Diff for /imach/src/imach.c between versions 1.43 and 1.121

version 1.43, 2002/05/24 13:00:54 version 1.121, 2006/03/16 17:45:01
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.121  2006/03/16 17:45:01  lievre
      * imach.c (Module): Comments concerning covariates added
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    * imach.c (Module): refinements in the computation of lli if
   first survey ("cross") where individuals from different ages are    status=-2 in order to have more reliable computation if stepm is
   interviewed on their health status or degree of disability (in the    not 1 month. Version 0.98f
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.120  2006/03/16 15:10:38  lievre
   (if any) in individual health status.  Health expectancies are    (Module): refinements in the computation of lli if
   computed from the time spent in each health state according to a    status=-2 in order to have more reliable computation if stepm is
   model. More health states you consider, more time is necessary to reach the    not 1 month. Version 0.98f
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.119  2006/03/15 17:42:26  brouard
   probability to be observed in state j at the second wave    (Module): Bug if status = -2, the loglikelihood was
   conditional to be observed in state i at the first wave. Therefore    computed as likelihood omitting the logarithm. Version O.98e
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.118  2006/03/14 18:20:07  brouard
   complex model than "constant and age", you should modify the program    (Module): varevsij Comments added explaining the second
   where the markup *Covariates have to be included here again* invites    table of variances if popbased=1 .
   you to do it.  More covariates you add, slower the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   convergence.    (Module): Function pstamp added
     (Module): Version 0.98d
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.117  2006/03/14 17:16:22  brouard
   identical for each individual. Also, if a individual missed an    (Module): varevsij Comments added explaining the second
   intermediate interview, the information is lost, but taken into    table of variances if popbased=1 .
   account using an interpolation or extrapolation.      (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   hPijx is the probability to be observed in state i at age x+h    (Module): Version 0.98d
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.116  2006/03/06 10:29:27  brouard
   states. This elementary transition (by month or quarter trimester,    (Module): Variance-covariance wrong links and
   semester or year) is model as a multinomial logistic.  The hPx    varian-covariance of ej. is needed (Saito).
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.115  2006/02/27 12:17:45  brouard
   hPijx.    (Module): One freematrix added in mlikeli! 0.98c
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.114  2006/02/26 12:57:58  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Some improvements in processing parameter
      filename with strsep.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.113  2006/02/24 14:20:24  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Memory leaks checks with valgrind and:
   from the European Union.    datafile was not closed, some imatrix were not freed and on matrix
   It is copyrighted identically to a GNU software product, ie programme and    allocation too.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.112  2006/01/30 09:55:26  brouard
   **********************************************************************/    (Module): Back to gnuplot.exe instead of wgnuplot.exe
    
 #include <math.h>    Revision 1.111  2006/01/25 20:38:18  brouard
 #include <stdio.h>    (Module): Lots of cleaning and bugs added (Gompertz)
 #include <stdlib.h>    (Module): Comments can be added in data file. Missing date values
 #include <unistd.h>    can be a simple dot '.'.
   
 #define MAXLINE 256    Revision 1.110  2006/01/25 00:51:50  brouard
 #define GNUPLOTPROGRAM "gnuplot"    (Module): Lots of cleaning and bugs added (Gompertz)
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.109  2006/01/24 19:37:15  brouard
 /*#define DEBUG*/    (Module): Comments (lines starting with a #) are allowed in data.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.108  2006/01/19 18:05:42  lievre
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Gnuplot problem appeared...
     To be fixed
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.106  2006/01/19 13:24:36  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Some cleaning and links added in html output
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.105  2006/01/05 20:23:19  lievre
 #define YEARM 12. /* Number of months per year */    *** empty log message ***
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 int erreur; /* Error number */    that the person is alive, then we can code his/her status as -2
 int nvar;    (instead of missing=-1 in earlier versions) and his/her
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    contributions to the likelihood is 1 - Prob of dying from last
 int npar=NPARMAX;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int nlstate=2; /* Number of live states */    the healthy state at last known wave). Version is 0.98
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.103  2005/09/30 15:54:49  lievre
 int popbased=0;    (Module): sump fixed, loop imx fixed, and simplifications.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.102  2004/09/15 17:31:30  brouard
 int maxwav; /* Maxim number of waves */    Add the possibility to read data file including tab characters.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.101  2004/09/15 10:38:38  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Fix on curr_time
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.100  2004/07/12 18:29:06  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Add version for Mac OS X. Just define UNIX in Makefile
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.99  2004/06/05 08:57:40  brouard
 FILE *ficgp,*ficresprob,*ficpop;    *** empty log message ***
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.98  2004/05/16 15:05:56  brouard
  FILE  *ficresvij;    New version 0.97 . First attempt to estimate force of mortality
   char fileresv[FILENAMELENGTH];    directly from the data i.e. without the need of knowing the health
  FILE  *ficresvpl;    state at each age, but using a Gompertz model: log u =a + b*age .
   char fileresvpl[FILENAMELENGTH];    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 #define NR_END 1    cross-longitudinal survey is different from the mortality estimated
 #define FREE_ARG char*    from other sources like vital statistic data.
 #define FTOL 1.0e-10  
     The same imach parameter file can be used but the option for mle should be -3.
 #define NRANSI  
 #define ITMAX 200    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 #define TOL 2.0e-4  
     The output is very simple: only an estimate of the intercept and of
 #define CGOLD 0.3819660    the slope with 95% confident intervals.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Current limitations:
     A) Even if you enter covariates, i.e. with the
 #define GOLD 1.618034    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define GLIMIT 100.0    B) There is no computation of Life Expectancy nor Life Table.
 #define TINY 1.0e-20  
     Revision 1.97  2004/02/20 13:25:42  lievre
 static double maxarg1,maxarg2;    Version 0.96d. Population forecasting command line is (temporarily)
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    suppressed.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.96  2003/07/15 15:38:55  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define rint(a) floor(a+0.5)    rewritten within the same printf. Workaround: many printfs.
   
 static double sqrarg;    Revision 1.95  2003/07/08 07:54:34  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    * imach.c (Repository):
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 int imx;  
 int stepm;    Revision 1.94  2003/06/27 13:00:02  brouard
 /* Stepm, step in month: minimum step interpolation*/    Just cleaning
   
 int estepm;    Revision 1.93  2003/06/25 16:33:55  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 int m,nb;    (Module): Version 0.96b
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.92  2003/06/25 16:30:45  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): On windows (cygwin) function asctime_r doesn't
 double dateintmean=0;    exist so I changed back to asctime which exists.
   
 double *weight;    Revision 1.91  2003/06/25 15:30:29  brouard
 int **s; /* Status */    * imach.c (Repository): Duplicated warning errors corrected.
 double *agedc, **covar, idx;    (Repository): Elapsed time after each iteration is now output. It
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    concerning matrix of covariance. It has extension -cov.htm.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.90  2003/06/24 12:34:15  brouard
 /**************** split *************************/    (Module): Some bugs corrected for windows. Also, when
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    mle=-1 a template is output in file "or"mypar.txt with the design
 {    of the covariance matrix to be input.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
    l1 = strlen( path );                 /* length of path */    mle=-1 a template is output in file "or"mypar.txt with the design
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    of the covariance matrix to be input.
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.88  2003/06/23 17:54:56  brouard
 #else    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Revision 1.87  2003/06/18 12:26:01  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    Version 0.96
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
       if ( getwd( dirc ) == NULL ) {    routine fileappend.
 #else  
       extern char       *getcwd( );    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    current date of interview. It may happen when the death was just
 #endif    prior to the death. In this case, dh was negative and likelihood
          return( GLOCK_ERROR_GETCWD );    was wrong (infinity). We still send an "Error" but patch by
       }    assuming that the date of death was just one stepm after the
       strcpy( name, path );             /* we've got it */    interview.
    } else {                             /* strip direcotry from path */    (Repository): Because some people have very long ID (first column)
       s++;                              /* after this, the filename */    we changed int to long in num[] and we added a new lvector for
       l2 = strlen( s );                 /* length of filename */    memory allocation. But we also truncated to 8 characters (left
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    truncation)
       strcpy( name, s );                /* save file name */    (Repository): No more line truncation errors.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.84  2003/06/13 21:44:43  brouard
    }    * imach.c (Repository): Replace "freqsummary" at a correct
    l1 = strlen( dirc );                 /* length of directory */    place. It differs from routine "prevalence" which may be called
 #ifdef windows    many times. Probs is memory consuming and must be used with
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    parcimony.
 #else    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.83  2003/06/10 13:39:11  lievre
    s = strrchr( name, '.' );            /* find last / */    *** empty log message ***
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.82  2003/06/05 15:57:20  brouard
    l1= strlen( name);    Add log in  imach.c and  fullversion number is now printed.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);  */
    finame[l1-l2]= 0;  /*
    return( 0 );                         /* we're done */     Interpolated Markov Chain
 }  
     Short summary of the programme:
     
 /******************************************/    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 void replace(char *s, char*t)    first survey ("cross") where individuals from different ages are
 {    interviewed on their health status or degree of disability (in the
   int i;    case of a health survey which is our main interest) -2- at least a
   int lg=20;    second wave of interviews ("longitudinal") which measure each change
   i=0;    (if any) in individual health status.  Health expectancies are
   lg=strlen(t);    computed from the time spent in each health state according to a
   for(i=0; i<= lg; i++) {    model. More health states you consider, more time is necessary to reach the
     (s[i] = t[i]);    Maximum Likelihood of the parameters involved in the model.  The
     if (t[i]== '\\') s[i]='/';    simplest model is the multinomial logistic model where pij is the
   }    probability to be observed in state j at the second wave
 }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int nbocc(char *s, char occ)    'age' is age and 'sex' is a covariate. If you want to have a more
 {    complex model than "constant and age", you should modify the program
   int i,j=0;    where the markup *Covariates have to be included here again* invites
   int lg=20;    you to do it.  More covariates you add, slower the
   i=0;    convergence.
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    The advantage of this computer programme, compared to a simple
   if  (s[i] == occ ) j++;    multinomial logistic model, is clear when the delay between waves is not
   }    identical for each individual. Also, if a individual missed an
   return j;    intermediate interview, the information is lost, but taken into
 }    account using an interpolation or extrapolation.  
   
 void cutv(char *u,char *v, char*t, char occ)    hPijx is the probability to be observed in state i at age x+h
 {    conditional to the observed state i at age x. The delay 'h' can be
   int i,lg,j,p=0;    split into an exact number (nh*stepm) of unobserved intermediate
   i=0;    states. This elementary transition (by month, quarter,
   for(j=0; j<=strlen(t)-1; j++) {    semester or year) is modelled as a multinomial logistic.  The hPx
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    matrix is simply the matrix product of nh*stepm elementary matrices
   }    and the contribution of each individual to the likelihood is simply
     hPijx.
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Also this programme outputs the covariance matrix of the parameters but also
     (u[j] = t[j]);    of the life expectancies. It also computes the period (stable) prevalence. 
   }    
      u[p]='\0';    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
    for(j=0; j<= lg; j++) {    This software have been partly granted by Euro-REVES, a concerted action
     if (j>=(p+1))(v[j-p-1] = t[j]);    from the European Union.
   }    It is copyrighted identically to a GNU software product, ie programme and
 }    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 /********************** nrerror ********************/  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 void nrerror(char error_text[])    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 {    
   fprintf(stderr,"ERREUR ...\n");    **********************************************************************/
   fprintf(stderr,"%s\n",error_text);  /*
   exit(1);    main
 }    read parameterfile
 /*********************** vector *******************/    read datafile
 double *vector(int nl, int nh)    concatwav
 {    freqsummary
   double *v;    if (mle >= 1)
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      mlikeli
   if (!v) nrerror("allocation failure in vector");    print results files
   return v-nl+NR_END;    if mle==1 
 }       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 /************************ free vector ******************/        begin-prev-date,...
 void free_vector(double*v, int nl, int nh)    open gnuplot file
 {    open html file
   free((FREE_ARG)(v+nl-NR_END));    period (stable) prevalence
 }     for age prevalim()
     h Pij x
 /************************ivector *******************************/    variance of p varprob
 int *ivector(long nl,long nh)    forecasting if prevfcast==1 prevforecast call prevalence()
 {    health expectancies
   int *v;    Variance-covariance of DFLE
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    prevalence()
   if (!v) nrerror("allocation failure in ivector");     movingaverage()
   return v-nl+NR_END;    varevsij() 
 }    if popbased==1 varevsij(,popbased)
     total life expectancies
 /******************free ivector **************************/    Variance of period (stable) prevalence
 void free_ivector(int *v, long nl, long nh)   end
 {  */
   free((FREE_ARG)(v+nl-NR_END));  
 }  
   
 /******************* imatrix *******************************/   
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #include <math.h>
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #include <stdio.h>
 {  #include <stdlib.h>
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #include <string.h>
   int **m;  #include <unistd.h>
    
   /* allocate pointers to rows */  #include <limits.h>
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #include <sys/types.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <sys/stat.h>
   m += NR_END;  #include <errno.h>
   m -= nrl;  extern int errno;
    
    /* #include <sys/time.h> */
   /* allocate rows and set pointers to them */  #include <time.h>
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #include "timeval.h"
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /* #include <libintl.h> */
   m[nrl] -= ncl;  /* #define _(String) gettext (String) */
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define MAXLINE 256
    
   /* return pointer to array of pointers to rows */  #define GNUPLOTPROGRAM "gnuplot"
   return m;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   
 /****************** free_imatrix *************************/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       int **m;  
       long nch,ncl,nrh,nrl;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
      /* free an int matrix allocated by imatrix() */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define NINTERVMAX 8
   free((FREE_ARG) (m+nrl-NR_END));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 /******************* matrix *******************************/  #define MAXN 20000
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define AGEBASE 40
   double **m;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define DIRSEPARATOR '/'
   if (!m) nrerror("allocation failure 1 in matrix()");  #define CHARSEPARATOR "/"
   m += NR_END;  #define ODIRSEPARATOR '\\'
   m -= nrl;  #else
   #define DIRSEPARATOR '\\'
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define CHARSEPARATOR "\\"
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define ODIRSEPARATOR '/'
   m[nrl] += NR_END;  #endif
   m[nrl] -= ncl;  
   /* $Id$ */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /* $State$ */
   return m;  
 }  char version[]="Imach version 0.98f, March 2006, INED-EUROREVES-Institut de longevite ";
   char fullversion[]="$Revision$ $Date$"; 
 /*************************free matrix ************************/  char strstart[80];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 {  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int nvar;
   free((FREE_ARG)(m+nrl-NR_END));  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 /******************* ma3x *******************************/  int ndeath=1; /* Number of dead states */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int jmin, jmax; /* min, max spacing between 2 waves */
   if (!m) nrerror("allocation failure 1 in matrix()");  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   m += NR_END;  int gipmx, gsw; /* Global variables on the number of contributions 
   m -= nrl;                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m[nrl] += NR_END;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m[nrl] -= ncl;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  FILE *ficlog, *ficrespow;
   m[nrl][ncl] += NR_END;  int globpr; /* Global variable for printing or not */
   m[nrl][ncl] -= nll;  double fretone; /* Only one call to likelihood */
   for (j=ncl+1; j<=nch; j++)  long ipmx; /* Number of contributions */
     m[nrl][j]=m[nrl][j-1]+nlay;  double sw; /* Sum of weights */
    char filerespow[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  FILE *ficresilk;
     for (j=ncl+1; j<=nch; j++)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       m[i][j]=m[i][j-1]+nlay;  FILE *ficresprobmorprev;
   }  FILE *fichtm, *fichtmcov; /* Html File */
   return m;  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
 /*************************free ma3x ************************/  char fileresstde[FILENAMELENGTH];
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  FILE *ficrescveij;
 {  char filerescve[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  FILE  *ficresvij;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fileresv[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /***************** f1dim *************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 extern int ncom;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 extern double *pcom,*xicom;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 extern double (*nrfunc)(double []);  char command[FILENAMELENGTH];
    int  outcmd=0;
 double f1dim(double x)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   int j;  
   double f;  char filelog[FILENAMELENGTH]; /* Log file */
   double *xt;  char filerest[FILENAMELENGTH];
    char fileregp[FILENAMELENGTH];
   xt=vector(1,ncom);  char popfile[FILENAMELENGTH];
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   free_vector(xt,1,ncom);  
   return f;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 }  struct timezone tzp;
   extern int gettimeofday();
 /*****************brent *************************/  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  long time_value;
 {  extern long time();
   int iter;  char strcurr[80], strfor[80];
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  char *endptr;
   double ftemp;  long lval;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  #define NR_END 1
    #define FREE_ARG char*
   a=(ax < cx ? ax : cx);  #define FTOL 1.0e-10
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  #define NRANSI 
   fw=fv=fx=(*f)(x);  #define ITMAX 200 
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  #define TOL 2.0e-4 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define CGOLD 0.3819660 
     printf(".");fflush(stdout);  #define ZEPS 1.0e-10 
 #ifdef DEBUG  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define GOLD 1.618034 
 #endif  #define GLIMIT 100.0 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define TINY 1.0e-20 
       *xmin=x;  
       return fx;  static double maxarg1,maxarg2;
     }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     ftemp=fu;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     if (fabs(e) > tol1) {    
       r=(x-w)*(fx-fv);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       q=(x-v)*(fx-fw);  #define rint(a) floor(a+0.5)
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  static double sqrarg;
       if (q > 0.0) p = -p;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       q=fabs(q);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       etemp=e;  int agegomp= AGEGOMP;
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int imx; 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int stepm=1;
       else {  /* Stepm, step in month: minimum step interpolation*/
         d=p/q;  
         u=x+d;  int estepm;
         if (u-a < tol2 || b-u < tol2)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
           d=SIGN(tol1,xm-x);  
       }  int m,nb;
     } else {  long *num;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double **pmmij, ***probs;
     fu=(*f)(u);  double *ageexmed,*agecens;
     if (fu <= fx) {  double dateintmean=0;
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  double *weight;
         SHFT(fv,fw,fx,fu)  int **s; /* Status */
         } else {  double *agedc, **covar, idx;
           if (u < x) a=u; else b=u;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
           if (fu <= fw || w == x) {  double *lsurv, *lpop, *tpop;
             v=w;  
             w=u;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
             fv=fw;  double ftolhess; /* Tolerance for computing hessian */
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /**************** split *************************/
             v=u;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
             fv=fu;  {
           }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   }    */ 
   nrerror("Too many iterations in brent");    char  *ss;                            /* pointer */
   *xmin=x;    int   l1, l2;                         /* length counters */
   return fx;  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /****************** mnbrak ***********************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      strcpy( name, path );               /* we got the fullname name because no directory */
             double (*func)(double))      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double ulim,u,r,q, dum;      /* get current working directory */
   double fu;      /*    extern  char* getcwd ( char *buf , int len);*/
        if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   *fa=(*func)(*ax);        return( GLOCK_ERROR_GETCWD );
   *fb=(*func)(*bx);      }
   if (*fb > *fa) {      /* got dirc from getcwd*/
     SHFT(dum,*ax,*bx,dum)      printf(" DIRC = %s \n",dirc);
       SHFT(dum,*fb,*fa,dum)    } else {                              /* strip direcotry from path */
       }      ss++;                               /* after this, the filename */
   *cx=(*bx)+GOLD*(*bx-*ax);      l2 = strlen( ss );                  /* length of filename */
   *fc=(*func)(*cx);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   while (*fb > *fc) {      strcpy( name, ss );         /* save file name */
     r=(*bx-*ax)*(*fb-*fc);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     q=(*bx-*cx)*(*fb-*fa);      dirc[l1-l2] = 0;                    /* add zero */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      printf(" DIRC2 = %s \n",dirc);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    }
     ulim=(*bx)+GLIMIT*(*cx-*bx);    /* We add a separator at the end of dirc if not exists */
     if ((*bx-u)*(u-*cx) > 0.0) {    l1 = strlen( dirc );                  /* length of directory */
       fu=(*func)(u);    if( dirc[l1-1] != DIRSEPARATOR ){
     } else if ((*cx-u)*(u-ulim) > 0.0) {      dirc[l1] =  DIRSEPARATOR;
       fu=(*func)(u);      dirc[l1+1] = 0; 
       if (fu < *fc) {      printf(" DIRC3 = %s \n",dirc);
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    }
           SHFT(*fb,*fc,fu,(*func)(u))    ss = strrchr( name, '.' );            /* find last / */
           }    if (ss >0){
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      ss++;
       u=ulim;      strcpy(ext,ss);                     /* save extension */
       fu=(*func)(u);      l1= strlen( name);
     } else {      l2= strlen(ss)+1;
       u=(*cx)+GOLD*(*cx-*bx);      strncpy( finame, name, l1-l2);
       fu=(*func)(u);      finame[l1-l2]= 0;
     }    }
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)    return( 0 );                          /* we're done */
       }  }
 }  
   
