Diff for /imach/src/imach.c between versions 1.22 and 1.121

version 1.22, 2002/02/22 17:54:20 version 1.121, 2006/03/16 17:45:01
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolate Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.121  2006/03/16 17:45:01  lievre
      * imach.c (Module): Comments concerning covariates added
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    * imach.c (Module): refinements in the computation of lli if
   first survey ("cross") where individuals from different ages are    status=-2 in order to have more reliable computation if stepm is
   interviewed on their health status or degree of disability (in the    not 1 month. Version 0.98f
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.120  2006/03/16 15:10:38  lievre
   (if any) in individual health status.  Health expectancies are    (Module): refinements in the computation of lli if
   computed from the time spent in each health state according to a    status=-2 in order to have more reliable computation if stepm is
   model. More health states you consider, more time is necessary to reach the    not 1 month. Version 0.98f
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.119  2006/03/15 17:42:26  brouard
   probabibility to be observed in state j at the second wave    (Module): Bug if status = -2, the loglikelihood was
   conditional to be observed in state i at the first wave. Therefore    computed as likelihood omitting the logarithm. Version O.98e
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.118  2006/03/14 18:20:07  brouard
   complex model than "constant and age", you should modify the program    (Module): varevsij Comments added explaining the second
   where the markup *Covariates have to be included here again* invites    table of variances if popbased=1 .
   you to do it.  More covariates you add, slower the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   convergence.    (Module): Function pstamp added
     (Module): Version 0.98d
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.117  2006/03/14 17:16:22  brouard
   identical for each individual. Also, if a individual missed an    (Module): varevsij Comments added explaining the second
   intermediate interview, the information is lost, but taken into    table of variances if popbased=1 .
   account using an interpolation or extrapolation.      (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   hPijx is the probability to be observed in state i at age x+h    (Module): Version 0.98d
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.116  2006/03/06 10:29:27  brouard
   states. This elementary transition (by month or quarter trimester,    (Module): Variance-covariance wrong links and
   semester or year) is model as a multinomial logistic.  The hPx    varian-covariance of ej. is needed (Saito).
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.115  2006/02/27 12:17:45  brouard
   hPijx.    (Module): One freematrix added in mlikeli! 0.98c
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.114  2006/02/26 12:57:58  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Some improvements in processing parameter
      filename with strsep.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.113  2006/02/24 14:20:24  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Memory leaks checks with valgrind and:
   from the European Union.    datafile was not closed, some imatrix were not freed and on matrix
   It is copyrighted identically to a GNU software product, ie programme and    allocation too.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.112  2006/01/30 09:55:26  brouard
   **********************************************************************/    (Module): Back to gnuplot.exe instead of wgnuplot.exe
    
 #include <math.h>    Revision 1.111  2006/01/25 20:38:18  brouard
 #include <stdio.h>    (Module): Lots of cleaning and bugs added (Gompertz)
 #include <stdlib.h>    (Module): Comments can be added in data file. Missing date values
 #include <unistd.h>    can be a simple dot '.'.
   
 #define MAXLINE 256    Revision 1.110  2006/01/25 00:51:50  brouard
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    (Module): Lots of cleaning and bugs added (Gompertz)
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.109  2006/01/24 19:37:15  brouard
 #define windows    (Module): Comments (lines starting with a #) are allowed in data.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    To be fixed
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.107  2006/01/19 16:20:37  brouard
 #define NINTERVMAX 8    Test existence of gnuplot in imach path
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.106  2006/01/19 13:24:36  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Some cleaning and links added in html output
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.105  2006/01/05 20:23:19  lievre
 #define AGESUP 130    *** empty log message ***
 #define AGEBASE 40  
     Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 int erreur; /* Error number */    (Module): If the status is missing at the last wave but we know
 int nvar;    that the person is alive, then we can code his/her status as -2
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (instead of missing=-1 in earlier versions) and his/her
 int npar=NPARMAX;    contributions to the likelihood is 1 - Prob of dying from last
 int nlstate=2; /* Number of live states */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int ndeath=1; /* Number of dead states */    the healthy state at last known wave). Version is 0.98
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.102  2004/09/15 17:31:30  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    Add the possibility to read data file including tab characters.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.101  2004/09/15 10:38:38  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Fix on curr_time
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.100  2004/07/12 18:29:06  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Add version for Mac OS X. Just define UNIX in Makefile
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;  
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;    Revision 1.99  2004/06/05 08:57:40  brouard
 FILE *ficreseij;    *** empty log message ***
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.98  2004/05/16 15:05:56  brouard
   char fileresv[FILENAMELENGTH];    New version 0.97 . First attempt to estimate force of mortality
  FILE  *ficresvpl;    directly from the data i.e. without the need of knowing the health
   char fileresvpl[FILENAMELENGTH];    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 #define NR_END 1    other analysis, in order to test if the mortality estimated from the
 #define FREE_ARG char*    cross-longitudinal survey is different from the mortality estimated
 #define FTOL 1.0e-10    from other sources like vital statistic data.
   
 #define NRANSI    The same imach parameter file can be used but the option for mle should be -3.
 #define ITMAX 200  
     Agnès, who wrote this part of the code, tried to keep most of the
 #define TOL 2.0e-4    former routines in order to include the new code within the former code.
   
 #define CGOLD 0.3819660    The output is very simple: only an estimate of the intercept and of
 #define ZEPS 1.0e-10    the slope with 95% confident intervals.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Current limitations:
 #define GOLD 1.618034    A) Even if you enter covariates, i.e. with the
 #define GLIMIT 100.0    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define TINY 1.0e-20    B) There is no computation of Life Expectancy nor Life Table.
   
 static double maxarg1,maxarg2;    Revision 1.97  2004/02/20 13:25:42  lievre
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Version 0.96d. Population forecasting command line is (temporarily)
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    suppressed.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.96  2003/07/15 15:38:55  brouard
 #define rint(a) floor(a+0.5)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.95  2003/07/08 07:54:34  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 int imx;    matrix (cov(a12,c31) instead of numbers.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.93  2003/06/25 16:33:55  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): On windows (cygwin) function asctime_r doesn't
 double **pmmij, ***probs, ***mobaverage;    exist so I changed back to asctime which exists.
 double dateintmean=0;    (Module): Version 0.96b
   
 double *weight;    Revision 1.92  2003/06/25 16:30:45  brouard
 int **s; /* Status */    (Module): On windows (cygwin) function asctime_r doesn't
 double *agedc, **covar, idx;    exist so I changed back to asctime which exists.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.91  2003/06/25 15:30:29  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    * imach.c (Repository): Duplicated warning errors corrected.
 double ftolhess; /* Tolerance for computing hessian */    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 /**************** split *************************/    is stamped in powell.  We created a new html file for the graphs
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    concerning matrix of covariance. It has extension -cov.htm.
 {  
    char *s;                             /* pointer */    Revision 1.90  2003/06/24 12:34:15  brouard
    int  l1, l2;                         /* length counters */    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
    l1 = strlen( path );                 /* length of path */    of the covariance matrix to be input.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows    Revision 1.89  2003/06/24 12:30:52  brouard
    s = strrchr( path, '\\' );           /* find last / */    (Module): Some bugs corrected for windows. Also, when
 #else    mle=-1 a template is output in file "or"mypar.txt with the design
    s = strrchr( path, '/' );            /* find last / */    of the covariance matrix to be input.
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.88  2003/06/23 17:54:56  brouard
 #if     defined(__bsd__)                /* get current working directory */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       extern char       *getwd( );  
     Revision 1.87  2003/06/18 12:26:01  brouard
       if ( getwd( dirc ) == NULL ) {    Version 0.96
 #else  
       extern char       *getcwd( );    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    routine fileappend.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.85  2003/06/17 13:12:43  brouard
       }    * imach.c (Repository): Check when date of death was earlier that
       strcpy( name, path );             /* we've got it */    current date of interview. It may happen when the death was just
    } else {                             /* strip direcotry from path */    prior to the death. In this case, dh was negative and likelihood
       s++;                              /* after this, the filename */    was wrong (infinity). We still send an "Error" but patch by
       l2 = strlen( s );                 /* length of filename */    assuming that the date of death was just one stepm after the
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    interview.
       strcpy( name, s );                /* save file name */    (Repository): Because some people have very long ID (first column)
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    we changed int to long in num[] and we added a new lvector for
       dirc[l1-l2] = 0;                  /* add zero */    memory allocation. But we also truncated to 8 characters (left
    }    truncation)
    l1 = strlen( dirc );                 /* length of directory */    (Repository): No more line truncation errors.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.84  2003/06/13 21:44:43  brouard
 #else    * imach.c (Repository): Replace "freqsummary" at a correct
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    place. It differs from routine "prevalence" which may be called
 #endif    many times. Probs is memory consuming and must be used with
    s = strrchr( name, '.' );            /* find last / */    parcimony.
    s++;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.83  2003/06/10 13:39:11  lievre
    l2= strlen( s)+1;    *** empty log message ***
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.82  2003/06/05 15:57:20  brouard
    return( 0 );                         /* we're done */    Add log in  imach.c and  fullversion number is now printed.
 }  
   */
   /*
 /******************************************/     Interpolated Markov Chain
   
 void replace(char *s, char*t)    Short summary of the programme:
 {    
   int i;    This program computes Healthy Life Expectancies from
   int lg=20;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   i=0;    first survey ("cross") where individuals from different ages are
   lg=strlen(t);    interviewed on their health status or degree of disability (in the
   for(i=0; i<= lg; i++) {    case of a health survey which is our main interest) -2- at least a
     (s[i] = t[i]);    second wave of interviews ("longitudinal") which measure each change
     if (t[i]== '\\') s[i]='/';    (if any) in individual health status.  Health expectancies are
   }    computed from the time spent in each health state according to a
 }    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 int nbocc(char *s, char occ)    simplest model is the multinomial logistic model where pij is the
 {    probability to be observed in state j at the second wave
   int i,j=0;    conditional to be observed in state i at the first wave. Therefore
   int lg=20;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   i=0;    'age' is age and 'sex' is a covariate. If you want to have a more
   lg=strlen(s);    complex model than "constant and age", you should modify the program
   for(i=0; i<= lg; i++) {    where the markup *Covariates have to be included here again* invites
   if  (s[i] == occ ) j++;    you to do it.  More covariates you add, slower the
   }    convergence.
   return j;  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 void cutv(char *u,char *v, char*t, char occ)    identical for each individual. Also, if a individual missed an
 {    intermediate interview, the information is lost, but taken into
   int i,lg,j,p=0;    account using an interpolation or extrapolation.  
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    hPijx is the probability to be observed in state i at age x+h
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    conditional to the observed state i at age x. The delay 'h' can be
   }    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
   lg=strlen(t);    semester or year) is modelled as a multinomial logistic.  The hPx
   for(j=0; j<p; j++) {    matrix is simply the matrix product of nh*stepm elementary matrices
     (u[j] = t[j]);    and the contribution of each individual to the likelihood is simply
   }    hPijx.
      u[p]='\0';  
     Also this programme outputs the covariance matrix of the parameters but also
    for(j=0; j<= lg; j++) {    of the life expectancies. It also computes the period (stable) prevalence. 
     if (j>=(p+1))(v[j-p-1] = t[j]);    
   }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /********************** nrerror ********************/    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 void nrerror(char error_text[])    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   exit(1);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
 /*********************** vector *******************/    **********************************************************************/
 double *vector(int nl, int nh)  /*
 {    main
   double *v;    read parameterfile
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    read datafile
   if (!v) nrerror("allocation failure in vector");    concatwav
   return v-nl+NR_END;    freqsummary
 }    if (mle >= 1)
       mlikeli
 /************************ free vector ******************/    print results files
 void free_vector(double*v, int nl, int nh)    if mle==1 
 {       computes hessian
   free((FREE_ARG)(v+nl-NR_END));    read end of parameter file: agemin, agemax, bage, fage, estepm
 }        begin-prev-date,...
     open gnuplot file
 /************************ivector *******************************/    open html file
 int *ivector(long nl,long nh)    period (stable) prevalence
 {     for age prevalim()
   int *v;    h Pij x
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    variance of p varprob
   if (!v) nrerror("allocation failure in ivector");    forecasting if prevfcast==1 prevforecast call prevalence()
   return v-nl+NR_END;    health expectancies
 }    Variance-covariance of DFLE
     prevalence()
 /******************free ivector **************************/     movingaverage()
 void free_ivector(int *v, long nl, long nh)    varevsij() 
 {    if popbased==1 varevsij(,popbased)
   free((FREE_ARG)(v+nl-NR_END));    total life expectancies
 }    Variance of period (stable) prevalence
    end
 /******************* imatrix *******************************/  */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   
   int **m;  #include <math.h>
    #include <stdio.h>
   /* allocate pointers to rows */  #include <stdlib.h>
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #include <string.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <unistd.h>
   m += NR_END;  
   m -= nrl;  #include <limits.h>
    #include <sys/types.h>
    #include <sys/stat.h>
   /* allocate rows and set pointers to them */  #include <errno.h>
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  extern int errno;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /* #include <sys/time.h> */
   m[nrl] -= ncl;  #include <time.h>
    #include "timeval.h"
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    /* #include <libintl.h> */
   /* return pointer to array of pointers to rows */  /* #define _(String) gettext (String) */
   return m;  
 }  #define MAXLINE 256
   
