Diff for /imach/src/imach.c between versions 1.51 and 1.120

version 1.51, 2002/07/19 12:22:25 version 1.120, 2006/03/16 15:10:38
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.120  2006/03/16 15:10:38  lievre
      (Module): refinements in the computation of lli if
   This program computes Healthy Life Expectancies from    status=-2 in order to have more reliable computation if stepm is
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    not 1 month. Version 0.98f
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.119  2006/03/15 17:42:26  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): Bug if status = -2, the loglikelihood was
   second wave of interviews ("longitudinal") which measure each change    computed as likelihood omitting the logarithm. Version O.98e
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.118  2006/03/14 18:20:07  brouard
   model. More health states you consider, more time is necessary to reach the    (Module): varevsij Comments added explaining the second
   Maximum Likelihood of the parameters involved in the model.  The    table of variances if popbased=1 .
   simplest model is the multinomial logistic model where pij is the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   probability to be observed in state j at the second wave    (Module): Function pstamp added
   conditional to be observed in state i at the first wave. Therefore    (Module): Version 0.98d
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.117  2006/03/14 17:16:22  brouard
   complex model than "constant and age", you should modify the program    (Module): varevsij Comments added explaining the second
   where the markup *Covariates have to be included here again* invites    table of variances if popbased=1 .
   you to do it.  More covariates you add, slower the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   convergence.    (Module): Function pstamp added
     (Module): Version 0.98d
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.116  2006/03/06 10:29:27  brouard
   identical for each individual. Also, if a individual missed an    (Module): Variance-covariance wrong links and
   intermediate interview, the information is lost, but taken into    varian-covariance of ej. is needed (Saito).
   account using an interpolation or extrapolation.    
     Revision 1.115  2006/02/27 12:17:45  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): One freematrix added in mlikeli! 0.98c
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.114  2006/02/26 12:57:58  brouard
   states. This elementary transition (by month or quarter trimester,    (Module): Some improvements in processing parameter
   semester or year) is model as a multinomial logistic.  The hPx    filename with strsep.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.113  2006/02/24 14:20:24  brouard
   hPijx.    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
   Also this programme outputs the covariance matrix of the parameters but also    allocation too.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.112  2006/01/30 09:55:26  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Back to gnuplot.exe instead of wgnuplot.exe
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.111  2006/01/25 20:38:18  brouard
   from the European Union.    (Module): Lots of cleaning and bugs added (Gompertz)
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Comments can be added in data file. Missing date values
   software can be distributed freely for non commercial use. Latest version    can be a simple dot '.'.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.110  2006/01/25 00:51:50  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
 #include <math.h>  
 #include <stdio.h>    Revision 1.109  2006/01/24 19:37:15  brouard
 #include <stdlib.h>    (Module): Comments (lines starting with a #) are allowed in data.
 #include <unistd.h>  
     Revision 1.108  2006/01/19 18:05:42  lievre
 #define MAXLINE 256    Gnuplot problem appeared...
 #define GNUPLOTPROGRAM "gnuplot"    To be fixed
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.107  2006/01/19 16:20:37  brouard
 /*#define DEBUG*/    Test existence of gnuplot in imach path
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.106  2006/01/19 13:24:36  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Some cleaning and links added in html output
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.105  2006/01/05 20:23:19  lievre
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    *** empty log message ***
   
 #define NINTERVMAX 8    Revision 1.104  2005/09/30 16:11:43  lievre
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): sump fixed, loop imx fixed, and simplifications.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): If the status is missing at the last wave but we know
 #define NCOVMAX 8 /* Maximum number of covariates */    that the person is alive, then we can code his/her status as -2
 #define MAXN 20000    (instead of missing=-1 in earlier versions) and his/her
 #define YEARM 12. /* Number of months per year */    contributions to the likelihood is 1 - Prob of dying from last
 #define AGESUP 130    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define AGEBASE 40    the healthy state at last known wave). Version is 0.98
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.103  2005/09/30 15:54:49  lievre
 #define ODIRSEPARATOR '/'    (Module): sump fixed, loop imx fixed, and simplifications.
 #else  
 #define DIRSEPARATOR '/'    Revision 1.102  2004/09/15 17:31:30  brouard
 #define ODIRSEPARATOR '\\'    Add the possibility to read data file including tab characters.
 #endif  
     Revision 1.101  2004/09/15 10:38:38  brouard
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Fix on curr_time
 int erreur; /* Error number */  
 int nvar;    Revision 1.100  2004/07/12 18:29:06  brouard
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Add version for Mac OS X. Just define UNIX in Makefile
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.99  2004/06/05 08:57:40  brouard
 int ndeath=1; /* Number of dead states */    *** empty log message ***
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 int *wav; /* Number of waves for this individuual 0 is possible */    directly from the data i.e. without the need of knowing the health
 int maxwav; /* Maxim number of waves */    state at each age, but using a Gompertz model: log u =a + b*age .
 int jmin, jmax; /* min, max spacing between 2 waves */    This is the basic analysis of mortality and should be done before any
 int mle, weightopt;    other analysis, in order to test if the mortality estimated from the
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    cross-longitudinal survey is different from the mortality estimated
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    from other sources like vital statistic data.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    The same imach parameter file can be used but the option for mle should be -3.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Agnès, who wrote this part of the code, tried to keep most of the
 FILE *ficlog;    former routines in order to include the new code within the former code.
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficresprobmorprev;    The output is very simple: only an estimate of the intercept and of
 FILE *fichtm; /* Html File */    the slope with 95% confident intervals.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Current limitations:
 FILE  *ficresvij;    A) Even if you enter covariates, i.e. with the
 char fileresv[FILENAMELENGTH];    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 FILE  *ficresvpl;    B) There is no computation of Life Expectancy nor Life Table.
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.97  2004/02/20 13:25:42  lievre
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Version 0.96d. Population forecasting command line is (temporarily)
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    suppressed.
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.96  2003/07/15 15:38:55  brouard
 char filelog[FILENAMELENGTH]; /* Log file */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 char filerest[FILENAMELENGTH];    rewritten within the same printf. Workaround: many printfs.
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.94  2003/06/27 13:00:02  brouard
 #define FTOL 1.0e-10    Just cleaning
   
 #define NRANSI    Revision 1.93  2003/06/25 16:33:55  brouard
 #define ITMAX 200    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 #define TOL 2.0e-4    (Module): Version 0.96b
   
 #define CGOLD 0.3819660    Revision 1.92  2003/06/25 16:30:45  brouard
 #define ZEPS 1.0e-10    (Module): On windows (cygwin) function asctime_r doesn't
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    exist so I changed back to asctime which exists.
   
 #define GOLD 1.618034    Revision 1.91  2003/06/25 15:30:29  brouard
 #define GLIMIT 100.0    * imach.c (Repository): Duplicated warning errors corrected.
 #define TINY 1.0e-20    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 static double maxarg1,maxarg2;    is stamped in powell.  We created a new html file for the graphs
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    concerning matrix of covariance. It has extension -cov.htm.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.90  2003/06/24 12:34:15  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Module): Some bugs corrected for windows. Also, when
 #define rint(a) floor(a+0.5)    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.89  2003/06/24 12:30:52  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int imx;    of the covariance matrix to be input.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.86  2003/06/17 20:04:08  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Change position of html and gnuplot routines and added
 double **pmmij, ***probs, ***mobaverage;    routine fileappend.
 double dateintmean=0;  
     Revision 1.85  2003/06/17 13:12:43  brouard
 double *weight;    * imach.c (Repository): Check when date of death was earlier that
 int **s; /* Status */    current date of interview. It may happen when the death was just
 double *agedc, **covar, idx;    prior to the death. In this case, dh was negative and likelihood
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    interview.
 double ftolhess; /* Tolerance for computing hessian */    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 /**************** split *************************/    memory allocation. But we also truncated to 8 characters (left
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    truncation)
 {    (Repository): No more line truncation errors.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
    l1 = strlen( path );                 /* length of path */    place. It differs from routine "prevalence" which may be called
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    many times. Probs is memory consuming and must be used with
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    parcimony.
    if ( s == NULL ) {                   /* no directory, so use current */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Revision 1.83  2003/06/10 13:39:11  lievre
 #if     defined(__bsd__)                /* get current working directory */    *** empty log message ***
       extern char       *getwd( );  
     Revision 1.82  2003/06/05 15:57:20  brouard
       if ( getwd( dirc ) == NULL ) {    Add log in  imach.c and  fullversion number is now printed.
 #else  
       extern char       *getcwd( );  */
   /*
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {     Interpolated Markov Chain
 #endif  
          return( GLOCK_ERROR_GETCWD );    Short summary of the programme:
       }    
       strcpy( name, path );             /* we've got it */    This program computes Healthy Life Expectancies from
    } else {                             /* strip direcotry from path */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       s++;                              /* after this, the filename */    first survey ("cross") where individuals from different ages are
       l2 = strlen( s );                 /* length of filename */    interviewed on their health status or degree of disability (in the
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    case of a health survey which is our main interest) -2- at least a
       strcpy( name, s );                /* save file name */    second wave of interviews ("longitudinal") which measure each change
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (if any) in individual health status.  Health expectancies are
       dirc[l1-l2] = 0;                  /* add zero */    computed from the time spent in each health state according to a
    }    model. More health states you consider, more time is necessary to reach the
    l1 = strlen( dirc );                 /* length of directory */    Maximum Likelihood of the parameters involved in the model.  The
 #ifdef windows    simplest model is the multinomial logistic model where pij is the
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    probability to be observed in state j at the second wave
 #else    conditional to be observed in state i at the first wave. Therefore
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #endif    'age' is age and 'sex' is a covariate. If you want to have a more
    s = strrchr( name, '.' );            /* find last / */    complex model than "constant and age", you should modify the program
    s++;    where the markup *Covariates have to be included here again* invites
    strcpy(ext,s);                       /* save extension */    you to do it.  More covariates you add, slower the
    l1= strlen( name);    convergence.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    The advantage of this computer programme, compared to a simple
    finame[l1-l2]= 0;    multinomial logistic model, is clear when the delay between waves is not
    return( 0 );                         /* we're done */    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
   
 /******************************************/    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 void replace(char *s, char*t)    split into an exact number (nh*stepm) of unobserved intermediate
 {    states. This elementary transition (by month, quarter,
   int i;    semester or year) is modelled as a multinomial logistic.  The hPx
   int lg=20;    matrix is simply the matrix product of nh*stepm elementary matrices
   i=0;    and the contribution of each individual to the likelihood is simply
   lg=strlen(t);    hPijx.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Also this programme outputs the covariance matrix of the parameters but also
     if (t[i]== '\\') s[i]='/';    of the life expectancies. It also computes the period (stable) prevalence. 
   }    
 }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 int nbocc(char *s, char occ)    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   int i,j=0;    It is copyrighted identically to a GNU software product, ie programme and
   int lg=20;    software can be distributed freely for non commercial use. Latest version
   i=0;    can be accessed at http://euroreves.ined.fr/imach .
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   if  (s[i] == occ ) j++;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   }    
   return j;    **********************************************************************/
 }  /*
     main
 void cutv(char *u,char *v, char*t, char occ)    read parameterfile
 {    read datafile
   /* cuts string t into u and v where u is ended by char occ excluding it    concatwav
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    freqsummary
      gives u="abcedf" and v="ghi2j" */    if (mle >= 1)
   int i,lg,j,p=0;      mlikeli
   i=0;    print results files
   for(j=0; j<=strlen(t)-1; j++) {    if mle==1 
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;       computes hessian
   }    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
   lg=strlen(t);    open gnuplot file
   for(j=0; j<p; j++) {    open html file
     (u[j] = t[j]);    period (stable) prevalence
   }     for age prevalim()
      u[p]='\0';    h Pij x
     variance of p varprob
    for(j=0; j<= lg; j++) {    forecasting if prevfcast==1 prevforecast call prevalence()
     if (j>=(p+1))(v[j-p-1] = t[j]);    health expectancies
   }    Variance-covariance of DFLE
 }    prevalence()
      movingaverage()
 /********************** nrerror ********************/    varevsij() 
     if popbased==1 varevsij(,popbased)
 void nrerror(char error_text[])    total life expectancies
 {    Variance of period (stable) prevalence
   fprintf(stderr,"ERREUR ...\n");   end
   fprintf(stderr,"%s\n",error_text);  */
   exit(1);  
 }  
 /*********************** vector *******************/  
 double *vector(int nl, int nh)   
 {  #include <math.h>
   double *v;  #include <stdio.h>
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #include <stdlib.h>
   if (!v) nrerror("allocation failure in vector");  #include <string.h>
   return v-nl+NR_END;  #include <unistd.h>
 }  
   #include <limits.h>
 /************************ free vector ******************/  #include <sys/types.h>
 void free_vector(double*v, int nl, int nh)  #include <sys/stat.h>
 {  #include <errno.h>
   free((FREE_ARG)(v+nl-NR_END));  extern int errno;
 }  
   /* #include <sys/time.h> */
 /************************ivector *******************************/  #include <time.h>
 int *ivector(long nl,long nh)  #include "timeval.h"
 {  
   int *v;  /* #include <libintl.h> */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /* #define _(String) gettext (String) */
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  #define MAXLINE 256
 }  
   #define GNUPLOTPROGRAM "gnuplot"
 /******************free ivector **************************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 void free_ivector(int *v, long nl, long nh)  #define FILENAMELENGTH 132
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /******************* imatrix *******************************/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  #define NINTERVMAX 8
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   int **m;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    #define NCOVMAX 8 /* Maximum number of covariates */
   /* allocate pointers to rows */  #define MAXN 20000
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define YEARM 12. /* Number of months per year */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define AGESUP 130
   m += NR_END;  #define AGEBASE 40
   m -= nrl;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
    #ifdef UNIX
    #define DIRSEPARATOR '/'
   /* allocate rows and set pointers to them */  #define CHARSEPARATOR "/"
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define ODIRSEPARATOR '\\'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #else
   m[nrl] += NR_END;  #define DIRSEPARATOR '\\'
   m[nrl] -= ncl;  #define CHARSEPARATOR "\\"
    #define ODIRSEPARATOR '/'
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #endif
    
   /* return pointer to array of pointers to rows */  /* $Id$ */
   return m;  /* $State$ */
 }  
   char version[]="Imach version 0.98f, March 2006, INED-EUROREVES-Institut de longevite ";
 /****************** free_imatrix *************************/  char fullversion[]="$Revision$ $Date$"; 
 void free_imatrix(m,nrl,nrh,ncl,nch)  char strstart[80];
       int **m;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       long nch,ncl,nrh,nrl;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
      /* free an int matrix allocated by imatrix() */  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int npar=NPARMAX;
   free((FREE_ARG) (m+nrl-NR_END));  int nlstate=2; /* Number of live states */
 }  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 /******************* matrix *******************************/  int popbased=0;
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int maxwav; /* Maxim number of waves */
   double **m;  int jmin, jmax; /* min, max spacing between 2 waves */
   int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int gipmx, gsw; /* Global variables on the number of contributions 
   if (!m) nrerror("allocation failure 1 in matrix()");                     to the likelihood and the sum of weights (done by funcone)*/
   m += NR_END;  int mle, weightopt;
   m -= nrl;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m[nrl] += NR_END;  double jmean; /* Mean space between 2 waves */
   m[nrl] -= ncl;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   return m;  FILE *ficlog, *ficrespow;
 }  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /*************************free matrix ************************/  long ipmx; /* Number of contributions */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   free((FREE_ARG)(m+nrl-NR_END));  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /******************* ma3x *******************************/  FILE *fichtm, *fichtmcov; /* Html File */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  FILE *ficresstdeij;
   double ***m;  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char filerescve[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE  *ficresvij;
   m += NR_END;  char fileresv[FILENAMELENGTH];
   m -= nrl;  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char title[MAXLINE];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m[nrl] += NR_END;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   m[nrl] -= ncl;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int  outcmd=0;
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  char filelog[FILENAMELENGTH]; /* Log file */
   m[nrl][ncl] -= nll;  char filerest[FILENAMELENGTH];
   for (j=ncl+1; j<=nch; j++)  char fileregp[FILENAMELENGTH];
     m[nrl][j]=m[nrl][j-1]+nlay;  char popfile[FILENAMELENGTH];
    
   for (i=nrl+1; i<=nrh; i++) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       m[i][j]=m[i][j-1]+nlay;  struct timezone tzp;
   }  extern int gettimeofday();
   return m;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 }  long time_value;
   extern long time();
 /*************************free ma3x ************************/  char strcurr[80], strfor[80];
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  char *endptr;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  long lval;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 /***************** f1dim *************************/  
 extern int ncom;  #define NRANSI 
 extern double *pcom,*xicom;  #define ITMAX 200 
 extern double (*nrfunc)(double []);  
    #define TOL 2.0e-4 
 double f1dim(double x)  
 {  #define CGOLD 0.3819660 
   int j;  #define ZEPS 1.0e-10 
   double f;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double *xt;  
    #define GOLD 1.618034 
   xt=vector(1,ncom);  #define GLIMIT 100.0 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define TINY 1.0e-20 
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  static double maxarg1,maxarg2;
   return f;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 /*****************brent *************************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define rint(a) floor(a+0.5)
 {  
   int iter;  static double sqrarg;
   double a,b,d,etemp;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double fu,fv,fw,fx;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double ftemp;  int agegomp= AGEGOMP;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  int imx; 
    int stepm=1;
   a=(ax < cx ? ax : cx);  /* Stepm, step in month: minimum step interpolation*/
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  int estepm;
   fw=fv=fx=(*f)(x);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  int m,nb;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  long *num;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     printf(".");fflush(stdout);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     fprintf(ficlog,".");fflush(ficlog);  double **pmmij, ***probs;
 #ifdef DEBUG  double *ageexmed,*agecens;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double dateintmean=0;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  double *weight;
 #endif  int **s; /* Status */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  double *agedc, **covar, idx;
       *xmin=x;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       return fx;  double *lsurv, *lpop, *tpop;
     }  
     ftemp=fu;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     if (fabs(e) > tol1) {  double ftolhess; /* Tolerance for computing hessian */
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  /**************** split *************************/
       p=(x-v)*q-(x-w)*r;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       q=2.0*(q-r);  {
       if (q > 0.0) p = -p;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       q=fabs(q);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       etemp=e;    */ 
       e=d;    char  *ss;                            /* pointer */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    int   l1, l2;                         /* length counters */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {    l1 = strlen(path );                   /* length of path */
         d=p/q;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         u=x+d;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         if (u-a < tol2 || b-u < tol2)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
           d=SIGN(tol1,xm-x);      strcpy( name, path );               /* we got the fullname name because no directory */
       }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     } else {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      /* get current working directory */
     }      /*    extern  char* getcwd ( char *buf , int len);*/
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     fu=(*f)(u);        return( GLOCK_ERROR_GETCWD );
     if (fu <= fx) {      }
       if (u >= x) a=x; else b=x;      /* got dirc from getcwd*/
       SHFT(v,w,x,u)      printf(" DIRC = %s \n",dirc);
         SHFT(fv,fw,fx,fu)    } else {                              /* strip direcotry from path */
         } else {      ss++;                               /* after this, the filename */
           if (u < x) a=u; else b=u;      l2 = strlen( ss );                  /* length of filename */
           if (fu <= fw || w == x) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
             v=w;      strcpy( name, ss );         /* save file name */
             w=u;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
             fv=fw;      dirc[l1-l2] = 0;                    /* add zero */
             fw=fu;      printf(" DIRC2 = %s \n",dirc);
           } else if (fu <= fv || v == x || v == w) {    }
             v=u;    /* We add a separator at the end of dirc if not exists */
             fv=fu;    l1 = strlen( dirc );                  /* length of directory */
           }    if( dirc[l1-1] != DIRSEPARATOR ){
         }      dirc[l1] =  DIRSEPARATOR;
   }      dirc[l1+1] = 0; 
   nrerror("Too many iterations in brent");      printf(" DIRC3 = %s \n",dirc);
   *xmin=x;    }
   return fx;    ss = strrchr( name, '.' );            /* find last / */
 }    if (ss >0){
       ss++;
 /****************** mnbrak ***********************/      strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      l2= strlen(ss)+1;
             double (*func)(double))      strncpy( finame, name, l1-l2);
 {      finame[l1-l2]= 0;
   double ulim,u,r,q, dum;    }
   double fu;  
      return( 0 );                          /* we're done */
   *fa=(*func)(*ax);  }
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  /******************************************/
       SHFT(dum,*fb,*fa,dum)  
       }  void replace_back_to_slash(char *s, char*t)
   *cx=(*bx)+GOLD*(*bx-*ax);  {
   *fc=(*func)(*cx);    int i;
   while (*fb > *fc) {    int lg=0;
     r=(*bx-*ax)*(*fb-*fc);    i=0;
     q=(*bx-*cx)*(*fb-*fa);    lg=strlen(t);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    for(i=0; i<= lg; i++) {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      (s[i] = t[i]);
     ulim=(*bx)+GLIMIT*(*cx-*bx);      if (t[i]== '\\') s[i]='/';
     if ((*bx-u)*(u-*cx) > 0.0) {    }
       fu=(*func)(u);  }
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  int nbocc(char *s, char occ)
       if (fu < *fc) {  {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    int i,j=0;
           SHFT(*fb,*fc,fu,(*func)(u))    int lg=20;
           }    i=0;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    lg=strlen(s);
       u=ulim;    for(i=0; i<= lg; i++) {
       fu=(*func)(u);    if  (s[i] == occ ) j++;
     } else {    }
       u=(*cx)+GOLD*(*cx-*bx);    return j;
       fu=(*func)(u);  }
     }  
     SHFT(*ax,*bx,*cx,u)  void cutv(char *u,char *v, char*t, char occ)
       SHFT(*fa,*fb,*fc,fu)  {
       }    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
        gives u="abcedf" and v="ghi2j" */
 /*************** linmin ************************/    int i,lg,j,p=0;
     i=0;
 int ncom;    for(j=0; j<=strlen(t)-1; j++) {
 double *pcom,*xicom;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 double (*nrfunc)(double []);    }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    lg=strlen(t);
 {    for(j=0; j<p; j++) {
   double brent(double ax, double bx, double cx,      (u[j] = t[j]);
                double (*f)(double), double tol, double *xmin);    }
   double f1dim(double x);       u[p]='\0';
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));     for(j=0; j<= lg; j++) {
   int j;      if (j>=(p+1))(v[j-p-1] = t[j]);
   double xx,xmin,bx,ax;    }
   double fx,fb,fa;  }
    
