Diff for /imach/src/imach.c between versions 1.32 and 1.122

version 1.32, 2002/03/11 14:17:15 version 1.122, 2006/03/20 09:45:41
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.122  2006/03/20 09:45:41  brouard
      (Module): Weights can have a decimal point as for
   This program computes Healthy Life Expectancies from    English (a comma might work with a correct LC_NUMERIC environment,
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    otherwise the weight is truncated).
   first survey ("cross") where individuals from different ages are    Modification of warning when the covariates values are not 0 or
   interviewed on their health status or degree of disability (in the    1.
   case of a health survey which is our main interest) -2- at least a    Version 0.98g
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.121  2006/03/16 17:45:01  lievre
   computed from the time spent in each health state according to a    * imach.c (Module): Comments concerning covariates added
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    * imach.c (Module): refinements in the computation of lli if
   simplest model is the multinomial logistic model where pij is the    status=-2 in order to have more reliable computation if stepm is
   probabibility to be observed in state j at the second wave    not 1 month. Version 0.98f
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.120  2006/03/16 15:10:38  lievre
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): refinements in the computation of lli if
   complex model than "constant and age", you should modify the program    status=-2 in order to have more reliable computation if stepm is
   where the markup *Covariates have to be included here again* invites    not 1 month. Version 0.98f
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   The advantage of this computer programme, compared to a simple    computed as likelihood omitting the logarithm. Version O.98e
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.118  2006/03/14 18:20:07  brouard
   intermediate interview, the information is lost, but taken into    (Module): varevsij Comments added explaining the second
   account using an interpolation or extrapolation.      table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   hPijx is the probability to be observed in state i at age x+h    (Module): Function pstamp added
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Version 0.98d
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.117  2006/03/14 17:16:22  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): varevsij Comments added explaining the second
   matrix is simply the matrix product of nh*stepm elementary matrices    table of variances if popbased=1 .
   and the contribution of each individual to the likelihood is simply    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   hPijx.    (Module): Function pstamp added
     (Module): Version 0.98d
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.116  2006/03/06 10:29:27  brouard
      (Module): Variance-covariance wrong links and
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    varian-covariance of ej. is needed (Saito).
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.115  2006/02/27 12:17:45  brouard
   from the European Union.    (Module): One freematrix added in mlikeli! 0.98c
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.114  2006/02/26 12:57:58  brouard
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Some improvements in processing parameter
   **********************************************************************/    filename with strsep.
    
 #include <math.h>    Revision 1.113  2006/02/24 14:20:24  brouard
 #include <stdio.h>    (Module): Memory leaks checks with valgrind and:
 #include <stdlib.h>    datafile was not closed, some imatrix were not freed and on matrix
 #include <unistd.h>    allocation too.
   
 #define MAXLINE 256    Revision 1.112  2006/01/30 09:55:26  brouard
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.111  2006/01/25 20:38:18  brouard
 #define windows    (Module): Lots of cleaning and bugs added (Gompertz)
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Comments can be added in data file. Missing date values
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    can be a simple dot '.'.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.110  2006/01/25 00:51:50  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Lots of cleaning and bugs added (Gompertz)
   
 #define NINTERVMAX 8    Revision 1.109  2006/01/24 19:37:15  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Comments (lines starting with a #) are allowed in data.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.108  2006/01/19 18:05:42  lievre
 #define MAXN 20000    Gnuplot problem appeared...
 #define YEARM 12. /* Number of months per year */    To be fixed
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
   
 int erreur; /* Error number */    Revision 1.106  2006/01/19 13:24:36  brouard
 int nvar;    Some cleaning and links added in html output
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.105  2006/01/05 20:23:19  lievre
 int nlstate=2; /* Number of live states */    *** empty log message ***
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.104  2005/09/30 16:11:43  lievre
 int popbased=0;    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 int *wav; /* Number of waves for this individuual 0 is possible */    that the person is alive, then we can code his/her status as -2
 int maxwav; /* Maxim number of waves */    (instead of missing=-1 in earlier versions) and his/her
 int jmin, jmax; /* min, max spacing between 2 waves */    contributions to the likelihood is 1 - Prob of dying from last
 int mle, weightopt;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    the healthy state at last known wave). Version is 0.98
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.103  2005/09/30 15:54:49  lievre
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): sump fixed, loop imx fixed, and simplifications.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.102  2004/09/15 17:31:30  brouard
 FILE *ficgp,*ficresprob,*ficpop;    Add the possibility to read data file including tab characters.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.101  2004/09/15 10:38:38  brouard
  FILE  *ficresvij;    Fix on curr_time
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.100  2004/07/12 18:29:06  brouard
   char fileresvpl[FILENAMELENGTH];    Add version for Mac OS X. Just define UNIX in Makefile
   
 #define NR_END 1    Revision 1.99  2004/06/05 08:57:40  brouard
 #define FREE_ARG char*    *** empty log message ***
 #define FTOL 1.0e-10  
     Revision 1.98  2004/05/16 15:05:56  brouard
 #define NRANSI    New version 0.97 . First attempt to estimate force of mortality
 #define ITMAX 200    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 #define TOL 2.0e-4    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 #define CGOLD 0.3819660    cross-longitudinal survey is different from the mortality estimated
 #define ZEPS 1.0e-10    from other sources like vital statistic data.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     The same imach parameter file can be used but the option for mle should be -3.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Agnès, who wrote this part of the code, tried to keep most of the
 #define TINY 1.0e-20    former routines in order to include the new code within the former code.
   
 static double maxarg1,maxarg2;    The output is very simple: only an estimate of the intercept and of
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    the slope with 95% confident intervals.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Current limitations:
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    A) Even if you enter covariates, i.e. with the
 #define rint(a) floor(a+0.5)    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.97  2004/02/20 13:25:42  lievre
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 int imx;  
 int stepm;    Revision 1.96  2003/07/15 15:38:55  brouard
 /* Stepm, step in month: minimum step interpolation*/    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.95  2003/07/08 07:54:34  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    * imach.c (Repository):
 double **pmmij, ***probs, ***mobaverage;    (Repository): Using imachwizard code to output a more meaningful covariance
 double dateintmean=0;    matrix (cov(a12,c31) instead of numbers.
   
 double *weight;    Revision 1.94  2003/06/27 13:00:02  brouard
 int **s; /* Status */    Just cleaning
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    exist so I changed back to asctime which exists.
 double ftolhess; /* Tolerance for computing hessian */    (Module): Version 0.96b
   
 /**************** split *************************/    Revision 1.92  2003/06/25 16:30:45  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): On windows (cygwin) function asctime_r doesn't
 {    exist so I changed back to asctime which exists.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
    l1 = strlen( path );                 /* length of path */    (Repository): Elapsed time after each iteration is now output. It
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    helps to forecast when convergence will be reached. Elapsed time
 #ifdef windows    is stamped in powell.  We created a new html file for the graphs
    s = strrchr( path, '\\' );           /* find last / */    concerning matrix of covariance. It has extension -cov.htm.
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.90  2003/06/24 12:34:15  brouard
 #endif    (Module): Some bugs corrected for windows. Also, when
    if ( s == NULL ) {                   /* no directory, so use current */    mle=-1 a template is output in file "or"mypar.txt with the design
 #if     defined(__bsd__)                /* get current working directory */    of the covariance matrix to be input.
       extern char       *getwd( );  
     Revision 1.89  2003/06/24 12:30:52  brouard
       if ( getwd( dirc ) == NULL ) {    (Module): Some bugs corrected for windows. Also, when
 #else    mle=-1 a template is output in file "or"mypar.txt with the design
       extern char       *getcwd( );    of the covariance matrix to be input.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.88  2003/06/23 17:54:56  brouard
 #endif    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.87  2003/06/18 12:26:01  brouard
       strcpy( name, path );             /* we've got it */    Version 0.96
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.86  2003/06/17 20:04:08  brouard
       l2 = strlen( s );                 /* length of filename */    (Module): Change position of html and gnuplot routines and added
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    routine fileappend.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.85  2003/06/17 13:12:43  brouard
       dirc[l1-l2] = 0;                  /* add zero */    * imach.c (Repository): Check when date of death was earlier that
    }    current date of interview. It may happen when the death was just
    l1 = strlen( dirc );                 /* length of directory */    prior to the death. In this case, dh was negative and likelihood
 #ifdef windows    was wrong (infinity). We still send an "Error" but patch by
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    assuming that the date of death was just one stepm after the
 #else    interview.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Repository): Because some people have very long ID (first column)
 #endif    we changed int to long in num[] and we added a new lvector for
    s = strrchr( name, '.' );            /* find last / */    memory allocation. But we also truncated to 8 characters (left
    s++;    truncation)
    strcpy(ext,s);                       /* save extension */    (Repository): No more line truncation errors.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.84  2003/06/13 21:44:43  brouard
    strncpy( finame, name, l1-l2);    * imach.c (Repository): Replace "freqsummary" at a correct
    finame[l1-l2]= 0;    place. It differs from routine "prevalence" which may be called
    return( 0 );                         /* we're done */    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 /******************************************/    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 void replace(char *s, char*t)  
 {    Revision 1.82  2003/06/05 15:57:20  brouard
   int i;    Add log in  imach.c and  fullversion number is now printed.
   int lg=20;  
   i=0;  */
   lg=strlen(t);  /*
   for(i=0; i<= lg; i++) {     Interpolated Markov Chain
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Short summary of the programme:
   }    
 }    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int nbocc(char *s, char occ)    first survey ("cross") where individuals from different ages are
 {    interviewed on their health status or degree of disability (in the
   int i,j=0;    case of a health survey which is our main interest) -2- at least a
   int lg=20;    second wave of interviews ("longitudinal") which measure each change
   i=0;    (if any) in individual health status.  Health expectancies are
   lg=strlen(s);    computed from the time spent in each health state according to a
   for(i=0; i<= lg; i++) {    model. More health states you consider, more time is necessary to reach the
   if  (s[i] == occ ) j++;    Maximum Likelihood of the parameters involved in the model.  The
   }    simplest model is the multinomial logistic model where pij is the
   return j;    probability to be observed in state j at the second wave
 }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 void cutv(char *u,char *v, char*t, char occ)    'age' is age and 'sex' is a covariate. If you want to have a more
 {    complex model than "constant and age", you should modify the program
   int i,lg,j,p=0;    where the markup *Covariates have to be included here again* invites
   i=0;    you to do it.  More covariates you add, slower the
   for(j=0; j<=strlen(t)-1; j++) {    convergence.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
   lg=strlen(t);    identical for each individual. Also, if a individual missed an
   for(j=0; j<p; j++) {    intermediate interview, the information is lost, but taken into
     (u[j] = t[j]);    account using an interpolation or extrapolation.  
   }  
      u[p]='\0';    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
    for(j=0; j<= lg; j++) {    split into an exact number (nh*stepm) of unobserved intermediate
     if (j>=(p+1))(v[j-p-1] = t[j]);    states. This elementary transition (by month, quarter,
   }    semester or year) is modelled as a multinomial logistic.  The hPx
 }    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 /********************** nrerror ********************/    hPijx.
   
 void nrerror(char error_text[])    Also this programme outputs the covariance matrix of the parameters but also
 {    of the life expectancies. It also computes the period (stable) prevalence. 
   fprintf(stderr,"ERREUR ...\n");    
   fprintf(stderr,"%s\n",error_text);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   exit(1);             Institut national d'études démographiques, Paris.
 }    This software have been partly granted by Euro-REVES, a concerted action
 /*********************** vector *******************/    from the European Union.
 double *vector(int nl, int nh)    It is copyrighted identically to a GNU software product, ie programme and
 {    software can be distributed freely for non commercial use. Latest version
   double *v;    can be accessed at http://euroreves.ined.fr/imach .
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   return v-nl+NR_END;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
     **********************************************************************/
 /************************ free vector ******************/  /*
 void free_vector(double*v, int nl, int nh)    main
 {    read parameterfile
   free((FREE_ARG)(v+nl-NR_END));    read datafile
 }    concatwav
     freqsummary
 /************************ivector *******************************/    if (mle >= 1)
 int *ivector(long nl,long nh)      mlikeli
 {    print results files
   int *v;    if mle==1 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));       computes hessian
   if (!v) nrerror("allocation failure in ivector");    read end of parameter file: agemin, agemax, bage, fage, estepm
   return v-nl+NR_END;        begin-prev-date,...
 }    open gnuplot file
     open html file
 /******************free ivector **************************/    period (stable) prevalence
 void free_ivector(int *v, long nl, long nh)     for age prevalim()
 {    h Pij x
   free((FREE_ARG)(v+nl-NR_END));    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /******************* imatrix *******************************/    Variance-covariance of DFLE
 int **imatrix(long nrl, long nrh, long ncl, long nch)    prevalence()
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */     movingaverage()
 {    varevsij() 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    if popbased==1 varevsij(,popbased)
   int **m;    total life expectancies
      Variance of period (stable) prevalence
   /* allocate pointers to rows */   end
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  
   m -= nrl;  
     
    #include <math.h>
   /* allocate rows and set pointers to them */  #include <stdio.h>
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #include <stdlib.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <string.h>
   m[nrl] += NR_END;  #include <unistd.h>
   m[nrl] -= ncl;  
    #include <limits.h>
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #include <sys/types.h>
    #include <sys/stat.h>
   /* return pointer to array of pointers to rows */  #include <errno.h>
   return m;  extern int errno;
 }  
   /* #include <sys/time.h> */
 /****************** free_imatrix *************************/  #include <time.h>
 void free_imatrix(m,nrl,nrh,ncl,nch)  #include "timeval.h"
       int **m;  
       long nch,ncl,nrh,nrl;  /* #include <libintl.h> */
      /* free an int matrix allocated by imatrix() */  /* #define _(String) gettext (String) */
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define MAXLINE 256
   free((FREE_ARG) (m+nrl-NR_END));  
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /******************* matrix *******************************/  #define FILENAMELENGTH 132
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   double **m;  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define NINTERVMAX 8
   m -= nrl;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define NCOVMAX 8 /* Maximum number of covariates */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define MAXN 20000
   m[nrl] += NR_END;  #define YEARM 12. /* Number of months per year */
   m[nrl] -= ncl;  #define AGESUP 130
   #define AGEBASE 40
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   return m;  #ifdef UNIX
 }  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
 /*************************free matrix ************************/  #define ODIRSEPARATOR '\\'
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #else
 {  #define DIRSEPARATOR '\\'
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define CHARSEPARATOR "\\"
   free((FREE_ARG)(m+nrl-NR_END));  #define ODIRSEPARATOR '/'
 }  #endif
   
 /******************* ma3x *******************************/  /* $Id$ */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  /* $State$ */
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   double ***m;  char fullversion[]="$Revision$ $Date$"; 
   char strstart[80];
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m += NR_END;  int nvar;
   m -= nrl;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int nlstate=2; /* Number of live states */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int ndeath=1; /* Number of dead states */
   m[nrl] += NR_END;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m[nrl] -= ncl;  int popbased=0;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int jmin, jmax; /* min, max spacing between 2 waves */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   m[nrl][ncl] += NR_END;  int gipmx, gsw; /* Global variables on the number of contributions 
   m[nrl][ncl] -= nll;                     to the likelihood and the sum of weights (done by funcone)*/
   for (j=ncl+1; j<=nch; j++)  int mle, weightopt;
     m[nrl][j]=m[nrl][j-1]+nlay;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   for (i=nrl+1; i<=nrh; i++) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     for (j=ncl+1; j<=nch; j++)  double jmean; /* Mean space between 2 waves */
       m[i][j]=m[i][j-1]+nlay;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   return m;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 /*************************free ma3x ************************/  double fretone; /* Only one call to likelihood */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  long ipmx; /* Number of contributions */
 {  double sw; /* Sum of weights */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char filerespow[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   free((FREE_ARG)(m+nrl-NR_END));  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /***************** f1dim *************************/  FILE *fichtm, *fichtmcov; /* Html File */
 extern int ncom;  FILE *ficreseij;
 extern double *pcom,*xicom;  char filerese[FILENAMELENGTH];
 extern double (*nrfunc)(double []);  FILE *ficresstdeij;
    char fileresstde[FILENAMELENGTH];
 double f1dim(double x)  FILE *ficrescveij;
 {  char filerescve[FILENAMELENGTH];
   int j;  FILE  *ficresvij;
   double f;  char fileresv[FILENAMELENGTH];
   double *xt;  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
   xt=vector(1,ncom);  char title[MAXLINE];
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   f=(*nrfunc)(xt);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   free_vector(xt,1,ncom);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   return f;  char command[FILENAMELENGTH];
 }  int  outcmd=0;
   
