Diff for /imach/src/imach.c between versions 1.3 and 1.122

version 1.3, 2001/05/02 17:21:42 version 1.122, 2006/03/20 09:45:41
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.122  2006/03/20 09:45:41  brouard
   individuals from different ages are interviewed on their health status    (Module): Weights can have a decimal point as for
   or degree of  disability. At least a second wave of interviews    English (a comma might work with a correct LC_NUMERIC environment,
   ("longitudinal") should  measure each new individual health status.    otherwise the weight is truncated).
   Health expectancies are computed from the transistions observed between    Modification of warning when the covariates values are not 0 or
   waves and are computed for each degree of severity of disability (number    1.
   of life states). More degrees you consider, more time is necessary to    Version 0.98g
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Revision 1.121  2006/03/16 17:45:01  lievre
   the probabibility to be observed in state j at the second wave conditional    * imach.c (Module): Comments concerning covariates added
   to be observed in state i at the first wave. Therefore the model is:  
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    * imach.c (Module): refinements in the computation of lli if
   is a covariate. If you want to have a more complex model than "constant and    status=-2 in order to have more reliable computation if stepm is
   age", you should modify the program where the markup    not 1 month. Version 0.98f
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
   The advantage that this computer programme claims, comes from that if the    status=-2 in order to have more reliable computation if stepm is
   delay between waves is not identical for each individual, or if some    not 1 month. Version 0.98f
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.119  2006/03/15 17:42:26  brouard
   hPijx is the probability to be    (Module): Bug if status = -2, the loglikelihood was
   observed in state i at age x+h conditional to the observed state i at age    computed as likelihood omitting the logarithm. Version O.98e
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.118  2006/03/14 18:20:07  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    (Module): varevsij Comments added explaining the second
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    table of variances if popbased=1 .
   and the contribution of each individual to the likelihood is simply hPijx.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Version 0.98d
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.117  2006/03/14 17:16:22  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): varevsij Comments added explaining the second
            Institut national d'études démographiques, Paris.    table of variances if popbased=1 .
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   from the European Union.    (Module): Function pstamp added
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Version 0.98d
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.116  2006/03/06 10:29:27  brouard
   **********************************************************************/    (Module): Variance-covariance wrong links and
      varian-covariance of ej. is needed (Saito).
 #include <math.h>  
 #include <stdio.h>    Revision 1.115  2006/02/27 12:17:45  brouard
 #include <stdlib.h>    (Module): One freematrix added in mlikeli! 0.98c
 #include <unistd.h>  
     Revision 1.114  2006/02/26 12:57:58  brouard
 #define MAXLINE 256    (Module): Some improvements in processing parameter
 #define FILENAMELENGTH 80    filename with strsep.
 /*#define DEBUG*/  
 #define windows    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    datafile was not closed, some imatrix were not freed and on matrix
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    allocation too.
   
 #define NINTERVMAX 8    Revision 1.112  2006/01/30 09:55:26  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.111  2006/01/25 20:38:18  brouard
 #define MAXN 20000    (Module): Lots of cleaning and bugs added (Gompertz)
 #define YEARM 12. /* Number of months per year */    (Module): Comments can be added in data file. Missing date values
 #define AGESUP 130    can be a simple dot '.'.
 #define AGEBASE 40  
     Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 int nvar;  
 static int cptcov;    Revision 1.109  2006/01/24 19:37:15  brouard
 int cptcovn;    (Module): Comments (lines starting with a #) are allowed in data.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.108  2006/01/19 18:05:42  lievre
 int ndeath=1; /* Number of dead states */    Gnuplot problem appeared...
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    To be fixed
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.107  2006/01/19 16:20:37  brouard
 int maxwav; /* Maxim number of waves */    Test existence of gnuplot in imach path
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.106  2006/01/19 13:24:36  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Some cleaning and links added in html output
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.105  2006/01/05 20:23:19  lievre
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    *** empty log message ***
 FILE *ficgp, *fichtm;  
 FILE *ficreseij;    Revision 1.104  2005/09/30 16:11:43  lievre
   char filerese[FILENAMELENGTH];    (Module): sump fixed, loop imx fixed, and simplifications.