 /*************** linmin ************************/  /******************************************/
   
 int ncom;  void replace_back_to_slash(char *s, char*t)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);    int i;
      int lg=0;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    i=0;
 {    lg=strlen(t);
   double brent(double ax, double bx, double cx,    for(i=0; i<= lg; i++) {
                double (*f)(double), double tol, double *xmin);      (s[i] = t[i]);
   double f1dim(double x);      if (t[i]== '\\') s[i]='/';
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    }
               double *fc, double (*func)(double));  }
   int j;  
   double xx,xmin,bx,ax;  int nbocc(char *s, char occ)
   double fx,fb,fa;  {
      int i,j=0;
   ncom=n;    int lg=20;
   pcom=vector(1,n);    i=0;
   xicom=vector(1,n);    lg=strlen(s);
   nrfunc=func;    for(i=0; i<= lg; i++) {
   for (j=1;j<=n;j++) {    if  (s[i] == occ ) j++;
     pcom[j]=p[j];    }
     xicom[j]=xi[j];    return j;
   }  }
   ax=0.0;  
   xx=1.0;  void cutv(char *u,char *v, char*t, char occ)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 #ifdef DEBUG       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);       gives u="abcedf" and v="ghi2j" */
 #endif    int i,lg,j,p=0;
   for (j=1;j<=n;j++) {    i=0;
     xi[j] *= xmin;    for(j=0; j<=strlen(t)-1; j++) {
     p[j] += xi[j];      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   }    }
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);    lg=strlen(t);
 }    for(j=0; j<p; j++) {
       (u[j] = t[j]);
 /*************** powell ************************/    }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,       u[p]='\0';
             double (*func)(double []))  
 {     for(j=0; j<= lg; j++) {
   void linmin(double p[], double xi[], int n, double *fret,      if (j>=(p+1))(v[j-p-1] = t[j]);
               double (*func)(double []));    }
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /********************** nrerror ********************/
   double *xits;  
   pt=vector(1,n);  void nrerror(char error_text[])
   ptt=vector(1,n);  {
   xit=vector(1,n);    fprintf(stderr,"ERREUR ...\n");
   xits=vector(1,n);    fprintf(stderr,"%s\n",error_text);
   *fret=(*func)(p);    exit(EXIT_FAILURE);
   for (j=1;j<=n;j++) pt[j]=p[j];  }
   for (*iter=1;;++(*iter)) {  /*********************** vector *******************/
     fp=(*fret);  double *vector(int nl, int nh)
     ibig=0;  {
     del=0.0;    double *v;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     for (i=1;i<=n;i++)    if (!v) nrerror("allocation failure in vector");
       printf(" %d %.12f",i, p[i]);    return v-nl+NR_END;
     printf("\n");  }
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /************************ free vector ******************/
       fptt=(*fret);  void free_vector(double*v, int nl, int nh)
 #ifdef DEBUG  {
       printf("fret=%lf \n",*fret);    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  /************************ivector *******************************/
       if (fabs(fptt-(*fret)) > del) {  int *ivector(long nl,long nh)
         del=fabs(fptt-(*fret));  {
         ibig=i;    int *v;
       }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 #ifdef DEBUG    if (!v) nrerror("allocation failure in ivector");
       printf("%d %.12e",i,(*fret));    return v-nl+NR_END;
       for (j=1;j<=n;j++) {  }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /******************free ivector **************************/
       }  void free_ivector(int *v, long nl, long nh)
       for(j=1;j<=n;j++)  {
         printf(" p=%.12e",p[j]);    free((FREE_ARG)(v+nl-NR_END));
       printf("\n");  }
 #endif  
     }  /************************lvector *******************************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  long *lvector(long nl,long nh)
 #ifdef DEBUG  {
       int k[2],l;    long *v;
       k[0]=1;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       k[1]=-1;    if (!v) nrerror("allocation failure in ivector");
       printf("Max: %.12e",(*func)(p));    return v-nl+NR_END;
       for (j=1;j<=n;j++)  }
         printf(" %.12e",p[j]);  
       printf("\n");  /******************free lvector **************************/
       for(l=0;l<=1;l++) {  void free_lvector(long *v, long nl, long nh)
         for (j=1;j<=n;j++) {  {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    free((FREE_ARG)(v+nl-NR_END));
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /******************* imatrix *******************************/
       }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 #endif       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       free_vector(xit,1,n);    int **m; 
       free_vector(xits,1,n);    
       free_vector(ptt,1,n);    /* allocate pointers to rows */ 
       free_vector(pt,1,n);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       return;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     }    m += NR_END; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m -= nrl; 
     for (j=1;j<=n;j++) {    
       ptt[j]=2.0*p[j]-pt[j];    
       xit[j]=p[j]-pt[j];    /* allocate rows and set pointers to them */ 
       pt[j]=p[j];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     fptt=(*func)(ptt);    m[nrl] += NR_END; 
     if (fptt < fp) {    m[nrl] -= ncl; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    
       if (t < 0.0) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         linmin(p,xit,n,fret,func);    
         for (j=1;j<=n;j++) {    /* return pointer to array of pointers to rows */ 
           xi[j][ibig]=xi[j][n];    return m; 
           xi[j][n]=xit[j];  } 
         }  
 #ifdef DEBUG  /****************** free_imatrix *************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  void free_imatrix(m,nrl,nrh,ncl,nch)
         for(j=1;j<=n;j++)        int **m;
           printf(" %.12e",xit[j]);        long nch,ncl,nrh,nrl; 
         printf("\n");       /* free an int matrix allocated by imatrix() */ 
 #endif  { 
       }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
   }  } 
 }  
   /******************* matrix *******************************/
 /**** Prevalence limit ****************/  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 {    double **m;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   int i, ii,j,k;    m += NR_END;
   double min, max, maxmin, maxmax,sumnew=0.;    m -= nrl;
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double **newm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double agefin, delaymax=50 ; /* Max number of years to converge */    m[nrl] += NR_END;
     m[nrl] -= ncl;
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return m;
     }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      */
    cov[1]=1.;  }
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************************free matrix ************************/
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     newm=savm;  {
     /* Covariates have to be included here again */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      cov[2]=agefin;    free((FREE_ARG)(m+nrl-NR_END));
    }
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /******************* ma3x *******************************/
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       }  {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       for (k=1; k<=cptcovprod;k++)    double ***m;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    if (!m) nrerror("allocation failure 1 in matrix()");
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    m += NR_END;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    m -= nrl;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     savm=oldm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     oldm=newm;    m[nrl] += NR_END;
     maxmax=0.;    m[nrl] -= ncl;
     for(j=1;j<=nlstate;j++){  
       min=1.;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       max=0.;  
       for(i=1; i<=nlstate; i++) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         sumnew=0;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    m[nrl][ncl] += NR_END;
         prlim[i][j]= newm[i][j]/(1-sumnew);    m[nrl][ncl] -= nll;
         max=FMAX(max,prlim[i][j]);    for (j=ncl+1; j<=nch; j++) 
         min=FMIN(min,prlim[i][j]);      m[nrl][j]=m[nrl][j-1]+nlay;
       }    
       maxmin=max-min;    for (i=nrl+1; i<=nrh; i++) {
       maxmax=FMAX(maxmax,maxmin);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     }      for (j=ncl+1; j<=nch; j++) 
     if(maxmax < ftolpl){        m[i][j]=m[i][j-1]+nlay;
       return prlim;    }
     }    return m; 
   }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
 /*************** transition probabilities ***************/  }
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /*************************free ma3x ************************/
 {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double s1, s2;  {
   /*double t34;*/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   int i,j,j1, nc, ii, jj;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
     for(i=1; i<= nlstate; i++){  }
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*************** function subdirf ***********/
         /*s2 += param[i][j][nc]*cov[nc];*/  char *subdirf(char fileres[])
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
       ps[i][j]=s2;    strcat(tmpout,"/"); /* Add to the right */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    strcat(tmpout,fileres);
     }    return tmpout;
     for(j=i+1; j<=nlstate+ndeath;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*************** function subdirf2 ***********/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  char *subdirf2(char fileres[], char *preop)
       }  {
       ps[i][j]=s2;    
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
     /*ps[3][2]=1;*/    strcat(tmpout,"/");
     strcat(tmpout,preop);
   for(i=1; i<= nlstate; i++){    strcat(tmpout,fileres);
      s1=0;    return tmpout;
     for(j=1; j<i; j++)  }
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  /*************** function subdirf3 ***********/
       s1+=exp(ps[i][j]);  char *subdirf3(char fileres[], char *preop, char *preop2)
     ps[i][i]=1./(s1+1.);  {
     for(j=1; j<i; j++)    
       ps[i][j]= exp(ps[i][j])*ps[i][i];    /* Caution optionfilefiname is hidden */
     for(j=i+1; j<=nlstate+ndeath; j++)    strcpy(tmpout,optionfilefiname);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcat(tmpout,"/");
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    strcat(tmpout,preop);
   } /* end i */    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    return tmpout;
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  /***************** f1dim *************************/
     }  extern int ncom; 
   }  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
    
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  double f1dim(double x) 
     for(jj=1; jj<= nlstate+ndeath; jj++){  { 
      printf("%lf ",ps[ii][jj]);    int j; 
    }    double f;
     printf("\n ");    double *xt; 
     }   
     printf("\n ");printf("%lf ",cov[2]);*/    xt=vector(1,ncom); 
 /*    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    f=(*nrfunc)(xt); 
   goto end;*/    free_vector(xt,1,ncom); 
     return ps;    return f; 
 }  } 
   
 /**************** Product of 2 matrices ******************/  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  { 
 {    int iter; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double a,b,d,etemp;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double fu,fv,fw,fx;
   /* in, b, out are matrice of pointers which should have been initialized    double ftemp;
      before: only the contents of out is modified. The function returns    double p,q,r,tol1,tol2,u,v,w,x,xm; 
      a pointer to pointers identical to out */    double e=0.0; 
   long i, j, k;   
   for(i=nrl; i<= nrh; i++)    a=(ax < cx ? ax : cx); 
     for(k=ncolol; k<=ncoloh; k++)    b=(ax > cx ? ax : cx); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    x=w=v=bx; 
         out[i][k] +=in[i][j]*b[j][k];    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
   return out;      xm=0.5*(a+b); 
 }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 /************* Higher Matrix Product ***************/      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      duration (i.e. until  #endif
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        *xmin=x; 
      (typically every 2 years instead of every month which is too big).        return fx; 
      Model is determined by parameters x and covariates have to be      } 
      included manually here.      ftemp=fu;
       if (fabs(e) > tol1) { 
      */        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
   int i, j, d, h, k;        p=(x-v)*q-(x-w)*r; 
   double **out, cov[NCOVMAX];        q=2.0*(q-r); 
   double **newm;        if (q > 0.0) p = -p; 
         q=fabs(q); 
   /* Hstepm could be zero and should return the unit matrix */        etemp=e; 
   for (i=1;i<=nlstate+ndeath;i++)        e=d; 
     for (j=1;j<=nlstate+ndeath;j++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       oldm[i][j]=(i==j ? 1.0 : 0.0);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        else { 
     }          d=p/q; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          u=x+d; 
   for(h=1; h <=nhstepm; h++){          if (u-a < tol2 || b-u < tol2) 
     for(d=1; d <=hstepm; d++){            d=SIGN(tol1,xm-x); 
       newm=savm;        } 
       /* Covariates have to be included here again */      } else { 
       cov[1]=1.;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       for (k=1; k<=cptcovage;k++)      fu=(*f)(u); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if (fu <= fx) { 
       for (k=1; k<=cptcovprod;k++)        if (u >= x) a=x; else b=x; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
           } else { 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/            if (u < x) a=u; else b=u; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/            if (fu <= fw || w == x) { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,              v=w; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));              w=u; 
       savm=oldm;              fv=fw; 
       oldm=newm;              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
     for(i=1; i<=nlstate+ndeath; i++)              v=u; 
       for(j=1;j<=nlstate+ndeath;j++) {              fv=fu; 
         po[i][j][h]=newm[i][j];            } 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          } 
          */    } 
       }    nrerror("Too many iterations in brent"); 
   } /* end h */    *xmin=x; 
   return po;    return fx; 
 }  } 
   