   ncom=n;  /********************** nrerror ********************/
   pcom=vector(1,n);  
   xicom=vector(1,n);  void nrerror(char error_text[])
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    fprintf(stderr,"ERREUR ...\n");
     pcom[j]=p[j];    fprintf(stderr,"%s\n",error_text);
     xicom[j]=xi[j];    exit(EXIT_FAILURE);
   }  }
   ax=0.0;  /*********************** vector *******************/
   xx=1.0;  double *vector(int nl, int nh)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    double *v;
 #ifdef DEBUG    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if (!v) nrerror("allocation failure in vector");
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    return v-nl+NR_END;
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /************************ free vector ******************/
     p[j] += xi[j];  void free_vector(double*v, int nl, int nh)
   }  {
   free_vector(xicom,1,n);    free((FREE_ARG)(v+nl-NR_END));
   free_vector(pcom,1,n);  }
 }  
   /************************ivector *******************************/
 /*************** powell ************************/  int *ivector(long nl,long nh)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   void linmin(double p[], double xi[], int n, double *fret,    if (!v) nrerror("allocation failure in ivector");
               double (*func)(double []));    return v-nl+NR_END;
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /******************free ivector **************************/
   double *xits;  void free_ivector(int *v, long nl, long nh)
   pt=vector(1,n);  {
   ptt=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   xit=vector(1,n);  }
   xits=vector(1,n);  
   *fret=(*func)(p);  /************************lvector *******************************/
   for (j=1;j<=n;j++) pt[j]=p[j];  long *lvector(long nl,long nh)
   for (*iter=1;;++(*iter)) {  {
     fp=(*fret);    long *v;
     ibig=0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     del=0.0;    if (!v) nrerror("allocation failure in ivector");
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    return v-nl+NR_END;
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  }
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  /******************free lvector **************************/
     fprintf(ficlog," %d %.12f",i, p[i]);  void free_lvector(long *v, long nl, long nh)
     printf("\n");  {
     fprintf(ficlog,"\n");    free((FREE_ARG)(v+nl-NR_END));
     for (i=1;i<=n;i++) {  }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  /******************* imatrix *******************************/
 #ifdef DEBUG  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       printf("fret=%lf \n",*fret);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       fprintf(ficlog,"fret=%lf \n",*fret);  { 
 #endif    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       printf("%d",i);fflush(stdout);    int **m; 
       fprintf(ficlog,"%d",i);fflush(ficlog);    
       linmin(p,xit,n,fret,func);    /* allocate pointers to rows */ 
       if (fabs(fptt-(*fret)) > del) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         del=fabs(fptt-(*fret));    if (!m) nrerror("allocation failure 1 in matrix()"); 
         ibig=i;    m += NR_END; 
       }    m -= nrl; 
 #ifdef DEBUG    
       printf("%d %.12e",i,(*fret));    
       fprintf(ficlog,"%d %.12e",i,(*fret));    /* allocate rows and set pointers to them */ 
       for (j=1;j<=n;j++) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         printf(" x(%d)=%.12e",j,xit[j]);    m[nrl] += NR_END; 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    m[nrl] -= ncl; 
       }    
       for(j=1;j<=n;j++) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         printf(" p=%.12e",p[j]);    
         fprintf(ficlog," p=%.12e",p[j]);    /* return pointer to array of pointers to rows */ 
       }    return m; 
       printf("\n");  } 
       fprintf(ficlog,"\n");  
 #endif  /****************** free_imatrix *************************/
     }  void free_imatrix(m,nrl,nrh,ncl,nch)
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        int **m;
 #ifdef DEBUG        long nch,ncl,nrh,nrl; 
       int k[2],l;       /* free an int matrix allocated by imatrix() */ 
       k[0]=1;  { 
       k[1]=-1;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       printf("Max: %.12e",(*func)(p));    free((FREE_ARG) (m+nrl-NR_END)); 
       fprintf(ficlog,"Max: %.12e",(*func)(p));  } 
       for (j=1;j<=n;j++) {  
         printf(" %.12e",p[j]);  /******************* matrix *******************************/
         fprintf(ficlog," %.12e",p[j]);  double **matrix(long nrl, long nrh, long ncl, long nch)
       }  {
       printf("\n");    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       fprintf(ficlog,"\n");    double **m;
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if (!m) nrerror("allocation failure 1 in matrix()");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m += NR_END;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m -= nrl;
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
 #endif    m[nrl] -= ncl;
   
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       free_vector(xit,1,n);    return m;
       free_vector(xits,1,n);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       free_vector(ptt,1,n);     */
       free_vector(pt,1,n);  }
       return;  
     }  /*************************free matrix ************************/
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     for (j=1;j<=n;j++) {  {
       ptt[j]=2.0*p[j]-pt[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       xit[j]=p[j]-pt[j];    free((FREE_ARG)(m+nrl-NR_END));
       pt[j]=p[j];  }
     }  
     fptt=(*func)(ptt);  /******************* ma3x *******************************/
     if (fptt < fp) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  {
       if (t < 0.0) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         linmin(p,xit,n,fret,func);    double ***m;
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           xi[j][n]=xit[j];    if (!m) nrerror("allocation failure 1 in matrix()");
         }    m += NR_END;
 #ifdef DEBUG    m -= nrl;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         for(j=1;j<=n;j++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           printf(" %.12e",xit[j]);    m[nrl] += NR_END;
           fprintf(ficlog," %.12e",xit[j]);    m[nrl] -= ncl;
         }  
         printf("\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         fprintf(ficlog,"\n");  
 #endif    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     }    m[nrl][ncl] += NR_END;
   }    m[nrl][ncl] -= nll;
 }    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
 /**** Prevalence limit ****************/    
     for (i=nrl+1; i<=nrh; i++) {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 {      for (j=ncl+1; j<=nch; j++) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        m[i][j]=m[i][j-1]+nlay;
      matrix by transitions matrix until convergence is reached */    }
     return m; 
   int i, ii,j,k;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double min, max, maxmin, maxmax,sumnew=0.;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double **matprod2();    */
   double **out, cov[NCOVMAX], **pmij();  }
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for (ii=1;ii<=nlstate+ndeath;ii++)  {
     for (j=1;j<=nlstate+ndeath;j++){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }
    cov[1]=1.;  
    /*************** function subdirf ***********/
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char *subdirf(char fileres[])
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  {
     newm=savm;    /* Caution optionfilefiname is hidden */
     /* Covariates have to be included here again */    strcpy(tmpout,optionfilefiname);
      cov[2]=agefin;    strcat(tmpout,"/"); /* Add to the right */
      strcat(tmpout,fileres);
       for (k=1; k<=cptcovn;k++) {    return tmpout;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  /*************** function subdirf2 ***********/
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  char *subdirf2(char fileres[], char *preop)
       for (k=1; k<=cptcovprod;k++)  {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    
     /* Caution optionfilefiname is hidden */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    strcpy(tmpout,optionfilefiname);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    strcat(tmpout,"/");
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    strcat(tmpout,preop);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    strcat(tmpout,fileres);
     return tmpout;
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  /*************** function subdirf3 ***********/
     for(j=1;j<=nlstate;j++){  char *subdirf3(char fileres[], char *preop, char *preop2)
       min=1.;  {
       max=0.;    
       for(i=1; i<=nlstate; i++) {    /* Caution optionfilefiname is hidden */
         sumnew=0;    strcpy(tmpout,optionfilefiname);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    strcat(tmpout,"/");
         prlim[i][j]= newm[i][j]/(1-sumnew);    strcat(tmpout,preop);
         max=FMAX(max,prlim[i][j]);    strcat(tmpout,preop2);
         min=FMIN(min,prlim[i][j]);    strcat(tmpout,fileres);
       }    return tmpout;
       maxmin=max-min;  }
       maxmax=FMAX(maxmax,maxmin);  
     }  /***************** f1dim *************************/
     if(maxmax < ftolpl){  extern int ncom; 
       return prlim;  extern double *pcom,*xicom;
     }  extern double (*nrfunc)(double []); 
   }   
 }  double f1dim(double x) 
   { 
 /*************** transition probabilities ***************/    int j; 
     double f;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    double *xt; 
 {   
   double s1, s2;    xt=vector(1,ncom); 
   /*double t34;*/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   int i,j,j1, nc, ii, jj;    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
     for(i=1; i<= nlstate; i++){    return f; 
     for(j=1; j<i;j++){  } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  /*****************brent *************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  { 
       }    int iter; 
       ps[i][j]=s2;    double a,b,d,etemp;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double fu,fv,fw,fx;
     }    double ftemp;
     for(j=i+1; j<=nlstate+ndeath;j++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double e=0.0; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];   
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    a=(ax < cx ? ax : cx); 
       }    b=(ax > cx ? ax : cx); 
       ps[i][j]=s2;    x=w=v=bx; 
     }    fw=fv=fx=(*f)(x); 
   }    for (iter=1;iter<=ITMAX;iter++) { 
     /*ps[3][2]=1;*/      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for(i=1; i<= nlstate; i++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
      s1=0;      printf(".");fflush(stdout);
     for(j=1; j<i; j++)      fprintf(ficlog,".");fflush(ficlog);
       s1+=exp(ps[i][j]);  #ifdef DEBUG
     for(j=i+1; j<=nlstate+ndeath; j++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       s1+=exp(ps[i][j]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     ps[i][i]=1./(s1+1.);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for(j=1; j<i; j++)  #endif
       ps[i][j]= exp(ps[i][j])*ps[i][i];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for(j=i+1; j<=nlstate+ndeath; j++)        *xmin=x; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        return fx; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      } 
   } /* end i */      ftemp=fu;
       if (fabs(e) > tol1) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        r=(x-w)*(fx-fv); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        q=(x-v)*(fx-fw); 
       ps[ii][jj]=0;        p=(x-v)*q-(x-w)*r; 
       ps[ii][ii]=1;        q=2.0*(q-r); 
     }        if (q > 0.0) p = -p; 
   }        q=fabs(q); 
         etemp=e; 
         e=d; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(jj=1; jj<= nlstate+ndeath; jj++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      printf("%lf ",ps[ii][jj]);        else { 
    }          d=p/q; 
     printf("\n ");          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
     printf("\n ");printf("%lf ",cov[2]);*/            d=SIGN(tol1,xm-x); 
 /*        } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      } else { 
   goto end;*/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     return ps;      } 
 }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
 /**************** Product of 2 matrices ******************/      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        SHFT(v,w,x,u) 
 {          SHFT(fv,fw,fx,fu) 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          } else { 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */            if (u < x) a=u; else b=u; 
   /* in, b, out are matrice of pointers which should have been initialized            if (fu <= fw || w == x) { 
      before: only the contents of out is modified. The function returns              v=w; 
      a pointer to pointers identical to out */              w=u; 
   long i, j, k;              fv=fw; 
   for(i=nrl; i<= nrh; i++)              fw=fu; 
     for(k=ncolol; k<=ncoloh; k++)            } else if (fu <= fv || v == x || v == w) { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)              v=u; 
         out[i][k] +=in[i][j]*b[j][k];              fv=fu; 
             } 
   return out;          } 
 }    } 
     nrerror("Too many iterations in brent"); 
     *xmin=x; 
 /************* Higher Matrix Product ***************/    return fx; 
   } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  /****************** mnbrak ***********************/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.              double (*func)(double)) 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  { 
      (typically every 2 years instead of every month which is too big).    double ulim,u,r,q, dum;
      Model is determined by parameters x and covariates have to be    double fu; 
      included manually here.   
     *fa=(*func)(*ax); 
      */    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   int i, j, d, h, k;      SHFT(dum,*ax,*bx,dum) 
   double **out, cov[NCOVMAX];        SHFT(dum,*fb,*fa,dum) 
   double **newm;        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
   /* Hstepm could be zero and should return the unit matrix */    *fc=(*func)(*cx); 
   for (i=1;i<=nlstate+ndeath;i++)    while (*fb > *fc) { 
     for (j=1;j<=nlstate+ndeath;j++){      r=(*bx-*ax)*(*fb-*fc); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      q=(*bx-*cx)*(*fb-*fa); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   for(h=1; h <=nhstepm; h++){      if ((*bx-u)*(u-*cx) > 0.0) { 
     for(d=1; d <=hstepm; d++){        fu=(*func)(u); 
       newm=savm;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       /* Covariates have to be included here again */        fu=(*func)(u); 
       cov[1]=1.;        if (fu < *fc) { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];            SHFT(*fb,*fc,fu,(*func)(u)) 
       for (k=1; k<=cptcovage;k++)            } 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       for (k=1; k<=cptcovprod;k++)        u=ulim; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fu=(*func)(u); 
       } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        fu=(*func)(u); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      } 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      SHFT(*ax,*bx,*cx,u) 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        SHFT(*fa,*fb,*fc,fu) 
       savm=oldm;        } 
       oldm=newm;  } 
     }  
     for(i=1; i<=nlstate+ndeath; i++)  /*************** linmin ************************/
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  int ncom; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  double *pcom,*xicom;
          */  double (*nrfunc)(double []); 
       }   
   } /* end h */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   return po;  { 
 }    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
 /*************** log-likelihood *************/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 double func( double *x)                double *fc, double (*func)(double)); 
 {    int j; 
   int i, ii, j, k, mi, d, kk;    double xx,xmin,bx,ax; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double fx,fb,fa;
   double **out;   
   double sw; /* Sum of weights */    ncom=n; 
   double lli; /* Individual log likelihood */    pcom=vector(1,n); 
   long ipmx;    xicom=vector(1,n); 
   /*extern weight */    nrfunc=func; 
   /* We are differentiating ll according to initial status */    for (j=1;j<=n;j++) { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      pcom[j]=p[j]; 
   /*for(i=1;i<imx;i++)      xicom[j]=xi[j]; 
     printf(" %d\n",s[4][i]);    } 
   */    ax=0.0; 
   cov[1]=1.;    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #ifdef DEBUG
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(mi=1; mi<= wav[i]-1; mi++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (ii=1;ii<=nlstate+ndeath;ii++)  #endif
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (j=1;j<=n;j++) { 
       for(d=0; d<dh[mi][i]; d++){      xi[j] *= xmin; 
         newm=savm;      p[j] += xi[j]; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    } 
         for (kk=1; kk<=cptcovage;kk++) {    free_vector(xicom,1,n); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    free_vector(pcom,1,n); 
         }  } 
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  char *asc_diff_time(long time_sec, char ascdiff[])
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  {
         savm=oldm;    long sec_left, days, hours, minutes;
         oldm=newm;    days = (time_sec) / (60*60*24);
            sec_left = (time_sec) % (60*60*24);
            hours = (sec_left) / (60*60) ;
       } /* end mult */    sec_left = (sec_left) %(60*60);
          minutes = (sec_left) /60;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    sec_left = (sec_left) % (60);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       ipmx +=1;    return ascdiff;
       sw += weight[i];  }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  /*************** powell ************************/
   } /* end of individual */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  { 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    void linmin(double p[], double xi[], int n, double *fret, 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */                double (*func)(double [])); 
   return -l;    int i,ibig,j; 
 }    double del,t,*pt,*ptt,*xit;
     double fp,fptt;
     double *xits;
 /*********** Maximum Likelihood Estimation ***************/    int niterf, itmp;
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    pt=vector(1,n); 
 {    ptt=vector(1,n); 
   int i,j, iter;    xit=vector(1,n); 
   double **xi,*delti;    xits=vector(1,n); 
   double fret;    *fret=(*func)(p); 
   xi=matrix(1,npar,1,npar);    for (j=1;j<=n;j++) pt[j]=p[j]; 
   for (i=1;i<=npar;i++)    for (*iter=1;;++(*iter)) { 
     for (j=1;j<=npar;j++)      fp=(*fret); 
       xi[i][j]=(i==j ? 1.0 : 0.0);      ibig=0; 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");      del=0.0; 
   powell(p,xi,npar,ftol,&iter,&fret,func);      last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
 }     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 /**** Computes Hessian and covariance matrix ***/        fprintf(ficlog," %d %.12lf",i, p[i]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        fprintf(ficrespow," %.12lf", p[i]);
 {      }
   double  **a,**y,*x,pd;      printf("\n");
   double **hess;      fprintf(ficlog,"\n");
   int i, j,jk;      fprintf(ficrespow,"\n");fflush(ficrespow);
   int *indx;      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   double hessii(double p[], double delta, int theta, double delti[]);        strcpy(strcurr,asctime(&tm));
   double hessij(double p[], double delti[], int i, int j);  /*       asctime_r(&tm,strcurr); */
   void lubksb(double **a, int npar, int *indx, double b[]) ;        forecast_time=curr_time; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   hess=matrix(1,npar,1,npar);          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   printf("\nCalculation of the hessian matrix. Wait...\n");        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");        for(niterf=10;niterf<=30;niterf+=10){
   for (i=1;i<=npar;i++){          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     printf("%d",i);fflush(stdout);          tmf = *localtime(&forecast_time.tv_sec);
     fprintf(ficlog,"%d",i);fflush(ficlog);  /*      asctime_r(&tmf,strfor); */
     hess[i][i]=hessii(p,ftolhess,i,delti);          strcpy(strfor,asctime(&tmf));
     /*printf(" %f ",p[i]);*/          itmp = strlen(strfor);
     /*printf(" %lf ",hess[i][i]);*/          if(strfor[itmp-1]=='\n')
   }          strfor[itmp-1]='\0';
            printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=1;i<=npar;i++) {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (j=1;j<=npar;j++)  {        }
       if (j>i) {      }
         printf(".%d%d",i,j);fflush(stdout);      for (i=1;i<=n;i++) { 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         hess[i][j]=hessij(p,delti,i,j);        fptt=(*fret); 
         hess[j][i]=hess[i][j];      #ifdef DEBUG
         /*printf(" %lf ",hess[i][j]);*/        printf("fret=%lf \n",*fret);
       }        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
   }        printf("%d",i);fflush(stdout);
   printf("\n");        fprintf(ficlog,"%d",i);fflush(ficlog);
   fprintf(ficlog,"\n");        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          del=fabs(fptt-(*fret)); 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          ibig=i; 
          } 
   a=matrix(1,npar,1,npar);  #ifdef DEBUG
   y=matrix(1,npar,1,npar);        printf("%d %.12e",i,(*fret));
   x=vector(1,npar);        fprintf(ficlog,"%d %.12e",i,(*fret));
   indx=ivector(1,npar);        for (j=1;j<=n;j++) {
   for (i=1;i<=npar;i++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          printf(" x(%d)=%.12e",j,xit[j]);
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   for (j=1;j<=npar;j++) {        for(j=1;j<=n;j++) {
     for (i=1;i<=npar;i++) x[i]=0;          printf(" p=%.12e",p[j]);
     x[j]=1;          fprintf(ficlog," p=%.12e",p[j]);
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){        printf("\n");
       matcov[i][j]=x[i];        fprintf(ficlog,"\n");
     }  #endif
   }      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   printf("\n#Hessian matrix#\n");  #ifdef DEBUG
   fprintf(ficlog,"\n#Hessian matrix#\n");        int k[2],l;
   for (i=1;i<=npar;i++) {        k[0]=1;
     for (j=1;j<=npar;j++) {        k[1]=-1;
       printf("%.3e ",hess[i][j]);        printf("Max: %.12e",(*func)(p));
       fprintf(ficlog,"%.3e ",hess[i][j]);        fprintf(ficlog,"Max: %.12e",(*func)(p));
     }        for (j=1;j<=n;j++) {
     printf("\n");          printf(" %.12e",p[j]);
     fprintf(ficlog,"\n");          fprintf(ficlog," %.12e",p[j]);
   }        }
         printf("\n");
   /* Recompute Inverse */        fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++)        for(l=0;l<=1;l++) {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          for (j=1;j<=n;j++) {
   ludcmp(a,npar,indx,&pd);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /*  printf("\n#Hessian matrix recomputed#\n");            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   for (j=1;j<=npar;j++) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (i=1;i<=npar;i++) x[i]=0;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     x[j]=1;        }
     lubksb(a,npar,indx,x);  #endif
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);        free_vector(xit,1,n); 
       fprintf(ficlog,"%.3e ",y[i][j]);        free_vector(xits,1,n); 
     }        free_vector(ptt,1,n); 
     printf("\n");        free_vector(pt,1,n); 
     fprintf(ficlog,"\n");        return; 
   }      } 
   */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   free_matrix(a,1,npar,1,npar);        ptt[j]=2.0*p[j]-pt[j]; 
   free_matrix(y,1,npar,1,npar);        xit[j]=p[j]-pt[j]; 
   free_vector(x,1,npar);        pt[j]=p[j]; 
   free_ivector(indx,1,npar);      } 
   free_matrix(hess,1,npar,1,npar);      fptt=(*func)(ptt); 
       if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 }        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
 /*************** hessian matrix ****************/          for (j=1;j<=n;j++) { 
 double hessii( double x[], double delta, int theta, double delti[])            xi[j][ibig]=xi[j][n]; 
 {            xi[j][n]=xit[j]; 
   int i;          }
   int l=1, lmax=20;  #ifdef DEBUG
   double k1,k2;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double p2[NPARMAX+1];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double res;          for(j=1;j<=n;j++){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;            printf(" %.12e",xit[j]);
   double fx;            fprintf(ficlog," %.12e",xit[j]);
   int k=0,kmax=10;          }
   double l1;          printf("\n");
           fprintf(ficlog,"\n");
   fx=func(x);  #endif
   for (i=1;i<=npar;i++) p2[i]=x[i];        }
   for(l=0 ; l <=lmax; l++){      } 
     l1=pow(10,l);    } 
     delts=delt;  } 
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);  /**** Prevalence limit (stable or period prevalence)  ****************/
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       p2[theta]=x[theta]-delt;  {
       k2=func(p2)-fx;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       /*res= (k1-2.0*fx+k2)/delt/delt; */       matrix by transitions matrix until convergence is reached */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
          int i, ii,j,k;
 #ifdef DEBUG    double min, max, maxmin, maxmax,sumnew=0.;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double **matprod2();
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double **out, cov[NCOVMAX], **pmij();
 #endif    double **newm;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double agefin, delaymax=50 ; /* Max number of years to converge */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;    for (ii=1;ii<=nlstate+ndeath;ii++)
       }      for (j=1;j<=nlstate+ndeath;j++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         k=kmax; l=lmax*10.;      }
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){     cov[1]=1.;
         delts=delt;   
       }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   }      newm=savm;
   delti[theta]=delts;      /* Covariates have to be included here again */
   return res;       cov[2]=agefin;
      