 /****************** free_imatrix *************************/  #define GNUPLOTPROGRAM "gnuplot"
 void free_imatrix(m,nrl,nrh,ncl,nch)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       int **m;  #define FILENAMELENGTH 132
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 /******************* matrix *******************************/  #define NINTERVMAX 8
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define NCOVMAX 8 /* Maximum number of covariates */
   double **m;  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define AGESUP 130
   if (!m) nrerror("allocation failure 1 in matrix()");  #define AGEBASE 40
   m += NR_END;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   m -= nrl;  #ifdef UNIX
   #define DIRSEPARATOR '/'
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define CHARSEPARATOR "/"
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define ODIRSEPARATOR '\\'
   m[nrl] += NR_END;  #else
   m[nrl] -= ncl;  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define ODIRSEPARATOR '/'
   return m;  #endif
 }  
   /* $Id$ */
 /*************************free matrix ************************/  /* $State$ */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  char version[]="Imach version 0.98f, March 2006, INED-EUROREVES-Institut de longevite ";
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fullversion[]="$Revision$ $Date$"; 
   free((FREE_ARG)(m+nrl-NR_END));  char strstart[80];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 /******************* ma3x *******************************/  int nvar;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 {  int npar=NPARMAX;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int nlstate=2; /* Number of live states */
   double ***m;  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int popbased=0;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  int *wav; /* Number of waves for this individuual 0 is possible */
   m -= nrl;  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int gipmx, gsw; /* Global variables on the number of contributions 
   m[nrl] += NR_END;                     to the likelihood and the sum of weights (done by funcone)*/
   m[nrl] -= ncl;  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  double jmean; /* Mean space between 2 waves */
   m[nrl][ncl] += NR_END;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   m[nrl][ncl] -= nll;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for (j=ncl+1; j<=nch; j++)  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     m[nrl][j]=m[nrl][j-1]+nlay;  FILE *ficlog, *ficrespow;
    int globpr; /* Global variable for printing or not */
   for (i=nrl+1; i<=nrh; i++) {  double fretone; /* Only one call to likelihood */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  long ipmx; /* Number of contributions */
     for (j=ncl+1; j<=nch; j++)  double sw; /* Sum of weights */
       m[i][j]=m[i][j-1]+nlay;  char filerespow[FILENAMELENGTH];
   }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   return m;  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /*************************free ma3x ************************/  FILE *fichtm, *fichtmcov; /* Html File */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  FILE *ficresstdeij;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fileresstde[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  FILE *ficrescveij;
 }  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 /***************** f1dim *************************/  char fileresv[FILENAMELENGTH];
 extern int ncom;  FILE  *ficresvpl;
 extern double *pcom,*xicom;  char fileresvpl[FILENAMELENGTH];
 extern double (*nrfunc)(double []);  char title[MAXLINE];
    char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 double f1dim(double x)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   int j;  char command[FILENAMELENGTH];
   double f;  int  outcmd=0;
   double *xt;  
    char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char filelog[FILENAMELENGTH]; /* Log file */
   f=(*nrfunc)(xt);  char filerest[FILENAMELENGTH];
   free_vector(xt,1,ncom);  char fileregp[FILENAMELENGTH];
   return f;  char popfile[FILENAMELENGTH];
 }  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 {  struct timezone tzp;
   int iter;  extern int gettimeofday();
   double a,b,d,etemp;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   double fu,fv,fw,fx;  long time_value;
   double ftemp;  extern long time();
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char strcurr[80], strfor[80];
   double e=0.0;  
    char *endptr;
   a=(ax < cx ? ax : cx);  long lval;
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  #define NR_END 1
   fw=fv=fx=(*f)(x);  #define FREE_ARG char*
   for (iter=1;iter<=ITMAX;iter++) {  #define FTOL 1.0e-10
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define NRANSI 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define ITMAX 200 
     printf(".");fflush(stdout);  
 #ifdef DEBUG  #define TOL 2.0e-4 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define CGOLD 0.3819660 
 #endif  #define ZEPS 1.0e-10 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       *xmin=x;  
       return fx;  #define GOLD 1.618034 
     }  #define GLIMIT 100.0 
     ftemp=fu;  #define TINY 1.0e-20 
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  static double maxarg1,maxarg2;
       q=(x-v)*(fx-fw);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       p=(x-v)*q-(x-w)*r;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       q=2.0*(q-r);    
       if (q > 0.0) p = -p;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       q=fabs(q);  #define rint(a) floor(a+0.5)
       etemp=e;  
       e=d;  static double sqrarg;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       else {  int agegomp= AGEGOMP;
         d=p/q;  
         u=x+d;  int imx; 
         if (u-a < tol2 || b-u < tol2)  int stepm=1;
           d=SIGN(tol1,xm-x);  /* Stepm, step in month: minimum step interpolation*/
       }  
     } else {  int estepm;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int m,nb;
     fu=(*f)(u);  long *num;
     if (fu <= fx) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       if (u >= x) a=x; else b=x;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       SHFT(v,w,x,u)  double **pmmij, ***probs;
         SHFT(fv,fw,fx,fu)  double *ageexmed,*agecens;
         } else {  double dateintmean=0;
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  double *weight;
             v=w;  int **s; /* Status */
             w=u;  double *agedc, **covar, idx;
             fv=fw;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
             fw=fu;  double *lsurv, *lpop, *tpop;
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
             fv=fu;  double ftolhess; /* Tolerance for computing hessian */
           }  
         }  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   nrerror("Too many iterations in brent");  {
   *xmin=x;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   return fx;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }    */ 
     char  *ss;                            /* pointer */
 /****************** mnbrak ***********************/    int   l1, l2;                         /* length counters */
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    l1 = strlen(path );                   /* length of path */
             double (*func)(double))    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double ulim,u,r,q, dum;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double fu;      strcpy( name, path );               /* we got the fullname name because no directory */
        /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   *fa=(*func)(*ax);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   *fb=(*func)(*bx);      /* get current working directory */
   if (*fb > *fa) {      /*    extern  char* getcwd ( char *buf , int len);*/
     SHFT(dum,*ax,*bx,dum)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       SHFT(dum,*fb,*fa,dum)        return( GLOCK_ERROR_GETCWD );
       }      }
   *cx=(*bx)+GOLD*(*bx-*ax);      /* got dirc from getcwd*/
   *fc=(*func)(*cx);      printf(" DIRC = %s \n",dirc);
   while (*fb > *fc) {    } else {                              /* strip direcotry from path */
     r=(*bx-*ax)*(*fb-*fc);      ss++;                               /* after this, the filename */
     q=(*bx-*cx)*(*fb-*fa);      l2 = strlen( ss );                  /* length of filename */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      strcpy( name, ss );         /* save file name */
     ulim=(*bx)+GLIMIT*(*cx-*bx);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     if ((*bx-u)*(u-*cx) > 0.0) {      dirc[l1-l2] = 0;                    /* add zero */
       fu=(*func)(u);      printf(" DIRC2 = %s \n",dirc);
     } else if ((*cx-u)*(u-ulim) > 0.0) {    }
       fu=(*func)(u);    /* We add a separator at the end of dirc if not exists */
       if (fu < *fc) {    l1 = strlen( dirc );                  /* length of directory */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    if( dirc[l1-1] != DIRSEPARATOR ){
           SHFT(*fb,*fc,fu,(*func)(u))      dirc[l1] =  DIRSEPARATOR;
           }      dirc[l1+1] = 0; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      printf(" DIRC3 = %s \n",dirc);
       u=ulim;    }
       fu=(*func)(u);    ss = strrchr( name, '.' );            /* find last / */
     } else {    if (ss >0){
       u=(*cx)+GOLD*(*cx-*bx);      ss++;
       fu=(*func)(u);      strcpy(ext,ss);                     /* save extension */
     }      l1= strlen( name);
     SHFT(*ax,*bx,*cx,u)      l2= strlen(ss)+1;
       SHFT(*fa,*fb,*fc,fu)      strncpy( finame, name, l1-l2);
       }      finame[l1-l2]= 0;
 }    }
   
 /*************** linmin ************************/    return( 0 );                          /* we're done */
   }
 int ncom;  
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  /******************************************/
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  void replace_back_to_slash(char *s, char*t)
 {  {
   double brent(double ax, double bx, double cx,    int i;
                double (*f)(double), double tol, double *xmin);    int lg=0;
   double f1dim(double x);    i=0;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    lg=strlen(t);
               double *fc, double (*func)(double));    for(i=0; i<= lg; i++) {
   int j;      (s[i] = t[i]);
   double xx,xmin,bx,ax;      if (t[i]== '\\') s[i]='/';
   double fx,fb,fa;    }
    }
   ncom=n;  
   pcom=vector(1,n);  int nbocc(char *s, char occ)
   xicom=vector(1,n);  {
   nrfunc=func;    int i,j=0;
   for (j=1;j<=n;j++) {    int lg=20;
     pcom[j]=p[j];    i=0;
     xicom[j]=xi[j];    lg=strlen(s);
   }    for(i=0; i<= lg; i++) {
   ax=0.0;    if  (s[i] == occ ) j++;
   xx=1.0;    }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    return j;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  }
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  void cutv(char *u,char *v, char*t, char occ)
 #endif  {
   for (j=1;j<=n;j++) {    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     xi[j] *= xmin;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     p[j] += xi[j];       gives u="abcedf" and v="ghi2j" */
   }    int i,lg,j,p=0;
   free_vector(xicom,1,n);    i=0;
   free_vector(pcom,1,n);    for(j=0; j<=strlen(t)-1; j++) {
 }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    lg=strlen(t);
             double (*func)(double []))    for(j=0; j<p; j++) {
 {      (u[j] = t[j]);
   void linmin(double p[], double xi[], int n, double *fret,    }
               double (*func)(double []));       u[p]='\0';
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;     for(j=0; j<= lg; j++) {
   double fp,fptt;      if (j>=(p+1))(v[j-p-1] = t[j]);
   double *xits;    }
   pt=vector(1,n);  }
   ptt=vector(1,n);  
   xit=vector(1,n);  /********************** nrerror ********************/
   xits=vector(1,n);  
   *fret=(*func)(p);  void nrerror(char error_text[])
   for (j=1;j<=n;j++) pt[j]=p[j];  {
   for (*iter=1;;++(*iter)) {    fprintf(stderr,"ERREUR ...\n");
     fp=(*fret);    fprintf(stderr,"%s\n",error_text);
     ibig=0;    exit(EXIT_FAILURE);
     del=0.0;  }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /*********************** vector *******************/
     for (i=1;i<=n;i++)  double *vector(int nl, int nh)
       printf(" %d %.12f",i, p[i]);  {
     printf("\n");    double *v;
     for (i=1;i<=n;i++) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    if (!v) nrerror("allocation failure in vector");
       fptt=(*fret);    return v-nl+NR_END;
 #ifdef DEBUG  }
       printf("fret=%lf \n",*fret);  
 #endif  /************************ free vector ******************/
       printf("%d",i);fflush(stdout);  void free_vector(double*v, int nl, int nh)
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    free((FREE_ARG)(v+nl-NR_END));
         del=fabs(fptt-(*fret));  }
         ibig=i;  
       }  /************************ivector *******************************/
 #ifdef DEBUG  int *ivector(long nl,long nh)
       printf("%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    int *v;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         printf(" x(%d)=%.12e",j,xit[j]);    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
       for(j=1;j<=n;j++)  }
         printf(" p=%.12e",p[j]);  
       printf("\n");  /******************free ivector **************************/
 #endif  void free_ivector(int *v, long nl, long nh)
     }  {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
       int k[2],l;  
       k[0]=1;  /************************lvector *******************************/
       k[1]=-1;  long *lvector(long nl,long nh)
       printf("Max: %.12e",(*func)(p));  {
       for (j=1;j<=n;j++)    long *v;
         printf(" %.12e",p[j]);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       printf("\n");    if (!v) nrerror("allocation failure in ivector");
       for(l=0;l<=1;l++) {    return v-nl+NR_END;
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /******************free lvector **************************/
         }  void free_lvector(long *v, long nl, long nh)
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  {
       }    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
   
   /******************* imatrix *******************************/
       free_vector(xit,1,n);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       free_vector(xits,1,n);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       free_vector(ptt,1,n);  { 
       free_vector(pt,1,n);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       return;    int **m; 
     }    
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    /* allocate pointers to rows */ 
     for (j=1;j<=n;j++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       ptt[j]=2.0*p[j]-pt[j];    if (!m) nrerror("allocation failure 1 in matrix()"); 
       xit[j]=p[j]-pt[j];    m += NR_END; 
       pt[j]=p[j];    m -= nrl; 
     }    
     fptt=(*func)(ptt);    
     if (fptt < fp) {    /* allocate rows and set pointers to them */ 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       if (t < 0.0) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         linmin(p,xit,n,fret,func);    m[nrl] += NR_END; 
         for (j=1;j<=n;j++) {    m[nrl] -= ncl; 
           xi[j][ibig]=xi[j][n];    
           xi[j][n]=xit[j];    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         }    
 #ifdef DEBUG    /* return pointer to array of pointers to rows */ 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    return m; 
         for(j=1;j<=n;j++)  } 
           printf(" %.12e",xit[j]);  
         printf("\n");  /****************** free_imatrix *************************/
 #endif  void free_imatrix(m,nrl,nrh,ncl,nch)
       }        int **m;
     }        long nch,ncl,nrh,nrl; 
   }       /* free an int matrix allocated by imatrix() */ 
 }  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 /**** Prevalence limit ****************/    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  /******************* matrix *******************************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  double **matrix(long nrl, long nrh, long ncl, long nch)
      matrix by transitions matrix until convergence is reached */  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   int i, ii,j,k;    double **m;
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double **out, cov[NCOVMAX], **pmij();    if (!m) nrerror("allocation failure 1 in matrix()");
   double **newm;    m += NR_END;
   double agefin, delaymax=50 ; /* Max number of years to converge */    m -= nrl;
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (j=1;j<=nlstate+ndeath;j++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   
    cov[1]=1.;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      return m;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){     */
     newm=savm;  }
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /*************************free matrix ************************/
    void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for (k=1; k<=cptcovn;k++) {  {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    free((FREE_ARG)(m+nrl-NR_END));
       }  }
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /******************* ma3x *******************************/
       for (k=1; k<=cptcovprod;k++)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    double ***m;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
     savm=oldm;    m -= nrl;
     oldm=newm;  
     maxmax=0.;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(j=1;j<=nlstate;j++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       min=1.;    m[nrl] += NR_END;
       max=0.;    m[nrl] -= ncl;
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         max=FMAX(max,prlim[i][j]);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         min=FMIN(min,prlim[i][j]);    m[nrl][ncl] += NR_END;
       }    m[nrl][ncl] -= nll;
       maxmin=max-min;    for (j=ncl+1; j<=nch; j++) 
       maxmax=FMAX(maxmax,maxmin);      m[nrl][j]=m[nrl][j-1]+nlay;
     }    
     if(maxmax < ftolpl){    for (i=nrl+1; i<=nrh; i++) {
       return prlim;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     }      for (j=ncl+1; j<=nch; j++) 
   }        m[i][j]=m[i][j-1]+nlay;
 }    }
     return m; 
 /*************** transition probabilities ***************/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    */
 {  }
   double s1, s2;  
   /*double t34;*/  /*************************free ma3x ************************/
   int i,j,j1, nc, ii, jj;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
     for(i=1; i<= nlstate; i++){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     for(j=1; j<i;j++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free((FREE_ARG)(m+nrl-NR_END));
         /*s2 += param[i][j][nc]*cov[nc];*/  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /*************** function subdirf ***********/
       }  char *subdirf(char fileres[])
       ps[i][j]=s2;  {
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     for(j=i+1; j<=nlstate+ndeath;j++){    strcat(tmpout,"/"); /* Add to the right */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcat(tmpout,fileres);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return tmpout;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  }
       }  
       ps[i][j]=s2;  /*************** function subdirf2 ***********/
     }  char *subdirf2(char fileres[], char *preop)
   }  {
     /*ps[3][2]=1;*/    
     /* Caution optionfilefiname is hidden */
   for(i=1; i<= nlstate; i++){    strcpy(tmpout,optionfilefiname);
      s1=0;    strcat(tmpout,"/");
     for(j=1; j<i; j++)    strcat(tmpout,preop);
       s1+=exp(ps[i][j]);    strcat(tmpout,fileres);
     for(j=i+1; j<=nlstate+ndeath; j++)    return tmpout;
       s1+=exp(ps[i][j]);  }
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  /*************** function subdirf3 ***********/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  char *subdirf3(char fileres[], char *preop, char *preop2)
     for(j=i+1; j<=nlstate+ndeath; j++)  {
       ps[i][j]= exp(ps[i][j])*ps[i][i];    
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    /* Caution optionfilefiname is hidden */
   } /* end i */    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    strcat(tmpout,preop);
     for(jj=1; jj<= nlstate+ndeath; jj++){    strcat(tmpout,preop2);
       ps[ii][jj]=0;    strcat(tmpout,fileres);
       ps[ii][ii]=1;    return tmpout;
     }  }
   }  
   /***************** f1dim *************************/
   extern int ncom; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  extern double *pcom,*xicom;
     for(jj=1; jj<= nlstate+ndeath; jj++){  extern double (*nrfunc)(double []); 
      printf("%lf ",ps[ii][jj]);   
    }  double f1dim(double x) 
     printf("\n ");  { 
     }    int j; 
     printf("\n ");printf("%lf ",cov[2]);*/    double f;
 /*    double *xt; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);   
   goto end;*/    xt=vector(1,ncom); 
     return ps;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 /**************** Product of 2 matrices ******************/    return f; 
   } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  /*****************brent *************************/
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  { 
   /* in, b, out are matrice of pointers which should have been initialized    int iter; 
      before: only the contents of out is modified. The function returns    double a,b,d,etemp;
      a pointer to pointers identical to out */    double fu,fv,fw,fx;
   long i, j, k;    double ftemp;
   for(i=nrl; i<= nrh; i++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for(k=ncolol; k<=ncoloh; k++)    double e=0.0; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)   
         out[i][k] +=in[i][j]*b[j][k];    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
   return out;    x=w=v=bx; 
 }    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
 /************* Higher Matrix Product ***************/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      printf(".");fflush(stdout);
 {      fprintf(ficlog,".");fflush(ficlog);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  #ifdef DEBUG
      duration (i.e. until      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      (typically every 2 years instead of every month which is too big).  #endif
      Model is determined by parameters x and covariates have to be      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
      included manually here.        *xmin=x; 
         return fx; 
      */      } 
       ftemp=fu;
   int i, j, d, h, k;      if (fabs(e) > tol1) { 
   double **out, cov[NCOVMAX];        r=(x-w)*(fx-fv); 
   double **newm;        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
   /* Hstepm could be zero and should return the unit matrix */        q=2.0*(q-r); 
   for (i=1;i<=nlstate+ndeath;i++)        if (q > 0.0) p = -p; 
     for (j=1;j<=nlstate+ndeath;j++){        q=fabs(q); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        etemp=e; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for(h=1; h <=nhstepm; h++){        else { 
     for(d=1; d <=hstepm; d++){          d=p/q; 
       newm=savm;          u=x+d; 
       /* Covariates have to be included here again */          if (u-a < tol2 || b-u < tol2) 
       cov[1]=1.;            d=SIGN(tol1,xm-x); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      } else { 
       for (k=1; k<=cptcovage;k++)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } 
       for (k=1; k<=cptcovprod;k++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      fu=(*f)(u); 
       if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        SHFT(v,w,x,u) 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          SHFT(fv,fw,fx,fu) 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          } else { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));            if (u < x) a=u; else b=u; 
       savm=oldm;            if (fu <= fw || w == x) { 
       oldm=newm;              v=w; 
     }              w=u; 
     for(i=1; i<=nlstate+ndeath; i++)              fv=fw; 
       for(j=1;j<=nlstate+ndeath;j++) {              fw=fu; 
         po[i][j][h]=newm[i][j];            } else if (fu <= fv || v == x || v == w) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);              v=u; 
          */              fv=fu; 
       }            } 
   } /* end h */          } 
   return po;    } 
 }    nrerror("Too many iterations in brent"); 
     *xmin=x; 
     return fx; 
 /*************** log-likelihood *************/  } 
 double func( double *x)  
 {  /****************** mnbrak ***********************/
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   double **out;              double (*func)(double)) 
   double sw; /* Sum of weights */  { 
   double lli; /* Individual log likelihood */    double ulim,u,r,q, dum;
   long ipmx;    double fu; 
   /*extern weight */   
   /* We are differentiating ll according to initial status */    *fa=(*func)(*ax); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    *fb=(*func)(*bx); 
   /*for(i=1;i<imx;i++)    if (*fb > *fa) { 
     printf(" %d\n",s[4][i]);      SHFT(dum,*ax,*bx,dum) 
   */        SHFT(dum,*fb,*fa,dum) 
   cov[1]=1.;        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    *fc=(*func)(*cx); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    while (*fb > *fc) { 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      r=(*bx-*ax)*(*fb-*fc); 
     for(mi=1; mi<= wav[i]-1; mi++){      q=(*bx-*cx)*(*fb-*fa); 
       for (ii=1;ii<=nlstate+ndeath;ii++)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       for(d=0; d<dh[mi][i]; d++){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         newm=savm;      if ((*bx-u)*(u-*cx) > 0.0) { 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        fu=(*func)(u); 
         for (kk=1; kk<=cptcovage;kk++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        fu=(*func)(u); 
         }        if (fu < *fc) { 
                  SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            SHFT(*fb,*fc,fu,(*func)(u)) 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            } 
         savm=oldm;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         oldm=newm;        u=ulim; 
                fu=(*func)(u); 
              } else { 
       } /* end mult */        u=(*cx)+GOLD*(*cx-*bx); 
              fu=(*func)(u); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      SHFT(*ax,*bx,*cx,u) 
       ipmx +=1;        SHFT(*fa,*fb,*fc,fu) 
       sw += weight[i];        } 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  } 
     } /* end of wave */  
   } /* end of individual */  /*************** linmin ************************/
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  int ncom; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  double *pcom,*xicom;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  double (*nrfunc)(double []); 
   return -l;   
 }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
     double brent(double ax, double bx, double cx, 
 /*********** Maximum Likelihood Estimation ***************/                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 {                double *fc, double (*func)(double)); 
   int i,j, iter;    int j; 
   double **xi,*delti;    double xx,xmin,bx,ax; 
   double fret;    double fx,fb,fa;
   xi=matrix(1,npar,1,npar);   
   for (i=1;i<=npar;i++)    ncom=n; 
     for (j=1;j<=npar;j++)    pcom=vector(1,n); 
       xi[i][j]=(i==j ? 1.0 : 0.0);    xicom=vector(1,n); 
   printf("Powell\n");    nrfunc=func; 
   powell(p,xi,npar,ftol,&iter,&fret,func);    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      xicom[j]=xi[j]; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    } 
     ax=0.0; 
 }    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 /**** Computes Hessian and covariance matrix ***/    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  #ifdef DEBUG
 {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double  **a,**y,*x,pd;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **hess;  #endif
   int i, j,jk;    for (j=1;j<=n;j++) { 
   int *indx;      xi[j] *= xmin; 
       p[j] += xi[j]; 
   double hessii(double p[], double delta, int theta, double delti[]);    } 
   double hessij(double p[], double delti[], int i, int j);    free_vector(xicom,1,n); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    free_vector(pcom,1,n); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  } 
   