  FILE  *ficresvij;    (Module): If the status is missing at the last wave but we know
   char fileresv[FILENAMELENGTH];    that the person is alive, then we can code his/her status as -2
  FILE  *ficresvpl;    (instead of missing=-1 in earlier versions) and his/her
   char fileresvpl[FILENAMELENGTH];    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
   
     Revision 1.103  2005/09/30 15:54:49  lievre
 #define NR_END 1    (Module): sump fixed, loop imx fixed, and simplifications.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 #define NRANSI  
 #define ITMAX 200    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 #define TOL 2.0e-4  
     Revision 1.100  2004/07/12 18:29:06  brouard
 #define CGOLD 0.3819660    Add version for Mac OS X. Just define UNIX in Makefile
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.98  2004/05/16 15:05:56  brouard
 #define TINY 1.0e-20    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 static double maxarg1,maxarg2;    state at each age, but using a Gompertz model: log u =a + b*age .
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    This is the basic analysis of mortality and should be done before any
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    other analysis, in order to test if the mortality estimated from the
      cross-longitudinal survey is different from the mortality estimated
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    from other sources like vital statistic data.
 #define rint(a) floor(a+0.5)  
     The same imach parameter file can be used but the option for mle should be -3.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Agnès, who wrote this part of the code, tried to keep most of the
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    former routines in order to include the new code within the former code.
   
 int imx;    The output is very simple: only an estimate of the intercept and of
 int stepm;    the slope with 95% confident intervals.
 /* Stepm, step in month: minimum step interpolation*/  
     Current limitations:
 int m,nb;    A) Even if you enter covariates, i.e. with the
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    B) There is no computation of Life Expectancy nor Life Table.
 double **pmmij;  
     Revision 1.97  2004/02/20 13:25:42  lievre
 double *weight;    Version 0.96d. Population forecasting command line is (temporarily)
 int **s; /* Status */    suppressed.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab;    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    rewritten within the same printf. Workaround: many printfs.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 /******************************************/    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 void replace(char *s, char*t)  
 {    Revision 1.94  2003/06/27 13:00:02  brouard
   int i;    Just cleaning
   int lg=20;  
   i=0;    Revision 1.93  2003/06/25 16:33:55  brouard
   lg=strlen(t);    (Module): On windows (cygwin) function asctime_r doesn't
   for(i=0; i<= lg; i++) {    exist so I changed back to asctime which exists.
     (s[i] = t[i]);    (Module): Version 0.96b
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.92  2003/06/25 16:30:45  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 int nbocc(char *s, char occ)  
 {    Revision 1.91  2003/06/25 15:30:29  brouard
   int i,j=0;    * imach.c (Repository): Duplicated warning errors corrected.
   int lg=20;    (Repository): Elapsed time after each iteration is now output. It
   i=0;    helps to forecast when convergence will be reached. Elapsed time
   lg=strlen(s);    is stamped in powell.  We created a new html file for the graphs
   for(i=0; i<= lg; i++) {    concerning matrix of covariance. It has extension -cov.htm.
   if  (s[i] == occ ) j++;  
   }    Revision 1.90  2003/06/24 12:34:15  brouard
   return j;    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.89  2003/06/24 12:30:52  brouard
   int i,lg,j,p;    (Module): Some bugs corrected for windows. Also, when
   i=0;    mle=-1 a template is output in file "or"mypar.txt with the design
   for(j=0; j<=strlen(t)-1; j++) {    of the covariance matrix to be input.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.87  2003/06/18 12:26:01  brouard
     (u[j] = t[j]);    Version 0.96
     u[p]='\0';  
   }    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
    for(j=0; j<= lg; j++) {    routine fileappend.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.85  2003/06/17 13:12:43  brouard
 }    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 /********************** nrerror ********************/    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 void nrerror(char error_text[])    assuming that the date of death was just one stepm after the
 {    interview.