 }        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 double hessij( double x[], double delti[], int thetai,int thetaj)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 {        }
   int i;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int l=1, l1, lmax=20;        for (k=1; k<=cptcovprod;k++)
   double k1,k2,k3,k4,res,fx;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double p2[NPARMAX+1];  
   int k;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   fx=func(x);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   for (k=1; k<=2; k++) {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;      savm=oldm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      oldm=newm;
     k1=func(p2)-fx;      maxmax=0.;
        for(j=1;j<=nlstate;j++){
     p2[thetai]=x[thetai]+delti[thetai]/k;        min=1.;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        max=0.;
     k2=func(p2)-fx;        for(i=1; i<=nlstate; i++) {
            sumnew=0;
     p2[thetai]=x[thetai]-delti[thetai]/k;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          prlim[i][j]= newm[i][j]/(1-sumnew);
     k3=func(p2)-fx;          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        maxmin=max-min;
     k4=func(p2)-fx;        maxmax=FMAX(maxmax,maxmin);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      }
 #ifdef DEBUG      if(maxmax < ftolpl){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        return prlim;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      }
 #endif    }
   }  }
   return res;  
 }  /*************** transition probabilities ***************/ 
   
 /************** Inverse of matrix **************/  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 void ludcmp(double **a, int n, int *indx, double *d)  {
 {    double s1, s2;
   int i,imax,j,k;    /*double t34;*/
   double big,dum,sum,temp;    int i,j,j1, nc, ii, jj;
   double *vv;  
        for(i=1; i<= nlstate; i++){
   vv=vector(1,n);        for(j=1; j<i;j++){
   *d=1.0;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (i=1;i<=n;i++) {            /*s2 += param[i][j][nc]*cov[nc];*/
     big=0.0;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (j=1;j<=n;j++)  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       if ((temp=fabs(a[i][j])) > big) big=temp;          }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          ps[i][j]=s2;
     vv[i]=1.0/big;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   }        }
   for (j=1;j<=n;j++) {        for(j=i+1; j<=nlstate+ndeath;j++){
     for (i=1;i<j;i++) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       sum=a[i][j];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       a[i][j]=sum;          }
     }          ps[i][j]=s2;
     big=0.0;        }
     for (i=j;i<=n;i++) {      }
       sum=a[i][j];      /*ps[3][2]=1;*/
       for (k=1;k<j;k++)      
         sum -= a[i][k]*a[k][j];      for(i=1; i<= nlstate; i++){
       a[i][j]=sum;        s1=0;
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for(j=1; j<i; j++)
         big=dum;          s1+=exp(ps[i][j]);
         imax=i;        for(j=i+1; j<=nlstate+ndeath; j++)
       }          s1+=exp(ps[i][j]);
     }        ps[i][i]=1./(s1+1.);
     if (j != imax) {        for(j=1; j<i; j++)
       for (k=1;k<=n;k++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
         dum=a[imax][k];        for(j=i+1; j<=nlstate+ndeath; j++)
         a[imax][k]=a[j][k];          ps[i][j]= exp(ps[i][j])*ps[i][i];
         a[j][k]=dum;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       }      } /* end i */
       *d = -(*d);      
       vv[imax]=vv[j];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     }        for(jj=1; jj<= nlstate+ndeath; jj++){
     indx[j]=imax;          ps[ii][jj]=0;
     if (a[j][j] == 0.0) a[j][j]=TINY;          ps[ii][ii]=1;
     if (j != n) {        }
       dum=1.0/(a[j][j]);      }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      
     }  
   }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   free_vector(vv,1,n);  /* Doesn't work */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 ;  /*         printf("ddd %lf ",ps[ii][jj]); */
 }  /*       } */
   /*       printf("\n "); */
 void lubksb(double **a, int n, int *indx, double b[])  /*        } */
 {  /*        printf("\n ");printf("%lf ",cov[2]); */
   int i,ii=0,ip,j;         /*
   double sum;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
          goto end;*/
   for (i=1;i<=n;i++) {      return ps;
     ip=indx[i];  }
     sum=b[ip];  
     b[ip]=b[i];  /**************** Product of 2 matrices ******************/
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     else if (sum) ii=i;  {
     b[i]=sum;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for (i=n;i>=1;i--) {    /* in, b, out are matrice of pointers which should have been initialized 
     sum=b[i];       before: only the contents of out is modified. The function returns
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       a pointer to pointers identical to out */
     b[i]=sum/a[i][i];    long i, j, k;
   }    for(i=nrl; i<= nrh; i++)
 }      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
 /************ Frequencies ********************/          out[i][k] +=in[i][j]*b[j][k];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  
 {  /* Some frequencies */    return out;
    }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   int first;  
   double ***freq; /* Frequencies */  /************* Higher Matrix Product ***************/
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   FILE *ficresp;  {
   char fileresp[FILENAMELENGTH];    /* Computes the transition matrix starting at age 'age' over 
         'nhstepm*hstepm*stepm' months (i.e. until
   pp=vector(1,nlstate);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       nhstepm*hstepm matrices. 
   strcpy(fileresp,"p");       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   strcat(fileresp,fileres);       (typically every 2 years instead of every month which is too big 
   if((ficresp=fopen(fileresp,"w"))==NULL) {       for the memory).
     printf("Problem with prevalence resultfile: %s\n", fileresp);       Model is determined by parameters x and covariates have to be 
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);       included manually here. 
     exit(0);  
   }       */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;    int i, j, d, h, k;
      double **out, cov[NCOVMAX];
   j=cptcoveff;    double **newm;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
     /* Hstepm could be zero and should return the unit matrix */
   first=1;    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
   for(k1=1; k1<=j;k1++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
     for(i1=1; i1<=ncodemax[k1];i1++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
       j1++;      }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         scanf("%d", i);*/    for(h=1; h <=nhstepm; h++){
       for (i=-1; i<=nlstate+ndeath; i++)        for(d=1; d <=hstepm; d++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)          newm=savm;
           for(m=agemin; m <= agemax+3; m++)        /* Covariates have to be included here again */
             freq[i][jk][m]=0;        cov[1]=1.;
              cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       dateintsum=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       k2cpt=0;        for (k=1; k<=cptcovage;k++)
       for (i=1; i<=imx; i++) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         bool=1;        for (k=1; k<=cptcovprod;k++)
         if  (cptcovn>0) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         if (bool==1) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           for(m=firstpass; m<=lastpass; m++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             k2=anint[m][i]+(mint[m][i]/12.);        savm=oldm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        oldm=newm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;      }
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for(i=1; i<=nlstate+ndeath; i++)
               if (m<lastpass) {        for(j=1;j<=nlstate+ndeath;j++) {
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          po[i][j][h]=newm[i][j];
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
               }           */
                      }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    } /* end h */
                 dateintsum=dateintsum+k2;    return po;
                 k2cpt++;  }
               }  
             }  
           }  /*************** log-likelihood *************/
         }  double func( double *x)
       }  {
            int i, ii, j, k, mi, d, kk;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
       if  (cptcovn>0) {    double sw; /* Sum of weights */
         fprintf(ficresp, "\n#********** Variable ");    double lli; /* Individual log likelihood */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int s1, s2;
         fprintf(ficresp, "**********\n#");    double bbh, survp;
       }    long ipmx;
       for(i=1; i<=nlstate;i++)    /*extern weight */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /* We are differentiating ll according to initial status */
       fprintf(ficresp, "\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
          /*for(i=1;i<imx;i++) 
       for(i=(int)agemin; i <= (int)agemax+3; i++){      printf(" %d\n",s[4][i]);
         if(i==(int)agemax+3){    */
           fprintf(ficlog,"Total");    cov[1]=1.;
         }else{  
           if(first==1){    for(k=1; k<=nlstate; k++) ll[k]=0.;
             first=0;  
             printf("See log file for details...\n");    if(mle==1){
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           fprintf(ficlog,"Age %d", i);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            for (j=1;j<=nlstate+ndeath;j++){
             pp[jk] += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pos=0; m <=0 ; m++)          for(d=0; d<dh[mi][i]; d++){
             pos += freq[jk][m][i];            newm=savm;
           if(pp[jk]>=1.e-10){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             if(first==1){            for (kk=1; kk<=cptcovage;kk++) {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }            }
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }else{                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if(first==1)            savm=oldm;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            oldm=newm;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          } /* end mult */
           }        
         }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
         for(jk=1; jk <=nlstate ; jk++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
             pp[jk] += freq[jk][m][i];           * the nearest (and in case of equal distance, to the lowest) interval but now
         }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         for(jk=1,pos=0; jk <=nlstate ; jk++)           * probability in order to take into account the bias as a fraction of the way
           pos += pp[jk];           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         for(jk=1; jk <=nlstate ; jk++){           * -stepm/2 to stepm/2 .
           if(pos>=1.e-5){           * For stepm=1 the results are the same as for previous versions of Imach.
             if(first==1)           * For stepm > 1 the results are less biased than in previous versions. 
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           */
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          s1=s[mw[mi][i]][i];
           }else{          s2=s[mw[mi+1][i]][i];
             if(first==1)          bbh=(double)bh[mi][i]/(double)stepm; 
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          /* bias bh is positive if real duration
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);           * is higher than the multiple of stepm and negative otherwise.
           }           */
           if( i <= (int) agemax){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             if(pos>=1.e-5){          if( s2 > nlstate){ 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            /* i.e. if s2 is a death state and if the date of death is known 
               probs[i][jk][j1]= pp[jk]/pos;               then the contribution to the likelihood is the probability to 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/               die between last step unit time and current  step unit time, 
             }               which is also equal to probability to die before dh 
             else               minus probability to die before dh-stepm . 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);               In version up to 0.92 likelihood was computed
           }          as if date of death was unknown. Death was treated as any other
         }          health state: the date of the interview describes the actual state
                  and not the date of a change in health state. The former idea was
         for(jk=-1; jk <=nlstate+ndeath; jk++)          to consider that at each interview the state was recorded
           for(m=-1; m <=nlstate+ndeath; m++)          (healthy, disable or death) and IMaCh was corrected; but when we
             if(freq[jk][m][i] !=0 ) {          introduced the exact date of death then we should have modified
             if(first==1)          the contribution of an exact death to the likelihood. This new
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          contribution is smaller and very dependent of the step unit
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          stepm. It is no more the probability to die between last interview
             }          and month of death but the probability to survive from last
         if(i <= (int) agemax)          interview up to one month before death multiplied by the
           fprintf(ficresp,"\n");          probability to die within a month. Thanks to Chris
         if(first==1)          Jackson for correcting this bug.  Former versions increased
           printf("Others in log...\n");          mortality artificially. The bad side is that we add another loop
         fprintf(ficlog,"\n");          which slows down the processing. The difference can be up to 10%
       }          lower mortality.
     }            */
   }            lli=log(out[s1][s2] - savm[s1][s2]);
   dateintmean=dateintsum/k2cpt;  
    
   fclose(ficresp);          } else if  (s2==-2) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            for (j=1,survp=0. ; j<=nlstate; j++) 
   free_vector(pp,1,nlstate);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              /*survp += out[s1][j]; */
   /* End of Freq */            lli= log(survp);
 }          }
           
 /************ Prevalence ********************/          else if  (s2==-4) { 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            for (j=3,survp=0. ; j<=nlstate; j++)  
 {  /* Some frequencies */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              lli= log(survp); 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          } 
   double ***freq; /* Frequencies */  
   double *pp;          else if  (s2==-5) { 
   double pos, k2;            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   pp=vector(1,nlstate);            lli= log(survp); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          } 
            