   hess=matrix(1,npar,1,npar);  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   printf("\nCalculation of the hessian matrix. Wait...\n");    long sec_left, days, hours, minutes;
   for (i=1;i<=npar;i++){    days = (time_sec) / (60*60*24);
     printf("%d",i);fflush(stdout);    sec_left = (time_sec) % (60*60*24);
     hess[i][i]=hessii(p,ftolhess,i,delti);    hours = (sec_left) / (60*60) ;
     /*printf(" %f ",p[i]);*/    sec_left = (sec_left) %(60*60);
     /*printf(" %lf ",hess[i][i]);*/    minutes = (sec_left) /60;
   }    sec_left = (sec_left) % (60);
      sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   for (i=1;i<=npar;i++) {    return ascdiff;
     for (j=1;j<=npar;j++)  {  }
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  /*************** powell ************************/
         hess[i][j]=hessij(p,delti,i,j);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         hess[j][i]=hess[i][j];                  double (*func)(double [])) 
         /*printf(" %lf ",hess[i][j]);*/  { 
       }    void linmin(double p[], double xi[], int n, double *fret, 
     }                double (*func)(double [])); 
   }    int i,ibig,j; 
   printf("\n");    double del,t,*pt,*ptt,*xit;
     double fp,fptt;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    double *xits;
      int niterf, itmp;
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);    pt=vector(1,n); 
   x=vector(1,npar);    ptt=vector(1,n); 
   indx=ivector(1,npar);    xit=vector(1,n); 
   for (i=1;i<=npar;i++)    xits=vector(1,n); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    *fret=(*func)(p); 
   ludcmp(a,npar,indx,&pd);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
   for (j=1;j<=npar;j++) {      fp=(*fret); 
     for (i=1;i<=npar;i++) x[i]=0;      ibig=0; 
     x[j]=1;      del=0.0; 
     lubksb(a,npar,indx,x);      last_time=curr_time;
     for (i=1;i<=npar;i++){      (void) gettimeofday(&curr_time,&tzp);
       matcov[i][j]=x[i];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     }      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   }      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
   printf("\n#Hessian matrix#\n");     for (i=1;i<=n;i++) {
   for (i=1;i<=npar;i++) {        printf(" %d %.12f",i, p[i]);
     for (j=1;j<=npar;j++) {        fprintf(ficlog," %d %.12lf",i, p[i]);
       printf("%.3e ",hess[i][j]);        fprintf(ficrespow," %.12lf", p[i]);
     }      }
     printf("\n");      printf("\n");
   }      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
   /* Recompute Inverse */      if(*iter <=3){
   for (i=1;i<=npar;i++)        tm = *localtime(&curr_time.tv_sec);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        strcpy(strcurr,asctime(&tm));
   ludcmp(a,npar,indx,&pd);  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
   /*  printf("\n#Hessian matrix recomputed#\n");        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   for (j=1;j<=npar;j++) {          strcurr[itmp-1]='\0';
     for (i=1;i<=npar;i++) x[i]=0;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     x[j]=1;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     lubksb(a,npar,indx,x);        for(niterf=10;niterf<=30;niterf+=10){
     for (i=1;i<=npar;i++){          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       y[i][j]=x[i];          tmf = *localtime(&forecast_time.tv_sec);
       printf("%.3e ",y[i][j]);  /*      asctime_r(&tmf,strfor); */
     }          strcpy(strfor,asctime(&tmf));
     printf("\n");          itmp = strlen(strfor);
   }          if(strfor[itmp-1]=='\n')
   */          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   free_matrix(a,1,npar,1,npar);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   free_matrix(y,1,npar,1,npar);        }
   free_vector(x,1,npar);      }
   free_ivector(indx,1,npar);      for (i=1;i<=n;i++) { 
   free_matrix(hess,1,npar,1,npar);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
   #ifdef DEBUG
 }        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
 /*************** hessian matrix ****************/  #endif
 double hessii( double x[], double delta, int theta, double delti[])        printf("%d",i);fflush(stdout);
 {        fprintf(ficlog,"%d",i);fflush(ficlog);
   int i;        linmin(p,xit,n,fret,func); 
   int l=1, lmax=20;        if (fabs(fptt-(*fret)) > del) { 
   double k1,k2;          del=fabs(fptt-(*fret)); 
   double p2[NPARMAX+1];          ibig=i; 
   double res;        } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  #ifdef DEBUG
   double fx;        printf("%d %.12e",i,(*fret));
   int k=0,kmax=10;        fprintf(ficlog,"%d %.12e",i,(*fret));
   double l1;        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   fx=func(x);          printf(" x(%d)=%.12e",j,xit[j]);
   for (i=1;i<=npar;i++) p2[i]=x[i];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for(l=0 ; l <=lmax; l++){        }
     l1=pow(10,l);        for(j=1;j<=n;j++) {
     delts=delt;          printf(" p=%.12e",p[j]);
     for(k=1 ; k <kmax; k=k+1){          fprintf(ficlog," p=%.12e",p[j]);
       delt = delta*(l1*k);        }
       p2[theta]=x[theta] +delt;        printf("\n");
       k1=func(p2)-fx;        fprintf(ficlog,"\n");
       p2[theta]=x[theta]-delt;  #endif
       k2=func(p2)-fx;      } 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  #ifdef DEBUG
              int k[2],l;
 #ifdef DEBUG        k[0]=1;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        k[1]=-1;
 #endif        printf("Max: %.12e",(*func)(p));
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        fprintf(ficlog,"Max: %.12e",(*func)(p));
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        for (j=1;j<=n;j++) {
         k=kmax;          printf(" %.12e",p[j]);
       }          fprintf(ficlog," %.12e",p[j]);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        }
         k=kmax; l=lmax*10.;        printf("\n");
       }        fprintf(ficlog,"\n");
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        for(l=0;l<=1;l++) {
         delts=delt;          for (j=1;j<=n;j++) {
       }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   delti[theta]=delts;          }
   return res;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 }        }
   #endif
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {  
   int i;        free_vector(xit,1,n); 
   int l=1, l1, lmax=20;        free_vector(xits,1,n); 
   double k1,k2,k3,k4,res,fx;        free_vector(ptt,1,n); 
   double p2[NPARMAX+1];        free_vector(pt,1,n); 
   int k;        return; 
       } 
   fx=func(x);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for (k=1; k<=2; k++) {      for (j=1;j<=n;j++) { 
     for (i=1;i<=npar;i++) p2[i]=x[i];        ptt[j]=2.0*p[j]-pt[j]; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        xit[j]=p[j]-pt[j]; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        pt[j]=p[j]; 
     k1=func(p2)-fx;      } 
        fptt=(*func)(ptt); 
     p2[thetai]=x[thetai]+delti[thetai]/k;      if (fptt < fp) { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     k2=func(p2)-fx;        if (t < 0.0) { 
            linmin(p,xit,n,fret,func); 
     p2[thetai]=x[thetai]-delti[thetai]/k;          for (j=1;j<=n;j++) { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            xi[j][ibig]=xi[j][n]; 
     k3=func(p2)-fx;            xi[j][n]=xit[j]; 
            }
     p2[thetai]=x[thetai]-delti[thetai]/k;  #ifdef DEBUG
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     k4=func(p2)-fx;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          for(j=1;j<=n;j++){
 #ifdef DEBUG            printf(" %.12e",xit[j]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            fprintf(ficlog," %.12e",xit[j]);
 #endif          }
   }          printf("\n");
   return res;          fprintf(ficlog,"\n");
 }  #endif
         }
 /************** Inverse of matrix **************/      } 
 void ludcmp(double **a, int n, int *indx, double *d)    } 
 {  } 
   int i,imax,j,k;  
   double big,dum,sum,temp;  /**** Prevalence limit (stable or period prevalence)  ****************/
   double *vv;  
    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   vv=vector(1,n);  {
   *d=1.0;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for (i=1;i<=n;i++) {       matrix by transitions matrix until convergence is reached */
     big=0.0;  
     for (j=1;j<=n;j++)    int i, ii,j,k;
       if ((temp=fabs(a[i][j])) > big) big=temp;    double min, max, maxmin, maxmax,sumnew=0.;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double **matprod2();
     vv[i]=1.0/big;    double **out, cov[NCOVMAX], **pmij();
   }    double **newm;
   for (j=1;j<=n;j++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
     for (i=1;i<j;i++) {  
       sum=a[i][j];    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      for (j=1;j<=nlstate+ndeath;j++){
       a[i][j]=sum;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }      }
     big=0.0;  
     for (i=j;i<=n;i++) {     cov[1]=1.;
       sum=a[i][j];   
       for (k=1;k<j;k++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         sum -= a[i][k]*a[k][j];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       a[i][j]=sum;      newm=savm;
       if ( (dum=vv[i]*fabs(sum)) >= big) {      /* Covariates have to be included here again */
         big=dum;       cov[2]=agefin;
         imax=i;    
       }        for (k=1; k<=cptcovn;k++) {
     }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     if (j != imax) {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       for (k=1;k<=n;k++) {        }
         dum=a[imax][k];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         a[imax][k]=a[j][k];        for (k=1; k<=cptcovprod;k++)
         a[j][k]=dum;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }  
       *d = -(*d);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       vv[imax]=vv[j];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     indx[j]=imax;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {      savm=oldm;
       dum=1.0/(a[j][j]);      oldm=newm;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      maxmax=0.;
     }      for(j=1;j<=nlstate;j++){
   }        min=1.;
   free_vector(vv,1,n);  /* Doesn't work */        max=0.;
 ;        for(i=1; i<=nlstate; i++) {
 }          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 void lubksb(double **a, int n, int *indx, double b[])          prlim[i][j]= newm[i][j]/(1-sumnew);
 {          max=FMAX(max,prlim[i][j]);
   int i,ii=0,ip,j;          min=FMIN(min,prlim[i][j]);
   double sum;        }
          maxmin=max-min;
   for (i=1;i<=n;i++) {        maxmax=FMAX(maxmax,maxmin);
     ip=indx[i];      }
     sum=b[ip];      if(maxmax < ftolpl){
     b[ip]=b[i];        return prlim;
     if (ii)      }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    }
     else if (sum) ii=i;  }
     b[i]=sum;  
   }  /*************** transition probabilities ***************/ 
   for (i=n;i>=1;i--) {  
     sum=b[i];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  {
     b[i]=sum/a[i][i];    double s1, s2;
   }    /*double t34;*/
 }    int i,j,j1, nc, ii, jj;
   