   /****************** mnbrak ***********************/
 /*************** log-likelihood *************/  
 double func( double *x)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 {              double (*func)(double)) 
   int i, ii, j, k, mi, d, kk;  { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double ulim,u,r,q, dum;
   double **out;    double fu; 
   double sw; /* Sum of weights */   
   double lli; /* Individual log likelihood */    *fa=(*func)(*ax); 
   long ipmx;    *fb=(*func)(*bx); 
   /*extern weight */    if (*fb > *fa) { 
   /* We are differentiating ll according to initial status */      SHFT(dum,*ax,*bx,dum) 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        SHFT(dum,*fb,*fa,dum) 
   /*for(i=1;i<imx;i++)        } 
     printf(" %d\n",s[4][i]);    *cx=(*bx)+GOLD*(*bx-*ax); 
   */    *fc=(*func)(*cx); 
   cov[1]=1.;    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      q=(*bx-*cx)*(*fb-*fa); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for(mi=1; mi<= wav[i]-1; mi++){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       for (ii=1;ii<=nlstate+ndeath;ii++)      if ((*bx-u)*(u-*cx) > 0.0) { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fu=(*func)(u); 
       for(d=0; d<dh[mi][i]; d++){      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         newm=savm;        fu=(*func)(u); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        if (fu < *fc) { 
         for (kk=1; kk<=cptcovage;kk++) {          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            SHFT(*fb,*fc,fu,(*func)(u)) 
         }            } 
              } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        u=ulim; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        fu=(*func)(u); 
         savm=oldm;      } else { 
         oldm=newm;        u=(*cx)+GOLD*(*cx-*bx); 
                fu=(*func)(u); 
              } 
       } /* end mult */      SHFT(*ax,*bx,*cx,u) 
              SHFT(*fa,*fb,*fc,fu) 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  } 
       ipmx +=1;  
       sw += weight[i];  /*************** linmin ************************/
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  int ncom; 
   } /* end of individual */  double *pcom,*xicom;
   double (*nrfunc)(double []); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];   
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  { 
   return -l;    double brent(double ax, double bx, double cx, 
 }                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 /*********** Maximum Likelihood Estimation ***************/                double *fc, double (*func)(double)); 
     int j; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    double xx,xmin,bx,ax; 
 {    double fx,fb,fa;
   int i,j, iter;   
   double **xi,*delti;    ncom=n; 
   double fret;    pcom=vector(1,n); 
   xi=matrix(1,npar,1,npar);    xicom=vector(1,n); 
   for (i=1;i<=npar;i++)    nrfunc=func; 
     for (j=1;j<=npar;j++)    for (j=1;j<=n;j++) { 
       xi[i][j]=(i==j ? 1.0 : 0.0);      pcom[j]=p[j]; 
   printf("Powell\n");      xicom[j]=xi[j]; 
   powell(p,xi,npar,ftol,&iter,&fret,func);    } 
     ax=0.0; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    xx=1.0; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 }  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /**** Computes Hessian and covariance matrix ***/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  #endif
 {    for (j=1;j<=n;j++) { 
   double  **a,**y,*x,pd;      xi[j] *= xmin; 
   double **hess;      p[j] += xi[j]; 
   int i, j,jk;    } 
   int *indx;    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
   double hessii(double p[], double delta, int theta, double delti[]);  } 
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  char *asc_diff_time(long time_sec, char ascdiff[])
   void ludcmp(double **a, int npar, int *indx, double *d) ;  {
     long sec_left, days, hours, minutes;
   hess=matrix(1,npar,1,npar);    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
   printf("\nCalculation of the hessian matrix. Wait...\n");    hours = (sec_left) / (60*60) ;
   for (i=1;i<=npar;i++){    sec_left = (sec_left) %(60*60);
     printf("%d",i);fflush(stdout);    minutes = (sec_left) /60;
     hess[i][i]=hessii(p,ftolhess,i,delti);    sec_left = (sec_left) % (60);
     /*printf(" %f ",p[i]);*/    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     /*printf(" %lf ",hess[i][i]);*/    return ascdiff;
   }  }
    
   for (i=1;i<=npar;i++) {  /*************** powell ************************/
     for (j=1;j<=npar;j++)  {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       if (j>i) {              double (*func)(double [])) 
         printf(".%d%d",i,j);fflush(stdout);  { 
         hess[i][j]=hessij(p,delti,i,j);    void linmin(double p[], double xi[], int n, double *fret, 
         hess[j][i]=hess[i][j];                    double (*func)(double [])); 
         /*printf(" %lf ",hess[i][j]);*/    int i,ibig,j; 
       }    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
   }    double *xits;
   printf("\n");    int niterf, itmp;
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    pt=vector(1,n); 
      ptt=vector(1,n); 
   a=matrix(1,npar,1,npar);    xit=vector(1,n); 
   y=matrix(1,npar,1,npar);    xits=vector(1,n); 
   x=vector(1,npar);    *fret=(*func)(p); 
   indx=ivector(1,npar);    for (j=1;j<=n;j++) pt[j]=p[j]; 
   for (i=1;i<=npar;i++)    for (*iter=1;;++(*iter)) { 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      fp=(*fret); 
   ludcmp(a,npar,indx,&pd);      ibig=0; 
       del=0.0; 
   for (j=1;j<=npar;j++) {      last_time=curr_time;
     for (i=1;i<=npar;i++) x[i]=0;      (void) gettimeofday(&curr_time,&tzp);
     x[j]=1;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     lubksb(a,npar,indx,x);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
     for (i=1;i<=npar;i++){      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       matcov[i][j]=x[i];      */
     }     for (i=1;i<=n;i++) {
   }        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   printf("\n#Hessian matrix#\n");        fprintf(ficrespow," %.12lf", p[i]);
   for (i=1;i<=npar;i++) {      }
     for (j=1;j<=npar;j++) {      printf("\n");
       printf("%.3e ",hess[i][j]);      fprintf(ficlog,"\n");
     }      fprintf(ficrespow,"\n");fflush(ficrespow);
     printf("\n");      if(*iter <=3){
   }        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
   /* Recompute Inverse */  /*       asctime_r(&tm,strcurr); */
   for (i=1;i<=npar;i++)        forecast_time=curr_time; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        itmp = strlen(strcurr);
   ludcmp(a,npar,indx,&pd);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
   /*  printf("\n#Hessian matrix recomputed#\n");        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (j=1;j<=npar;j++) {        for(niterf=10;niterf<=30;niterf+=10){
     for (i=1;i<=npar;i++) x[i]=0;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     x[j]=1;          tmf = *localtime(&forecast_time.tv_sec);
     lubksb(a,npar,indx,x);  /*      asctime_r(&tmf,strfor); */
     for (i=1;i<=npar;i++){          strcpy(strfor,asctime(&tmf));
       y[i][j]=x[i];          itmp = strlen(strfor);
       printf("%.3e ",y[i][j]);          if(strfor[itmp-1]=='\n')
     }          strfor[itmp-1]='\0';
     printf("\n");          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   */        }
       }
   free_matrix(a,1,npar,1,npar);      for (i=1;i<=n;i++) { 
   free_matrix(y,1,npar,1,npar);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   free_vector(x,1,npar);        fptt=(*fret); 
   free_ivector(indx,1,npar);  #ifdef DEBUG
   free_matrix(hess,1,npar,1,npar);        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
 }        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 /*************** hessian matrix ****************/        linmin(p,xit,n,fret,func); 
 double hessii( double x[], double delta, int theta, double delti[])        if (fabs(fptt-(*fret)) > del) { 
 {          del=fabs(fptt-(*fret)); 
   int i;          ibig=i; 
   int l=1, lmax=20;        } 
   double k1,k2;  #ifdef DEBUG
   double p2[NPARMAX+1];        printf("%d %.12e",i,(*fret));
   double res;        fprintf(ficlog,"%d %.12e",i,(*fret));
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        for (j=1;j<=n;j++) {
   double fx;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   int k=0,kmax=10;          printf(" x(%d)=%.12e",j,xit[j]);
   double l1;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   fx=func(x);        for(j=1;j<=n;j++) {
   for (i=1;i<=npar;i++) p2[i]=x[i];          printf(" p=%.12e",p[j]);
   for(l=0 ; l <=lmax; l++){          fprintf(ficlog," p=%.12e",p[j]);
     l1=pow(10,l);        }
     delts=delt;        printf("\n");
     for(k=1 ; k <kmax; k=k+1){        fprintf(ficlog,"\n");
       delt = delta*(l1*k);  #endif
       p2[theta]=x[theta] +delt;      } 
       k1=func(p2)-fx;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       p2[theta]=x[theta]-delt;  #ifdef DEBUG
       k2=func(p2)-fx;        int k[2],l;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        k[0]=1;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        k[1]=-1;
              printf("Max: %.12e",(*func)(p));
 #ifdef DEBUG        fprintf(ficlog,"Max: %.12e",(*func)(p));
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for (j=1;j<=n;j++) {
 #endif          printf(" %.12e",p[j]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          fprintf(ficlog," %.12e",p[j]);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        }
         k=kmax;        printf("\n");
       }        fprintf(ficlog,"\n");
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for(l=0;l<=1;l++) {
         k=kmax; l=lmax*10.;          for (j=1;j<=n;j++) {
       }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         delts=delt;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       }          }
     }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   delti[theta]=delts;        }
   return res;  #endif
    
 }  
         free_vector(xit,1,n); 
 double hessij( double x[], double delti[], int thetai,int thetaj)        free_vector(xits,1,n); 
 {        free_vector(ptt,1,n); 
   int i;        free_vector(pt,1,n); 
   int l=1, l1, lmax=20;        return; 
   double k1,k2,k3,k4,res,fx;      } 
   double p2[NPARMAX+1];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   int k;      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
   fx=func(x);        xit[j]=p[j]-pt[j]; 
   for (k=1; k<=2; k++) {        pt[j]=p[j]; 
     for (i=1;i<=npar;i++) p2[i]=x[i];      } 
     p2[thetai]=x[thetai]+delti[thetai]/k;      fptt=(*func)(ptt); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      if (fptt < fp) { 
     k1=func(p2)-fx;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
          if (t < 0.0) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;          linmin(p,xit,n,fret,func); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          for (j=1;j<=n;j++) { 
     k2=func(p2)-fx;            xi[j][ibig]=xi[j][n]; 
              xi[j][n]=xit[j]; 
     p2[thetai]=x[thetai]-delti[thetai]/k;          }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  #ifdef DEBUG
     k3=func(p2)-fx;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     p2[thetai]=x[thetai]-delti[thetai]/k;          for(j=1;j<=n;j++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            printf(" %.12e",xit[j]);
     k4=func(p2)-fx;            fprintf(ficlog," %.12e",xit[j]);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          }
 #ifdef DEBUG          printf("\n");
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          fprintf(ficlog,"\n");
 #endif  #endif
   }        }
   return res;      } 
 }    } 
   } 
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)  /**** Prevalence limit (stable or period prevalence)  ****************/
 {  
   int i,imax,j,k;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double big,dum,sum,temp;  {
   double *vv;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         matrix by transitions matrix until convergence is reached */
   vv=vector(1,n);  
   *d=1.0;    int i, ii,j,k;
   for (i=1;i<=n;i++) {    double min, max, maxmin, maxmax,sumnew=0.;
     big=0.0;    double **matprod2();
     for (j=1;j<=n;j++)    double **out, cov[NCOVMAX], **pmij();
       if ((temp=fabs(a[i][j])) > big) big=temp;    double **newm;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double agefin, delaymax=50 ; /* Max number of years to converge */
     vv[i]=1.0/big;  
   }    for (ii=1;ii<=nlstate+ndeath;ii++)
   for (j=1;j<=n;j++) {      for (j=1;j<=nlstate+ndeath;j++){
     for (i=1;i<j;i++) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       sum=a[i][j];      }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;     cov[1]=1.;
     }   
     big=0.0;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for (i=j;i<=n;i++) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       sum=a[i][j];      newm=savm;
       for (k=1;k<j;k++)      /* Covariates have to be included here again */
         sum -= a[i][k]*a[k][j];       cov[2]=agefin;
       a[i][j]=sum;    
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for (k=1; k<=cptcovn;k++) {
         big=dum;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         imax=i;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       }        }
     }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     if (j != imax) {        for (k=1; k<=cptcovprod;k++)
       for (k=1;k<=n;k++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         dum=a[imax][k];  
         a[imax][k]=a[j][k];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         a[j][k]=dum;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       *d = -(*d);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       vv[imax]=vv[j];  
     }      savm=oldm;
     indx[j]=imax;      oldm=newm;
     if (a[j][j] == 0.0) a[j][j]=TINY;      maxmax=0.;
     if (j != n) {      for(j=1;j<=nlstate;j++){
       dum=1.0/(a[j][j]);        min=1.;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        max=0.;
     }        for(i=1; i<=nlstate; i++) {
   }          sumnew=0;
   free_vector(vv,1,n);  /* Doesn't work */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 ;          prlim[i][j]= newm[i][j]/(1-sumnew);
 }          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
 void lubksb(double **a, int n, int *indx, double b[])        }
 {        maxmin=max-min;
   int i,ii=0,ip,j;        maxmax=FMAX(maxmax,maxmin);
   double sum;      }
        if(maxmax < ftolpl){
   for (i=1;i<=n;i++) {        return prlim;
     ip=indx[i];      }
     sum=b[ip];    }
     b[ip]=b[i];  }
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /*************** transition probabilities ***************/ 
     else if (sum) ii=i;  
     b[i]=sum;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   }  {
   for (i=n;i>=1;i--) {    double s1, s2;
     sum=b[i];    /*double t34;*/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    int i,j,j1, nc, ii, jj;
     b[i]=sum/a[i][i];  
   }      for(i=1; i<= nlstate; i++){
 }        for(j=1; j<i;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 /************ Frequencies ********************/            /*s2 += param[i][j][nc]*cov[nc];*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 {  /* Some frequencies */  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
            }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          ps[i][j]=s2;
   double ***freq; /* Frequencies */  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   double *pp;        }
   double pos, k2, dateintsum=0,k2cpt=0;        for(j=i+1; j<=nlstate+ndeath;j++){
   FILE *ficresp;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   char fileresp[FILENAMELENGTH];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
    /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   pp=vector(1,nlstate);          }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          ps[i][j]=s2;
   strcpy(fileresp,"p");        }
   strcat(fileresp,fileres);      }
   if((ficresp=fopen(fileresp,"w"))==NULL) {      /*ps[3][2]=1;*/
     printf("Problem with prevalence resultfile: %s\n", fileresp);      
     exit(0);      for(i=1; i<= nlstate; i++){
   }        s1=0;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(j=1; j<i; j++)
   j1=0;          s1+=exp(ps[i][j]);
          for(j=i+1; j<=nlstate+ndeath; j++)
   j=cptcoveff;          s1+=exp(ps[i][j]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        ps[i][i]=1./(s1+1.);
          for(j=1; j<i; j++)
   for(k1=1; k1<=j;k1++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(i1=1; i1<=ncodemax[k1];i1++){        for(j=i+1; j<=nlstate+ndeath; j++)
       j1++;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         scanf("%d", i);*/      } /* end i */
       for (i=-1; i<=nlstate+ndeath; i++)        
         for (jk=-1; jk<=nlstate+ndeath; jk++)        for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           for(m=agemin; m <= agemax+3; m++)        for(jj=1; jj<= nlstate+ndeath; jj++){
             freq[i][jk][m]=0;          ps[ii][jj]=0;
                ps[ii][ii]=1;
       dateintsum=0;        }
       k2cpt=0;      }
       for (i=1; i<=imx; i++) {      
         bool=1;  
         if  (cptcovn>0) {  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           for (z1=1; z1<=cptcoveff; z1++)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*         printf("ddd %lf ",ps[ii][jj]); */
               bool=0;  /*       } */
         }  /*       printf("\n "); */
         if (bool==1) {  /*        } */
           for(m=firstpass; m<=lastpass; m++){  /*        printf("\n ");printf("%lf ",cov[2]); */
             k2=anint[m][i]+(mint[m][i]/12.);         /*
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
               if(agev[m][i]==0) agev[m][i]=agemax+1;        goto end;*/
               if(agev[m][i]==1) agev[m][i]=agemax+2;      return ps;
               if (m<lastpass) {  }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  /**************** Product of 2 matrices ******************/
               }  
                double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  {
                 dateintsum=dateintsum+k2;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
                 k2cpt++;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
               }    /* in, b, out are matrice of pointers which should have been initialized 
             }       before: only the contents of out is modified. The function returns
           }       a pointer to pointers identical to out */
         }    long i, j, k;
       }    for(i=nrl; i<= nrh; i++)
              for(k=ncolol; k<=ncoloh; k++)
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");    return out;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  }
         fprintf(ficresp, "**********\n#");  
       }  
       for(i=1; i<=nlstate;i++)  /************* Higher Matrix Product ***************/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
        {
       for(i=(int)agemin; i <= (int)agemax+3; i++){    /* Computes the transition matrix starting at age 'age' over 
         if(i==(int)agemax+3)       'nhstepm*hstepm*stepm' months (i.e. until
           printf("Total");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         else       nhstepm*hstepm matrices. 
           printf("Age %d", i);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         for(jk=1; jk <=nlstate ; jk++){       (typically every 2 years instead of every month which is too big 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)       for the memory).
             pp[jk] += freq[jk][m][i];       Model is determined by parameters x and covariates have to be 
         }       included manually here. 
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)       */
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10)    int i, j, d, h, k;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double **out, cov[NCOVMAX];
           else    double **newm;
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
         }    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
         for(jk=1; jk <=nlstate ; jk++){      for (j=1;j<=nlstate+ndeath;j++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];        po[i][j][0]=(i==j ? 1.0 : 0.0);
         }      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for(jk=1,pos=0; jk <=nlstate ; jk++)    for(h=1; h <=nhstepm; h++){
           pos += pp[jk];      for(d=1; d <=hstepm; d++){
         for(jk=1; jk <=nlstate ; jk++){        newm=savm;
           if(pos>=1.e-5)        /* Covariates have to be included here again */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        cov[1]=1.;
           else        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           if( i <= (int) agemax){        for (k=1; k<=cptcovage;k++)
             if(pos>=1.e-5){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        for (k=1; k<=cptcovprod;k++)
               probs[i][jk][j1]= pp[jk]/pos;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  
             }  
             else        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
                savm=oldm;
         for(jk=-1; jk <=nlstate+ndeath; jk++)        oldm=newm;
           for(m=-1; m <=nlstate+ndeath; m++)      }
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      for(i=1; i<=nlstate+ndeath; i++)
         if(i <= (int) agemax)        for(j=1;j<=nlstate+ndeath;j++) {
           fprintf(ficresp,"\n");          po[i][j][h]=newm[i][j];
         printf("\n");          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       }           */
     }        }
   }    } /* end h */
   dateintmean=dateintsum/k2cpt;    return po;
    }
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);  /*************** log-likelihood *************/
    double func( double *x)
   /* End of Freq */  {
 }    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
 /************ Prevalence ********************/    double **out;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    double sw; /* Sum of weights */
 {  /* Some frequencies */    double lli; /* Individual log likelihood */
      int s1, s2;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    double bbh, survp;
   double ***freq; /* Frequencies */    long ipmx;
   double *pp;    /*extern weight */
   double pos, k2;    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   pp=vector(1,nlstate);    /*for(i=1;i<imx;i++) 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf(" %d\n",s[4][i]);
      */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    cov[1]=1.;
   j1=0;  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if(mle==1){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(k1=1; k1<=j;k1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){        for(mi=1; mi<= wav[i]-1; mi++){
       j1++;          for (ii=1;ii<=nlstate+ndeath;ii++)
                  for (j=1;j<=nlstate+ndeath;j++){
       for (i=-1; i<=nlstate+ndeath; i++)                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (jk=-1; jk<=nlstate+ndeath; jk++)                savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=agemin; m <= agemax+3; m++)            }
             freq[i][jk][m]=0;          for(d=0; d<dh[mi][i]; d++){
                  newm=savm;
       for (i=1; i<=imx; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         bool=1;            for (kk=1; kk<=cptcovage;kk++) {
         if  (cptcovn>0) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for (z1=1; z1<=cptcoveff; z1++)            }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               bool=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         if (bool==1) {            oldm=newm;
           for(m=firstpass; m<=lastpass; m++){          } /* end mult */
             k2=anint[m][i]+(mint[m][i]/12.);        
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          /* But now since version 0.9 we anticipate for bias at large stepm.
               if(agev[m][i]==1) agev[m][i]=agemax+2;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
               if (m<lastpass) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
                 if (calagedate>0)           * the nearest (and in case of equal distance, to the lowest) interval but now
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                 else           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * probability in order to take into account the bias as a fraction of the way
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
               }           * -stepm/2 to stepm/2 .
             }           * For stepm=1 the results are the same as for previous versions of Imach.
           }           * For stepm > 1 the results are less biased than in previous versions. 
         }           */
       }          s1=s[mw[mi][i]][i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){          s2=s[mw[mi+1][i]][i];
         for(jk=1; jk <=nlstate ; jk++){          bbh=(double)bh[mi][i]/(double)stepm; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /* bias bh is positive if real duration
             pp[jk] += freq[jk][m][i];           * is higher than the multiple of stepm and negative otherwise.
         }           */
         for(jk=1; jk <=nlstate ; jk++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           for(m=-1, pos=0; m <=0 ; m++)          if( s2 > nlstate){ 
             pos += freq[jk][m][i];            /* i.e. if s2 is a death state and if the date of death is known 
         }               then the contribution to the likelihood is the probability to 
                       die between last step unit time and current  step unit time, 
         for(jk=1; jk <=nlstate ; jk++){               which is also equal to probability to die before dh 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)               minus probability to die before dh-stepm . 
             pp[jk] += freq[jk][m][i];               In version up to 0.92 likelihood was computed
         }          as if date of death was unknown. Death was treated as any other
                  health state: the date of the interview describes the actual state
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          and not the date of a change in health state. The former idea was
                  to consider that at each interview the state was recorded
         for(jk=1; jk <=nlstate ; jk++){              (healthy, disable or death) and IMaCh was corrected; but when we
           if( i <= (int) agemax){          introduced the exact date of death then we should have modified
             if(pos>=1.e-5){          the contribution of an exact death to the likelihood. This new
               probs[i][jk][j1]= pp[jk]/pos;          contribution is smaller and very dependent of the step unit
             }          stepm. It is no more the probability to die between last interview
           }          and month of death but the probability to survive from last
         }          interview up to one month before death multiplied by the
                  probability to die within a month. Thanks to Chris
       }          Jackson for correcting this bug.  Former versions increased
     }          mortality artificially. The bad side is that we add another loop
   }          which slows down the processing. The difference can be up to 10%
           lower mortality.
              */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            lli=log(out[s1][s2] - savm[s1][s2]);
   free_vector(pp,1,nlstate);  
    