   fprintf(stderr,"ERREUR ...\n");    (Repository): Because some people have very long ID (first column)
   fprintf(stderr,"%s\n",error_text);    we changed int to long in num[] and we added a new lvector for
   exit(1);    memory allocation. But we also truncated to 8 characters (left
 }    truncation)
 /*********************** vector *******************/    (Repository): No more line truncation errors.
 double *vector(int nl, int nh)  
 {    Revision 1.84  2003/06/13 21:44:43  brouard
   double *v;    * imach.c (Repository): Replace "freqsummary" at a correct
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    place. It differs from routine "prevalence" which may be called
   if (!v) nrerror("allocation failure in vector");    many times. Probs is memory consuming and must be used with
   return v-nl+NR_END;    parcimony.
 }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 /************************ free vector ******************/    Revision 1.83  2003/06/10 13:39:11  lievre
 void free_vector(double*v, int nl, int nh)    *** empty log message ***
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.82  2003/06/05 15:57:20  brouard
 }    Add log in  imach.c and  fullversion number is now printed.
   
 /************************ivector *******************************/  */
 int *ivector(long nl,long nh)  /*
 {     Interpolated Markov Chain
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Short summary of the programme:
   if (!v) nrerror("allocation failure in ivector");    
   return v-nl+NR_END;    This program computes Healthy Life Expectancies from
 }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 /******************free ivector **************************/    interviewed on their health status or degree of disability (in the
 void free_ivector(int *v, long nl, long nh)    case of a health survey which is our main interest) -2- at least a
 {    second wave of interviews ("longitudinal") which measure each change
   free((FREE_ARG)(v+nl-NR_END));    (if any) in individual health status.  Health expectancies are
 }    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 /******************* imatrix *******************************/    Maximum Likelihood of the parameters involved in the model.  The
 int **imatrix(long nrl, long nrh, long ncl, long nch)    simplest model is the multinomial logistic model where pij is the
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    probability to be observed in state j at the second wave
 {    conditional to be observed in state i at the first wave. Therefore
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   int **m;    'age' is age and 'sex' is a covariate. If you want to have a more
      complex model than "constant and age", you should modify the program
   /* allocate pointers to rows */    where the markup *Covariates have to be included here again* invites
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    you to do it.  More covariates you add, slower the
   if (!m) nrerror("allocation failure 1 in matrix()");    convergence.
   m += NR_END;  
   m -= nrl;    The advantage of this computer programme, compared to a simple
      multinomial logistic model, is clear when the delay between waves is not
      identical for each individual. Also, if a individual missed an
   /* allocate rows and set pointers to them */    intermediate interview, the information is lost, but taken into
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    account using an interpolation or extrapolation.  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    hPijx is the probability to be observed in state i at age x+h
   m[nrl] -= ncl;    conditional to the observed state i at age x. The delay 'h' can be
      split into an exact number (nh*stepm) of unobserved intermediate
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    states. This elementary transition (by month, quarter,
      semester or year) is modelled as a multinomial logistic.  The hPx
   /* return pointer to array of pointers to rows */    matrix is simply the matrix product of nh*stepm elementary matrices
   return m;    and the contribution of each individual to the likelihood is simply
 }    hPijx.
   
 /****************** free_imatrix *************************/    Also this programme outputs the covariance matrix of the parameters but also
 void free_imatrix(m,nrl,nrh,ncl,nch)    of the life expectancies. It also computes the period (stable) prevalence. 
       int **m;    
       long nch,ncl,nrh,nrl;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
      /* free an int matrix allocated by imatrix() */             Institut national d'études démographiques, Paris.
 {    This software have been partly granted by Euro-REVES, a concerted action
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    from the European Union.
   free((FREE_ARG) (m+nrl-NR_END));    It is copyrighted identically to a GNU software product, ie programme and
 }    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    
   double **m;    **********************************************************************/
   /*
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    main
   if (!m) nrerror("allocation failure 1 in matrix()");    read parameterfile
   m += NR_END;    read datafile
   m -= nrl;    concatwav
     freqsummary
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if (mle >= 1)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      mlikeli
   m[nrl] += NR_END;    print results files
   m[nrl] -= ncl;    if mle==1 
        computes hessian
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    read end of parameter file: agemin, agemax, bage, fage, estepm
   return m;        begin-prev-date,...