 /*****************brent *************************/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  char filelog[FILENAMELENGTH]; /* Log file */
   int iter;  char filerest[FILENAMELENGTH];
   double a,b,d,etemp;  char fileregp[FILENAMELENGTH];
   double fu,fv,fw,fx;  char popfile[FILENAMELENGTH];
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double e=0.0;  
    struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   a=(ax < cx ? ax : cx);  struct timezone tzp;
   b=(ax > cx ? ax : cx);  extern int gettimeofday();
   x=w=v=bx;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   fw=fv=fx=(*f)(x);  long time_value;
   for (iter=1;iter<=ITMAX;iter++) {  extern long time();
     xm=0.5*(a+b);  char strcurr[80], strfor[80];
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char *endptr;
     printf(".");fflush(stdout);  long lval;
 #ifdef DEBUG  double dval;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define NR_END 1
 #endif  #define FREE_ARG char*
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define FTOL 1.0e-10
       *xmin=x;  
       return fx;  #define NRANSI 
     }  #define ITMAX 200 
     ftemp=fu;  
     if (fabs(e) > tol1) {  #define TOL 2.0e-4 
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  #define CGOLD 0.3819660 
       p=(x-v)*q-(x-w)*r;  #define ZEPS 1.0e-10 
       q=2.0*(q-r);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       if (q > 0.0) p = -p;  
       q=fabs(q);  #define GOLD 1.618034 
       etemp=e;  #define GLIMIT 100.0 
       e=d;  #define TINY 1.0e-20 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  static double maxarg1,maxarg2;
       else {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
         d=p/q;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         u=x+d;    
         if (u-a < tol2 || b-u < tol2)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
           d=SIGN(tol1,xm-x);  #define rint(a) floor(a+0.5)
       }  
     } else {  static double sqrarg;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int agegomp= AGEGOMP;
     fu=(*f)(u);  
     if (fu <= fx) {  int imx; 
       if (u >= x) a=x; else b=x;  int stepm=1;
       SHFT(v,w,x,u)  /* Stepm, step in month: minimum step interpolation*/
         SHFT(fv,fw,fx,fu)  
         } else {  int estepm;
           if (u < x) a=u; else b=u;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
           if (fu <= fw || w == x) {  
             v=w;  int m,nb;
             w=u;  long *num;
             fv=fw;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
             fw=fu;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
           } else if (fu <= fv || v == x || v == w) {  double **pmmij, ***probs;
             v=u;  double *ageexmed,*agecens;
             fv=fu;  double dateintmean=0;
           }  
         }  double *weight;
   }  int **s; /* Status */
   nrerror("Too many iterations in brent");  double *agedc, **covar, idx;
   *xmin=x;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   return fx;  double *lsurv, *lpop, *tpop;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /****************** mnbrak ***********************/  double ftolhess; /* Tolerance for computing hessian */
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  /**************** split *************************/
             double (*func)(double))  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   double ulim,u,r,q, dum;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   double fu;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
      */ 
   *fa=(*func)(*ax);    char  *ss;                            /* pointer */
   *fb=(*func)(*bx);    int   l1, l2;                         /* length counters */
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    l1 = strlen(path );                   /* length of path */
       SHFT(dum,*fb,*fa,dum)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   *cx=(*bx)+GOLD*(*bx-*ax);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   *fc=(*func)(*cx);      strcpy( name, path );               /* we got the fullname name because no directory */
   while (*fb > *fc) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     r=(*bx-*ax)*(*fb-*fc);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     q=(*bx-*cx)*(*fb-*fa);      /* get current working directory */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      /*    extern  char* getcwd ( char *buf , int len);*/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     ulim=(*bx)+GLIMIT*(*cx-*bx);        return( GLOCK_ERROR_GETCWD );
     if ((*bx-u)*(u-*cx) > 0.0) {      }
       fu=(*func)(u);      /* got dirc from getcwd*/
     } else if ((*cx-u)*(u-ulim) > 0.0) {      printf(" DIRC = %s \n",dirc);
       fu=(*func)(u);    } else {                              /* strip direcotry from path */
       if (fu < *fc) {      ss++;                               /* after this, the filename */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      l2 = strlen( ss );                  /* length of filename */
           SHFT(*fb,*fc,fu,(*func)(u))      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
           }      strcpy( name, ss );         /* save file name */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       u=ulim;      dirc[l1-l2] = 0;                    /* add zero */
       fu=(*func)(u);      printf(" DIRC2 = %s \n",dirc);
     } else {    }
       u=(*cx)+GOLD*(*cx-*bx);    /* We add a separator at the end of dirc if not exists */
       fu=(*func)(u);    l1 = strlen( dirc );                  /* length of directory */
     }    if( dirc[l1-1] != DIRSEPARATOR ){
     SHFT(*ax,*bx,*cx,u)      dirc[l1] =  DIRSEPARATOR;
       SHFT(*fa,*fb,*fc,fu)      dirc[l1+1] = 0; 
       }      printf(" DIRC3 = %s \n",dirc);
 }    }
     ss = strrchr( name, '.' );            /* find last / */
 /*************** linmin ************************/    if (ss >0){
       ss++;
 int ncom;      strcpy(ext,ss);                     /* save extension */
 double *pcom,*xicom;      l1= strlen( name);
 double (*nrfunc)(double []);      l2= strlen(ss)+1;
        strncpy( finame, name, l1-l2);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      finame[l1-l2]= 0;
 {    }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);    return( 0 );                          /* we're done */
   double f1dim(double x);  }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  
   int j;  /******************************************/
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  void replace_back_to_slash(char *s, char*t)
    {
   ncom=n;    int i;
   pcom=vector(1,n);    int lg=0;
   xicom=vector(1,n);    i=0;
   nrfunc=func;    lg=strlen(t);
   for (j=1;j<=n;j++) {    for(i=0; i<= lg; i++) {
     pcom[j]=p[j];      (s[i] = t[i]);
     xicom[j]=xi[j];      if (t[i]== '\\') s[i]='/';
   }    }
   ax=0.0;  }
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  int nbocc(char *s, char occ)
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  {
 #ifdef DEBUG    int i,j=0;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    int lg=20;
 #endif    i=0;
   for (j=1;j<=n;j++) {    lg=strlen(s);
     xi[j] *= xmin;    for(i=0; i<= lg; i++) {
     p[j] += xi[j];    if  (s[i] == occ ) j++;
   }    }
   free_vector(xicom,1,n);    return j;
   free_vector(pcom,1,n);  }
 }  
   void cutv(char *u,char *v, char*t, char occ)
 /*************** powell ************************/  {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
             double (*func)(double []))       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 {       gives u="abcedf" and v="ghi2j" */
   void linmin(double p[], double xi[], int n, double *fret,    int i,lg,j,p=0;
               double (*func)(double []));    i=0;
   int i,ibig,j;    for(j=0; j<=strlen(t)-1; j++) {
   double del,t,*pt,*ptt,*xit;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   double fp,fptt;    }
   double *xits;  
   pt=vector(1,n);    lg=strlen(t);
   ptt=vector(1,n);    for(j=0; j<p; j++) {
   xit=vector(1,n);      (u[j] = t[j]);
   xits=vector(1,n);    }
   *fret=(*func)(p);       u[p]='\0';
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {     for(j=0; j<= lg; j++) {
     fp=(*fret);      if (j>=(p+1))(v[j-p-1] = t[j]);
     ibig=0;    }
     del=0.0;  }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  /********************** nrerror ********************/
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  void nrerror(char error_text[])
     for (i=1;i<=n;i++) {  {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    fprintf(stderr,"ERREUR ...\n");
       fptt=(*fret);    fprintf(stderr,"%s\n",error_text);
 #ifdef DEBUG    exit(EXIT_FAILURE);
       printf("fret=%lf \n",*fret);  }
 #endif  /*********************** vector *******************/
       printf("%d",i);fflush(stdout);  double *vector(int nl, int nh)
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    double *v;
         del=fabs(fptt-(*fret));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         ibig=i;    if (!v) nrerror("allocation failure in vector");
       }    return v-nl+NR_END;
 #ifdef DEBUG  }
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /************************ free vector ******************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  void free_vector(double*v, int nl, int nh)
         printf(" x(%d)=%.12e",j,xit[j]);  {
       }    free((FREE_ARG)(v+nl-NR_END));
       for(j=1;j<=n;j++)  }
         printf(" p=%.12e",p[j]);  
       printf("\n");  /************************ivector *******************************/
 #endif  int *ivector(long nl,long nh)
     }  {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    int *v;
 #ifdef DEBUG    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       int k[2],l;    if (!v) nrerror("allocation failure in ivector");
       k[0]=1;    return v-nl+NR_END;
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  /******************free ivector **************************/
         printf(" %.12e",p[j]);  void free_ivector(int *v, long nl, long nh)
       printf("\n");  {
       for(l=0;l<=1;l++) {    free((FREE_ARG)(v+nl-NR_END));
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /************************lvector *******************************/
         }  long *lvector(long nl,long nh)
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  {
       }    long *v;
 #endif    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
       free_vector(xit,1,n);  }
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  /******************free lvector **************************/
       free_vector(pt,1,n);  void free_lvector(long *v, long nl, long nh)
       return;  {
     }    free((FREE_ARG)(v+nl-NR_END));
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /******************* imatrix *******************************/
       xit[j]=p[j]-pt[j];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       pt[j]=p[j];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     }  { 
     fptt=(*func)(ptt);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     if (fptt < fp) {    int **m; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    
       if (t < 0.0) {    /* allocate pointers to rows */ 
         linmin(p,xit,n,fret,func);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
           xi[j][ibig]=xi[j][n];    m += NR_END; 
           xi[j][n]=xit[j];    m -= nrl; 
         }    
 #ifdef DEBUG    
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    /* allocate rows and set pointers to them */ 
         for(j=1;j<=n;j++)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
           printf(" %.12e",xit[j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         printf("\n");    m[nrl] += NR_END; 
 #endif    m[nrl] -= ncl; 
       }    
     }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   }    
 }    /* return pointer to array of pointers to rows */ 
     return m; 
 /**** Prevalence limit ****************/  } 
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /****************** free_imatrix *************************/
 {  void free_imatrix(m,nrl,nrh,ncl,nch)
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        int **m;
      matrix by transitions matrix until convergence is reached */        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
   int i, ii,j,k;  { 
   double min, max, maxmin, maxmax,sumnew=0.;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double **matprod2();    free((FREE_ARG) (m+nrl-NR_END)); 
   double **out, cov[NCOVMAX], **pmij();  } 
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   for (ii=1;ii<=nlstate+ndeath;ii++)  {
     for (j=1;j<=nlstate+ndeath;j++){    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double **m;
     }  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
    cov[1]=1.;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m -= nrl;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     /* Covariates have to be included here again */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      cov[2]=agefin;    m[nrl] += NR_END;
      m[nrl] -= ncl;
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    return m;
       }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       for (k=1; k<=cptcovage;k++)     */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  }
   
     savm=oldm;  /******************* ma3x *******************************/
     oldm=newm;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     maxmax=0.;  {
     for(j=1;j<=nlstate;j++){    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       min=1.;    double ***m;
       max=0.;  
       for(i=1; i<=nlstate; i++) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         sumnew=0;    if (!m) nrerror("allocation failure 1 in matrix()");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    m += NR_END;
         prlim[i][j]= newm[i][j]/(1-sumnew);    m -= nrl;
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       maxmin=max-min;    m[nrl] += NR_END;
       maxmax=FMAX(maxmax,maxmin);    m[nrl] -= ncl;
     }  
     if(maxmax < ftolpl){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       return prlim;  
     }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 }    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
 /*************** transition probabilities ***************/    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    
 {    for (i=nrl+1; i<=nrh; i++) {
   double s1, s2;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   /*double t34;*/      for (j=ncl+1; j<=nch; j++) 
   int i,j,j1, nc, ii, jj;        m[i][j]=m[i][j-1]+nlay;
     }
     for(i=1; i<= nlstate; i++){    return m; 
     for(j=1; j<i;j++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         /*s2 += param[i][j][nc]*cov[nc];*/    */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /*************************free ma3x ************************/
       ps[i][j]=s2;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  {
     }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     for(j=i+1; j<=nlstate+ndeath;j++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free((FREE_ARG)(m+nrl-NR_END));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  /*************** function subdirf ***********/
       ps[i][j]=s2;  char *subdirf(char fileres[])
     }  {
   }    /* Caution optionfilefiname is hidden */
     /*ps[3][2]=1;*/    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
   for(i=1; i<= nlstate; i++){    strcat(tmpout,fileres);
      s1=0;    return tmpout;
     for(j=1; j<i; j++)  }
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  /*************** function subdirf2 ***********/
       s1+=exp(ps[i][j]);  char *subdirf2(char fileres[], char *preop)
     ps[i][i]=1./(s1+1.);  {
     for(j=1; j<i; j++)    
       ps[i][j]= exp(ps[i][j])*ps[i][i];    /* Caution optionfilefiname is hidden */
     for(j=i+1; j<=nlstate+ndeath; j++)    strcpy(tmpout,optionfilefiname);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcat(tmpout,"/");
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    strcat(tmpout,preop);
   } /* end i */    strcat(tmpout,fileres);
     return tmpout;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;  /*************** function subdirf3 ***********/
       ps[ii][ii]=1;  char *subdirf3(char fileres[], char *preop, char *preop2)
     }  {
   }    
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    strcat(tmpout,"/");
     for(jj=1; jj<= nlstate+ndeath; jj++){    strcat(tmpout,preop);
      printf("%lf ",ps[ii][jj]);    strcat(tmpout,preop2);
    }    strcat(tmpout,fileres);
     printf("\n ");    return tmpout;
     }  }
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  /***************** f1dim *************************/
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  extern int ncom; 
   goto end;*/  extern double *pcom,*xicom;
     return ps;  extern double (*nrfunc)(double []); 
 }   
   double f1dim(double x) 
 /**************** Product of 2 matrices ******************/  { 
     int j; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double f;
 {    double *xt; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times   
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    xt=vector(1,ncom); 
   /* in, b, out are matrice of pointers which should have been initialized    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
      before: only the contents of out is modified. The function returns    f=(*nrfunc)(xt); 
      a pointer to pointers identical to out */    free_vector(xt,1,ncom); 
   long i, j, k;    return f; 
   for(i=nrl; i<= nrh; i++)  } 
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  /*****************brent *************************/
         out[i][k] +=in[i][j]*b[j][k];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
   return out;    int iter; 
 }    double a,b,d,etemp;
     double fu,fv,fw,fx;
     double ftemp;
 /************* Higher Matrix Product ***************/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )   
 {    a=(ax < cx ? ax : cx); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    b=(ax > cx ? ax : cx); 
      duration (i.e. until    x=w=v=bx; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    fw=fv=fx=(*f)(x); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    for (iter=1;iter<=ITMAX;iter++) { 
      (typically every 2 years instead of every month which is too big).      xm=0.5*(a+b); 
      Model is determined by parameters x and covariates have to be      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
      included manually here.      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
      */      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
   int i, j, d, h, k;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double **out, cov[NCOVMAX];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double **newm;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
   /* Hstepm could be zero and should return the unit matrix */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for (i=1;i<=nlstate+ndeath;i++)        *xmin=x; 
     for (j=1;j<=nlstate+ndeath;j++){        return fx; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      } 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      ftemp=fu;
     }      if (fabs(e) > tol1) { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        r=(x-w)*(fx-fv); 
   for(h=1; h <=nhstepm; h++){        q=(x-v)*(fx-fw); 
     for(d=1; d <=hstepm; d++){        p=(x-v)*q-(x-w)*r; 
       newm=savm;        q=2.0*(q-r); 
       /* Covariates have to be included here again */        if (q > 0.0) p = -p; 
       cov[1]=1.;        q=fabs(q); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        etemp=e; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        e=d; 
       for (k=1; k<=cptcovage;k++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (k=1; k<=cptcovprod;k++)        else { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          d=p/q; 
           u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/            d=SIGN(tol1,xm-x); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        } 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      } else { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       savm=oldm;      } 
       oldm=newm;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     }      fu=(*f)(u); 
     for(i=1; i<=nlstate+ndeath; i++)      if (fu <= fx) { 
       for(j=1;j<=nlstate+ndeath;j++) {        if (u >= x) a=x; else b=x; 
         po[i][j][h]=newm[i][j];        SHFT(v,w,x,u) 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          SHFT(fv,fw,fx,fu) 
          */          } else { 
       }            if (u < x) a=u; else b=u; 
   } /* end h */            if (fu <= fw || w == x) { 
   return po;              v=w; 
 }              w=u; 
               fv=fw; 
               fw=fu; 
 /*************** log-likelihood *************/            } else if (fu <= fv || v == x || v == w) { 
 double func( double *x)              v=u; 
 {              fv=fu; 
   int i, ii, j, k, mi, d, kk;            } 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          } 
   double **out;    } 
   double sw; /* Sum of weights */    nrerror("Too many iterations in brent"); 
   double lli; /* Individual log likelihood */    *xmin=x; 
   long ipmx;    return fx; 
   /*extern weight */  } 
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /****************** mnbrak ***********************/
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   */              double (*func)(double)) 
   cov[1]=1.;  { 
     double ulim,u,r,q, dum;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    double fu; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){   
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    *fa=(*func)(*ax); 
     for(mi=1; mi<= wav[i]-1; mi++){    *fb=(*func)(*bx); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    if (*fb > *fa) { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      SHFT(dum,*ax,*bx,dum) 
       for(d=0; d<dh[mi][i]; d++){        SHFT(dum,*fb,*fa,dum) 
         newm=savm;        } 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    *cx=(*bx)+GOLD*(*bx-*ax); 
         for (kk=1; kk<=cptcovage;kk++) {    *fc=(*func)(*cx); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    while (*fb > *fc) { 
         }      r=(*bx-*ax)*(*fb-*fc); 
              q=(*bx-*cx)*(*fb-*fa); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         savm=oldm;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         oldm=newm;      if ((*bx-u)*(u-*cx) > 0.0) { 
                fu=(*func)(u); 
              } else if ((*cx-u)*(u-ulim) > 0.0) { 
       } /* end mult */        fu=(*func)(u); 
              if (fu < *fc) { 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/            SHFT(*fb,*fc,fu,(*func)(u)) 
       ipmx +=1;            } 
       sw += weight[i];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        u=ulim; 
     } /* end of wave */        fu=(*func)(u); 
   } /* end of individual */      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        fu=(*func)(u); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      } 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      SHFT(*ax,*bx,*cx,u) 
   return -l;        SHFT(*fa,*fb,*fc,fu) 
 }        } 
   } 
   