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          else{
   j1=0;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   j=cptcoveff;          } 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
   for(k1=1; k1<=j;k1++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for(i1=1; i1<=ncodemax[k1];i1++){          ipmx +=1;
       j1++;          sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (i=-1; i<=nlstate+ndeath; i++)          } /* end of wave */
         for (jk=-1; jk<=nlstate+ndeath; jk++)        } /* end of individual */
           for(m=agemin; m <= agemax+3; m++)    }  else if(mle==2){
             freq[i][jk][m]=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (i=1; i<=imx; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
         bool=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
         if  (cptcovn>0) {            for (j=1;j<=nlstate+ndeath;j++){
           for (z1=1; z1<=cptcoveff; z1++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               bool=0;            }
         }          for(d=0; d<=dh[mi][i]; d++){
         if (bool==1) {            newm=savm;
           for(m=firstpass; m<=lastpass; m++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             k2=anint[m][i]+(mint[m][i]/12.);            for (kk=1; kk<=cptcovage;kk++) {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if(agev[m][i]==0) agev[m][i]=agemax+1;            }
               if(agev[m][i]==1) agev[m][i]=agemax+2;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if (m<lastpass) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 if (calagedate>0)            savm=oldm;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            oldm=newm;
                 else          } /* end mult */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          s1=s[mw[mi][i]][i];
               }          s2=s[mw[mi+1][i]][i];
             }          bbh=(double)bh[mi][i]/(double)stepm; 
           }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         }          ipmx +=1;
       }          sw += weight[i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=1; jk <=nlstate ; jk++){        } /* end of wave */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      } /* end of individual */
             pp[jk] += freq[jk][m][i];    }  else if(mle==3){  /* exponential inter-extrapolation */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=-1, pos=0; m <=0 ; m++)        for(mi=1; mi<= wav[i]-1; mi++){
             pos += freq[jk][m][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
                      oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            }
             pp[jk] += freq[jk][m][i];          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
                    cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){                }
           if( i <= (int) agemax){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             if(pos>=1.e-5){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               probs[i][jk][j1]= pp[jk]/pos;            savm=oldm;
             }            oldm=newm;
           }          } /* end mult */
         }/* end jk */        
       }/* end i */          s1=s[mw[mi][i]][i];
     } /* end i1 */          s2=s[mw[mi+1][i]][i];
   } /* end k1 */          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            ipmx +=1;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          sw += weight[i];
   free_vector(pp,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
 }  /* End of Freq */      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
 /************* Waves Concatenation ***************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for(mi=1; mi<= wav[i]-1; mi++){
 {          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            for (j=1;j<=nlstate+ndeath;j++){
      Death is a valid wave (if date is known).              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            }
      and mw[mi+1][i]. dh depends on stepm.          for(d=0; d<dh[mi][i]; d++){
      */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i, mi, m;            for (kk=1; kk<=cptcovage;kk++) {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      double sum=0., jmean=0.;*/            }
   int first;          
   int j, k=0,jk, ju, jl;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double sum=0.;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   first=0;            savm=oldm;
   jmin=1e+5;            oldm=newm;
   jmax=-1;          } /* end mult */
   jmean=0.;        
   for(i=1; i<=imx; i++){          s1=s[mw[mi][i]][i];
     mi=0;          s2=s[mw[mi+1][i]][i];
     m=firstpass;          if( s2 > nlstate){ 
     while(s[m][i] <= nlstate){            lli=log(out[s1][s2] - savm[s1][s2]);
       if(s[m][i]>=1)          }else{
         mw[++mi][i]=m;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       if(m >=lastpass)          }
         break;          ipmx +=1;
       else          sw += weight[i];
         m++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }/* end while */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     if (s[m][i] > nlstate){        } /* end of wave */
       mi++;     /* Death is another wave */      } /* end of individual */
       /* if(mi==0)  never been interviewed correctly before death */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
          /* Only death is a correct wave */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       mw[mi][i]=m;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     wav[i]=mi;            for (j=1;j<=nlstate+ndeath;j++){
     if(mi==0){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(first==0){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);            }
         first=1;          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
       if(first==1){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     } /* end mi==0 */            }
   }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=imx; i++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(mi=1; mi<wav[i];mi++){            savm=oldm;
       if (stepm <=0)            oldm=newm;
         dh[mi][i]=1;          } /* end mult */
       else{        
         if (s[mw[mi+1][i]][i] > nlstate) {          s1=s[mw[mi][i]][i];
           if (agedc[i] < 2*AGESUP) {          s2=s[mw[mi+1][i]][i];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           if(j==0) j=1;  /* Survives at least one month after exam */          ipmx +=1;
           k=k+1;          sw += weight[i];
           if (j >= jmax) jmax=j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if (j <= jmin) jmin=j;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           sum=sum+j;        } /* end of wave */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      } /* end of individual */
           }    } /* End of if */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         else{    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           k=k+1;    return -l;
           if (j >= jmax) jmax=j;  }
           else if (j <= jmin)jmin=j;  
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  /*************** log-likelihood *************/
           sum=sum+j;  double funcone( double *x)
         }  {
         jk= j/stepm;    /* Same as likeli but slower because of a lot of printf and if */
         jl= j -jk*stepm;    int i, ii, j, k, mi, d, kk;
         ju= j -(jk+1)*stepm;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         if(jl <= -ju)    double **out;
           dh[mi][i]=jk;    double lli; /* Individual log likelihood */
         else    double llt;
           dh[mi][i]=jk+1;    int s1, s2;
         if(dh[mi][i]==0)    double bbh, survp;
           dh[mi][i]=1; /* At least one step */    /*extern weight */
       }    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   jmean=sum/k;      printf(" %d\n",s[4][i]);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    cov[1]=1.;
  }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int Ndum[20],ij=1, k, j, i;      for(mi=1; mi<= wav[i]-1; mi++){
   int cptcode=0;        for (ii=1;ii<=nlstate+ndeath;ii++)
   cptcoveff=0;          for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=0; k<19; k++) Ndum[k]=0;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=1; k<=7; k++) ncodemax[k]=0;          }
         for(d=0; d<dh[mi][i]; d++){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          newm=savm;
     for (i=1; i<=imx; i++) {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       ij=(int)(covar[Tvar[j]][i]);          for (kk=1; kk<=cptcovage;kk++) {
       Ndum[ij]++;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          }
       if (ij > cptcode) cptcode=ij;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
     for (i=0; i<=cptcode; i++) {          oldm=newm;
       if(Ndum[i]!=0) ncodemax[j]++;        } /* end mult */
     }        
     ij=1;        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
     for (i=1; i<=ncodemax[j]; i++) {        /* bias is positive if real duration
       for (k=0; k<=19; k++) {         * is higher than the multiple of stepm and negative otherwise.
         if (Ndum[k] != 0) {         */
           nbcode[Tvar[j]][ij]=k;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
                    lli=log(out[s1][s2] - savm[s1][s2]);
           ij++;        } else if  (s2==-2) {
         }          for (j=1,survp=0. ; j<=nlstate; j++) 
         if (ij > ncodemax[j]) break;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }            lli= log(survp);
     }        }else if (mle==1){
   }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
  for (k=0; k<19; k++) Ndum[k]=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
  for (i=1; i<=ncovmodel-2; i++) {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
    ij=Tvar[i];        } else if (mle==4){  /* mle=4 no inter-extrapolation */
    Ndum[ij]++;          lli=log(out[s1][s2]); /* Original formula */
  }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
  ij=1;        } /* End of if */
  for (i=1; i<=10; i++) {        ipmx +=1;
    if((Ndum[i]!=0) && (i<=ncovcol)){        sw += weight[i];
      Tvaraff[ij]=i;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      ij++;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    }        if(globpr){
  }          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     %11.6f %11.6f %11.6f ", \
  cptcoveff=ij-1;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 /*********** Health Expectancies ****************/            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          }
           fprintf(ficresilk," %10.6f\n", -llt);
 {        }
   /* Health expectancies */      } /* end of wave */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    } /* end of individual */
   double age, agelim, hf;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double ***p3mat,***varhe;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double **dnewm,**doldm;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double *xp;    if(globpr==0){ /* First time we count the contributions and weights */
   double **gp, **gm;      gipmx=ipmx;
   double ***gradg, ***trgradg;      gsw=sw;
   int theta;    }
     return -l;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);  /*************** function likelione ***********/
    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   fprintf(ficreseij,"# Health expectancies\n");  {
   fprintf(ficreseij,"# Age");    /* This routine should help understanding what is done with 
   for(i=1; i<=nlstate;i++)       the selection of individuals/waves and
     for(j=1; j<=nlstate;j++)       to check the exact contribution to the likelihood.
       fprintf(ficreseij," %1d-%1d (SE)",i,j);       Plotting could be done.
   fprintf(ficreseij,"\n");     */
     int k;
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);    if(*globpri !=0){ /* Just counts and sums, no printings */
   }      strcpy(fileresilk,"ilk"); 
   else  hstepm=estepm;        strcat(fileresilk,fileres);
   /* We compute the life expectancy from trapezoids spaced every estepm months      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
    * This is mainly to measure the difference between two models: for example        printf("Problem with resultfile: %s\n", fileresilk);
    * if stepm=24 months pijx are given only every 2 years and by summing them        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
    * we are calculating an estimate of the Life Expectancy assuming a linear      }
    * progression inbetween and thus overestimating or underestimating according      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
    * to the curvature of the survival function. If, for the same date, we      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
    * to compare the new estimate of Life expectancy with the same linear      for(k=1; k<=nlstate; k++) 
    * hypothesis. A more precise result, taking into account a more precise        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
    * curvature will be obtained if estepm is as small as stepm. */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    *fretone=(*funcone)(p);
      nhstepm is the number of hstepm from age to agelim    if(*globpri !=0){
      nstepm is the number of stepm from age to agelin.      fclose(ficresilk);
      Look at hpijx to understand the reason of that which relies in memory size      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
      and note for a fixed period like estepm months */      fflush(fichtm); 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    } 
      survival function given by stepm (the optimization length). Unfortunately it    return;
      means that if the survival funtion is printed only each two years of age and if  }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  
   */  /*********** Maximum Likelihood Estimation ***************/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   agelim=AGESUP;  {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i,j, iter;
     /* nhstepm age range expressed in number of stepm */    double **xi;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    double fret;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double fretone; /* Only one call to likelihood */
     /* if (stepm >= YEARM) hstepm=1;*/    /*  char filerespow[FILENAMELENGTH];*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    xi=matrix(1,npar,1,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      for (j=1;j<=npar;j++)
     gp=matrix(0,nhstepm,1,nlstate*2);        xi[i][j]=(i==j ? 1.0 : 0.0);
     gm=matrix(0,nhstepm,1,nlstate*2);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    strcat(filerespow,fileres);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        printf("Problem with resultfile: %s\n", filerespow);
        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
     /* Computing Variances of health expectancies */      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      for(theta=1; theta <=npar; theta++){    fprintf(ficrespow,"\n");
       for(i=1; i<=npar; i++){  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    powell(p,xi,npar,ftol,&iter,&fret,func);
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_matrix(xi,1,npar,1,npar);
      fclose(ficrespow);
       cptj=0;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(j=1; j<= nlstate; j++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(i=1; i<=nlstate; i++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }  /**** Computes Hessian and covariance matrix ***/
         }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
          double  **a,**y,*x,pd;
          double **hess;
       for(i=1; i<=npar; i++)    int i, j,jk;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int *indx;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
          double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       cptj=0;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       for(j=1; j<= nlstate; j++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
         for(i=1;i<=nlstate;i++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
           cptj=cptj+1;    double gompertz(double p[]);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    hess=matrix(1,npar,1,npar);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    printf("\nCalculation of the hessian matrix. Wait...\n");
         }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       }    for (i=1;i<=npar;i++){
       for(j=1; j<= nlstate*2; j++)      printf("%d",i);fflush(stdout);
         for(h=0; h<=nhstepm-1; h++){      fprintf(ficlog,"%d",i);fflush(ficlog);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];     
         }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
      }      
          /*  printf(" %f ",p[i]);
 /* End theta */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    
     for (i=1;i<=npar;i++) {
      for(h=0; h<=nhstepm-1; h++)      for (j=1;j<=npar;j++)  {
       for(j=1; j<=nlstate*2;j++)        if (j>i) { 
         for(theta=1; theta <=npar; theta++)          printf(".%d%d",i,j);fflush(stdout);
           trgradg[h][j][theta]=gradg[h][theta][j];          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
                hess[i][j]=hessij(p,delti,i,j,func,npar);
           
      for(i=1;i<=nlstate*2;i++)          hess[j][i]=hess[i][j];    
       for(j=1;j<=nlstate*2;j++)          /*printf(" %lf ",hess[i][j]);*/
         varhe[i][j][(int)age] =0.;        }
       }
      printf("%d|",(int)age);fflush(stdout);    }
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    printf("\n");
      for(h=0;h<=nhstepm-1;h++){    fprintf(ficlog,"\n");
       for(k=0;k<=nhstepm-1;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         for(i=1;i<=nlstate*2;i++)    
           for(j=1;j<=nlstate*2;j++)    a=matrix(1,npar,1,npar);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    y=matrix(1,npar,1,npar);
       }    x=vector(1,npar);
     }    indx=ivector(1,npar);
     /* Computing expectancies */    for (i=1;i<=npar;i++)
     for(i=1; i<=nlstate;i++)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       for(j=1; j<=nlstate;j++)    ludcmp(a,npar,indx,&pd);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    for (j=1;j<=npar;j++) {
                for (i=1;i<=npar;i++) x[i]=0;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      x[j]=1;
       lubksb(a,npar,indx,x);
         }      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
     fprintf(ficreseij,"%3.0f",age );      }
     cptj=0;    }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    printf("\n#Hessian matrix#\n");
         cptj++;    fprintf(ficlog,"\n#Hessian matrix#\n");
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    for (i=1;i<=npar;i++) { 
       }      for (j=1;j<=npar;j++) { 
     fprintf(ficreseij,"\n");        printf("%.3e ",hess[i][j]);
            fprintf(ficlog,"%.3e ",hess[i][j]);
     free_matrix(gm,0,nhstepm,1,nlstate*2);      }
     free_matrix(gp,0,nhstepm,1,nlstate*2);      printf("\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      fprintf(ficlog,"\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }    /* Recompute Inverse */
   printf("\n");    for (i=1;i<=npar;i++)
   fprintf(ficlog,"\n");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);    /*  printf("\n#Hessian matrix recomputed#\n");
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    for (j=1;j<=npar;j++) {
 }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
 /************ Variance ******************/      lubksb(a,npar,indx,x);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)      for (i=1;i<=npar;i++){ 
 {        y[i][j]=x[i];
   /* Variance of health expectancies */        printf("%.3e ",y[i][j]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        fprintf(ficlog,"%.3e ",y[i][j]);
   /* double **newm;*/      }
   double **dnewm,**doldm;      printf("\n");
   double **dnewmp,**doldmp;      fprintf(ficlog,"\n");
   int i, j, nhstepm, hstepm, h, nstepm ;    }
   int k, cptcode;    */
   double *xp;  
   double **gp, **gm;  /* for var eij */    free_matrix(a,1,npar,1,npar);
   double ***gradg, ***trgradg; /*for var eij */    free_matrix(y,1,npar,1,npar);
   double **gradgp, **trgradgp; /* for var p point j */    free_vector(x,1,npar);
   double *gpp, *gmp; /* for var p point j */    free_ivector(indx,1,npar);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    free_matrix(hess,1,npar,1,npar);
   double ***p3mat;  
   double age,agelim, hf;  
   int theta;  }
   char digit[4];  
   char digitp[16];  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   char fileresprobmorprev[FILENAMELENGTH];  {
     int i;
   if(popbased==1)    int l=1, lmax=20;
     strcpy(digitp,"-populbased-");    double k1,k2;
   else    double p2[NPARMAX+1];
     strcpy(digitp,"-stablbased-");    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   strcpy(fileresprobmorprev,"prmorprev");    double fx;
   sprintf(digit,"%-d",ij);    int k=0,kmax=10;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    double l1;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */  
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    fx=func(x);
   strcat(fileresprobmorprev,fileres);    for (i=1;i<=npar;i++) p2[i]=x[i];
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    for(l=0 ; l <=lmax; l++){
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      l1=pow(10,l);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);      delts=delt;
   }      for(k=1 ; k <kmax; k=k+1){
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        delt = delta*(l1*k);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        p2[theta]=x[theta] +delt;
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");        k1=func(p2)-fx;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);        p2[theta]=x[theta]-delt;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){        k2=func(p2)-fx;
     fprintf(ficresprobmorprev," p.%-d SE",j);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     for(i=1; i<=nlstate;i++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);        
   }    #ifdef DEBUG
   fprintf(ficresprobmorprev,"\n");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  #endif
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     exit(0);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   }          k=kmax;
   else{        }
     fprintf(ficgp,"\n# Routine varevsij");        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   }          k=kmax; l=lmax*10.;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        }
     printf("Problem with html file: %s\n", optionfilehtm);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          delts=delt;
     exit(0);        }
   }      }
   else{    }
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    delti[theta]=delts;
   }    return res; 
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    
   }
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   for(i=1; i<=nlstate;i++)  {
     for(j=1; j<=nlstate;j++)    int i;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    int l=1, l1, lmax=20;
   fprintf(ficresvij,"\n");    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
   xp=vector(1,npar);    int k;
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    fx=func(x);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    for (k=1; k<=2; k++) {
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   gpp=vector(nlstate+1,nlstate+ndeath);      k1=func(p2)-fx;
   gmp=vector(nlstate+1,nlstate+ndeath);    
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      p2[thetai]=x[thetai]+delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   if(estepm < stepm){      k2=func(p2)-fx;
     printf ("Problem %d lower than %d\n",estepm, stepm);    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
   else  hstepm=estepm;        p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   /* For example we decided to compute the life expectancy with the smallest unit */      k3=func(p2)-fx;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    
      nhstepm is the number of hstepm from age to agelim      p2[thetai]=x[thetai]-delti[thetai]/k;
      nstepm is the number of stepm from age to agelin.      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      Look at hpijx to understand the reason of that which relies in memory size      k4=func(p2)-fx;
      and note for a fixed period like k years */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  #ifdef DEBUG
      survival function given by stepm (the optimization length). Unfortunately it      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      means that if the survival funtion is printed only each two years of age and if      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  #endif
      results. So we changed our mind and took the option of the best precision.    }
   */    return res;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  }
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /************** Inverse of matrix **************/
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  void ludcmp(double **a, int n, int *indx, double *d) 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  { 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i,imax,j,k; 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double big,dum,sum,temp; 
     gp=matrix(0,nhstepm,1,nlstate);    double *vv; 
     gm=matrix(0,nhstepm,1,nlstate);   
     vv=vector(1,n); 
     *d=1.0; 
     for(theta=1; theta <=npar; theta++){    for (i=1;i<=n;i++) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */      big=0.0; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (j=1;j<=n;j++) 
       }        if ((temp=fabs(a[i][j])) > big) big=temp; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      vv[i]=1.0/big; 
     } 
       if (popbased==1) {    for (j=1;j<=n;j++) { 
         for(i=1; i<=nlstate;i++)      for (i=1;i<j;i++) { 
           prlim[i][i]=probs[(int)age][i][ij];        sum=a[i][j]; 
       }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
       for(j=1; j<= nlstate; j++){      } 
         for(h=0; h<=nhstepm; h++){      big=0.0; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for (i=j;i<=n;i++) { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        sum=a[i][j]; 
         }        for (k=1;k<j;k++) 
       }          sum -= a[i][k]*a[k][j]; 
       /* This for computing forces of mortality (h=1)as a weighted average */        a[i][j]=sum; 
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         for(i=1; i<= nlstate; i++)          big=dum; 
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          imax=i; 
       }            } 
       /* end force of mortality */      } 
       if (j != imax) { 
       for(i=1; i<=npar; i++) /* Computes gradient */        for (k=1;k<=n;k++) { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          dum=a[imax][k]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            a[imax][k]=a[j][k]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          a[j][k]=dum; 
          } 
       if (popbased==1) {        *d = -(*d); 
         for(i=1; i<=nlstate;i++)        vv[imax]=vv[j]; 
           prlim[i][i]=probs[(int)age][i][ij];      } 
       }      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
       for(j=1; j<= nlstate; j++){      if (j != n) { 
         for(h=0; h<=nhstepm; h++){        dum=1.0/(a[j][j]); 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      } 
         }    } 
       }    free_vector(vv,1,n);  /* Doesn't work */
       /* This for computing force of mortality (h=1)as a weighted average */  ;
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  } 
         for(i=1; i<= nlstate; i++)  
           gmp[j] += prlim[i][i]*p3mat[i][j][1];  void lubksb(double **a, int n, int *indx, double b[]) 
       }      { 
       /* end force of mortality */    int i,ii=0,ip,j; 
     double sum; 
       for(j=1; j<= nlstate; j++) /* vareij */   
         for(h=0; h<=nhstepm; h++){    for (i=1;i<=n;i++) { 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      ip=indx[i]; 
         }      sum=b[ip]; 
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      b[ip]=b[i]; 
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      if (ii) 
       }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
     } /* End theta */      b[i]=sum; 
     } 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    for (i=n;i>=1;i--) { 
       sum=b[i]; 
     for(h=0; h<=nhstepm; h++) /* veij */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(j=1; j<=nlstate;j++)      b[i]=sum/a[i][i]; 
         for(theta=1; theta <=npar; theta++)    } 
           trgradg[h][j][theta]=gradg[h][theta][j];  } 
   
