Diff for /imach/src/imach.c between versions 1.47 and 1.120

version 1.47, 2002/06/10 13:12:01 version 1.120, 2006/03/16 15:10:38
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.120  2006/03/16 15:10:38  lievre
      (Module): refinements in the computation of lli if
   This program computes Healthy Life Expectancies from    status=-2 in order to have more reliable computation if stepm is
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    not 1 month. Version 0.98f
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.119  2006/03/15 17:42:26  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): Bug if status = -2, the loglikelihood was
   second wave of interviews ("longitudinal") which measure each change    computed as likelihood omitting the logarithm. Version O.98e
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.118  2006/03/14 18:20:07  brouard
   model. More health states you consider, more time is necessary to reach the    (Module): varevsij Comments added explaining the second
   Maximum Likelihood of the parameters involved in the model.  The    table of variances if popbased=1 .
   simplest model is the multinomial logistic model where pij is the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   probability to be observed in state j at the second wave    (Module): Function pstamp added
   conditional to be observed in state i at the first wave. Therefore    (Module): Version 0.98d
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.117  2006/03/14 17:16:22  brouard
   complex model than "constant and age", you should modify the program    (Module): varevsij Comments added explaining the second
   where the markup *Covariates have to be included here again* invites    table of variances if popbased=1 .
   you to do it.  More covariates you add, slower the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   convergence.    (Module): Function pstamp added
     (Module): Version 0.98d
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.116  2006/03/06 10:29:27  brouard
   identical for each individual. Also, if a individual missed an    (Module): Variance-covariance wrong links and
   intermediate interview, the information is lost, but taken into    varian-covariance of ej. is needed (Saito).
   account using an interpolation or extrapolation.    
     Revision 1.115  2006/02/27 12:17:45  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): One freematrix added in mlikeli! 0.98c
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.114  2006/02/26 12:57:58  brouard
   states. This elementary transition (by month or quarter trimester,    (Module): Some improvements in processing parameter
   semester or year) is model as a multinomial logistic.  The hPx    filename with strsep.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.113  2006/02/24 14:20:24  brouard
   hPijx.    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
   Also this programme outputs the covariance matrix of the parameters but also    allocation too.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.112  2006/01/30 09:55:26  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Back to gnuplot.exe instead of wgnuplot.exe
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.111  2006/01/25 20:38:18  brouard
   from the European Union.    (Module): Lots of cleaning and bugs added (Gompertz)
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Comments can be added in data file. Missing date values
   software can be distributed freely for non commercial use. Latest version    can be a simple dot '.'.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.110  2006/01/25 00:51:50  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
 #include <math.h>  
 #include <stdio.h>    Revision 1.109  2006/01/24 19:37:15  brouard
 #include <stdlib.h>    (Module): Comments (lines starting with a #) are allowed in data.
 #include <unistd.h>  
     Revision 1.108  2006/01/19 18:05:42  lievre
 #define MAXLINE 256    Gnuplot problem appeared...
 #define GNUPLOTPROGRAM "gnuplot"    To be fixed
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.107  2006/01/19 16:20:37  brouard
 /*#define DEBUG*/    Test existence of gnuplot in imach path
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.106  2006/01/19 13:24:36  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Some cleaning and links added in html output
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.105  2006/01/05 20:23:19  lievre
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    *** empty log message ***
   
 #define NINTERVMAX 8    Revision 1.104  2005/09/30 16:11:43  lievre
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): sump fixed, loop imx fixed, and simplifications.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): If the status is missing at the last wave but we know
 #define NCOVMAX 8 /* Maximum number of covariates */    that the person is alive, then we can code his/her status as -2
 #define MAXN 20000    (instead of missing=-1 in earlier versions) and his/her
 #define YEARM 12. /* Number of months per year */    contributions to the likelihood is 1 - Prob of dying from last
 #define AGESUP 130    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define AGEBASE 40    the healthy state at last known wave). Version is 0.98
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.103  2005/09/30 15:54:49  lievre
 #else    (Module): sump fixed, loop imx fixed, and simplifications.
 #define DIRSEPARATOR '/'  
 #endif    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 char version[80]="Imach version 0.8g, May 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.101  2004/09/15 10:38:38  brouard
 int nvar;    Fix on curr_time
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.100  2004/07/12 18:29:06  brouard
 int nlstate=2; /* Number of live states */    Add version for Mac OS X. Just define UNIX in Makefile
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.99  2004/06/05 08:57:40  brouard
 int popbased=0;    *** empty log message ***
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.98  2004/05/16 15:05:56  brouard
 int maxwav; /* Maxim number of waves */    New version 0.97 . First attempt to estimate force of mortality
 int jmin, jmax; /* min, max spacing between 2 waves */    directly from the data i.e. without the need of knowing the health
 int mle, weightopt;    state at each age, but using a Gompertz model: log u =a + b*age .
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    This is the basic analysis of mortality and should be done before any
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    other analysis, in order to test if the mortality estimated from the
 double jmean; /* Mean space between 2 waves */    cross-longitudinal survey is different from the mortality estimated
 double **oldm, **newm, **savm; /* Working pointers to matrices */    from other sources like vital statistic data.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    The same imach parameter file can be used but the option for mle should be -3.
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *fichtm; /* Html File */    Agnès, who wrote this part of the code, tried to keep most of the
 FILE *ficreseij;    former routines in order to include the new code within the former code.
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    The output is very simple: only an estimate of the intercept and of
 char fileresv[FILENAMELENGTH];    the slope with 95% confident intervals.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Current limitations:
 char title[MAXLINE];    A) Even if you enter covariates, i.e. with the
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    B) There is no computation of Life Expectancy nor Life Table.
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 char filerest[FILENAMELENGTH];    suppressed.
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    rewritten within the same printf. Workaround: many printfs.
   
 #define NR_END 1    Revision 1.95  2003/07/08 07:54:34  brouard
 #define FREE_ARG char*    * imach.c (Repository):
 #define FTOL 1.0e-10    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 #define NRANSI  
 #define ITMAX 200    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 #define TOL 2.0e-4  
     Revision 1.93  2003/06/25 16:33:55  brouard
 #define CGOLD 0.3819660    (Module): On windows (cygwin) function asctime_r doesn't
 #define ZEPS 1.0e-10    exist so I changed back to asctime which exists.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Version 0.96b
   
 #define GOLD 1.618034    Revision 1.92  2003/06/25 16:30:45  brouard
 #define GLIMIT 100.0    (Module): On windows (cygwin) function asctime_r doesn't
 #define TINY 1.0e-20    exist so I changed back to asctime which exists.
   
 static double maxarg1,maxarg2;    Revision 1.91  2003/06/25 15:30:29  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Repository): Duplicated warning errors corrected.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Repository): Elapsed time after each iteration is now output. It
      helps to forecast when convergence will be reached. Elapsed time
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    is stamped in powell.  We created a new html file for the graphs
 #define rint(a) floor(a+0.5)    concerning matrix of covariance. It has extension -cov.htm.
   
 static double sqrarg;    Revision 1.90  2003/06/24 12:34:15  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Some bugs corrected for windows. Also, when
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int imx;  
 int stepm;    Revision 1.89  2003/06/24 12:30:52  brouard
 /* Stepm, step in month: minimum step interpolation*/    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int estepm;    of the covariance matrix to be input.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.88  2003/06/23 17:54:56  brouard
 int m,nb;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.87  2003/06/18 12:26:01  brouard
 double **pmmij, ***probs, ***mobaverage;    Version 0.96
 double dateintmean=0;  
     Revision 1.86  2003/06/17 20:04:08  brouard
 double *weight;    (Module): Change position of html and gnuplot routines and added
 int **s; /* Status */    routine fileappend.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    current date of interview. It may happen when the death was just
 double ftolhess; /* Tolerance for computing hessian */    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 /**************** split *************************/    assuming that the date of death was just one stepm after the
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    interview.
 {    (Repository): Because some people have very long ID (first column)
    char *s;                             /* pointer */    we changed int to long in num[] and we added a new lvector for
    int  l1, l2;                         /* length counters */    memory allocation. But we also truncated to 8 characters (left
     truncation)
    l1 = strlen( path );                 /* length of path */    (Repository): No more line truncation errors.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    Revision 1.84  2003/06/13 21:44:43  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    * imach.c (Repository): Replace "freqsummary" at a correct
 #if     defined(__bsd__)                /* get current working directory */    place. It differs from routine "prevalence" which may be called
       extern char       *getwd( );    many times. Probs is memory consuming and must be used with
     parcimony.
       if ( getwd( dirc ) == NULL ) {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #else  
       extern char       *getcwd( );    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.82  2003/06/05 15:57:20  brouard
          return( GLOCK_ERROR_GETCWD );    Add log in  imach.c and  fullversion number is now printed.
       }  
       strcpy( name, path );             /* we've got it */  */
    } else {                             /* strip direcotry from path */  /*
       s++;                              /* after this, the filename */     Interpolated Markov Chain
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Short summary of the programme:
       strcpy( name, s );                /* save file name */    
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    This program computes Healthy Life Expectancies from
       dirc[l1-l2] = 0;                  /* add zero */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    }    first survey ("cross") where individuals from different ages are
    l1 = strlen( dirc );                 /* length of directory */    interviewed on their health status or degree of disability (in the
 #ifdef windows    case of a health survey which is our main interest) -2- at least a
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    second wave of interviews ("longitudinal") which measure each change
 #else    (if any) in individual health status.  Health expectancies are
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    computed from the time spent in each health state according to a
 #endif    model. More health states you consider, more time is necessary to reach the
    s = strrchr( name, '.' );            /* find last / */    Maximum Likelihood of the parameters involved in the model.  The
    s++;    simplest model is the multinomial logistic model where pij is the
    strcpy(ext,s);                       /* save extension */    probability to be observed in state j at the second wave
    l1= strlen( name);    conditional to be observed in state i at the first wave. Therefore
    l2= strlen( s)+1;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    strncpy( finame, name, l1-l2);    'age' is age and 'sex' is a covariate. If you want to have a more
    finame[l1-l2]= 0;    complex model than "constant and age", you should modify the program
    return( 0 );                         /* we're done */    where the markup *Covariates have to be included here again* invites
 }    you to do it.  More covariates you add, slower the
     convergence.
   
 /******************************************/    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 void replace(char *s, char*t)    identical for each individual. Also, if a individual missed an
 {    intermediate interview, the information is lost, but taken into
   int i;    account using an interpolation or extrapolation.  
   int lg=20;  
   i=0;    hPijx is the probability to be observed in state i at age x+h
   lg=strlen(t);    conditional to the observed state i at age x. The delay 'h' can be
   for(i=0; i<= lg; i++) {    split into an exact number (nh*stepm) of unobserved intermediate
     (s[i] = t[i]);    states. This elementary transition (by month, quarter,
     if (t[i]== '\\') s[i]='/';    semester or year) is modelled as a multinomial logistic.  The hPx
   }    matrix is simply the matrix product of nh*stepm elementary matrices
 }    and the contribution of each individual to the likelihood is simply
     hPijx.
 int nbocc(char *s, char occ)  
 {    Also this programme outputs the covariance matrix of the parameters but also
   int i,j=0;    of the life expectancies. It also computes the period (stable) prevalence. 
   int lg=20;    
   i=0;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   lg=strlen(s);             Institut national d'études démographiques, Paris.
   for(i=0; i<= lg; i++) {    This software have been partly granted by Euro-REVES, a concerted action
   if  (s[i] == occ ) j++;    from the European Union.
   }    It is copyrighted identically to a GNU software product, ie programme and
   return j;    software can be distributed freely for non commercial use. Latest version
 }    can be accessed at http://euroreves.ined.fr/imach .
   
 void cutv(char *u,char *v, char*t, char occ)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   int i,lg,j,p=0;    
   i=0;    **********************************************************************/
   for(j=0; j<=strlen(t)-1; j++) {  /*
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    main
   }    read parameterfile
     read datafile
   lg=strlen(t);    concatwav
   for(j=0; j<p; j++) {    freqsummary
     (u[j] = t[j]);    if (mle >= 1)
   }      mlikeli
      u[p]='\0';    print results files
     if mle==1 
    for(j=0; j<= lg; j++) {       computes hessian
     if (j>=(p+1))(v[j-p-1] = t[j]);    read end of parameter file: agemin, agemax, bage, fage, estepm
   }        begin-prev-date,...
 }    open gnuplot file
     open html file
 /********************** nrerror ********************/    period (stable) prevalence
      for age prevalim()
 void nrerror(char error_text[])    h Pij x
 {    variance of p varprob
   fprintf(stderr,"ERREUR ...\n");    forecasting if prevfcast==1 prevforecast call prevalence()
   fprintf(stderr,"%s\n",error_text);    health expectancies
   exit(1);    Variance-covariance of DFLE
 }    prevalence()
 /*********************** vector *******************/     movingaverage()
 double *vector(int nl, int nh)    varevsij() 
 {    if popbased==1 varevsij(,popbased)
   double *v;    total life expectancies
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Variance of period (stable) prevalence
   if (!v) nrerror("allocation failure in vector");   end
   return v-nl+NR_END;  */
 }  
   
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)   
 {  #include <math.h>
   free((FREE_ARG)(v+nl-NR_END));  #include <stdio.h>
 }  #include <stdlib.h>
   #include <string.h>
 /************************ivector *******************************/  #include <unistd.h>
 int *ivector(long nl,long nh)  
 {  #include <limits.h>
   int *v;  #include <sys/types.h>
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #include <sys/stat.h>
   if (!v) nrerror("allocation failure in ivector");  #include <errno.h>
   return v-nl+NR_END;  extern int errno;
 }  
   /* #include <sys/time.h> */
 /******************free ivector **************************/  #include <time.h>
 void free_ivector(int *v, long nl, long nh)  #include "timeval.h"
 {  
   free((FREE_ARG)(v+nl-NR_END));  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
 /******************* imatrix *******************************/  #define MAXLINE 256
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define FILENAMELENGTH 132
   int **m;  
    #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   /* allocate pointers to rows */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   m += NR_END;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   m -= nrl;  
    #define NINTERVMAX 8
    #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   /* allocate rows and set pointers to them */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define NCOVMAX 8 /* Maximum number of covariates */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define MAXN 20000
   m[nrl] += NR_END;  #define YEARM 12. /* Number of months per year */
   m[nrl] -= ncl;  #define AGESUP 130
    #define AGEBASE 40
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
    #ifdef UNIX
   /* return pointer to array of pointers to rows */  #define DIRSEPARATOR '/'
   return m;  #define CHARSEPARATOR "/"
 }  #define ODIRSEPARATOR '\\'
   #else
 /****************** free_imatrix *************************/  #define DIRSEPARATOR '\\'
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define CHARSEPARATOR "\\"
       int **m;  #define ODIRSEPARATOR '/'
       long nch,ncl,nrh,nrl;  #endif
      /* free an int matrix allocated by imatrix() */  
 {  /* $Id$ */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  /* $State$ */
   free((FREE_ARG) (m+nrl-NR_END));  
 }  char version[]="Imach version 0.98f, March 2006, INED-EUROREVES-Institut de longevite ";
   char fullversion[]="$Revision$ $Date$"; 
 /******************* matrix *******************************/  char strstart[80];
 double **matrix(long nrl, long nrh, long ncl, long nch)  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 {  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int nvar;
   double **m;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int nlstate=2; /* Number of live states */
   if (!m) nrerror("allocation failure 1 in matrix()");  int ndeath=1; /* Number of dead states */
   m += NR_END;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m -= nrl;  int popbased=0;
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int *wav; /* Number of waves for this individuual 0 is possible */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int maxwav; /* Maxim number of waves */
   m[nrl] += NR_END;  int jmin, jmax; /* min, max spacing between 2 waves */
   m[nrl] -= ncl;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   int gipmx, gsw; /* Global variables on the number of contributions 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;                     to the likelihood and the sum of weights (done by funcone)*/
   return m;  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /*************************free matrix ************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double **oldm, **newm, **savm; /* Working pointers to matrices */
   free((FREE_ARG)(m+nrl-NR_END));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 /******************* ma3x *******************************/  int globpr; /* Global variable for printing or not */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double fretone; /* Only one call to likelihood */
 {  long ipmx; /* Number of contributions */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double sw; /* Sum of weights */
   double ***m;  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *ficresilk;
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m += NR_END;  FILE *ficresprobmorprev;
   m -= nrl;  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char filerese[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficresstdeij;
   m[nrl] += NR_END;  char fileresstde[FILENAMELENGTH];
   m[nrl] -= ncl;  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  FILE  *ficresvpl;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char fileresvpl[FILENAMELENGTH];
   m[nrl][ncl] += NR_END;  char title[MAXLINE];
   m[nrl][ncl] -= nll;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for (j=ncl+1; j<=nch; j++)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     m[nrl][j]=m[nrl][j-1]+nlay;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
    char command[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) {  int  outcmd=0;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       m[i][j]=m[i][j-1]+nlay;  
   }  char filelog[FILENAMELENGTH]; /* Log file */
   return m;  char filerest[FILENAMELENGTH];
 }  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  struct timezone tzp;
   free((FREE_ARG)(m+nrl-NR_END));  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /***************** f1dim *************************/  extern long time();
 extern int ncom;  char strcurr[80], strfor[80];
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  char *endptr;
    long lval;
 double f1dim(double x)  
 {  #define NR_END 1
   int j;  #define FREE_ARG char*
   double f;  #define FTOL 1.0e-10
   double *xt;  
    #define NRANSI 
   xt=vector(1,ncom);  #define ITMAX 200 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  #define TOL 2.0e-4 
   free_vector(xt,1,ncom);  
   return f;  #define CGOLD 0.3819660 
 }  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   int iter;  #define TINY 1.0e-20 
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  static double maxarg1,maxarg2;
   double ftemp;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double e=0.0;    
    #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   a=(ax < cx ? ax : cx);  #define rint(a) floor(a+0.5)
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  static double sqrarg;
   fw=fv=fx=(*f)(x);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for (iter=1;iter<=ITMAX;iter++) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     xm=0.5*(a+b);  int agegomp= AGEGOMP;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int imx; 
     printf(".");fflush(stdout);  int stepm=1;
 #ifdef DEBUG  /* Stepm, step in month: minimum step interpolation*/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int estepm;
 #endif  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  int m,nb;
       return fx;  long *num;
     }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     ftemp=fu;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     if (fabs(e) > tol1) {  double **pmmij, ***probs;
       r=(x-w)*(fx-fv);  double *ageexmed,*agecens;
       q=(x-v)*(fx-fw);  double dateintmean=0;
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  double *weight;
       if (q > 0.0) p = -p;  int **s; /* Status */
       q=fabs(q);  double *agedc, **covar, idx;
       etemp=e;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       e=d;  double *lsurv, *lpop, *tpop;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       else {  double ftolhess; /* Tolerance for computing hessian */
         d=p/q;  
         u=x+d;  /**************** split *************************/
         if (u-a < tol2 || b-u < tol2)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
           d=SIGN(tol1,xm-x);  {
       }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     } else {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    */ 
     }    char  *ss;                            /* pointer */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    int   l1, l2;                         /* length counters */
     fu=(*f)(u);  
     if (fu <= fx) {    l1 = strlen(path );                   /* length of path */
       if (u >= x) a=x; else b=x;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       SHFT(v,w,x,u)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         SHFT(fv,fw,fx,fu)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         } else {      strcpy( name, path );               /* we got the fullname name because no directory */
           if (u < x) a=u; else b=u;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
           if (fu <= fw || w == x) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
             v=w;      /* get current working directory */
             w=u;      /*    extern  char* getcwd ( char *buf , int len);*/
             fv=fw;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
             fw=fu;        return( GLOCK_ERROR_GETCWD );
           } else if (fu <= fv || v == x || v == w) {      }
             v=u;      /* got dirc from getcwd*/
             fv=fu;      printf(" DIRC = %s \n",dirc);
           }    } else {                              /* strip direcotry from path */
         }      ss++;                               /* after this, the filename */
   }      l2 = strlen( ss );                  /* length of filename */
   nrerror("Too many iterations in brent");      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   *xmin=x;      strcpy( name, ss );         /* save file name */
   return fx;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
 /****************** mnbrak ***********************/    }
     /* We add a separator at the end of dirc if not exists */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    l1 = strlen( dirc );                  /* length of directory */
             double (*func)(double))    if( dirc[l1-1] != DIRSEPARATOR ){
 {      dirc[l1] =  DIRSEPARATOR;
   double ulim,u,r,q, dum;      dirc[l1+1] = 0; 
   double fu;      printf(" DIRC3 = %s \n",dirc);
      }
   *fa=(*func)(*ax);    ss = strrchr( name, '.' );            /* find last / */
   *fb=(*func)(*bx);    if (ss >0){
   if (*fb > *fa) {      ss++;
     SHFT(dum,*ax,*bx,dum)      strcpy(ext,ss);                     /* save extension */
       SHFT(dum,*fb,*fa,dum)      l1= strlen( name);
       }      l2= strlen(ss)+1;
   *cx=(*bx)+GOLD*(*bx-*ax);      strncpy( finame, name, l1-l2);
   *fc=(*func)(*cx);      finame[l1-l2]= 0;
   while (*fb > *fc) {    }
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    return( 0 );                          /* we're done */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  /******************************************/
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  void replace_back_to_slash(char *s, char*t)
       fu=(*func)(u);  {
       if (fu < *fc) {    int i;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    int lg=0;
           SHFT(*fb,*fc,fu,(*func)(u))    i=0;
           }    lg=strlen(t);
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    for(i=0; i<= lg; i++) {
       u=ulim;      (s[i] = t[i]);
       fu=(*func)(u);      if (t[i]== '\\') s[i]='/';
     } else {    }
       u=(*cx)+GOLD*(*cx-*bx);  }
       fu=(*func)(u);  
     }  int nbocc(char *s, char occ)
     SHFT(*ax,*bx,*cx,u)  {
       SHFT(*fa,*fb,*fc,fu)    int i,j=0;
       }    int lg=20;
 }    i=0;
     lg=strlen(s);
 /*************** linmin ************************/    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 int ncom;    }
 double *pcom,*xicom;    return j;
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  void cutv(char *u,char *v, char*t, char occ)
 {  {
   double brent(double ax, double bx, double cx,    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
                double (*f)(double), double tol, double *xmin);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   double f1dim(double x);       gives u="abcedf" and v="ghi2j" */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    int i,lg,j,p=0;
               double *fc, double (*func)(double));    i=0;
   int j;    for(j=0; j<=strlen(t)-1; j++) {
   double xx,xmin,bx,ax;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   double fx,fb,fa;    }
    
