j<=nlstate;j++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          eip +=eij[i][j][(int)age];
         fprintf(ficrest," %.0f",age);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        fprintf(ficreseij,"%9.4f", eip );
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];      }
           }      fprintf(ficreseij,"\n");
           epj[nlstate+1] +=epj[j];      
         }    }
         for(i=1, vepp=0.;i <=nlstate;i++)    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(j=1;j <=nlstate;j++)    printf("\n");
             vepp += vareij[i][j][(int)age];    fprintf(ficlog,"\n");
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    
         for(j=1;j <=nlstate;j++){  }
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  
         }  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
         fprintf(ficrest,"\n");  
       }  {
     }    /* Covariances of health expectancies eij and of total life expectancies according
   }     to initial status i, ei. .
            */
  fclose(ficreseij);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
  fclose(ficresvij);    int nhstepma, nstepma; /* Decreasing with age */
   fclose(ficrest);    double age, agelim, hf;
   fclose(ficpar);    double ***p3matp, ***p3matm, ***varhe;
   free_vector(epj,1,nlstate+1);    double **dnewm,**doldm;
   /*  scanf("%d ",i); */    double *xp, *xm;
     double **gp, **gm;
   /*------- Variance limit prevalence------*/      double ***gradg, ***trgradg;
     int theta;
 strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    double eip, vip;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     exit(0);    xp=vector(1,npar);
   }    xm=vector(1,npar);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
  k=0;    
  for(cptcov=1;cptcov<=i1;cptcov++){    pstamp(ficresstdeij);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
      k=k+1;    fprintf(ficresstdeij,"# Age");
      fprintf(ficresvpl,"\n#****** ");    for(i=1; i<=nlstate;i++){
      for(j=1;j<=cptcoveff;j++)      for(j=1; j<=nlstate;j++)
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
      fprintf(ficresvpl,"******\n");      fprintf(ficresstdeij," e%1d. ",i);
          }
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    fprintf(ficresstdeij,"\n");
      oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    pstamp(ficrescveij);
    }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
  }    fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
   fclose(ficresvpl);      for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
   /*---------- End : free ----------------*/        for(i2=1; i2<=nlstate;i2++)
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          for(j2=1; j2<=nlstate;j2++){
              cptj2= (j2-1)*nlstate+i2;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            if(cptj2 <= cptj)
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
            }
        }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficrescveij,"\n");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    if(estepm < stepm){
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   free_matrix(matcov,1,npar,1,npar);    else  hstepm=estepm;   
   free_vector(delti,1,npar);    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   printf("End of Imach\n");     * progression in between and thus overestimating or underestimating according
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */     * to the curvature of the survival function. If, for the same date, we 
       * estimate the model with stepm=1 month, we can keep estepm to 24 months
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/     * to compare the new estimate of Life expectancy with the same linear 
   /*printf("Total time was %d uSec.\n", total_usecs);*/     * hypothesis. A more precise result, taking into account a more precise
   /*------ End -----------*/     * curvature will be obtained if estepm is as small as stepm. */
   
  end:    /* For example we decided to compute the life expectancy with the smallest unit */
 #ifdef windows    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  chdir(pathcd);       nhstepm is the number of hstepm from age to agelim 
 #endif       nstepm is the number of stepm from age to agelin. 
  /*system("wgnuplot graph.plt");*/       Look at hpijx to understand the reason of that which relies in memory size
  /*system("../gp37mgw/wgnuplot graph.plt");*/       and note for a fixed period like estepm months */
  /*system("cd ../gp37mgw");*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  system("..\\gp37mgw\\wgnuplot graph.plt");       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
 #ifdef windows       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   while (z[0] != 'q') {       results. So we changed our mind and took the option of the best precision.
     chdir(pathcd);    */
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");    /* If stepm=6 months */
     else if (z[0] == 'e') {    /* nhstepm age range expressed in number of stepm */
       chdir(path);    agelim=AGESUP;
       system(optionfilehtm);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     else if (z[0] == 'q') exit(0);    /* if (stepm >= YEARM) hstepm=1;*/
   }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 #endif    
 }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sum the number of covariates including ages as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.11  
changed lines
  Added in v.1.130


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>