 }  /* End of Freq */          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
 /************* Waves Concatenation ***************/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             /*survp += out[s1][j]; */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            lli= log(survp);
 {          }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          
      Death is a valid wave (if date is known).          else if  (s2==-4) { 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            for (j=3,survp=0. ; j<=nlstate; j++)  
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      and mw[mi+1][i]. dh depends on stepm.            lli= log(survp); 
      */          } 
   
   int i, mi, m;          else if  (s2==-5) { 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            for (j=1,survp=0. ; j<=2; j++)  
      double sum=0., jmean=0.;*/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
   int j, k=0,jk, ju, jl;          } 
   double sum=0.;          
   jmin=1e+5;          else{
   jmax=-1;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   jmean=0.;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   for(i=1; i<=imx; i++){          } 
     mi=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     m=firstpass;          /*if(lli ==000.0)*/
     while(s[m][i] <= nlstate){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       if(s[m][i]>=1)          ipmx +=1;
         mw[++mi][i]=m;          sw += weight[i];
       if(m >=lastpass)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         break;        } /* end of wave */
       else      } /* end of individual */
         m++;    }  else if(mle==2){
     }/* end while */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (s[m][i] > nlstate){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       mi++;     /* Death is another wave */        for(mi=1; mi<= wav[i]-1; mi++){
       /* if(mi==0)  never been interviewed correctly before death */          for (ii=1;ii<=nlstate+ndeath;ii++)
          /* Only death is a correct wave */            for (j=1;j<=nlstate+ndeath;j++){
       mw[mi][i]=m;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     wav[i]=mi;          for(d=0; d<=dh[mi][i]; d++){
     if(mi==0)            newm=savm;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=1; i<=imx; i++){            }
     for(mi=1; mi<wav[i];mi++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if (stepm <=0)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         dh[mi][i]=1;            savm=oldm;
       else{            oldm=newm;
         if (s[mw[mi+1][i]][i] > nlstate) {          } /* end mult */
           if (agedc[i] < 2*AGESUP) {        
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          s1=s[mw[mi][i]][i];
           if(j==0) j=1;  /* Survives at least one month after exam */          s2=s[mw[mi+1][i]][i];
           k=k+1;          bbh=(double)bh[mi][i]/(double)stepm; 
           if (j >= jmax) jmax=j;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           if (j <= jmin) jmin=j;          ipmx +=1;
           sum=sum+j;          sw += weight[i];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }        } /* end of wave */
         }      } /* end of individual */
         else{    }  else if(mle==3){  /* exponential inter-extrapolation */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           k=k+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (j >= jmax) jmax=j;        for(mi=1; mi<= wav[i]-1; mi++){
           else if (j <= jmin)jmin=j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            for (j=1;j<=nlstate+ndeath;j++){
           sum=sum+j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         jk= j/stepm;            }
         jl= j -jk*stepm;          for(d=0; d<dh[mi][i]; d++){
         ju= j -(jk+1)*stepm;            newm=savm;
         if(jl <= -ju)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           dh[mi][i]=jk;            for (kk=1; kk<=cptcovage;kk++) {
         else              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           dh[mi][i]=jk+1;            }
         if(dh[mi][i]==0)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           dh[mi][i]=1; /* At least one step */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     }            oldm=newm;
   }          } /* end mult */
   jmean=sum/k;        
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          s1=s[mw[mi][i]][i];
  }          s2=s[mw[mi+1][i]][i];
 /*********** Tricode ****************************/          bbh=(double)bh[mi][i]/(double)stepm; 
 void tricode(int *Tvar, int **nbcode, int imx)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 {          ipmx +=1;
   int Ndum[20],ij=1, k, j, i;          sw += weight[i];
   int cptcode=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   cptcoveff=0;        } /* end of wave */
        } /* end of individual */
   for (k=0; k<19; k++) Ndum[k]=0;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   for (k=1; k<=7; k++) ncodemax[k]=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1; i<=imx; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       ij=(int)(covar[Tvar[j]][i]);            for (j=1;j<=nlstate+ndeath;j++){
       Ndum[ij]++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (ij > cptcode) cptcode=ij;            }
     }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     for (i=0; i<=cptcode; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(Ndum[i]!=0) ncodemax[j]++;            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     ij=1;            }
           
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1; i<=ncodemax[j]; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (k=0; k<=19; k++) {            savm=oldm;
         if (Ndum[k] != 0) {            oldm=newm;
           nbcode[Tvar[j]][ij]=k;          } /* end mult */
                  
           ij++;          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
         if (ij > ncodemax[j]) break;          if( s2 > nlstate){ 
       }              lli=log(out[s1][s2] - savm[s1][s2]);
     }          }else{
   }              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
  for (k=0; k<19; k++) Ndum[k]=0;          ipmx +=1;
           sw += weight[i];
  for (i=1; i<=ncovmodel-2; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       ij=Tvar[i];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       Ndum[ij]++;        } /* end of wave */
     }      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
  ij=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  for (i=1; i<=10; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    if((Ndum[i]!=0) && (i<=ncovcol)){        for(mi=1; mi<= wav[i]-1; mi++){
      Tvaraff[ij]=i;          for (ii=1;ii<=nlstate+ndeath;ii++)
      ij++;            for (j=1;j<=nlstate+ndeath;j++){
    }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
     cptcoveff=ij-1;          for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /*********** Health Expectancies ****************/            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            }
           
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* Health expectancies */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            savm=oldm;
   double age, agelim, hf;            oldm=newm;
   double ***p3mat,***varhe;          } /* end mult */
   double **dnewm,**doldm;        
   double *xp;          s1=s[mw[mi][i]][i];
   double **gp, **gm;          s2=s[mw[mi+1][i]][i];
   double ***gradg, ***trgradg;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int theta;          ipmx +=1;
           sw += weight[i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   xp=vector(1,npar);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   dnewm=matrix(1,nlstate*2,1,npar);        } /* end of wave */
   doldm=matrix(1,nlstate*2,1,nlstate*2);      } /* end of individual */
      } /* End of if */
   fprintf(ficreseij,"# Health expectancies\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   fprintf(ficreseij,"# Age");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for(i=1; i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for(j=1; j<=nlstate;j++)    return -l;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  }
   fprintf(ficreseij,"\n");  
   /*************** log-likelihood *************/
   if(estepm < stepm){  double funcone( double *x)
     printf ("Problem %d lower than %d\n",estepm, stepm);  {
   }    /* Same as likeli but slower because of a lot of printf and if */
   else  hstepm=estepm;      int i, ii, j, k, mi, d, kk;
   /* We compute the life expectancy from trapezoids spaced every estepm months    double l, ll[NLSTATEMAX], cov[NCOVMAX];
    * This is mainly to measure the difference between two models: for example    double **out;
    * if stepm=24 months pijx are given only every 2 years and by summing them    double lli; /* Individual log likelihood */
    * we are calculating an estimate of the Life Expectancy assuming a linear    double llt;
    * progression inbetween and thus overestimating or underestimating according    int s1, s2;
    * to the curvature of the survival function. If, for the same date, we    double bbh, survp;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    /*extern weight */
    * to compare the new estimate of Life expectancy with the same linear    /* We are differentiating ll according to initial status */
    * hypothesis. A more precise result, taking into account a more precise    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
    * curvature will be obtained if estepm is as small as stepm. */    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   /* For example we decided to compute the life expectancy with the smallest unit */    */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    cov[1]=1.;
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    for(k=1; k<=nlstate; k++) ll[k]=0.;
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      survival function given by stepm (the optimization length). Unfortunately it      for(mi=1; mi<= wav[i]-1; mi++){
      means that if the survival funtion is printed only each two years of age and if        for (ii=1;ii<=nlstate+ndeath;ii++)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          for (j=1;j<=nlstate+ndeath;j++){
      results. So we changed our mind and took the option of the best precision.            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          }
         for(d=0; d<dh[mi][i]; d++){
   agelim=AGESUP;          newm=savm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* nhstepm age range expressed in number of stepm */          for (kk=1; kk<=cptcovage;kk++) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          }
     /* if (stepm >= YEARM) hstepm=1;*/          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          savm=oldm;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          oldm=newm;
     gp=matrix(0,nhstepm,1,nlstate*2);        } /* end mult */
     gm=matrix(0,nhstepm,1,nlstate*2);        
         s1=s[mw[mi][i]][i];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        s2=s[mw[mi+1][i]][i];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        bbh=(double)bh[mi][i]/(double)stepm; 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          /* bias is positive if real duration
           * is higher than the multiple of stepm and negative otherwise.
          */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
     /* Computing Variances of health expectancies */        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
      for(theta=1; theta <=npar; theta++){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(i=1; i<=npar; i++){          lli= log(survp);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }else if (mle==1){
       }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          } else if(mle==2){
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       cptj=0;        } else if(mle==3){  /* exponential inter-extrapolation */
       for(j=1; j<= nlstate; j++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(i=1; i<=nlstate; i++){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           cptj=cptj+1;          lli=log(out[s1][s2]); /* Original formula */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          lli=log(out[s1][s2]); /* Original formula */
           }        } /* End of if */
         }        ipmx +=1;
       }        sw += weight[i];
              ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for(i=1; i<=npar; i++)        if(globpr){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);     %11.6f %11.6f %11.6f ", \
                        num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       cptj=0;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       for(j=1; j<= nlstate; j++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         for(i=1;i<=nlstate;i++){            llt +=ll[k]*gipmx/gsw;
           cptj=cptj+1;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          fprintf(ficresilk," %10.6f\n", -llt);
           }        }
         }      } /* end of wave */
       }    } /* end of individual */
          for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
        /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(j=1; j<= nlstate*2; j++)    if(globpr==0){ /* First time we count the contributions and weights */
         for(h=0; h<=nhstepm-1; h++){      gipmx=ipmx;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      gsw=sw;
         }    }
     return -l;
      }  }
      
 /* End theta */  
   /*************** function likelione ***********/
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
      for(h=0; h<=nhstepm-1; h++)    /* This routine should help understanding what is done with 
       for(j=1; j<=nlstate*2;j++)       the selection of individuals/waves and
         for(theta=1; theta <=npar; theta++)       to check the exact contribution to the likelihood.
         trgradg[h][j][theta]=gradg[h][theta][j];       Plotting could be done.
      */
     int k;
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)    if(*globpri !=0){ /* Just counts and sums, no printings */
         varhe[i][j][(int)age] =0.;      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
      printf("%d|",(int)age);fflush(stdout);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     for(h=0;h<=nhstepm-1;h++){        printf("Problem with resultfile: %s\n", fileresilk);
       for(k=0;k<=nhstepm-1;k++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         for(i=1;i<=nlstate*2;i++)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           for(j=1;j<=nlstate*2;j++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      for(k=1; k<=nlstate; k++) 
       }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
        