   ncom=n;    lg=strlen(t);
   pcom=vector(1,n);    for(j=0; j<p; j++) {
   xicom=vector(1,n);      (u[j] = t[j]);
   nrfunc=func;    }
   for (j=1;j<=n;j++) {       u[p]='\0';
     pcom[j]=p[j];  
     xicom[j]=xi[j];     for(j=0; j<= lg; j++) {
   }      if (j>=(p+1))(v[j-p-1] = t[j]);
   ax=0.0;    }
   xx=1.0;  }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /********************** nrerror ********************/
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  void nrerror(char error_text[])
 #endif  {
   for (j=1;j<=n;j++) {    fprintf(stderr,"ERREUR ...\n");
     xi[j] *= xmin;    fprintf(stderr,"%s\n",error_text);
     p[j] += xi[j];    exit(EXIT_FAILURE);
   }  }
   free_vector(xicom,1,n);  /*********************** vector *******************/
   free_vector(pcom,1,n);  double *vector(int nl, int nh)
 }  {
     double *v;
 /*************** powell ************************/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    if (!v) nrerror("allocation failure in vector");
             double (*func)(double []))    return v-nl+NR_END;
 {  }
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  /************************ free vector ******************/
   int i,ibig,j;  void free_vector(double*v, int nl, int nh)
   double del,t,*pt,*ptt,*xit;  {
   double fp,fptt;    free((FREE_ARG)(v+nl-NR_END));
   double *xits;  }
   pt=vector(1,n);  
   ptt=vector(1,n);  /************************ivector *******************************/
   xit=vector(1,n);  int *ivector(long nl,long nh)
   xits=vector(1,n);  {
   *fret=(*func)(p);    int *v;
   for (j=1;j<=n;j++) pt[j]=p[j];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (*iter=1;;++(*iter)) {    if (!v) nrerror("allocation failure in ivector");
     fp=(*fret);    return v-nl+NR_END;
     ibig=0;  }
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /******************free ivector **************************/
     for (i=1;i<=n;i++)  void free_ivector(int *v, long nl, long nh)
       printf(" %d %.12f",i, p[i]);  {
     printf("\n");    free((FREE_ARG)(v+nl-NR_END));
     for (i=1;i<=n;i++) {  }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  /************************lvector *******************************/
 #ifdef DEBUG  long *lvector(long nl,long nh)
       printf("fret=%lf \n",*fret);  {
 #endif    long *v;
       printf("%d",i);fflush(stdout);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       linmin(p,xit,n,fret,func);    if (!v) nrerror("allocation failure in ivector");
       if (fabs(fptt-(*fret)) > del) {    return v-nl+NR_END;
         del=fabs(fptt-(*fret));  }
         ibig=i;  
       }  /******************free lvector **************************/
 #ifdef DEBUG  void free_lvector(long *v, long nl, long nh)
       printf("%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    free((FREE_ARG)(v+nl-NR_END));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  }
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  /******************* imatrix *******************************/
       for(j=1;j<=n;j++)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         printf(" p=%.12e",p[j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       printf("\n");  { 
 #endif    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     }    int **m; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    
 #ifdef DEBUG    /* allocate pointers to rows */ 
       int k[2],l;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       k[0]=1;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       k[1]=-1;    m += NR_END; 
       printf("Max: %.12e",(*func)(p));    m -= nrl; 
       for (j=1;j<=n;j++)    
         printf(" %.12e",p[j]);    
       printf("\n");    /* allocate rows and set pointers to them */ 
       for(l=0;l<=1;l++) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m[nrl] += NR_END; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl] -= ncl; 
         }    
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       }    
 #endif    /* return pointer to array of pointers to rows */ 
     return m; 
   } 
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /****************** free_imatrix *************************/
       free_vector(ptt,1,n);  void free_imatrix(m,nrl,nrh,ncl,nch)
       free_vector(pt,1,n);        int **m;
       return;        long nch,ncl,nrh,nrl; 
     }       /* free an int matrix allocated by imatrix() */ 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  { 
     for (j=1;j<=n;j++) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       ptt[j]=2.0*p[j]-pt[j];    free((FREE_ARG) (m+nrl-NR_END)); 
       xit[j]=p[j]-pt[j];  } 
       pt[j]=p[j];  
     }  /******************* matrix *******************************/
     fptt=(*func)(ptt);  double **matrix(long nrl, long nrh, long ncl, long nch)
     if (fptt < fp) {  {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       if (t < 0.0) {    double **m;
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           xi[j][ibig]=xi[j][n];    if (!m) nrerror("allocation failure 1 in matrix()");
           xi[j][n]=xit[j];    m += NR_END;
         }    m -= nrl;
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         for(j=1;j<=n;j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           printf(" %.12e",xit[j]);    m[nrl] += NR_END;
         printf("\n");    m[nrl] -= ncl;
 #endif  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }    return m;
   }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 }     */
   }
 /**** Prevalence limit ****************/  
   /*************************free matrix ************************/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      matrix by transitions matrix until convergence is reached */    free((FREE_ARG)(m+nrl-NR_END));
   }
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  /******************* ma3x *******************************/
   double **matprod2();  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double **out, cov[NCOVMAX], **pmij();  {
   double **newm;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double agefin, delaymax=50 ; /* Max number of years to converge */    double ***m;
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (j=1;j<=nlstate+ndeath;j++){    if (!m) nrerror("allocation failure 1 in matrix()");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m += NR_END;
     }    m -= nrl;
   
    cov[1]=1.;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m[nrl] += NR_END;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    m[nrl] -= ncl;
     newm=savm;  
     /* Covariates have to be included here again */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      cov[2]=agefin;  
      m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       for (k=1; k<=cptcovn;k++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m[nrl][ncl] += NR_END;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    m[nrl][ncl] -= nll;
       }    for (j=ncl+1; j<=nch; j++) 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      m[nrl][j]=m[nrl][j-1]+nlay;
       for (k=1; k<=cptcovprod;k++)    
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      for (j=ncl+1; j<=nch; j++) 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        m[i][j]=m[i][j-1]+nlay;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     savm=oldm;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     oldm=newm;    */
     maxmax=0.;  }
     for(j=1;j<=nlstate;j++){  
       min=1.;  /*************************free ma3x ************************/
       max=0.;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for(i=1; i<=nlstate; i++) {  {
         sumnew=0;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         prlim[i][j]= newm[i][j]/(1-sumnew);    free((FREE_ARG)(m+nrl-NR_END));
         max=FMAX(max,prlim[i][j]);  }
         min=FMIN(min,prlim[i][j]);  
       }  /*************** function subdirf ***********/
       maxmin=max-min;  char *subdirf(char fileres[])
       maxmax=FMAX(maxmax,maxmin);  {
     }    /* Caution optionfilefiname is hidden */
     if(maxmax < ftolpl){    strcpy(tmpout,optionfilefiname);
       return prlim;    strcat(tmpout,"/"); /* Add to the right */
     }    strcat(tmpout,fileres);
   }    return tmpout;
 }  }
   
 /*************** transition probabilities ***************/  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  {
 {    
   double s1, s2;    /* Caution optionfilefiname is hidden */
   /*double t34;*/    strcpy(tmpout,optionfilefiname);
   int i,j,j1, nc, ii, jj;    strcat(tmpout,"/");
     strcat(tmpout,preop);
     for(i=1; i<= nlstate; i++){    strcat(tmpout,fileres);
     for(j=1; j<i;j++){    return tmpout;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*************** function subdirf3 ***********/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  char *subdirf3(char fileres[], char *preop, char *preop2)
       }  {
       ps[i][j]=s2;    
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     for(j=i+1; j<=nlstate+ndeath;j++){    strcat(tmpout,"/");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcat(tmpout,preop);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcat(tmpout,preop2);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    strcat(tmpout,fileres);
       }    return tmpout;
       ps[i][j]=s2;  }
     }  
   }  /***************** f1dim *************************/
     /*ps[3][2]=1;*/  extern int ncom; 
   extern double *pcom,*xicom;
   for(i=1; i<= nlstate; i++){  extern double (*nrfunc)(double []); 
      s1=0;   
     for(j=1; j<i; j++)  double f1dim(double x) 
       s1+=exp(ps[i][j]);  { 
     for(j=i+1; j<=nlstate+ndeath; j++)    int j; 
       s1+=exp(ps[i][j]);    double f;
     ps[i][i]=1./(s1+1.);    double *xt; 
     for(j=1; j<i; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];    xt=vector(1,ncom); 
     for(j=i+1; j<=nlstate+ndeath; j++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    f=(*nrfunc)(xt); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    free_vector(xt,1,ncom); 
   } /* end i */    return f; 
   } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*****************brent *************************/
       ps[ii][jj]=0;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       ps[ii][ii]=1;  { 
     }    int iter; 
   }    double a,b,d,etemp;
     double fu,fv,fw,fx;
     double ftemp;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    double e=0.0; 
      printf("%lf ",ps[ii][jj]);   
    }    a=(ax < cx ? ax : cx); 
     printf("\n ");    b=(ax > cx ? ax : cx); 
     }    x=w=v=bx; 
     printf("\n ");printf("%lf ",cov[2]);*/    fw=fv=fx=(*f)(x); 
 /*    for (iter=1;iter<=ITMAX;iter++) { 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      xm=0.5*(a+b); 
   goto end;*/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     return ps;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 }      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
 /**************** Product of 2 matrices ******************/  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  #endif
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   /* in, b, out are matrice of pointers which should have been initialized        *xmin=x; 
      before: only the contents of out is modified. The function returns        return fx; 
      a pointer to pointers identical to out */      } 
   long i, j, k;      ftemp=fu;
   for(i=nrl; i<= nrh; i++)      if (fabs(e) > tol1) { 
     for(k=ncolol; k<=ncoloh; k++)        r=(x-w)*(fx-fv); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        q=(x-v)*(fx-fw); 
         out[i][k] +=in[i][j]*b[j][k];        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
   return out;        if (q > 0.0) p = -p; 
 }        q=fabs(q); 
         etemp=e; 
         e=d; 
 /************* Higher Matrix Product ***************/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        else { 
 {          d=p/q; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          u=x+d; 
      duration (i.e. until          if (u-a < tol2 || b-u < tol2) 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.            d=SIGN(tol1,xm-x); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        } 
      (typically every 2 years instead of every month which is too big).      } else { 
      Model is determined by parameters x and covariates have to be        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      included manually here.      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
      */      fu=(*f)(u); 
       if (fu <= fx) { 
   int i, j, d, h, k;        if (u >= x) a=x; else b=x; 
   double **out, cov[NCOVMAX];        SHFT(v,w,x,u) 
   double **newm;          SHFT(fv,fw,fx,fu) 
           } else { 
   /* Hstepm could be zero and should return the unit matrix */            if (u < x) a=u; else b=u; 
   for (i=1;i<=nlstate+ndeath;i++)            if (fu <= fw || w == x) { 
     for (j=1;j<=nlstate+ndeath;j++){              v=w; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);              w=u; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);              fv=fw; 
     }              fw=fu; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */            } else if (fu <= fv || v == x || v == w) { 
   for(h=1; h <=nhstepm; h++){              v=u; 
     for(d=1; d <=hstepm; d++){              fv=fu; 
       newm=savm;            } 
       /* Covariates have to be included here again */          } 
       cov[1]=1.;    } 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    nrerror("Too many iterations in brent"); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    *xmin=x; 
       for (k=1; k<=cptcovage;k++)    return fx; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  } 
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /****************** mnbrak ***********************/
   
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/              double (*func)(double)) 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double ulim,u,r,q, dum;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double fu; 
       savm=oldm;   
       oldm=newm;    *fa=(*func)(*ax); 
     }    *fb=(*func)(*bx); 
     for(i=1; i<=nlstate+ndeath; i++)    if (*fb > *fa) { 
       for(j=1;j<=nlstate+ndeath;j++) {      SHFT(dum,*ax,*bx,dum) 
         po[i][j][h]=newm[i][j];        SHFT(dum,*fb,*fa,dum) 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        } 
          */    *cx=(*bx)+GOLD*(*bx-*ax); 
       }    *fc=(*func)(*cx); 
   } /* end h */    while (*fb > *fc) { 
   return po;      r=(*bx-*ax)*(*fb-*fc); 
 }      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 /*************** log-likelihood *************/      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 double func( double *x)      if ((*bx-u)*(u-*cx) > 0.0) { 
 {        fu=(*func)(u); 
   int i, ii, j, k, mi, d, kk;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        fu=(*func)(u); 
   double **out;        if (fu < *fc) { 
   double sw; /* Sum of weights */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double lli; /* Individual log likelihood */            SHFT(*fb,*fc,fu,(*func)(u)) 
   long ipmx;            } 
   /*extern weight */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /* We are differentiating ll according to initial status */        u=ulim; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        fu=(*func)(u); 
   /*for(i=1;i<imx;i++)      } else { 
     printf(" %d\n",s[4][i]);        u=(*cx)+GOLD*(*cx-*bx); 
   */        fu=(*func)(u); 
   cov[1]=1.;      } 
       SHFT(*ax,*bx,*cx,u) 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        SHFT(*fa,*fb,*fc,fu) 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        } 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  } 
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  /*************** linmin ************************/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){  int ncom; 
         newm=savm;  double *pcom,*xicom;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  double (*nrfunc)(double []); 
         for (kk=1; kk<=cptcovage;kk++) {   
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         }  { 
            double brent(double ax, double bx, double cx, 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                 double (*f)(double), double tol, double *xmin); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double f1dim(double x); 
         savm=oldm;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         oldm=newm;                double *fc, double (*func)(double)); 
            int j; 
            double xx,xmin,bx,ax; 
       } /* end mult */    double fx,fb,fa;
         