 /************ Frequencies ********************/      for(i=1; i<= nlstate; i++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)        for(j=1; j<i;j++){
 {  /* Some frequencies */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              /*s2 += param[i][j][nc]*cov[nc];*/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double ***freq; /* Frequencies */  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   double *pp;          }
   double pos, k2, dateintsum=0,k2cpt=0;          ps[i][j]=s2;
   FILE *ficresp;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   char fileresp[FILENAMELENGTH];        }
         for(j=i+1; j<=nlstate+ndeath;j++){
   pp=vector(1,nlstate);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   strcpy(fileresp,"p");  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   strcat(fileresp,fileres);          }
   if((ficresp=fopen(fileresp,"w"))==NULL) {          ps[i][j]=s2;
     printf("Problem with prevalence resultfile: %s\n", fileresp);        }
     exit(0);      }
   }      /*ps[3][2]=1;*/
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      
   j1=0;      for(i=1; i<= nlstate; i++){
         s1=0;
   j=cptcoveff;        for(j=1; j<i; j++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          s1+=exp(ps[i][j]);
         for(j=i+1; j<=nlstate+ndeath; j++)
   for(k1=1; k1<=j;k1++){          s1+=exp(ps[i][j]);
    for(i1=1; i1<=ncodemax[k1];i1++){        ps[i][i]=1./(s1+1.);
        j1++;        for(j=1; j<i; j++)
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          ps[i][j]= exp(ps[i][j])*ps[i][i];
          scanf("%d", i);*/        for(j=i+1; j<=nlstate+ndeath; j++)
         for (i=-1; i<=nlstate+ndeath; i++)            ps[i][j]= exp(ps[i][j])*ps[i][i];
          for (jk=-1; jk<=nlstate+ndeath; jk++)          /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
            for(m=agemin; m <= agemax+3; m++)      } /* end i */
              freq[i][jk][m]=0;      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         dateintsum=0;        for(jj=1; jj<= nlstate+ndeath; jj++){
         k2cpt=0;          ps[ii][jj]=0;
        for (i=1; i<=imx; i++) {          ps[ii][ii]=1;
          bool=1;        }
          if  (cptcovn>0) {      }
            for (z1=1; z1<=cptcoveff; z1++)      
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
                bool=0;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
          }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
          if (bool==1) {  /*         printf("ddd %lf ",ps[ii][jj]); */
            for(m=firstpass; m<=lastpass; m++){  /*       } */
              k2=anint[m][i]+(mint[m][i]/12.);  /*       printf("\n "); */
              if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*        } */
                if(agev[m][i]==0) agev[m][i]=agemax+1;  /*        printf("\n ");printf("%lf ",cov[2]); */
                if(agev[m][i]==1) agev[m][i]=agemax+2;         /*
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        goto end;*/
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      return ps;
                  dateintsum=dateintsum+k2;  }
                  k2cpt++;  
                }  /**************** Product of 2 matrices ******************/
   
              }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
            }  {
          }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         if  (cptcovn>0) {    /* in, b, out are matrice of pointers which should have been initialized 
          fprintf(ficresp, "\n#********** Variable ");       before: only the contents of out is modified. The function returns
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       a pointer to pointers identical to out */
        fprintf(ficresp, "**********\n#");    long i, j, k;
         }    for(i=nrl; i<= nrh; i++)
        for(i=1; i<=nlstate;i++)      for(k=ncolol; k<=ncoloh; k++)
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
        fprintf(ficresp, "\n");          out[i][k] +=in[i][j]*b[j][k];
          
   for(i=(int)agemin; i <= (int)agemax+3; i++){    return out;
     if(i==(int)agemax+3)  }
       printf("Total");  
     else  
       printf("Age %d", i);  /************* Higher Matrix Product ***************/
     for(jk=1; jk <=nlstate ; jk++){  
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         pp[jk] += freq[jk][m][i];  {
     }    /* Computes the transition matrix starting at age 'age' over 
     for(jk=1; jk <=nlstate ; jk++){       'nhstepm*hstepm*stepm' months (i.e. until
       for(m=-1, pos=0; m <=0 ; m++)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         pos += freq[jk][m][i];       nhstepm*hstepm matrices. 
       if(pp[jk]>=1.e-10)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);       (typically every 2 years instead of every month which is too big 
       else       for the memory).
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);       Model is determined by parameters x and covariates have to be 
     }       included manually here. 
   
      for(jk=1; jk <=nlstate ; jk++){       */
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
         pp[jk] += freq[jk][m][i];    int i, j, d, h, k;
      }    double **out, cov[NCOVMAX];
     double **newm;
     for(jk=1,pos=0; jk <=nlstate ; jk++)  
       pos += pp[jk];    /* Hstepm could be zero and should return the unit matrix */
     for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=nlstate+ndeath;i++)
       if(pos>=1.e-5)      for (j=1;j<=nlstate+ndeath;j++){
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        oldm[i][j]=(i==j ? 1.0 : 0.0);
       else        po[i][j][0]=(i==j ? 1.0 : 0.0);
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      }
       if( i <= (int) agemax){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         if(pos>=1.e-5){    for(h=1; h <=nhstepm; h++){
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      for(d=1; d <=hstepm; d++){
           probs[i][jk][j1]= pp[jk]/pos;        newm=savm;
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        /* Covariates have to be included here again */
         }        cov[1]=1.;
       else        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }        for (k=1; k<=cptcovage;k++)
     }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(jk=-1; jk <=nlstate+ndeath; jk++)        for (k=1; k<=cptcovprod;k++)
       for(m=-1; m <=nlstate+ndeath; m++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
     if(i <= (int) agemax)  
       fprintf(ficresp,"\n");        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     printf("\n");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
  }        savm=oldm;
   dateintmean=dateintsum/k2cpt;        oldm=newm;
        }
   fclose(ficresp);      for(i=1; i<=nlstate+ndeath; i++)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for(j=1;j<=nlstate+ndeath;j++) {
   free_vector(pp,1,nlstate);          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   /* End of Freq */           */
 }        }
     } /* end h */
 /************ Prevalence ********************/    return po;
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  }
 {  /* Some frequencies */  
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /*************** log-likelihood *************/
   double ***freq; /* Frequencies */  double func( double *x)
   double *pp;  {
   double pos, k2;    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
   pp=vector(1,nlstate);    double **out;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double sw; /* Sum of weights */
      double lli; /* Individual log likelihood */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    int s1, s2;
   j1=0;    double bbh, survp;
      long ipmx;
   j=cptcoveff;    /*extern weight */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
  for(k1=1; k1<=j;k1++){    /*for(i=1;i<imx;i++) 
     for(i1=1; i1<=ncodemax[k1];i1++){      printf(" %d\n",s[4][i]);
       j1++;    */
      cov[1]=1.;
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)      for(k=1; k<=nlstate; k++) ll[k]=0.;
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;    if(mle==1){
            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (i=1; i<=imx; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         bool=1;        for(mi=1; mi<= wav[i]-1; mi++){
         if  (cptcovn>0) {          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (z1=1; z1<=cptcoveff; z1++)            for (j=1;j<=nlstate+ndeath;j++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               bool=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         if (bool==1) {          for(d=0; d<dh[mi][i]; d++){
           for(m=firstpass; m<=lastpass; m++){            newm=savm;
             k2=anint[m][i]+(mint[m][i]/12.);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            for (kk=1; kk<=cptcovage;kk++) {
               if(agev[m][i]==0) agev[m][i]=agemax+1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if(agev[m][i]==1) agev[m][i]=agemax+2;            }
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             }            savm=oldm;
           }            oldm=newm;
         }          } /* end mult */
       }        
                /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         for(i=(int)agemin; i <= (int)agemax+3; i++){          /* But now since version 0.9 we anticipate for bias at large stepm.
           for(jk=1; jk <=nlstate ; jk++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
               pp[jk] += freq[jk][m][i];           * the nearest (and in case of equal distance, to the lowest) interval but now
           }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           for(jk=1; jk <=nlstate ; jk++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             for(m=-1, pos=0; m <=0 ; m++)           * probability in order to take into account the bias as a fraction of the way
             pos += freq[jk][m][i];           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
                   * For stepm=1 the results are the same as for previous versions of Imach.
          for(jk=1; jk <=nlstate ; jk++){           * For stepm > 1 the results are less biased than in previous versions. 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           */
              pp[jk] += freq[jk][m][i];          s1=s[mw[mi][i]][i];
          }          s2=s[mw[mi+1][i]][i];
                    bbh=(double)bh[mi][i]/(double)stepm; 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
          for(jk=1; jk <=nlstate ; jk++){                     */
            if( i <= (int) agemax){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
              if(pos>=1.e-5){          if( s2 > nlstate){ 
                probs[i][jk][j1]= pp[jk]/pos;            /* i.e. if s2 is a death state and if the date of death is known 
              }               then the contribution to the likelihood is the probability to 
            }               die between last step unit time and current  step unit time, 
          }               which is also equal to probability to die before dh 
                         minus probability to die before dh-stepm . 
         }               In version up to 0.92 likelihood was computed
     }          as if date of death was unknown. Death was treated as any other
   }          health state: the date of the interview describes the actual state
            and not the date of a change in health state. The former idea was
            to consider that at each interview the state was recorded
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          (healthy, disable or death) and IMaCh was corrected; but when we
   free_vector(pp,1,nlstate);          introduced the exact date of death then we should have modified
            the contribution of an exact death to the likelihood. This new
 }  /* End of Freq */          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
 /************* Waves Concatenation ***************/          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          probability to die within a month. Thanks to Chris
 {          Jackson for correcting this bug.  Former versions increased
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          mortality artificially. The bad side is that we add another loop
      Death is a valid wave (if date is known).          which slows down the processing. The difference can be up to 10%
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          lower mortality.
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            */
      and mw[mi+1][i]. dh depends on stepm.            lli=log(out[s1][s2] - savm[s1][s2]);
      */  
   
   int i, mi, m;          } else if  (s2==-2) {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            for (j=1,survp=0. ; j<=nlstate; j++) 
      double sum=0., jmean=0.;*/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             /*survp += out[s1][j]; */
   int j, k=0,jk, ju, jl;            lli= log(survp);
   double sum=0.;          }
   jmin=1e+5;          
   jmax=-1;          else if  (s2==-4) { 
   jmean=0.;            for (j=3,survp=0. ; j<=nlstate; j++)  
   for(i=1; i<=imx; i++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     mi=0;            lli= log(survp); 
     m=firstpass;          } 
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)          else if  (s2==-5) { 
         mw[++mi][i]=m;            for (j=1,survp=0. ; j<=2; j++)  
       if(m >=lastpass)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         break;            lli= log(survp); 
       else          } 
         m++;          
     }/* end while */          else{
     if (s[m][i] > nlstate){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       mi++;     /* Death is another wave */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       /* if(mi==0)  never been interviewed correctly before death */          } 
          /* Only death is a correct wave */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       mw[mi][i]=m;          /*if(lli ==000.0)*/
     }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
     wav[i]=mi;          sw += weight[i];
     if(mi==0)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        } /* end of wave */
   }      } /* end of individual */
     }  else if(mle==2){
   for(i=1; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(mi=1; mi<wav[i];mi++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if (stepm <=0)        for(mi=1; mi<= wav[i]-1; mi++){
         dh[mi][i]=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
       else{            for (j=1;j<=nlstate+ndeath;j++){
         if (s[mw[mi+1][i]][i] > nlstate) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (agedc[i] < 2*AGESUP) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            }
           if(j==0) j=1;  /* Survives at least one month after exam */          for(d=0; d<=dh[mi][i]; d++){
           k=k+1;            newm=savm;
           if (j >= jmax) jmax=j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if (j <= jmin) jmin=j;            for (kk=1; kk<=cptcovage;kk++) {
           sum=sum+j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           /* if (j<10) printf("j=%d num=%d ",j,i); */            }
           }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         else{            savm=oldm;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            oldm=newm;
           k=k+1;          } /* end mult */
           if (j >= jmax) jmax=j;        
           else if (j <= jmin)jmin=j;          s1=s[mw[mi][i]][i];
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          s2=s[mw[mi+1][i]][i];
           sum=sum+j;          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         jk= j/stepm;          ipmx +=1;
         jl= j -jk*stepm;          sw += weight[i];
         ju= j -(jk+1)*stepm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if(jl <= -ju)        } /* end of wave */
           dh[mi][i]=jk;      } /* end of individual */
         else    }  else if(mle==3){  /* exponential inter-extrapolation */
           dh[mi][i]=jk+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if(dh[mi][i]==0)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           dh[mi][i]=1; /* At least one step */        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmean=sum/k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            }
  }          for(d=0; d<dh[mi][i]; d++){
 /*********** Tricode ****************************/            newm=savm;
 void tricode(int *Tvar, int **nbcode, int imx)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   int Ndum[20],ij=1, k, j, i;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int cptcode=0;            }
   cptcoveff=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (k=0; k<19; k++) Ndum[k]=0;            savm=oldm;
   for (k=1; k<=7; k++) ncodemax[k]=0;            oldm=newm;
           } /* end mult */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        
     for (i=1; i<=imx; i++) {          s1=s[mw[mi][i]][i];
       ij=(int)(covar[Tvar[j]][i]);          s2=s[mw[mi+1][i]][i];
       Ndum[ij]++;          bbh=(double)bh[mi][i]/(double)stepm; 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       if (ij > cptcode) cptcode=ij;          ipmx +=1;
     }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=0; i<=cptcode; i++) {        } /* end of wave */
       if(Ndum[i]!=0) ncodemax[j]++;      } /* end of individual */
     }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     ij=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1; i<=ncodemax[j]; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (k=0; k<=19; k++) {            for (j=1;j<=nlstate+ndeath;j++){
         if (Ndum[k] != 0) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           nbcode[Tvar[j]][ij]=k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           ij++;            }
         }          for(d=0; d<dh[mi][i]; d++){
         if (ij > ncodemax[j]) break;            newm=savm;
       }              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
  for (k=0; k<19; k++) Ndum[k]=0;          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  for (i=1; i<=ncovmodel-2; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       ij=Tvar[i];            savm=oldm;
       Ndum[ij]++;            oldm=newm;
     }          } /* end mult */
         