     /* Computing expectancies */    *fretone=(*funcone)(p);
     for(i=1; i<=nlstate;i++)    if(*globpri !=0){
       for(j=1; j<=nlstate;j++)      fclose(ficresilk);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      fflush(fichtm); 
              } 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    return;
   }
         }  
   
     fprintf(ficreseij,"%3.0f",age );  /*********** Maximum Likelihood Estimation ***************/
     cptj=0;  
     for(i=1; i<=nlstate;i++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for(j=1; j<=nlstate;j++){  {
         cptj++;    int i,j, iter;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    double **xi;
       }    double fret;
     fprintf(ficreseij,"\n");    double fretone; /* Only one call to likelihood */
        /*  char filerespow[FILENAMELENGTH];*/
     free_matrix(gm,0,nhstepm,1,nlstate*2);    xi=matrix(1,npar,1,npar);
     free_matrix(gp,0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      for (j=1;j<=npar;j++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        xi[i][j]=(i==j ? 1.0 : 0.0);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   }    strcpy(filerespow,"pow"); 
   free_vector(xp,1,npar);    strcat(filerespow,fileres);
   free_matrix(dnewm,1,nlstate*2,1,npar);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      printf("Problem with resultfile: %s\n", filerespow);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 }    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 /************ Variance ******************/    for (i=1;i<=nlstate;i++)
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      for(j=1;j<=nlstate+ndeath;j++)
 {        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   /* Variance of health expectancies */    fprintf(ficrespow,"\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    powell(p,xi,npar,ftol,&iter,&fret,func);
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm, h, nstepm ;    free_matrix(xi,1,npar,1,npar);
   int k, cptcode;    fclose(ficrespow);
   double *xp;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   double **gp, **gm;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double ***gradg, ***trgradg;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double ***p3mat;  
   double age,agelim, hf;  }
   int theta;  
   /**** Computes Hessian and covariance matrix ***/
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   fprintf(ficresvij,"# Age");  {
   for(i=1; i<=nlstate;i++)    double  **a,**y,*x,pd;
     for(j=1; j<=nlstate;j++)    double **hess;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    int i, j,jk;
   fprintf(ficresvij,"\n");    int *indx;
   
   xp=vector(1,npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   dnewm=matrix(1,nlstate,1,npar);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   doldm=matrix(1,nlstate,1,nlstate);    void lubksb(double **a, int npar, int *indx, double b[]) ;
      void ludcmp(double **a, int npar, int *indx, double *d) ;
   if(estepm < stepm){    double gompertz(double p[]);
     printf ("Problem %d lower than %d\n",estepm, stepm);    hess=matrix(1,npar,1,npar);
   }  
   else  hstepm=estepm;      printf("\nCalculation of the hessian matrix. Wait...\n");
   /* For example we decided to compute the life expectancy with the smallest unit */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (i=1;i<=npar;i++){
      nhstepm is the number of hstepm from age to agelim      printf("%d",i);fflush(stdout);
      nstepm is the number of stepm from age to agelin.      fprintf(ficlog,"%d",i);fflush(ficlog);
      Look at hpijx to understand the reason of that which relies in memory size     
      and note for a fixed period like k years */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      
      survival function given by stepm (the optimization length). Unfortunately it      /*  printf(" %f ",p[i]);
      means that if the survival funtion is printed only each two years of age and if          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    }
      results. So we changed our mind and took the option of the best precision.    
   */    for (i=1;i<=npar;i++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for (j=1;j<=npar;j++)  {
   agelim = AGESUP;        if (j>i) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          printf(".%d%d",i,j);fflush(stdout);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          hess[i][j]=hessij(p,delti,i,j,func,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          hess[j][i]=hess[i][j];    
     gp=matrix(0,nhstepm,1,nlstate);          /*printf(" %lf ",hess[i][j]);*/
     gm=matrix(0,nhstepm,1,nlstate);        }
       }
     for(theta=1; theta <=npar; theta++){    }
       for(i=1; i<=npar; i++){ /* Computes gradient */    printf("\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficlog,"\n");
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
       if (popbased==1) {    a=matrix(1,npar,1,npar);
         for(i=1; i<=nlstate;i++)    y=matrix(1,npar,1,npar);
           prlim[i][i]=probs[(int)age][i][ij];    x=vector(1,npar);
       }    indx=ivector(1,npar);
      for (i=1;i<=npar;i++)
       for(j=1; j<= nlstate; j++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         for(h=0; h<=nhstepm; h++){    ludcmp(a,npar,indx,&pd);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (j=1;j<=npar;j++) {
         }      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
          lubksb(a,npar,indx,x);
       for(i=1; i<=npar; i++) /* Computes gradient */      for (i=1;i<=npar;i++){ 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        matcov[i][j]=x[i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
    
       if (popbased==1) {    printf("\n#Hessian matrix#\n");
         for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n#Hessian matrix#\n");
           prlim[i][i]=probs[(int)age][i][ij];    for (i=1;i<=npar;i++) { 
       }      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
       for(j=1; j<= nlstate; j++){        fprintf(ficlog,"%.3e ",hess[i][j]);
         for(h=0; h<=nhstepm; h++){      }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      printf("\n");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      fprintf(ficlog,"\n");
         }    }
       }  
     /* Recompute Inverse */
       for(j=1; j<= nlstate; j++)    for (i=1;i<=npar;i++)
         for(h=0; h<=nhstepm; h++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    ludcmp(a,npar,indx,&pd);
         }  
     } /* End theta */    /*  printf("\n#Hessian matrix recomputed#\n");
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     for(h=0; h<=nhstepm; h++)      x[j]=1;
       for(j=1; j<=nlstate;j++)      lubksb(a,npar,indx,x);
         for(theta=1; theta <=npar; theta++)      for (i=1;i<=npar;i++){ 
           trgradg[h][j][theta]=gradg[h][theta][j];        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        fprintf(ficlog,"%.3e ",y[i][j]);
     for(i=1;i<=nlstate;i++)      }
       for(j=1;j<=nlstate;j++)      printf("\n");
         vareij[i][j][(int)age] =0.;      fprintf(ficlog,"\n");
     }
     for(h=0;h<=nhstepm;h++){    */
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    free_matrix(a,1,npar,1,npar);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    free_matrix(y,1,npar,1,npar);
         for(i=1;i<=nlstate;i++)    free_vector(x,1,npar);
           for(j=1;j<=nlstate;j++)    free_ivector(indx,1,npar);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    free_matrix(hess,1,npar,1,npar);
       }  
     }  
   }
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  /*************** hessian matrix ****************/
       for(j=1; j<=nlstate;j++){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  {
       }    int i;
     fprintf(ficresvij,"\n");    int l=1, lmax=20;
     free_matrix(gp,0,nhstepm,1,nlstate);    double k1,k2;
     free_matrix(gm,0,nhstepm,1,nlstate);    double p2[NPARMAX+1];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double res;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double fx;
   } /* End age */    int k=0,kmax=10;
      double l1;
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    fx=func(x);
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
 }      l1=pow(10,l);
       delts=delt;
 /************ Variance of prevlim ******************/      for(k=1 ; k <kmax; k=k+1){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        delt = delta*(l1*k);
 {        p2[theta]=x[theta] +delt;
   /* Variance of prevalence limit */        k1=func(p2)-fx;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        p2[theta]=x[theta]-delt;
   double **newm;        k2=func(p2)-fx;
   double **dnewm,**doldm;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   int i, j, nhstepm, hstepm;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   int k, cptcode;        
   double *xp;  #ifdef DEBUG
   double *gp, *gm;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double **gradg, **trgradg;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double age,agelim;  #endif
   int theta;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
            if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          k=kmax;
   fprintf(ficresvpl,"# Age");        }
   for(i=1; i<=nlstate;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       fprintf(ficresvpl," %1d-%1d",i,i);          k=kmax; l=lmax*10.;
   fprintf(ficresvpl,"\n");        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   xp=vector(1,npar);          delts=delt;
   dnewm=matrix(1,nlstate,1,npar);        }
   doldm=matrix(1,nlstate,1,nlstate);      }
      }
   hstepm=1*YEARM; /* Every year of age */    delti[theta]=delts;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    return res; 
   agelim = AGESUP;    
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  {
     gradg=matrix(1,npar,1,nlstate);    int i;
     gp=vector(1,nlstate);    int l=1, l1, lmax=20;
     gm=vector(1,nlstate);    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
     for(theta=1; theta <=npar; theta++){    int k;
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fx=func(x);
       }    for (k=1; k<=2; k++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
         gp[i] = prlim[i][i];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k1=func(p2)-fx;
       for(i=1; i<=npar; i++) /* Computes gradient */    
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      p2[thetai]=x[thetai]+delti[thetai]/k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(i=1;i<=nlstate;i++)      k2=func(p2)-fx;
         gm[i] = prlim[i][i];    
       p2[thetai]=x[thetai]-delti[thetai]/k;
       for(i=1;i<=nlstate;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      k3=func(p2)-fx;
     } /* End theta */    
       p2[thetai]=x[thetai]-delti[thetai]/k;
     trgradg =matrix(1,nlstate,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
     for(j=1; j<=nlstate;j++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for(theta=1; theta <=npar; theta++)  #ifdef DEBUG
         trgradg[j][theta]=gradg[theta][j];      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(i=1;i<=nlstate;i++)  #endif
       varpl[i][(int)age] =0.;    }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    return res;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
     fprintf(ficresvpl,"%.0f ",age );  { 
     for(i=1; i<=nlstate;i++)    int i,imax,j,k; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double big,dum,sum,temp; 
     fprintf(ficresvpl,"\n");    double *vv; 
     free_vector(gp,1,nlstate);   
     free_vector(gm,1,nlstate);    vv=vector(1,n); 
     free_matrix(gradg,1,npar,1,nlstate);    *d=1.0; 
     free_matrix(trgradg,1,nlstate,1,npar);    for (i=1;i<=n;i++) { 
   } /* End age */      big=0.0; 
       for (j=1;j<=n;j++) 
   free_vector(xp,1,npar);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   free_matrix(doldm,1,nlstate,1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   free_matrix(dnewm,1,nlstate,1,nlstate);      vv[i]=1.0/big; 
     } 
 }    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
 /************ Variance of one-step probabilities  ******************/        sum=a[i][j]; 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 {        a[i][j]=sum; 
   int i, j, i1, k1, j1, z1;      } 
   int k=0, cptcode;      big=0.0; 
   double **dnewm,**doldm;      for (i=j;i<=n;i++) { 
   double *xp;        sum=a[i][j]; 
   double *gp, *gm;        for (k=1;k<j;k++) 
   double **gradg, **trgradg;          sum -= a[i][k]*a[k][j]; 
   double age,agelim, cov[NCOVMAX];        a[i][j]=sum; 
   int theta;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   char fileresprob[FILENAMELENGTH];          big=dum; 
           imax=i; 
   strcpy(fileresprob,"prob");        } 
   strcat(fileresprob,fileres);      } 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      if (j != imax) { 
     printf("Problem with resultfile: %s\n", fileresprob);        for (k=1;k<=n;k++) { 
   }          dum=a[imax][k]; 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          a[imax][k]=a[j][k]; 
            a[j][k]=dum; 
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");        } 
   fprintf(ficresprob,"# Age");        *d = -(*d); 
   for(i=1; i<=nlstate;i++)        vv[imax]=vv[j]; 
     for(j=1; j<=(nlstate+ndeath);j++)      } 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
   fprintf(ficresprob,"\n");        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
   xp=vector(1,npar);    } 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_vector(vv,1,n);  /* Doesn't work */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  ;
    } 
   cov[1]=1;  
   j=cptcoveff;  void lubksb(double **a, int n, int *indx, double b[]) 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  { 
   j1=0;    int i,ii=0,ip,j; 
   for(k1=1; k1<=1;k1++){    double sum; 
     for(i1=1; i1<=ncodemax[k1];i1++){   
     j1++;    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
     if  (cptcovn>0) {      sum=b[ip]; 
       fprintf(ficresprob, "\n#********** Variable ");      b[ip]=b[i]; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if (ii) 
       fprintf(ficresprob, "**********\n#");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     }      else if (sum) ii=i; 
          b[i]=sum; 
       for (age=bage; age<=fage; age ++){    } 
         cov[2]=age;    for (i=n;i>=1;i--) { 
         for (k=1; k<=cptcovn;k++) {      sum=b[i]; 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
                b[i]=sum/a[i][i]; 
         }    } 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  } 
         for (k=1; k<=cptcovprod;k++)  
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void pstamp(FILE *fichier)
          {
         gradg=matrix(1,npar,1,9);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         trgradg=matrix(1,9,1,npar);  }
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  /************ Frequencies ********************/
      void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         for(theta=1; theta <=npar; theta++){  {  /* Some frequencies */
           for(i=1; i<=npar; i++)    
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
              int first;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double ***freq; /* Frequencies */
              double *pp, **prop;
           k=0;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           for(i=1; i<= (nlstate+ndeath); i++){    char fileresp[FILENAMELENGTH];
             for(j=1; j<=(nlstate+ndeath);j++){    
               k=k+1;    pp=vector(1,nlstate);
               gp[k]=pmmij[i][j];    prop=matrix(1,nlstate,iagemin,iagemax+3);
             }    strcpy(fileresp,"p");
           }    strcat(fileresp,fileres);
              if((ficresp=fopen(fileresp,"w"))==NULL) {
           for(i=1; i<=npar; i++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
          exit(0);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    }
           k=0;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           for(i=1; i<=(nlstate+ndeath); i++){    j1=0;
             for(j=1; j<=(nlstate+ndeath);j++){    
               k=k+1;    j=cptcoveff;
               gm[k]=pmmij[i][j];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             }  
           }    first=1;
        
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    for(k1=1; k1<=j;k1++){
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        for(i1=1; i1<=ncodemax[k1];i1++){
         }        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          scanf("%d", i);*/
           for(theta=1; theta <=npar; theta++)        for (i=-5; i<=nlstate+ndeath; i++)  
             trgradg[j][theta]=gradg[theta][j];          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                    for(m=iagemin; m <= iagemax+3; m++)
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              freq[i][jk][m]=0;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
              for (i=1; i<=nlstate; i++)  
         pmij(pmmij,cov,ncovmodel,x,nlstate);        for(m=iagemin; m <= iagemax+3; m++)
                  prop[i][m]=0;
         k=0;        
         for(i=1; i<=(nlstate+ndeath); i++){        dateintsum=0;
           for(j=1; j<=(nlstate+ndeath);j++){        k2cpt=0;
             k=k+1;        for (i=1; i<=imx; i++) {
             gm[k]=pmmij[i][j];          bool=1;
           }          if  (cptcovn>0) {
         }            for (z1=1; z1<=cptcoveff; z1++) 
                    if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      /*printf("\n%d ",(int)age);                bool=0;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          if (bool==1){
      }*/            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
         fprintf(ficresprob,"\n%d ",(int)age);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                  if (m<lastpass) {
       }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                  dateintsum=dateintsum+k2;
   }                  k2cpt++;
   free_vector(xp,1,npar);                }
   fclose(ficresprob);                /*}*/
              }
 }          }
         }
 /******************* Printing html file ***********/         
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                   int lastpass, int stepm, int weightopt, char model[],\        pstamp(ficresp);
                   int imx,int jmin, int jmax, double jmeanint,char optionfile[], \        if  (cptcovn>0) {
                   char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\          fprintf(ficresp, "\n#********** Variable "); 
                   char version[], int popforecast, int estepm ,/* \ */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   double jprev1, double mprev1,double anprev1, \          fprintf(ficresp, "**********\n#");
                   double jprev2, double mprev2,double anprev2){        }
   int jj1, k1, i1, cpt;        for(i=1; i<=nlstate;i++) 
   FILE *fichtm;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   /*char optionfilehtm[FILENAMELENGTH];*/        fprintf(ficresp, "\n");
         
   strcpy(optionfilehtm,optionfile);        for(i=iagemin; i <= iagemax+3; i++){
   strcat(optionfilehtm,".htm");          if(i==iagemax+3){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            fprintf(ficlog,"Total");
     printf("Problem with %s \n",optionfilehtm), exit(0);          }else{
   }            if(first==1){
               first=0;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              printf("See log file for details...\n");
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            }
 \n            fprintf(ficlog,"Age %d", i);
 Total number of observations=%d <br>\n          }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          for(jk=1; jk <=nlstate ; jk++){
 <hr  size=\"2\" color=\"#EC5E5E\">            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
  <ul><li>Parameter files<br>\n              pp[jk] += freq[jk][m][i]; 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          }
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n              pos += freq[jk][m][i];
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n            if(pp[jk]>=1.e-10){
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n              if(first==1){
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  - Life expectancies by age and initial health status (estepm=%2d months):              }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            }else{
               if(first==1)
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            }
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          }
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
  if(popforecast==1) fprintf(fichtm,"\n              pp[jk] += freq[jk][m][i];
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          }       
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         <br>",fileres,fileres,fileres,fileres);            pos += pp[jk];
  else            posprop += prop[jk][i];
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          }
 fprintf(fichtm," <li>Graphs</li><p>");          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
  m=cptcoveff;              if(first==1)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
  jj1=0;            }else{
  for(k1=1; k1<=m;k1++){              if(first==1)
    for(i1=1; i1<=ncodemax[k1];i1++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
        jj1++;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
        if (cptcovn > 0) {            }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            if( i <= iagemax){
          for (cpt=1; cpt<=cptcoveff;cpt++)              if(pos>=1.e-5){
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                /*probs[i][jk][j1]= pp[jk]/pos;*/
        }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
        /* Pij */              }
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>              else
 <img src=\"pe%s%d1.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1);                    fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
        /* Quasi-incidences */            }
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          }
 <img src=\"pe%s%d2.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1);              
        /* Stable prevalence in each health state */          for(jk=-1; jk <=nlstate+ndeath; jk++)
        for(cpt=1; cpt<nlstate;cpt++){            for(m=-1; m <=nlstate+ndeath; m++)
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>              if(freq[jk][m][i] !=0 ) {
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              if(first==1)
        }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(cpt=1; cpt<=nlstate;cpt++) {                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              }
 interval) in state (%d): v%s%d%d.png <br>          if(i <= iagemax)
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              fprintf(ficresp,"\n");
      }          if(first==1)
      for(cpt=1; cpt<=nlstate;cpt++) {            printf("Others in log...\n");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          fprintf(ficlog,"\n");
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        }
      }      }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    }
 health expectancies in states (1) and (2): e%s%d.png<br>    dateintmean=dateintsum/k2cpt; 
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);   
 fprintf(fichtm,"\n</body>");    fclose(ficresp);
    }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
    }    free_vector(pp,1,nlstate);
 fclose(fichtm);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 }    /* End of Freq */
   }
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  {  
   int ng;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   strcpy(optionfilegnuplot,optionfilefiname);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   strcat(optionfilegnuplot,".gp.txt");       We still use firstpass and lastpass as another selection.
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    */
     printf("Problem with file %s",optionfilegnuplot);   
   }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
 #ifdef windows    double *pp, **prop;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    double pos,posprop; 
 #endif    double  y2; /* in fractional years */
 m=pow(2,cptcoveff);    int iagemin, iagemax;
    