 }    open gnuplot file
     open html file
 /*************************free matrix ************************/    period (stable) prevalence
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)     for age prevalim()
 {    h Pij x
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    variance of p varprob
   free((FREE_ARG)(m+nrl-NR_END));    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
 /******************* ma3x *******************************/    prevalence()
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)     movingaverage()
 {    varevsij() 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    if popbased==1 varevsij(,popbased)
   double ***m;    total life expectancies
     Variance of period (stable) prevalence
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));   end
   if (!m) nrerror("allocation failure 1 in matrix()");  */
   m += NR_END;  
   m -= nrl;  
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));   
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <math.h>
   m[nrl] += NR_END;  #include <stdio.h>
   m[nrl] -= ncl;  #include <stdlib.h>
   #include <string.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <unistd.h>
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #include <limits.h>
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #include <sys/types.h>
   m[nrl][ncl] += NR_END;  #include <sys/stat.h>
   m[nrl][ncl] -= nll;  #include <errno.h>
   for (j=ncl+1; j<=nch; j++)  extern int errno;
     m[nrl][j]=m[nrl][j-1]+nlay;  
    /* #include <sys/time.h> */
   for (i=nrl+1; i<=nrh; i++) {  #include <time.h>
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #include "timeval.h"
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  /* #include <libintl.h> */
   }  /* #define _(String) gettext (String) */
   return m;  
 }  #define MAXLINE 256
   
 /*************************free ma3x ************************/  #define GNUPLOTPROGRAM "gnuplot"
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 {  #define FILENAMELENGTH 132
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   free((FREE_ARG)(m+nrl-NR_END));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /***************** f1dim *************************/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 extern int ncom;  
 extern double *pcom,*xicom;  #define NINTERVMAX 8
 extern double (*nrfunc)(double []);  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 double f1dim(double x)  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   int j;  #define YEARM 12. /* Number of months per year */
   double f;  #define AGESUP 130
   double *xt;  #define AGEBASE 40
    #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   xt=vector(1,ncom);  #ifdef UNIX
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define DIRSEPARATOR '/'
   f=(*nrfunc)(xt);  #define CHARSEPARATOR "/"
   free_vector(xt,1,ncom);  #define ODIRSEPARATOR '\\'
   return f;  #else
 }  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
 /*****************brent *************************/  #define ODIRSEPARATOR '/'
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #endif
 {  
   int iter;  /* $Id$ */
   double a,b,d,etemp;  /* $State$ */
   double fu,fv,fw,fx;  
   double ftemp;  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char fullversion[]="$Revision$ $Date$"; 
   double e=0.0;  char strstart[80];
    char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   a=(ax < cx ? ax : cx);  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   b=(ax > cx ? ax : cx);  int nvar;
   x=w=v=bx;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   fw=fv=fx=(*f)(x);  int npar=NPARMAX;
   for (iter=1;iter<=ITMAX;iter++) {  int nlstate=2; /* Number of live states */
     xm=0.5*(a+b);  int ndeath=1; /* Number of dead states */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int popbased=0;
     printf(".");fflush(stdout);  
 #ifdef DEBUG  int *wav; /* Number of waves for this individuual 0 is possible */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int maxwav; /* Maxim number of waves */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int jmin, jmax; /* min, max spacing between 2 waves */
 #endif  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int gipmx, gsw; /* Global variables on the number of contributions 
       *xmin=x;                     to the likelihood and the sum of weights (done by funcone)*/
       return fx;  int mle, weightopt;
     }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     ftemp=fu;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     if (fabs(e) > tol1) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       r=(x-w)*(fx-fv);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       q=(x-v)*(fx-fw);  double jmean; /* Mean space between 2 waves */
       p=(x-v)*q-(x-w)*r;  double **oldm, **newm, **savm; /* Working pointers to matrices */