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    ncom=n; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    pcom=vector(1,n); 
       ipmx +=1;    xicom=vector(1,n); 
       sw += weight[i];    nrfunc=func; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    for (j=1;j<=n;j++) { 
     } /* end of wave */      pcom[j]=p[j]; 
   } /* end of individual */      xicom[j]=xi[j]; 
     } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    ax=0.0; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    xx=1.0; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   return -l;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 }  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /*********** Maximum Likelihood Estimation ***************/  #endif
     for (j=1;j<=n;j++) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      xi[j] *= xmin; 
 {      p[j] += xi[j]; 
   int i,j, iter;    } 
   double **xi,*delti;    free_vector(xicom,1,n); 
   double fret;    free_vector(pcom,1,n); 
   xi=matrix(1,npar,1,npar);  } 
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  char *asc_diff_time(long time_sec, char ascdiff[])
       xi[i][j]=(i==j ? 1.0 : 0.0);  {
   printf("Powell\n");    long sec_left, days, hours, minutes;
   powell(p,xi,npar,ftol,&iter,&fret,func);    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    hours = (sec_left) / (60*60) ;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 }    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 /**** Computes Hessian and covariance matrix ***/    return ascdiff;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  }
 {  
   double  **a,**y,*x,pd;  /*************** powell ************************/
   double **hess;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   int i, j,jk;              double (*func)(double [])) 
   int *indx;  { 
     void linmin(double p[], double xi[], int n, double *fret, 
   double hessii(double p[], double delta, int theta, double delti[]);                double (*func)(double [])); 
   double hessij(double p[], double delti[], int i, int j);    int i,ibig,j; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double del,t,*pt,*ptt,*xit;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double fp,fptt;
     double *xits;
   hess=matrix(1,npar,1,npar);    int niterf, itmp;
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    pt=vector(1,n); 
   for (i=1;i<=npar;i++){    ptt=vector(1,n); 
     printf("%d",i);fflush(stdout);    xit=vector(1,n); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    xits=vector(1,n); 
     /*printf(" %f ",p[i]);*/    *fret=(*func)(p); 
     /*printf(" %lf ",hess[i][i]);*/    for (j=1;j<=n;j++) pt[j]=p[j]; 
   }    for (*iter=1;;++(*iter)) { 
        fp=(*fret); 
   for (i=1;i<=npar;i++) {      ibig=0; 
     for (j=1;j<=npar;j++)  {      del=0.0; 
       if (j>i) {      last_time=curr_time;
         printf(".%d%d",i,j);fflush(stdout);      (void) gettimeofday(&curr_time,&tzp);
         hess[i][j]=hessij(p,delti,i,j);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         hess[j][i]=hess[i][j];          /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
         /*printf(" %lf ",hess[i][j]);*/      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       }      */
     }     for (i=1;i<=n;i++) {
   }        printf(" %d %.12f",i, p[i]);
   printf("\n");        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      }
        printf("\n");
   a=matrix(1,npar,1,npar);      fprintf(ficlog,"\n");
   y=matrix(1,npar,1,npar);      fprintf(ficrespow,"\n");fflush(ficrespow);
   x=vector(1,npar);      if(*iter <=3){
   indx=ivector(1,npar);        tm = *localtime(&curr_time.tv_sec);
   for (i=1;i<=npar;i++)        strcpy(strcurr,asctime(&tm));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  /*       asctime_r(&tm,strcurr); */
   ludcmp(a,npar,indx,&pd);        forecast_time=curr_time; 
         itmp = strlen(strcurr);
   for (j=1;j<=npar;j++) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     for (i=1;i<=npar;i++) x[i]=0;          strcurr[itmp-1]='\0';
     x[j]=1;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     lubksb(a,npar,indx,x);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for (i=1;i<=npar;i++){        for(niterf=10;niterf<=30;niterf+=10){
       matcov[i][j]=x[i];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     }          tmf = *localtime(&forecast_time.tv_sec);
   }  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
   printf("\n#Hessian matrix#\n");          itmp = strlen(strfor);
   for (i=1;i<=npar;i++) {          if(strfor[itmp-1]=='\n')
     for (j=1;j<=npar;j++) {          strfor[itmp-1]='\0';
       printf("%.3e ",hess[i][j]);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     printf("\n");        }
   }      }
       for (i=1;i<=n;i++) { 
   /* Recompute Inverse */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for (i=1;i<=npar;i++)        fptt=(*fret); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  #ifdef DEBUG
   ludcmp(a,npar,indx,&pd);        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   /*  printf("\n#Hessian matrix recomputed#\n");  #endif
         printf("%d",i);fflush(stdout);
   for (j=1;j<=npar;j++) {        fprintf(ficlog,"%d",i);fflush(ficlog);
     for (i=1;i<=npar;i++) x[i]=0;        linmin(p,xit,n,fret,func); 
     x[j]=1;        if (fabs(fptt-(*fret)) > del) { 
     lubksb(a,npar,indx,x);          del=fabs(fptt-(*fret)); 
     for (i=1;i<=npar;i++){          ibig=i; 
       y[i][j]=x[i];        } 
       printf("%.3e ",y[i][j]);  #ifdef DEBUG
     }        printf("%d %.12e",i,(*fret));
     printf("\n");        fprintf(ficlog,"%d %.12e",i,(*fret));
   }        for (j=1;j<=n;j++) {
   */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   free_matrix(a,1,npar,1,npar);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   free_matrix(y,1,npar,1,npar);        }
   free_vector(x,1,npar);        for(j=1;j<=n;j++) {
   free_ivector(indx,1,npar);          printf(" p=%.12e",p[j]);
   free_matrix(hess,1,npar,1,npar);          fprintf(ficlog," p=%.12e",p[j]);
         }
         printf("\n");
 }        fprintf(ficlog,"\n");
   #endif
 /*************** hessian matrix ****************/      } 
 double hessii( double x[], double delta, int theta, double delti[])      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 {  #ifdef DEBUG
   int i;        int k[2],l;
   int l=1, lmax=20;        k[0]=1;
   double k1,k2;        k[1]=-1;
   double p2[NPARMAX+1];        printf("Max: %.12e",(*func)(p));
   double res;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        for (j=1;j<=n;j++) {
   double fx;          printf(" %.12e",p[j]);
   int k=0,kmax=10;          fprintf(ficlog," %.12e",p[j]);
   double l1;        }
         printf("\n");
   fx=func(x);        fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++) p2[i]=x[i];        for(l=0;l<=1;l++) {
   for(l=0 ; l <=lmax; l++){          for (j=1;j<=n;j++) {
     l1=pow(10,l);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     delts=delt;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(k=1 ; k <kmax; k=k+1){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       delt = delta*(l1*k);          }
       p2[theta]=x[theta] +delt;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       k1=func(p2)-fx;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       p2[theta]=x[theta]-delt;        }
       k2=func(p2)-fx;  #endif
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
              free_vector(xit,1,n); 
 #ifdef DEBUG        free_vector(xits,1,n); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        free_vector(ptt,1,n); 
 #endif        free_vector(pt,1,n); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        return; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      } 
         k=kmax;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       }      for (j=1;j<=n;j++) { 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        ptt[j]=2.0*p[j]-pt[j]; 
         k=kmax; l=lmax*10.;        xit[j]=p[j]-pt[j]; 
       }        pt[j]=p[j]; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      } 
         delts=delt;      fptt=(*func)(ptt); 
       }      if (fptt < fp) { 
     }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   }        if (t < 0.0) { 
   delti[theta]=delts;          linmin(p,xit,n,fret,func); 
   return res;          for (j=1;j<=n;j++) { 
              xi[j][ibig]=xi[j][n]; 
 }            xi[j][n]=xit[j]; 
           }
 double hessij( double x[], double delti[], int thetai,int thetaj)  #ifdef DEBUG
 {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int i;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int l=1, l1, lmax=20;          for(j=1;j<=n;j++){
   double k1,k2,k3,k4,res,fx;            printf(" %.12e",xit[j]);
   double p2[NPARMAX+1];            fprintf(ficlog," %.12e",xit[j]);
   int k;          }
           printf("\n");
   fx=func(x);          fprintf(ficlog,"\n");
   for (k=1; k<=2; k++) {  #endif
     for (i=1;i<=npar;i++) p2[i]=x[i];        }
     p2[thetai]=x[thetai]+delti[thetai]/k;      } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    } 
     k1=func(p2)-fx;  } 
    
     p2[thetai]=x[thetai]+delti[thetai]/k;  /**** Prevalence limit (stable or period prevalence)  ****************/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       matrix by transitions matrix until convergence is reached */
     k3=func(p2)-fx;  
      int i, ii,j,k;
     p2[thetai]=x[thetai]-delti[thetai]/k;    double min, max, maxmin, maxmax,sumnew=0.;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double **matprod2();
     k4=func(p2)-fx;    double **out, cov[NCOVMAX], **pmij();
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double **newm;
 #ifdef DEBUG    double agefin, delaymax=50 ; /* Max number of years to converge */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif    for (ii=1;ii<=nlstate+ndeath;ii++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   return res;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }      }
   
 /************** Inverse of matrix **************/     cov[1]=1.;
 void ludcmp(double **a, int n, int *indx, double *d)   
 {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i,imax,j,k;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   double big,dum,sum,temp;      newm=savm;
   double *vv;      /* Covariates have to be included here again */
         cov[2]=agefin;
   vv=vector(1,n);    
   *d=1.0;        for (k=1; k<=cptcovn;k++) {
   for (i=1;i<=n;i++) {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     big=0.0;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     for (j=1;j<=n;j++)        }
       if ((temp=fabs(a[i][j])) > big) big=temp;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        for (k=1; k<=cptcovprod;k++)
     vv[i]=1.0/big;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
   for (j=1;j<=n;j++) {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for (i=1;i<j;i++) {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       sum=a[i][j];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       a[i][j]=sum;  
     }      savm=oldm;
     big=0.0;      oldm=newm;
     for (i=j;i<=n;i++) {      maxmax=0.;
       sum=a[i][j];      for(j=1;j<=nlstate;j++){
       for (k=1;k<j;k++)        min=1.;
         sum -= a[i][k]*a[k][j];        max=0.;
       a[i][j]=sum;        for(i=1; i<=nlstate; i++) {
       if ( (dum=vv[i]*fabs(sum)) >= big) {          sumnew=0;
         big=dum;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         imax=i;          prlim[i][j]= newm[i][j]/(1-sumnew);
       }          max=FMAX(max,prlim[i][j]);
     }          min=FMIN(min,prlim[i][j]);
     if (j != imax) {        }
       for (k=1;k<=n;k++) {        maxmin=max-min;
         dum=a[imax][k];        maxmax=FMAX(maxmax,maxmin);
         a[imax][k]=a[j][k];      }
         a[j][k]=dum;      if(maxmax < ftolpl){
       }        return prlim;
       *d = -(*d);      }
       vv[imax]=vv[j];    }
     }  }
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*************** transition probabilities ***************/ 
     if (j != n) {  
       dum=1.0/(a[j][j]);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  {
     }    double s1, s2;
   }    /*double t34;*/
   free_vector(vv,1,n);  /* Doesn't work */    int i,j,j1, nc, ii, jj;
 ;  
 }      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
 void lubksb(double **a, int n, int *indx, double b[])          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 {            /*s2 += param[i][j][nc]*cov[nc];*/
   int i,ii=0,ip,j;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double sum;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
            }
   for (i=1;i<=n;i++) {          ps[i][j]=s2;
     ip=indx[i];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     sum=b[ip];        }
     b[ip]=b[i];        for(j=i+1; j<=nlstate+ndeath;j++){
     if (ii)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     else if (sum) ii=i;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     b[i]=sum;          }
   }          ps[i][j]=s2;
   for (i=n;i>=1;i--) {        }
     sum=b[i];      }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      /*ps[3][2]=1;*/
     b[i]=sum/a[i][i];      
   }      for(i=1; i<= nlstate; i++){
 }        s1=0;
         for(j=1; j<i; j++)
 /************ Frequencies ********************/          s1+=exp(ps[i][j]);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        for(j=i+1; j<=nlstate+ndeath; j++)
 {  /* Some frequencies */          s1+=exp(ps[i][j]);
          ps[i][i]=1./(s1+1.);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        for(j=1; j<i; j++)
   double ***freq; /* Frequencies */          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double *pp;        for(j=i+1; j<=nlstate+ndeath; j++)
   double pos, k2, dateintsum=0,k2cpt=0;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   FILE *ficresp;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   char fileresp[FILENAMELENGTH];      } /* end i */
        