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */  void pstamp(FILE *fichier)
       for(theta=1; theta <=npar; theta++)  {
         trgradgp[j][theta]=gradgp[theta][j];    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)  /************ Frequencies ********************/
       for(j=1;j<=nlstate;j++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         vareij[i][j][(int)age] =0.;  {  /* Some frequencies */
     
     for(h=0;h<=nhstepm;h++){    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       for(k=0;k<=nhstepm;k++){    int first;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double ***freq; /* Frequencies */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    double *pp, **prop;
         for(i=1;i<=nlstate;i++)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           for(j=1;j<=nlstate;j++)    char fileresp[FILENAMELENGTH];
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    
       }    pp=vector(1,nlstate);
     }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
     /* pptj */    strcat(fileresp,fileres);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       for(i=nlstate+1;i<=nlstate+ndeath;i++)      exit(0);
         varppt[j][i]=doldmp[j][i];    }
     /* end ppptj */    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      j1=0;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    
      j=cptcoveff;
     if (popbased==1) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for(i=1; i<=nlstate;i++)  
         prlim[i][i]=probs[(int)age][i][ij];    first=1;
     }  
        for(k1=1; k1<=j;k1++){
     /* This for computing force of mortality (h=1)as a weighted average */      for(i1=1; i1<=ncodemax[k1];i1++){
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){        j1++;
       for(i=1; i<= nlstate; i++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];          scanf("%d", i);*/
     }            for (i=-5; i<=nlstate+ndeath; i++)  
     /* end force of mortality */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);              freq[i][jk][m]=0;
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));      for (i=1; i<=nlstate; i++)  
       for(i=1; i<=nlstate;i++){        for(m=iagemin; m <= iagemax+3; m++)
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);          prop[i][m]=0;
       }        
     }        dateintsum=0;
     fprintf(ficresprobmorprev,"\n");        k2cpt=0;
         for (i=1; i<=imx; i++) {
     fprintf(ficresvij,"%.0f ",age );          bool=1;
     for(i=1; i<=nlstate;i++)          if  (cptcovn>0) {
       for(j=1; j<=nlstate;j++){            for (z1=1; z1<=cptcoveff; z1++) 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       }                bool=0;
     fprintf(ficresvij,"\n");          }
     free_matrix(gp,0,nhstepm,1,nlstate);          if (bool==1){
     free_matrix(gm,0,nhstepm,1,nlstate);            for(m=firstpass; m<=lastpass; m++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              k2=anint[m][i]+(mint[m][i]/12.);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   } /* End age */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   free_vector(gpp,nlstate+1,nlstate+ndeath);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   free_vector(gmp,nlstate+1,nlstate+ndeath);                if (m<lastpass) {
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");                }
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */                
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);                  dateintsum=dateintsum+k2;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);                  k2cpt++;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);                }
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);                /*}*/
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);            }
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);          }
         }
   free_vector(xp,1,npar);         
   free_matrix(doldm,1,nlstate,1,nlstate);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   free_matrix(dnewm,1,nlstate,1,npar);        pstamp(ficresp);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        if  (cptcovn>0) {
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);          fprintf(ficresp, "\n#********** Variable "); 
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fclose(ficresprobmorprev);          fprintf(ficresp, "**********\n#");
   fclose(ficgp);        }
   fclose(fichtm);        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 }        fprintf(ficresp, "\n");
         
 /************ Variance of prevlim ******************/        for(i=iagemin; i <= iagemax+3; i++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          if(i==iagemax+3){
 {            fprintf(ficlog,"Total");
   /* Variance of prevalence limit */          }else{
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            if(first==1){
   double **newm;              first=0;
   double **dnewm,**doldm;              printf("See log file for details...\n");
   int i, j, nhstepm, hstepm;            }
   int k, cptcode;            fprintf(ficlog,"Age %d", i);
   double *xp;          }
   double *gp, *gm;          for(jk=1; jk <=nlstate ; jk++){
   double **gradg, **trgradg;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   double age,agelim;              pp[jk] += freq[jk][m][i]; 
   int theta;          }
              for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");            for(m=-1, pos=0; m <=0 ; m++)
   fprintf(ficresvpl,"# Age");              pos += freq[jk][m][i];
   for(i=1; i<=nlstate;i++)            if(pp[jk]>=1.e-10){
       fprintf(ficresvpl," %1d-%1d",i,i);              if(first==1){
   fprintf(ficresvpl,"\n");              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
   xp=vector(1,npar);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   dnewm=matrix(1,nlstate,1,npar);            }else{
   doldm=matrix(1,nlstate,1,nlstate);              if(first==1)
                  printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   hstepm=1*YEARM; /* Every year of age */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            }
   agelim = AGESUP;          }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for(jk=1; jk <=nlstate ; jk++){
     if (stepm >= YEARM) hstepm=1;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              pp[jk] += freq[jk][m][i];
     gradg=matrix(1,npar,1,nlstate);          }       
     gp=vector(1,nlstate);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     gm=vector(1,nlstate);            pos += pp[jk];
             posprop += prop[jk][i];
     for(theta=1; theta <=npar; theta++){          }
       for(i=1; i<=npar; i++){ /* Computes gradient */          for(jk=1; jk <=nlstate ; jk++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            if(pos>=1.e-5){
       }              if(first==1)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(i=1;i<=nlstate;i++)              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         gp[i] = prlim[i][i];            }else{
                  if(first==1)
       for(i=1; i<=npar; i++) /* Computes gradient */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
       for(i=1;i<=nlstate;i++)            if( i <= iagemax){
         gm[i] = prlim[i][i];              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for(i=1;i<=nlstate;i++)                /*probs[i][jk][j1]= pp[jk]/pos;*/
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     } /* End theta */              }
               else
     trgradg =matrix(1,nlstate,1,npar);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
     for(j=1; j<=nlstate;j++)          }
       for(theta=1; theta <=npar; theta++)          
         trgradg[j][theta]=gradg[theta][j];          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
     for(i=1;i<=nlstate;i++)              if(freq[jk][m][i] !=0 ) {
       varpl[i][(int)age] =0.;              if(first==1)
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(i=1;i<=nlstate;i++)              }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          if(i <= iagemax)
             fprintf(ficresp,"\n");
     fprintf(ficresvpl,"%.0f ",age );          if(first==1)
     for(i=1; i<=nlstate;i++)            printf("Others in log...\n");
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          fprintf(ficlog,"\n");
     fprintf(ficresvpl,"\n");        }
     free_vector(gp,1,nlstate);      }
     free_vector(gm,1,nlstate);    }
     free_matrix(gradg,1,npar,1,nlstate);    dateintmean=dateintsum/k2cpt; 
     free_matrix(trgradg,1,nlstate,1,npar);   
   } /* End age */    fclose(ficresp);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   free_vector(xp,1,npar);    free_vector(pp,1,nlstate);
   free_matrix(doldm,1,nlstate,1,npar);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   free_matrix(dnewm,1,nlstate,1,nlstate);    /* End of Freq */
   }
 }  
   /************ Prevalence ********************/
 /************ Variance of one-step probabilities  ******************/  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  {  
 {    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   int i, j=0,  i1, k1, l1, t, tj;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   int k2, l2, j1,  z1;       We still use firstpass and lastpass as another selection.
   int k=0,l, cptcode;    */
   int first=1, first1;   
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   double **dnewm,**doldm;    double ***freq; /* Frequencies */
   double *xp;    double *pp, **prop;
   double *gp, *gm;    double pos,posprop; 
   double **gradg, **trgradg;    double  y2; /* in fractional years */
   double **mu;    int iagemin, iagemax;
   double age,agelim, cov[NCOVMAX];  
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    iagemin= (int) agemin;
   int theta;    iagemax= (int) agemax;
   char fileresprob[FILENAMELENGTH];    /*pp=vector(1,nlstate);*/
   char fileresprobcov[FILENAMELENGTH];    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   char fileresprobcor[FILENAMELENGTH];    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
   double ***varpij;    
     j=cptcoveff;
   strcpy(fileresprob,"prob");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   strcat(fileresprob,fileres);    
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    for(k1=1; k1<=j;k1++){
     printf("Problem with resultfile: %s\n", fileresprob);      for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);        j1++;
   }        
   strcpy(fileresprobcov,"probcov");        for (i=1; i<=nlstate; i++)  
   strcat(fileresprobcov,fileres);          for(m=iagemin; m <= iagemax+3; m++)
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {            prop[i][m]=0.0;
     printf("Problem with resultfile: %s\n", fileresprobcov);       
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        for (i=1; i<=imx; i++) { /* Each individual */
   }          bool=1;
   strcpy(fileresprobcor,"probcor");          if  (cptcovn>0) {
   strcat(fileresprobcor,fileres);            for (z1=1; z1<=cptcoveff; z1++) 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     printf("Problem with resultfile: %s\n", fileresprobcor);                bool=0;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);          } 
   }          if (bool==1) { 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                  if (s[m][i]>0 && s[m][i]<=nlstate) { 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   fprintf(ficresprob,"# Age");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");                  prop[s[m][i]][iagemax+3] += weight[i]; 
   fprintf(ficresprobcov,"# Age");                } 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");              }
   fprintf(ficresprobcov,"# Age");            } /* end selection of waves */
           }
         }
   for(i=1; i<=nlstate;i++)        for(i=iagemin; i <= iagemax+3; i++){  
     for(j=1; j<=(nlstate+ndeath);j++){          
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);            posprop += prop[jk][i]; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          } 
     }    
   fprintf(ficresprob,"\n");          for(jk=1; jk <=nlstate ; jk++){     
   fprintf(ficresprobcov,"\n");            if( i <=  iagemax){ 
   fprintf(ficresprobcor,"\n");              if(posprop>=1.e-5){ 
   xp=vector(1,npar);                probs[i][jk][j1]= prop[jk][i]/posprop;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);              } 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));            } 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          }/* end jk */ 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        }/* end i */ 
   first=1;      } /* end i1 */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    } /* end k1 */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     exit(0);    /*free_vector(pp,1,nlstate);*/
   }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   else{  }  /* End of prevalence */
     fprintf(ficgp,"\n# Routine varprob");  
   }  /************* Waves Concatenation ***************/
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  
     printf("Problem with html file: %s\n", optionfilehtm);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  {
     exit(0);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   }       Death is a valid wave (if date is known).
   else{       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     fprintf(fichtm,"\n");       and mw[mi+1][i]. dh depends on stepm.
        */
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");  
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    int i, mi, m;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
   }    int first;
     int j, k=0,jk, ju, jl;
      double sum=0.;
   cov[1]=1;    first=0;
   tj=cptcoveff;    jmin=1e+5;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    jmax=-1;
   j1=0;    jmean=0.;
   for(t=1; t<=tj;t++){    for(i=1; i<=imx; i++){
     for(i1=1; i1<=ncodemax[t];i1++){      mi=0;
       j1++;      m=firstpass;
            while(s[m][i] <= nlstate){
       if  (cptcovn>0) {        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         fprintf(ficresprob, "\n#********** Variable ");          mw[++mi][i]=m;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if(m >=lastpass)
         fprintf(ficresprob, "**********\n#");          break;
         fprintf(ficresprobcov, "\n#********** Variable ");        else
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          m++;
         fprintf(ficresprobcov, "**********\n#");      }/* end while */
              if (s[m][i] > nlstate){
         fprintf(ficgp, "\n#********** Variable ");        mi++;     /* Death is another wave */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        /* if(mi==0)  never been interviewed correctly before death */
         fprintf(ficgp, "**********\n#");           /* Only death is a correct wave */
                mw[mi][i]=m;
              }
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      wav[i]=mi;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      if(mi==0){
                nbwarn++;
         fprintf(ficresprobcor, "\n#********** Variable ");            if(first==0){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         fprintf(ficgp, "**********\n#");              first=1;
       }        }
              if(first==1){
       for (age=bage; age<=fage; age ++){          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         cov[2]=age;        }
         for (k=1; k<=cptcovn;k++) {      } /* end mi==0 */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    } /* End individuals */
         }  
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for(i=1; i<=imx; i++){
         for (k=1; k<=cptcovprod;k++)      for(mi=1; mi<wav[i];mi++){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        if (stepm <=0)
                  dh[mi][i]=1;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        else{
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         gp=vector(1,(nlstate)*(nlstate+ndeath));            if (agedc[i] < 2*AGESUP) {
         gm=vector(1,(nlstate)*(nlstate+ndeath));              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                  if(j==0) j=1;  /* Survives at least one month after exam */
         for(theta=1; theta <=npar; theta++){              else if(j<0){
           for(i=1; i<=npar; i++)                nberr++;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                          j=1; /* Temporary Dangerous patch */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                          fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           k=0;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           for(i=1; i<= (nlstate); i++){              }
             for(j=1; j<=(nlstate+ndeath);j++){              k=k+1;
               k=k+1;              if (j >= jmax){
               gp[k]=pmmij[i][j];                jmax=j;
             }                ijmax=i;
           }              }
                        if (j <= jmin){
           for(i=1; i<=npar; i++)                jmin=j;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);                ijmin=i;
                  }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              sum=sum+j;
           k=0;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           for(i=1; i<=(nlstate); i++){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             for(j=1; j<=(nlstate+ndeath);j++){            }
               k=k+1;          }
               gm[k]=pmmij[i][j];          else{
             }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
        
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)            k=k+1;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              if (j >= jmax) {
         }              jmax=j;
               ijmax=i;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            }
           for(theta=1; theta <=npar; theta++)            else if (j <= jmin){
             trgradg[j][theta]=gradg[theta][j];              jmin=j;
                      ijmin=i;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                    /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         pmij(pmmij,cov,ncovmodel,x,nlstate);            if(j<0){
                      nberr++;
         k=0;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for(i=1; i<=(nlstate); i++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           for(j=1; j<=(nlstate+ndeath);j++){            }
             k=k+1;            sum=sum+j;
             mu[k][(int) age]=pmmij[i][j];          }
           }          jk= j/stepm;
         }          jl= j -jk*stepm;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          ju= j -(jk+1)*stepm;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             varpij[i][j][(int)age] = doldm[i][j];            if(jl==0){
               dh[mi][i]=jk;
         /*printf("\n%d ",(int)age);              bh[mi][i]=0;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            }else{ /* We want a negative bias in order to only have interpolation ie
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                    * at the price of an extra matrix product in likelihood */
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              dh[mi][i]=jk+1;
      }*/              bh[mi][i]=ju;
             }
         fprintf(ficresprob,"\n%d ",(int)age);          }else{
         fprintf(ficresprobcov,"\n%d ",(int)age);            if(jl <= -ju){
         fprintf(ficresprobcor,"\n%d ",(int)age);              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)                                   * is higher than the multiple of stepm and negative otherwise.
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));                                   */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            else{
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);              dh[mi][i]=jk+1;
         }              bh[mi][i]=ju;
         i=0;            }
         for (k=1; k<=(nlstate);k++){            if(dh[mi][i]==0){
           for (l=1; l<=(nlstate+ndeath);l++){              dh[mi][i]=1; /* At least one step */
             i=i++;              bh[mi][i]=ju; /* At least one step */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            }
             for (j=1; j<=i;j++){          } /* end if mle */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      } /* end wave */
             }    }
           }    jmean=sum/k;
         }/* end of loop for state */    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       } /* end of loop for age */    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
       /* Confidence intervalle of pij  */  
       /*  /*********** Tricode ****************************/
       fprintf(ficgp,"\nset noparametric;unset label");  void tricode(int *Tvar, int **nbcode, int imx)
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  {
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    int Ndum[20],ij=1, k, j, i, maxncov=19;
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    int cptcode=0;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    cptcoveff=0; 
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);   
       */    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  
       first1=1;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (k2=1; k2<=(nlstate);k2++){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         for (l2=1; l2<=(nlstate+ndeath);l2++){                                 modality*/ 
           if(l2==k2) continue;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           j=(k2-1)*(nlstate+ndeath)+l2;        Ndum[ij]++; /*store the modality */
           for (k1=1; k1<=(nlstate);k1++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
             for (l1=1; l1<=(nlstate+ndeath);l1++){        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
               if(l1==k1) continue;                                         Tvar[j]. If V=sex and male is 0 and 
               i=(k1-1)*(nlstate+ndeath)+l1;                                         female is 1, then  cptcode=1.*/
               if(i<=j) continue;      }
               for (age=bage; age<=fage; age ++){  
                 if ((int)age %5==0){      for (i=0; i<=cptcode; i++) {
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;      ij=1; 
                   mu2=mu[j][(int) age]/stepm*YEARM;      for (i=1; i<=ncodemax[j]; i++) {
                   c12=cv12/sqrt(v1*v2);        for (k=0; k<= maxncov; k++) {
                   /* Computing eigen value of matrix of covariance */          if (Ndum[k] != 0) {
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            nbcode[Tvar[j]][ij]=k; 
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                   /* Eigen vectors */            
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            ij++;
                   /*v21=sqrt(1.-v11*v11); *//* error */          }
                   v21=(lc1-v1)/cv12*v11;          if (ij > ncodemax[j]) break; 
                   v12=-v21;        }  
                   v22=v11;      } 
                   tnalp=v21/v11;    }  
                   if(first1==1){  
                     first1=0;   for (k=0; k< maxncov; k++) Ndum[k]=0;
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  
                   }   for (i=1; i<=ncovmodel-2; i++) { 
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
                   /*printf(fignu*/     ij=Tvar[i];
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */     Ndum[ij]++;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */   }
                   if(first==1){  
                     first=0;   ij=1;
                     fprintf(ficgp,"\nset parametric;unset label");   for (i=1; i<= maxncov; i++) {
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);     if((Ndum[i]!=0) && (i<=ncovcol)){
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");       Tvaraff[ij]=i; /*For printing */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);       ij++;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);     }
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);   }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);   
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);   cptcoveff=ij-1; /*Number of simple covariates*/
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  /*********** Health Expectancies ****************/
                   }else{  
                     first=0;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  {
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    /* Health expectancies, no variances */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    double age, agelim, hf;
                   }/* if first */    double ***p3mat;
                 } /* age mod 5 */    double eip;
               } /* end loop age */  
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);    pstamp(ficreseij);
               first=1;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
             } /*l12 */    fprintf(ficreseij,"# Age");
           } /* k12 */    for(i=1; i<=nlstate;i++){
         } /*l1 */      for(j=1; j<=nlstate;j++){
       }/* k1 */        fprintf(ficreseij," e%1d%1d ",i,j);
     } /* loop covariates */      }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      fprintf(ficreseij," e%1d. ",i);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    fprintf(ficreseij,"\n");
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
   free_vector(xp,1,npar);    }
   fclose(ficresprob);    else  hstepm=estepm;   
   fclose(ficresprobcov);    /* We compute the life expectancy from trapezoids spaced every estepm months
   fclose(ficresprobcor);     * This is mainly to measure the difference between two models: for example
   fclose(ficgp);     * if stepm=24 months pijx are given only every 2 years and by summing them
   fclose(fichtm);     * we are calculating an estimate of the Life Expectancy assuming a linear 
 }     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
 /******************* Printing html file ***********/     * to compare the new estimate of Life expectancy with the same linear 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \     * hypothesis. A more precise result, taking into account a more precise
                   int lastpass, int stepm, int weightopt, char model[],\     * curvature will be obtained if estepm is as small as stepm. */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\    /* For example we decided to compute the life expectancy with the smallest unit */
                   double jprev1, double mprev1,double anprev1, \    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   double jprev2, double mprev2,double anprev2){       nhstepm is the number of hstepm from age to agelim 
   int jj1, k1, i1, cpt;       nstepm is the number of stepm from age to agelin. 
   /*char optionfilehtm[FILENAMELENGTH];*/       Look at hpijx to understand the reason of that which relies in memory size
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {       and note for a fixed period like estepm months */
     printf("Problem with %s \n",optionfilehtm), exit(0);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n       results. So we changed our mind and took the option of the best precision.
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months):    agelim=AGESUP;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    /* nhstepm age range expressed in number of stepm */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  m=cptcoveff;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  jj1=0;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
  for(k1=1; k1<=m;k1++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    for(i1=1; i1<=ncodemax[k1];i1++){      
      jj1++;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
      if (cptcovn > 0) {      
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for (cpt=1; cpt<=cptcoveff;cpt++)      
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      printf("%d|",(int)age);fflush(stdout);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      }      
      /* Pij */      /* Computing expectancies */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      for(i=1; i<=nlstate;i++)
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            for(j=1; j<=nlstate;j++)
      /* Quasi-incidences */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            
        /* Stable prevalence in each health state */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          }
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }      fprintf(ficreseij,"%3.0f",age );
      for(cpt=1; cpt<=nlstate;cpt++) {      for(i=1; i<=nlstate;i++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>        eip=0;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(j=1; j<=nlstate;j++){
      }          eip +=eij[i][j][(int)age];
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 health expectancies in states (1) and (2): e%s%d.png<br>        }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        fprintf(ficreseij,"%9.4f", eip );
    } /* end i1 */      }
  }/* End k1 */      fprintf(ficreseij,"\n");
  fprintf(fichtm,"</ul>");      
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    printf("\n");
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    fprintf(ficlog,"\n");
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  }
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  {
     /* Covariances of health expectancies eij and of total life expectancies according
  if(popforecast==1) fprintf(fichtm,"\n     to initial status i, ei. .
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
         <br>",fileres,fileres,fileres,fileres);    double age, agelim, hf;
  else    double ***p3matp, ***p3matm, ***varhe;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    double **dnewm,**doldm;
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    double *xp, *xm;
     double **gp, **gm;
  m=cptcoveff;    double ***gradg, ***trgradg;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    int theta;
   