  /* 1eme*/    iagemin= (int) agemin;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    iagemax= (int) agemax;
    for (k1=1; k1<= m ; k1 ++) {    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
 #ifdef windows    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    j1=0;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    
 #endif    j=cptcoveff;
 #ifdef unix    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    for(k1=1; k1<=j;k1++){
 #endif      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
 for (i=1; i<= nlstate ; i ++) {        
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for (i=1; i<=nlstate; i++)  
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(m=iagemin; m <= iagemax+3; m++)
 }            prop[i][m]=0.0;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);       
     for (i=1; i<= nlstate ; i ++) {        for (i=1; i<=imx; i++) { /* Each individual */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          bool=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if  (cptcovn>0) {
 }            for (z1=1; z1<=cptcoveff; z1++) 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      for (i=1; i<= nlstate ; i ++) {                bool=0;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if (bool==1) { 
 }              for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 #ifdef unix              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 #endif                if(agev[m][i]==1) agev[m][i]=iagemax+2;
    }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   /*2 eme*/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
   for (k1=1; k1<= m ; k1 ++) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);                } 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);              }
                } /* end selection of waves */
     for (i=1; i<= nlstate+1 ; i ++) {          }
       k=2*i;        }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        for(i=iagemin; i <= iagemax+3; i++){  
       for (j=1; j<= nlstate+1 ; j ++) {          
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   else fprintf(ficgp," \%%*lf (\%%*lf)");            posprop += prop[jk][i]; 
 }            } 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          for(jk=1; jk <=nlstate ; jk++){     
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            if( i <=  iagemax){ 
       for (j=1; j<= nlstate+1 ; j ++) {              if(posprop>=1.e-5){ 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                probs[i][jk][j1]= prop[jk][i]/posprop;
         else fprintf(ficgp," \%%*lf (\%%*lf)");              } 
 }              } 
       fprintf(ficgp,"\" t\"\" w l 0,");          }/* end jk */ 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        }/* end i */ 
       for (j=1; j<= nlstate+1 ; j ++) {      } /* end i1 */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    } /* end k1 */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    /*free_vector(pp,1,nlstate);*/
       else fprintf(ficgp,"\" t\"\" w l 0,");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     }  }  /* End of prevalence */
   }  
    /************* Waves Concatenation ***************/
   /*3eme*/  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   for (k1=1; k1<= m ; k1 ++) {  {
     for (cpt=1; cpt<= nlstate ; cpt ++) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       k=2+nlstate*(2*cpt-2);       Death is a valid wave (if date is known).
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       and mw[mi+1][i]. dh depends on stepm.
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    int i, mi, m;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       double sum=0., jmean=0.;*/
     int first;
 */    int j, k=0,jk, ju, jl;
       for (i=1; i< nlstate ; i ++) {    double sum=0.;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    first=0;
     jmin=1e+5;
       }    jmax=-1;
     }    jmean=0.;
   }    for(i=1; i<=imx; i++){
        mi=0;
   /* CV preval stat */      m=firstpass;
     for (k1=1; k1<= m ; k1 ++) {      while(s[m][i] <= nlstate){
     for (cpt=1; cpt<nlstate ; cpt ++) {        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       k=3;          mw[++mi][i]=m;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        if(m >=lastpass)
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          break;
         else
       for (i=1; i< nlstate ; i ++)          m++;
         fprintf(ficgp,"+$%d",k+i+1);      }/* end while */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      if (s[m][i] > nlstate){
              mi++;     /* Death is another wave */
       l=3+(nlstate+ndeath)*cpt;        /* if(mi==0)  never been interviewed correctly before death */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);           /* Only death is a correct wave */
       for (i=1; i< nlstate ; i ++) {        mw[mi][i]=m;
         l=3+(nlstate+ndeath)*cpt;      }
         fprintf(ficgp,"+$%d",l+i+1);  
       }      wav[i]=mi;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        if(mi==0){
     }        nbwarn++;
   }          if(first==0){
            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   /* proba elementaires */          first=1;
    for(i=1,jk=1; i <=nlstate; i++){        }
     for(k=1; k <=(nlstate+ndeath); k++){        if(first==1){
       if (k != i) {          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         for(j=1; j <=ncovmodel; j++){        }
              } /* end mi==0 */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    } /* End individuals */
           jk++;  
           fprintf(ficgp,"\n");    for(i=1; i<=imx; i++){
         }      for(mi=1; mi<wav[i];mi++){
       }        if (stepm <=0)
     }          dh[mi][i]=1;
    }        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/            if (agedc[i] < 2*AGESUP) {
      for(jk=1; jk <=m; jk++) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);              if(j==0) j=1;  /* Survives at least one month after exam */
        if (ng==2)              else if(j<0){
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                nberr++;
        else                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
          fprintf(ficgp,"\nset title \"Probability\"\n");                j=1; /* Temporary Dangerous patch */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
        i=1;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        for(k2=1; k2<=nlstate; k2++) {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
          k3=i;              }
          for(k=1; k<=(nlstate+ndeath); k++) {              k=k+1;
            if (k != k2){              if (j >= jmax){
              if(ng==2)                jmax=j;
                fprintf(ficgp," %f*exp(p%d+p%d*x",stepm/YEARM,i,i+1);                ijmax=i;
              else              }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              if (j <= jmin){
              ij=1;                jmin=j;
              for(j=3; j <=ncovmodel; j++) {                ijmin=i;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              sum=sum+j;
                  ij++;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                else            }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
              }          else{
              fprintf(ficgp,")/(1");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
              for(k1=1; k1 <=nlstate; k1++){    
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            k=k+1;
                ij=1;            if (j >= jmax) {
                for(j=3; j <=ncovmodel; j++){              jmax=j;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              ijmax=i;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            }
                    ij++;            else if (j <= jmin){
                  }              jmin=j;
                  else              ijmin=i;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            }
                }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                fprintf(ficgp,")");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
              }            if(j<0){
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);              nberr++;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              i=i+ncovmodel;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
            }            }
          }            sum=sum+j;
        }          }
      }          jk= j/stepm;
    }          jl= j -jk*stepm;
    fclose(ficgp);          ju= j -(jk+1)*stepm;
 }  /* end gnuplot */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
               dh[mi][i]=jk;
 /*************** Moving average **************/              bh[mi][i]=0;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
   int i, cpt, cptcod;              dh[mi][i]=jk+1;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)              bh[mi][i]=ju;
       for (i=1; i<=nlstate;i++)            }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          }else{
           mobaverage[(int)agedeb][i][cptcod]=0.;            if(jl <= -ju){
                  dh[mi][i]=jk;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){              bh[mi][i]=jl;       /* bias is positive if real duration
       for (i=1; i<=nlstate;i++){                                   * is higher than the multiple of stepm and negative otherwise.
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                                   */
           for (cpt=0;cpt<=4;cpt++){            }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            else{
           }              dh[mi][i]=jk+1;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;              bh[mi][i]=ju;
         }            }
       }            if(dh[mi][i]==0){
     }              dh[mi][i]=1; /* At least one step */
                  bh[mi][i]=ju; /* At least one step */
 }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
           } /* end if mle */
 /************** Forecasting ******************/        }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      } /* end wave */
      }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    jmean=sum/k;
   int *popage;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   double *popeffectif,*popcount;   }
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
  agelim=AGESUP;  {
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    
     int Ndum[20],ij=1, k, j, i, maxncov=19;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int cptcode=0;
      cptcoveff=0; 
     
   strcpy(fileresf,"f");    for (k=0; k<maxncov; k++) Ndum[k]=0;
   strcat(fileresf,fileres);    for (k=1; k<=7; k++) ncodemax[k]=0;
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   printf("Computing forecasting: result on file '%s' \n", fileresf);                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   if (mobilav==1) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                                         Tvar[j]. If V=sex and male is 0 and 
     movingaverage(agedeb, fage, ageminpar, mobaverage);                                         female is 1, then  cptcode=1.*/
   }      }
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for (i=0; i<=cptcode; i++) {
   if (stepm<=12) stepsize=1;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
        }
   agelim=AGESUP;  
        ij=1; 
   hstepm=1;      for (i=1; i<=ncodemax[j]; i++) {
   hstepm=hstepm/stepm;        for (k=0; k<= maxncov; k++) {
   yp1=modf(dateintmean,&yp);          if (Ndum[k] != 0) {
   anprojmean=yp;            nbcode[Tvar[j]][ij]=k; 
   yp2=modf((yp1*12),&yp);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   mprojmean=yp;            
   yp1=modf((yp2*30.5),&yp);            ij++;
   jprojmean=yp;          }
   if(jprojmean==0) jprojmean=1;          if (ij > ncodemax[j]) break; 
   if(mprojmean==0) jprojmean=1;        }  
        } 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    }  
    
   for(cptcov=1;cptcov<=i2;cptcov++){   for (k=0; k< maxncov; k++) Ndum[k]=0;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;   for (i=1; i<=ncovmodel-2; i++) { 
       fprintf(ficresf,"\n#******");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       for(j=1;j<=cptcoveff;j++) {     ij=Tvar[i];
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     Ndum[ij]++;
       }   }
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");   ij=1;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);   for (i=1; i<= maxncov; i++) {
           if((Ndum[i]!=0) && (i<=ncovcol)){
             Tvaraff[ij]=i; /*For printing */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {       ij++;
         fprintf(ficresf,"\n");     }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);     }
    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){   cptcoveff=ij-1; /*Number of simple covariates*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  }
           nhstepm = nhstepm/hstepm;  
            /*********** Health Expectancies ****************/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
          {
           for (h=0; h<=nhstepm; h++){    /* Health expectancies, no variances */
             if (h==(int) (calagedate+YEARM*cpt)) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    double age, agelim, hf;
             }    double ***p3mat;
             for(j=1; j<=nlstate+ndeath;j++) {    double eip;
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  pstamp(ficreseij);
                 if (mobilav==1)    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficreseij,"# Age");
                 else {    for(i=1; i<=nlstate;i++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      for(j=1; j<=nlstate;j++){
                 }        fprintf(ficreseij," e%1d%1d ",i,j);
                      }
               }      fprintf(ficreseij," e%1d. ",i);
               if (h==(int)(calagedate+12*cpt)){    }
                 fprintf(ficresf," %.3f", kk1);    fprintf(ficreseij,"\n");
                          
               }    
             }    if(estepm < stepm){
           }      printf ("Problem %d lower than %d\n",estepm, stepm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
         }    else  hstepm=estepm;   
       }    /* We compute the life expectancy from trapezoids spaced every estepm months
     }     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
             * we are calculating an estimate of the Life Expectancy assuming a linear 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   fclose(ficresf);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 }     * to compare the new estimate of Life expectancy with the same linear 
 /************** Forecasting ******************/     * hypothesis. A more precise result, taking into account a more precise
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){     * curvature will be obtained if estepm is as small as stepm. */
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    /* For example we decided to compute the life expectancy with the smallest unit */
   int *popage;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       nhstepm is the number of hstepm from age to agelim 
   double *popeffectif,*popcount;       nstepm is the number of stepm from age to agelin. 
   double ***p3mat,***tabpop,***tabpopprev;       Look at hpijx to understand the reason of that which relies in memory size
   char filerespop[FILENAMELENGTH];       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       survival function given by stepm (the optimization length). Unfortunately it
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       means that if the survival funtion is printed only each two years of age and if
   agelim=AGESUP;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;       results. So we changed our mind and took the option of the best precision.
      */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
      agelim=AGESUP;
   strcpy(filerespop,"pop");    /* nhstepm age range expressed in number of stepm */
   strcat(filerespop,fileres);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     printf("Problem with forecast resultfile: %s\n", filerespop);    /* if (stepm >= YEARM) hstepm=1;*/
   }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   printf("Computing forecasting: result on file '%s' \n", filerespop);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   if (mobilav==1) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
     movingaverage(agedeb, fage, ageminpar, mobaverage);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   }      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      
   if (stepm<=12) stepsize=1;      printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   agelim=AGESUP;      
        /* Computing expectancies */
   hstepm=1;      for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm;        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   if (popforecast==1) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     if((ficpop=fopen(popfile,"r"))==NULL) {            
       printf("Problem with population file : %s\n",popfile);exit(0);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     }  
     popage=ivector(0,AGESUP);          }
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);      fprintf(ficreseij,"%3.0f",age );
          for(i=1; i<=nlstate;i++){
     i=1;          eip=0;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        for(j=1; j<=nlstate;j++){
              eip +=eij[i][j][(int)age];
     imx=i;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        }
   }        fprintf(ficreseij,"%9.4f", eip );
       }
   for(cptcov=1;cptcov<=i2;cptcov++){      fprintf(ficreseij,"\n");
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      
       k=k+1;    }
       fprintf(ficrespop,"\n#******");    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1;j<=cptcoveff;j++) {    printf("\n");
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"\n");
       }    
       fprintf(ficrespop,"******\n");  }
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
        {
       for (cpt=0; cpt<=0;cpt++) {    /* Covariances of health expectancies eij and of total life expectancies according
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       to initial status i, ei. .
            */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double age, agelim, hf;
           nhstepm = nhstepm/hstepm;    double ***p3matp, ***p3matm, ***varhe;
              double **dnewm,**doldm;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double *xp, *xm;
           oldm=oldms;savm=savms;    double **gp, **gm;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double ***gradg, ***trgradg;
            int theta;
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    double eip, vip;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
             for(j=1; j<=nlstate+ndeath;j++) {    xp=vector(1,npar);
               kk1=0.;kk2=0;    xm=vector(1,npar);
               for(i=1; i<=nlstate;i++) {                  dnewm=matrix(1,nlstate*nlstate,1,npar);
                 if (mobilav==1)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    
                 else {    pstamp(ficresstdeij);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
                 }    fprintf(ficresstdeij,"# Age");
               }    for(i=1; i<=nlstate;i++){
               if (h==(int)(calagedate+12*cpt)){      for(j=1; j<=nlstate;j++)
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                   /*fprintf(ficrespop," %.3f", kk1);      fprintf(ficresstdeij," e%1d. ",i);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    }
               }    fprintf(ficresstdeij,"\n");
             }  
             for(i=1; i<=nlstate;i++){    pstamp(ficrescveij);
               kk1=0.;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
                 for(j=1; j<=nlstate;j++){    fprintf(ficrescveij,"# Age");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    for(i=1; i<=nlstate;i++)
                 }      for(j=1; j<=nlstate;j++){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        cptj= (j-1)*nlstate+i;
             }        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            cptj2= (j2-1)*nlstate+i2;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            if(cptj2 <= cptj)
           }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
         }      }
       }    fprintf(ficrescveij,"\n");
      
   /******/    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      else  hstepm=estepm;   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* We compute the life expectancy from trapezoids spaced every estepm months
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * This is mainly to measure the difference between two models: for example
           nhstepm = nhstepm/hstepm;     * if stepm=24 months pijx are given only every 2 years and by summing them
               * we are calculating an estimate of the Life Expectancy assuming a linear 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * progression in between and thus overestimating or underestimating according
           oldm=oldms;savm=savms;     * to the curvature of the survival function. If, for the same date, we 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * estimate the model with stepm=1 month, we can keep estepm to 24 months
           for (h=0; h<=nhstepm; h++){     * to compare the new estimate of Life expectancy with the same linear 
             if (h==(int) (calagedate+YEARM*cpt)) {     * hypothesis. A more precise result, taking into account a more precise
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     * curvature will be obtained if estepm is as small as stepm. */
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    /* For example we decided to compute the life expectancy with the smallest unit */
               kk1=0.;kk2=0;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               for(i=1; i<=nlstate;i++) {                     nhstepm is the number of hstepm from age to agelim 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];           nstepm is the number of stepm from age to agelin. 
               }       Look at hpijx to understand the reason of that which relies in memory size
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);       and note for a fixed period like estepm months */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           }       survival function given by stepm (the optimization length). Unfortunately it
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
    }    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
   if (popforecast==1) {    agelim=AGESUP;
     free_ivector(popage,0,AGESUP);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     free_vector(popeffectif,0,AGESUP);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_vector(popcount,0,AGESUP);    /* if (stepm >= YEARM) hstepm=1;*/
   }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficrespop);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 /***********************************************/    gp=matrix(0,nhstepm,1,nlstate*nlstate);
 /**************** Main Program *****************/    gm=matrix(0,nhstepm,1,nlstate*nlstate);
 /***********************************************/  
     for (age=bage; age<=fage; age ++){ 
 int main(int argc, char *argv[])  
 {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;   
   double agedeb, agefin,hf;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
       /* Computing  Variances of health expectancies */
   double fret;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   double **xi,tmp,delta;         decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
   double dum; /* Dummy variable */        for(i=1; i<=npar; i++){ 
   double ***p3mat;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int *indx;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   char line[MAXLINE], linepar[MAXLINE];        }
   char title[MAXLINE];        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    
          for(j=1; j<= nlstate; j++){
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
   char filerest[FILENAMELENGTH];              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   char fileregp[FILENAMELENGTH];              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   char popfile[FILENAMELENGTH];            }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          }
   int firstobs=1, lastobs=10;        }
   int sdeb, sfin; /* Status at beginning and end */       
   int c,  h , cpt,l;        for(ij=1; ij<= nlstate*nlstate; ij++)
   int ju,jl, mi;          for(h=0; h<=nhstepm-1; h++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          }
   int mobilav=0,popforecast=0;      }/* End theta */
   int hstepm, nhstepm;      
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      
       for(h=0; h<=nhstepm-1; h++)
   double bage, fage, age, agelim, agebase;        for(j=1; j<=nlstate*nlstate;j++)
   double ftolpl=FTOL;          for(theta=1; theta <=npar; theta++)
   double **prlim;            trgradg[h][j][theta]=gradg[h][theta][j];
   double *severity;      
   double ***param; /* Matrix of parameters */  
   double  *p;       for(ij=1;ij<=nlstate*nlstate;ij++)
   double **matcov; /* Matrix of covariance */        for(ji=1;ji<=nlstate*nlstate;ji++)
   double ***delti3; /* Scale */          varhe[ij][ji][(int)age] =0.;
   double *delti; /* Scale */  
   double ***eij, ***vareij;       printf("%d|",(int)age);fflush(stdout);
   double **varpl; /* Variances of prevalence limits by age */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double *epj, vepp;       for(h=0;h<=nhstepm-1;h++){
   double kk1, kk2;        for(k=0;k<=nhstepm-1;k++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
   char version[80]="Imach version 0.8d, May 2002, INED-EUROREVES ";            for(ji=1;ji<=nlstate*nlstate;ji++)
   char *alph[]={"a","a","b","c","d","e"}, str[4];              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   char z[1]="c", occ;      /* Computing expectancies */
 #include <sys/time.h>      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 #include <time.h>      for(i=1; i<=nlstate;i++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /* long total_usecs;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   struct timeval start_time, end_time;            
              /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);          }
   