   pp=vector(1,nlstate);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(jj=1; jj<= nlstate+ndeath; jj++){
   strcpy(fileresp,"p");          ps[ii][jj]=0;
   strcat(fileresp,fileres);          ps[ii][ii]=1;
   if((ficresp=fopen(fileresp,"w"))==NULL) {        }
     printf("Problem with prevalence resultfile: %s\n", fileresp);      }
     exit(0);      
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   j1=0;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
    /*         printf("ddd %lf ",ps[ii][jj]); */
   j=cptcoveff;  /*       } */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /*       printf("\n "); */
    /*        } */
   for(k1=1; k1<=j;k1++){  /*        printf("\n ");printf("%lf ",cov[2]); */
     for(i1=1; i1<=ncodemax[k1];i1++){         /*
       j1++;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        goto end;*/
         scanf("%d", i);*/      return ps;
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  /**************** Product of 2 matrices ******************/
             freq[i][jk][m]=0;  
        double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       dateintsum=0;  {
       k2cpt=0;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for (i=1; i<=imx; i++) {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         bool=1;    /* in, b, out are matrice of pointers which should have been initialized 
         if  (cptcovn>0) {       before: only the contents of out is modified. The function returns
           for (z1=1; z1<=cptcoveff; z1++)       a pointer to pointers identical to out */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    long i, j, k;
               bool=0;    for(i=nrl; i<= nrh; i++)
         }      for(k=ncolol; k<=ncoloh; k++)
         if (bool==1) {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           for(m=firstpass; m<=lastpass; m++){          out[i][k] +=in[i][j]*b[j][k];
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    return out;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  }
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /************* Higher Matrix Product ***************/
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
               }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
                {
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    /* Computes the transition matrix starting at age 'age' over 
                 dateintsum=dateintsum+k2;       'nhstepm*hstepm*stepm' months (i.e. until
                 k2cpt++;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
               }       nhstepm*hstepm matrices. 
             }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           }       (typically every 2 years instead of every month which is too big 
         }       for the memory).
       }       Model is determined by parameters x and covariates have to be 
               included manually here. 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
        */
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");    int i, j, d, h, k;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double **out, cov[NCOVMAX];
         fprintf(ficresp, "**********\n#");    double **newm;
       }  
       for(i=1; i<=nlstate;i++)    /* Hstepm could be zero and should return the unit matrix */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    for (i=1;i<=nlstate+ndeath;i++)
       fprintf(ficresp, "\n");      for (j=1;j<=nlstate+ndeath;j++){
              oldm[i][j]=(i==j ? 1.0 : 0.0);
       for(i=(int)agemin; i <= (int)agemax+3; i++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
         if(i==(int)agemax+3)      }
           printf("Total");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         else    for(h=1; h <=nhstepm; h++){
           printf("Age %d", i);      for(d=1; d <=hstepm; d++){
         for(jk=1; jk <=nlstate ; jk++){        newm=savm;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        /* Covariates have to be included here again */
             pp[jk] += freq[jk][m][i];        cov[1]=1.;
         }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           for(m=-1, pos=0; m <=0 ; m++)        for (k=1; k<=cptcovage;k++)
             pos += freq[jk][m][i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           if(pp[jk]>=1.e-10)        for (k=1; k<=cptcovprod;k++)
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           else  
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
         }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         for(jk=1; jk <=nlstate ; jk++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             pp[jk] += freq[jk][m][i];        savm=oldm;
         }        oldm=newm;
       }
         for(jk=1,pos=0; jk <=nlstate ; jk++)      for(i=1; i<=nlstate+ndeath; i++)
           pos += pp[jk];        for(j=1;j<=nlstate+ndeath;j++) {
         for(jk=1; jk <=nlstate ; jk++){          po[i][j][h]=newm[i][j];
           if(pos>=1.e-5)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           */
           else        }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    } /* end h */
           if( i <= (int) agemax){    return po;
             if(pos>=1.e-5){  }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  /*************** log-likelihood *************/
             }  double func( double *x)
             else  {
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    int i, ii, j, k, mi, d, kk;
           }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         }    double **out;
            double sw; /* Sum of weights */
         for(jk=-1; jk <=nlstate+ndeath; jk++)    double lli; /* Individual log likelihood */
           for(m=-1; m <=nlstate+ndeath; m++)    int s1, s2;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double bbh, survp;
         if(i <= (int) agemax)    long ipmx;
           fprintf(ficresp,"\n");    /*extern weight */
         printf("\n");    /* We are differentiating ll according to initial status */
       }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     }    /*for(i=1;i<imx;i++) 
   }      printf(" %d\n",s[4][i]);
   dateintmean=dateintsum/k2cpt;    */
      cov[1]=1.;
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   free_vector(pp,1,nlstate);  
      if(mle==1){
   /* End of Freq */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************ Prevalence ********************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            for (j=1;j<=nlstate+ndeath;j++){
 {  /* Some frequencies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            }
   double ***freq; /* Frequencies */          for(d=0; d<dh[mi][i]; d++){
   double *pp;            newm=savm;
   double pos, k2;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   pp=vector(1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   j1=0;            savm=oldm;
              oldm=newm;
   j=cptcoveff;          } /* end mult */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   for(k1=1; k1<=j;k1++){          /* But now since version 0.9 we anticipate for bias at large stepm.
     for(i1=1; i1<=ncodemax[k1];i1++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       j1++;           * (in months) between two waves is not a multiple of stepm, we rounded to 
                 * the nearest (and in case of equal distance, to the lowest) interval but now
       for (i=-1; i<=nlstate+ndeath; i++)             * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           for(m=agemin; m <= agemax+3; m++)           * probability in order to take into account the bias as a fraction of the way
             freq[i][jk][m]=0;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                 * -stepm/2 to stepm/2 .
       for (i=1; i<=imx; i++) {           * For stepm=1 the results are the same as for previous versions of Imach.
         bool=1;           * For stepm > 1 the results are less biased than in previous versions. 
         if  (cptcovn>0) {           */
           for (z1=1; z1<=cptcoveff; z1++)          s1=s[mw[mi][i]][i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s2=s[mw[mi+1][i]][i];
               bool=0;          bbh=(double)bh[mi][i]/(double)stepm; 
         }          /* bias bh is positive if real duration
         if (bool==1) {           * is higher than the multiple of stepm and negative otherwise.
           for(m=firstpass; m<=lastpass; m++){           */
             k2=anint[m][i]+(mint[m][i]/12.);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          if( s2 > nlstate){ 
               if(agev[m][i]==0) agev[m][i]=agemax+1;            /* i.e. if s2 is a death state and if the date of death is known 
               if(agev[m][i]==1) agev[m][i]=agemax+2;               then the contribution to the likelihood is the probability to 
               if (m<lastpass) {               die between last step unit time and current  step unit time, 
                 if (calagedate>0)               which is also equal to probability to die before dh 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];               minus probability to die before dh-stepm . 
                 else               In version up to 0.92 likelihood was computed
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          as if date of death was unknown. Death was treated as any other
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          health state: the date of the interview describes the actual state
               }          and not the date of a change in health state. The former idea was
             }          to consider that at each interview the state was recorded
           }          (healthy, disable or death) and IMaCh was corrected; but when we
         }          introduced the exact date of death then we should have modified
       }          the contribution of an exact death to the likelihood. This new
       for(i=(int)agemin; i <= (int)agemax+3; i++){          contribution is smaller and very dependent of the step unit
         for(jk=1; jk <=nlstate ; jk++){          stepm. It is no more the probability to die between last interview
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          and month of death but the probability to survive from last
             pp[jk] += freq[jk][m][i];          interview up to one month before death multiplied by the
         }          probability to die within a month. Thanks to Chris
         for(jk=1; jk <=nlstate ; jk++){          Jackson for correcting this bug.  Former versions increased
           for(m=-1, pos=0; m <=0 ; m++)          mortality artificially. The bad side is that we add another loop
             pos += freq[jk][m][i];          which slows down the processing. The difference can be up to 10%
         }          lower mortality.
                    */
         for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];  
         }          } else if  (s2==-2) {
                    for (j=1,survp=0. ; j<=nlstate; j++) 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                    /*survp += out[s1][j]; */
         for(jk=1; jk <=nlstate ; jk++){                lli= log(survp);
           if( i <= (int) agemax){          }
             if(pos>=1.e-5){          
               probs[i][jk][j1]= pp[jk]/pos;          else if  (s2==-4) { 
             }            for (j=3,survp=0. ; j<=nlstate; j++)  
           }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            lli= log(survp); 
                  } 
       }  
     }          else if  (s2==-5) { 
   }            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              lli= log(survp); 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          } 
   free_vector(pp,1,nlstate);          
            else{
 }  /* End of Freq */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 /************* Waves Concatenation ***************/          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          /*if(lli ==000.0)*/
 {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          ipmx +=1;
      Death is a valid wave (if date is known).          sw += weight[i];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        } /* end of wave */
      and mw[mi+1][i]. dh depends on stepm.      } /* end of individual */
      */    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i, mi, m;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        for(mi=1; mi<= wav[i]-1; mi++){
      double sum=0., jmean=0.;*/          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   int j, k=0,jk, ju, jl;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double sum=0.;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmin=1e+5;            }
   jmax=-1;          for(d=0; d<=dh[mi][i]; d++){
   jmean=0.;            newm=savm;
   for(i=1; i<=imx; i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     mi=0;            for (kk=1; kk<=cptcovage;kk++) {
     m=firstpass;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     while(s[m][i] <= nlstate){            }
       if(s[m][i]>=1)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         mw[++mi][i]=m;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if(m >=lastpass)            savm=oldm;
         break;            oldm=newm;
       else          } /* end mult */
         m++;        
     }/* end while */          s1=s[mw[mi][i]][i];
     if (s[m][i] > nlstate){          s2=s[mw[mi+1][i]][i];
       mi++;     /* Death is another wave */          bbh=(double)bh[mi][i]/(double)stepm; 
       /* if(mi==0)  never been interviewed correctly before death */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
          /* Only death is a correct wave */          ipmx +=1;
       mw[mi][i]=m;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     wav[i]=mi;      } /* end of individual */
     if(mi==0)    }  else if(mle==3){  /* exponential inter-extrapolation */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=imx; i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(mi=1; mi<wav[i];mi++){            for (j=1;j<=nlstate+ndeath;j++){
       if (stepm <=0)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         dh[mi][i]=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else{            }
         if (s[mw[mi+1][i]][i] > nlstate) {          for(d=0; d<dh[mi][i]; d++){
           if (agedc[i] < 2*AGESUP) {            newm=savm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if(j==0) j=1;  /* Survives at least one month after exam */            for (kk=1; kk<=cptcovage;kk++) {
           k=k+1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if (j >= jmax) jmax=j;            }
           if (j <= jmin) jmin=j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           sum=sum+j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            savm=oldm;
           }            oldm=newm;
         }          } /* end mult */
         else{        
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          s1=s[mw[mi][i]][i];
           k=k+1;          s2=s[mw[mi+1][i]][i];
           if (j >= jmax) jmax=j;          bbh=(double)bh[mi][i]/(double)stepm; 
           else if (j <= jmin)jmin=j;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          ipmx +=1;
           sum=sum+j;          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         jk= j/stepm;        } /* end of wave */
         jl= j -jk*stepm;      } /* end of individual */
         ju= j -(jk+1)*stepm;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         if(jl <= -ju)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           dh[mi][i]=jk;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else        for(mi=1; mi<= wav[i]-1; mi++){
           dh[mi][i]=jk+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
         if(dh[mi][i]==0)            for (j=1;j<=nlstate+ndeath;j++){
           dh[mi][i]=1; /* At least one step */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
   }          for(d=0; d<dh[mi][i]; d++){
   jmean=sum/k;            newm=savm;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  }            for (kk=1; kk<=cptcovage;kk++) {
 /*********** Tricode ****************************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void tricode(int *Tvar, int **nbcode, int imx)            }
 {          
   int Ndum[20],ij=1, k, j, i;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int cptcode=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   cptcoveff=0;            savm=oldm;
              oldm=newm;
   for (k=0; k<19; k++) Ndum[k]=0;          } /* end mult */
   for (k=1; k<=7; k++) ncodemax[k]=0;        
           s1=s[mw[mi][i]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          s2=s[mw[mi+1][i]][i];
     for (i=1; i<=imx; i++) {          if( s2 > nlstate){ 
       ij=(int)(covar[Tvar[j]][i]);            lli=log(out[s1][s2] - savm[s1][s2]);
       Ndum[ij]++;          }else{
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       if (ij > cptcode) cptcode=ij;          }
     }          ipmx +=1;
           sw += weight[i];
     for (i=0; i<=cptcode; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(Ndum[i]!=0) ncodemax[j]++;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     }        } /* end of wave */
     ij=1;      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1; i<=ncodemax[j]; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (k=0; k<=19; k++) {        for(mi=1; mi<= wav[i]-1; mi++){
         if (Ndum[k] != 0) {          for (ii=1;ii<=nlstate+ndeath;ii++)
           nbcode[Tvar[j]][ij]=k;            for (j=1;j<=nlstate+ndeath;j++){
                        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           ij++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         if (ij > ncodemax[j]) break;          for(d=0; d<dh[mi][i]; d++){
       }              newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }              for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  for (k=0; k<19; k++) Ndum[k]=0;            }
           
  for (i=1; i<=ncovmodel-2; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       ij=Tvar[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       Ndum[ij]++;            savm=oldm;
     }            oldm=newm;
           } /* end mult */
  ij=1;        
  for (i=1; i<=10; i++) {          s1=s[mw[mi][i]][i];
    if((Ndum[i]!=0) && (i<=ncovcol)){          s2=s[mw[mi+1][i]][i];
      Tvaraff[ij]=i;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      ij++;          ipmx +=1;
    }          sw += weight[i];
  }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     cptcoveff=ij-1;        } /* end of wave */
 }      } /* end of individual */
     } /* End of if */
 /*********** Health Expectancies ****************/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
 {  }
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  /*************** log-likelihood *************/
   double age, agelim, hf;  double funcone( double *x)
   double ***p3mat,***varhe;  {
   double **dnewm,**doldm;    /* Same as likeli but slower because of a lot of printf and if */
   double *xp;    int i, ii, j, k, mi, d, kk;
   double **gp, **gm;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double ***gradg, ***trgradg;    double **out;
   int theta;    double lli; /* Individual log likelihood */
     double llt;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    int s1, s2;
   xp=vector(1,npar);    double bbh, survp;
   dnewm=matrix(1,nlstate*2,1,npar);    /*extern weight */
   doldm=matrix(1,nlstate*2,1,nlstate*2);    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   fprintf(ficreseij,"# Health expectancies\n");    /*for(i=1;i<imx;i++) 
   fprintf(ficreseij,"# Age");      printf(" %d\n",s[4][i]);
   for(i=1; i<=nlstate;i++)    */
     for(j=1; j<=nlstate;j++)    cov[1]=1.;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
   if(estepm < stepm){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     printf ("Problem %d lower than %d\n",estepm, stepm);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }      for(mi=1; mi<= wav[i]-1; mi++){
   else  hstepm=estepm;          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* We compute the life expectancy from trapezoids spaced every estepm months          for (j=1;j<=nlstate+ndeath;j++){
    * This is mainly to measure the difference between two models: for example            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    * if stepm=24 months pijx are given only every 2 years and by summing them            savm[ii][j]=(ii==j ? 1.0 : 0.0);
    * we are calculating an estimate of the Life Expectancy assuming a linear          }
    * progression inbetween and thus overestimating or underestimating according        for(d=0; d<dh[mi][i]; d++){
    * to the curvature of the survival function. If, for the same date, we          newm=savm;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    * to compare the new estimate of Life expectancy with the same linear          for (kk=1; kk<=cptcovage;kk++) {
    * hypothesis. A more precise result, taking into account a more precise            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    * curvature will be obtained if estepm is as small as stepm. */          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* For example we decided to compute the life expectancy with the smallest unit */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          savm=oldm;
      nhstepm is the number of hstepm from age to agelim          oldm=newm;
      nstepm is the number of stepm from age to agelin.        } /* end mult */
      Look at hpijx to understand the reason of that which relies in memory size        
      and note for a fixed period like estepm months */        s1=s[mw[mi][i]][i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        s2=s[mw[mi+1][i]][i];
      survival function given by stepm (the optimization length). Unfortunately it        bbh=(double)bh[mi][i]/(double)stepm; 
      means that if the survival funtion is printed only each two years of age and if        /* bias is positive if real duration
      you sum them up and add 1 year (area under the trapezoids) you won't get the same         * is higher than the multiple of stepm and negative otherwise.
      results. So we changed our mind and took the option of the best precision.         */
   */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
   agelim=AGESUP;          for (j=1,survp=0. ; j<=nlstate; j++) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     /* nhstepm age range expressed in number of stepm */          lli= log(survp);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        }else if (mle==1){
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     /* if (stepm >= YEARM) hstepm=1;*/        } else if(mle==2){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } else if(mle==3){  /* exponential inter-extrapolation */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     gp=matrix(0,nhstepm,1,nlstate*2);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     gm=matrix(0,nhstepm,1,nlstate*2);          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          lli=log(out[s1][s2]); /* Original formula */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        } /* End of if */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          ipmx +=1;
          sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
     /* Computing Variances of health expectancies */          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
      for(theta=1; theta <=npar; theta++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       for(i=1; i<=npar; i++){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       }            llt +=ll[k]*gipmx/gsw;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
            }
       cptj=0;          fprintf(ficresilk," %10.6f\n", -llt);
       for(j=1; j<= nlstate; j++){        }
         for(i=1; i<=nlstate; i++){      } /* end of wave */
           cptj=cptj+1;    } /* end of individual */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         }    if(globpr==0){ /* First time we count the contributions and weights */
       }      gipmx=ipmx;
            gsw=sw;
          }
       for(i=1; i<=npar; i++)    return -l;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
        
       cptj=0;  /*************** function likelione ***********/
       for(j=1; j<= nlstate; j++){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         for(i=1;i<=nlstate;i++){  {
           cptj=cptj+1;    /* This routine should help understanding what is done with 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){       the selection of individuals/waves and
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;       to check the exact contribution to the likelihood.
           }       Plotting could be done.
         }     */
       }    int k;
       for(j=1; j<= nlstate*2; j++)  
         for(h=0; h<=nhstepm-1; h++){    if(*globpri !=0){ /* Just counts and sums, no printings */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      strcpy(fileresilk,"ilk"); 
         }      strcat(fileresilk,fileres);
      }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
            printf("Problem with resultfile: %s\n", fileresilk);
 /* End theta */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      for(h=0; h<=nhstepm-1; h++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(j=1; j<=nlstate*2;j++)      for(k=1; k<=nlstate; k++) 
         for(theta=1; theta <=npar; theta++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           trgradg[h][j][theta]=gradg[h][theta][j];      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
          }
   
      for(i=1;i<=nlstate*2;i++)    *fretone=(*funcone)(p);
       for(j=1;j<=nlstate*2;j++)    if(*globpri !=0){
         varhe[i][j][(int)age] =0.;      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
      printf("%d|",(int)age);fflush(stdout);      fflush(fichtm); 
      for(h=0;h<=nhstepm-1;h++){    } 
       for(k=0;k<=nhstepm-1;k++){    return;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  
         for(i=1;i<=nlstate*2;i++)  
           for(j=1;j<=nlstate*2;j++)  /*********** Maximum Likelihood Estimation ***************/
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     }  {
     /* Computing expectancies */    int i,j, iter;
     for(i=1; i<=nlstate;i++)    double **xi;
       for(j=1; j<=nlstate;j++)    double fret;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    double fretone; /* Only one call to likelihood */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    /*  char filerespow[FILENAMELENGTH];*/
              xi=matrix(1,npar,1,npar);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
         }        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     fprintf(ficreseij,"%3.0f",age );    strcpy(filerespow,"pow"); 
     cptj=0;    strcat(filerespow,fileres);
     for(i=1; i<=nlstate;i++)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(j=1; j<=nlstate;j++){      printf("Problem with resultfile: %s\n", filerespow);
         cptj++;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    }
       }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     fprintf(ficreseij,"\n");    for (i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate+ndeath;j++)
     free_matrix(gm,0,nhstepm,1,nlstate*2);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     free_matrix(gp,0,nhstepm,1,nlstate*2);    fprintf(ficrespow,"\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    powell(p,xi,npar,ftol,&iter,&fret,func);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }    free_matrix(xi,1,npar,1,npar);
   printf("\n");    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   free_vector(xp,1,npar);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   free_matrix(dnewm,1,nlstate*2,1,npar);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  }
 }  
   /**** Computes Hessian and covariance matrix ***/
 /************ Variance ******************/  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  {
 {    double  **a,**y,*x,pd;
   /* Variance of health expectancies */    double **hess;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int i, j,jk;
   double **newm;    int *indx;
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm, h, nstepm ;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   int k, cptcode;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   double *xp;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   double **gp, **gm;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   double ***gradg, ***trgradg;    double gompertz(double p[]);
   double ***p3mat;    hess=matrix(1,npar,1,npar);
   double age,agelim, hf;  
   int theta;    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    for (i=1;i<=npar;i++){
   fprintf(ficresvij,"# Age");      printf("%d",i);fflush(stdout);
   for(i=1; i<=nlstate;i++)      fprintf(ficlog,"%d",i);fflush(ficlog);
     for(j=1; j<=nlstate;j++)     
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   fprintf(ficresvij,"\n");      
       /*  printf(" %f ",p[i]);
   xp=vector(1,npar);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   dnewm=matrix(1,nlstate,1,npar);    }
   doldm=matrix(1,nlstate,1,nlstate);    
      for (i=1;i<=npar;i++) {
   if(estepm < stepm){      for (j=1;j<=npar;j++)  {
     printf ("Problem %d lower than %d\n",estepm, stepm);        if (j>i) { 
   }          printf(".%d%d",i,j);fflush(stdout);
   else  hstepm=estepm;            fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   /* For example we decided to compute the life expectancy with the smallest unit */          hess[i][j]=hessij(p,delti,i,j,func,npar);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          
      nhstepm is the number of hstepm from age to agelim          hess[j][i]=hess[i][j];    
      nstepm is the number of stepm from age to agelin.          /*printf(" %lf ",hess[i][j]);*/
      Look at hpijx to understand the reason of that which relies in memory size        }
      and note for a fixed period like k years */      }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    }
      survival function given by stepm (the optimization length). Unfortunately it    printf("\n");
      means that if the survival funtion is printed only each two years of age and if    fprintf(ficlog,"\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    
   agelim = AGESUP;    a=matrix(1,npar,1,npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    y=matrix(1,npar,1,npar);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    x=vector(1,npar);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    indx=ivector(1,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     gp=matrix(0,nhstepm,1,nlstate);    ludcmp(a,npar,indx,&pd);
     gm=matrix(0,nhstepm,1,nlstate);  
     for (j=1;j<=npar;j++) {
     for(theta=1; theta <=npar; theta++){      for (i=1;i<=npar;i++) x[i]=0;
       for(i=1; i<=npar; i++){ /* Computes gradient */      x[j]=1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          matcov[i][j]=x[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
     }
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    printf("\n#Hessian matrix#\n");
           prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficlog,"\n#Hessian matrix#\n");
       }    for (i=1;i<=npar;i++) { 
        for (j=1;j<=npar;j++) { 
       for(j=1; j<= nlstate; j++){        printf("%.3e ",hess[i][j]);
         for(h=0; h<=nhstepm; h++){        fprintf(ficlog,"%.3e ",hess[i][j]);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      printf("\n");
         }      fprintf(ficlog,"\n");
       }    }
      
       for(i=1; i<=npar; i++) /* Computes gradient */    /* Recompute Inverse */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    ludcmp(a,npar,indx,&pd);
    