  jj1=0;    double eip, vip;
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      jj1++;    xp=vector(1,npar);
      if (cptcovn > 0) {    xm=vector(1,npar);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    dnewm=matrix(1,nlstate*nlstate,1,npar);
        for (cpt=1; cpt<=cptcoveff;cpt++)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    pstamp(ficresstdeij);
      }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficresstdeij,"# Age");
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    for(i=1; i<=nlstate;i++){
 interval) in state (%d): v%s%d%d.png <br>      for(j=1; j<=nlstate;j++)
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
      }      fprintf(ficresstdeij," e%1d. ",i);
    } /* end i1 */    }
  }/* End k1 */    fprintf(ficresstdeij,"\n");
  fprintf(fichtm,"</ul>");  
 fclose(fichtm);    pstamp(ficrescveij);
 }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
 /******************* Gnuplot file **************/    for(i=1; i<=nlstate;i++)
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        for(i2=1; i2<=nlstate;i2++)
   int ng;          for(j2=1; j2<=nlstate;j2++){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            cptj2= (j2-1)*nlstate+i2;
     printf("Problem with file %s",optionfilegnuplot);            if(cptj2 <= cptj)
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   }          }
       }
 #ifdef windows    fprintf(ficrescveij,"\n");
     fprintf(ficgp,"cd \"%s\" \n",pathc);    
 #endif    if(estepm < stepm){
 m=pow(2,cptcoveff);      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
  /* 1eme*/    else  hstepm=estepm;   
   for (cpt=1; cpt<= nlstate ; cpt ++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
    for (k1=1; k1<= m ; k1 ++) {     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
 #ifdef windows     * we are calculating an estimate of the Life Expectancy assuming a linear 
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     * progression in between and thus overestimating or underestimating according
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);     * to the curvature of the survival function. If, for the same date, we 
 #endif     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 #ifdef unix     * to compare the new estimate of Life expectancy with the same linear 
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     * hypothesis. A more precise result, taking into account a more precise
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);     * curvature will be obtained if estepm is as small as stepm. */
 #endif  
     /* For example we decided to compute the life expectancy with the smallest unit */
 for (i=1; i<= nlstate ; i ++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       nhstepm is the number of hstepm from age to agelim 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       nstepm is the number of stepm from age to agelin. 
 }       Look at hpijx to understand the reason of that which relies in memory size
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);       and note for a fixed period like estepm months */
     for (i=1; i<= nlstate ; i ++) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       survival function given by stepm (the optimization length). Unfortunately it
   else fprintf(ficgp," \%%*lf (\%%*lf)");       means that if the survival funtion is printed only each two years of age and if
 }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);       results. So we changed our mind and took the option of the best precision.
      for (i=1; i<= nlstate ; i ++) {    */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      /* If stepm=6 months */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    /* nhstepm age range expressed in number of stepm */
 #ifdef unix    agelim=AGESUP;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 #endif    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
    }    /* if (stepm >= YEARM) hstepm=1;*/
   }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /*2 eme*/    
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for (k1=1; k1<= m ; k1 ++) {    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
        gp=matrix(0,nhstepm,1,nlstate*nlstate);
     for (i=1; i<= nlstate+1 ; i ++) {    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    for (age=bage; age<=fage; age ++){ 
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   else fprintf(ficgp," \%%*lf (\%%*lf)");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 }     
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      /* Computing  Variances of health expectancies */
       for (j=1; j<= nlstate+1 ; j ++) {      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");         decrease memory allocation */
         else fprintf(ficgp," \%%*lf (\%%*lf)");      for(theta=1; theta <=npar; theta++){
 }          for(i=1; i<=npar; i++){ 
       fprintf(ficgp,"\" t\"\" w l 0,");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       for (j=1; j<= nlstate+1 ; j ++) {        }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   else fprintf(ficgp," \%%*lf (\%%*lf)");        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 }      
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for(j=1; j<= nlstate; j++){
       else fprintf(ficgp,"\" t\"\" w l 0,");          for(i=1; i<=nlstate; i++){
     }            for(h=0; h<=nhstepm-1; h++){
   }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   /*3eme*/            }
           }
   for (k1=1; k1<= m ; k1 ++) {        }
     for (cpt=1; cpt<= nlstate ; cpt ++) {       
       k=2+nlstate*(2*cpt-2);        for(ij=1; ij<= nlstate*nlstate; ij++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          for(h=0; h<=nhstepm-1; h++){
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      }/* End theta */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      for(h=0; h<=nhstepm-1; h++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
 */            trgradg[h][j][theta]=gradg[h][theta][j];
       for (i=1; i< nlstate ; i ++) {      
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  
        for(ij=1;ij<=nlstate*nlstate;ij++)
       }        for(ji=1;ji<=nlstate*nlstate;ji++)
     }          varhe[ij][ji][(int)age] =0.;
   }  
         printf("%d|",(int)age);fflush(stdout);
   /* CV preval stat */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for (k1=1; k1<= m ; k1 ++) {       for(h=0;h<=nhstepm-1;h++){
     for (cpt=1; cpt<nlstate ; cpt ++) {        for(k=0;k<=nhstepm-1;k++){
       k=3;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
       for (i=1; i< nlstate ; i ++)              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         fprintf(ficgp,"+$%d",k+i+1);        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      }
            /* Computing expectancies */
       l=3+(nlstate+ndeath)*cpt;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      for(i=1; i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++) {        for(j=1; j<=nlstate;j++)
         l=3+(nlstate+ndeath)*cpt;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         fprintf(ficgp,"+$%d",l+i+1);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       }            
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     }  
   }            }
    
   /* proba elementaires */      fprintf(ficresstdeij,"%3.0f",age );
    for(i=1,jk=1; i <=nlstate; i++){      for(i=1; i<=nlstate;i++){
     for(k=1; k <=(nlstate+ndeath); k++){        eip=0.;
       if (k != i) {        vip=0.;
         for(j=1; j <=ncovmodel; j++){        for(j=1; j<=nlstate;j++){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          eip += eij[i][j][(int)age];
           jk++;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
           fprintf(ficgp,"\n");            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
         }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       }        }
     }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
    }      }
       fprintf(ficresstdeij,"\n");
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {      fprintf(ficrescveij,"%3.0f",age );
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      for(i=1; i<=nlstate;i++)
        if (ng==2)        for(j=1; j<=nlstate;j++){
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          cptj= (j-1)*nlstate+i;
        else          for(i2=1; i2<=nlstate;i2++)
          fprintf(ficgp,"\nset title \"Probability\"\n");            for(j2=1; j2<=nlstate;j2++){
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              cptj2= (j2-1)*nlstate+i2;
        i=1;              if(cptj2 <= cptj)
        for(k2=1; k2<=nlstate; k2++) {                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
          k3=i;            }
          for(k=1; k<=(nlstate+ndeath); k++) {        }
            if (k != k2){      fprintf(ficrescveij,"\n");
              if(ng==2)     
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    }
              else    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
              ij=1;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
              for(j=3; j <=ncovmodel; j++) {    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                  ij++;    printf("\n");
                }    fprintf(ficlog,"\n");
                else  
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_vector(xm,1,npar);
              }    free_vector(xp,1,npar);
              fprintf(ficgp,")/(1");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                  free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
              for(k1=1; k1 <=nlstate; k1++){      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  }
                ij=1;  
                for(j=3; j <=ncovmodel; j++){  /************ Variance ******************/
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  {
                    ij++;    /* Variance of health expectancies */
                  }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                  else    /* double **newm;*/
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double **dnewm,**doldm;
                }    double **dnewmp,**doldmp;
                fprintf(ficgp,")");    int i, j, nhstepm, hstepm, h, nstepm ;
              }    int k, cptcode;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double *xp;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    double **gp, **gm;  /* for var eij */
              i=i+ncovmodel;    double ***gradg, ***trgradg; /*for var eij */
            }    double **gradgp, **trgradgp; /* for var p point j */
          } /* end k */    double *gpp, *gmp; /* for var p point j */
        } /* end k2 */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      } /* end jk */    double ***p3mat;
    } /* end ng */    double age,agelim, hf;
    fclose(ficgp);    double ***mobaverage;
 }  /* end gnuplot */    int theta;
     char digit[4];
     char digitp[25];
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    char fileresprobmorprev[FILENAMELENGTH];
   
   int i, cpt, cptcod;    if(popbased==1){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      if(mobilav!=0)
       for (i=1; i<=nlstate;i++)        strcpy(digitp,"-populbased-mobilav-");
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      else strcpy(digitp,"-populbased-nomobil-");
           mobaverage[(int)agedeb][i][cptcod]=0.;    }
        else 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      strcpy(digitp,"-stablbased-");
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    if (mobilav!=0) {
           for (cpt=0;cpt<=4;cpt++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }      }
       }    }
     }  
        strcpy(fileresprobmorprev,"prmorprev"); 
 }    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
 /************** Forecasting ******************/    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    strcat(fileresprobmorprev,fileres);
      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   int *popage;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    }
   double *popeffectif,*popcount;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   double ***p3mat;   
   char fileresf[FILENAMELENGTH];    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
  agelim=AGESUP;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      fprintf(ficresprobmorprev," p.%-d SE",j);
        for(i=1; i<=nlstate;i++)
          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   strcpy(fileresf,"f");    }  
   strcat(fileresf,fileres);    fprintf(ficresprobmorprev,"\n");
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fprintf(ficgp,"\n# Routine varevsij");
     printf("Problem with forecast resultfile: %s\n", fileresf);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   printf("Computing forecasting: result on file '%s' \n", fileresf);  /*   } */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
   if (mobilav==1) {      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   }    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(j=1; j<=nlstate;j++)
   if (stepm<=12) stepsize=1;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      fprintf(ficresvij,"\n");
   agelim=AGESUP;  
      xp=vector(1,npar);
   hstepm=1;    dnewm=matrix(1,nlstate,1,npar);
   hstepm=hstepm/stepm;    doldm=matrix(1,nlstate,1,nlstate);
   yp1=modf(dateintmean,&yp);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   anprojmean=yp;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   yp1=modf((yp2*30.5),&yp);    gpp=vector(nlstate+1,nlstate+ndeath);
   jprojmean=yp;    gmp=vector(nlstate+1,nlstate+ndeath);
   if(jprojmean==0) jprojmean=1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   if(mprojmean==0) jprojmean=1;    
      if(estepm < stepm){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   for(cptcov=1;cptcov<=i2;cptcov++){    else  hstepm=estepm;   
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* For example we decided to compute the life expectancy with the smallest unit */
       k=k+1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficresf,"\n#******");       nhstepm is the number of hstepm from age to agelim 
       for(j=1;j<=cptcoveff;j++) {       nstepm is the number of stepm from age to agelin. 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like k years */
       fprintf(ficresf,"******\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficresf,"# StartingAge FinalAge");       survival function given by stepm (the optimization length). Unfortunately it
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);       means that if the survival funtion is printed every two years of age and if
             you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             results. So we changed our mind and took the option of the best precision.
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    */
         fprintf(ficresf,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           nhstepm = nhstepm/hstepm;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gp=matrix(0,nhstepm,1,nlstate);
           oldm=oldms;savm=savms;      gm=matrix(0,nhstepm,1,nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
          
           for (h=0; h<=nhstepm; h++){      for(theta=1; theta <=npar; theta++){
             if (h==(int) (calagedate+YEARM*cpt)) {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               kk1=0.;kk2=0;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)        if (popbased==1) {
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          if(mobilav ==0){
                 else {            for(i=1; i<=nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              prlim[i][i]=probs[(int)age][i][ij];
                 }          }else{ /* mobilav */ 
                            for(i=1; i<=nlstate;i++)
               }              prlim[i][i]=mobaverage[(int)age][i][ij];
               if (h==(int)(calagedate+12*cpt)){          }
                 fprintf(ficresf," %.3f", kk1);        }
                            
               }        for(j=1; j<= nlstate; j++){
             }          for(h=0; h<=nhstepm; h++){
           }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
       }        }
     }        /* This for computing probability of death (h=1 means
   }           computed over hstepm matrices product = hstepm*stepm months) 
                   as a weighted average of prlim.
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fclose(ficresf);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
 }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
 /************** Forecasting ******************/        }    
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        /* end probability of death */
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   int *popage;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   double *popeffectif,*popcount;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double ***p3mat,***tabpop,***tabpopprev;   
   char filerespop[FILENAMELENGTH];        if (popbased==1) {
           if(mobilav ==0){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1; i<=nlstate;i++)
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              prlim[i][i]=probs[(int)age][i][ij];
   agelim=AGESUP;          }else{ /* mobilav */ 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          }
          }
    
   strcpy(filerespop,"pop");        for(j=1; j<= nlstate; j++){
   strcat(filerespop,fileres);          for(h=0; h<=nhstepm; h++){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     printf("Problem with forecast resultfile: %s\n", filerespop);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          }
   }        }
   printf("Computing forecasting: result on file '%s' \n", filerespop);        /* This for computing probability of death (h=1 means
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if (mobilav==1) {          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     movingaverage(agedeb, fage, ageminpar, mobaverage);        }    
   }        /* end probability of death */
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(j=1; j<= nlstate; j++) /* vareij */
   if (stepm<=12) stepsize=1;          for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   agelim=AGESUP;          }
    
   hstepm=1;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   hstepm=hstepm/stepm;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {      } /* End theta */
       printf("Problem with population file : %s\n",popfile);exit(0);  
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     }  
     popage=ivector(0,AGESUP);      for(h=0; h<=nhstepm; h++) /* veij */
     popeffectif=vector(0,AGESUP);        for(j=1; j<=nlstate;j++)
     popcount=vector(0,AGESUP);          for(theta=1; theta <=npar; theta++)
                trgradg[h][j][theta]=gradg[h][theta][j];
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
            for(theta=1; theta <=npar; theta++)
     imx=i;          trgradgp[j][theta]=gradgp[theta][j];
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    
   }  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   for(cptcov=1;cptcov<=i2;cptcov++){      for(i=1;i<=nlstate;i++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(j=1;j<=nlstate;j++)
       k=k+1;          vareij[i][j][(int)age] =0.;
       fprintf(ficrespop,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {      for(h=0;h<=nhstepm;h++){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(k=0;k<=nhstepm;k++){
       }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficrespop,"******\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       fprintf(ficrespop,"# Age");          for(i=1;i<=nlstate;i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            for(j=1;j<=nlstate;j++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
              }
       for (cpt=0; cpt<=0;cpt++) {      }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      
              /* pptj */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           nhstepm = nhstepm/hstepm;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                  for(i=nlstate+1;i<=nlstate+ndeath;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          varppt[j][i]=doldmp[j][i];
           oldm=oldms;savm=savms;      /* end ppptj */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /*  x centered again */
              hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           for (h=0; h<=nhstepm; h++){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
             if (h==(int) (calagedate+YEARM*cpt)) {   
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      if (popbased==1) {
             }        if(mobilav ==0){
             for(j=1; j<=nlstate+ndeath;j++) {          for(i=1; i<=nlstate;i++)
               kk1=0.;kk2=0;            prlim[i][i]=probs[(int)age][i][ij];
               for(i=1; i<=nlstate;i++) {                      }else{ /* mobilav */ 
                 if (mobilav==1)          for(i=1; i<=nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            prlim[i][i]=mobaverage[(int)age][i][ij];
                 else {        }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      }
                 }               
               }      /* This for computing probability of death (h=1 means
               if (h==(int)(calagedate+12*cpt)){         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;         as a weighted average of prlim.
                   /*fprintf(ficrespop," %.3f", kk1);      */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      for(j=nlstate+1;j<=nlstate+ndeath;j++){
               }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
             }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
             for(i=1; i<=nlstate;i++){      }    
               kk1=0.;      /* end probability of death */
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                 }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             }        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      } 
           }      fprintf(ficresprobmorprev,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      fprintf(ficresvij,"%.0f ",age );
       }      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
   /******/          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      fprintf(ficresvij,"\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        free_matrix(gp,0,nhstepm,1,nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      free_matrix(gm,0,nhstepm,1,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           nhstepm = nhstepm/hstepm;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } /* End age */
           oldm=oldms;savm=savms;    free_vector(gpp,nlstate+1,nlstate+ndeath);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_vector(gmp,nlstate+1,nlstate+ndeath);
           for (h=0; h<=nhstepm; h++){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
             if (h==(int) (calagedate+YEARM*cpt)) {    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
             }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
               kk1=0.;kk2=0;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
               for(i=1; i<=nlstate;i++) {                /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
               }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
             }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       }  */
    }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
   if (popforecast==1) {    free_matrix(dnewm,1,nlstate,1,npar);
     free_ivector(popage,0,AGESUP);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_vector(popeffectif,0,AGESUP);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_vector(popcount,0,AGESUP);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fclose(ficresprobmorprev);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fflush(ficgp);
   fclose(ficrespop);    fflush(fichtm); 
 }  }  /* end varevsij */
   
 /***********************************************/  /************ Variance of prevlim ******************/
 /**************** Main Program *****************/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 /***********************************************/  {
     /* Variance of prevalence limit */
 int main(int argc, char *argv[])    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 {    double **newm;
     double **dnewm,**doldm;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    int i, j, nhstepm, hstepm;
   double agedeb, agefin,hf;    int k, cptcode;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    double *xp;
     double *gp, *gm;
   double fret;    double **gradg, **trgradg;
   double **xi,tmp,delta;    double age,agelim;
     int theta;
   double dum; /* Dummy variable */    
   double ***p3mat;    pstamp(ficresvpl);
   int *indx;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   char line[MAXLINE], linepar[MAXLINE];    fprintf(ficresvpl,"# Age");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];    for(i=1; i<=nlstate;i++)
   int firstobs=1, lastobs=10;        fprintf(ficresvpl," %1d-%1d",i,i);
   int sdeb, sfin; /* Status at beginning and end */    fprintf(ficresvpl,"\n");
   int c,  h , cpt,l;  
   int ju,jl, mi;    xp=vector(1,npar);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    dnewm=matrix(1,nlstate,1,npar);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    doldm=matrix(1,nlstate,1,nlstate);
   int mobilav=0,popforecast=0;    
   int hstepm, nhstepm;    hstepm=1*YEARM; /* Every year of age */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
   double bage, fage, age, agelim, agebase;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double ftolpl=FTOL;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   double **prlim;      if (stepm >= YEARM) hstepm=1;
   double *severity;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   double ***param; /* Matrix of parameters */      gradg=matrix(1,npar,1,nlstate);
   double  *p;      gp=vector(1,nlstate);
   double **matcov; /* Matrix of covariance */      gm=vector(1,nlstate);
   double ***delti3; /* Scale */  
   double *delti; /* Scale */      for(theta=1; theta <=npar; theta++){
   double ***eij, ***vareij;        for(i=1; i<=npar; i++){ /* Computes gradient */
   double **varpl; /* Variances of prevalence limits by age */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double *epj, vepp;        }
   double kk1, kk2;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        for(i=1;i<=nlstate;i++)
            gp[i] = prlim[i][i];
       