  ij=1;          s1=s[mw[mi][i]][i];
  for (i=1; i<=10; i++) {          s2=s[mw[mi+1][i]][i];
    if((Ndum[i]!=0) && (i<=ncov)){          if( s2 > nlstate){ 
      Tvaraff[ij]=i;            lli=log(out[s1][s2] - savm[s1][s2]);
      ij++;          }else{
    }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
  }          }
            ipmx +=1;
     cptcoveff=ij-1;          sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 /*********** Health Expectancies ****************/        } /* end of wave */
       } /* end of individual */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Health expectancies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i, j, nhstepm, hstepm, h;        for(mi=1; mi<= wav[i]-1; mi++){
   double age, agelim,hf;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***p3mat;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Health expectancies\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Age");            }
   for(i=1; i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
     for(j=1; j<=nlstate;j++)            newm=savm;
       fprintf(ficreseij," %1d-%1d",i,j);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficreseij,"\n");            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   hstepm=1*YEARM; /*  Every j years of age (in month) */            }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   agelim=AGESUP;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            savm=oldm;
     /* nhstepm age range expressed in number of stepm */            oldm=newm;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          } /* end mult */
     /* Typically if 20 years = 20*12/6=40 stepm */        
     if (stepm >= YEARM) hstepm=1;          s1=s[mw[mi][i]][i];
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          s2=s[mw[mi+1][i]][i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          ipmx +=1;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          sw += weight[i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
     for(i=1; i<=nlstate;i++)      } /* end of individual */
       for(j=1; j<=nlstate;j++)    } /* End of if */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           eij[i][j][(int)age] +=p3mat[i][j][h];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
        return -l;
     hf=1;  }
     if (stepm >= YEARM) hf=stepm/YEARM;  
     fprintf(ficreseij,"%.0f",age );  /*************** log-likelihood *************/
     for(i=1; i<=nlstate;i++)  double funcone( double *x)
       for(j=1; j<=nlstate;j++){  {
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    /* Same as likeli but slower because of a lot of printf and if */
       }    int i, ii, j, k, mi, d, kk;
     fprintf(ficreseij,"\n");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **out;
   }    double lli; /* Individual log likelihood */
 }    double llt;
     int s1, s2;
 /************ Variance ******************/    double bbh, survp;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    /*extern weight */
 {    /* We are differentiating ll according to initial status */
   /* Variance of health expectancies */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    /*for(i=1;i<imx;i++) 
   double **newm;      printf(" %d\n",s[4][i]);
   double **dnewm,**doldm;    */
   int i, j, nhstepm, hstepm, h;    cov[1]=1.;
   int k, cptcode;  
   double *xp;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double **gp, **gm;  
   double ***gradg, ***trgradg;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***p3mat;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double age,agelim;      for(mi=1; mi<= wav[i]-1; mi++){
   int theta;        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
    fprintf(ficresvij,"# Covariances of life expectancies\n");            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvij,"# Age");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=nlstate;i++)          }
     for(j=1; j<=nlstate;j++)        for(d=0; d<dh[mi][i]; d++){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          newm=savm;
   fprintf(ficresvij,"\n");          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
   xp=vector(1,npar);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   dnewm=matrix(1,nlstate,1,npar);          }
   doldm=matrix(1,nlstate,1,nlstate);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=1*YEARM; /* Every year of age */          savm=oldm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          oldm=newm;
   agelim = AGESUP;        } /* end mult */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        s1=s[mw[mi][i]][i];
     if (stepm >= YEARM) hstepm=1;        s2=s[mw[mi+1][i]][i];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        bbh=(double)bh[mi][i]/(double)stepm; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* bias is positive if real duration
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);         * is higher than the multiple of stepm and negative otherwise.
     gp=matrix(0,nhstepm,1,nlstate);         */
     gm=matrix(0,nhstepm,1,nlstate);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
     for(theta=1; theta <=npar; theta++){        } else if  (s2==-2) {
       for(i=1; i<=npar; i++){ /* Computes gradient */          for (j=1,survp=0. ; j<=nlstate; j++) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }          lli= log(survp);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }else if (mle==1){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
       if (popbased==1) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for(i=1; i<=nlstate;i++)        } else if(mle==3){  /* exponential inter-extrapolation */
           prlim[i][i]=probs[(int)age][i][ij];          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
                lli=log(out[s1][s2]); /* Original formula */
       for(j=1; j<= nlstate; j++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         for(h=0; h<=nhstepm; h++){          lli=log(out[s1][s2]); /* Original formula */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        } /* End of if */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        ipmx +=1;
         }        sw += weight[i];
       }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for(i=1; i<=npar; i++) /* Computes gradient */        if(globpr){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);     %11.6f %11.6f %11.6f ", \
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       if (popbased==1) {          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         for(i=1; i<=nlstate;i++)            llt +=ll[k]*gipmx/gsw;
           prlim[i][i]=probs[(int)age][i][ij];            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       }          }
           fprintf(ficresilk," %10.6f\n", -llt);
       for(j=1; j<= nlstate; j++){        }
         for(h=0; h<=nhstepm; h++){      } /* end of wave */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    } /* end of individual */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
       for(j=1; j<= nlstate; j++)      gipmx=ipmx;
         for(h=0; h<=nhstepm; h++){      gsw=sw;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    }
         }    return -l;
     } /* End theta */  }
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
   /*************** function likelione ***********/
     for(h=0; h<=nhstepm; h++)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       for(j=1; j<=nlstate;j++)  {
         for(theta=1; theta <=npar; theta++)    /* This routine should help understanding what is done with 
           trgradg[h][j][theta]=gradg[h][theta][j];       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
     for(i=1;i<=nlstate;i++)       Plotting could be done.
       for(j=1;j<=nlstate;j++)     */
         vareij[i][j][(int)age] =0.;    int k;
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){    if(*globpri !=0){ /* Just counts and sums, no printings */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      strcpy(fileresilk,"ilk"); 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      strcat(fileresilk,fileres);
         for(i=1;i<=nlstate;i++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           for(j=1;j<=nlstate;j++)        printf("Problem with resultfile: %s\n", fileresilk);
             vareij[i][j][(int)age] += doldm[i][j];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }      }
     }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     h=1;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     if (stepm >= YEARM) h=stepm/YEARM;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     fprintf(ficresvij,"%.0f ",age );      for(k=1; k<=nlstate; k++) 
     for(i=1; i<=nlstate;i++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       for(j=1; j<=nlstate;j++){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    }
       }  
     fprintf(ficresvij,"\n");    *fretone=(*funcone)(p);
     free_matrix(gp,0,nhstepm,1,nlstate);    if(*globpri !=0){
     free_matrix(gm,0,nhstepm,1,nlstate);      fclose(ficresilk);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      fflush(fichtm); 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } 
   } /* End age */    return;
    }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  /*********** Maximum Likelihood Estimation ***************/
   
 }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
 /************ Variance of prevlim ******************/    int i,j, iter;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double **xi;
 {    double fret;
   /* Variance of prevalence limit */    double fretone; /* Only one call to likelihood */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    /*  char filerespow[FILENAMELENGTH];*/
   double **newm;    xi=matrix(1,npar,1,npar);
   double **dnewm,**doldm;    for (i=1;i<=npar;i++)
   int i, j, nhstepm, hstepm;      for (j=1;j<=npar;j++)
   int k, cptcode;        xi[i][j]=(i==j ? 1.0 : 0.0);
   double *xp;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   double *gp, *gm;    strcpy(filerespow,"pow"); 
   double **gradg, **trgradg;    strcat(filerespow,fileres);
   double age,agelim;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   int theta;      printf("Problem with resultfile: %s\n", filerespow);
          fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    }
   fprintf(ficresvpl,"# Age");    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   for(i=1; i<=nlstate;i++)    for (i=1;i<=nlstate;i++)
       fprintf(ficresvpl," %1d-%1d",i,i);      for(j=1;j<=nlstate+ndeath;j++)
   fprintf(ficresvpl,"\n");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    powell(p,xi,npar,ftol,&iter,&fret,func);
   doldm=matrix(1,nlstate,1,nlstate);  
      free_matrix(xi,1,npar,1,npar);
   hstepm=1*YEARM; /* Every year of age */    fclose(ficrespow);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   agelim = AGESUP;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);  /**** Computes Hessian and covariance matrix ***/
     gp=vector(1,nlstate);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     gm=vector(1,nlstate);  {
     double  **a,**y,*x,pd;
     for(theta=1; theta <=npar; theta++){    double **hess;
       for(i=1; i<=npar; i++){ /* Computes gradient */    int i, j,jk;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int *indx;
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       for(i=1;i<=nlstate;i++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         gp[i] = prlim[i][i];    void lubksb(double **a, int npar, int *indx, double b[]) ;
        void ludcmp(double **a, int npar, int *indx, double *d) ;
       for(i=1; i<=npar; i++) /* Computes gradient */    double gompertz(double p[]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    hess=matrix(1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
         gm[i] = prlim[i][i];    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
       for(i=1;i<=nlstate;i++)      printf("%d",i);fflush(stdout);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      fprintf(ficlog,"%d",i);fflush(ficlog);
     } /* End theta */     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     trgradg =matrix(1,nlstate,1,npar);      
       /*  printf(" %f ",p[i]);
     for(j=1; j<=nlstate;j++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       for(theta=1; theta <=npar; theta++)    }
         trgradg[j][theta]=gradg[theta][j];    
     for (i=1;i<=npar;i++) {
     for(i=1;i<=nlstate;i++)      for (j=1;j<=npar;j++)  {
       varpl[i][(int)age] =0.;        if (j>i) { 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          printf(".%d%d",i,j);fflush(stdout);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     for(i=1;i<=nlstate;i++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          
           hess[j][i]=hess[i][j];    
     fprintf(ficresvpl,"%.0f ",age );          /*printf(" %lf ",hess[i][j]);*/
     for(i=1; i<=nlstate;i++)        }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      }
     fprintf(ficresvpl,"\n");    }
     free_vector(gp,1,nlstate);    printf("\n");
     free_vector(gm,1,nlstate);    fprintf(ficlog,"\n");
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   } /* End age */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
   free_vector(xp,1,npar);    a=matrix(1,npar,1,npar);
   free_matrix(doldm,1,nlstate,1,npar);    y=matrix(1,npar,1,npar);
   free_matrix(dnewm,1,nlstate,1,nlstate);    x=vector(1,npar);
     indx=ivector(1,npar);
 }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 /************ Variance of one-step probabilities  ******************/    ludcmp(a,npar,indx,&pd);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  
 {    for (j=1;j<=npar;j++) {
   int i, j;      for (i=1;i<=npar;i++) x[i]=0;
   int k=0, cptcode;      x[j]=1;
   double **dnewm,**doldm;      lubksb(a,npar,indx,x);
   double *xp;      for (i=1;i<=npar;i++){ 
   double *gp, *gm;        matcov[i][j]=x[i];
   double **gradg, **trgradg;      }
   double age,agelim, cov[NCOVMAX];    }
   int theta;  
   char fileresprob[FILENAMELENGTH];    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
   strcpy(fileresprob,"prob");    for (i=1;i<=npar;i++) { 
   strcat(fileresprob,fileres);      for (j=1;j<=npar;j++) { 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        printf("%.3e ",hess[i][j]);
     printf("Problem with resultfile: %s\n", fileresprob);        fprintf(ficlog,"%.3e ",hess[i][j]);
   }      }
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);      printf("\n");
        fprintf(ficlog,"\n");
     }
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /* Recompute Inverse */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   cov[1]=1;    ludcmp(a,npar,indx,&pd);
   for (age=bage; age<=fage; age ++){  
     cov[2]=age;    /*  printf("\n#Hessian matrix recomputed#\n");
     gradg=matrix(1,npar,1,9);  
     trgradg=matrix(1,9,1,npar);    for (j=1;j<=npar;j++) {
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1;i<=npar;i++) x[i]=0;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      x[j]=1;
          lubksb(a,npar,indx,x);
     for(theta=1; theta <=npar; theta++){      for (i=1;i<=npar;i++){ 
       for(i=1; i<=npar; i++)        y[i][j]=x[i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        printf("%.3e ",y[i][j]);
              fprintf(ficlog,"%.3e ",y[i][j]);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      }
          printf("\n");
       k=0;      fprintf(ficlog,"\n");
       for(i=1; i<= (nlstate+ndeath); i++){    }
         for(j=1; j<=(nlstate+ndeath);j++){    */
            k=k+1;  
           gp[k]=pmmij[i][j];    free_matrix(a,1,npar,1,npar);
         }    free_matrix(y,1,npar,1,npar);
       }    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
       for(i=1; i<=npar; i++)    free_matrix(hess,1,npar,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
      
   }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  
       k=0;  /*************** hessian matrix ****************/
       for(i=1; i<=(nlstate+ndeath); i++){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         for(j=1; j<=(nlstate+ndeath);j++){  {
           k=k+1;    int i;
           gm[k]=pmmij[i][j];    int l=1, lmax=20;
         }    double k1,k2;
       }    double p2[NPARMAX+1];
          double res;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      double fx;
     }    int k=0,kmax=10;
     double l1;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  
       for(theta=1; theta <=npar; theta++)    fx=func(x);
       trgradg[j][theta]=gradg[theta][j];    for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      l1=pow(10,l);
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
      pmij(pmmij,cov,ncovmodel,x,nlstate);        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
      k=0;        k1=func(p2)-fx;
      for(i=1; i<=(nlstate+ndeath); i++){        p2[theta]=x[theta]-delt;
        for(j=1; j<=(nlstate+ndeath);j++){        k2=func(p2)-fx;
          k=k+1;        /*res= (k1-2.0*fx+k2)/delt/delt; */
          gm[k]=pmmij[i][j];        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         }        
      }  #ifdef DEBUG
              printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      /*printf("\n%d ",(int)age);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  #endif
                /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          k=kmax;
      }*/        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   fprintf(ficresprob,"\n%d ",(int)age);          k=kmax; l=lmax*10.;
         }
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          delts=delt;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        }
   }      }
     }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    delti[theta]=delts;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    return res; 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  }
 }  
  free_vector(xp,1,npar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 fclose(ficresprob);  {
  exit(0);    int i;
 }    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
 /***********************************************/    double p2[NPARMAX+1];
 /**************** Main Program *****************/    int k;
 /***********************************************/  
     fx=func(x);
 int main(int argc, char *argv[])    for (k=1; k<=2; k++) {
 {      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double agedeb, agefin,hf;      k1=func(p2)-fx;
   double agemin=1.e20, agemax=-1.e20;    
       p2[thetai]=x[thetai]+delti[thetai]/k;
   double fret;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double **xi,tmp,delta;      k2=func(p2)-fx;
     