       if (popbased==1) {    /*  printf("\n#Hessian matrix recomputed#\n");
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
       for(j=1; j<= nlstate; j++){      lubksb(a,npar,indx,x);
         for(h=0; h<=nhstepm; h++){      for (i=1;i<=npar;i++){ 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        y[i][j]=x[i];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        printf("%.3e ",y[i][j]);
         }        fprintf(ficlog,"%.3e ",y[i][j]);
       }      }
       printf("\n");
       for(j=1; j<= nlstate; j++)      fprintf(ficlog,"\n");
         for(h=0; h<=nhstepm; h++){    }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    */
         }  
     } /* End theta */    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
     for(h=0; h<=nhstepm; h++)    free_matrix(hess,1,npar,1,npar);
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  }
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  /*************** hessian matrix ****************/
     for(i=1;i<=nlstate;i++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       for(j=1;j<=nlstate;j++)  {
         vareij[i][j][(int)age] =0.;    int i;
     int l=1, lmax=20;
     for(h=0;h<=nhstepm;h++){    double k1,k2;
       for(k=0;k<=nhstepm;k++){    double p2[NPARMAX+1];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double res;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         for(i=1;i<=nlstate;i++)    double fx;
           for(j=1;j<=nlstate;j++)    int k=0,kmax=10;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    double l1;
       }  
     }    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
     fprintf(ficresvij,"%.0f ",age );    for(l=0 ; l <=lmax; l++){
     for(i=1; i<=nlstate;i++)      l1=pow(10,l);
       for(j=1; j<=nlstate;j++){      delts=delt;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      for(k=1 ; k <kmax; k=k+1){
       }        delt = delta*(l1*k);
     fprintf(ficresvij,"\n");        p2[theta]=x[theta] +delt;
     free_matrix(gp,0,nhstepm,1,nlstate);        k1=func(p2)-fx;
     free_matrix(gm,0,nhstepm,1,nlstate);        p2[theta]=x[theta]-delt;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        k2=func(p2)-fx;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   } /* End age */        
    #ifdef DEBUG
   free_vector(xp,1,npar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   free_matrix(doldm,1,nlstate,1,npar);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   free_matrix(dnewm,1,nlstate,1,nlstate);  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
 /************ Variance of prevlim ******************/        }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 {          k=kmax; l=lmax*10.;
   /* Variance of prevalence limit */        }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double **newm;          delts=delt;
   double **dnewm,**doldm;        }
   int i, j, nhstepm, hstepm;      }
   int k, cptcode;    }
   double *xp;    delti[theta]=delts;
   double *gp, *gm;    return res; 
   double **gradg, **trgradg;    
   double age,agelim;  }
   int theta;  
      double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");  {
   fprintf(ficresvpl,"# Age");    int i;
   for(i=1; i<=nlstate;i++)    int l=1, l1, lmax=20;
       fprintf(ficresvpl," %1d-%1d",i,i);    double k1,k2,k3,k4,res,fx;
   fprintf(ficresvpl,"\n");    double p2[NPARMAX+1];
     int k;
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    fx=func(x);
   doldm=matrix(1,nlstate,1,nlstate);    for (k=1; k<=2; k++) {
        for (i=1;i<=npar;i++) p2[i]=x[i];
   hstepm=1*YEARM; /* Every year of age */      p2[thetai]=x[thetai]+delti[thetai]/k;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   agelim = AGESUP;      k1=func(p2)-fx;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      p2[thetai]=x[thetai]+delti[thetai]/k;
     if (stepm >= YEARM) hstepm=1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      k2=func(p2)-fx;
     gradg=matrix(1,npar,1,nlstate);    
     gp=vector(1,nlstate);      p2[thetai]=x[thetai]-delti[thetai]/k;
     gm=vector(1,nlstate);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
     for(theta=1; theta <=npar; theta++){    
       for(i=1; i<=npar; i++){ /* Computes gradient */      p2[thetai]=x[thetai]-delti[thetai]/k;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k4=func(p2)-fx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for(i=1;i<=nlstate;i++)  #ifdef DEBUG
         gp[i] = prlim[i][i];      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
          fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(i=1; i<=npar; i++) /* Computes gradient */  #endif
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    return res;
       for(i=1;i<=nlstate;i++)  }
         gm[i] = prlim[i][i];  
   /************** Inverse of matrix **************/
       for(i=1;i<=nlstate;i++)  void ludcmp(double **a, int n, int *indx, double *d) 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  { 
     } /* End theta */    int i,imax,j,k; 
     double big,dum,sum,temp; 
     trgradg =matrix(1,nlstate,1,npar);    double *vv; 
    
     for(j=1; j<=nlstate;j++)    vv=vector(1,n); 
       for(theta=1; theta <=npar; theta++)    *d=1.0; 
         trgradg[j][theta]=gradg[theta][j];    for (i=1;i<=n;i++) { 
       big=0.0; 
     for(i=1;i<=nlstate;i++)      for (j=1;j<=n;j++) 
       varpl[i][(int)age] =0.;        if ((temp=fabs(a[i][j])) > big) big=temp; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      vv[i]=1.0/big; 
     for(i=1;i<=nlstate;i++)    } 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
     fprintf(ficresvpl,"%.0f ",age );        sum=a[i][j]; 
     for(i=1; i<=nlstate;i++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        a[i][j]=sum; 
     fprintf(ficresvpl,"\n");      } 
     free_vector(gp,1,nlstate);      big=0.0; 
     free_vector(gm,1,nlstate);      for (i=j;i<=n;i++) { 
     free_matrix(gradg,1,npar,1,nlstate);        sum=a[i][j]; 
     free_matrix(trgradg,1,nlstate,1,npar);        for (k=1;k<j;k++) 
   } /* End age */          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   free_vector(xp,1,npar);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   free_matrix(doldm,1,nlstate,1,npar);          big=dum; 
   free_matrix(dnewm,1,nlstate,1,nlstate);          imax=i; 
         } 
 }      } 
       if (j != imax) { 
 /************ Variance of one-step probabilities  ******************/        for (k=1;k<=n;k++) { 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          dum=a[imax][k]; 
 {          a[imax][k]=a[j][k]; 
   int i, j,  i1, k1, l1;          a[j][k]=dum; 
   int k2, l2, j1,  z1;        } 
   int k=0,l, cptcode;        *d = -(*d); 
   int first=1;        vv[imax]=vv[j]; 
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;      } 
   double **dnewm,**doldm;      indx[j]=imax; 
   double *xp;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   double *gp, *gm;      if (j != n) { 
   double **gradg, **trgradg;        dum=1.0/(a[j][j]); 
   double **mu;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double age,agelim, cov[NCOVMAX];      } 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    } 
   int theta;    free_vector(vv,1,n);  /* Doesn't work */
   char fileresprob[FILENAMELENGTH];  ;
   char fileresprobcov[FILENAMELENGTH];  } 
   char fileresprobcor[FILENAMELENGTH];  
   void lubksb(double **a, int n, int *indx, double b[]) 
   double ***varpij;  { 
     int i,ii=0,ip,j; 
   strcpy(fileresprob,"prob");    double sum; 
   strcat(fileresprob,fileres);   
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    for (i=1;i<=n;i++) { 
     printf("Problem with resultfile: %s\n", fileresprob);      ip=indx[i]; 
   }      sum=b[ip]; 
   strcpy(fileresprobcov,"probcov");      b[ip]=b[i]; 
   strcat(fileresprobcov,fileres);      if (ii) 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     printf("Problem with resultfile: %s\n", fileresprobcov);      else if (sum) ii=i; 
   }      b[i]=sum; 
   strcpy(fileresprobcor,"probcor");    } 
   strcat(fileresprobcor,fileres);    for (i=n;i>=1;i--) { 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      sum=b[i]; 
     printf("Problem with resultfile: %s\n", fileresprobcor);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    } 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  } 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
    void pstamp(FILE *fichier)
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  {
   fprintf(ficresprob,"# Age");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  }
   fprintf(ficresprobcov,"# Age");  
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  /************ Frequencies ********************/
   fprintf(ficresprobcov,"# Age");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
     