 /*********** Maximum Likelihood Estimation ***************/  /*************** linmin ************************/
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  int ncom; 
 {  double *pcom,*xicom;
   int i,j, iter;  double (*nrfunc)(double []); 
   double **xi,*delti;   
   double fret;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   xi=matrix(1,npar,1,npar);  { 
   for (i=1;i<=npar;i++)    double brent(double ax, double bx, double cx, 
     for (j=1;j<=npar;j++)                 double (*f)(double), double tol, double *xmin); 
       xi[i][j]=(i==j ? 1.0 : 0.0);    double f1dim(double x); 
   printf("Powell\n");    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   powell(p,xi,npar,ftol,&iter,&fret,func);                double *fc, double (*func)(double)); 
     int j; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    double xx,xmin,bx,ax; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    double fx,fb,fa;
    
 }    ncom=n; 
     pcom=vector(1,n); 
 /**** Computes Hessian and covariance matrix ***/    xicom=vector(1,n); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    nrfunc=func; 
 {    for (j=1;j<=n;j++) { 
   double  **a,**y,*x,pd;      pcom[j]=p[j]; 
   double **hess;      xicom[j]=xi[j]; 
   int i, j,jk;    } 
   int *indx;    ax=0.0; 
     xx=1.0; 
   double hessii(double p[], double delta, int theta, double delti[]);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double hessij(double p[], double delti[], int i, int j);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;  #ifdef DEBUG
   void ludcmp(double **a, int npar, int *indx, double *d) ;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   hess=matrix(1,npar,1,npar);  #endif
     for (j=1;j<=n;j++) { 
   printf("\nCalculation of the hessian matrix. Wait...\n");      xi[j] *= xmin; 
   for (i=1;i<=npar;i++){      p[j] += xi[j]; 
     printf("%d",i);fflush(stdout);    } 
     hess[i][i]=hessii(p,ftolhess,i,delti);    free_vector(xicom,1,n); 
     /*printf(" %f ",p[i]);*/    free_vector(pcom,1,n); 
     /*printf(" %lf ",hess[i][i]);*/  } 
   }  
    char *asc_diff_time(long time_sec, char ascdiff[])
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++)  {    long sec_left, days, hours, minutes;
       if (j>i) {    days = (time_sec) / (60*60*24);
         printf(".%d%d",i,j);fflush(stdout);    sec_left = (time_sec) % (60*60*24);
         hess[i][j]=hessij(p,delti,i,j);    hours = (sec_left) / (60*60) ;
         hess[j][i]=hess[i][j];        sec_left = (sec_left) %(60*60);
         /*printf(" %lf ",hess[i][j]);*/    minutes = (sec_left) /60;
       }    sec_left = (sec_left) % (60);
     }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   }    return ascdiff;
   printf("\n");  }
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /*************** powell ************************/
    void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   a=matrix(1,npar,1,npar);              double (*func)(double [])) 
   y=matrix(1,npar,1,npar);  { 
   x=vector(1,npar);    void linmin(double p[], double xi[], int n, double *fret, 
   indx=ivector(1,npar);                double (*func)(double [])); 
   for (i=1;i<=npar;i++)    int i,ibig,j; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    double del,t,*pt,*ptt,*xit;
   ludcmp(a,npar,indx,&pd);    double fp,fptt;
     double *xits;
   for (j=1;j<=npar;j++) {    int niterf, itmp;
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    pt=vector(1,n); 
     lubksb(a,npar,indx,x);    ptt=vector(1,n); 
     for (i=1;i<=npar;i++){    xit=vector(1,n); 
       matcov[i][j]=x[i];    xits=vector(1,n); 
     }    *fret=(*func)(p); 
   }    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
   printf("\n#Hessian matrix#\n");      fp=(*fret); 
   for (i=1;i<=npar;i++) {      ibig=0; 
     for (j=1;j<=npar;j++) {      del=0.0; 
       printf("%.3e ",hess[i][j]);      last_time=curr_time;
     }      (void) gettimeofday(&curr_time,&tzp);
     printf("\n");      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   }      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   /* Recompute Inverse */      */
   for (i=1;i<=npar;i++)     for (i=1;i<=n;i++) {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        printf(" %d %.12f",i, p[i]);
   ludcmp(a,npar,indx,&pd);        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   /*  printf("\n#Hessian matrix recomputed#\n");      }
       printf("\n");
   for (j=1;j<=npar;j++) {      fprintf(ficlog,"\n");
     for (i=1;i<=npar;i++) x[i]=0;      fprintf(ficrespow,"\n");fflush(ficrespow);
     x[j]=1;      if(*iter <=3){
     lubksb(a,npar,indx,x);        tm = *localtime(&curr_time.tv_sec);
     for (i=1;i<=npar;i++){        strcpy(strcurr,asctime(&tm));
       y[i][j]=x[i];  /*       asctime_r(&tm,strcurr); */
       printf("%.3e ",y[i][j]);        forecast_time=curr_time; 
     }        itmp = strlen(strcurr);
     printf("\n");        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   }          strcurr[itmp-1]='\0';
   */        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   free_matrix(a,1,npar,1,npar);        for(niterf=10;niterf<=30;niterf+=10){
   free_matrix(y,1,npar,1,npar);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   free_vector(x,1,npar);          tmf = *localtime(&forecast_time.tv_sec);
   free_ivector(indx,1,npar);  /*      asctime_r(&tmf,strfor); */
   free_matrix(hess,1,npar,1,npar);          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
 }          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 /*************** hessian matrix ****************/          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 double hessii( double x[], double delta, int theta, double delti[])        }
 {      }
   int i;      for (i=1;i<=n;i++) { 
   int l=1, lmax=20;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   double k1,k2;        fptt=(*fret); 
   double p2[NPARMAX+1];  #ifdef DEBUG
   double res;        printf("fret=%lf \n",*fret);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        fprintf(ficlog,"fret=%lf \n",*fret);
   double fx;  #endif
   int k=0,kmax=10;        printf("%d",i);fflush(stdout);
   double l1;        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
   fx=func(x);        if (fabs(fptt-(*fret)) > del) { 
   for (i=1;i<=npar;i++) p2[i]=x[i];          del=fabs(fptt-(*fret)); 
   for(l=0 ; l <=lmax; l++){          ibig=i; 
     l1=pow(10,l);        } 
     delts=delt;  #ifdef DEBUG
     for(k=1 ; k <kmax; k=k+1){        printf("%d %.12e",i,(*fret));
       delt = delta*(l1*k);        fprintf(ficlog,"%d %.12e",i,(*fret));
       p2[theta]=x[theta] +delt;        for (j=1;j<=n;j++) {
       k1=func(p2)-fx;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       p2[theta]=x[theta]-delt;          printf(" x(%d)=%.12e",j,xit[j]);
       k2=func(p2)-fx;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       /*res= (k1-2.0*fx+k2)/delt/delt; */        }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        for(j=1;j<=n;j++) {
                printf(" p=%.12e",p[j]);
 #ifdef DEBUG          fprintf(ficlog," p=%.12e",p[j]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        }
 #endif        printf("\n");
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        fprintf(ficlog,"\n");
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  #endif
         k=kmax;      } 
       }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  #ifdef DEBUG
         k=kmax; l=lmax*10.;        int k[2],l;
       }        k[0]=1;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        k[1]=-1;
         delts=delt;        printf("Max: %.12e",(*func)(p));
       }        fprintf(ficlog,"Max: %.12e",(*func)(p));
     }        for (j=1;j<=n;j++) {
   }          printf(" %.12e",p[j]);
   delti[theta]=delts;          fprintf(ficlog," %.12e",p[j]);
   return res;        }
          printf("\n");
 }        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 double hessij( double x[], double delti[], int thetai,int thetaj)          for (j=1;j<=n;j++) {
 {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   int i;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int l=1, l1, lmax=20;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double k1,k2,k3,k4,res,fx;          }
   double p2[NPARMAX+1];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int k;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   fx=func(x);  #endif
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;        free_vector(xit,1,n); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        free_vector(xits,1,n); 
     k1=func(p2)-fx;        free_vector(ptt,1,n); 
          free_vector(pt,1,n); 
     p2[thetai]=x[thetai]+delti[thetai]/k;        return; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      } 
     k2=func(p2)-fx;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
        for (j=1;j<=n;j++) { 
     p2[thetai]=x[thetai]-delti[thetai]/k;        ptt[j]=2.0*p[j]-pt[j]; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        xit[j]=p[j]-pt[j]; 
     k3=func(p2)-fx;        pt[j]=p[j]; 
        } 
     p2[thetai]=x[thetai]-delti[thetai]/k;      fptt=(*func)(ptt); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      if (fptt < fp) { 
     k4=func(p2)-fx;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        if (t < 0.0) { 
 #ifdef DEBUG          linmin(p,xit,n,fret,func); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          for (j=1;j<=n;j++) { 
 #endif            xi[j][ibig]=xi[j][n]; 
   }            xi[j][n]=xit[j]; 
   return res;          }
 }  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /************** Inverse of matrix **************/          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 void ludcmp(double **a, int n, int *indx, double *d)          for(j=1;j<=n;j++){
 {            printf(" %.12e",xit[j]);
   int i,imax,j,k;            fprintf(ficlog," %.12e",xit[j]);
   double big,dum,sum,temp;          }
   double *vv;          printf("\n");
            fprintf(ficlog,"\n");
   vv=vector(1,n);  #endif
   *d=1.0;        }
   for (i=1;i<=n;i++) {      } 
     big=0.0;    } 
     for (j=1;j<=n;j++)  } 
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /**** Prevalence limit (stable or period prevalence)  ****************/
     vv[i]=1.0/big;  
   }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for (j=1;j<=n;j++) {  {
     for (i=1;i<j;i++) {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       sum=a[i][j];       matrix by transitions matrix until convergence is reached */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;    int i, ii,j,k;
     }    double min, max, maxmin, maxmax,sumnew=0.;
     big=0.0;    double **matprod2();
     for (i=j;i<=n;i++) {    double **out, cov[NCOVMAX], **pmij();
       sum=a[i][j];    double **newm;
       for (k=1;k<j;k++)    double agefin, delaymax=50 ; /* Max number of years to converge */
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;    for (ii=1;ii<=nlstate+ndeath;ii++)
       if ( (dum=vv[i]*fabs(sum)) >= big) {      for (j=1;j<=nlstate+ndeath;j++){
         big=dum;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         imax=i;      }
       }  
     }     cov[1]=1.;
     if (j != imax) {   
       for (k=1;k<=n;k++) {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         dum=a[imax][k];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         a[imax][k]=a[j][k];      newm=savm;
         a[j][k]=dum;      /* Covariates have to be included here again */
       }       cov[2]=agefin;
       *d = -(*d);    
       vv[imax]=vv[j];        for (k=1; k<=cptcovn;k++) {
     }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     indx[j]=imax;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     if (a[j][j] == 0.0) a[j][j]=TINY;        }
     if (j != n) {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       dum=1.0/(a[j][j]);        for (k=1; k<=cptcovprod;k++)
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }  
   }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   free_vector(vv,1,n);  /* Doesn't work */        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 ;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
 void lubksb(double **a, int n, int *indx, double b[])      savm=oldm;
 {      oldm=newm;
   int i,ii=0,ip,j;      maxmax=0.;
   double sum;      for(j=1;j<=nlstate;j++){
          min=1.;
   for (i=1;i<=n;i++) {        max=0.;
     ip=indx[i];        for(i=1; i<=nlstate; i++) {
     sum=b[ip];          sumnew=0;
     b[ip]=b[i];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     if (ii)          prlim[i][j]= newm[i][j]/(1-sumnew);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          max=FMAX(max,prlim[i][j]);
     else if (sum) ii=i;          min=FMIN(min,prlim[i][j]);
     b[i]=sum;        }
   }        maxmin=max-min;
   for (i=n;i>=1;i--) {        maxmax=FMAX(maxmax,maxmin);
     sum=b[i];      }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      if(maxmax < ftolpl){
     b[i]=sum/a[i][i];        return prlim;
   }      }
 }    }
   }
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  /*************** transition probabilities ***************/ 
 {  /* Some frequencies */  
    double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  {
   double ***freq; /* Frequencies */    double s1, s2;
   double *pp;    /*double t34;*/
   double pos, k2, dateintsum=0,k2cpt=0;    int i,j,j1, nc, ii, jj;
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];      for(i=1; i<= nlstate; i++){
          for(j=1; j<i;j++){
   pp=vector(1,nlstate);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            /*s2 += param[i][j][nc]*cov[nc];*/
   strcpy(fileresp,"p");            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   strcat(fileresp,fileres);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   if((ficresp=fopen(fileresp,"w"))==NULL) {          }
     printf("Problem with prevalence resultfile: %s\n", fileresp);          ps[i][j]=s2;
     exit(0);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   }        }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(j=i+1; j<=nlstate+ndeath;j++){
   j1=0;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   j=cptcoveff;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          }
           ps[i][j]=s2;
   for(k1=1; k1<=j;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){      }
        j1++;      /*ps[3][2]=1;*/
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      
          scanf("%d", i);*/      for(i=1; i<= nlstate; i++){
         for (i=-1; i<=nlstate+ndeath; i++)          s1=0;
          for (jk=-1; jk<=nlstate+ndeath; jk++)          for(j=1; j<i; j++)
            for(m=agemin; m <= agemax+3; m++)          s1+=exp(ps[i][j]);
              freq[i][jk][m]=0;        for(j=i+1; j<=nlstate+ndeath; j++)
           s1+=exp(ps[i][j]);
         dateintsum=0;        ps[i][i]=1./(s1+1.);
         k2cpt=0;        for(j=1; j<i; j++)
        for (i=1; i<=imx; i++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
          bool=1;        for(j=i+1; j<=nlstate+ndeath; j++)
          if  (cptcovn>0) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
            for (z1=1; z1<=cptcoveff; z1++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      } /* end i */
                bool=0;      
          }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          if (bool==1) {        for(jj=1; jj<= nlstate+ndeath; jj++){
            for(m=firstpass; m<=lastpass; m++){          ps[ii][jj]=0;
              k2=anint[m][i]+(mint[m][i]/12.);          ps[ii][ii]=1;
              if ((k2>=dateprev1) && (k2<=dateprev2)) {        }
                if(agev[m][i]==0) agev[m][i]=agemax+1;      }
                if(agev[m][i]==1) agev[m][i]=agemax+2;      
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
                  dateintsum=dateintsum+k2;  /*         printf("ddd %lf ",ps[ii][jj]); */
                  k2cpt++;  /*       } */
                }  /*       printf("\n "); */
   /*        } */
              }  /*        printf("\n ");printf("%lf ",cov[2]); */
            }         /*
          }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
        }        goto end;*/
              return ps;
        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  }
   