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   char z[1]="c", occ;        for(i=1;i<=nlstate;i++)
 #include <sys/time.h>          gm[i] = prlim[i][i];
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   /* long total_usecs;      } /* End theta */
   struct timeval start_time, end_time;  
        trgradg =matrix(1,nlstate,1,npar);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
   printf("\n%s",version);          trgradg[j][theta]=gradg[theta][j];
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");      for(i=1;i<=nlstate;i++)
     scanf("%s",pathtot);        varpl[i][(int)age] =0.;
   }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   else{      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     strcpy(pathtot,argv[1]);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);      fprintf(ficresvpl,"%.0f ",age );
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      for(i=1; i<=nlstate;i++)
   /* cutv(path,optionfile,pathtot,'\\');*/        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      free_vector(gp,1,nlstate);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      free_vector(gm,1,nlstate);
   chdir(path);      free_matrix(gradg,1,npar,1,nlstate);
   replace(pathc,path);      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
 /*-------- arguments in the command line --------*/  
     free_vector(xp,1,npar);
   /* Log file */    free_matrix(doldm,1,nlstate,1,npar);
   strcat(filelog, optionfilefiname);    free_matrix(dnewm,1,nlstate,1,nlstate);
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {  }
     printf("Problem with logfile %s\n",filelog);  
     goto end;  /************ Variance of one-step probabilities  ******************/
   }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   fprintf(ficlog,"Log filename:%s\n",filelog);  {
   fprintf(ficlog,"\n%s",version);    int i, j=0,  i1, k1, l1, t, tj;
   fprintf(ficlog,"\nEnter the parameter file name: ");    int k2, l2, j1,  z1;
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int k=0,l, cptcode;
   fflush(ficlog);    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   /* */    double **dnewm,**doldm;
   strcpy(fileres,"r");    double *xp;
   strcat(fileres, optionfilefiname);    double *gp, *gm;
   strcat(fileres,".txt");    /* Other files have txt extension */    double **gradg, **trgradg;
     double **mu;
   /*---------arguments file --------*/    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    int theta;
     printf("Problem with optionfile %s\n",optionfile);    char fileresprob[FILENAMELENGTH];
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    char fileresprobcov[FILENAMELENGTH];
     goto end;    char fileresprobcor[FILENAMELENGTH];
   }  
     double ***varpij;
   strcpy(filereso,"o");  
   strcat(filereso,fileres);    strcpy(fileresprob,"prob"); 
   if((ficparo=fopen(filereso,"w"))==NULL) {    strcat(fileresprob,fileres);
     printf("Problem with Output resultfile: %s\n", filereso);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);      printf("Problem with resultfile: %s\n", fileresprob);
     goto end;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   }    }
     strcpy(fileresprobcov,"probcov"); 
   /* Reads comments: lines beginning with '#' */    strcat(fileresprobcov,fileres);
   while((c=getc(ficpar))=='#' && c!= EOF){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprobcov);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     puts(line);    }
     fputs(line,ficparo);    strcpy(fileresprobcor,"probcor"); 
   }    strcat(fileresprobcor,fileres);
   ungetc(c,ficpar);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     ungetc(c,ficpar);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     puts(line);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fputs(line,ficparo);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   }    pstamp(ficresprob);
   ungetc(c,ficpar);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      fprintf(ficresprob,"# Age");
        pstamp(ficresprobcov);
   covar=matrix(0,NCOVMAX,1,n);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   cptcovn=0;    fprintf(ficresprobcov,"# Age");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   ncovmodel=2+cptcovn;    fprintf(ficresprobcor,"# Age");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
    
   /* Read guess parameters */    for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */      for(j=1; j<=(nlstate+ndeath);j++){
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     ungetc(c,ficpar);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     fgets(line, MAXLINE, ficpar);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     puts(line);      }  
     fputs(line,ficparo);   /* fprintf(ficresprob,"\n");
   }    fprintf(ficresprobcov,"\n");
   ungetc(c,ficpar);    fprintf(ficresprobcor,"\n");
     */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   xp=vector(1,npar);
     for(i=1; i <=nlstate; i++)    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       fscanf(ficpar,"%1d%1d",&i1,&j1);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       fprintf(ficparo,"%1d%1d",i1,j1);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       if(mle==1)    first=1;
         printf("%1d%1d",i,j);    fprintf(ficgp,"\n# Routine varprob");
       fprintf(ficlog,"%1d%1d",i,j);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       for(k=1; k<=ncovmodel;k++){    fprintf(fichtm,"\n");
         fscanf(ficpar," %lf",&param[i][j][k]);  
         if(mle==1){    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           printf(" %lf",param[i][j][k]);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
           fprintf(ficlog," %lf",param[i][j][k]);    file %s<br>\n",optionfilehtmcov);
         }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         else  and drawn. It helps understanding how is the covariance between two incidences.\
           fprintf(ficlog," %lf",param[i][j][k]);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         fprintf(ficparo," %lf",param[i][j][k]);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       fscanf(ficpar,"\n");  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       if(mle==1)  standard deviations wide on each axis. <br>\
         printf("\n");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       fprintf(ficlog,"\n");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       fprintf(ficparo,"\n");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     }  
      cov[1]=1;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   p=param[1][1];    j1=0;
      for(t=1; t<=tj;t++){
   /* Reads comments: lines beginning with '#' */      for(i1=1; i1<=ncodemax[t];i1++){ 
   while((c=getc(ficpar))=='#' && c!= EOF){        j1++;
     ungetc(c,ficpar);        if  (cptcovn>0) {
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprob, "\n#********** Variable "); 
     puts(line);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fputs(line,ficparo);          fprintf(ficresprob, "**********\n#\n");
   }          fprintf(ficresprobcov, "\n#********** Variable "); 
   ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          fprintf(ficgp, "\n#********** Variable "); 
   for(i=1; i <=nlstate; i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(j=1; j <=nlstate+ndeath-1; j++){          fprintf(ficgp, "**********\n#\n");
       fscanf(ficpar,"%1d%1d",&i1,&j1);          
       printf("%1d%1d",i,j);          
       fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       for(k=1; k<=ncovmodel;k++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fscanf(ficpar,"%le",&delti3[i][j][k]);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         printf(" %le",delti3[i][j][k]);          
         fprintf(ficparo," %le",delti3[i][j][k]);          fprintf(ficresprobcor, "\n#********** Variable ");    
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fscanf(ficpar,"\n");          fprintf(ficresprobcor, "**********\n#");    
       printf("\n");        }
       fprintf(ficparo,"\n");        
     }        for (age=bage; age<=fage; age ++){ 
   }          cov[2]=age;
   delti=delti3[1][1];          for (k=1; k<=cptcovn;k++) {
              cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   /* Reads comments: lines beginning with '#' */          }
   while((c=getc(ficpar))=='#' && c!= EOF){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     ungetc(c,ficpar);          for (k=1; k<=cptcovprod;k++)
     fgets(line, MAXLINE, ficpar);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     puts(line);          
     fputs(line,ficparo);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   ungetc(c,ficpar);          gp=vector(1,(nlstate)*(nlstate+ndeath));
            gm=vector(1,(nlstate)*(nlstate+ndeath));
   matcov=matrix(1,npar,1,npar);      
   for(i=1; i <=npar; i++){          for(theta=1; theta <=npar; theta++){
     fscanf(ficpar,"%s",&str);            for(i=1; i<=npar; i++)
     if(mle==1)              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       printf("%s",str);            
     fprintf(ficlog,"%s",str);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     fprintf(ficparo,"%s",str);            
     for(j=1; j <=i; j++){            k=0;
       fscanf(ficpar," %le",&matcov[i][j]);            for(i=1; i<= (nlstate); i++){
       if(mle==1){              for(j=1; j<=(nlstate+ndeath);j++){
         printf(" %.5le",matcov[i][j]);                k=k+1;
         fprintf(ficlog," %.5le",matcov[i][j]);                gp[k]=pmmij[i][j];
       }              }
       else            }
         fprintf(ficlog," %.5le",matcov[i][j]);            
       fprintf(ficparo," %.5le",matcov[i][j]);            for(i=1; i<=npar; i++)
     }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     fscanf(ficpar,"\n");      
     if(mle==1)            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       printf("\n");            k=0;
     fprintf(ficlog,"\n");            for(i=1; i<=(nlstate); i++){
     fprintf(ficparo,"\n");              for(j=1; j<=(nlstate+ndeath);j++){
   }                k=k+1;
   for(i=1; i <=npar; i++)                gm[k]=pmmij[i][j];
     for(j=i+1;j<=npar;j++)              }
       matcov[i][j]=matcov[j][i];            }
           
   if(mle==1)            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     printf("\n");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   fprintf(ficlog,"\n");          }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     /*-------- Rewriting paramater file ----------*/            for(theta=1; theta <=npar; theta++)
      strcpy(rfileres,"r");    /* "Rparameterfile */              trgradg[j][theta]=gradg[theta][j];
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          
      strcat(rfileres,".");    /* */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     if((ficres =fopen(rfileres,"w"))==NULL) {          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     fprintf(ficres,"#%s\n",version);  
              pmij(pmmij,cov,ncovmodel,x,nlstate);
     /*-------- data file ----------*/          
     if((fic=fopen(datafile,"r"))==NULL)    {          k=0;
       printf("Problem with datafile: %s\n", datafile);goto end;          for(i=1; i<=(nlstate); i++){
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;            for(j=1; j<=(nlstate+ndeath);j++){
     }              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
     n= lastobs;            }
     severity = vector(1,maxwav);          }
     outcome=imatrix(1,maxwav+1,1,n);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     num=ivector(1,n);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     moisnais=vector(1,n);              varpij[i][j][(int)age] = doldm[i][j];
     annais=vector(1,n);  
     moisdc=vector(1,n);          /*printf("\n%d ",(int)age);
     andc=vector(1,n);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     agedc=vector(1,n);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     cod=ivector(1,n);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     weight=vector(1,n);            }*/
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);          fprintf(ficresprob,"\n%d ",(int)age);
     anint=matrix(1,maxwav,1,n);          fprintf(ficresprobcov,"\n%d ",(int)age);
     s=imatrix(1,maxwav+1,1,n);          fprintf(ficresprobcor,"\n%d ",(int)age);
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     ncodemax=ivector(1,8);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     i=1;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     while (fgets(line, MAXLINE, fic) != NULL)    {            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       if ((i >= firstobs) && (i <=lastobs)) {          }
                  i=0;
         for (j=maxwav;j>=1;j--){          for (k=1; k<=(nlstate);k++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            for (l=1; l<=(nlstate+ndeath);l++){ 
           strcpy(line,stra);              i=i++;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
         }              for (j=1; j<=i;j++){
                        fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              }
             }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          }/* end of loop for state */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        } /* end of loop for age */
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        /* Confidence intervalle of pij  */
         for (j=ncovcol;j>=1;j--){        /*
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\nset noparametric;unset label");
         }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         num[i]=atol(stra);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                  fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         i=i+1;        */
       }  
     }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     /* printf("ii=%d", ij);        first1=1;
        scanf("%d",i);*/        for (k2=1; k2<=(nlstate);k2++){
   imx=i-1; /* Number of individuals */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
   /* for (i=1; i<=imx; i++){            j=(k2-1)*(nlstate+ndeath)+l2;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            for (k1=1; k1<=(nlstate);k1++){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                if(l1==k1) continue;
     }*/                i=(k1-1)*(nlstate+ndeath)+l1;
    /*  for (i=1; i<=imx; i++){                if(i<=j) continue;
      if (s[4][i]==9)  s[4][i]=-1;                for (age=bage; age<=fage; age ++){ 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                  if ((int)age %5==0){
                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   /* Calculation of the number of parameter from char model*/                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                    mu1=mu[i][(int) age]/stepm*YEARM ;
   Tprod=ivector(1,15);                    mu2=mu[j][(int) age]/stepm*YEARM;
   Tvaraff=ivector(1,15);                    c12=cv12/sqrt(v1*v2);
   Tvard=imatrix(1,15,1,2);                    /* Computing eigen value of matrix of covariance */
   Tage=ivector(1,15);                          lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                        lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   if (strlen(model) >1){                    /* Eigen vectors */
     j=0, j1=0, k1=1, k2=1;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     j=nbocc(model,'+');                    /*v21=sqrt(1.-v11*v11); *//* error */
     j1=nbocc(model,'*');                    v21=(lc1-v1)/cv12*v11;
     cptcovn=j+1;                    v12=-v21;
     cptcovprod=j1;                    v22=v11;
                        tnalp=v21/v11;
     strcpy(modelsav,model);                    if(first1==1){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                      first1=0;
       printf("Error. Non available option model=%s ",model);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       fprintf(ficlog,"Error. Non available option model=%s ",model);                    }
       goto end;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     }                    /*printf(fignu*/
                        /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     for(i=(j+1); i>=1;i--){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */                    if(first==1){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */                      first=0;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                      fprintf(ficgp,"\nset parametric;unset label");
       /*scanf("%d",i);*/                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       if (strchr(strb,'*')) {  /* Model includes a product */                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         if (strcmp(strc,"age")==0) { /* Vn*age */   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           cptcovprod--;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           cutv(strb,stre,strd,'V');                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           cptcovage++;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             Tage[cptcovage]=i;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
             /*printf("stre=%s ", stre);*/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           cptcovprod--;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           cutv(strb,stre,strc,'V');                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           Tvar[i]=atoi(stre);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           cptcovage++;                    }else{
           Tage[cptcovage]=i;                      first=0;
         }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
         else {  /* Age is not in the model */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           Tvar[i]=ncovcol+k1;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           Tprod[k1]=i;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           Tvard[k1][1]=atoi(strc); /* m*/                    }/* if first */
           Tvard[k1][2]=atoi(stre); /* n */                  } /* age mod 5 */
           Tvar[cptcovn+k2]=Tvard[k1][1];                } /* end loop age */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           for (k=1; k<=lastobs;k++)                first=1;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];              } /*l12 */
           k1++;            } /* k12 */
           k2=k2+2;          } /*l1 */
         }        }/* k1 */
       }      } /* loop covariates */
       else { /* no more sum */    }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
        /*  scanf("%d",i);*/    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       cutv(strd,strc,strb,'V');    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       Tvar[i]=atoi(strc);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       }    free_vector(xp,1,npar);
       strcpy(modelsav,stra);      fclose(ficresprob);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fclose(ficresprobcov);
         scanf("%d",i);*/    fclose(ficresprobcor);
     } /* end of loop + */    fflush(ficgp);
   } /* end model */    fflush(fichtmcov);
    }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);  
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);  /******************* Printing html file ***********/
   scanf("%d ",i);*/  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     fclose(fic);                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     /*  if(mle==1){*/                    int popforecast, int estepm ,\
     if (weightopt != 1) { /* Maximisation without weights*/                    double jprev1, double mprev1,double anprev1, \
       for(i=1;i<=n;i++) weight[i]=1.0;                    double jprev2, double mprev2,double anprev2){
     }    int jj1, k1, i1, cpt;
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     for (i=1; i<=imx; i++) {  </ul>");
       for(m=2; (m<= maxwav); m++) {     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
          anint[m][i]=9999;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
          s[m][i]=-1;     fprintf(fichtm,"\
        }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       }     fprintf(fichtm,"\
     }   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     for (i=1; i<=imx; i++)  {     fprintf(fichtm,"\
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
       for(m=1; (m<= maxwav); m++){     <a href=\"%s\">%s</a> <br>\n</li>",
         if(s[m][i] >0){             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
                 agev[m][i]=agedc[i];  
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/   m=cptcoveff;
            else {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);   jj1=0;
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);   for(k1=1; k1<=m;k1++){
               agev[m][i]=-1;     for(i1=1; i1<=ncodemax[k1];i1++){
               }       jj1++;
             }       if (cptcovn > 0) {
           }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           else if(s[m][i] !=9){ /* Should no more exist */         for (cpt=1; cpt<=cptcoveff;cpt++) 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             if(mint[m][i]==99 || anint[m][i]==9999)         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
               agev[m][i]=1;       }
             else if(agev[m][i] <agemin){       /* Pij */
               agemin=agev[m][i];       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
             }       /* Quasi-incidences */
             else if(agev[m][i] >agemax){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
               agemax=agev[m][i];   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
             }         /* Period (stable) prevalence in each health state */
             /*agev[m][i]=anint[m][i]-annais[i];*/         for(cpt=1; cpt<nlstate;cpt++){
             /*   agev[m][i] = age[i]+2*m;*/           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
           }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           else { /* =9 */         }
             agev[m][i]=1;       for(cpt=1; cpt<=nlstate;cpt++) {
             s[m][i]=-1;          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
           }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         }       }
         else /*= 0 Unknown */     } /* end i1 */
           agev[m][i]=1;   }/* End k1 */
       }   fprintf(fichtm,"</ul>");
      