   double dum; /* Dummy variable */      p2[thetai]=x[thetai]-delti[thetai]/k;
   double ***p3mat;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int *indx;      k3=func(p2)-fx;
   char line[MAXLINE], linepar[MAXLINE];    
   char title[MAXLINE];      p2[thetai]=x[thetai]-delti[thetai]/k;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      k4=func(p2)-fx;
        res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];;  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   char filerest[FILENAMELENGTH];      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   char fileregp[FILENAMELENGTH];  #endif
   char popfile[FILENAMELENGTH];    }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    return res;
   int firstobs=1, lastobs=10;  }
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;  /************** Inverse of matrix **************/
   int ju,jl, mi;  void ludcmp(double **a, int n, int *indx, double *d) 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  { 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    int i,imax,j,k; 
   int mobilav=0,popforecast=0;    double big,dum,sum,temp; 
   int hstepm, nhstepm;    double *vv; 
   int *popage;/*boolprev=0 if date and zero if wave*/   
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;    vv=vector(1,n); 
     *d=1.0; 
   double bage, fage, age, agelim, agebase;    for (i=1;i<=n;i++) { 
   double ftolpl=FTOL;      big=0.0; 
   double **prlim;      for (j=1;j<=n;j++) 
   double *severity;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   double ***param; /* Matrix of parameters */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double  *p;      vv[i]=1.0/big; 
   double **matcov; /* Matrix of covariance */    } 
   double ***delti3; /* Scale */    for (j=1;j<=n;j++) { 
   double *delti; /* Scale */      for (i=1;i<j;i++) { 
   double ***eij, ***vareij;        sum=a[i][j]; 
   double **varpl; /* Variances of prevalence limits by age */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   double *epj, vepp;        a[i][j]=sum; 
   double kk1, kk2;      } 
   double *popeffectif,*popcount;      big=0.0; 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;      for (i=j;i<=n;i++) { 
   double yp,yp1,yp2;        sum=a[i][j]; 
         for (k=1;k<j;k++) 
   char version[80]="Imach version 0.7, February 2002, INED-EUROREVES ";          sum -= a[i][k]*a[k][j]; 
   char *alph[]={"a","a","b","c","d","e"}, str[4];        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
   char z[1]="c", occ;          imax=i; 
 #include <sys/time.h>        } 
 #include <time.h>      } 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      if (j != imax) { 
          for (k=1;k<=n;k++) { 
   /* long total_usecs;          dum=a[imax][k]; 
   struct timeval start_time, end_time;          a[imax][k]=a[j][k]; 
            a[j][k]=dum; 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        } 
         *d = -(*d); 
         vv[imax]=vv[j]; 
   printf("\n%s",version);      } 
   if(argc <=1){      indx[j]=imax; 
     printf("\nEnter the parameter file name: ");      if (a[j][j] == 0.0) a[j][j]=TINY; 
     scanf("%s",pathtot);      if (j != n) { 
   }        dum=1.0/(a[j][j]); 
   else{        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     strcpy(pathtot,argv[1]);      } 
   }    } 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    free_vector(vv,1,n);  /* Doesn't work */
   /*cygwin_split_path(pathtot,path,optionfile);  ;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  } 
   /* cutv(path,optionfile,pathtot,'\\');*/  
   void lubksb(double **a, int n, int *indx, double b[]) 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  { 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int i,ii=0,ip,j; 
   chdir(path);    double sum; 
   replace(pathc,path);   
     for (i=1;i<=n;i++) { 
 /*-------- arguments in the command line --------*/      ip=indx[i]; 
       sum=b[ip]; 
   strcpy(fileres,"r");      b[ip]=b[i]; 
   strcat(fileres, optionfilefiname);      if (ii) 
   strcat(fileres,".txt");    /* Other files have txt extension */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
   /*---------arguments file --------*/      b[i]=sum; 
     } 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    for (i=n;i>=1;i--) { 
     printf("Problem with optionfile %s\n",optionfile);      sum=b[i]; 
     goto end;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
     } 
   strcpy(filereso,"o");  } 
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {  void pstamp(FILE *fichier)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  {
   }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  /************ Frequencies ********************/
     ungetc(c,ficpar);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     fgets(line, MAXLINE, ficpar);  {  /* Some frequencies */
     puts(line);    
     fputs(line,ficparo);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   }    int first;
   ungetc(c,ficpar);    double ***freq; /* Frequencies */
     double *pp, **prop;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    char fileresp[FILENAMELENGTH];
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    
 while((c=getc(ficpar))=='#' && c!= EOF){    pp=vector(1,nlstate);
     ungetc(c,ficpar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     fgets(line, MAXLINE, ficpar);    strcpy(fileresp,"p");
     puts(line);    strcat(fileresp,fileres);
     fputs(line,ficparo);    if((ficresp=fopen(fileresp,"w"))==NULL) {
   }      printf("Problem with prevalence resultfile: %s\n", fileresp);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        exit(0);
        }
   covar=matrix(0,NCOVMAX,1,n);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   cptcovn=0;    j1=0;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    
     j=cptcoveff;
   ncovmodel=2+cptcovn;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
      first=1;
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */    for(k1=1; k1<=j;k1++){
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i1=1; i1<=ncodemax[k1];i1++){
     ungetc(c,ficpar);        j1++;
     fgets(line, MAXLINE, ficpar);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     puts(line);          scanf("%d", i);*/
     fputs(line,ficparo);        for (i=-5; i<=nlstate+ndeath; i++)  
   }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   ungetc(c,ficpar);            for(m=iagemin; m <= iagemax+3; m++)
                freq[i][jk][m]=0;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)      for (i=1; i<=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){        for(m=iagemin; m <= iagemax+3; m++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);          prop[i][m]=0;
       fprintf(ficparo,"%1d%1d",i1,j1);        
       printf("%1d%1d",i,j);        dateintsum=0;
       for(k=1; k<=ncovmodel;k++){        k2cpt=0;
         fscanf(ficpar," %lf",&param[i][j][k]);        for (i=1; i<=imx; i++) {
         printf(" %lf",param[i][j][k]);          bool=1;
         fprintf(ficparo," %lf",param[i][j][k]);          if  (cptcovn>0) {
       }            for (z1=1; z1<=cptcoveff; z1++) 
       fscanf(ficpar,"\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       printf("\n");                bool=0;
       fprintf(ficparo,"\n");          }
     }          if (bool==1){
              for(m=firstpass; m<=lastpass; m++){
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   p=param[1][1];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
   /* Reads comments: lines beginning with '#' */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   while((c=getc(ficpar))=='#' && c!= EOF){                if (m<lastpass) {
     ungetc(c,ficpar);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     fgets(line, MAXLINE, ficpar);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     puts(line);                }
     fputs(line,ficparo);                
   }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   ungetc(c,ficpar);                  dateintsum=dateintsum+k2;
                   k2cpt++;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */                /*}*/
   for(i=1; i <=nlstate; i++){            }
     for(j=1; j <=nlstate+ndeath-1; j++){          }
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }
       printf("%1d%1d",i,j);         
       fprintf(ficparo,"%1d%1d",i1,j1);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       for(k=1; k<=ncovmodel;k++){        pstamp(ficresp);
         fscanf(ficpar,"%le",&delti3[i][j][k]);        if  (cptcovn>0) {
         printf(" %le",delti3[i][j][k]);          fprintf(ficresp, "\n#********** Variable "); 
         fprintf(ficparo," %le",delti3[i][j][k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresp, "**********\n#");
       fscanf(ficpar,"\n");        }
       printf("\n");        for(i=1; i<=nlstate;i++) 
       fprintf(ficparo,"\n");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     }        fprintf(ficresp, "\n");
   }        
   delti=delti3[1][1];        for(i=iagemin; i <= iagemax+3; i++){
            if(i==iagemax+3){
   /* Reads comments: lines beginning with '#' */            fprintf(ficlog,"Total");
   while((c=getc(ficpar))=='#' && c!= EOF){          }else{
     ungetc(c,ficpar);            if(first==1){
     fgets(line, MAXLINE, ficpar);              first=0;
     puts(line);              printf("See log file for details...\n");
     fputs(line,ficparo);            }
   }            fprintf(ficlog,"Age %d", i);
   ungetc(c,ficpar);          }
            for(jk=1; jk <=nlstate ; jk++){
   matcov=matrix(1,npar,1,npar);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   for(i=1; i <=npar; i++){              pp[jk] += freq[jk][m][i]; 
     fscanf(ficpar,"%s",&str);          }
     printf("%s",str);          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficparo,"%s",str);            for(m=-1, pos=0; m <=0 ; m++)
     for(j=1; j <=i; j++){              pos += freq[jk][m][i];
       fscanf(ficpar," %le",&matcov[i][j]);            if(pp[jk]>=1.e-10){
       printf(" %.5le",matcov[i][j]);              if(first==1){
       fprintf(ficparo," %.5le",matcov[i][j]);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     }              }
     fscanf(ficpar,"\n");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     printf("\n");            }else{
     fprintf(ficparo,"\n");              if(first==1)
   }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   for(i=1; i <=npar; i++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for(j=i+1;j<=npar;j++)            }
       matcov[i][j]=matcov[j][i];          }
      
   printf("\n");          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
     /*-------- data file ----------*/          }       
     if((ficres =fopen(fileres,"w"))==NULL) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       printf("Problem with resultfile: %s\n", fileres);goto end;            pos += pp[jk];
     }            posprop += prop[jk][i];
     fprintf(ficres,"#%s\n",version);          }
              for(jk=1; jk <=nlstate ; jk++){
     if((fic=fopen(datafile,"r"))==NULL)    {            if(pos>=1.e-5){
       printf("Problem with datafile: %s\n", datafile);goto end;              if(first==1)
     }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     n= lastobs;            }else{
     severity = vector(1,maxwav);              if(first==1)
     outcome=imatrix(1,maxwav+1,1,n);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     num=ivector(1,n);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     moisnais=vector(1,n);            }
     annais=vector(1,n);            if( i <= iagemax){
     moisdc=vector(1,n);              if(pos>=1.e-5){
     andc=vector(1,n);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     agedc=vector(1,n);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     cod=ivector(1,n);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     weight=vector(1,n);              }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              else
     mint=matrix(1,maxwav,1,n);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     anint=matrix(1,maxwav,1,n);            }
     s=imatrix(1,maxwav+1,1,n);          }
     adl=imatrix(1,maxwav+1,1,n);              
     tab=ivector(1,NCOVMAX);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     ncodemax=ivector(1,8);            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
     i=1;              if(first==1)
     while (fgets(line, MAXLINE, fic) != NULL)    {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       if ((i >= firstobs) && (i <=lastobs)) {                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                      }
         for (j=maxwav;j>=1;j--){          if(i <= iagemax)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            fprintf(ficresp,"\n");
           strcpy(line,stra);          if(first==1)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            printf("Others in log...\n");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficlog,"\n");
         }        }
              }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    dateintmean=dateintsum/k2cpt; 
    
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fclose(ficresp);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         for (j=ncov;j>=1;j--){    /* End of Freq */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  }
         }  
         num[i]=atol(stra);  /************ Prevalence ********************/
          void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  {  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
         i=i+1;       We still use firstpass and lastpass as another selection.
       }    */
     }   
     /* printf("ii=%d", ij);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
        scanf("%d",i);*/    double ***freq; /* Frequencies */
   imx=i-1; /* Number of individuals */    double *pp, **prop;
     double pos,posprop; 
   /* for (i=1; i<=imx; i++){    double  y2; /* in fractional years */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    int iagemin, iagemax;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    iagemin= (int) agemin;
     }    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
     for (i=1; i<=imx; i++)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
   /* Calculation of the number of parameter from char model*/    
   Tvar=ivector(1,15);    j=cptcoveff;
   Tprod=ivector(1,15);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   Tvaraff=ivector(1,15);    
   Tvard=imatrix(1,15,1,2);    for(k1=1; k1<=j;k1++){
   Tage=ivector(1,15);            for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
   if (strlen(model) >1){        
     j=0, j1=0, k1=1, k2=1;        for (i=1; i<=nlstate; i++)  
     j=nbocc(model,'+');          for(m=iagemin; m <= iagemax+3; m++)
     j1=nbocc(model,'*');            prop[i][m]=0.0;
     cptcovn=j+1;       
     cptcovprod=j1;        for (i=1; i<=imx; i++) { /* Each individual */
              bool=1;
              if  (cptcovn>0) {
     strcpy(modelsav,model);            for (z1=1; z1<=cptcoveff; z1++) 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       printf("Error. Non available option model=%s ",model);                bool=0;
       goto end;          } 
     }          if (bool==1) { 
                for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     for(i=(j+1); i>=1;i--){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       cutv(stra,strb,modelsav,'+');              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       /*scanf("%d",i);*/                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       if (strchr(strb,'*')) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         cutv(strd,strc,strb,'*');                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         if (strcmp(strc,"age")==0) {                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           cptcovprod--;                  prop[s[m][i]][iagemax+3] += weight[i]; 
           cutv(strb,stre,strd,'V');                } 
           Tvar[i]=atoi(stre);              }
           cptcovage++;            } /* end selection of waves */
             Tage[cptcovage]=i;          }
             /*printf("stre=%s ", stre);*/        }
         }        for(i=iagemin; i <= iagemax+3; i++){  
         else if (strcmp(strd,"age")==0) {          
           cptcovprod--;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           cutv(strb,stre,strc,'V');            posprop += prop[jk][i]; 
           Tvar[i]=atoi(stre);          } 
           cptcovage++;  
           Tage[cptcovage]=i;          for(jk=1; jk <=nlstate ; jk++){     
         }            if( i <=  iagemax){ 
         else {              if(posprop>=1.e-5){ 
           cutv(strb,stre,strc,'V');                probs[i][jk][j1]= prop[jk][i]/posprop;
           Tvar[i]=ncov+k1;              } 
           cutv(strb,strc,strd,'V');            } 
           Tprod[k1]=i;          }/* end jk */ 
           Tvard[k1][1]=atoi(strc);        }/* end i */ 
           Tvard[k1][2]=atoi(stre);      } /* end i1 */
           Tvar[cptcovn+k2]=Tvard[k1][1];    } /* end k1 */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    
           for (k=1; k<=lastobs;k++)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    /*free_vector(pp,1,nlstate);*/
           k1++;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           k2=k2+2;  }  /* End of prevalence */
         }  
       }  /************* Waves Concatenation ***************/
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
        /*  scanf("%d",i);*/  {
       cutv(strd,strc,strb,'V');    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       Tvar[i]=atoi(strc);       Death is a valid wave (if date is known).
       }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       strcpy(modelsav,stra);         dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);       and mw[mi+1][i]. dh depends on stepm.
         scanf("%d",i);*/       */
     }  
 }    int i, mi, m;
      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);       double sum=0., jmean=0.;*/
   printf("cptcovprod=%d ", cptcovprod);    int first;
   scanf("%d ",i);*/    int j, k=0,jk, ju, jl;
     fclose(fic);    double sum=0.;
     first=0;
     /*  if(mle==1){*/    jmin=1e+5;
     if (weightopt != 1) { /* Maximisation without weights*/    jmax=-1;
       for(i=1;i<=n;i++) weight[i]=1.0;    jmean=0.;
     }    for(i=1; i<=imx; i++){
     /*-calculation of age at interview from date of interview and age at death -*/      mi=0;
     agev=matrix(1,maxwav,1,imx);      m=firstpass;
       while(s[m][i] <= nlstate){
    for (i=1; i<=imx; i++)        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
      for(m=2; (m<= maxwav); m++)          mw[++mi][i]=m;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        if(m >=lastpass)
          anint[m][i]=9999;          break;
          s[m][i]=-1;        else
        }          m++;
          }/* end while */
     for (i=1; i<=imx; i++)  {      if (s[m][i] > nlstate){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        mi++;     /* Death is another wave */
       for(m=1; (m<= maxwav); m++){        /* if(mi==0)  never been interviewed correctly before death */
         if(s[m][i] >0){           /* Only death is a correct wave */
           if (s[m][i] == nlstate+1) {        mw[mi][i]=m;
             if(agedc[i]>0)      }
               if(moisdc[i]!=99 && andc[i]!=9999)  
               agev[m][i]=agedc[i];      wav[i]=mi;
             else {      if(mi==0){
               if (andc[i]!=9999){        nbwarn++;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        if(first==0){
               agev[m][i]=-1;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
               }          first=1;
             }        }
           }        if(first==1){
           else if(s[m][i] !=9){ /* Should no more exist */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        }
             if(mint[m][i]==99 || anint[m][i]==9999)      } /* end mi==0 */
               agev[m][i]=1;    } /* End individuals */
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];    for(i=1; i<=imx; i++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      for(mi=1; mi<wav[i];mi++){
             }        if (stepm <=0)
             else if(agev[m][i] >agemax){          dh[mi][i]=1;
               agemax=agev[m][i];        else{
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             }            if (agedc[i] < 2*AGESUP) {
             /*agev[m][i]=anint[m][i]-annais[i];*/              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             /*   agev[m][i] = age[i]+2*m;*/              if(j==0) j=1;  /* Survives at least one month after exam */
           }              else if(j<0){
           else { /* =9 */                nberr++;
             agev[m][i]=1;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             s[m][i]=-1;                j=1; /* Temporary Dangerous patch */
           }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         else /*= 0 Unknown */                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           agev[m][i]=1;              }
       }              k=k+1;
                  if (j >= jmax){
     }                jmax=j;
     for (i=1; i<=imx; i++)  {                ijmax=i;
       for(m=1; (m<= maxwav); m++){              }
         if (s[m][i] > (nlstate+ndeath)) {              if (j <= jmin){
           printf("Error: Wrong value in nlstate or ndeath\n");                  jmin=j;
           goto end;                ijmin=i;
         }              }
       }              sum=sum+j;
     }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            }
           }
     free_vector(severity,1,maxwav);          else{
     free_imatrix(outcome,1,maxwav+1,1,n);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     free_vector(moisnais,1,n);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);            k=k+1;
        free_matrix(anint,1,maxwav,1,n);*/            if (j >= jmax) {
     free_vector(moisdc,1,n);              jmax=j;
     free_vector(andc,1,n);              ijmax=i;
             }
                else if (j <= jmin){
     wav=ivector(1,imx);              jmin=j;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);              ijmin=i;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            }
                /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     /* Concatenates waves */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            if(j<0){
               nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       Tcode=ivector(1,100);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            }
       ncodemax[1]=1;            sum=sum+j;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          }
                jk= j/stepm;
    codtab=imatrix(1,100,1,10);          jl= j -jk*stepm;
    h=0;          ju= j -(jk+1)*stepm;
    m=pow(2,cptcoveff);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              if(jl==0){
    for(k=1;k<=cptcoveff; k++){              dh[mi][i]=jk;
      for(i=1; i <=(m/pow(2,k));i++){              bh[mi][i]=0;
        for(j=1; j <= ncodemax[k]; j++){            }else{ /* We want a negative bias in order to only have interpolation ie
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                    * at the price of an extra matrix product in likelihood */
            h++;              dh[mi][i]=jk+1;
            if (h>m) h=1;codtab[h][k]=j;              bh[mi][i]=ju;
          }            }
        }          }else{
      }            if(jl <= -ju){
    }              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
    /*for(i=1; i <=m ;i++){                                   */
      for(k=1; k <=cptcovn; k++){            }
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);            else{
      }              dh[mi][i]=jk+1;
      printf("\n");              bh[mi][i]=ju;
    }            }
    scanf("%d",i);*/            if(dh[mi][i]==0){
                  dh[mi][i]=1; /* At least one step */
    /* Calculates basic frequencies. Computes observed prevalence at single age              bh[mi][i]=ju; /* At least one step */
        and prints on file fileres'p'. */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
              } /* end if mle */
            }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } /* end wave */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    jmean=sum/k;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         }
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  /*********** Tricode ****************************/
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  void tricode(int *Tvar, int **nbcode, int imx)
   {
     if(mle==1){    
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     }    int cptcode=0;
        cptcoveff=0; 
     /*--------- results files --------------*/   
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    for (k=0; k<maxncov; k++) Ndum[k]=0;
      for (k=1; k<=7; k++) ncodemax[k]=0;
   