         if  (cptcovn>0) {  /**************** Product of 2 matrices ******************/
          fprintf(ficresp, "\n#********** Variable ");  
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
        fprintf(ficresp, "**********\n#");  {
         }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        for(i=1; i<=nlstate;i++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /* in, b, out are matrice of pointers which should have been initialized 
        fprintf(ficresp, "\n");       before: only the contents of out is modified. The function returns
               a pointer to pointers identical to out */
   for(i=(int)agemin; i <= (int)agemax+3; i++){    long i, j, k;
     if(i==(int)agemax+3)    for(i=nrl; i<= nrh; i++)
       printf("Total");      for(k=ncolol; k<=ncoloh; k++)
     else        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       printf("Age %d", i);          out[i][k] +=in[i][j]*b[j][k];
     for(jk=1; jk <=nlstate ; jk++){  
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    return out;
         pp[jk] += freq[jk][m][i];  }
     }  
     for(jk=1; jk <=nlstate ; jk++){  
       for(m=-1, pos=0; m <=0 ; m++)  /************* Higher Matrix Product ***************/
         pos += freq[jk][m][i];  
       if(pp[jk]>=1.e-10)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  {
       else    /* Computes the transition matrix starting at age 'age' over 
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);       'nhstepm*hstepm*stepm' months (i.e. until
     }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
      for(jk=1; jk <=nlstate ; jk++){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)       (typically every 2 years instead of every month which is too big 
         pp[jk] += freq[jk][m][i];       for the memory).
      }       Model is determined by parameters x and covariates have to be 
        included manually here. 
     for(jk=1,pos=0; jk <=nlstate ; jk++)  
       pos += pp[jk];       */
     for(jk=1; jk <=nlstate ; jk++){  
       if(pos>=1.e-5)    int i, j, d, h, k;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double **out, cov[NCOVMAX];
       else    double **newm;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
       if( i <= (int) agemax){    /* Hstepm could be zero and should return the unit matrix */
         if(pos>=1.e-5){    for (i=1;i<=nlstate+ndeath;i++)
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      for (j=1;j<=nlstate+ndeath;j++){
           probs[i][jk][j1]= pp[jk]/pos;        oldm[i][j]=(i==j ? 1.0 : 0.0);
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        po[i][j][0]=(i==j ? 1.0 : 0.0);
         }      }
       else    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    for(h=1; h <=nhstepm; h++){
       }      for(d=1; d <=hstepm; d++){
     }        newm=savm;
     for(jk=-1; jk <=nlstate+ndeath; jk++)        /* Covariates have to be included here again */
       for(m=-1; m <=nlstate+ndeath; m++)        cov[1]=1.;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     if(i <= (int) agemax)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       fprintf(ficresp,"\n");        for (k=1; k<=cptcovage;k++)
     printf("\n");          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     }        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  }  
   dateintmean=dateintsum/k2cpt;  
          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   fclose(ficresp);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   free_vector(pp,1,nlstate);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
   /* End of Freq */        oldm=newm;
 }      }
       for(i=1; i<=nlstate+ndeath; i++)
 /************ Prevalence ********************/        for(j=1;j<=nlstate+ndeath;j++) {
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          po[i][j][h]=newm[i][j];
 {  /* Some frequencies */          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        }
   double ***freq; /* Frequencies */    } /* end h */
   double *pp;    return po;
   double pos, k2;  }
   
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*************** log-likelihood *************/
    double func( double *x)
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  {
   j1=0;    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   j=cptcoveff;    double **out;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double sw; /* Sum of weights */
      double lli; /* Individual log likelihood */
  for(k1=1; k1<=j;k1++){    int s1, s2;
     for(i1=1; i1<=ncodemax[k1];i1++){    double bbh, survp;
       j1++;    long ipmx;
      /*extern weight */
       for (i=-1; i<=nlstate+ndeath; i++)      /* We are differentiating ll according to initial status */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for(m=agemin; m <= agemax+3; m++)    /*for(i=1;i<imx;i++) 
             freq[i][jk][m]=0;      printf(" %d\n",s[4][i]);
          */
       for (i=1; i<=imx; i++) {    cov[1]=1.;
         bool=1;  
         if  (cptcovn>0) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    if(mle==1){
               bool=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (bool==1) {        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=firstpass; m<=lastpass; m++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             k2=anint[m][i]+(mint[m][i]/12.);            for (j=1;j<=nlstate+ndeath;j++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==1) agev[m][i]=agemax+2;            }
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          for(d=0; d<dh[mi][i]; d++){
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
         for(i=(int)agemin; i <= (int)agemax+3; i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            savm=oldm;
               pp[jk] += freq[jk][m][i];            oldm=newm;
           }          } /* end mult */
           for(jk=1; jk <=nlstate ; jk++){        
             for(m=-1, pos=0; m <=0 ; m++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             pos += freq[jk][m][i];          /* But now since version 0.9 we anticipate for bias at large stepm.
         }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   * (in months) between two waves is not a multiple of stepm, we rounded to 
          for(jk=1; jk <=nlstate ; jk++){           * the nearest (and in case of equal distance, to the lowest) interval but now
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
              pp[jk] += freq[jk][m][i];           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
          }           * probability in order to take into account the bias as a fraction of the way
                     * from savm to out if bh is negative or even beyond if bh is positive. bh varies
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
          for(jk=1; jk <=nlstate ; jk++){                     * For stepm > 1 the results are less biased than in previous versions. 
            if( i <= (int) agemax){           */
              if(pos>=1.e-5){          s1=s[mw[mi][i]][i];
                probs[i][jk][j1]= pp[jk]/pos;          s2=s[mw[mi+1][i]][i];
              }          bbh=(double)bh[mi][i]/(double)stepm; 
            }          /* bias bh is positive if real duration
          }           * is higher than the multiple of stepm and negative otherwise.
                     */
         }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     }          if( s2 > nlstate){ 
   }            /* i.e. if s2 is a death state and if the date of death is known 
                 then the contribution to the likelihood is the probability to 
                 die between last step unit time and current  step unit time, 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);               which is also equal to probability to die before dh 
   free_vector(pp,1,nlstate);               minus probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
 }  /* End of Freq */          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
 /************* Waves Concatenation ***************/          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          (healthy, disable or death) and IMaCh was corrected; but when we
 {          introduced the exact date of death then we should have modified
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          the contribution of an exact death to the likelihood. This new
      Death is a valid wave (if date is known).          contribution is smaller and very dependent of the step unit
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          stepm. It is no more the probability to die between last interview
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          and month of death but the probability to survive from last
      and mw[mi+1][i]. dh depends on stepm.          interview up to one month before death multiplied by the
      */          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
   int i, mi, m;          mortality artificially. The bad side is that we add another loop
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          which slows down the processing. The difference can be up to 10%
      double sum=0., jmean=0.;*/          lower mortality.
             */
   int j, k=0,jk, ju, jl;            lli=log(out[s1][s2] - savm[s1][s2]);
   double sum=0.;  
   jmin=1e+5;  
   jmax=-1;          } else if  (s2==-2) {
   jmean=0.;            for (j=1,survp=0. ; j<=nlstate; j++) 
   for(i=1; i<=imx; i++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     mi=0;            /*survp += out[s1][j]; */
     m=firstpass;            lli= log(survp);
     while(s[m][i] <= nlstate){          }
       if(s[m][i]>=1)          
         mw[++mi][i]=m;          else if  (s2==-4) { 
       if(m >=lastpass)            for (j=3,survp=0. ; j<=nlstate; j++)  
         break;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       else            lli= log(survp); 
         m++;          } 
     }/* end while */  
     if (s[m][i] > nlstate){          else if  (s2==-5) { 
       mi++;     /* Death is another wave */            for (j=1,survp=0. ; j<=2; j++)  
       /* if(mi==0)  never been interviewed correctly before death */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
          /* Only death is a correct wave */            lli= log(survp); 
       mw[mi][i]=m;          } 
     }          
           else{
     wav[i]=mi;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     if(mi==0)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          } 
   }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   for(i=1; i<=imx; i++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for(mi=1; mi<wav[i];mi++){          ipmx +=1;
       if (stepm <=0)          sw += weight[i];
         dh[mi][i]=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       else{        } /* end of wave */
         if (s[mw[mi+1][i]][i] > nlstate) {      } /* end of individual */
           if (agedc[i] < 2*AGESUP) {    }  else if(mle==2){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if(j==0) j=1;  /* Survives at least one month after exam */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           k=k+1;        for(mi=1; mi<= wav[i]-1; mi++){
           if (j >= jmax) jmax=j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           if (j <= jmin) jmin=j;            for (j=1;j<=nlstate+ndeath;j++){
           sum=sum+j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         }          for(d=0; d<=dh[mi][i]; d++){
         else{            newm=savm;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           k=k+1;            for (kk=1; kk<=cptcovage;kk++) {
           if (j >= jmax) jmax=j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           else if (j <= jmin)jmin=j;            }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           sum=sum+j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         jk= j/stepm;            oldm=newm;
         jl= j -jk*stepm;          } /* end mult */
         ju= j -(jk+1)*stepm;        
         if(jl <= -ju)          s1=s[mw[mi][i]][i];
           dh[mi][i]=jk;          s2=s[mw[mi+1][i]][i];
         else          bbh=(double)bh[mi][i]/(double)stepm; 
           dh[mi][i]=jk+1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         if(dh[mi][i]==0)          ipmx +=1;
           dh[mi][i]=1; /* At least one step */          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
   }      } /* end of individual */
   jmean=sum/k;    }  else if(mle==3){  /* exponential inter-extrapolation */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*********** Tricode ****************************/        for(mi=1; mi<= wav[i]-1; mi++){
 void tricode(int *Tvar, int **nbcode, int imx)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   int Ndum[20],ij=1, k, j, i;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int cptcode=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   cptcoveff=0;            }
            for(d=0; d<dh[mi][i]; d++){
   for (k=0; k<19; k++) Ndum[k]=0;            newm=savm;
   for (k=1; k<=7; k++) ncodemax[k]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=1; i<=imx; i++) {            }
       ij=(int)(covar[Tvar[j]][i]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       Ndum[ij]++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            savm=oldm;
       if (ij > cptcode) cptcode=ij;            oldm=newm;
     }          } /* end mult */
         
     for (i=0; i<=cptcode; i++) {          s1=s[mw[mi][i]][i];
       if(Ndum[i]!=0) ncodemax[j]++;          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     ij=1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
           sw += weight[i];
     for (i=1; i<=ncodemax[j]; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (k=0; k<=19; k++) {        } /* end of wave */
         if (Ndum[k] != 0) {      } /* end of individual */
           nbcode[Tvar[j]][ij]=k;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           ij++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (ij > ncodemax[j]) break;        for(mi=1; mi<= wav[i]-1; mi++){
       }            for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
   }                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (k=0; k<19; k++) Ndum[k]=0;            }
           for(d=0; d<dh[mi][i]; d++){
  for (i=1; i<=ncovmodel-2; i++) {            newm=savm;
       ij=Tvar[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       Ndum[ij]++;            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
  ij=1;          
  for (i=1; i<=10; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    if((Ndum[i]!=0) && (i<=ncov)){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      Tvaraff[ij]=i;            savm=oldm;
      ij++;            oldm=newm;
    }          } /* end mult */
  }        
            s1=s[mw[mi][i]][i];
     cptcoveff=ij-1;          s2=s[mw[mi+1][i]][i];
 }          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
 /*********** Health Expectancies ****************/          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          }
 {          ipmx +=1;
   /* Health expectancies */          sw += weight[i];
   int i, j, nhstepm, hstepm, h, nstepm, k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double age, agelim,hf;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double ***p3mat;        } /* end of wave */
        } /* end of individual */
   fprintf(ficreseij,"# Health expectancies\n");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   fprintf(ficreseij,"# Age");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(j=1; j<=nlstate;j++)        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficreseij," %1d-%1d",i,j);          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficreseij,"\n");            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   k=1;             /* For example stepm=6 months */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */            }
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */          for(d=0; d<dh[mi][i]; d++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            newm=savm;
      nhstepm is the number of hstepm from age to agelim            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      nstepm is the number of stepm from age to agelin.            for (kk=1; kk<=cptcovage;kk++) {
      Look at hpijx to understand the reason of that which relies in memory size              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      and note for a fixed period like k years */            }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          
      survival function given by stepm (the optimization length). Unfortunately it            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      means that if the survival funtion is printed only each two years of age and if                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            savm=oldm;
      results. So we changed our mind and took the option of the best precision.            oldm=newm;
   */          } /* end mult */
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */        
           s1=s[mw[mi][i]][i];
   agelim=AGESUP;          s2=s[mw[mi+1][i]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     /* nhstepm age range expressed in number of stepm */          ipmx +=1;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          sw += weight[i];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (stepm >= YEARM) hstepm=1;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        } /* end of wave */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } /* end of individual */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    } /* End of if */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for(i=1; i<=nlstate;i++)    return -l;
       for(j=1; j<=nlstate;j++)  }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  /*************** log-likelihood *************/
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  double funcone( double *x)
         }  {
     fprintf(ficreseij,"%3.0f",age );    /* Same as likeli but slower because of a lot of printf and if */
     for(i=1; i<=nlstate;i++)    int i, ii, j, k, mi, d, kk;
       for(j=1; j<=nlstate;j++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);    double **out;
       }    double lli; /* Individual log likelihood */
     fprintf(ficreseij,"\n");    double llt;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int s1, s2;
   }    double bbh, survp;
 }    /*extern weight */
     /* We are differentiating ll according to initial status */
 /************ Variance ******************/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    /*for(i=1;i<imx;i++) 
 {      printf(" %d\n",s[4][i]);
   /* Variance of health expectancies */    */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    cov[1]=1.;
   double **newm;  
   double **dnewm,**doldm;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int i, j, nhstepm, hstepm, h;  
   int k, cptcode;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *xp;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **gp, **gm;      for(mi=1; mi<= wav[i]-1; mi++){
   double ***gradg, ***trgradg;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***p3mat;          for (j=1;j<=nlstate+ndeath;j++){
   double age,agelim;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int theta;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
    fprintf(ficresvij,"# Covariances of life expectancies\n");        for(d=0; d<dh[mi][i]; d++){
   fprintf(ficresvij,"# Age");          newm=savm;
   for(i=1; i<=nlstate;i++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(j=1; j<=nlstate;j++)          for (kk=1; kk<=cptcovage;kk++) {
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficresvij,"\n");          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   xp=vector(1,npar);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   dnewm=matrix(1,nlstate,1,npar);          savm=oldm;
   doldm=matrix(1,nlstate,1,nlstate);          oldm=newm;
          } /* end mult */
   hstepm=1*YEARM; /* Every year of age */        
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        s1=s[mw[mi][i]][i];
   agelim = AGESUP;        s2=s[mw[mi+1][i]][i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        bbh=(double)bh[mi][i]/(double)stepm; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        /* bias is positive if real duration
     if (stepm >= YEARM) hstepm=1;         * is higher than the multiple of stepm and negative otherwise.
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */         */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          lli=log(out[s1][s2] - savm[s1][s2]);
     gp=matrix(0,nhstepm,1,nlstate);        } else if  (s2==-2) {
     gm=matrix(0,nhstepm,1,nlstate);          for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(theta=1; theta <=npar; theta++){          lli= log(survp);
       for(i=1; i<=npar; i++){ /* Computes gradient */        }else if (mle==1){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }        } else if(mle==2){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       if (popbased==1) {        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         for(i=1; i<=nlstate;i++)          lli=log(out[s1][s2]); /* Original formula */
           prlim[i][i]=probs[(int)age][i][ij];        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       }          lli=log(out[s1][s2]); /* Original formula */
          } /* End of if */
       for(j=1; j<= nlstate; j++){        ipmx +=1;
         for(h=0; h<=nhstepm; h++){        sw += weight[i];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        if(globpr){
       }          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       %11.6f %11.6f %11.6f ", \
       for(i=1; i<=npar; i++) /* Computes gradient */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            llt +=ll[k]*gipmx/gsw;
              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       if (popbased==1) {          }
         for(i=1; i<=nlstate;i++)          fprintf(ficresilk," %10.6f\n", -llt);
           prlim[i][i]=probs[(int)age][i][ij];        }
       }      } /* end of wave */
     } /* end of individual */
       for(j=1; j<= nlstate; j++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for(h=0; h<=nhstepm; h++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    if(globpr==0){ /* First time we count the contributions and weights */
         }      gipmx=ipmx;
       }      gsw=sw;
     }
       for(j=1; j<= nlstate; j++)    return -l;
         for(h=0; h<=nhstepm; h++){  }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  
     } /* End theta */  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  {
     /* This routine should help understanding what is done with 
     for(h=0; h<=nhstepm; h++)       the selection of individuals/waves and
       for(j=1; j<=nlstate;j++)       to check the exact contribution to the likelihood.
         for(theta=1; theta <=npar; theta++)       Plotting could be done.
           trgradg[h][j][theta]=gradg[h][theta][j];     */
     int k;
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    if(*globpri !=0){ /* Just counts and sums, no printings */
         vareij[i][j][(int)age] =0.;      strcpy(fileresilk,"ilk"); 
     for(h=0;h<=nhstepm;h++){      strcat(fileresilk,fileres);
       for(k=0;k<=nhstepm;k++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        printf("Problem with resultfile: %s\n", fileresilk);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         for(i=1;i<=nlstate;i++)      }
           for(j=1;j<=nlstate;j++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
             vareij[i][j][(int)age] += doldm[i][j];      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     }      for(k=1; k<=nlstate; k++) 
     h=1;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     if (stepm >= YEARM) h=stepm/YEARM;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     fprintf(ficresvij,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    *fretone=(*funcone)(p);
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    if(*globpri !=0){
       }      fclose(ficresilk);
     fprintf(ficresvij,"\n");      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     free_matrix(gp,0,nhstepm,1,nlstate);      fflush(fichtm); 
     free_matrix(gm,0,nhstepm,1,nlstate);    } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    return;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */  
    /*********** Maximum Likelihood Estimation ***************/
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   free_matrix(dnewm,1,nlstate,1,nlstate);  {
     int i,j, iter;
 }    double **xi;
     double fret;
 /************ Variance of prevlim ******************/    double fretone; /* Only one call to likelihood */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    /*  char filerespow[FILENAMELENGTH];*/
 {    xi=matrix(1,npar,1,npar);
   /* Variance of prevalence limit */    for (i=1;i<=npar;i++)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=npar;j++)
   double **newm;        xi[i][j]=(i==j ? 1.0 : 0.0);
   double **dnewm,**doldm;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   int i, j, nhstepm, hstepm;    strcpy(filerespow,"pow"); 
   int k, cptcode;    strcat(filerespow,fileres);
   double *xp;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   double *gp, *gm;      printf("Problem with resultfile: %s\n", filerespow);
   double **gradg, **trgradg;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double age,agelim;    }
   int theta;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
        for (i=1;i<=nlstate;i++)
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      for(j=1;j<=nlstate+ndeath;j++)
   fprintf(ficresvpl,"# Age");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   for(i=1; i<=nlstate;i++)    fprintf(ficrespow,"\n");
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");    powell(p,xi,npar,ftol,&iter,&fret,func);
   