   printf("\n%s",version);      fprintf(ficresstdeij,"%3.0f",age );
   if(argc <=1){      for(i=1; i<=nlstate;i++){
     printf("\nEnter the parameter file name: ");        eip=0.;
     scanf("%s",pathtot);        vip=0.;
   }        for(j=1; j<=nlstate;j++){
   else{          eip += eij[i][j][(int)age];
     strcpy(pathtot,argv[1]);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   /*cygwin_split_path(pathtot,path,optionfile);        }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   /* cutv(path,optionfile,pathtot,'\\');*/      }
       fprintf(ficresstdeij,"\n");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      fprintf(ficrescveij,"%3.0f",age );
   chdir(path);      for(i=1; i<=nlstate;i++)
   replace(pathc,path);        for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
 /*-------- arguments in the command line --------*/          for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
   strcpy(fileres,"r");              cptj2= (j2-1)*nlstate+i2;
   strcat(fileres, optionfilefiname);              if(cptj2 <= cptj)
   strcat(fileres,".txt");    /* Other files have txt extension */                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
   /*---------arguments file --------*/        }
       fprintf(ficrescveij,"\n");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {     
     printf("Problem with optionfile %s\n",optionfile);    }
     goto end;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   }    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   strcpy(filereso,"o");    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   strcat(filereso,fileres);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficparo=fopen(filereso,"w"))==NULL) {    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    printf("\n");
   }    fprintf(ficlog,"\n");
   
   /* Reads comments: lines beginning with '#' */    free_vector(xm,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(xp,1,npar);
     ungetc(c,ficpar);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     puts(line);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  {
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    /* Variance of health expectancies */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 while((c=getc(ficpar))=='#' && c!= EOF){    /* double **newm;*/
     ungetc(c,ficpar);    double **dnewm,**doldm;
     fgets(line, MAXLINE, ficpar);    double **dnewmp,**doldmp;
     puts(line);    int i, j, nhstepm, hstepm, h, nstepm ;
     fputs(line,ficparo);    int k, cptcode;
   }    double *xp;
   ungetc(c,ficpar);    double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
        double **gradgp, **trgradgp; /* for var p point j */
   covar=matrix(0,NCOVMAX,1,n);    double *gpp, *gmp; /* for var p point j */
   cptcovn=0;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    double ***p3mat;
     double age,agelim, hf;
   ncovmodel=2+cptcovn;    double ***mobaverage;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    int theta;
      char digit[4];
   /* Read guess parameters */    char digitp[25];
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    char fileresprobmorprev[FILENAMELENGTH];
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    if(popbased==1){
     puts(line);      if(mobilav!=0)
     fputs(line,ficparo);        strcpy(digitp,"-populbased-mobilav-");
   }      else strcpy(digitp,"-populbased-nomobil-");
   ungetc(c,ficpar);    }
      else 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      strcpy(digitp,"-stablbased-");
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){    if (mobilav!=0) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficparo,"%1d%1d",i1,j1);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       printf("%1d%1d",i,j);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       for(k=1; k<=ncovmodel;k++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fscanf(ficpar," %lf",&param[i][j][k]);      }
         printf(" %lf",param[i][j][k]);    }
         fprintf(ficparo," %lf",param[i][j][k]);  
       }    strcpy(fileresprobmorprev,"prmorprev"); 
       fscanf(ficpar,"\n");    sprintf(digit,"%-d",ij);
       printf("\n");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       fprintf(ficparo,"\n");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileres);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
   p=param[1][1];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
   /* Reads comments: lines beginning with '#' */    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fgets(line, MAXLINE, ficpar);    pstamp(ficresprobmorprev);
     puts(line);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fputs(line,ficparo);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   ungetc(c,ficpar);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    }  
   for(i=1; i <=nlstate; i++){    fprintf(ficresprobmorprev,"\n");
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(ficgp,"\n# Routine varevsij");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       printf("%1d%1d",i,j);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       for(k=1; k<=ncovmodel;k++){  /*   } */
         fscanf(ficpar,"%le",&delti3[i][j][k]);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         printf(" %le",delti3[i][j][k]);    pstamp(ficresvij);
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       }    if(popbased==1)
       fscanf(ficpar,"\n");      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
       printf("\n");    else
       fprintf(ficparo,"\n");      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     }    fprintf(ficresvij,"# Age");
   }    for(i=1; i<=nlstate;i++)
   delti=delti3[1][1];      for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   /* Reads comments: lines beginning with '#' */    fprintf(ficresvij,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    xp=vector(1,npar);
     fgets(line, MAXLINE, ficpar);    dnewm=matrix(1,nlstate,1,npar);
     puts(line);    doldm=matrix(1,nlstate,1,nlstate);
     fputs(line,ficparo);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);  
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   matcov=matrix(1,npar,1,npar);    gpp=vector(nlstate+1,nlstate+ndeath);
   for(i=1; i <=npar; i++){    gmp=vector(nlstate+1,nlstate+ndeath);
     fscanf(ficpar,"%s",&str);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     printf("%s",str);    
     fprintf(ficparo,"%s",str);    if(estepm < stepm){
     for(j=1; j <=i; j++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       fscanf(ficpar," %le",&matcov[i][j]);    }
       printf(" %.5le",matcov[i][j]);    else  hstepm=estepm;   
       fprintf(ficparo," %.5le",matcov[i][j]);    /* For example we decided to compute the life expectancy with the smallest unit */
     }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     fscanf(ficpar,"\n");       nhstepm is the number of hstepm from age to agelim 
     printf("\n");       nstepm is the number of stepm from age to agelin. 
     fprintf(ficparo,"\n");       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like k years */
   for(i=1; i <=npar; i++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for(j=i+1;j<=npar;j++)       survival function given by stepm (the optimization length). Unfortunately it
       matcov[i][j]=matcov[j][i];       means that if the survival funtion is printed every two years of age and if
           you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   printf("\n");       results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     /*-------- Rewriting paramater file ----------*/    agelim = AGESUP;
      strcpy(rfileres,"r");    /* "Rparameterfile */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
      strcat(rfileres,".");    /* */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if((ficres =fopen(rfileres,"w"))==NULL) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      gp=matrix(0,nhstepm,1,nlstate);
     }      gm=matrix(0,nhstepm,1,nlstate);
     fprintf(ficres,"#%s\n",version);  
      
     /*-------- data file ----------*/      for(theta=1; theta <=npar; theta++){
     if((fic=fopen(datafile,"r"))==NULL)    {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       printf("Problem with datafile: %s\n", datafile);goto end;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     n= lastobs;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);        if (popbased==1) {
     num=ivector(1,n);          if(mobilav ==0){
     moisnais=vector(1,n);            for(i=1; i<=nlstate;i++)
     annais=vector(1,n);              prlim[i][i]=probs[(int)age][i][ij];
     moisdc=vector(1,n);          }else{ /* mobilav */ 
     andc=vector(1,n);            for(i=1; i<=nlstate;i++)
     agedc=vector(1,n);              prlim[i][i]=mobaverage[(int)age][i][ij];
     cod=ivector(1,n);          }
     weight=vector(1,n);        }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    
     mint=matrix(1,maxwav,1,n);        for(j=1; j<= nlstate; j++){
     anint=matrix(1,maxwav,1,n);          for(h=0; h<=nhstepm; h++){
     s=imatrix(1,maxwav+1,1,n);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     adl=imatrix(1,maxwav+1,1,n);                  gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     tab=ivector(1,NCOVMAX);          }
     ncodemax=ivector(1,8);        }
         /* This for computing probability of death (h=1 means
     i=1;           computed over hstepm matrices product = hstepm*stepm months) 
     while (fgets(line, MAXLINE, fic) != NULL)    {           as a weighted average of prlim.
       if ((i >= firstobs) && (i <=lastobs)) {        */
                for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for (j=maxwav;j>=1;j--){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           strcpy(line,stra);        }    
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        /* end probability of death */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                  xp[i] = x[i] - (i==theta ?delti[theta]:0);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        if (popbased==1) {
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              prlim[i][i]=probs[(int)age][i][ij];
         for (j=ncovcol;j>=1;j--){          }else{ /* mobilav */ 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for(i=1; i<=nlstate;i++)
         }              prlim[i][i]=mobaverage[(int)age][i][ij];
         num[i]=atol(stra);          }
                }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
         i=i+1;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
     /* printf("ii=%d", ij);        }
        scanf("%d",i);*/        /* This for computing probability of death (h=1 means
   imx=i-1; /* Number of individuals */           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   /* for (i=1; i<=imx; i++){        */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     }*/        }    
    /*  for (i=1; i<=imx; i++){        /* end probability of death */
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        for(j=1; j<= nlstate; j++) /* vareij */
            for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   /* Calculation of the number of parameter from char model*/          }
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   Tvaraff=ivector(1,15);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   Tvard=imatrix(1,15,1,2);        }
   Tage=ivector(1,15);        
          } /* End theta */
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');      for(h=0; h<=nhstepm; h++) /* veij */
     cptcovn=j+1;        for(j=1; j<=nlstate;j++)
     cptcovprod=j1;          for(theta=1; theta <=npar; theta++)
                trgradg[h][j][theta]=gradg[h][theta][j];
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       printf("Error. Non available option model=%s ",model);        for(theta=1; theta <=npar; theta++)
       goto end;          trgradgp[j][theta]=gradgp[theta][j];
     }    
      
     for(i=(j+1); i>=1;i--){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       cutv(stra,strb,modelsav,'+');      for(i=1;i<=nlstate;i++)
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        for(j=1;j<=nlstate;j++)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          vareij[i][j][(int)age] =0.;
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {      for(h=0;h<=nhstepm;h++){
         cutv(strd,strc,strb,'*');        for(k=0;k<=nhstepm;k++){
         if (strcmp(strc,"age")==0) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           cptcovprod--;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           cutv(strb,stre,strd,'V');          for(i=1;i<=nlstate;i++)
           Tvar[i]=atoi(stre);            for(j=1;j<=nlstate;j++)
           cptcovage++;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
             Tage[cptcovage]=i;        }
             /*printf("stre=%s ", stre);*/      }
         }    
         else if (strcmp(strd,"age")==0) {      /* pptj */
           cptcovprod--;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           cutv(strb,stre,strc,'V');      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           Tvar[i]=atoi(stre);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           cptcovage++;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           Tage[cptcovage]=i;          varppt[j][i]=doldmp[j][i];
         }      /* end ppptj */
         else {      /*  x centered again */
           cutv(strb,stre,strc,'V');      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           Tvar[i]=ncovcol+k1;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           cutv(strb,strc,strd,'V');   
           Tprod[k1]=i;      if (popbased==1) {
           Tvard[k1][1]=atoi(strc);        if(mobilav ==0){
           Tvard[k1][2]=atoi(stre);          for(i=1; i<=nlstate;i++)
           Tvar[cptcovn+k2]=Tvard[k1][1];            prlim[i][i]=probs[(int)age][i][ij];
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        }else{ /* mobilav */ 
           for (k=1; k<=lastobs;k++)          for(i=1; i<=nlstate;i++)
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            prlim[i][i]=mobaverage[(int)age][i][ij];
           k1++;        }
           k2=k2+2;      }
         }               
       }      /* This for computing probability of death (h=1 means
       else {         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/         as a weighted average of prlim.
        /*  scanf("%d",i);*/      */
       cutv(strd,strc,strb,'V');      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       Tvar[i]=atoi(strc);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       strcpy(modelsav,stra);        }    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      /* end probability of death */
         scanf("%d",i);*/  
     }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        for(i=1; i<=nlstate;i++){
   printf("cptcovprod=%d ", cptcovprod);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   scanf("%d ",i);*/        }
     fclose(fic);      } 
       fprintf(ficresprobmorprev,"\n");
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/      fprintf(ficresvij,"%.0f ",age );
       for(i=1;i<=n;i++) weight[i]=1.0;      for(i=1; i<=nlstate;i++)
     }        for(j=1; j<=nlstate;j++){
     /*-calculation of age at interview from date of interview and age at death -*/          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     agev=matrix(1,maxwav,1,imx);        }
       fprintf(ficresvij,"\n");
     for (i=1; i<=imx; i++) {      free_matrix(gp,0,nhstepm,1,nlstate);
       for(m=2; (m<= maxwav); m++) {      free_matrix(gm,0,nhstepm,1,nlstate);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
          anint[m][i]=9999;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
          s[m][i]=-1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }    } /* End age */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    free_vector(gpp,nlstate+1,nlstate+ndeath);
       }    free_vector(gmp,nlstate+1,nlstate+ndeath);
     }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     for (i=1; i<=imx; i++)  {    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       for(m=1; (m<= maxwav); m++){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         if(s[m][i] >0){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           if (s[m][i] >= nlstate+1) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
             if(agedc[i]>0)  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
               if(moisdc[i]!=99 && andc[i]!=9999)    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                 agev[m][i]=agedc[i];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
            else {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
               if (andc[i]!=9999){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
               agev[m][i]=-1;  */
               }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
             }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           }  
           else if(s[m][i] !=9){ /* Should no more exist */    free_vector(xp,1,npar);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    free_matrix(doldm,1,nlstate,1,nlstate);
             if(mint[m][i]==99 || anint[m][i]==9999)    free_matrix(dnewm,1,nlstate,1,npar);
               agev[m][i]=1;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             else if(agev[m][i] <agemin){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
               agemin=agev[m][i];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             }    fclose(ficresprobmorprev);
             else if(agev[m][i] >agemax){    fflush(ficgp);
               agemax=agev[m][i];    fflush(fichtm); 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  }  /* end varevsij */
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/  /************ Variance of prevlim ******************/
             /*   agev[m][i] = age[i]+2*m;*/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
           }  {
           else { /* =9 */    /* Variance of prevalence limit */
             agev[m][i]=1;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
             s[m][i]=-1;    double **newm;
           }    double **dnewm,**doldm;
         }    int i, j, nhstepm, hstepm;
         else /*= 0 Unknown */    int k, cptcode;
           agev[m][i]=1;    double *xp;
       }    double *gp, *gm;
        double **gradg, **trgradg;
     }    double age,agelim;
     for (i=1; i<=imx; i++)  {    int theta;
       for(m=1; (m<= maxwav); m++){    
         if (s[m][i] > (nlstate+ndeath)) {    pstamp(ficresvpl);
           printf("Error: Wrong value in nlstate or ndeath\n");      fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
           goto end;    fprintf(ficresvpl,"# Age");
         }    for(i=1; i<=nlstate;i++)
       }        fprintf(ficresvpl," %1d-%1d",i,i);
     }    fprintf(ficresvpl,"\n");
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     free_vector(severity,1,maxwav);    doldm=matrix(1,nlstate,1,nlstate);
     free_imatrix(outcome,1,maxwav+1,1,n);    
     free_vector(moisnais,1,n);    hstepm=1*YEARM; /* Every year of age */
     free_vector(annais,1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     /* free_matrix(mint,1,maxwav,1,n);    agelim = AGESUP;
        free_matrix(anint,1,maxwav,1,n);*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     free_vector(moisdc,1,n);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     free_vector(andc,1,n);      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
          gradg=matrix(1,npar,1,nlstate);
     wav=ivector(1,imx);      gp=vector(1,nlstate);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      gm=vector(1,nlstate);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
          for(theta=1; theta <=npar; theta++){
     /* Concatenates waves */        for(i=1; i<=npar; i++){ /* Computes gradient */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       Tcode=ivector(1,100);        for(i=1;i<=nlstate;i++)
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          gp[i] = prlim[i][i];
       ncodemax[1]=1;      
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        for(i=1; i<=npar; i++) /* Computes gradient */
                xp[i] = x[i] - (i==theta ?delti[theta]:0);
    codtab=imatrix(1,100,1,10);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    h=0;        for(i=1;i<=nlstate;i++)
    m=pow(2,cptcoveff);          gm[i] = prlim[i][i];
    