   for(i=1; i<=nlstate;i++)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     for(j=1; j<=(nlstate+ndeath);j++){    int first;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    double ***freq; /* Frequencies */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    double *pp, **prop;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     }      char fileresp[FILENAMELENGTH];
   fprintf(ficresprob,"\n");    
   fprintf(ficresprobcov,"\n");    pp=vector(1,nlstate);
   fprintf(ficresprobcor,"\n");    prop=matrix(1,nlstate,iagemin,iagemax+3);
   xp=vector(1,npar);    strcpy(fileresp,"p");
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    strcat(fileresp,fileres);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    if((ficresp=fopen(fileresp,"w"))==NULL) {
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   first=1;      exit(0);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     exit(0);    j1=0;
   }    
   else{    j=cptcoveff;
     fprintf(ficgp,"\n# Routine varprob");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   }  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    first=1;
     printf("Problem with html file: %s\n", optionfilehtm);  
     exit(0);    for(k1=1; k1<=j;k1++){
   }      for(i1=1; i1<=ncodemax[k1];i1++){
   else{        j1++;
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          scanf("%d", i);*/
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
   }            for(m=iagemin; m <= iagemax+3; m++)
   cov[1]=1;              freq[i][jk][m]=0;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for (i=1; i<=nlstate; i++)  
   j1=0;        for(m=iagemin; m <= iagemax+3; m++)
   for(k1=1; k1<=1;k1++){          prop[i][m]=0;
     for(i1=1; i1<=ncodemax[k1];i1++){        
     j1++;        dateintsum=0;
         k2cpt=0;
     if  (cptcovn>0) {        for (i=1; i<=imx; i++) {
       fprintf(ficresprob, "\n#********** Variable ");          bool=1;
       fprintf(ficresprobcov, "\n#********** Variable ");          if  (cptcovn>0) {
       fprintf(ficgp, "\n#********** Variable ");            for (z1=1; z1<=cptcoveff; z1++) 
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       fprintf(ficresprobcor, "\n#********** Variable ");                bool=0;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
       fprintf(ficresprob, "**********\n#");          if (bool==1){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for(m=firstpass; m<=lastpass; m++){
       fprintf(ficresprobcov, "**********\n#");              k2=anint[m][i]+(mint[m][i]/12.);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       fprintf(ficgp, "**********\n#");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficgp, "**********\n#");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                if (m<lastpass) {
       fprintf(fichtm, "**********\n#");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                    }
       for (age=bage; age<=fage; age ++){                
         cov[2]=age;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         for (k=1; k<=cptcovn;k++) {                  dateintsum=dateintsum+k2;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];                  k2cpt++;
         }                }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                /*}*/
         for (k=1; k<=cptcovprod;k++)            }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          }
                }
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));         
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         gp=vector(1,(nlstate)*(nlstate+ndeath));        pstamp(ficresp);
         gm=vector(1,(nlstate)*(nlstate+ndeath));        if  (cptcovn>0) {
              fprintf(ficresp, "\n#********** Variable "); 
         for(theta=1; theta <=npar; theta++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(i=1; i<=npar; i++)          fprintf(ficresp, "**********\n#");
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
                  for(i=1; i<=nlstate;i++) 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                  fprintf(ficresp, "\n");
           k=0;        
           for(i=1; i<= (nlstate); i++){        for(i=iagemin; i <= iagemax+3; i++){
             for(j=1; j<=(nlstate+ndeath);j++){          if(i==iagemax+3){
               k=k+1;            fprintf(ficlog,"Total");
               gp[k]=pmmij[i][j];          }else{
             }            if(first==1){
           }              first=0;
                        printf("See log file for details...\n");
           for(i=1; i<=npar; i++)            }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            fprintf(ficlog,"Age %d", i);
              }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for(jk=1; jk <=nlstate ; jk++){
           k=0;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           for(i=1; i<=(nlstate); i++){              pp[jk] += freq[jk][m][i]; 
             for(j=1; j<=(nlstate+ndeath);j++){          }
               k=k+1;          for(jk=1; jk <=nlstate ; jk++){
               gm[k]=pmmij[i][j];            for(m=-1, pos=0; m <=0 ; m++)
             }              pos += freq[jk][m][i];
           }            if(pp[jk]>=1.e-10){
                    if(first==1){
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                }
         }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)              if(first==1)
           for(theta=1; theta <=npar; theta++)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             trgradg[j][theta]=gradg[theta][j];              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                    }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  
                  for(jk=1; jk <=nlstate ; jk++){
         pmij(pmmij,cov,ncovmodel,x,nlstate);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                      pp[jk] += freq[jk][m][i];
         k=0;          }       
         for(i=1; i<=(nlstate); i++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           for(j=1; j<=(nlstate+ndeath);j++){            pos += pp[jk];
             k=k+1;            posprop += prop[jk][i];
             mu[k][(int) age]=pmmij[i][j];          }
           }          for(jk=1; jk <=nlstate ; jk++){
         }            if(pos>=1.e-5){
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              if(first==1)
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             varpij[i][j][(int)age] = doldm[i][j];              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
         /*printf("\n%d ",(int)age);              if(first==1)
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
      }*/            }
             if( i <= iagemax){
         fprintf(ficresprob,"\n%d ",(int)age);              if(pos>=1.e-5){
         fprintf(ficresprobcov,"\n%d ",(int)age);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         fprintf(ficresprobcor,"\n%d ",(int)age);                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)              }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              else
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          }
         }          
         i=0;          for(jk=-1; jk <=nlstate+ndeath; jk++)
         for (k=1; k<=(nlstate);k++){            for(m=-1; m <=nlstate+ndeath; m++)
           for (l=1; l<=(nlstate+ndeath);l++){              if(freq[jk][m][i] !=0 ) {
             i=i++;              if(first==1)
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             for (j=1; j<=i;j++){              }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          if(i <= iagemax)
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            fprintf(ficresp,"\n");
             }          if(first==1)
           }            printf("Others in log...\n");
         }/* end of loop for state */          fprintf(ficlog,"\n");
       } /* end of loop for age */        }
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      }
       for (k1=1; k1<=(nlstate);k1++){    }
         for (l1=1; l1<=(nlstate+ndeath);l1++){    dateintmean=dateintsum/k2cpt; 
           if(l1==k1) continue;   
           i=(k1-1)*(nlstate+ndeath)+l1;    fclose(ficresp);
           for (k2=1; k2<=(nlstate);k2++){    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
             for (l2=1; l2<=(nlstate+ndeath);l2++){    free_vector(pp,1,nlstate);
               if(l2==k2) continue;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
               j=(k2-1)*(nlstate+ndeath)+l2;    /* End of Freq */
               if(j<=i) continue;  }
               for (age=bage; age<=fage; age ++){  
                 if ((int)age %5==0){  /************ Prevalence ********************/
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  {  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   mu1=mu[i][(int) age]/stepm*YEARM ;       in each health status at the date of interview (if between dateprev1 and dateprev2).
                   mu2=mu[j][(int) age]/stepm*YEARM;       We still use firstpass and lastpass as another selection.
                   /* Computing eigen value of matrix of covariance */    */
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));   
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    double ***freq; /* Frequencies */
                   /* Eigen vectors */    double *pp, **prop;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    double pos,posprop; 
                   v21=sqrt(1.-v11*v11);    double  y2; /* in fractional years */
                   v12=-v21;    int iagemin, iagemax;
                   v22=v11;  
                   /*printf(fignu*/    iagemin= (int) agemin;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    iagemax= (int) agemax;
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */    /*pp=vector(1,nlstate);*/
                   if(first==1){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
                     first=0;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                     fprintf(ficgp,"\nset parametric;set nolabel");    j1=0;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);    
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    j=cptcoveff;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);    
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);    for(k1=1; k1<=j;k1++){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      for(i1=1; i1<=ncodemax[k1];i1++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);        j1++;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        for (i=1; i<=nlstate; i++)  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          for(m=iagemin; m <= iagemax+3; m++)
                   }else{            prop[i][m]=0.0;
                     first=0;       
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);        for (i=1; i<=imx; i++) { /* Each individual */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          bool=1;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          if  (cptcovn>0) {
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            for (z1=1; z1<=cptcoveff; z1++) 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                   }/* if first */                bool=0;
                 } /* age mod 5 */          } 
               } /* end loop age */          if (bool==1) { 
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               first=1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
             } /*l12 */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           } /* k12 */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         } /*l1 */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }/* k1 */                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     } /* loop covariates */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                  prop[s[m][i]][iagemax+3] += weight[i]; 
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);                } 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            } /* end selection of waves */
   }          }
   free_vector(xp,1,npar);        }
   fclose(ficresprob);        for(i=iagemin; i <= iagemax+3; i++){  
   fclose(ficresprobcov);          
   fclose(ficresprobcor);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   fclose(ficgp);            posprop += prop[jk][i]; 
   fclose(fichtm);          } 
 }  
           for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
 /******************* Printing html file ***********/              if(posprop>=1.e-5){ 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                probs[i][jk][j1]= prop[jk][i]/posprop;
                   int lastpass, int stepm, int weightopt, char model[],\              } 
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\            } 
                   int popforecast, int estepm ,\          }/* end jk */ 
                   double jprev1, double mprev1,double anprev1, \        }/* end i */ 
                   double jprev2, double mprev2,double anprev2){      } /* end i1 */
   int jj1, k1, i1, cpt;    } /* end k1 */
   /*char optionfilehtm[FILENAMELENGTH];*/    
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     printf("Problem with %s \n",optionfilehtm), exit(0);    /*free_vector(pp,1,nlstate);*/
   }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  /************* Waves Concatenation ***************/
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  - Life expectancies by age and initial health status (estepm=%2d months):  {
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n       and mw[mi+1][i]. dh depends on stepm.
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n       */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    int i, mi, m;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n       double sum=0., jmean=0.;*/
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    int first;
     int j, k=0,jk, ju, jl;
  if(popforecast==1) fprintf(fichtm,"\n    double sum=0.;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    first=0;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    jmin=1e+5;
         <br>",fileres,fileres,fileres,fileres);    jmax=-1;
  else    jmean=0.;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    for(i=1; i<=imx; i++){
 fprintf(fichtm," <li>Graphs</li><p>");      mi=0;
       m=firstpass;
  m=cptcoveff;      while(s[m][i] <= nlstate){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
  jj1=0;        if(m >=lastpass)
  for(k1=1; k1<=m;k1++){          break;
    for(i1=1; i1<=ncodemax[k1];i1++){        else
      jj1++;          m++;
      if (cptcovn > 0) {      }/* end while */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      if (s[m][i] > nlstate){
        for (cpt=1; cpt<=cptcoveff;cpt++)        mi++;     /* Death is another wave */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        /* if(mi==0)  never been interviewed correctly before death */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");           /* Only death is a correct wave */
      }        mw[mi][i]=m;
      /* Pij */      }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>  
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          wav[i]=mi;
      /* Quasi-incidences */      if(mi==0){
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        nbwarn++;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        if(first==0){
        /* Stable prevalence in each health state */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
        for(cpt=1; cpt<nlstate;cpt++){          first=1;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        }
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        if(first==1){
        }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     for(cpt=1; cpt<=nlstate;cpt++) {        }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      } /* end mi==0 */
 interval) in state (%d): v%s%d%d.png <br>    } /* End individuals */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
      }    for(i=1; i<=imx; i++){
      for(cpt=1; cpt<=nlstate;cpt++) {      for(mi=1; mi<wav[i];mi++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>        if (stepm <=0)
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          dh[mi][i]=1;
      }        else{
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 health expectancies in states (1) and (2): e%s%d.png<br>            if (agedc[i] < 2*AGESUP) {
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
    }              if(j==0) j=1;  /* Survives at least one month after exam */
  }              else if(j<0){
 fclose(fichtm);                nberr++;
 }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
 /******************* Gnuplot file **************/                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              }
   int ng;              k=k+1;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              if (j >= jmax){
     printf("Problem with file %s",optionfilegnuplot);                jmax=j;
   }                ijmax=i;
               }
 #ifdef windows              if (j <= jmin){
     fprintf(ficgp,"cd \"%s\" \n",pathc);                jmin=j;
 #endif                ijmin=i;
 m=pow(2,cptcoveff);              }
                sum=sum+j;
  /* 1eme*/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    for (k1=1; k1<= m ; k1 ++) {            }
           }
 #ifdef windows          else{
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 #endif  
 #ifdef unix            k=k+1;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            if (j >= jmax) {
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);              jmax=j;
 #endif              ijmax=i;
             }
 for (i=1; i<= nlstate ; i ++) {            else if (j <= jmin){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              jmin=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              ijmin=i;
 }            }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     for (i=1; i<= nlstate ; i ++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if(j<0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              nberr++;
 }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            sum=sum+j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            jk= j/stepm;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          jl= j -jk*stepm;
 #ifdef unix          ju= j -(jk+1)*stepm;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 #endif            if(jl==0){
    }              dh[mi][i]=jk;
   }              bh[mi][i]=0;
   /*2 eme*/            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
   for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk+1;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);              bh[mi][i]=ju;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            }
              }else{
     for (i=1; i<= nlstate+1 ; i ++) {            if(jl <= -ju){
       k=2*i;              dh[mi][i]=jk;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=jl;       /* bias is positive if real duration
       for (j=1; j<= nlstate+1 ; j ++) {                                   * is higher than the multiple of stepm and negative otherwise.
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                                   */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }              else{
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              dh[mi][i]=jk+1;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              bh[mi][i]=ju;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {            if(dh[mi][i]==0){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              dh[mi][i]=1; /* At least one step */
         else fprintf(ficgp," \%%*lf (\%%*lf)");              bh[mi][i]=ju; /* At least one step */
 }                /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficgp,"\" t\"\" w l 0,");            }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          } /* end if mle */
       for (j=1; j<= nlstate+1 ; j ++) {        }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      } /* end wave */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      jmean=sum/k;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       else fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }   }
   }  
    /*********** Tricode ****************************/
   /*3eme*/  void tricode(int *Tvar, int **nbcode, int imx)
   {
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {    int Ndum[20],ij=1, k, j, i, maxncov=19;
       k=2+nlstate*(2*cpt-2);    int cptcode=0;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    cptcoveff=0; 
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);   
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    for (k=0; k<maxncov; k++) Ndum[k]=0;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    for (k=1; k<=7; k++) ncodemax[k]=0;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 */        Ndum[ij]++; /*store the modality */
       for (i=1; i< nlstate ; i ++) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
       }                                         female is 1, then  cptcode=1.*/
     }      }
   }  
        for (i=0; i<=cptcode; i++) {
   /* CV preval stat */        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     for (k1=1; k1<= m ; k1 ++) {      }
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;      ij=1; 
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      for (i=1; i<=ncodemax[j]; i++) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
       for (i=1; i< nlstate ; i ++)            nbcode[Tvar[j]][ij]=k; 
         fprintf(ficgp,"+$%d",k+i+1);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            
                  ij++;
       l=3+(nlstate+ndeath)*cpt;          }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          if (ij > ncodemax[j]) break; 
       for (i=1; i< nlstate ; i ++) {        }  
         l=3+(nlstate+ndeath)*cpt;      } 
         fprintf(ficgp,"+$%d",l+i+1);    }  
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);     for (k=0; k< maxncov; k++) Ndum[k]=0;
     }  
   }     for (i=1; i<=ncovmodel-2; i++) { 
       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   /* proba elementaires */     ij=Tvar[i];
    for(i=1,jk=1; i <=nlstate; i++){     Ndum[ij]++;
     for(k=1; k <=(nlstate+ndeath); k++){   }
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){   ij=1;
           for (i=1; i<= maxncov; i++) {
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);     if((Ndum[i]!=0) && (i<=ncovcol)){
           jk++;       Tvaraff[ij]=i; /*For printing */
           fprintf(ficgp,"\n");       ij++;
         }     }
       }   }
     }   
    }   cptcoveff=ij-1; /*Number of simple covariates*/
   }
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {  /*********** Health Expectancies ****************/
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  
        if (ng==2)  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else  {
          fprintf(ficgp,"\nset title \"Probability\"\n");    /* Health expectancies, no variances */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
        i=1;    double age, agelim, hf;
        for(k2=1; k2<=nlstate; k2++) {    double ***p3mat;
          k3=i;    double eip;
          for(k=1; k<=(nlstate+ndeath); k++) {  
            if (k != k2){    pstamp(ficreseij);
              if(ng==2)    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    fprintf(ficreseij,"# Age");
              else    for(i=1; i<=nlstate;i++){
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      for(j=1; j<=nlstate;j++){
              ij=1;        fprintf(ficreseij," e%1d%1d ",i,j);
              for(j=3; j <=ncovmodel; j++) {      }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      fprintf(ficreseij," e%1d. ",i);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    }
                  ij++;    fprintf(ficreseij,"\n");
                }  
                else    
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    if(estepm < stepm){
              }      printf ("Problem %d lower than %d\n",estepm, stepm);
              fprintf(ficgp,")/(1");    }
                  else  hstepm=estepm;   
              for(k1=1; k1 <=nlstate; k1++){      /* We compute the life expectancy from trapezoids spaced every estepm months
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);     * This is mainly to measure the difference between two models: for example
                ij=1;     * if stepm=24 months pijx are given only every 2 years and by summing them
                for(j=3; j <=ncovmodel; j++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     * progression in between and thus overestimating or underestimating according
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     * to the curvature of the survival function. If, for the same date, we 
                    ij++;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                  }     * to compare the new estimate of Life expectancy with the same linear 
                  else     * hypothesis. A more precise result, taking into account a more precise
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     * curvature will be obtained if estepm is as small as stepm. */
                }  
                fprintf(ficgp,")");    /* For example we decided to compute the life expectancy with the smallest unit */
              }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);       nhstepm is the number of hstepm from age to agelim 
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");       nstepm is the number of stepm from age to agelin. 
              i=i+ncovmodel;       Look at hpijx to understand the reason of that which relies in memory size
            }       and note for a fixed period like estepm months */
          }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        }       survival function given by stepm (the optimization length). Unfortunately it
      }       means that if the survival funtion is printed only each two years of age and if
    }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    fclose(ficgp);       results. So we changed our mind and took the option of the best precision.
 }  /* end gnuplot */    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
 /*************** Moving average **************/    agelim=AGESUP;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   int i, cpt, cptcod;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    /* if (stepm >= YEARM) hstepm=1;*/
       for (i=1; i<=nlstate;i++)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           mobaverage[(int)agedeb][i][cptcod]=0.;  
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for (i=1; i<=nlstate;i++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      
           for (cpt=0;cpt<=4;cpt++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      
           }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      
         }      printf("%d|",(int)age);fflush(stdout);
       }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     }      
          /* Computing expectancies */
 }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 /************** Forecasting ******************/            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){            
              /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;          }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;      fprintf(ficreseij,"%3.0f",age );
   double ***p3mat;      for(i=1; i<=nlstate;i++){
   char fileresf[FILENAMELENGTH];        eip=0;
         for(j=1; j<=nlstate;j++){
  agelim=AGESUP;          eip +=eij[i][j][(int)age];
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        fprintf(ficreseij,"%9.4f", eip );
        }
        fprintf(ficreseij,"\n");
   strcpy(fileresf,"f");      
   strcat(fileresf,fileres);    }
   if((ficresf=fopen(fileresf,"w"))==NULL) {    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with forecast resultfile: %s\n", fileresf);    printf("\n");
   }    fprintf(ficlog,"\n");
   printf("Computing forecasting: result on file '%s' \n", fileresf);    
   }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
   void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
     movingaverage(agedeb, fage, ageminpar, mobaverage);    /* Covariances of health expectancies eij and of total life expectancies according
   }     to initial status i, ei. .
     */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   if (stepm<=12) stepsize=1;    double age, agelim, hf;
      double ***p3matp, ***p3matm, ***varhe;
   agelim=AGESUP;    double **dnewm,**doldm;
      double *xp, *xm;
   hstepm=1;    double **gp, **gm;
   hstepm=hstepm/stepm;    double ***gradg, ***trgradg;
   yp1=modf(dateintmean,&yp);    int theta;
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);    double eip, vip;
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   jprojmean=yp;    xp=vector(1,npar);
   if(jprojmean==0) jprojmean=1;    xm=vector(1,npar);
   if(mprojmean==0) jprojmean=1;    dnewm=matrix(1,nlstate*nlstate,1,npar);
      doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    
      pstamp(ficresstdeij);
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficresstdeij,"# Age");
       k=k+1;    for(i=1; i<=nlstate;i++){
       fprintf(ficresf,"\n#******");      for(j=1; j<=nlstate;j++)
       for(j=1;j<=cptcoveff;j++) {        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficresstdeij," e%1d. ",i);
       }    }
       fprintf(ficresf,"******\n");    fprintf(ficresstdeij,"\n");
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    pstamp(ficrescveij);
          fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
          fprintf(ficrescveij,"# Age");
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    for(i=1; i<=nlstate;i++)
         fprintf(ficresf,"\n");      for(j=1; j<=nlstate;j++){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for(j2=1; j2<=nlstate;j2++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            cptj2= (j2-1)*nlstate+i2;
           nhstepm = nhstepm/hstepm;            if(cptj2 <= cptj)
                        fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;      }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficrescveij,"\n");
            
           for (h=0; h<=nhstepm; h++){    if(estepm < stepm){
             if (h==(int) (calagedate+YEARM*cpt)) {      printf ("Problem %d lower than %d\n",estepm, stepm);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    }
             }    else  hstepm=estepm;   
             for(j=1; j<=nlstate+ndeath;j++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
               kk1=0.;kk2=0;     * This is mainly to measure the difference between two models: for example
               for(i=1; i<=nlstate;i++) {                   * if stepm=24 months pijx are given only every 2 years and by summing them
                 if (mobilav==1)     * we are calculating an estimate of the Life Expectancy assuming a linear 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];     * progression in between and thus overestimating or underestimating according
                 else {     * to the curvature of the survival function. If, for the same date, we 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                 }     * to compare the new estimate of Life expectancy with the same linear 
                     * hypothesis. A more precise result, taking into account a more precise
               }     * curvature will be obtained if estepm is as small as stepm. */
               if (h==(int)(calagedate+12*cpt)){  
                 fprintf(ficresf," %.3f", kk1);    /* For example we decided to compute the life expectancy with the smallest unit */
                            /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               }       nhstepm is the number of hstepm from age to agelim 
             }       nstepm is the number of stepm from age to agelin. 
           }       Look at hpijx to understand the reason of that which relies in memory size
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       and note for a fixed period like estepm months */
         }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       }       survival function given by stepm (the optimization length). Unfortunately it
     }       means that if the survival funtion is printed only each two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               results. So we changed our mind and took the option of the best precision.
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fclose(ficresf);  
 }    /* If stepm=6 months */
 /************** Forecasting ******************/    /* nhstepm age range expressed in number of stepm */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    agelim=AGESUP;
      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   int *popage;    /* if (stepm >= YEARM) hstepm=1;*/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double *popeffectif,*popcount;    
   double ***p3mat,***tabpop,***tabpopprev;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char filerespop[FILENAMELENGTH];    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   agelim=AGESUP;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
      for (age=bage; age<=fage; age ++){ 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
        /* Computed by stepm unit matrices, product of hstepm matrices, stored
           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   strcpy(filerespop,"pop");   
   strcat(filerespop,fileres);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);      /* Computing  Variances of health expectancies */
   }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   printf("Computing forecasting: result on file '%s' \n", filerespop);         decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if (mobilav==1) {          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
     movingaverage(agedeb, fage, ageminpar, mobaverage);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(j=1; j<= nlstate; j++){
   if (stepm<=12) stepsize=1;          for(i=1; i<=nlstate; i++){
              for(h=0; h<=nhstepm-1; h++){
   agelim=AGESUP;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   hstepm=1;            }
   hstepm=hstepm/stepm;          }
          }
   if (popforecast==1) {       
     if((ficpop=fopen(popfile,"r"))==NULL) {        for(ij=1; ij<= nlstate*nlstate; ij++)
       printf("Problem with population file : %s\n",popfile);exit(0);          for(h=0; h<=nhstepm-1; h++){
     }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     popage=ivector(0,AGESUP);          }
     popeffectif=vector(0,AGESUP);      }/* End theta */
     popcount=vector(0,AGESUP);      
          
     i=1;        for(h=0; h<=nhstepm-1; h++)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        for(j=1; j<=nlstate*nlstate;j++)
              for(theta=1; theta <=npar; theta++)
     imx=i;            trgradg[h][j][theta]=gradg[h][theta][j];
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      
   }  
        for(ij=1;ij<=nlstate*nlstate;ij++)
   for(cptcov=1;cptcov<=i2;cptcov++){        for(ji=1;ji<=nlstate*nlstate;ji++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          varhe[ij][ji][(int)age] =0.;
       k=k+1;  
       fprintf(ficrespop,"\n#******");       printf("%d|",(int)age);fflush(stdout);
       for(j=1;j<=cptcoveff;j++) {       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for(h=0;h<=nhstepm-1;h++){
       }        for(k=0;k<=nhstepm-1;k++){
       fprintf(ficrespop,"******\n");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficrespop,"# Age");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for(ij=1;ij<=nlstate*nlstate;ij++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");            for(ji=1;ji<=nlstate*nlstate;ji++)
                    varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       for (cpt=0; cpt<=0;cpt++) {        }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        }
              /* Computing expectancies */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(i=1; i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;        for(j=1; j<=nlstate;j++)
                    for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
           oldm=oldms;savm=savms;            
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
          
           for (h=0; h<=nhstepm; h++){          }
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      fprintf(ficresstdeij,"%3.0f",age );
             }      for(i=1; i<=nlstate;i++){
             for(j=1; j<=nlstate+ndeath;j++) {        eip=0.;
               kk1=0.;kk2=0;        vip=0.;
               for(i=1; i<=nlstate;i++) {                      for(j=1; j<=nlstate;j++){
                 if (mobilav==1)          eip += eij[i][j][(int)age];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                 else {            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
                 }        }
               }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
               if (h==(int)(calagedate+12*cpt)){      }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      fprintf(ficresstdeij,"\n");
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      fprintf(ficrescveij,"%3.0f",age );
               }      for(i=1; i<=nlstate;i++)
             }        for(j=1; j<=nlstate;j++){
             for(i=1; i<=nlstate;i++){          cptj= (j-1)*nlstate+i;
               kk1=0.;          for(i2=1; i2<=nlstate;i2++)
                 for(j=1; j<=nlstate;j++){            for(j2=1; j2<=nlstate;j2++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              cptj2= (j2-1)*nlstate+i2;
                 }              if(cptj2 <= cptj)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }            }
         }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      fprintf(ficrescveij,"\n");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);     
           }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         }    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       }    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   /******/    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    printf("\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficlog,"\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    free_vector(xm,1,npar);
           nhstepm = nhstepm/hstepm;    free_vector(xp,1,npar);
              free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           oldm=oldms;savm=savms;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    }
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {  /************ Variance ******************/
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
             }  {
             for(j=1; j<=nlstate+ndeath;j++) {    /* Variance of health expectancies */
               kk1=0.;kk2=0;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
               for(i=1; i<=nlstate;i++) {                  /* double **newm;*/
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        double **dnewm,**doldm;
               }    double **dnewmp,**doldmp;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    int i, j, nhstepm, hstepm, h, nstepm ;
             }    int k, cptcode;
           }    double *xp;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **gp, **gm;  /* for var eij */
         }    double ***gradg, ***trgradg; /*for var eij */
       }    double **gradgp, **trgradgp; /* for var p point j */
    }    double *gpp, *gmp; /* for var p point j */
   }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      double ***p3mat;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double age,agelim, hf;
     double ***mobaverage;
   if (popforecast==1) {    int theta;
     free_ivector(popage,0,AGESUP);    char digit[4];
     free_vector(popeffectif,0,AGESUP);    char digitp[25];
     free_vector(popcount,0,AGESUP);  
   }    char fileresprobmorprev[FILENAMELENGTH];
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if(popbased==1){
   fclose(ficrespop);      if(mobilav!=0)
 }        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
 /***********************************************/    }
 /**************** Main Program *****************/    else 
 /***********************************************/      strcpy(digitp,"-stablbased-");
   