   xp=vector(1,npar);    free_matrix(xi,1,npar,1,npar);
   dnewm=matrix(1,nlstate,1,npar);    fclose(ficrespow);
   doldm=matrix(1,nlstate,1,nlstate);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   hstepm=1*YEARM; /* Every year of age */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /**** Computes Hessian and covariance matrix ***/
     if (stepm >= YEARM) hstepm=1;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  {
     gradg=matrix(1,npar,1,nlstate);    double  **a,**y,*x,pd;
     gp=vector(1,nlstate);    double **hess;
     gm=vector(1,nlstate);    int i, j,jk;
     int *indx;
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       }    void lubksb(double **a, int npar, int *indx, double b[]) ;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    void ludcmp(double **a, int npar, int *indx, double *d) ;
       for(i=1;i<=nlstate;i++)    double gompertz(double p[]);
         gp[i] = prlim[i][i];    hess=matrix(1,npar,1,npar);
      
       for(i=1; i<=npar; i++) /* Computes gradient */    printf("\nCalculation of the hessian matrix. Wait...\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++){
       for(i=1;i<=nlstate;i++)      printf("%d",i);fflush(stdout);
         gm[i] = prlim[i][i];      fprintf(ficlog,"%d",i);fflush(ficlog);
      
       for(i=1;i<=nlstate;i++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      
     } /* End theta */      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     trgradg =matrix(1,nlstate,1,npar);    }
     
     for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++) {
       for(theta=1; theta <=npar; theta++)      for (j=1;j<=npar;j++)  {
         trgradg[j][theta]=gradg[theta][j];        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
     for(i=1;i<=nlstate;i++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       varpl[i][(int)age] =0.;          hess[i][j]=hessij(p,delti,i,j,func,npar);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          hess[j][i]=hess[i][j];    
     for(i=1;i<=nlstate;i++)          /*printf(" %lf ",hess[i][j]);*/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        }
       }
     fprintf(ficresvpl,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    printf("\n");
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    fprintf(ficlog,"\n");
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     free_vector(gm,1,nlstate);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     free_matrix(gradg,1,npar,1,nlstate);    
     free_matrix(trgradg,1,nlstate,1,npar);    a=matrix(1,npar,1,npar);
   } /* End age */    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
   free_vector(xp,1,npar);    indx=ivector(1,npar);
   free_matrix(doldm,1,nlstate,1,npar);    for (i=1;i<=npar;i++)
   free_matrix(dnewm,1,nlstate,1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
 }  
     for (j=1;j<=npar;j++) {
 /************ Variance of one-step probabilities  ******************/      for (i=1;i<=npar;i++) x[i]=0;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)      x[j]=1;
 {      lubksb(a,npar,indx,x);
   int i, j;      for (i=1;i<=npar;i++){ 
   int k=0, cptcode;        matcov[i][j]=x[i];
   double **dnewm,**doldm;      }
   double *xp;    }
   double *gp, *gm;  
   double **gradg, **trgradg;    printf("\n#Hessian matrix#\n");
   double age,agelim, cov[NCOVMAX];    fprintf(ficlog,"\n#Hessian matrix#\n");
   int theta;    for (i=1;i<=npar;i++) { 
   char fileresprob[FILENAMELENGTH];      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
   strcpy(fileresprob,"prob");        fprintf(ficlog,"%.3e ",hess[i][j]);
   strcat(fileresprob,fileres);      }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      printf("\n");
     printf("Problem with resultfile: %s\n", fileresprob);      fprintf(ficlog,"\n");
   }    }
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);  
      /* Recompute Inverse */
     for (i=1;i<=npar;i++)
   xp=vector(1,npar);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    ludcmp(a,npar,indx,&pd);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  
      /*  printf("\n#Hessian matrix recomputed#\n");
   cov[1]=1;  
   for (age=bage; age<=fage; age ++){    for (j=1;j<=npar;j++) {
     cov[2]=age;      for (i=1;i<=npar;i++) x[i]=0;
     gradg=matrix(1,npar,1,9);      x[j]=1;
     trgradg=matrix(1,9,1,npar);      lubksb(a,npar,indx,x);
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1;i<=npar;i++){ 
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        y[i][j]=x[i];
            printf("%.3e ",y[i][j]);
     for(theta=1; theta <=npar; theta++){        fprintf(ficlog,"%.3e ",y[i][j]);
       for(i=1; i<=npar; i++)      }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf("\n");
            fprintf(ficlog,"\n");
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    }
        */
       k=0;  
       for(i=1; i<= (nlstate+ndeath); i++){    free_matrix(a,1,npar,1,npar);
         for(j=1; j<=(nlstate+ndeath);j++){    free_matrix(y,1,npar,1,npar);
            k=k+1;    free_vector(x,1,npar);
           gp[k]=pmmij[i][j];    free_ivector(indx,1,npar);
         }    free_matrix(hess,1,npar,1,npar);
       }  
   
       for(i=1; i<=npar; i++)  }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
      /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  {
       k=0;    int i;
       for(i=1; i<=(nlstate+ndeath); i++){    int l=1, lmax=20;
         for(j=1; j<=(nlstate+ndeath);j++){    double k1,k2;
           k=k+1;    double p2[NPARMAX+1];
           gm[k]=pmmij[i][j];    double res;
         }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       }    double fx;
          int k=0,kmax=10;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    double l1;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
     }    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    for(l=0 ; l <=lmax; l++){
       for(theta=1; theta <=npar; theta++)      l1=pow(10,l);
       trgradg[j][theta]=gradg[theta][j];      delts=delt;
        for(k=1 ; k <kmax; k=k+1){
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        delt = delta*(l1*k);
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
      pmij(pmmij,cov,ncovmodel,x,nlstate);        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
      k=0;        /*res= (k1-2.0*fx+k2)/delt/delt; */
      for(i=1; i<=(nlstate+ndeath); i++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
        for(j=1; j<=(nlstate+ndeath);j++){        
          k=k+1;  #ifdef DEBUG
          gm[k]=pmmij[i][j];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      }  #endif
              /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
      /*printf("\n%d ",(int)age);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          k=kmax;
                }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          k=kmax; l=lmax*10.;
      }*/        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   fprintf(ficresprob,"\n%d ",(int)age);          delts=delt;
         }
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      }
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    }
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    delti[theta]=delts;
   }    return res; 
     
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  {
 }    int i;
  free_vector(xp,1,npar);    int l=1, l1, lmax=20;
 fclose(ficresprob);    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
 }    int k;
   
 /******************* Printing html file ***********/    fx=func(x);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, int lastpass, int stepm, int weightopt, char model[],int imx,int jmin, int jmax, double jmeanint,char optionfile[],char optionfilehtm[],char rfileres[] ){    for (k=1; k<=2; k++) {
   int jj1, k1, i1, cpt;      for (i=1;i<=npar;i++) p2[i]=x[i];
   FILE *fichtm;      p2[thetai]=x[thetai]+delti[thetai]/k;
   /*char optionfilehtm[FILENAMELENGTH];*/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   strcpy(optionfilehtm,optionfile);    
   strcat(optionfilehtm,".htm");      p2[thetai]=x[thetai]+delti[thetai]/k;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     printf("Problem with %s \n",optionfilehtm), exit(0);      k2=func(p2)-fx;
   }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.71c </font> <hr size=\"2\" color=\"#EC5E5E\">      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>      k3=func(p2)-fx;
     
 Total number of observations=%d <br>      p2[thetai]=x[thetai]-delti[thetai]/k;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 <hr  size=\"2\" color=\"#EC5E5E\">      k4=func(p2)-fx;
 <li>Outputs files<br><br>\n      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  #ifdef DEBUG
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>  #endif
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    }
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    return res;
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  }
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>  /************** Inverse of matrix **************/
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>  void ludcmp(double **a, int n, int *indx, double *d) 
         - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>  { 
         <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    int i,imax,j,k; 
      double big,dum,sum,temp; 
 fprintf(fichtm," <li>Graphs</li><p>");    double *vv; 
    
  m=cptcoveff;    vv=vector(1,n); 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    *d=1.0; 
     for (i=1;i<=n;i++) { 
  jj1=0;      big=0.0; 
  for(k1=1; k1<=m;k1++){      for (j=1;j<=n;j++) 
    for(i1=1; i1<=ncodemax[k1];i1++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
        jj1++;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
        if (cptcovn > 0) {      vv[i]=1.0/big; 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    } 
          for (cpt=1; cpt<=cptcoveff;cpt++)    for (j=1;j<=n;j++) { 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      for (i=1;i<j;i++) { 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        sum=a[i][j]; 
        }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        a[i][j]=sum; 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          } 
        for(cpt=1; cpt<nlstate;cpt++){      big=0.0; 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      for (i=j;i<=n;i++) { 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        sum=a[i][j]; 
        }        for (k=1;k<j;k++) 
     for(cpt=1; cpt<=nlstate;cpt++) {          sum -= a[i][k]*a[k][j]; 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        a[i][j]=sum; 
 interval) in state (%d): v%s%d%d.gif <br>        if ( (dum=vv[i]*fabs(sum)) >= big) { 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            big=dum; 
      }          imax=i; 
      for(cpt=1; cpt<=nlstate;cpt++) {        } 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      } 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      if (j != imax) { 
      }        for (k=1;k<=n;k++) { 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          dum=a[imax][k]; 
 health expectancies in states (1) and (2): e%s%d.gif<br>          a[imax][k]=a[j][k]; 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          a[j][k]=dum; 
 fprintf(fichtm,"\n</body>");        } 
    }        *d = -(*d); 
    }        vv[imax]=vv[j]; 
 fclose(fichtm);      } 
 }      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
 /******************* Gnuplot file **************/      if (j != n) { 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double agemin, double agemaxpar, double fage , char pathc[], double p[]){        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      } 
     } 
   strcpy(optionfilegnuplot,optionfilefiname);    free_vector(vv,1,n);  /* Doesn't work */
   strcat(optionfilegnuplot,".plt");  ;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  } 
     printf("Problem with file %s",optionfilegnuplot);  
   }  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
 #ifdef windows    int i,ii=0,ip,j; 
     fprintf(ficgp,"cd \"%s\" \n",pathc);    double sum; 
 #endif   
 m=pow(2,cptcoveff);    for (i=1;i<=n;i++) { 
        ip=indx[i]; 
  /* 1eme*/      sum=b[ip]; 
   for (cpt=1; cpt<= nlstate ; cpt ++) {      b[ip]=b[i]; 
    for (k1=1; k1<= m ; k1 ++) {      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 #ifdef windows      else if (sum) ii=i; 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      b[i]=sum; 
 #endif    } 
 #ifdef unix    for (i=n;i>=1;i--) { 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      sum=b[i]; 
 #endif      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
 for (i=1; i<= nlstate ; i ++) {    } 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }  void pstamp(FILE *fichier)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  {
     for (i=1; i<= nlstate ; i ++) {    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }  /************ Frequencies ********************/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
      for (i=1; i<= nlstate ; i ++) {  {  /* Some frequencies */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 }      int first;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    double ***freq; /* Frequencies */
 #ifdef unix    double *pp, **prop;
 fprintf(ficgp,"\nset ter gif small size 400,300");    double pos,posprop, k2, dateintsum=0,k2cpt=0;
 #endif    char fileresp[FILENAMELENGTH];
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    
    }    pp=vector(1,nlstate);
   }    prop=matrix(1,nlstate,iagemin,iagemax+3);
   /*2 eme*/    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
   for (k1=1; k1<= m ; k1 ++) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      printf("Problem with prevalence resultfile: %s\n", fileresp);
          fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     for (i=1; i<= nlstate+1 ; i ++) {      exit(0);
       k=2*i;    }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       for (j=1; j<= nlstate+1 ; j ++) {    j1=0;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    j=cptcoveff;
 }      if (cptcovn<1) {j=1;ncodemax[1]=1;}
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    first=1;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    for(k1=1; k1<=j;k1++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(i1=1; i1<=ncodemax[k1];i1++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");        j1++;
 }          /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       fprintf(ficgp,"\" t\"\" w l 0,");          scanf("%d", i);*/
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        for (i=-5; i<=nlstate+ndeath; i++)  
       for (j=1; j<= nlstate+1 ; j ++) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(m=iagemin; m <= iagemax+3; m++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              freq[i][jk][m]=0;
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      for (i=1; i<=nlstate; i++)  
       else fprintf(ficgp,"\" t\"\" w l 0,");        for(m=iagemin; m <= iagemax+3; m++)
     }          prop[i][m]=0;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        
   }        dateintsum=0;
          k2cpt=0;
   /*3eme*/        for (i=1; i<=imx; i++) {
           bool=1;
   for (k1=1; k1<= m ; k1 ++) {          if  (cptcovn>0) {
     for (cpt=1; cpt<= nlstate ; cpt ++) {            for (z1=1; z1<=cptcoveff; z1++) 
       k=2+nlstate*(cpt-1);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);                bool=0;
       for (i=1; i< nlstate ; i ++) {          }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          if (bool==1){
       }            for(m=firstpass; m<=lastpass; m++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              k2=anint[m][i]+(mint[m][i]/12.);
     }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
   /* CV preval stat */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for (k1=1; k1<= m ; k1 ++) {                if (m<lastpass) {
     for (cpt=1; cpt<nlstate ; cpt ++) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       k=3;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemaxpar,fileres,k1,k+cpt+1,k+1);                }
                 