     }  
     for (i=1; i<=imx; i++)  {   fprintf(fichtm,"\
       for(m=1; (m<= maxwav); m++){  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
         if (s[m][i] > (nlstate+ndeath)) {   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           goto end;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
         }   fprintf(fichtm,"\
       }   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   fprintf(fichtm,"\
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     free_vector(severity,1,maxwav);   fprintf(fichtm,"\
     free_imatrix(outcome,1,maxwav+1,1,n);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     free_vector(moisnais,1,n);     <a href=\"%s\">%s</a> <br>\n</li>",
     free_vector(annais,1,n);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     /* free_matrix(mint,1,maxwav,1,n);   fprintf(fichtm,"\
        free_matrix(anint,1,maxwav,1,n);*/   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     free_vector(moisdc,1,n);     <a href=\"%s\">%s</a> <br>\n</li>",
     free_vector(andc,1,n);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
       - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     wav=ivector(1,imx);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   fprintf(fichtm,"\
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
               subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     /* Concatenates waves */   fprintf(fichtm,"\
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
       Tcode=ivector(1,100);  /*  if(popforecast==1) fprintf(fichtm,"\n */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       ncodemax[1]=1;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  /*      <br>",fileres,fileres,fileres,fileres); */
        /*  else  */
    codtab=imatrix(1,100,1,10);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    h=0;   fflush(fichtm);
    m=pow(2,cptcoveff);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
    
    for(k=1;k<=cptcoveff; k++){   m=cptcoveff;
      for(i=1; i <=(m/pow(2,k));i++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   jj1=0;
            h++;   for(k1=1; k1<=m;k1++){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;     for(i1=1; i1<=ncodemax[k1];i1++){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/       jj1++;
          }       if (cptcovn > 0) {
        }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
      }         for (cpt=1; cpt<=cptcoveff;cpt++) 
    }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       codtab[1][2]=1;codtab[2][2]=2; */       }
    /* for(i=1; i <=m ;i++){       for(cpt=1; cpt<=nlstate;cpt++) {
       for(k=1; k <=cptcovn; k++){         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       printf("\n");       }
       }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       scanf("%d",i);*/  health expectancies in states (1) and (2): %s%d.png<br>\
      <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
    /* Calculates basic frequencies. Computes observed prevalence at single age     } /* end i1 */
        and prints on file fileres'p'. */   }/* End k1 */
    fprintf(fichtm,"</ul>");
       fflush(fichtm);
      }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /******************* Gnuplot file **************/
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    char dirfileres[132],optfileres[132];
          int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     /* For Powell, parameters are in a vector p[] starting at p[1]    int ng;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     if(mle==1){  /*   } */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }    /*#ifdef windows */
        fprintf(ficgp,"cd \"%s\" \n",pathc);
     /*--------- results files --------------*/      /*#endif */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    m=pow(2,cptcoveff);
    
     strcpy(dirfileres,optionfilefiname);
    jk=1;    strcpy(optfileres,"vpl");
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   /* 1eme*/
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    for (cpt=1; cpt<= nlstate ; cpt ++) {
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     for (k1=1; k1<= m ; k1 ++) {
    for(i=1,jk=1; i <=nlstate; i++){       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
      for(k=1; k <=(nlstate+ndeath); k++){       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        if (k != i)       fprintf(ficgp,"set xlabel \"Age\" \n\
          {  set ylabel \"Probability\" \n\
            printf("%d%d ",i,k);  set ter png small\n\
            fprintf(ficlog,"%d%d ",i,k);  set size 0.65,0.65\n\
            fprintf(ficres,"%1d%1d ",i,k);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);       for (i=1; i<= nlstate ; i ++) {
              fprintf(ficlog,"%f ",p[jk]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
              fprintf(ficres,"%f ",p[jk]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
              jk++;       }
            }       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
            printf("\n");       for (i=1; i<= nlstate ; i ++) {
            fprintf(ficlog,"\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
            fprintf(ficres,"\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
          }       } 
      }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
    }       for (i=1; i<= nlstate ; i ++) {
    if(mle==1){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      /* Computing hessian and covariance matrix */         else fprintf(ficgp," \%%*lf (\%%*lf)");
      ftolhess=ftol; /* Usually correct */       }  
      hesscov(matcov, p, npar, delti, ftolhess, func);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
    }     }
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    }
    printf("# Scales (for hessian or gradient estimation)\n");    /*2 eme*/
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    
    for(i=1,jk=1; i <=nlstate; i++){    for (k1=1; k1<= m ; k1 ++) { 
      for(j=1; j <=nlstate+ndeath; j++){      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
        if (j!=i) {      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
          fprintf(ficres,"%1d%1d",i,j);      
          printf("%1d%1d",i,j);      for (i=1; i<= nlstate+1 ; i ++) {
          fprintf(ficlog,"%1d%1d",i,j);        k=2*i;
          for(k=1; k<=ncovmodel;k++){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
            printf(" %.5e",delti[jk]);        for (j=1; j<= nlstate+1 ; j ++) {
            fprintf(ficlog," %.5e",delti[jk]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            fprintf(ficres," %.5e",delti[jk]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
            jk++;        }   
          }        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
          printf("\n");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
          fprintf(ficlog,"\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          fprintf(ficres,"\n");        for (j=1; j<= nlstate+1 ; j ++) {
        }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
      }          else fprintf(ficgp," \%%*lf (\%%*lf)");
    }        }   
            fprintf(ficgp,"\" t\"\" w l 0,");
    k=1;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        for (j=1; j<= nlstate+1 ; j ++) {
    if(mle==1)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        }   
    for(i=1;i<=npar;i++){        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
      /*  if (k>nlstate) k=1;        else fprintf(ficgp,"\" t\"\" w l 0,");
          i1=(i-1)/(ncovmodel*nlstate)+1;      }
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    }
          printf("%s%d%d",alph[k],i1,tab[i]);*/    
      fprintf(ficres,"%3d",i);    /*3eme*/
      if(mle==1)    
        printf("%3d",i);    for (k1=1; k1<= m ; k1 ++) { 
      fprintf(ficlog,"%3d",i);      for (cpt=1; cpt<= nlstate ; cpt ++) {
      for(j=1; j<=i;j++){        /*       k=2+nlstate*(2*cpt-2); */
        fprintf(ficres," %.5e",matcov[i][j]);        k=2+(nlstate+1)*(cpt-1);
        if(mle==1)        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
          printf(" %.5e",matcov[i][j]);        fprintf(ficgp,"set ter png small\n\
        fprintf(ficlog," %.5e",matcov[i][j]);  set size 0.65,0.65\n\
      }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
      fprintf(ficres,"\n");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
      if(mle==1)          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
        printf("\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
      fprintf(ficlog,"\n");          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
      k++;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
    }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
              
    while((c=getc(ficpar))=='#' && c!= EOF){        */
      ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++) {
      fgets(line, MAXLINE, ficpar);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
      puts(line);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
      fputs(line,ficparo);          
    }        } 
    ungetc(c,ficpar);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
    estepm=0;      }
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    }
    if (estepm==0 || estepm < stepm) estepm=stepm;    
    if (fage <= 2) {    /* CV preval stable (period) */
      bage = ageminpar;    for (k1=1; k1<= m ; k1 ++) { 
      fage = agemaxpar;      for (cpt=1; cpt<=nlstate ; cpt ++) {
    }        k=3;
            fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  set ter png small\nset size 0.65,0.65\n\
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  unset log y\n\
      plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
    while((c=getc(ficpar))=='#' && c!= EOF){        
      ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++)
      fgets(line, MAXLINE, ficpar);          fprintf(ficgp,"+$%d",k+i+1);
      puts(line);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
      fputs(line,ficparo);        
    }        l=3+(nlstate+ndeath)*cpt;
    ungetc(c,ficpar);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
          for (i=1; i< nlstate ; i ++) {
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          l=3+(nlstate+ndeath)*cpt;
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficgp,"+$%d",l+i+1);
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        }
            fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
    while((c=getc(ficpar))=='#' && c!= EOF){      } 
      ungetc(c,ficpar);    }  
      fgets(line, MAXLINE, ficpar);    
      puts(line);    /* proba elementaires */
      fputs(line,ficparo);    for(i=1,jk=1; i <=nlstate; i++){
    }      for(k=1; k <=(nlstate+ndeath); k++){
    ungetc(c,ficpar);        if (k != i) {
            for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            jk++; 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            fprintf(ficgp,"\n");
           }
   fscanf(ficpar,"pop_based=%d\n",&popbased);        }
   fprintf(ficparo,"pop_based=%d\n",popbased);        }
   fprintf(ficres,"pop_based=%d\n",popbased);       }
    
   while((c=getc(ficpar))=='#' && c!= EOF){     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     ungetc(c,ficpar);       for(jk=1; jk <=m; jk++) {
     fgets(line, MAXLINE, ficpar);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
     puts(line);         if (ng==2)
     fputs(line,ficparo);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   }         else
   ungetc(c,ficpar);           fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);         i=1;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);         for(k2=1; k2<=nlstate; k2++) {
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
 while((c=getc(ficpar))=='#' && c!= EOF){               if(ng==2)
     ungetc(c,ficpar);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     fgets(line, MAXLINE, ficpar);               else
     puts(line);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     fputs(line,ficparo);               ij=1;
   }               for(j=3; j <=ncovmodel; j++) {
   ungetc(c,ficpar);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                   ij++;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                 }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);               }
                fprintf(ficgp,")/(1");
 /*------------ gnuplot -------------*/               
   strcpy(optionfilegnuplot,optionfilefiname);               for(k1=1; k1 <=nlstate; k1++){   
   strcat(optionfilegnuplot,".gp");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                 ij=1;
     printf("Problem with file %s",optionfilegnuplot);                 for(j=3; j <=ncovmodel; j++){
   }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   fclose(ficgp);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                     ij++;
 /*--------- index.htm --------*/                   }
                    else
   strcpy(optionfilehtm,optionfile);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   strcat(optionfilehtm,".htm");                 }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                 fprintf(ficgp,")");
     printf("Problem with %s \n",optionfilehtm), exit(0);               }
   }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n               i=i+ncovmodel;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n             }
 \n           } /* end k */
 Total number of observations=%d <br>\n         } /* end k2 */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n       } /* end jk */
 <hr  size=\"2\" color=\"#EC5E5E\">     } /* end ng */
  <ul><li><h4>Parameter files</h4>\n     fflush(ficgp); 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  }  /* end gnuplot */
  - Log file of the run: <a href=\"%s\">%s</a><br>\n  
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);  
   fclose(fichtm);  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  
      int i, cpt, cptcod;
 /*------------ free_vector  -------------*/    int modcovmax =1;
  chdir(path);    int mobilavrange, mob;
      double age;
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                               a covariate has 2 modalities */
  free_ivector(num,1,n);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
  fclose(ficparo);      if(mobilav==1) mobilavrange=5; /* default */
  fclose(ficres);      else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
   /*--------------- Prevalence limit --------------*/          for (cptcod=1;cptcod<=modcovmax;cptcod++)
              mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   strcpy(filerespl,"pl");      /* We keep the original values on the extreme ages bage, fage and for 
   strcat(filerespl,fileres);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   if((ficrespl=fopen(filerespl,"w"))==NULL) {         we use a 5 terms etc. until the borders are no more concerned. 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      */ 
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;      for (mob=3;mob <=mobilavrange;mob=mob+2){
   }        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          for (i=1; i<=nlstate;i++){
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   fprintf(ficrespl,"#Prevalence limit\n");              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   fprintf(ficrespl,"#Age ");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   fprintf(ficrespl,"\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                  }
   prlim=matrix(1,nlstate,1,nlstate);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }/* end age */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }/* end mob */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    }else return -1;
   k=0;    return 0;
   agebase=ageminpar;  }/* End movingaverage */
   agelim=agemaxpar;  
   ftolpl=1.e-10;  
   i1=cptcoveff;  /************** Forecasting ******************/
   if (cptcovn < 1){i1=1;}  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
   for(cptcov=1;cptcov<=i1;cptcov++){       agemin, agemax range of age
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       dateprev1 dateprev2 range of dates during which prevalence is computed
         k=k+1;       anproj2 year of en of projection (same day and month as proj1).
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    */
         fprintf(ficrespl,"\n#******");    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
         printf("\n#******");    int *popage;
         fprintf(ficlog,"\n#******");    double agec; /* generic age */
         for(j=1;j<=cptcoveff;j++) {    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double *popeffectif,*popcount;
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***p3mat;
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***mobaverage;
         }    char fileresf[FILENAMELENGTH];
         fprintf(ficrespl,"******\n");  
         printf("******\n");    agelim=AGESUP;
         fprintf(ficlog,"******\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           
         for (age=agebase; age<=agelim; age++){    strcpy(fileresf,"f"); 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    strcat(fileresf,fileres);
           fprintf(ficrespl,"%.0f",age );    if((ficresf=fopen(fileresf,"w"))==NULL) {
           for(i=1; i<=nlstate;i++)      printf("Problem with forecast resultfile: %s\n", fileresf);
           fprintf(ficrespl," %.5f", prlim[i][i]);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           fprintf(ficrespl,"\n");    }
         }    printf("Computing forecasting: result on file '%s' \n", fileresf);
       }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     }  
   fclose(ficrespl);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   /*------------- h Pij x at various ages ------------*/    if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;      }
   }    }
   printf("Computing pij: result on file '%s' \n", filerespij);  
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    stepsize=(int) (stepm+YEARM-1)/YEARM;
      if (stepm<=12) stepsize=1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    if(estepm < stepm){
   /*if (stepm<=24) stepsize=2;*/      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   agelim=AGESUP;    else  hstepm=estepm;   
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   /* hstepm=1;   aff par mois*/                                 fractional in yp1 */
     anprojmean=yp;
   k=0;    yp2=modf((yp1*12),&yp);
   for(cptcov=1;cptcov<=i1;cptcov++){    mprojmean=yp;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    yp1=modf((yp2*30.5),&yp);
       k=k+1;    jprojmean=yp;
         fprintf(ficrespij,"\n#****** ");    if(jprojmean==0) jprojmean=1;
         for(j=1;j<=cptcoveff;j++)    if(mprojmean==0) jprojmean=1;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");    i1=cptcoveff;
            if (cptcovn < 1){i1=1;}
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    
     fprintf(ficresf,"#****** Routine prevforecast **\n");
           /*      nhstepm=nhstepm*YEARM; aff par mois*/  
   /*            if (h==(int)(YEARM*yearp)){ */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
           oldm=oldms;savm=savms;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          k=k+1;
           fprintf(ficrespij,"# Age");        fprintf(ficresf,"\n#******");
           for(i=1; i<=nlstate;i++)        for(j=1;j<=cptcoveff;j++) {
             for(j=1; j<=nlstate+ndeath;j++)          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
               fprintf(ficrespij," %1d-%1d",i,j);        }
           fprintf(ficrespij,"\n");        fprintf(ficresf,"******\n");
            for (h=0; h<=nhstepm; h++){        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        for(j=1; j<=nlstate+ndeath;j++){ 
             for(i=1; i<=nlstate;i++)          for(i=1; i<=nlstate;i++)              
               for(j=1; j<=nlstate+ndeath;j++)            fprintf(ficresf," p%d%d",i,j);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          fprintf(ficresf," p.%d",j);
             fprintf(ficrespij,"\n");        }
              }        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresf,"\n");
           fprintf(ficrespij,"\n");          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
         }  
     }          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   }            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
   fclose(ficrespij);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
   /*---------- Forecasting ------------------*/              if (h*hstepm/YEARM*stepm ==yearp) {
   if((stepm == 1) && (strcmp(model,".")==0)){                fprintf(ficresf,"\n");
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                for(j=1;j<=cptcoveff;j++) 
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   else{              } 
     erreur=108;              for(j=1; j<=nlstate+ndeath;j++) {
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                ppij=0.;
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                for(i=1; i<=nlstate;i++) {
   }                  if (mobilav==1) 
                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
   /*---------- Health expectancies and variances ------------*/                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
   strcpy(filerest,"t");                  if (h*hstepm/YEARM*stepm== yearp) {
   strcat(filerest,fileres);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   if((ficrest=fopen(filerest,"w"))==NULL) {                  }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                } /* end i */
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;                if (h*hstepm/YEARM*stepm==yearp) {
   }                  fprintf(ficresf," %.3f", ppij);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                }
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);              }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(filerese,"e");          } /* end agec */
   strcat(filerese,fileres);        } /* end yearp */
   if((ficreseij=fopen(filerese,"w"))==NULL) {      } /* end cptcod */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    } /* end  cptcov */
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);         
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    fclose(ficresf);
   }
   strcpy(fileresv,"v");  
   strcat(fileresv,fileres);  /************** Forecasting *****not tested NB*************/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   }    int *popage;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double calagedatem, agelim, kk1, kk2;
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double *popeffectif,*popcount;
   calagedate=-1;    double ***p3mat,***tabpop,***tabpopprev;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       k=k+1;    agelim=AGESUP;
       fprintf(ficrest,"\n#****** ");    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       fprintf(ficrest,"******\n");    
     
       fprintf(ficreseij,"\n#****** ");    strcpy(filerespop,"pop"); 
       for(j=1;j<=cptcoveff;j++)    strcat(filerespop,fileres);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
       fprintf(ficreseij,"******\n");      printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficresvij,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    printf("Computing forecasting: result on file '%s' \n", filerespop);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
       fprintf(ficresvij,"******\n");  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    if (mobilav!=0) {
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       oldm=oldms;savm=savms;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);      }
       if(popbased==1){    }
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);  
        }    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
      
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    agelim=AGESUP;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    
       fprintf(ficrest,"\n");    hstepm=1;
     hstepm=hstepm/stepm; 
       epj=vector(1,nlstate+1);    
       for(age=bage; age <=fage ;age++){    if (popforecast==1) {
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      if((ficpop=fopen(popfile,"r"))==NULL) {
         if (popbased==1) {        printf("Problem with population file : %s\n",popfile);exit(0);
           for(i=1; i<=nlstate;i++)        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
             prlim[i][i]=probs[(int)age][i][k];      } 
         }      popage=ivector(0,AGESUP);
              popeffectif=vector(0,AGESUP);
         fprintf(ficrest," %4.0f",age);      popcount=vector(0,AGESUP);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      i=1;   
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/     
           }      imx=i;
           epj[nlstate+1] +=epj[j];      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
         }    }
   
         for(i=1, vepp=0.;i <=nlstate;i++)    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
           for(j=1;j <=nlstate;j++)     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
             vepp += vareij[i][j][(int)age];        k=k+1;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        fprintf(ficrespop,"\n#******");
         for(j=1;j <=nlstate;j++){        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }        }
         fprintf(ficrest,"\n");        fprintf(ficrespop,"******\n");
       }        fprintf(ficrespop,"# Age");
     }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   }        if (popforecast==1)  fprintf(ficrespop," [Population]");
 free_matrix(mint,1,maxwav,1,n);        
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        for (cpt=0; cpt<=0;cpt++) { 
     free_vector(weight,1,n);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   fclose(ficreseij);          
   fclose(ficresvij);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   fclose(ficrest);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   fclose(ficpar);            nhstepm = nhstepm/hstepm; 
   free_vector(epj,1,nlstate+1);            
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*------- Variance limit prevalence------*/              oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   strcpy(fileresvpl,"vpl");          
   strcat(fileresvpl,fileres);            for (h=0; h<=nhstepm; h++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              if (h==(int) (calagedatem+YEARM*cpt)) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     exit(0);              } 
   }              for(j=1; j<=nlstate+ndeath;j++) {
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   k=0;                  if (mobilav==1) 
   for(cptcov=1;cptcov<=i1;cptcov++){                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                  else {
       k=k+1;                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
       fprintf(ficresvpl,"\n#****** ");                  }
       for(j=1;j<=cptcoveff;j++)                }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                if (h==(int)(calagedatem+12*cpt)){
       fprintf(ficresvpl,"******\n");                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                          /*fprintf(ficrespop," %.3f", kk1);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
       oldm=oldms;savm=savms;                }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              }
     }              for(i=1; i<=nlstate;i++){
  }                kk1=0.;
                   for(j=1; j<=nlstate;j++){
   fclose(ficresvpl);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
   /*---------- End : free ----------------*/                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);              }
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
              }
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    /******/
    
   free_matrix(matcov,1,npar,1,npar);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   free_vector(delti,1,npar);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   free_matrix(agev,1,maxwav,1,imx);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
   fprintf(fichtm,"\n</body>");            
   fclose(fichtm);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficgp);            oldm=oldms;savm=savms;
              hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
   if(erreur >0){              if (h==(int) (calagedatem+YEARM*cpt)) {
     printf("End of Imach with error or warning %d\n",erreur);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);              } 
   }else{              for(j=1; j<=nlstate+ndeath;j++) {
    printf("End of Imach\n");                kk1=0.;kk2=0;
    fprintf(ficlog,"End of Imach\n");                for(i=1; i<=nlstate;i++) {              
   }                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   printf("See log file on %s\n",filelog);                }
   fclose(ficlog);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              }
              }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*printf("Total time was %d uSec.\n", total_usecs);*/          }
   /*------ End -----------*/        }
      } 
     }
  end:   
 #ifdef windows    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* chdir(pathcd);*/  
 #endif    if (popforecast==1) {
  /*system("wgnuplot graph.plt");*/      free_ivector(popage,0,AGESUP);
  /*system("../gp37mgw/wgnuplot graph.plt");*/      free_vector(popeffectif,0,AGESUP);
  /*system("cd ../gp37mgw");*/      free_vector(popcount,0,AGESUP);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    }
  strcpy(plotcmd,GNUPLOTPROGRAM);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  strcat(plotcmd," ");    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  strcat(plotcmd,optionfilegnuplot);    fclose(ficrespop);
  system(plotcmd);  } /* End of popforecast */
   
 #ifdef windows  int fileappend(FILE *fichier, char *optionfich)
   while (z[0] != 'q') {  {
     /* chdir(path); */    if((fichier=fopen(optionfich,"a"))==NULL) {
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      printf("Problem with file: %s\n", optionfich);
     scanf("%s",z);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
     if (z[0] == 'c') system("./imach");      return (0);
     else if (z[0] == 'e') system(optionfilehtm);    }
     else if (z[0] == 'g') system(plotcmd);    fflush(fichier);
     else if (z[0] == 'q') exit(0);    return (1);
   }  }
 #endif  
 }  
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.120


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>