    jk=1;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
    fprintf(ficres,"# Parameters\n");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
    printf("# Parameters\n");                                 modality*/ 
    for(i=1,jk=1; i <=nlstate; i++){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
      for(k=1; k <=(nlstate+ndeath); k++){        Ndum[ij]++; /*store the modality */
        if (k != i)        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
          {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
            printf("%d%d ",i,k);                                         Tvar[j]. If V=sex and male is 0 and 
            fprintf(ficres,"%1d%1d ",i,k);                                         female is 1, then  cptcode=1.*/
            for(j=1; j <=ncovmodel; j++){      }
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);      for (i=0; i<=cptcode; i++) {
              jk++;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
            }      }
            printf("\n");  
            fprintf(ficres,"\n");      ij=1; 
          }      for (i=1; i<=ncodemax[j]; i++) {
      }        for (k=0; k<= maxncov; k++) {
    }          if (Ndum[k] != 0) {
  if(mle==1){            nbcode[Tvar[j]][ij]=k; 
     /* Computing hessian and covariance matrix */            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     ftolhess=ftol; /* Usually correct */            
     hesscov(matcov, p, npar, delti, ftolhess, func);            ij++;
  }          }
     fprintf(ficres,"# Scales\n");          if (ij > ncodemax[j]) break; 
     printf("# Scales\n");        }  
      for(i=1,jk=1; i <=nlstate; i++){      } 
       for(j=1; j <=nlstate+ndeath; j++){    }  
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);   for (k=0; k< maxncov; k++) Ndum[k]=0;
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){   for (i=1; i<=ncovmodel-2; i++) { 
             printf(" %.5e",delti[jk]);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
             fprintf(ficres," %.5e",delti[jk]);     ij=Tvar[i];
             jk++;     Ndum[ij]++;
           }   }
           printf("\n");  
           fprintf(ficres,"\n");   ij=1;
         }   for (i=1; i<= maxncov; i++) {
       }     if((Ndum[i]!=0) && (i<=ncovcol)){
      }       Tvaraff[ij]=i; /*For printing */
           ij++;
     k=1;     }
     fprintf(ficres,"# Covariance\n");   }
     printf("# Covariance\n");   
     for(i=1;i<=npar;i++){   cptcoveff=ij-1; /*Number of simple covariates*/
       /*  if (k>nlstate) k=1;  }
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  /*********** Health Expectancies ****************/
       printf("%s%d%d",alph[k],i1,tab[i]);*/  
       fprintf(ficres,"%3d",i);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       printf("%3d",i);  
       for(j=1; j<=i;j++){  {
         fprintf(ficres," %.5e",matcov[i][j]);    /* Health expectancies, no variances */
         printf(" %.5e",matcov[i][j]);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
       }    double age, agelim, hf;
       fprintf(ficres,"\n");    double ***p3mat;
       printf("\n");    double eip;
       k++;  
     }    pstamp(ficreseij);
        fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficreseij,"# Age");
       ungetc(c,ficpar);    for(i=1; i<=nlstate;i++){
       fgets(line, MAXLINE, ficpar);      for(j=1; j<=nlstate;j++){
       puts(line);        fprintf(ficreseij," e%1d%1d ",i,j);
       fputs(line,ficparo);      }
     }      fprintf(ficreseij," e%1d. ",i);
     ungetc(c,ficpar);    }
      fprintf(ficreseij,"\n");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
        
     if (fage <= 2) {    if(estepm < stepm){
       bage = agemin;      printf ("Problem %d lower than %d\n",estepm, stepm);
       fage = agemax;    }
     }    else  hstepm=estepm;   
        /* We compute the life expectancy from trapezoids spaced every estepm months
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");     * This is mainly to measure the difference between two models: for example
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);     * if stepm=24 months pijx are given only every 2 years and by summing them
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
     while((c=getc(ficpar))=='#' && c!= EOF){     * to the curvature of the survival function. If, for the same date, we 
     ungetc(c,ficpar);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     fgets(line, MAXLINE, ficpar);     * to compare the new estimate of Life expectancy with the same linear 
     puts(line);     * hypothesis. A more precise result, taking into account a more precise
     fputs(line,ficparo);     * curvature will be obtained if estepm is as small as stepm. */
   }  
   ungetc(c,ficpar);    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);       nhstepm is the number of hstepm from age to agelim 
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);       nstepm is the number of stepm from age to agelin. 
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);       Look at hpijx to understand the reason of that which relies in memory size
             and note for a fixed period like estepm months */
   while((c=getc(ficpar))=='#' && c!= EOF){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     ungetc(c,ficpar);       survival function given by stepm (the optimization length). Unfortunately it
     fgets(line, MAXLINE, ficpar);       means that if the survival funtion is printed only each two years of age and if
     puts(line);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fputs(line,ficparo);       results. So we changed our mind and took the option of the best precision.
   }    */
   ungetc(c,ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
     agelim=AGESUP;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    /* nhstepm age range expressed in number of stepm */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   fscanf(ficpar,"pop_based=%d\n",&popbased);    /* if (stepm >= YEARM) hstepm=1;*/
    fprintf(ficparo,"pop_based=%d\n",popbased);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    fprintf(ficres,"pop_based=%d\n",popbased);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   while((c=getc(ficpar))=='#' && c!= EOF){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     ungetc(c,ficpar);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     fgets(line, MAXLINE, ficpar);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     puts(line);      
     fputs(line,ficparo);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   }      
   ungetc(c,ficpar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);      
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);      printf("%d|",(int)age);fflush(stdout);
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++)
     /*------------ gnuplot -------------*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     /*chdir(pathcd);*/            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     strcpy(optionfilegnuplot,optionfilefiname);            
     strcat(optionfilegnuplot,".plt");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
       printf("Problem with file %s",optionfilegnuplot);goto end;          }
     }  
 #ifdef windows      fprintf(ficreseij,"%3.0f",age );
     fprintf(ficgp,"cd \"%s\" \n",pathc);      for(i=1; i<=nlstate;i++){
 #endif        eip=0;
 m=pow(2,cptcoveff);        for(j=1; j<=nlstate;j++){
            eip +=eij[i][j][(int)age];
  /* 1eme*/          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   for (cpt=1; cpt<= nlstate ; cpt ++) {        }
    for (k1=1; k1<= m ; k1 ++) {        fprintf(ficreseij,"%9.4f", eip );
       }
 #ifdef windows      fprintf(ficreseij,"\n");
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      
 #endif    }
 #ifdef unix    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    printf("\n");
 #endif    fprintf(ficlog,"\n");
     
 for (i=1; i<= nlstate ; i ++) {  }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  {
     for (i=1; i<= nlstate ; i ++) {    /* Covariances of health expectancies eij and of total life expectancies according
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     to initial status i, ei. .
   else fprintf(ficgp," \%%*lf (\%%*lf)");    */
 }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    double age, agelim, hf;
      for (i=1; i<= nlstate ; i ++) {    double ***p3matp, ***p3matm, ***varhe;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double **dnewm,**doldm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *xp, *xm;
 }      double **gp, **gm;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    double ***gradg, ***trgradg;
 #ifdef unix    int theta;
 fprintf(ficgp,"\nset ter gif small size 400,300");  
 #endif    double eip, vip;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
    }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }    xp=vector(1,npar);
   /*2 eme*/    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
   for (k1=1; k1<= m ; k1 ++) {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    
        pstamp(ficresstdeij);
     for (i=1; i<= nlstate+1 ; i ++) {    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       k=2*i;    fprintf(ficresstdeij,"# Age");
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    for(i=1; i<=nlstate;i++){
       for (j=1; j<= nlstate+1 ; j ++) {      for(j=1; j<=nlstate;j++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficresstdeij," e%1d. ",i);
 }      }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    fprintf(ficresstdeij,"\n");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    pstamp(ficrescveij);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficrescveij,"# Age");
         else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++){
       fprintf(ficgp,"\" t\"\" w l 0,");        cptj= (j-1)*nlstate+i;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(i2=1; i2<=nlstate;i2++)
       for (j=1; j<= nlstate+1 ; j ++) {          for(j2=1; j2<=nlstate;j2++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            cptj2= (j2-1)*nlstate+i2;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(cptj2 <= cptj)
 }                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          }
       else fprintf(ficgp,"\" t\"\" w l 0,");      }
     }    fprintf(ficrescveij,"\n");
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    
   }    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   /*3eme*/    }
     else  hstepm=estepm;   
   for (k1=1; k1<= m ; k1 ++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
     for (cpt=1; cpt<= nlstate ; cpt ++) {     * This is mainly to measure the difference between two models: for example
       k=2+nlstate*(cpt-1);     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       for (i=1; i< nlstate ; i ++) {     * progression in between and thus overestimating or underestimating according
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);     * to the curvature of the survival function. If, for the same date, we 
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);     * to compare the new estimate of Life expectancy with the same linear 
     }     * hypothesis. A more precise result, taking into account a more precise
   }     * curvature will be obtained if estepm is as small as stepm. */
    
   /* CV preval stat */    /* For example we decided to compute the life expectancy with the smallest unit */
   for (k1=1; k1<= m ; k1 ++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for (cpt=1; cpt<nlstate ; cpt ++) {       nhstepm is the number of hstepm from age to agelim 
       k=3;       nstepm is the number of stepm from age to agelin. 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);       Look at hpijx to understand the reason of that which relies in memory size
       for (i=1; i< nlstate ; i ++)       and note for a fixed period like estepm months */
         fprintf(ficgp,"+$%d",k+i+1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);       survival function given by stepm (the optimization length). Unfortunately it
             means that if the survival funtion is printed only each two years of age and if
       l=3+(nlstate+ndeath)*cpt;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);       results. So we changed our mind and took the option of the best precision.
       for (i=1; i< nlstate ; i ++) {    */
         l=3+(nlstate+ndeath)*cpt;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficgp,"+$%d",l+i+1);  
       }    /* If stepm=6 months */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      /* nhstepm age range expressed in number of stepm */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    agelim=AGESUP;
     }    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   /* proba elementaires */    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    for(i=1,jk=1; i <=nlstate; i++){    
     for(k=1; k <=(nlstate+ndeath); k++){    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       if (k != i) {    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(j=1; j <=ncovmodel; j++){    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           /*fprintf(ficgp,"%s",alph[1]);*/    gp=matrix(0,nhstepm,1,nlstate*nlstate);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
           jk++;  
           fprintf(ficgp,"\n");    for (age=bage; age<=fage; age ++){ 
         }  
       }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     }   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);      /* Computing  Variances of health expectancies */
    i=1;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
    for(k2=1; k2<=nlstate; k2++) {         decrease memory allocation */
      k3=i;      for(theta=1; theta <=npar; theta++){
      for(k=1; k<=(nlstate+ndeath); k++) {        for(i=1; i<=npar; i++){ 
        if (k != k2){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
 ij=1;        }
         for(j=3; j <=ncovmodel; j++) {        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    
             ij++;        for(j=1; j<= nlstate; j++){
           }          for(i=1; i<=nlstate; i++){
           else            for(h=0; h<=nhstepm-1; h++){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           fprintf(ficgp,")/(1");            }
                  }
         for(k1=1; k1 <=nlstate; k1++){          }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       
 ij=1;        for(ij=1; ij<= nlstate*nlstate; ij++)
           for(j=3; j <=ncovmodel; j++){          for(h=0; h<=nhstepm-1; h++){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }
             ij++;      }/* End theta */
           }      
           else      
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for(h=0; h<=nhstepm-1; h++)
           }        for(j=1; j<=nlstate*nlstate;j++)
           fprintf(ficgp,")");          for(theta=1; theta <=npar; theta++)
         }            trgradg[h][j][theta]=gradg[h][theta][j];
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;       for(ij=1;ij<=nlstate*nlstate;ij++)
        }        for(ji=1;ji<=nlstate*nlstate;ji++)
      }          varhe[ij][ji][(int)age] =0.;
    }  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);       printf("%d|",(int)age);fflush(stdout);
   }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           for(h=0;h<=nhstepm-1;h++){
   fclose(ficgp);        for(k=0;k<=nhstepm-1;k++){
   /* end gnuplot */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
              matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
 chdir(path);          for(ij=1;ij<=nlstate*nlstate;ij++)
                for(ji=1;ji<=nlstate*nlstate;ji++)
     free_ivector(wav,1,imx);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        }
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        }
     free_ivector(num,1,n);      /* Computing expectancies */
     free_vector(agedc,1,n);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      for(i=1; i<=nlstate;i++)
     fclose(ficparo);        for(j=1; j<=nlstate;j++)
     fclose(ficres);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     /*  }*/            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                
    /*________fin mle=1_________*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      
           }
    
     /* No more information from the sample is required now */      fprintf(ficresstdeij,"%3.0f",age );
   /* Reads comments: lines beginning with '#' */      for(i=1; i<=nlstate;i++){
   while((c=getc(ficpar))=='#' && c!= EOF){        eip=0.;
     ungetc(c,ficpar);        vip=0.;
     fgets(line, MAXLINE, ficpar);        for(j=1; j<=nlstate;j++){
     puts(line);          eip += eij[i][j][(int)age];
     fputs(line,ficparo);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   ungetc(c,ficpar);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
          }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);      }
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      fprintf(ficresstdeij,"\n");
 /*--------- index.htm --------*/  
       fprintf(ficrescveij,"%3.0f",age );
   strcpy(optionfilehtm,optionfile);      for(i=1; i<=nlstate;i++)
   strcat(optionfilehtm,".htm");        for(j=1; j<=nlstate;j++){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          cptj= (j-1)*nlstate+i;
     printf("Problem with %s \n",optionfilehtm);goto end;          for(i2=1; i2<=nlstate;i2++)
   }            for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">              if(cptj2 <= cptj)
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 Total number of observations=%d <br>            }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>        }
 <hr  size=\"2\" color=\"#EC5E5E\">      fprintf(ficrescveij,"\n");
 <li>Outputs files<br><br>\n     
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    }
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    printf("\n");
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>    fprintf(ficlog,"\n");
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>  
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    free_vector(xm,1,npar);
     free_vector(xp,1,npar);
  fprintf(fichtm," <li>Graphs</li><p>");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
  m=cptcoveff;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  }
   
  j1=0;  /************ Variance ******************/
  for(k1=1; k1<=m;k1++){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
    for(i1=1; i1<=ncodemax[k1];i1++){  {
        j1++;    /* Variance of health expectancies */
        if (cptcovn > 0) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    /* double **newm;*/
          for (cpt=1; cpt<=cptcoveff;cpt++)    double **dnewm,**doldm;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);    double **dnewmp,**doldmp;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    int i, j, nhstepm, hstepm, h, nstepm ;
        }    int k, cptcode;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    double *xp;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        double **gp, **gm;  /* for var eij */
        for(cpt=1; cpt<nlstate;cpt++){    double ***gradg, ***trgradg; /*for var eij */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    double **gradgp, **trgradgp; /* for var p point j */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    double *gpp, *gmp; /* for var p point j */
        }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     for(cpt=1; cpt<=nlstate;cpt++) {    double ***p3mat;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    double age,agelim, hf;
 interval) in state (%d): v%s%d%d.gif <br>    double ***mobaverage;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      int theta;
      }    char digit[4];
      for(cpt=1; cpt<=nlstate;cpt++) {    char digitp[25];
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    char fileresprobmorprev[FILENAMELENGTH];
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    if(popbased==1){
 health expectancies in states (1) and (2): e%s%d.gif<br>      if(mobilav!=0)
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        strcpy(digitp,"-populbased-mobilav-");
 fprintf(fichtm,"\n</body>");      else strcpy(digitp,"-populbased-nomobil-");
    }    }
  }    else 
 fclose(fichtm);      strcpy(digitp,"-stablbased-");
   