       for (i=1; i< nlstate ; i ++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         fprintf(ficgp,"+$%d",k+i+1);                  dateintsum=dateintsum+k2;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                  k2cpt++;
                      }
       l=3+(nlstate+ndeath)*cpt;                /*}*/
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            }
       for (i=1; i< nlstate ; i ++) {          }
         l=3+(nlstate+ndeath)*cpt;        }
         fprintf(ficgp,"+$%d",l+i+1);         
       }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          pstamp(ficresp);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        if  (cptcovn>0) {
     }          fprintf(ficresp, "\n#********** Variable "); 
   }            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresp, "**********\n#");
   /* proba elementaires */        }
    for(i=1,jk=1; i <=nlstate; i++){        for(i=1; i<=nlstate;i++) 
     for(k=1; k <=(nlstate+ndeath); k++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       if (k != i) {        fprintf(ficresp, "\n");
         for(j=1; j <=ncovmodel; j++){        
                for(i=iagemin; i <= iagemax+3; i++){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          if(i==iagemax+3){
           jk++;            fprintf(ficlog,"Total");
           fprintf(ficgp,"\n");          }else{
         }            if(first==1){
       }              first=0;
     }              printf("See log file for details...\n");
     }            }
             fprintf(ficlog,"Age %d", i);
     for(jk=1; jk <=m; jk++) {          }
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemaxpar);          for(jk=1; jk <=nlstate ; jk++){
    i=1;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
    for(k2=1; k2<=nlstate; k2++) {              pp[jk] += freq[jk][m][i]; 
      k3=i;          }
      for(k=1; k<=(nlstate+ndeath); k++) {          for(jk=1; jk <=nlstate ; jk++){
        if (k != k2){            for(m=-1, pos=0; m <=0 ; m++)
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              pos += freq[jk][m][i];
 ij=1;            if(pp[jk]>=1.e-10){
         for(j=3; j <=ncovmodel; j++) {              if(first==1){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              }
             ij++;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }            }else{
           else              if(first==1)
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           fprintf(ficgp,")/(1");            }
                  }
         for(k1=1; k1 <=nlstate; k1++){    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          for(jk=1; jk <=nlstate ; jk++){
 ij=1;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           for(j=3; j <=ncovmodel; j++){              pp[jk] += freq[jk][m][i];
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }       
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             ij++;            pos += pp[jk];
           }            posprop += prop[jk][i];
           else          }
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(jk=1; jk <=nlstate ; jk++){
           }            if(pos>=1.e-5){
           fprintf(ficgp,")");              if(first==1)
         }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            }else{
         i=i+ncovmodel;              if(first==1)
        }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
      }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
    }            }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            if( i <= iagemax){
    }              if(pos>=1.e-5){
                    fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   fclose(ficgp);                /*probs[i][jk][j1]= pp[jk]/pos;*/
 }  /* end gnuplot */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
               else
 /*************** Moving average **************/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 void movingaverage(double agedeb, double fage,double agemin, double ***mobaverage){            }
           }
   int i, cpt, cptcod;          
     for (agedeb=agemin; agedeb<=fage; agedeb++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
       for (i=1; i<=nlstate;i++)            for(m=-1; m <=nlstate+ndeath; m++)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              if(freq[jk][m][i] !=0 ) {
           mobaverage[(int)agedeb][i][cptcod]=0.;              if(first==1)
                    printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     for (agedeb=agemin+4; agedeb<=fage; agedeb++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       for (i=1; i<=nlstate;i++){              }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          if(i <= iagemax)
           for (cpt=0;cpt<=4;cpt++){            fprintf(ficresp,"\n");
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          if(first==1)
           }            printf("Others in log...\n");
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          fprintf(ficlog,"\n");
         }        }
       }      }
     }    }
        dateintmean=dateintsum/k2cpt; 
 }   
     fclose(ficresp);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 /************** Forecasting ******************/    free_vector(pp,1,nlstate);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      /* End of Freq */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  }
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  /************ Prevalence ********************/
   double *popeffectif,*popcount;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   double ***p3mat;  {  
   char fileresf[FILENAMELENGTH];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
  agelim=AGESUP;       We still use firstpass and lastpass as another selection.
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    */
    
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      double ***freq; /* Frequencies */
      double *pp, **prop;
   strcpy(fileresf,"f");    double pos,posprop; 
   strcat(fileresf,fileres);    double  y2; /* in fractional years */
   if((ficresf=fopen(fileresf,"w"))==NULL) {    int iagemin, iagemax;
     printf("Problem with forecast resultfile: %s\n", fileresf);  
   }    iagemin= (int) agemin;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   if (mobilav==1) {    j1=0;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
     movingaverage(agedeb, fage, agemin, mobaverage);    j=cptcoveff;
   }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for(k1=1; k1<=j;k1++){
   if (stepm<=12) stepsize=1;      for(i1=1; i1<=ncodemax[k1];i1++){
          j1++;
   agelim=AGESUP;        
          for (i=1; i<=nlstate; i++)  
   hstepm=1;          for(m=iagemin; m <= iagemax+3; m++)
   hstepm=hstepm/stepm;            prop[i][m]=0.0;
   yp1=modf(dateintmean,&yp);       
   anprojmean=yp;        for (i=1; i<=imx; i++) { /* Each individual */
   yp2=modf((yp1*12),&yp);          bool=1;
   mprojmean=yp;          if  (cptcovn>0) {
   yp1=modf((yp2*30.5),&yp);            for (z1=1; z1<=cptcoveff; z1++) 
   jprojmean=yp;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   if(jprojmean==0) jprojmean=1;                bool=0;
   if(mprojmean==0) jprojmean=1;          } 
            if (bool==1) { 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   for(cptcov=1;cptcov<=i2;cptcov++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       k=k+1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficresf,"\n#******");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       for(j=1;j<=cptcoveff;j++) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficresf,"******\n");                  prop[s[m][i]][iagemax+3] += weight[i]; 
       fprintf(ficresf,"# StartingAge FinalAge");                } 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              }
                  } /* end selection of waves */
                }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        }
         fprintf(ficresf,"\n");        for(i=iagemin; i <= iagemax+3; i++){  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){            posprop += prop[jk][i]; 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          } 
           nhstepm = nhstepm/hstepm;  
                    for(jk=1; jk <=nlstate ; jk++){     
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if( i <=  iagemax){ 
           oldm=oldms;savm=savms;              if(posprop>=1.e-5){ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  probs[i][jk][j1]= prop[jk][i]/posprop;
                      } 
           for (h=0; h<=nhstepm; h++){            } 
             if (h==(int) (calagedate+YEARM*cpt)) {          }/* end jk */ 
               fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);        }/* end i */ 
             }      } /* end i1 */
             for(j=1; j<=nlstate+ndeath;j++) {    } /* end k1 */
               kk1=0.;kk2=0;    
               for(i=1; i<=nlstate;i++) {                  /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                 if (mobilav==1)    /*free_vector(pp,1,nlstate);*/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                 else {  }  /* End of prevalence */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }  /************* Waves Concatenation ***************/
                  
               }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
               if (h==(int)(calagedate+12*cpt)){  {
                 fprintf(ficresf," %.3f", kk1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                               Death is a valid wave (if date is known).
               }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           }       and mw[mi+1][i]. dh depends on stepm.
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       */
         }  
       }    int i, mi, m;
     }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   }       double sum=0., jmean=0.;*/
            int first;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int j, k=0,jk, ju, jl;
     double sum=0.;
   fclose(ficresf);    first=0;
 }    jmin=1e+5;
 /************** Forecasting ******************/    jmax=-1;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    jmean=0.;
      for(i=1; i<=imx; i++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      mi=0;
   int *popage;      m=firstpass;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      while(s[m][i] <= nlstate){
   double *popeffectif,*popcount;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   double ***p3mat,***tabpop,***tabpopprev;          mw[++mi][i]=m;
   char filerespop[FILENAMELENGTH];        if(m >=lastpass)
           break;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        else
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          m++;
   agelim=AGESUP;      }/* end while */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      if (s[m][i] > nlstate){
          mi++;     /* Death is another wave */
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
          mw[mi][i]=m;
   strcpy(filerespop,"pop");      }
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      wav[i]=mi;
     printf("Problem with forecast resultfile: %s\n", filerespop);      if(mi==0){
   }        nbwarn++;
   printf("Computing forecasting: result on file '%s' \n", filerespop);        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          first=1;
         }
   if (mobilav==1) {        if(first==1){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     movingaverage(agedeb, fage, agemin, mobaverage);        }
   }      } /* end mi==0 */
     } /* End individuals */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    for(i=1; i<=imx; i++){
        for(mi=1; mi<wav[i];mi++){
   agelim=AGESUP;        if (stepm <=0)
            dh[mi][i]=1;
   hstepm=1;        else{
   hstepm=hstepm/stepm;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
              if (agedc[i] < 2*AGESUP) {
   if (popforecast==1) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     if((ficpop=fopen(popfile,"r"))==NULL) {              if(j==0) j=1;  /* Survives at least one month after exam */
       printf("Problem with population file : %s\n",popfile);exit(0);              else if(j<0){
     }                nberr++;
     popage=ivector(0,AGESUP);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     popeffectif=vector(0,AGESUP);                j=1; /* Temporary Dangerous patch */
     popcount=vector(0,AGESUP);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                    fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     i=1;                  fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              }
                  k=k+1;
     imx=i;              if (j >= jmax){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                jmax=j;
   }                ijmax=i;
               }
   for(cptcov=1;cptcov<=i2;cptcov++){              if (j <= jmin){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                jmin=j;
       k=k+1;                ijmin=i;
       fprintf(ficrespop,"\n#******");              }
       for(j=1;j<=cptcoveff;j++) {              sum=sum+j;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficrespop,"******\n");            }
       fprintf(ficrespop,"# Age");          }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          else{
       if (popforecast==1)  fprintf(ficrespop," [Population]");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
        /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              k=k+1;
                    if (j >= jmax) {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){              jmax=j;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              ijmax=i;
           nhstepm = nhstepm/hstepm;            }
                      else if (j <= jmin){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              jmin=j;
           oldm=oldms;savm=savms;              ijmin=i;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              }
                    /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           for (h=0; h<=nhstepm; h++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if (h==(int) (calagedate+YEARM*cpt)) {            if(j<0){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              nberr++;
             }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             for(j=1; j<=nlstate+ndeath;j++) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               kk1=0.;kk2=0;            }
               for(i=1; i<=nlstate;i++) {                          sum=sum+j;
                 if (mobilav==1)          }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          jk= j/stepm;
                 else {          jl= j -jk*stepm;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          ju= j -(jk+1)*stepm;
                 }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
               }            if(jl==0){
               if (h==(int)(calagedate+12*cpt)){              dh[mi][i]=jk;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              bh[mi][i]=0;
                   /*fprintf(ficrespop," %.3f", kk1);            }else{ /* We want a negative bias in order to only have interpolation ie
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                    * at the price of an extra matrix product in likelihood */
               }              dh[mi][i]=jk+1;
             }              bh[mi][i]=ju;
             for(i=1; i<=nlstate;i++){            }
               kk1=0.;          }else{
                 for(j=1; j<=nlstate;j++){            if(jl <= -ju){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              dh[mi][i]=jk;
                 }              bh[mi][i]=jl;       /* bias is positive if real duration
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                                   * is higher than the multiple of stepm and negative otherwise.
             }                                   */
             }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            else{
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              dh[mi][i]=jk+1;
           }              bh[mi][i]=ju;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
         }            if(dh[mi][i]==0){
       }              dh[mi][i]=1; /* At least one step */
                bh[mi][i]=ju; /* At least one step */
   /******/              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          } /* end if mle */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){      } /* end wave */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;    jmean=sum/k;
              printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
           oldm=oldms;savm=savms;   }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){  /*********** Tricode ****************************/
             if (h==(int) (calagedate+YEARM*cpt)) {  void tricode(int *Tvar, int **nbcode, int imx)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  {
             }    
             for(j=1; j<=nlstate+ndeath;j++) {    int Ndum[20],ij=1, k, j, i, maxncov=19;
               kk1=0.;kk2=0;    int cptcode=0;
               for(i=1; i<=nlstate;i++) {                  cptcoveff=0; 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];       
               }    for (k=0; k<maxncov; k++) Ndum[k]=0;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    for (k=1; k<=7; k++) ncodemax[k]=0;
             }  
           }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         }                                 modality*/ 
       }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
    }        Ndum[ij]++; /*store the modality */
   }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
          if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
   if (popforecast==1) {      }
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);      for (i=0; i<=cptcode; i++) {
     free_vector(popcount,0,AGESUP);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   }      }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      ij=1; 
   fclose(ficrespop);      for (i=1; i<=ncodemax[j]; i++) {
 }        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
 /***********************************************/            nbcode[Tvar[j]][ij]=k; 
 /**************** Main Program *****************/            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 /***********************************************/            
             ij++;
 int main(int argc, char *argv[])          }
 {          if (ij > ncodemax[j]) break; 
         }  
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      } 
   double agedeb, agefin,hf;    }  
   double agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
   double fret;  
   double **xi,tmp,delta;   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   double dum; /* Dummy variable */     ij=Tvar[i];
   double ***p3mat;     Ndum[ij]++;
   int *indx;   }
   char line[MAXLINE], linepar[MAXLINE];  
   char title[MAXLINE];   ij=1;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];   for (i=1; i<= maxncov; i++) {
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];     if((Ndum[i]!=0) && (i<=ncovcol)){
         Tvaraff[ij]=i; /*For printing */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];       ij++;
      }
   char filerest[FILENAMELENGTH];   }
   char fileregp[FILENAMELENGTH];   
   char popfile[FILENAMELENGTH];   cptcoveff=ij-1; /*Number of simple covariates*/
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  }
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */  /*********** Health Expectancies ****************/
   int c,  h , cpt,l;  
   int ju,jl, mi;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  {
   int mobilav=0,popforecast=0;    /* Health expectancies, no variances */
   int hstepm, nhstepm;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;    double age, agelim, hf;
     double ***p3mat;
   double bage, fage, age, agelim, agebase;    double eip;
   double ftolpl=FTOL;  
   double **prlim;    pstamp(ficreseij);
   double *severity;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   double ***param; /* Matrix of parameters */    fprintf(ficreseij,"# Age");
   double  *p;    for(i=1; i<=nlstate;i++){
   double **matcov; /* Matrix of covariance */      for(j=1; j<=nlstate;j++){
   double ***delti3; /* Scale */        fprintf(ficreseij," e%1d%1d ",i,j);
   double *delti; /* Scale */      }
   double ***eij, ***vareij;      fprintf(ficreseij," e%1d. ",i);
   double **varpl; /* Variances of prevalence limits by age */    }
   double *epj, vepp;    fprintf(ficreseij,"\n");
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    
      if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   char version[80]="Imach version 0.71c, March 2002, INED-EUROREVES ";    }
   char *alph[]={"a","a","b","c","d","e"}, str[4];    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   char z[1]="c", occ;     * if stepm=24 months pijx are given only every 2 years and by summing them
 #include <sys/time.h>     * we are calculating an estimate of the Life Expectancy assuming a linear 
 #include <time.h>     * progression in between and thus overestimating or underestimating according
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];     * to the curvature of the survival function. If, for the same date, we 
       * estimate the model with stepm=1 month, we can keep estepm to 24 months
   /* long total_usecs;     * to compare the new estimate of Life expectancy with the same linear 
   struct timeval start_time, end_time;     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   printf("\n%s",version);       nhstepm is the number of hstepm from age to agelim 
   if(argc <=1){       nstepm is the number of stepm from age to agelin. 
     printf("\nEnter the parameter file name: ");       Look at hpijx to understand the reason of that which relies in memory size
     scanf("%s",pathtot);       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   else{       survival function given by stepm (the optimization length). Unfortunately it
     strcpy(pathtot,argv[1]);       means that if the survival funtion is printed only each two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/       results. So we changed our mind and took the option of the best precision.
   /*cygwin_split_path(pathtot,path,optionfile);    */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /* cutv(path,optionfile,pathtot,'\\');*/  
     agelim=AGESUP;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    /* nhstepm age range expressed in number of stepm */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   chdir(path);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   replace(pathc,path);    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 /*-------- arguments in the command line --------*/    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   strcpy(fileres,"r");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   strcat(fileres, optionfilefiname);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   strcat(fileres,".txt");    /* Other files have txt extension */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /*---------arguments file --------*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     printf("Problem with optionfile %s\n",optionfile);      
     goto end;      printf("%d|",(int)age);fflush(stdout);
   }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
   strcpy(filereso,"o");      /* Computing expectancies */
   strcat(filereso,fileres);      for(i=1; i<=nlstate;i++)
   if((ficparo=fopen(filereso,"w"))==NULL) {        for(j=1; j<=nlstate;j++)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
   /* Reads comments: lines beginning with '#' */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);  
     puts(line);      fprintf(ficreseij,"%3.0f",age );
     fputs(line,ficparo);      for(i=1; i<=nlstate;i++){
   }        eip=0;
   ungetc(c,ficpar);        for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);        }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);        fprintf(ficreseij,"%9.4f", eip );
 while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);      fprintf(ficreseij,"\n");
     fgets(line, MAXLINE, ficpar);      
     puts(line);    }
     fputs(line,ficparo);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    printf("\n");
   ungetc(c,ficpar);    fprintf(ficlog,"\n");
      