    for(k=1;k<=cptcoveff; k++){        for(i=1;i<=nlstate;i++)
      for(i=1; i <=(m/pow(2,k));i++){          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
        for(j=1; j <= ncodemax[k]; j++){      } /* End theta */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;      trgradg =matrix(1,nlstate,1,npar);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      for(j=1; j<=nlstate;j++)
          }        for(theta=1; theta <=npar; theta++)
        }          trgradg[j][theta]=gradg[theta][j];
      }  
    }      for(i=1;i<=nlstate;i++)
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        varpl[i][(int)age] =0.;
       codtab[1][2]=1;codtab[2][2]=2; */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
    /* for(i=1; i <=m ;i++){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(k=1; k <=cptcovn; k++){      for(i=1;i<=nlstate;i++)
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       }  
       printf("\n");      fprintf(ficresvpl,"%.0f ",age );
       }      for(i=1; i<=nlstate;i++)
       scanf("%d",i);*/        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
          fprintf(ficresvpl,"\n");
    /* Calculates basic frequencies. Computes observed prevalence at single age      free_vector(gp,1,nlstate);
        and prints on file fileres'p'. */      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
          free_matrix(trgradg,1,nlstate,1,npar);
        } /* End age */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_vector(xp,1,npar);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(doldm,1,nlstate,1,npar);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(dnewm,1,nlstate,1,nlstate);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
        }
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  /************ Variance of one-step probabilities  ******************/
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     if(mle==1){    int i, j=0,  i1, k1, l1, t, tj;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    int k2, l2, j1,  z1;
     }    int k=0,l, cptcode;
        int first=1, first1;
     /*--------- results files --------------*/    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    double **dnewm,**doldm;
      double *xp;
     double *gp, *gm;
    jk=1;    double **gradg, **trgradg;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double **mu;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double age,agelim, cov[NCOVMAX];
    for(i=1,jk=1; i <=nlstate; i++){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      for(k=1; k <=(nlstate+ndeath); k++){    int theta;
        if (k != i)    char fileresprob[FILENAMELENGTH];
          {    char fileresprobcov[FILENAMELENGTH];
            printf("%d%d ",i,k);    char fileresprobcor[FILENAMELENGTH];
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){    double ***varpij;
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);    strcpy(fileresprob,"prob"); 
              jk++;    strcat(fileresprob,fileres);
            }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
            printf("\n");      printf("Problem with resultfile: %s\n", fileresprob);
            fprintf(ficres,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
          }    }
      }    strcpy(fileresprobcov,"probcov"); 
    }    strcat(fileresprobcov,fileres);
  if(mle==1){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     /* Computing hessian and covariance matrix */      printf("Problem with resultfile: %s\n", fileresprobcov);
     ftolhess=ftol; /* Usually correct */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     hesscov(matcov, p, npar, delti, ftolhess, func);    }
  }    strcpy(fileresprobcor,"probcor"); 
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    strcat(fileresprobcor,fileres);
     printf("# Scales (for hessian or gradient estimation)\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
      for(i=1,jk=1; i <=nlstate; i++){      printf("Problem with resultfile: %s\n", fileresprobcor);
       for(j=1; j <=nlstate+ndeath; j++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         if (j!=i) {    }
           fprintf(ficres,"%1d%1d",i,j);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           printf("%1d%1d",i,j);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           for(k=1; k<=ncovmodel;k++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             printf(" %.5e",delti[jk]);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             fprintf(ficres," %.5e",delti[jk]);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             jk++;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           }    pstamp(ficresprob);
           printf("\n");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           fprintf(ficres,"\n");    fprintf(ficresprob,"# Age");
         }    pstamp(ficresprobcov);
       }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      }    fprintf(ficresprobcov,"# Age");
        pstamp(ficresprobcor);
     k=1;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(ficresprobcor,"# Age");
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;    for(i=1; i<=nlstate;i++)
       i1=(i-1)/(ncovmodel*nlstate)+1;      for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       printf("%s%d%d",alph[k],i1,tab[i]);*/        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       fprintf(ficres,"%3d",i);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       printf("%3d",i);      }  
       for(j=1; j<=i;j++){   /* fprintf(ficresprob,"\n");
         fprintf(ficres," %.5e",matcov[i][j]);    fprintf(ficresprobcov,"\n");
         printf(" %.5e",matcov[i][j]);    fprintf(ficresprobcor,"\n");
       }   */
       fprintf(ficres,"\n");   xp=vector(1,npar);
       printf("\n");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       k++;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
        varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     while((c=getc(ficpar))=='#' && c!= EOF){    first=1;
       ungetc(c,ficpar);    fprintf(ficgp,"\n# Routine varprob");
       fgets(line, MAXLINE, ficpar);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       puts(line);    fprintf(fichtm,"\n");
       fputs(line,ficparo);  
     }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     ungetc(c,ficpar);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     estepm=0;    file %s<br>\n",optionfilehtmcov);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     if (estepm==0 || estepm < stepm) estepm=stepm;  and drawn. It helps understanding how is the covariance between two incidences.\
     if (fage <= 2) {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       bage = ageminpar;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       fage = agemaxpar;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
      standard deviations wide on each axis. <br>\
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    
     while((c=getc(ficpar))=='#' && c!= EOF){    cov[1]=1;
     ungetc(c,ficpar);    tj=cptcoveff;
     fgets(line, MAXLINE, ficpar);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     puts(line);    j1=0;
     fputs(line,ficparo);    for(t=1; t<=tj;t++){
   }      for(i1=1; i1<=ncodemax[t];i1++){ 
   ungetc(c,ficpar);        j1++;
          if  (cptcovn>0) {
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          fprintf(ficresprob, "\n#********** Variable "); 
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficresprob, "**********\n#\n");
                fprintf(ficresprobcov, "\n#********** Variable "); 
   while((c=getc(ficpar))=='#' && c!= EOF){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ungetc(c,ficpar);          fprintf(ficresprobcov, "**********\n#\n");
     fgets(line, MAXLINE, ficpar);          
     puts(line);          fprintf(ficgp, "\n#********** Variable "); 
     fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficgp, "**********\n#\n");
   ungetc(c,ficpar);          
            
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
   fscanf(ficpar,"pop_based=%d\n",&popbased);          fprintf(ficresprobcor, "\n#********** Variable ");    
   fprintf(ficparo,"pop_based=%d\n",popbased);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficres,"pop_based=%d\n",popbased);            fprintf(ficresprobcor, "**********\n#");    
          }
   while((c=getc(ficpar))=='#' && c!= EOF){        
     ungetc(c,ficpar);        for (age=bage; age<=fage; age ++){ 
     fgets(line, MAXLINE, ficpar);          cov[2]=age;
     puts(line);          for (k=1; k<=cptcovn;k++) {
     fputs(line,ficparo);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   }          }
   ungetc(c,ficpar);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
 while((c=getc(ficpar))=='#' && c!= EOF){          gm=vector(1,(nlstate)*(nlstate+ndeath));
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);          for(theta=1; theta <=npar; theta++){
     puts(line);            for(i=1; i<=npar; i++)
     fputs(line,ficparo);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   }            
   ungetc(c,ficpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            k=0;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            for(i=1; i<= (nlstate); i++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                gp[k]=pmmij[i][j];
               }
 /*------------ gnuplot -------------*/            }
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);            
              for(i=1; i<=npar; i++)
 /*------------ free_vector  -------------*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
  chdir(path);      
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
  free_ivector(wav,1,imx);            k=0;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            for(i=1; i<=(nlstate); i++){
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                for(j=1; j<=(nlstate+ndeath);j++){
  free_ivector(num,1,n);                k=k+1;
  free_vector(agedc,1,n);                gm[k]=pmmij[i][j];
  /*free_matrix(covar,1,NCOVMAX,1,n);*/              }
  fclose(ficparo);            }
  fclose(ficres);       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 /*--------- index.htm --------*/              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
              for(theta=1; theta <=npar; theta++)
   /*--------------- Prevalence limit --------------*/              trgradg[j][theta]=gradg[theta][j];
            
   strcpy(filerespl,"pl");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   strcat(filerespl,fileres);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");          pmij(pmmij,cov,ncovmodel,x,nlstate);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          
   fprintf(ficrespl,"\n");          k=0;
            for(i=1; i<=(nlstate); i++){
   prlim=matrix(1,nlstate,1,nlstate);            for(j=1; j<=(nlstate+ndeath);j++){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              k=k+1;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              mu[k][(int) age]=pmmij[i][j];
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   k=0;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   agebase=ageminpar;              varpij[i][j][(int)age] = doldm[i][j];
   agelim=agemaxpar;  
   ftolpl=1.e-10;          /*printf("\n%d ",(int)age);
   i1=cptcoveff;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   if (cptcovn < 1){i1=1;}            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   for(cptcov=1;cptcov<=i1;cptcov++){            }*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;          fprintf(ficresprob,"\n%d ",(int)age);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          fprintf(ficresprobcov,"\n%d ",(int)age);
         fprintf(ficrespl,"\n#******");          fprintf(ficresprobcor,"\n%d ",(int)age);
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         fprintf(ficrespl,"******\n");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         for (age=agebase; age<=agelim; age++){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           fprintf(ficrespl,"%.0f",age );          }
           for(i=1; i<=nlstate;i++)          i=0;
           fprintf(ficrespl," %.5f", prlim[i][i]);          for (k=1; k<=(nlstate);k++){
           fprintf(ficrespl,"\n");            for (l=1; l<=(nlstate+ndeath);l++){ 
         }              i=i++;
       }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   fclose(ficrespl);              for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   /*------------- h Pij x at various ages ------------*/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);            }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          }/* end of loop for state */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        } /* end of loop for age */
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);        /* Confidence intervalle of pij  */
          /*
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficgp,"\nset noparametric;unset label");
   /*if (stepm<=24) stepsize=2;*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   agelim=AGESUP;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   hstepm=stepsize*YEARM; /* Every year of age */          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
            fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   k=0;        */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       k=k+1;        first1=1;
         fprintf(ficrespij,"\n#****** ");        for (k2=1; k2<=(nlstate);k2++){
         for(j=1;j<=cptcoveff;j++)          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            if(l2==k2) continue;
         fprintf(ficrespij,"******\n");            j=(k2-1)*(nlstate+ndeath)+l2;
                    for (k1=1; k1<=(nlstate);k1++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                if(l1==k1) continue;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                i=(k1-1)*(nlstate+ndeath)+l1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if(i<=j) continue;
           oldm=oldms;savm=savms;                for (age=bage; age<=fage; age ++){ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                    if ((int)age %5==0){
           fprintf(ficrespij,"# Age");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           for(i=1; i<=nlstate;i++)                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
             for(j=1; j<=nlstate+ndeath;j++)                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
               fprintf(ficrespij," %1d-%1d",i,j);                    mu1=mu[i][(int) age]/stepm*YEARM ;
           fprintf(ficrespij,"\n");                    mu2=mu[j][(int) age]/stepm*YEARM;
            for (h=0; h<=nhstepm; h++){                    c12=cv12/sqrt(v1*v2);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                    /* Computing eigen value of matrix of covariance */
             for(i=1; i<=nlstate;i++)                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
               for(j=1; j<=nlstate+ndeath;j++)                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                    /* Eigen vectors */
             fprintf(ficrespij,"\n");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
              }                    /*v21=sqrt(1.-v11*v11); *//* error */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    v21=(lc1-v1)/cv12*v11;
           fprintf(ficrespij,"\n");                    v12=-v21;
         }                    v22=v11;
     }                    tnalp=v21/v11;
   }                    if(first1==1){
                       first1=0;
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
   fclose(ficrespij);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   /*---------- Forecasting ------------------*/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   if((stepm == 1) && (strcmp(model,".")==0)){                    if(first==1){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                      first=0;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                      fprintf(ficgp,"\nset parametric;unset label");
   }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   else{                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     erreur=108;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /*---------- Health expectancies and variances ------------*/                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   strcpy(filerest,"t");                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   strcat(filerest,fileres);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   if((ficrest=fopen(filerest,"w"))==NULL) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
   strcpy(filerese,"e");                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   strcat(filerese,fileres);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   if((ficreseij=fopen(filerese,"w"))==NULL) {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
  strcpy(fileresv,"v");                  } /* age mod 5 */
   strcat(fileresv,fileres);                } /* end loop age */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                first=1;
   }              } /*l12 */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            } /* k12 */
   calagedate=-1;          } /*l1 */
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }/* k1 */
       } /* loop covariates */
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       k=k+1;    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       fprintf(ficrest,"\n#****** ");    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       for(j=1;j<=cptcoveff;j++)    free_vector(xp,1,npar);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(ficresprob);
       fprintf(ficrest,"******\n");    fclose(ficresprobcov);
     fclose(ficresprobcor);
       fprintf(ficreseij,"\n#****** ");    fflush(ficgp);
       for(j=1;j<=cptcoveff;j++)    fflush(fichtmcov);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }
       fprintf(ficreseij,"******\n");  
   
       fprintf(ficresvij,"\n#****** ");  /******************* Printing html file ***********/
       for(j=1;j<=cptcoveff;j++)  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    int lastpass, int stepm, int weightopt, char model[],\
       fprintf(ficresvij,"******\n");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                    double jprev1, double mprev1,double anprev1, \
       oldm=oldms;savm=savms;                    double jprev2, double mprev2,double anprev2){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      int jj1, k1, i1, cpt;
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       oldm=oldms;savm=savms;     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  </ul>");
         fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
               jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     fprintf(fichtm,"\
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       fprintf(ficrest,"\n");             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
       epj=vector(1,nlstate+1);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       for(age=bage; age <=fage ;age++){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     fprintf(fichtm,"\
         if (popbased==1) {   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
           for(i=1; i<=nlstate;i++)     <a href=\"%s\">%s</a> <br>\n</li>",
             prlim[i][i]=probs[(int)age][i][k];             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
         }  
          
         fprintf(ficrest," %4.0f",age);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   m=cptcoveff;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }   jj1=0;
           epj[nlstate+1] +=epj[j];   for(k1=1; k1<=m;k1++){
         }     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
         for(i=1, vepp=0.;i <=nlstate;i++)       if (cptcovn > 0) {
           for(j=1;j <=nlstate;j++)         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             vepp += vareij[i][j][(int)age];         for (cpt=1; cpt<=cptcoveff;cpt++) 
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         for(j=1;j <=nlstate;j++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       }
         }       /* Pij */
         fprintf(ficrest,"\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
       }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     }       /* Quasi-incidences */
   }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 free_matrix(mint,1,maxwav,1,n);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     free_vector(weight,1,n);         /* Period (stable) prevalence in each health state */
   fclose(ficreseij);         for(cpt=1; cpt<nlstate;cpt++){
   fclose(ficresvij);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   fclose(ficrest);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   fclose(ficpar);         }
   free_vector(epj,1,nlstate+1);       for(cpt=1; cpt<=nlstate;cpt++) {
            fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   /*------- Variance limit prevalence------*/    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
   strcpy(fileresvpl,"vpl");     } /* end i1 */
   strcat(fileresvpl,fileres);   }/* End k1 */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {   fprintf(fichtm,"</ul>");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);  
   }   fprintf(fichtm,"\
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       k=k+1;   fprintf(fichtm,"\
       fprintf(ficresvpl,"\n#****** ");   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       for(j=1;j<=cptcoveff;j++)           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");   fprintf(fichtm,"\
         - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       varpl=matrix(1,nlstate,(int) bage, (int) fage);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       oldm=oldms;savm=savms;   fprintf(fichtm,"\
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     }     <a href=\"%s\">%s</a> <br>\n</li>",
  }             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
   fclose(ficresvpl);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
   /*---------- End : free ----------------*/             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);   fprintf(fichtm,"\
     - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);   fprintf(fichtm,"\
     - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);   fprintf(fichtm,"\
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
    /*  if(popforecast==1) fprintf(fichtm,"\n */
   free_matrix(matcov,1,npar,1,npar);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   free_vector(delti,1,npar);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   free_matrix(agev,1,maxwav,1,imx);  /*      <br>",fileres,fileres,fileres,fileres); */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   if(erreur >0)   fflush(fichtm);
     printf("End of Imach with error or warning %d\n",erreur);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   m=cptcoveff;
     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/   jj1=0;
   /*------ End -----------*/   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
  end:       if (cptcovn > 0) {
 #ifdef windows         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   /* chdir(pathcd);*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
 #endif           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
  /*system("wgnuplot graph.plt");*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
  /*system("../gp37mgw/wgnuplot graph.plt");*/       }
  /*system("cd ../gp37mgw");*/       for(cpt=1; cpt<=nlstate;cpt++) {
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
  strcpy(plotcmd,GNUPLOTPROGRAM);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
  strcat(plotcmd," ");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
  strcat(plotcmd,optionfilegnuplot);       }
  system(plotcmd);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
 #ifdef windows  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   while (z[0] != 'q') {     } /* end i1 */
     /* chdir(path); */   }/* End k1 */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");   fprintf(fichtm,"</ul>");
     scanf("%s",z);   fflush(fichtm);
     if (z[0] == 'c') system("./imach");  }
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);  /******************* Gnuplot file **************/
     else if (z[0] == 'q') exit(0);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   }  
 #endif    char dirfileres[132],optfileres[132];
 }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.43  
changed lines
  Added in v.1.121


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>