 int main(int argc, char *argv[])    if (mobilav!=0) {
 {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   double agedeb, agefin,hf;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      }
     }
   double fret;  
   double **xi,tmp,delta;    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
   double dum; /* Dummy variable */    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   double ***p3mat;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   int *indx;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   char line[MAXLINE], linepar[MAXLINE];    strcat(fileresprobmorprev,fileres);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   int firstobs=1, lastobs=10;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   int sdeb, sfin; /* Status at beginning and end */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   int c,  h , cpt,l;    }
   int ju,jl, mi;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;   
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   int mobilav=0,popforecast=0;    pstamp(ficresprobmorprev);
   int hstepm, nhstepm;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   double bage, fage, age, agelim, agebase;      fprintf(ficresprobmorprev," p.%-d SE",j);
   double ftolpl=FTOL;      for(i=1; i<=nlstate;i++)
   double **prlim;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   double *severity;    }  
   double ***param; /* Matrix of parameters */    fprintf(ficresprobmorprev,"\n");
   double  *p;    fprintf(ficgp,"\n# Routine varevsij");
   double **matcov; /* Matrix of covariance */    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   double ***delti3; /* Scale */    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   double *delti; /* Scale */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   double ***eij, ***vareij;  /*   } */
   double **varpl; /* Variances of prevalence limits by age */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double *epj, vepp;    pstamp(ficresvij);
   double kk1, kk2;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    if(popbased==1)
        fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     else
   char *alph[]={"a","a","b","c","d","e"}, str[4];      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
   char z[1]="c", occ;      for(j=1; j<=nlstate;j++)
 #include <sys/time.h>        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 #include <time.h>    fprintf(ficresvij,"\n");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
      xp=vector(1,npar);
   /* long total_usecs;    dnewm=matrix(1,nlstate,1,npar);
   struct timeval start_time, end_time;    doldm=matrix(1,nlstate,1,nlstate);
      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   getcwd(pathcd, size);  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   printf("\n%s",version);    gpp=vector(nlstate+1,nlstate+ndeath);
   if(argc <=1){    gmp=vector(nlstate+1,nlstate+ndeath);
     printf("\nEnter the parameter file name: ");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     scanf("%s",pathtot);    
   }    if(estepm < stepm){
   else{      printf ("Problem %d lower than %d\n",estepm, stepm);
     strcpy(pathtot,argv[1]);    }
   }    else  hstepm=estepm;   
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    /* For example we decided to compute the life expectancy with the smallest unit */
   /*cygwin_split_path(pathtot,path,optionfile);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/       nhstepm is the number of hstepm from age to agelim 
   /* cutv(path,optionfile,pathtot,'\\');*/       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);       and note for a fixed period like k years */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   chdir(path);       survival function given by stepm (the optimization length). Unfortunately it
   replace(pathc,path);       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 /*-------- arguments in the command line --------*/       results. So we changed our mind and took the option of the best precision.
     */
   strcpy(fileres,"r");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   strcat(fileres, optionfilefiname);    agelim = AGESUP;
   strcat(fileres,".txt");    /* Other files have txt extension */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   /*---------arguments file --------*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     printf("Problem with optionfile %s\n",optionfile);      gp=matrix(0,nhstepm,1,nlstate);
     goto end;      gm=matrix(0,nhstepm,1,nlstate);
   }  
   
   strcpy(filereso,"o");      for(theta=1; theta <=npar; theta++){
   strcat(filereso,fileres);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   if((ficparo=fopen(filereso,"w"))==NULL) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){        if (popbased==1) {
     ungetc(c,ficpar);          if(mobilav ==0){
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=nlstate;i++)
     puts(line);              prlim[i][i]=probs[(int)age][i][ij];
     fputs(line,ficparo);          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        for(j=1; j<= nlstate; j++){
 while((c=getc(ficpar))=='#' && c!= EOF){          for(h=0; h<=nhstepm; h++){
     ungetc(c,ficpar);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     puts(line);          }
     fputs(line,ficparo);        }
   }        /* This for computing probability of death (h=1 means
   ungetc(c,ficpar);           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
            */
   covar=matrix(0,NCOVMAX,1,n);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   cptcovn=0;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   ncovmodel=2+cptcovn;        /* end probability of death */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   /* Read guess parameters */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   /* Reads comments: lines beginning with '#' */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   while((c=getc(ficpar))=='#' && c!= EOF){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     ungetc(c,ficpar);   
     fgets(line, MAXLINE, ficpar);        if (popbased==1) {
     puts(line);          if(mobilav ==0){
     fputs(line,ficparo);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
   ungetc(c,ficpar);          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              prlim[i][i]=mobaverage[(int)age][i][ij];
     for(i=1; i <=nlstate; i++)          }
     for(j=1; j <=nlstate+ndeath-1; j++){        }
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);        for(j=1; j<= nlstate; j++){
       printf("%1d%1d",i,j);          for(h=0; h<=nhstepm; h++){
       for(k=1; k<=ncovmodel;k++){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         fscanf(ficpar," %lf",&param[i][j][k]);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         printf(" %lf",param[i][j][k]);          }
         fprintf(ficparo," %lf",param[i][j][k]);        }
       }        /* This for computing probability of death (h=1 means
       fscanf(ficpar,"\n");           computed over hstepm matrices product = hstepm*stepm months) 
       printf("\n");           as a weighted average of prlim.
       fprintf(ficparo,"\n");        */
     }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gmp[j]=0.; i<= nlstate; i++)
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   p=param[1][1];        /* end probability of death */
    
   /* Reads comments: lines beginning with '#' */        for(j=1; j<= nlstate; j++) /* vareij */
   while((c=getc(ficpar))=='#' && c!= EOF){          for(h=0; h<=nhstepm; h++){
     ungetc(c,ficpar);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     fgets(line, MAXLINE, ficpar);          }
     puts(line);  
     fputs(line,ficparo);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   ungetc(c,ficpar);        }
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      } /* End theta */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(h=0; h<=nhstepm; h++) /* veij */
       printf("%1d%1d",i,j);        for(j=1; j<=nlstate;j++)
       fprintf(ficparo,"%1d%1d",i1,j1);          for(theta=1; theta <=npar; theta++)
       for(k=1; k<=ncovmodel;k++){            trgradg[h][j][theta]=gradg[h][theta][j];
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         fprintf(ficparo," %le",delti3[i][j][k]);        for(theta=1; theta <=npar; theta++)
       }          trgradgp[j][theta]=gradgp[theta][j];
       fscanf(ficpar,"\n");    
       printf("\n");  
       fprintf(ficparo,"\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     }      for(i=1;i<=nlstate;i++)
   }        for(j=1;j<=nlstate;j++)
   delti=delti3[1][1];          vareij[i][j][(int)age] =0.;
    
   /* Reads comments: lines beginning with '#' */      for(h=0;h<=nhstepm;h++){
   while((c=getc(ficpar))=='#' && c!= EOF){        for(k=0;k<=nhstepm;k++){
     ungetc(c,ficpar);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     fgets(line, MAXLINE, ficpar);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     puts(line);          for(i=1;i<=nlstate;i++)
     fputs(line,ficparo);            for(j=1;j<=nlstate;j++)
   }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   ungetc(c,ficpar);        }
        }
   matcov=matrix(1,npar,1,npar);    
   for(i=1; i <=npar; i++){      /* pptj */
     fscanf(ficpar,"%s",&str);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     printf("%s",str);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     fprintf(ficparo,"%s",str);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     for(j=1; j <=i; j++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       fscanf(ficpar," %le",&matcov[i][j]);          varppt[j][i]=doldmp[j][i];
       printf(" %.5le",matcov[i][j]);      /* end ppptj */
       fprintf(ficparo," %.5le",matcov[i][j]);      /*  x centered again */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     fscanf(ficpar,"\n");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     printf("\n");   
     fprintf(ficparo,"\n");      if (popbased==1) {
   }        if(mobilav ==0){
   for(i=1; i <=npar; i++)          for(i=1; i<=nlstate;i++)
     for(j=i+1;j<=npar;j++)            prlim[i][i]=probs[(int)age][i][ij];
       matcov[i][j]=matcov[j][i];        }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   printf("\n");            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
     /*-------- Rewriting paramater file ----------*/               
      strcpy(rfileres,"r");    /* "Rparameterfile */      /* This for computing probability of death (h=1 means
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
      strcat(rfileres,".");    /* */         as a weighted average of prlim.
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      */
     if((ficres =fopen(rfileres,"w"))==NULL) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     fprintf(ficres,"#%s\n",version);      }    
          /* end probability of death */
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       printf("Problem with datafile: %s\n", datafile);goto end;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
     n= lastobs;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     severity = vector(1,maxwav);        }
     outcome=imatrix(1,maxwav+1,1,n);      } 
     num=ivector(1,n);      fprintf(ficresprobmorprev,"\n");
     moisnais=vector(1,n);  
     annais=vector(1,n);      fprintf(ficresvij,"%.0f ",age );
     moisdc=vector(1,n);      for(i=1; i<=nlstate;i++)
     andc=vector(1,n);        for(j=1; j<=nlstate;j++){
     agedc=vector(1,n);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     cod=ivector(1,n);        }
     weight=vector(1,n);      fprintf(ficresvij,"\n");
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      free_matrix(gp,0,nhstepm,1,nlstate);
     mint=matrix(1,maxwav,1,n);      free_matrix(gm,0,nhstepm,1,nlstate);
     anint=matrix(1,maxwav,1,n);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     s=imatrix(1,maxwav+1,1,n);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     adl=imatrix(1,maxwav+1,1,n);          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     tab=ivector(1,NCOVMAX);    } /* End age */
     ncodemax=ivector(1,8);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     i=1;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     while (fgets(line, MAXLINE, fic) != NULL)    {    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       if ((i >= firstobs) && (i <=lastobs)) {    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
            /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         for (j=maxwav;j>=1;j--){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           strcpy(line,stra);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
            fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncovcol;j>=1;j--){    free_vector(xp,1,npar);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(doldm,1,nlstate,1,nlstate);
         }    free_matrix(dnewm,1,nlstate,1,npar);
         num[i]=atol(stra);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
         i=i+1;    fflush(ficgp);
       }    fflush(fichtm); 
     }  }  /* end varevsij */
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/  /************ Variance of prevlim ******************/
   imx=i-1; /* Number of individuals */  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
   /* for (i=1; i<=imx; i++){    /* Variance of prevalence limit */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    double **newm;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    double **dnewm,**doldm;
     }*/    int i, j, nhstepm, hstepm;
    /*  for (i=1; i<=imx; i++){    int k, cptcode;
      if (s[4][i]==9)  s[4][i]=-1;    double *xp;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    double *gp, *gm;
      double **gradg, **trgradg;
      double age,agelim;
   /* Calculation of the number of parameter from char model*/    int theta;
   Tvar=ivector(1,15);    
   Tprod=ivector(1,15);    pstamp(ficresvpl);
   Tvaraff=ivector(1,15);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   Tvard=imatrix(1,15,1,2);    fprintf(ficresvpl,"# Age");
   Tage=ivector(1,15);          for(i=1; i<=nlstate;i++)
            fprintf(ficresvpl," %1d-%1d",i,i);
   if (strlen(model) >1){    fprintf(ficresvpl,"\n");
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');    xp=vector(1,npar);
     j1=nbocc(model,'*');    dnewm=matrix(1,nlstate,1,npar);
     cptcovn=j+1;    doldm=matrix(1,nlstate,1,nlstate);
     cptcovprod=j1;    
        hstepm=1*YEARM; /* Every year of age */
     strcpy(modelsav,model);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    agelim = AGESUP;
       printf("Error. Non available option model=%s ",model);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       goto end;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     }      if (stepm >= YEARM) hstepm=1;
          nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     for(i=(j+1); i>=1;i--){      gradg=matrix(1,npar,1,nlstate);
       cutv(stra,strb,modelsav,'+');      gp=vector(1,nlstate);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      gm=vector(1,nlstate);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/      for(theta=1; theta <=npar; theta++){
       if (strchr(strb,'*')) {        for(i=1; i<=npar; i++){ /* Computes gradient */
         cutv(strd,strc,strb,'*');          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         if (strcmp(strc,"age")==0) {        }
           cptcovprod--;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           cutv(strb,stre,strd,'V');        for(i=1;i<=nlstate;i++)
           Tvar[i]=atoi(stre);          gp[i] = prlim[i][i];
           cptcovage++;      
             Tage[cptcovage]=i;        for(i=1; i<=npar; i++) /* Computes gradient */
             /*printf("stre=%s ", stre);*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         else if (strcmp(strd,"age")==0) {        for(i=1;i<=nlstate;i++)
           cptcovprod--;          gm[i] = prlim[i][i];
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);        for(i=1;i<=nlstate;i++)
           cptcovage++;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           Tage[cptcovage]=i;      } /* End theta */
         }  
         else {      trgradg =matrix(1,nlstate,1,npar);
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncovcol+k1;      for(j=1; j<=nlstate;j++)
           cutv(strb,strc,strd,'V');        for(theta=1; theta <=npar; theta++)
           Tprod[k1]=i;          trgradg[j][theta]=gradg[theta][j];
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);      for(i=1;i<=nlstate;i++)
           Tvar[cptcovn+k2]=Tvard[k1][1];        varpl[i][(int)age] =0.;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           for (k=1; k<=lastobs;k++)      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for(i=1;i<=nlstate;i++)
           k1++;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           k2=k2+2;  
         }      fprintf(ficresvpl,"%.0f ",age );
       }      for(i=1; i<=nlstate;i++)
       else {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      fprintf(ficresvpl,"\n");
        /*  scanf("%d",i);*/      free_vector(gp,1,nlstate);
       cutv(strd,strc,strb,'V');      free_vector(gm,1,nlstate);
       Tvar[i]=atoi(strc);      free_matrix(gradg,1,npar,1,nlstate);
       }      free_matrix(trgradg,1,nlstate,1,npar);
       strcpy(modelsav,stra);      } /* End age */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/    free_vector(xp,1,npar);
     }    free_matrix(doldm,1,nlstate,1,npar);
 }    free_matrix(dnewm,1,nlstate,1,nlstate);
    
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  }
   printf("cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/  /************ Variance of one-step probabilities  ******************/
     fclose(fic);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     /*  if(mle==1){*/    int i, j=0,  i1, k1, l1, t, tj;
     if (weightopt != 1) { /* Maximisation without weights*/    int k2, l2, j1,  z1;
       for(i=1;i<=n;i++) weight[i]=1.0;    int k=0,l, cptcode;
     }    int first=1, first1;
     /*-calculation of age at interview from date of interview and age at death -*/    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     agev=matrix(1,maxwav,1,imx);    double **dnewm,**doldm;
     double *xp;
     for (i=1; i<=imx; i++) {    double *gp, *gm;
       for(m=2; (m<= maxwav); m++) {    double **gradg, **trgradg;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    double **mu;
          anint[m][i]=9999;    double age,agelim, cov[NCOVMAX];
          s[m][i]=-1;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
        }    int theta;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    char fileresprob[FILENAMELENGTH];
       }    char fileresprobcov[FILENAMELENGTH];
     }    char fileresprobcor[FILENAMELENGTH];
   
     for (i=1; i<=imx; i++)  {    double ***varpij;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){    strcpy(fileresprob,"prob"); 
         if(s[m][i] >0){    strcat(fileresprob,fileres);
           if (s[m][i] >= nlstate+1) {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
             if(agedc[i]>0)      printf("Problem with resultfile: %s\n", fileresprob);
               if(moisdc[i]!=99 && andc[i]!=9999)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                 agev[m][i]=agedc[i];    }
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    strcpy(fileresprobcov,"probcov"); 
            else {    strcat(fileresprobcov,fileres);
               if (andc[i]!=9999){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      printf("Problem with resultfile: %s\n", fileresprobcov);
               agev[m][i]=-1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
               }    }
             }    strcpy(fileresprobcor,"probcor"); 
           }    strcat(fileresprobcor,fileres);
           else if(s[m][i] !=9){ /* Should no more exist */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      printf("Problem with resultfile: %s\n", fileresprobcor);
             if(mint[m][i]==99 || anint[m][i]==9999)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
               agev[m][i]=1;    }
             else if(agev[m][i] <agemin){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               agemin=agev[m][i];    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             else if(agev[m][i] >agemax){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
               agemax=agev[m][i];    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    pstamp(ficresprob);
             }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
             /*agev[m][i]=anint[m][i]-annais[i];*/    fprintf(ficresprob,"# Age");
             /*   agev[m][i] = age[i]+2*m;*/    pstamp(ficresprobcov);
           }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           else { /* =9 */    fprintf(ficresprobcov,"# Age");
             agev[m][i]=1;    pstamp(ficresprobcor);
             s[m][i]=-1;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           }    fprintf(ficresprobcor,"# Age");
         }  
         else /*= 0 Unknown */  
           agev[m][i]=1;    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=(nlstate+ndeath);j++){
            fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     for (i=1; i<=imx; i++)  {        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       for(m=1; (m<= maxwav); m++){      }  
         if (s[m][i] > (nlstate+ndeath)) {   /* fprintf(ficresprob,"\n");
           printf("Error: Wrong value in nlstate or ndeath\n");      fprintf(ficresprobcov,"\n");
           goto end;    fprintf(ficresprobcor,"\n");
         }   */
       }   xp=vector(1,npar);
     }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     free_vector(severity,1,maxwav);    first=1;
     free_imatrix(outcome,1,maxwav+1,1,n);    fprintf(ficgp,"\n# Routine varprob");
     free_vector(moisnais,1,n);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     free_vector(annais,1,n);    fprintf(fichtm,"\n");
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     free_vector(moisdc,1,n);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     free_vector(andc,1,n);    file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
      and drawn. It helps understanding how is the covariance between two incidences.\
     wav=ivector(1,imx);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
      would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     /* Concatenates waves */  standard deviations wide on each axis. <br>\
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    cov[1]=1;
       ncodemax[1]=1;    tj=cptcoveff;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
          j1=0;
    codtab=imatrix(1,100,1,10);    for(t=1; t<=tj;t++){
    h=0;      for(i1=1; i1<=ncodemax[t];i1++){ 
    m=pow(2,cptcoveff);        j1++;
          if  (cptcovn>0) {
    for(k=1;k<=cptcoveff; k++){          fprintf(ficresprob, "\n#********** Variable "); 
      for(i=1; i <=(m/pow(2,k));i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        for(j=1; j <= ncodemax[k]; j++){          fprintf(ficresprob, "**********\n#\n");
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          fprintf(ficresprobcov, "\n#********** Variable "); 
            h++;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          fprintf(ficresprobcov, "**********\n#\n");
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          
          }          fprintf(ficgp, "\n#********** Variable "); 
        }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      }          fprintf(ficgp, "**********\n#\n");
    }          
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          
       codtab[1][2]=1;codtab[2][2]=2; */          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
    /* for(i=1; i <=m ;i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(k=1; k <=cptcovn; k++){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          
       }          fprintf(ficresprobcor, "\n#********** Variable ");    
       printf("\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresprobcor, "**********\n#");    
       scanf("%d",i);*/        }
            