      }
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
   {
   ncovmodel=2+cptcovn;    /* Covariances of health expectancies eij and of total life expectancies according
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */     to initial status i, ei. .
      */
   /* Read guess parameters */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   /* Reads comments: lines beginning with '#' */    double age, agelim, hf;
   while((c=getc(ficpar))=='#' && c!= EOF){    double ***p3matp, ***p3matm, ***varhe;
     ungetc(c,ficpar);    double **dnewm,**doldm;
     fgets(line, MAXLINE, ficpar);    double *xp, *xm;
     puts(line);    double **gp, **gm;
     fputs(line,ficparo);    double ***gradg, ***trgradg;
   }    int theta;
   ungetc(c,ficpar);  
      double eip, vip;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     for(j=1; j <=nlstate+ndeath-1; j++){    xp=vector(1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    xm=vector(1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    dnewm=matrix(1,nlstate*nlstate,1,npar);
       printf("%1d%1d",i,j);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar," %lf",&param[i][j][k]);    pstamp(ficresstdeij);
         printf(" %lf",param[i][j][k]);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         fprintf(ficparo," %lf",param[i][j][k]);    fprintf(ficresstdeij,"# Age");
       }    for(i=1; i<=nlstate;i++){
       fscanf(ficpar,"\n");      for(j=1; j<=nlstate;j++)
       printf("\n");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficparo,"\n");      fprintf(ficresstdeij," e%1d. ",i);
     }    }
      fprintf(ficresstdeij,"\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
     pstamp(ficrescveij);
   p=param[1][1];    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      fprintf(ficrescveij,"# Age");
   /* Reads comments: lines beginning with '#' */    for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){      for(j=1; j<=nlstate;j++){
     ungetc(c,ficpar);        cptj= (j-1)*nlstate+i;
     fgets(line, MAXLINE, ficpar);        for(i2=1; i2<=nlstate;i2++)
     puts(line);          for(j2=1; j2<=nlstate;j2++){
     fputs(line,ficparo);            cptj2= (j2-1)*nlstate+i2;
   }            if(cptj2 <= cptj)
   ungetc(c,ficpar);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    fprintf(ficrescveij,"\n");
   for(i=1; i <=nlstate; i++){    
     for(j=1; j <=nlstate+ndeath-1; j++){    if(estepm < stepm){
       fscanf(ficpar,"%1d%1d",&i1,&j1);      printf ("Problem %d lower than %d\n",estepm, stepm);
       printf("%1d%1d",i,j);    }
       fprintf(ficparo,"%1d%1d",i1,j1);    else  hstepm=estepm;   
       for(k=1; k<=ncovmodel;k++){    /* We compute the life expectancy from trapezoids spaced every estepm months
         fscanf(ficpar,"%le",&delti3[i][j][k]);     * This is mainly to measure the difference between two models: for example
         printf(" %le",delti3[i][j][k]);     * if stepm=24 months pijx are given only every 2 years and by summing them
         fprintf(ficparo," %le",delti3[i][j][k]);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       }     * progression in between and thus overestimating or underestimating according
       fscanf(ficpar,"\n");     * to the curvature of the survival function. If, for the same date, we 
       printf("\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficparo,"\n");     * to compare the new estimate of Life expectancy with the same linear 
     }     * hypothesis. A more precise result, taking into account a more precise
   }     * curvature will be obtained if estepm is as small as stepm. */
   delti=delti3[1][1];  
      /* For example we decided to compute the life expectancy with the smallest unit */
   /* Reads comments: lines beginning with '#' */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   while((c=getc(ficpar))=='#' && c!= EOF){       nhstepm is the number of hstepm from age to agelim 
     ungetc(c,ficpar);       nstepm is the number of stepm from age to agelin. 
     fgets(line, MAXLINE, ficpar);       Look at hpijx to understand the reason of that which relies in memory size
     puts(line);       and note for a fixed period like estepm months */
     fputs(line,ficparo);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   ungetc(c,ficpar);       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   matcov=matrix(1,npar,1,npar);       results. So we changed our mind and took the option of the best precision.
   for(i=1; i <=npar; i++){    */
     fscanf(ficpar,"%s",&str);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     printf("%s",str);  
     fprintf(ficparo,"%s",str);    /* If stepm=6 months */
     for(j=1; j <=i; j++){    /* nhstepm age range expressed in number of stepm */
       fscanf(ficpar," %le",&matcov[i][j]);    agelim=AGESUP;
       printf(" %.5le",matcov[i][j]);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       fprintf(ficparo," %.5le",matcov[i][j]);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }    /* if (stepm >= YEARM) hstepm=1;*/
     fscanf(ficpar,"\n");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     printf("\n");    
     fprintf(ficparo,"\n");    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(i=1; i <=npar; i++)    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     for(j=i+1;j<=npar;j++)    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       matcov[i][j]=matcov[j][i];    gp=matrix(0,nhstepm,1,nlstate*nlstate);
        gm=matrix(0,nhstepm,1,nlstate*nlstate);
   printf("\n");  
     for (age=bage; age<=fage; age ++){ 
   
     /*-------- Rewriting paramater file ----------*/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
      strcpy(rfileres,"r");    /* "Rparameterfile */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/   
      strcat(rfileres,".");    /* */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {      /* Computing  Variances of health expectancies */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     }         decrease memory allocation */
     fprintf(ficres,"#%s\n",version);      for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++){ 
     /*-------- data file ----------*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     if((fic=fopen(datafile,"r"))==NULL)    {          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       printf("Problem with datafile: %s\n", datafile);goto end;        }
     }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     n= lastobs;    
     severity = vector(1,maxwav);        for(j=1; j<= nlstate; j++){
     outcome=imatrix(1,maxwav+1,1,n);          for(i=1; i<=nlstate; i++){
     num=ivector(1,n);            for(h=0; h<=nhstepm-1; h++){
     moisnais=vector(1,n);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     annais=vector(1,n);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     moisdc=vector(1,n);            }
     andc=vector(1,n);          }
     agedc=vector(1,n);        }
     cod=ivector(1,n);       
     weight=vector(1,n);        for(ij=1; ij<= nlstate*nlstate; ij++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          for(h=0; h<=nhstepm-1; h++){
     mint=matrix(1,maxwav,1,n);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     anint=matrix(1,maxwav,1,n);          }
     s=imatrix(1,maxwav+1,1,n);      }/* End theta */
     adl=imatrix(1,maxwav+1,1,n);          
     tab=ivector(1,NCOVMAX);      
     ncodemax=ivector(1,8);      for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
     i=1;          for(theta=1; theta <=npar; theta++)
     while (fgets(line, MAXLINE, fic) != NULL)    {            trgradg[h][j][theta]=gradg[h][theta][j];
       if ((i >= firstobs) && (i <=lastobs)) {      
          
         for (j=maxwav;j>=1;j--){       for(ij=1;ij<=nlstate*nlstate;ij++)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        for(ji=1;ji<=nlstate*nlstate;ji++)
           strcpy(line,stra);          varhe[ij][ji][(int)age] =0.;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);       printf("%d|",(int)age);fflush(stdout);
         }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
               for(h=0;h<=nhstepm-1;h++){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(k=0;k<=nhstepm-1;k++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          for(ij=1;ij<=nlstate*nlstate;ij++)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         for (j=ncov;j>=1;j--){      }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      /* Computing expectancies */
         }      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         num[i]=atol(stra);      for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++)
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
         i=i+1;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       }  
     }          }
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/      fprintf(ficresstdeij,"%3.0f",age );
   imx=i-1; /* Number of individuals */      for(i=1; i<=nlstate;i++){
         eip=0.;
   /* for (i=1; i<=imx; i++){        vip=0.;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for(j=1; j<=nlstate;j++){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          eip += eij[i][j][(int)age];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     for (i=1; i<=imx; i++)        }
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
   /* Calculation of the number of parameter from char model*/      fprintf(ficresstdeij,"\n");
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);      fprintf(ficrescveij,"%3.0f",age );
   Tvaraff=ivector(1,15);      for(i=1; i<=nlstate;i++)
   Tvard=imatrix(1,15,1,2);        for(j=1; j<=nlstate;j++){
   Tage=ivector(1,15);                cptj= (j-1)*nlstate+i;
              for(i2=1; i2<=nlstate;i2++)
   if (strlen(model) >1){            for(j2=1; j2<=nlstate;j2++){
     j=0, j1=0, k1=1, k2=1;              cptj2= (j2-1)*nlstate+i2;
     j=nbocc(model,'+');              if(cptj2 <= cptj)
     j1=nbocc(model,'*');                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     cptcovn=j+1;            }
     cptcovprod=j1;        }
          fprintf(ficrescveij,"\n");
         
     strcpy(modelsav,model);    }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       printf("Error. Non available option model=%s ",model);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       goto end;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
        free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=(j+1); i>=1;i--){    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       cutv(stra,strb,modelsav,'+');    printf("\n");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    fprintf(ficlog,"\n");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/    free_vector(xm,1,npar);
       if (strchr(strb,'*')) {    free_vector(xp,1,npar);
         cutv(strd,strc,strb,'*');    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         if (strcmp(strc,"age")==0) {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           cptcovprod--;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           cutv(strb,stre,strd,'V');  }
           Tvar[i]=atoi(stre);  
           cptcovage++;  /************ Variance ******************/
             Tage[cptcovage]=i;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
             /*printf("stre=%s ", stre);*/  {
         }    /* Variance of health expectancies */
         else if (strcmp(strd,"age")==0) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           cptcovprod--;    /* double **newm;*/
           cutv(strb,stre,strc,'V');    double **dnewm,**doldm;
           Tvar[i]=atoi(stre);    double **dnewmp,**doldmp;
           cptcovage++;    int i, j, nhstepm, hstepm, h, nstepm ;
           Tage[cptcovage]=i;    int k, cptcode;
         }    double *xp;
         else {    double **gp, **gm;  /* for var eij */
           cutv(strb,stre,strc,'V');    double ***gradg, ***trgradg; /*for var eij */
           Tvar[i]=ncov+k1;    double **gradgp, **trgradgp; /* for var p point j */
           cutv(strb,strc,strd,'V');    double *gpp, *gmp; /* for var p point j */
           Tprod[k1]=i;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           Tvard[k1][1]=atoi(strc);    double ***p3mat;
           Tvard[k1][2]=atoi(stre);    double age,agelim, hf;
           Tvar[cptcovn+k2]=Tvard[k1][1];    double ***mobaverage;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    int theta;
           for (k=1; k<=lastobs;k++)    char digit[4];
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    char digitp[25];
           k1++;  
           k2=k2+2;    char fileresprobmorprev[FILENAMELENGTH];
         }  
       }    if(popbased==1){
       else {      if(mobilav!=0)
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        strcpy(digitp,"-populbased-mobilav-");
        /*  scanf("%d",i);*/      else strcpy(digitp,"-populbased-nomobil-");
       cutv(strd,strc,strb,'V');    }
       Tvar[i]=atoi(strc);    else 
       }      strcpy(digitp,"-stablbased-");
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    if (mobilav!=0) {
         scanf("%d",i);*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      }
   printf("cptcovprod=%d ", cptcovprod);    }
   scanf("%d ",i);*/  
     fclose(fic);    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*  if(mle==1){*/    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     if (weightopt != 1) { /* Maximisation without weights*/    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       for(i=1;i<=n;i++) weight[i]=1.0;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     }    strcat(fileresprobmorprev,fileres);
     /*-calculation of age at interview from date of interview and age at death -*/    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     agev=matrix(1,maxwav,1,imx);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
    for (i=1; i<=imx; i++)    }
      for(m=2; (m<= maxwav); m++)    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){   
          anint[m][i]=9999;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
          s[m][i]=-1;    pstamp(ficresprobmorprev);
        }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
        fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for (i=1; i<=imx; i++)  {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(m=1; (m<= maxwav); m++){      for(i=1; i<=nlstate;i++)
         if(s[m][i] >0){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           if (s[m][i] == nlstate+1) {    }  
             if(agedc[i]>0)    fprintf(ficresprobmorprev,"\n");
               if(moisdc[i]!=99 && andc[i]!=9999)    fprintf(ficgp,"\n# Routine varevsij");
               agev[m][i]=agedc[i];    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
             else {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
               if (andc[i]!=9999){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  /*   } */
               agev[m][i]=-1;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               }    pstamp(ficresvij);
             }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
           }    if(popbased==1)
           else if(s[m][i] !=9){ /* Should no more exist */      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    else
             if(mint[m][i]==99 || anint[m][i]==9999)      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
               agev[m][i]=1;    fprintf(ficresvij,"# Age");
             else if(agev[m][i] <agemin){    for(i=1; i<=nlstate;i++)
               agemin=agev[m][i];      for(j=1; j<=nlstate;j++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
             }    fprintf(ficresvij,"\n");
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];    xp=vector(1,npar);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    dnewm=matrix(1,nlstate,1,npar);
             }    doldm=matrix(1,nlstate,1,nlstate);
             /*agev[m][i]=anint[m][i]-annais[i];*/    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             /*   agev[m][i] = age[i]+2*m;*/    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }  
           else { /* =9 */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
             agev[m][i]=1;    gpp=vector(nlstate+1,nlstate+ndeath);
             s[m][i]=-1;    gmp=vector(nlstate+1,nlstate+ndeath);
           }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         }    
         else /*= 0 Unknown */    if(estepm < stepm){
           agev[m][i]=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
        else  hstepm=estepm;   
     }    /* For example we decided to compute the life expectancy with the smallest unit */
     for (i=1; i<=imx; i++)  {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       for(m=1; (m<= maxwav); m++){       nhstepm is the number of hstepm from age to agelim 
         if (s[m][i] > (nlstate+ndeath)) {       nstepm is the number of stepm from age to agelin. 
           printf("Error: Wrong value in nlstate or ndeath\n");         Look at hpijx to understand the reason of that which relies in memory size
           goto end;       and note for a fixed period like k years */
         }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       }       survival function given by stepm (the optimization length). Unfortunately it
     }       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       results. So we changed our mind and took the option of the best precision.
     */
     free_vector(severity,1,maxwav);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     free_imatrix(outcome,1,maxwav+1,1,n);    agelim = AGESUP;
     free_vector(moisnais,1,n);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     free_vector(annais,1,n);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     /* free_matrix(mint,1,maxwav,1,n);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        free_matrix(anint,1,maxwav,1,n);*/      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(moisdc,1,n);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     free_vector(andc,1,n);      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
      