   /*--------------- Prevalence limit --------------*/    if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(filerespl,"pl");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   strcat(filerespl,fileres);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      }
   }    }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");    strcpy(fileresprobmorprev,"prmorprev"); 
   fprintf(ficrespl,"#Age ");    sprintf(digit,"%-d",ij);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   fprintf(ficrespl,"\n");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   prlim=matrix(1,nlstate,1,nlstate);    strcat(fileresprobmorprev,fileres);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   k=0;   
   agebase=agemin;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   agelim=agemax;    pstamp(ficresprobmorprev);
   ftolpl=1.e-10;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   i1=cptcoveff;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   if (cptcovn < 1){i1=1;}    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
   for(cptcov=1;cptcov<=i1;cptcov++){      for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         k=k+1;    }  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    fprintf(ficresprobmorprev,"\n");
         fprintf(ficrespl,"\n#******");    fprintf(ficgp,"\n# Routine varevsij");
         for(j=1;j<=cptcoveff;j++)    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         fprintf(ficrespl,"******\n");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
          /*   } */
         for (age=agebase; age<=agelim; age++){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    pstamp(ficresvij);
           fprintf(ficrespl,"%.0f",age );    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
           for(i=1; i<=nlstate;i++)    if(popbased==1)
           fprintf(ficrespl," %.5f", prlim[i][i]);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
           fprintf(ficrespl,"\n");    else
         }      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       }    fprintf(ficresvij,"# Age");
     }    for(i=1; i<=nlstate;i++)
   fclose(ficrespl);      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   /*------------- h Pij x at various ages ------------*/    fprintf(ficresvij,"\n");
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    xp=vector(1,npar);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    dnewm=matrix(1,nlstate,1,npar);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    doldm=matrix(1,nlstate,1,nlstate);
   }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   printf("Computing pij: result on file '%s' \n", filerespij);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   /*if (stepm<=24) stepsize=2;*/    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   agelim=AGESUP;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   hstepm=stepsize*YEARM; /* Every year of age */    
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){    else  hstepm=estepm;   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* For example we decided to compute the life expectancy with the smallest unit */
       k=k+1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficrespij,"\n#****** ");       nhstepm is the number of hstepm from age to agelim 
         for(j=1;j<=cptcoveff;j++)       nstepm is the number of stepm from age to agelin. 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       Look at hpijx to understand the reason of that which relies in memory size
         fprintf(ficrespij,"******\n");       and note for a fixed period like k years */
            /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */       survival function given by stepm (the optimization length). Unfortunately it
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       means that if the survival funtion is printed every two years of age and if
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       results. So we changed our mind and took the option of the best precision.
           oldm=oldms;savm=savms;    */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           fprintf(ficrespij,"# Age");    agelim = AGESUP;
           for(i=1; i<=nlstate;i++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             for(j=1; j<=nlstate+ndeath;j++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
               fprintf(ficrespij," %1d-%1d",i,j);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           fprintf(ficrespij,"\n");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for (h=0; h<=nhstepm; h++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      gp=matrix(0,nhstepm,1,nlstate);
             for(i=1; i<=nlstate;i++)      gm=matrix(0,nhstepm,1,nlstate);
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");      for(theta=1; theta <=npar; theta++){
           }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           fprintf(ficrespij,"\n");        }
         }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }  
         if (popbased==1) {
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   fclose(ficrespij);              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
   if(stepm == 1) {            for(i=1; i<=nlstate;i++)
   /*---------- Forecasting ------------------*/              prlim[i][i]=mobaverage[(int)age][i][ij];
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          }
         }
   /*printf("calage= %f", calagedate);*/    
          for(j=1; j<= nlstate; j++){
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   strcpy(fileresf,"f");          }
   strcat(fileresf,fileres);        }
   if((ficresf=fopen(fileresf,"w"))==NULL) {        /* This for computing probability of death (h=1 means
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
   printf("Computing forecasting: result on file '%s' \n", fileresf);        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_matrix(mint,1,maxwav,1,n);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   free_matrix(anint,1,maxwav,1,n);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   free_matrix(agev,1,maxwav,1,imx);        }    
   /* Mobile average */        /* end probability of death */
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if (mobilav==1) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)   
       for (i=1; i<=nlstate;i++)        if (popbased==1) {
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          if(mobilav ==0){
           mobaverage[(int)agedeb][i][cptcod]=0.;            for(i=1; i<=nlstate;i++)
                  prlim[i][i]=probs[(int)age][i][ij];
     for (agedeb=bage+4; agedeb<=fage; agedeb++){          }else{ /* mobilav */ 
       for (i=1; i<=nlstate;i++){            for(i=1; i<=nlstate;i++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              prlim[i][i]=mobaverage[(int)age][i][ij];
           for (cpt=0;cpt<=4;cpt++){          }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        }
           }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        for(j=1; j<= nlstate; j++){
         }          for(h=0; h<=nhstepm; h++){
       }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     }                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   }          }
         }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        /* This for computing probability of death (h=1 means
   if (stepm<=12) stepsize=1;           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   agelim=AGESUP;        */
   /*hstepm=stepsize*YEARM; *//* Every year of age */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   hstepm=1;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   yp1=modf(dateintmean,&yp);        }    
   anprojmean=yp;        /* end probability of death */
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;        for(j=1; j<= nlstate; j++) /* vareij */
   yp1=modf((yp2*30.5),&yp);          for(h=0; h<=nhstepm; h++){
   jprojmean=yp;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   if(jprojmean==0) jprojmean=1;          }
   if(mprojmean==0) jprojmean=1;  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL)    {      } /* End theta */
       printf("Problem with population file : %s\n",popfile);goto end;  
     }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);      for(h=0; h<=nhstepm; h++) /* veij */
     popcount=vector(0,AGESUP);        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
     i=1;              trgradg[h][j][theta]=gradg[h][theta][j];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)  
       {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         i=i+1;        for(theta=1; theta <=npar; theta++)
       }          trgradgp[j][theta]=gradgp[theta][j];
     imx=i;    
      
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
   for(cptcov=1;cptcov<=i1;cptcov++){          vareij[i][j][(int)age] =0.;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;      for(h=0;h<=nhstepm;h++){
       fprintf(ficresf,"\n#******");        for(k=0;k<=nhstepm;k++){
       for(j=1;j<=cptcoveff;j++) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       }          for(i=1;i<=nlstate;i++)
       fprintf(ficresf,"******\n");            for(j=1;j<=nlstate;j++)
       fprintf(ficresf,"# StartingAge FinalAge");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        }
       if (popforecast==1)  fprintf(ficresf," [Population]");      }
        
       for (cpt=0; cpt<4;cpt++) {      /* pptj */
         fprintf(ficresf,"\n");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          varppt[j][i]=doldmp[j][i];
         nhstepm = nhstepm/hstepm;      /* end ppptj */
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         oldm=oldms;savm=savms;   
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        if (popbased==1) {
                if(mobilav ==0){
         for (h=0; h<=nhstepm; h++){          for(i=1; i<=nlstate;i++)
           if (h==(int) (calagedate+YEARM*cpt)) {            prlim[i][i]=probs[(int)age][i][ij];
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);        }else{ /* mobilav */ 
           }          for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate+ndeath;j++) {            prlim[i][i]=mobaverage[(int)age][i][ij];
             kk1=0.;kk2=0;        }
             for(i=1; i<=nlstate;i++) {              }
               if (mobilav==1)               
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      /* This for computing probability of death (h=1 means
               else {         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];         as a weighted average of prlim.
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/      */
               }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
             }      }    
                /* end probability of death */
             if (h==(int)(calagedate+12*cpt)){  
               fprintf(ficresf," %.3f", kk1);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             }        for(i=1; i<=nlstate;i++){
           }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }        }
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } 
       }      fprintf(ficresprobmorprev,"\n");
       }  
     }      fprintf(ficresvij,"%.0f ",age );
   }      for(i=1; i<=nlstate;i++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<=nlstate;j++){
   if (popforecast==1) {          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     free_ivector(popage,0,AGESUP);        }
     free_vector(popeffectif,0,AGESUP);      fprintf(ficresvij,"\n");
     free_vector(popcount,0,AGESUP);      free_matrix(gp,0,nhstepm,1,nlstate);
   }      free_matrix(gm,0,nhstepm,1,nlstate);
   free_imatrix(s,1,maxwav+1,1,n);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   free_vector(weight,1,n);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   fclose(ficresf);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }/* End forecasting */    } /* End age */
   else{    free_vector(gpp,nlstate+1,nlstate+ndeath);
     erreur=108;    free_vector(gmp,nlstate+1,nlstate+ndeath);
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   /*---------- Health expectancies and variances ------------*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   strcpy(filerest,"t");  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   strcat(filerest,fileres);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   if((ficrest=fopen(filerest,"w"))==NULL) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   strcpy(filerese,"e");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   strcat(filerese,fileres);  */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
  strcpy(fileresv,"v");    free_matrix(dnewm,1,nlstate,1,npar);
   strcat(fileresv,fileres);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fclose(ficresprobmorprev);
     fflush(ficgp);
   k=0;    fflush(fichtm); 
   for(cptcov=1;cptcov<=i1;cptcov++){  }  /* end varevsij */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  /************ Variance of prevlim ******************/
       fprintf(ficrest,"\n#****** ");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       for(j=1;j<=cptcoveff;j++)  {
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* Variance of prevalence limit */
       fprintf(ficrest,"******\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
       fprintf(ficreseij,"\n#****** ");    double **dnewm,**doldm;
       for(j=1;j<=cptcoveff;j++)    int i, j, nhstepm, hstepm;
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    int k, cptcode;
       fprintf(ficreseij,"******\n");    double *xp;
     double *gp, *gm;
       fprintf(ficresvij,"\n#****** ");    double **gradg, **trgradg;
       for(j=1;j<=cptcoveff;j++)    double age,agelim;
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    int theta;
       fprintf(ficresvij,"******\n");    
     pstamp(ficresvpl);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       oldm=oldms;savm=savms;    fprintf(ficresvpl,"# Age");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      for(i=1; i<=nlstate;i++)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        fprintf(ficresvpl," %1d-%1d",i,i);
       oldm=oldms;savm=savms;    fprintf(ficresvpl,"\n");
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
          xp=vector(1,npar);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    dnewm=matrix(1,nlstate,1,npar);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficrest,"\n");    
            hstepm=1*YEARM; /* Every year of age */
       hf=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       if (stepm >= YEARM) hf=stepm/YEARM;    agelim = AGESUP;
       epj=vector(1,nlstate+1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(age=bage; age <=fage ;age++){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      if (stepm >= YEARM) hstepm=1;
         if (popbased==1) {      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           for(i=1; i<=nlstate;i++)      gradg=matrix(1,npar,1,nlstate);
             prlim[i][i]=probs[(int)age][i][k];      gp=vector(1,nlstate);
         }      gm=vector(1,nlstate);
          
         fprintf(ficrest," %.0f",age);      for(theta=1; theta <=npar; theta++){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        for(i=1; i<=npar; i++){ /* Computes gradient */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];        }
           }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           epj[nlstate+1] +=epj[j];        for(i=1;i<=nlstate;i++)
         }          gp[i] = prlim[i][i];
         for(i=1, vepp=0.;i <=nlstate;i++)      
           for(j=1;j <=nlstate;j++)        for(i=1; i<=npar; i++) /* Computes gradient */
             vepp += vareij[i][j][(int)age];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(j=1;j <=nlstate;j++){        for(i=1;i<=nlstate;i++)
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));          gm[i] = prlim[i][i];
         }  
         fprintf(ficrest,"\n");        for(i=1;i<=nlstate;i++)
       }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     }      } /* End theta */
   }  
              trgradg =matrix(1,nlstate,1,npar);
          
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
  fclose(ficreseij);          trgradg[j][theta]=gradg[theta][j];
  fclose(ficresvij);  
   fclose(ficrest);      for(i=1;i<=nlstate;i++)
   fclose(ficpar);        varpl[i][(int)age] =0.;
   free_vector(epj,1,nlstate+1);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   /*  scanf("%d ",i); */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
   /*------- Variance limit prevalence------*/          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
 strcpy(fileresvpl,"vpl");      fprintf(ficresvpl,"%.0f ",age );
   strcat(fileresvpl,fileres);      for(i=1; i<=nlstate;i++)
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      fprintf(ficresvpl,"\n");
     exit(0);      free_vector(gp,1,nlstate);
   }      free_vector(gm,1,nlstate);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
  k=0;    } /* End age */
  for(cptcov=1;cptcov<=i1;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_vector(xp,1,npar);
      k=k+1;    free_matrix(doldm,1,nlstate,1,npar);
      fprintf(ficresvpl,"\n#****** ");    free_matrix(dnewm,1,nlstate,1,nlstate);
      for(j=1;j<=cptcoveff;j++)  
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }
      fprintf(ficresvpl,"******\n");  
        /************ Variance of one-step probabilities  ******************/
      varpl=matrix(1,nlstate,(int) bage, (int) fage);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
      oldm=oldms;savm=savms;  {
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    int i, j=0,  i1, k1, l1, t, tj;
    }    int k2, l2, j1,  z1;
  }    int k=0,l, cptcode;
     int first=1, first1;
   fclose(ficresvpl);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
   /*---------- End : free ----------------*/    double *xp;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    double *gp, *gm;
      double **gradg, **trgradg;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double **mu;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double age,agelim, cov[NCOVMAX];
      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      int theta;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    char fileresprob[FILENAMELENGTH];
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    char fileresprobcov[FILENAMELENGTH];
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    char fileresprobcor[FILENAMELENGTH];
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
      double ***varpij;
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);    strcpy(fileresprob,"prob"); 
      strcat(fileresprob,fileres);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
   if(erreur >0)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     printf("End of Imach with error %d\n",erreur);    }
   else   printf("End of Imach\n");    strcpy(fileresprobcov,"probcov"); 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    strcat(fileresprobcov,fileres);
      if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      printf("Problem with resultfile: %s\n", fileresprobcov);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   /*------ End -----------*/    }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
  end:    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 #ifdef windows      printf("Problem with resultfile: %s\n", fileresprobcor);
   /* chdir(pathcd);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 #endif    }
  /*system("wgnuplot graph.plt");*/    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
  /*system("../gp37mgw/wgnuplot graph.plt");*/    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
  /*system("cd ../gp37mgw");*/    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  strcpy(plotcmd,GNUPLOTPROGRAM);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  strcat(plotcmd," ");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  strcat(plotcmd,optionfilegnuplot);    pstamp(ficresprob);
  system(plotcmd);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
 #ifdef windows    pstamp(ficresprobcov);
   while (z[0] != 'q') {    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     chdir(path);    fprintf(ficresprobcov,"# Age");
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    pstamp(ficresprobcor);
     scanf("%s",z);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     if (z[0] == 'c') system("./imach");    fprintf(ficresprobcor,"# Age");
     else if (z[0] == 'e') {  
       chdir(path);  
       system(optionfilehtm);    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=(nlstate+ndeath);j++){
     else if (z[0] == 'q') exit(0);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
 #endif        fprintf(ficresprobcor," p%1d-%1d ",i,j);
 }      }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.22  
changed lines
  Added in v.1.121


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>