    /* Calculates basic frequencies. Computes observed prevalence at single age        for (age=bage; age<=fage; age ++){ 
        and prints on file fileres'p'. */          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
                cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
              }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (k=1; k<=cptcovprod;k++)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     /* For Powell, parameters are in a vector p[] starting at p[1]          gp=vector(1,(nlstate)*(nlstate+ndeath));
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          gm=vector(1,(nlstate)*(nlstate+ndeath));
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      
           for(theta=1; theta <=npar; theta++){
     if(mle==1){            for(i=1; i<=npar; i++)
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     }            
                pmij(pmmij,cov,ncovmodel,xp,nlstate);
     /*--------- results files --------------*/            
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            k=0;
              for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
    jk=1;                k=k+1;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                gp[k]=pmmij[i][j];
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              }
    for(i=1,jk=1; i <=nlstate; i++){            }
      for(k=1; k <=(nlstate+ndeath); k++){            
        if (k != i)            for(i=1; i<=npar; i++)
          {              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
            printf("%d%d ",i,k);      
            fprintf(ficres,"%1d%1d ",i,k);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
            for(j=1; j <=ncovmodel; j++){            k=0;
              printf("%f ",p[jk]);            for(i=1; i<=(nlstate); i++){
              fprintf(ficres,"%f ",p[jk]);              for(j=1; j<=(nlstate+ndeath);j++){
              jk++;                k=k+1;
            }                gm[k]=pmmij[i][j];
            printf("\n");              }
            fprintf(ficres,"\n");            }
          }       
      }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
    }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
  if(mle==1){          }
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     hesscov(matcov, p, npar, delti, ftolhess, func);            for(theta=1; theta <=npar; theta++)
  }              trgradg[j][theta]=gradg[theta][j];
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          
     printf("# Scales (for hessian or gradient estimation)\n");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
      for(i=1,jk=1; i <=nlstate; i++){          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       for(j=1; j <=nlstate+ndeath; j++){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         if (j!=i) {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           fprintf(ficres,"%1d%1d",i,j);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           printf("%1d%1d",i,j);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);          pmij(pmmij,cov,ncovmodel,x,nlstate);
             fprintf(ficres," %.5e",delti[jk]);          
             jk++;          k=0;
           }          for(i=1; i<=(nlstate); i++){
           printf("\n");            for(j=1; j<=(nlstate+ndeath);j++){
           fprintf(ficres,"\n");              k=k+1;
         }              mu[k][(int) age]=pmmij[i][j];
       }            }
      }          }
              for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     k=1;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              varpij[i][j][(int)age] = doldm[i][j];
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     for(i=1;i<=npar;i++){          /*printf("\n%d ",(int)age);
       /*  if (k>nlstate) k=1;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       i1=(i-1)/(ncovmodel*nlstate)+1;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       printf("%s%d%d",alph[k],i1,tab[i]);*/            }*/
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);          fprintf(ficresprob,"\n%d ",(int)age);
       for(j=1; j<=i;j++){          fprintf(ficresprobcov,"\n%d ",(int)age);
         fprintf(ficres," %.5e",matcov[i][j]);          fprintf(ficresprobcor,"\n%d ",(int)age);
         printf(" %.5e",matcov[i][j]);  
       }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       fprintf(ficres,"\n");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       printf("\n");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       k++;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
              }
     while((c=getc(ficpar))=='#' && c!= EOF){          i=0;
       ungetc(c,ficpar);          for (k=1; k<=(nlstate);k++){
       fgets(line, MAXLINE, ficpar);            for (l=1; l<=(nlstate+ndeath);l++){ 
       puts(line);              i=i++;
       fputs(line,ficparo);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     ungetc(c,ficpar);              for (j=1; j<=i;j++){
     estepm=0;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     if (estepm==0 || estepm < stepm) estepm=stepm;              }
     if (fage <= 2) {            }
       bage = ageminpar;          }/* end of loop for state */
       fage = agemaxpar;        } /* end of loop for age */
     }  
            /* Confidence intervalle of pij  */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        /*
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficgp,"\nset noparametric;unset label");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
            fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     ungetc(c,ficpar);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     puts(line);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     fputs(line,ficparo);        */
   }  
   ungetc(c,ficpar);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
          first1=1;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        for (k2=1; k2<=(nlstate);k2++){
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            if(l2==k2) continue;
                  j=(k2-1)*(nlstate+ndeath)+l2;
   while((c=getc(ficpar))=='#' && c!= EOF){            for (k1=1; k1<=(nlstate);k1++){
     ungetc(c,ficpar);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     fgets(line, MAXLINE, ficpar);                if(l1==k1) continue;
     puts(line);                i=(k1-1)*(nlstate+ndeath)+l1;
     fputs(line,ficparo);                if(i<=j) continue;
   }                for (age=bage; age<=fage; age ++){ 
   ungetc(c,ficpar);                  if ((int)age %5==0){
                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
   fscanf(ficpar,"pop_based=%d\n",&popbased);                    c12=cv12/sqrt(v1*v2);
   fprintf(ficparo,"pop_based=%d\n",popbased);                      /* Computing eigen value of matrix of covariance */
   fprintf(ficres,"pop_based=%d\n",popbased);                      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   while((c=getc(ficpar))=='#' && c!= EOF){                    /* Eigen vectors */
     ungetc(c,ficpar);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     fgets(line, MAXLINE, ficpar);                    /*v21=sqrt(1.-v11*v11); *//* error */
     puts(line);                    v21=(lc1-v1)/cv12*v11;
     fputs(line,ficparo);                    v12=-v21;
   }                    v22=v11;
   ungetc(c,ficpar);                    tnalp=v21/v11;
                     if(first1==1){
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                      first1=0;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                    }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
 while((c=getc(ficpar))=='#' && c!= EOF){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     ungetc(c,ficpar);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     fgets(line, MAXLINE, ficpar);                    if(first==1){
     puts(line);                      first=0;
     fputs(line,ficparo);                      fprintf(ficgp,"\nset parametric;unset label");
   }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   ungetc(c,ficpar);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 /*------------ gnuplot -------------*/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   strcpy(optionfilegnuplot,optionfilefiname);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   strcat(optionfilegnuplot,".gp");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     printf("Problem with file %s",optionfilegnuplot);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   fclose(ficgp);                    }else{
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                      first=0;
 /*--------- index.htm --------*/                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   strcpy(optionfilehtm,optionfile);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   strcat(optionfilehtm,".htm");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     printf("Problem with %s \n",optionfilehtm), exit(0);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   }                    }/* if first */
                   } /* age mod 5 */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                } /* end loop age */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 \n                first=1;
 Total number of observations=%d <br>\n              } /*l12 */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            } /* k12 */
 <hr  size=\"2\" color=\"#EC5E5E\">          } /*l1 */
  <ul><li>Parameter files<br>\n        }/* k1 */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      } /* loop covariates */
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);    }
   fclose(fichtm);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 /*------------ free_vector  -------------*/    free_vector(xp,1,npar);
  chdir(path);    fclose(ficresprob);
      fclose(ficresprobcov);
  free_ivector(wav,1,imx);    fclose(ficresprobcor);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    fflush(ficgp);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      fflush(fichtmcov);
  free_ivector(num,1,n);  }
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);  /******************* Printing html file ***********/
  fclose(ficres);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   /*--------------- Prevalence limit --------------*/                    int popforecast, int estepm ,\
                      double jprev1, double mprev1,double anprev1, \
   strcpy(filerespl,"pl");                    double jprev2, double mprev2,double anprev2){
   strcat(filerespl,fileres);    int jj1, k1, i1, cpt;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  </ul>");
   fprintf(ficrespl,"#Prevalence limit\n");     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   fprintf(ficrespl,"#Age ");   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   fprintf(ficrespl,"\n");     fprintf(fichtm,"\
     - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   prlim=matrix(1,nlstate,1,nlstate);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     fprintf(fichtm,"\
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     fprintf(fichtm,"\
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
   k=0;     <a href=\"%s\">%s</a> <br>\n</li>",
   agebase=ageminpar;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   agelim=agemaxpar;  
   ftolpl=1.e-10;  
   i1=cptcoveff;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   if (cptcovn < 1){i1=1;}  
    m=cptcoveff;
   for(cptcov=1;cptcov<=i1;cptcov++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;   jj1=0;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/   for(k1=1; k1<=m;k1++){
         fprintf(ficrespl,"\n#******");     for(i1=1; i1<=ncodemax[k1];i1++){
         for(j=1;j<=cptcoveff;j++)       jj1++;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       if (cptcovn > 0) {
         fprintf(ficrespl,"******\n");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                 for (cpt=1; cpt<=cptcoveff;cpt++) 
         for (age=agebase; age<=agelim; age++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficrespl,"%.0f",age );       }
           for(i=1; i<=nlstate;i++)       /* Pij */
           fprintf(ficrespl," %.5f", prlim[i][i]);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
           fprintf(ficrespl,"\n");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         }       /* Quasi-incidences */
       }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   fclose(ficrespl);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
   /*------------- h Pij x at various ages ------------*/         for(cpt=1; cpt<nlstate;cpt++){
             fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {         }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;       for(cpt=1; cpt<=nlstate;cpt++) {
   }          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   printf("Computing pij: result on file '%s' \n", filerespij);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         }
   stepsize=(int) (stepm+YEARM-1)/YEARM;     } /* end i1 */
   /*if (stepm<=24) stepsize=2;*/   }/* End k1 */
    fprintf(fichtm,"</ul>");
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   fprintf(fichtm,"\
    \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   k=0;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       k=k+1;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
         fprintf(ficrespij,"\n#****** ");   fprintf(fichtm,"\
         for(j=1;j<=cptcoveff;j++)   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
         fprintf(ficrespij,"******\n");  
           fprintf(fichtm,"\
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */   fprintf(fichtm,"\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
           oldm=oldms;savm=savms;     <a href=\"%s\">%s</a> <br>\n</li>",
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);               estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
           fprintf(ficrespij,"# Age");   fprintf(fichtm,"\
           for(i=1; i<=nlstate;i++)   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
             for(j=1; j<=nlstate+ndeath;j++)     <a href=\"%s\">%s</a> <br>\n</li>",
               fprintf(ficrespij," %1d-%1d",i,j);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
           fprintf(ficrespij,"\n");   fprintf(fichtm,"\
            for (h=0; h<=nhstepm; h++){   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
             for(i=1; i<=nlstate;i++)   fprintf(fichtm,"\
               for(j=1; j<=nlstate+ndeath;j++)   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
             fprintf(ficrespij,"\n");   fprintf(fichtm,"\
              }   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
           fprintf(ficrespij,"\n");  
         }  /*  if(popforecast==1) fprintf(fichtm,"\n */
     }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fclose(ficrespij);   fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
   /*---------- Forecasting ------------------*/   m=cptcoveff;
   if((stepm == 1) && (strcmp(model,".")==0)){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);   jj1=0;
   }   for(k1=1; k1<=m;k1++){
   else{     for(i1=1; i1<=ncodemax[k1];i1++){
     erreur=108;       jj1++;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   /*---------- Health expectancies and variances ------------*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   strcpy(filerest,"t");       for(cpt=1; cpt<=nlstate;cpt++) {
   strcat(filerest,fileres);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   if((ficrest=fopen(filerest,"w"))==NULL) {  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   }       }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   strcpy(filerese,"e");     } /* end i1 */
   strcat(filerese,fileres);   }/* End k1 */
   if((ficreseij=fopen(filerese,"w"))==NULL) {   fprintf(fichtm,"</ul>");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   fflush(fichtm);
   }  }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   /******************* Gnuplot file **************/
  strcpy(fileresv,"v");  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    char dirfileres[132],optfileres[132];
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   }    int ng;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   calagedate=-1;  /*     printf("Problem with file %s",optionfilegnuplot); */
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    /*#ifdef windows */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficgp,"cd \"%s\" \n",pathc);
       k=k+1;      /*#endif */
       fprintf(ficrest,"\n#****** ");    m=pow(2,cptcoveff);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(dirfileres,optionfilefiname);
       fprintf(ficrest,"******\n");    strcpy(optfileres,"vpl");
    /* 1eme*/
       fprintf(ficreseij,"\n#****** ");    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for(j=1;j<=cptcoveff;j++)     for (k1=1; k1<= m ; k1 ++) {
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       fprintf(ficreseij,"******\n");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
       fprintf(ficresvij,"\n#****** ");  set ylabel \"Probability\" \n\
       for(j=1;j<=cptcoveff;j++)  set ter png small\n\
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  set size 0.65,0.65\n\
       fprintf(ficresvij,"******\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       for (i=1; i<= nlstate ; i ++) {
       oldm=oldms;savm=savms;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       oldm=oldms;savm=savms;       for (i=1; i<= nlstate ; i ++) {
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
         fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");       for (i=1; i<= nlstate ; i ++) {
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficrest,"\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
       epj=vector(1,nlstate+1);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       for(age=bage; age <=fage ;age++){     }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
         if (popbased==1) {    /*2 eme*/
           for(i=1; i<=nlstate;i++)    
             prlim[i][i]=probs[(int)age][i][k];    for (k1=1; k1<= m ; k1 ++) { 
         }      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
              fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         fprintf(ficrest," %4.0f",age);      
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      for (i=1; i<= nlstate+1 ; i ++) {
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        k=2*i;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        for (j=1; j<= nlstate+1 ; j ++) {
           }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           epj[nlstate+1] +=epj[j];          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }        }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         for(i=1, vepp=0.;i <=nlstate;i++)        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
           for(j=1;j <=nlstate;j++)        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
             vepp += vareij[i][j][(int)age];        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         for(j=1;j <=nlstate;j++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        }   
         }        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficrest,"\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       }        for (j=1; j<= nlstate+1 ; j ++) {
     }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }          else fprintf(ficgp," \%%*lf (\%%*lf)");
 free_matrix(mint,1,maxwav,1,n);        }   
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     free_vector(weight,1,n);        else fprintf(ficgp,"\" t\"\" w l 0,");
   fclose(ficreseij);      }
   fclose(ficresvij);    }
   fclose(ficrest);    
   fclose(ficpar);    /*3eme*/
   free_vector(epj,1,nlstate+1);    
      for (k1=1; k1<= m ; k1 ++) { 
   /*------- Variance limit prevalence------*/        for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
   strcpy(fileresvpl,"vpl");        k=2+(nlstate+1)*(cpt-1);
   strcat(fileresvpl,fileres);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        fprintf(ficgp,"set ter png small\n\
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  set size 0.65,0.65\n\
     exit(0);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   k=0;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   for(cptcov=1;cptcov<=i1;cptcov++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       k=k+1;          
       fprintf(ficresvpl,"\n#****** ");        */
       for(j=1;j<=cptcoveff;j++)        for (i=1; i< nlstate ; i ++) {
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
       fprintf(ficresvpl,"******\n");          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        } 
       oldm=oldms;savm=savms;        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      }
     }    }
  }    
     /* CV preval stable (period) */
   fclose(ficresvpl);    for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
   /*---------- End : free ----------------*/        k=3;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  set ter png small\nset size 0.65,0.65\n\
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  unset log y\n\
    plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
          
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        for (i=1; i< nlstate ; i ++)
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficgp,"+$%d",k+i+1);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        
          l=3+(nlstate+ndeath)*cpt;
   free_matrix(matcov,1,npar,1,npar);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   free_vector(delti,1,npar);        for (i=1; i< nlstate ; i ++) {
   free_matrix(agev,1,maxwav,1,imx);          l=3+(nlstate+ndeath)*cpt;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          fprintf(ficgp,"+$%d",l+i+1);
         }
   fprintf(fichtm,"\n</body>");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   fclose(fichtm);      } 
   fclose(ficgp);    }  
      
     /* proba elementaires */
   if(erreur >0)    for(i=1,jk=1; i <=nlstate; i++){
     printf("End of Imach with error or warning %d\n",erreur);      for(k=1; k <=(nlstate+ndeath); k++){
   else   printf("End of Imach\n");        if (k != i) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          for(j=1; j <=ncovmodel; j++){
              fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            jk++; 
   /*printf("Total time was %d uSec.\n", total_usecs);*/            fprintf(ficgp,"\n");
   /*------ End -----------*/          }
         }
       }
  end:     }
 #ifdef windows  
   /* chdir(pathcd);*/     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
 #endif       for(jk=1; jk <=m; jk++) {
  /*system("wgnuplot graph.plt");*/         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
  /*system("../gp37mgw/wgnuplot graph.plt");*/         if (ng==2)
  /*system("cd ../gp37mgw");*/           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/         else
  strcpy(plotcmd,GNUPLOTPROGRAM);           fprintf(ficgp,"\nset title \"Probability\"\n");
  strcat(plotcmd," ");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
  strcat(plotcmd,optionfilegnuplot);         i=1;
  system(plotcmd);         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
 #ifdef windows           for(k=1; k<=(nlstate+ndeath); k++) {
   while (z[0] != 'q') {             if (k != k2){
     /* chdir(path); */               if(ng==2)
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     scanf("%s",z);               else
     if (z[0] == 'c') system("./imach");                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     else if (z[0] == 'e') system(optionfilehtm);               ij=1;
     else if (z[0] == 'g') system(plotcmd);               for(j=3; j <=ncovmodel; j++) {
     else if (z[0] == 'q') exit(0);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 #endif                   ij++;
 }                 }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.47  
changed lines
  Added in v.1.120


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>