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      for(theta=1; theta <=npar; theta++){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
              xp[i] = x[i] + (i==theta ?delti[theta]:0);
     /* Concatenates waves */        }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
       Tcode=ivector(1,100);        if (popbased==1) {
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          if(mobilav ==0){
       ncodemax[1]=1;            for(i=1; i<=nlstate;i++)
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);              prlim[i][i]=probs[(int)age][i][ij];
                }else{ /* mobilav */ 
    codtab=imatrix(1,100,1,10);            for(i=1; i<=nlstate;i++)
    h=0;              prlim[i][i]=mobaverage[(int)age][i][ij];
    m=pow(2,cptcoveff);          }
          }
    for(k=1;k<=cptcoveff; k++){    
      for(i=1; i <=(m/pow(2,k));i++){        for(j=1; j<= nlstate; j++){
        for(j=1; j <= ncodemax[k]; j++){          for(h=0; h<=nhstepm; h++){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
            h++;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            if (h>m) h=1;codtab[h][k]=j;          }
          }        }
        }        /* This for computing probability of death (h=1 means
      }           computed over hstepm matrices product = hstepm*stepm months) 
    }           as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
    /*for(i=1; i <=m ;i++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
      for(k=1; k <=cptcovn; k++){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);        }    
      }        /* end probability of death */
      printf("\n");  
    }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
    scanf("%d",i);*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    /* Calculates basic frequencies. Computes observed prevalence at single age        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        and prints on file fileres'p'. */   
         if (popbased==1) {
              if(mobilav ==0){
                for(i=1; i<=nlstate;i++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              prlim[i][i]=probs[(int)age][i][ij];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }else{ /* mobilav */ 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(i=1; i<=nlstate;i++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              prlim[i][i]=mobaverage[(int)age][i][ij];
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          }
              }
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        for(j=1; j<= nlstate; j++){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     if(mle==1){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          }
     }        }
            /* This for computing probability of death (h=1 means
     /*--------- results files --------------*/           computed over hstepm matrices product = hstepm*stepm months) 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, weightopt,model);           as a weighted average of prlim.
          */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
    jk=1;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
    fprintf(ficres,"# Parameters\n");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
    printf("# Parameters\n");        }    
    for(i=1,jk=1; i <=nlstate; i++){        /* end probability of death */
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)        for(j=1; j<= nlstate; j++) /* vareij */
          {          for(h=0; h<=nhstepm; h++){
            printf("%d%d ",i,k);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            fprintf(ficres,"%1d%1d ",i,k);          }
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
              fprintf(ficres,"%f ",p[jk]);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
              jk++;        }
            }  
            printf("\n");      } /* End theta */
            fprintf(ficres,"\n");  
          }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      }  
    }      for(h=0; h<=nhstepm; h++) /* veij */
  if(mle==1){        for(j=1; j<=nlstate;j++)
     /* Computing hessian and covariance matrix */          for(theta=1; theta <=npar; theta++)
     ftolhess=ftol; /* Usually correct */            trgradg[h][j][theta]=gradg[h][theta][j];
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     fprintf(ficres,"# Scales\n");        for(theta=1; theta <=npar; theta++)
     printf("# Scales\n");          trgradgp[j][theta]=gradgp[theta][j];
      for(i=1,jk=1; i <=nlstate; i++){    
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           fprintf(ficres,"%1d%1d",i,j);      for(i=1;i<=nlstate;i++)
           printf("%1d%1d",i,j);        for(j=1;j<=nlstate;j++)
           for(k=1; k<=ncovmodel;k++){          vareij[i][j][(int)age] =0.;
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);      for(h=0;h<=nhstepm;h++){
             jk++;        for(k=0;k<=nhstepm;k++){
           }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           printf("\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           fprintf(ficres,"\n");          for(i=1;i<=nlstate;i++)
         }            for(j=1;j<=nlstate;j++)
       }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
      }        }
          }
     k=1;    
     fprintf(ficres,"# Covariance\n");      /* pptj */
     printf("# Covariance\n");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     for(i=1;i<=npar;i++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       /*  if (k>nlstate) k=1;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       i1=(i-1)/(ncovmodel*nlstate)+1;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          varppt[j][i]=doldmp[j][i];
       printf("%s%d%d",alph[k],i1,tab[i]);*/      /* end ppptj */
       fprintf(ficres,"%3d",i);      /*  x centered again */
       printf("%3d",i);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       for(j=1; j<=i;j++){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         fprintf(ficres," %.5e",matcov[i][j]);   
         printf(" %.5e",matcov[i][j]);      if (popbased==1) {
       }        if(mobilav ==0){
       fprintf(ficres,"\n");          for(i=1; i<=nlstate;i++)
       printf("\n");            prlim[i][i]=probs[(int)age][i][ij];
       k++;        }else{ /* mobilav */ 
     }          for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);      }
       fgets(line, MAXLINE, ficpar);               
       puts(line);      /* This for computing probability of death (h=1 means
       fputs(line,ficparo);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     }         as a weighted average of prlim.
     ungetc(c,ficpar);      */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemaxpar, &bage, &fage);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
              gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     if (fage <= 2) {      }    
       bage = agemin;      /* end probability of death */
       fage = agemaxpar;  
     }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
          for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);        for(i=1; i<=nlstate;i++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
     while((c=getc(ficpar))=='#' && c!= EOF){      } 
     ungetc(c,ficpar);      fprintf(ficresprobmorprev,"\n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);      fprintf(ficresvij,"%.0f ",age );
     fputs(line,ficparo);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   ungetc(c,ficpar);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      fprintf(ficresvij,"\n");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      free_matrix(gp,0,nhstepm,1,nlstate);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      free_matrix(gm,0,nhstepm,1,nlstate);
            free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     ungetc(c,ficpar);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);    } /* End age */
     puts(line);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fscanf(ficpar,"pop_based=%d\n",&popbased);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficparo,"pop_based=%d\n",popbased);      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   fprintf(ficres,"pop_based=%d\n",popbased);      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     ungetc(c,ficpar);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fgets(line, MAXLINE, ficpar);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     puts(line);  */
     fputs(line,ficparo);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   ungetc(c,ficpar);  
     free_vector(xp,1,npar);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    free_matrix(doldm,1,nlstate,1,nlstate);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    free_matrix(dnewm,1,nlstate,1,npar);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 while((c=getc(ficpar))=='#' && c!= EOF){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     ungetc(c,ficpar);    fclose(ficresprobmorprev);
     fgets(line, MAXLINE, ficpar);    fflush(ficgp);
     puts(line);    fflush(fichtm); 
     fputs(line,ficparo);  }  /* end varevsij */
   }  
   ungetc(c,ficpar);  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  {
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    /* Variance of prevalence limit */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
 /*------------ gnuplot -------------*/    int k, cptcode;
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, agemin,agemaxpar,fage, pathc,p);    double *xp;
      double *gp, *gm;
 /*------------ free_vector  -------------*/    double **gradg, **trgradg;
  chdir(path);    double age,agelim;
      int theta;
  free_ivector(wav,1,imx);    
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    pstamp(ficresvpl);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
  free_ivector(num,1,n);    fprintf(ficresvpl,"# Age");
  free_vector(agedc,1,n);    for(i=1; i<=nlstate;i++)
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        fprintf(ficresvpl," %1d-%1d",i,i);
  fclose(ficparo);    fprintf(ficresvpl,"\n");
  fclose(ficres);  
     xp=vector(1,npar);
 /*--------- index.htm --------*/    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres);    
     hstepm=1*YEARM; /* Every year of age */
      hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   /*--------------- Prevalence limit --------------*/    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   strcpy(filerespl,"pl");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   strcat(filerespl,fileres);      if (stepm >= YEARM) hstepm=1;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      gradg=matrix(1,npar,1,nlstate);
   }      gp=vector(1,nlstate);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      gm=vector(1,nlstate);
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");      for(theta=1; theta <=npar; theta++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        for(i=1; i<=npar; i++){ /* Computes gradient */
   fprintf(ficrespl,"\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   prlim=matrix(1,nlstate,1,nlstate);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1;i<=nlstate;i++)
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          gp[i] = prlim[i][i];
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1; i<=npar; i++) /* Computes gradient */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   k=0;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   agebase=agemin;        for(i=1;i<=nlstate;i++)
   agelim=agemaxpar;          gm[i] = prlim[i][i];
   ftolpl=1.e-10;  
   i1=cptcoveff;        for(i=1;i<=nlstate;i++)
   if (cptcovn < 1){i1=1;}          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      trgradg =matrix(1,nlstate,1,npar);
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      for(j=1; j<=nlstate;j++)
         fprintf(ficrespl,"\n#******");        for(theta=1; theta <=npar; theta++)
         for(j=1;j<=cptcoveff;j++)          trgradg[j][theta]=gradg[theta][j];
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");      for(i=1;i<=nlstate;i++)
                varpl[i][(int)age] =0.;
         for (age=agebase; age<=agelim; age++){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           fprintf(ficrespl,"%.0f",age );      for(i=1;i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");      fprintf(ficresvpl,"%.0f ",age );
         }      for(i=1; i<=nlstate;i++)
       }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     }      fprintf(ficresvpl,"\n");
   fclose(ficrespl);      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
   /*------------- h Pij x at various ages ------------*/      free_matrix(gradg,1,npar,1,nlstate);
        free_matrix(trgradg,1,nlstate,1,npar);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    } /* End age */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,npar);
   printf("Computing pij: result on file '%s' \n", filerespij);    free_matrix(dnewm,1,nlstate,1,nlstate);
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;  }
   /*if (stepm<=24) stepsize=2;*/  
   /************ Variance of one-step probabilities  ******************/
   agelim=AGESUP;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   hstepm=stepsize*YEARM; /* Every year of age */  {
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    int i, j=0,  i1, k1, l1, t, tj;
      int k2, l2, j1,  z1;
   k=0;    int k=0,l, cptcode;
   for(cptcov=1;cptcov<=i1;cptcov++){    int first=1, first1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       k=k+1;    double **dnewm,**doldm;
         fprintf(ficrespij,"\n#****** ");    double *xp;
         for(j=1;j<=cptcoveff;j++)    double *gp, *gm;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **gradg, **trgradg;
         fprintf(ficrespij,"******\n");    double **mu;
            double age,agelim, cov[NCOVMAX];
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int theta;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    char fileresprob[FILENAMELENGTH];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    char fileresprobcov[FILENAMELENGTH];
           oldm=oldms;savm=savms;    char fileresprobcor[FILENAMELENGTH];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");    double ***varpij;
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)    strcpy(fileresprob,"prob"); 
               fprintf(ficrespij," %1d-%1d",i,j);    strcat(fileresprob,fileres);
           fprintf(ficrespij,"\n");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           for (h=0; h<=nhstepm; h++){      printf("Problem with resultfile: %s\n", fileresprob);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
             for(i=1; i<=nlstate;i++)    }
               for(j=1; j<=nlstate+ndeath;j++)    strcpy(fileresprobcov,"probcov"); 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    strcat(fileresprobcov,fileres);
             fprintf(ficrespij,"\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", fileresprobcov);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           fprintf(ficrespij,"\n");    }
         }    strcpy(fileresprobcor,"probcor"); 
     }    strcat(fileresprobcor,fileres);
   }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   fclose(ficrespij);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /*---------- Forecasting ------------------*/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   if((stepm == 1) && (strcmp(model,".")==0)){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    pstamp(ficresprob);
     free_matrix(mint,1,maxwav,1,n);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    fprintf(ficresprob,"# Age");
     free_vector(weight,1,n);}    pstamp(ficresprobcov);
   else{    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     erreur=108;    fprintf(ficresprobcov,"# Age");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    pstamp(ficresprobcor);
   }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
      fprintf(ficresprobcor,"# Age");
   
   /*---------- Health expectancies and variances ------------*/  
     for(i=1; i<=nlstate;i++)
   strcpy(filerest,"t");      for(j=1; j<=(nlstate+ndeath);j++){
   strcat(filerest,fileres);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   if((ficrest=fopen(filerest,"w"))==NULL) {        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   }      }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
   strcpy(filerese,"e");   */
   strcat(filerese,fileres);   xp=vector(1,npar);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
  strcpy(fileresv,"v");    fprintf(ficgp,"\n# Routine varprob");
   strcat(fileresv,fileres);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    fprintf(fichtm,"\n");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
   k=0;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   for(cptcov=1;cptcov<=i1;cptcov++){  and drawn. It helps understanding how is the covariance between two incidences.\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       k=k+1;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       fprintf(ficrest,"\n#****** ");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       for(j=1;j<=cptcoveff;j++)  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  standard deviations wide on each axis. <br>\
       fprintf(ficrest,"******\n");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       fprintf(ficreseij,"\n#****** ");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    cov[1]=1;
       fprintf(ficreseij,"******\n");    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       fprintf(ficresvij,"\n#****** ");    j1=0;
       for(j=1;j<=cptcoveff;j++)    for(t=1; t<=tj;t++){
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      for(i1=1; i1<=ncodemax[t];i1++){ 
       fprintf(ficresvij,"******\n");        j1++;
         if  (cptcovn>0) {
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(ficresprob, "\n#********** Variable "); 
       oldm=oldms;savm=savms;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            fprintf(ficresprob, "**********\n#\n");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(ficresprobcov, "\n#********** Variable "); 
       oldm=oldms;savm=savms;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          fprintf(ficresprobcov, "**********\n#\n");
              
           fprintf(ficgp, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          fprintf(ficgp, "**********\n#\n");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          
       fprintf(ficrest,"\n");          
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       hf=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       if (stepm >= YEARM) hf=stepm/YEARM;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       epj=vector(1,nlstate+1);          
       for(age=bage; age <=fage ;age++){          fprintf(ficresprobcor, "\n#********** Variable ");    
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         if (popbased==1) {          fprintf(ficresprobcor, "**********\n#");    
           for(i=1; i<=nlstate;i++)        }
             prlim[i][i]=probs[(int)age][i][k];        
         }        for (age=bage; age<=fage; age ++){ 
                  cov[2]=age;
         fprintf(ficrest," %.0f",age);          for (k=1; k<=cptcovn;k++) {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          }
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           }          for (k=1; k<=cptcovprod;k++)
           epj[nlstate+1] +=epj[j];            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         }          
         for(i=1, vepp=0.;i <=nlstate;i++)          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           for(j=1;j <=nlstate;j++)          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             vepp += vareij[i][j][(int)age];          gp=vector(1,(nlstate)*(nlstate+ndeath));
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));          gm=vector(1,(nlstate)*(nlstate+ndeath));
         for(j=1;j <=nlstate;j++){      
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));          for(theta=1; theta <=npar; theta++){
         }            for(i=1; i<=npar; i++)
         fprintf(ficrest,"\n");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       }            
     }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   }            
             k=0;
   fclose(ficreseij);            for(i=1; i<= (nlstate); i++){
   fclose(ficresvij);              for(j=1; j<=(nlstate+ndeath);j++){
   fclose(ficrest);                k=k+1;
   fclose(ficpar);                gp[k]=pmmij[i][j];
   free_vector(epj,1,nlstate+1);              }
              }
   /*------- Variance limit prevalence------*/              
             for(i=1; i<=npar; i++)
   strcpy(fileresvpl,"vpl");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   strcat(fileresvpl,fileres);      
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            k=0;
     exit(0);            for(i=1; i<=(nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                k=k+1;
                 gm[k]=pmmij[i][j];
   k=0;              }
   for(cptcov=1;cptcov<=i1;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       
       k=k+1;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       fprintf(ficresvpl,"\n#****** ");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                  for(theta=1; theta <=npar; theta++)
       varpl=matrix(1,nlstate,(int) bage, (int) fage);              trgradg[j][theta]=gradg[theta][j];
       oldm=oldms;savm=savms;          
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
  }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   fclose(ficresvpl);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          pmij(pmmij,cov,ncovmodel,x,nlstate);
            
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          k=0;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for(i=1; i<=(nlstate); i++){
              for(j=1; j<=(nlstate+ndeath);j++){
                k=k+1;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              mu[k][(int) age]=pmmij[i][j];
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
              for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   free_matrix(matcov,1,npar,1,npar);              varpij[i][j][(int)age] = doldm[i][j];
   free_vector(delti,1,npar);  
   free_matrix(agev,1,maxwav,1,imx);          /*printf("\n%d ",(int)age);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   if(erreur >0)            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     printf("End of Imach with error %d\n",erreur);            }*/
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          fprintf(ficresprob,"\n%d ",(int)age);
            fprintf(ficresprobcov,"\n%d ",(int)age);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          fprintf(ficresprobcor,"\n%d ",(int)age);
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  end:            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 #ifdef windows            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   /* chdir(pathcd);*/          }
 #endif          i=0;
  /*system("wgnuplot graph.plt");*/          for (k=1; k<=(nlstate);k++){
  /*system("../gp37mgw/wgnuplot graph.plt");*/            for (l=1; l<=(nlstate+ndeath);l++){ 
  /*system("cd ../gp37mgw");*/              i=i++;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
  strcpy(plotcmd,GNUPLOTPROGRAM);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
  strcat(plotcmd," ");              for (j=1; j<=i;j++){
  strcat(plotcmd,optionfilegnuplot);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
  system(plotcmd);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
 #ifdef windows            }
   while (z[0] != 'q') {          }/* end of loop for state */
     chdir(path);        } /* end of loop for age */
     printf("\nType e to edit output files, c to start again, and q for exiting: ");  
     scanf("%s",z);        /* Confidence intervalle of pij  */
     if (z[0] == 'c') system("./imach");        /*
     else if (z[0] == 'e') {          fprintf(ficgp,"\nset noparametric;unset label");
       chdir(path);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       system(optionfilehtm);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     else if (z[0] == 'q') exit(0);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   }          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 #endif          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 }        */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.32  
changed lines
  Added in v.1.122


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>