       q=2.0*(q-r);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       if (q > 0.0) p = -p;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       q=fabs(q);  FILE *ficlog, *ficrespow;
       etemp=e;  int globpr; /* Global variable for printing or not */
       e=d;  double fretone; /* Only one call to likelihood */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  long ipmx; /* Number of contributions */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  double sw; /* Sum of weights */
       else {  char filerespow[FILENAMELENGTH];
         d=p/q;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
         u=x+d;  FILE *ficresilk;
         if (u-a < tol2 || b-u < tol2)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
           d=SIGN(tol1,xm-x);  FILE *ficresprobmorprev;
       }  FILE *fichtm, *fichtmcov; /* Html File */
     } else {  FILE *ficreseij;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char filerese[FILENAMELENGTH];
     }  FILE *ficresstdeij;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char fileresstde[FILENAMELENGTH];
     fu=(*f)(u);  FILE *ficrescveij;
     if (fu <= fx) {  char filerescve[FILENAMELENGTH];
       if (u >= x) a=x; else b=x;  FILE  *ficresvij;
       SHFT(v,w,x,u)  char fileresv[FILENAMELENGTH];
         SHFT(fv,fw,fx,fu)  FILE  *ficresvpl;
         } else {  char fileresvpl[FILENAMELENGTH];
           if (u < x) a=u; else b=u;  char title[MAXLINE];
           if (fu <= fw || w == x) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
             v=w;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
             w=u;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
             fv=fw;  char command[FILENAMELENGTH];
             fw=fu;  int  outcmd=0;
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
             fv=fu;  
           }  char filelog[FILENAMELENGTH]; /* Log file */
         }  char filerest[FILENAMELENGTH];
   }  char fileregp[FILENAMELENGTH];
   nrerror("Too many iterations in brent");  char popfile[FILENAMELENGTH];
   *xmin=x;  
   return fx;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 }  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 /****************** mnbrak ***********************/  struct timezone tzp;
   extern int gettimeofday();
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  struct tm tmg, tm, tmf, *gmtime(), *localtime();
             double (*func)(double))  long time_value;
 {  extern long time();
   double ulim,u,r,q, dum;  char strcurr[80], strfor[80];
   double fu;  
    char *endptr;
   *fa=(*func)(*ax);  long lval;
   *fb=(*func)(*bx);  double dval;
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  #define NR_END 1
       SHFT(dum,*fb,*fa,dum)  #define FREE_ARG char*
       }  #define FTOL 1.0e-10
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  #define NRANSI 
   while (*fb > *fc) {  #define ITMAX 200 
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  #define TOL 2.0e-4 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define CGOLD 0.3819660 
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define ZEPS 1.0e-10 
     if ((*bx-u)*(u-*cx) > 0.0) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define GOLD 1.618034 
       fu=(*func)(u);  #define GLIMIT 100.0 
       if (fu < *fc) {  #define TINY 1.0e-20 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  static double maxarg1,maxarg2;
           }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       u=ulim;    
       fu=(*func)(u);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     } else {  #define rint(a) floor(a+0.5)
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  static double sqrarg;
     }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     SHFT(*ax,*bx,*cx,u)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       SHFT(*fa,*fb,*fc,fu)  int agegomp= AGEGOMP;
       }  
 }  int imx; 
   int stepm=1;
 /*************** linmin ************************/  /* Stepm, step in month: minimum step interpolation*/
   
 int ncom;  int estepm;
 double *pcom,*xicom;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 double (*nrfunc)(double []);  
    int m,nb;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  long *num;
 {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double brent(double ax, double bx, double cx,  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
                double (*f)(double), double tol, double *xmin);  double **pmmij, ***probs;
   double f1dim(double x);  double *ageexmed,*agecens;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  double dateintmean=0;
               double *fc, double (*func)(double));  
   int j;  double *weight;
   double xx,xmin,bx,ax;  int **s; /* Status */
   double fx,fb,fa;  double *agedc, **covar, idx;
    int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   ncom=n;  double *lsurv, *lpop, *tpop;
   pcom=vector(1,n);  
   xicom=vector(1,n);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   nrfunc=func;  double ftolhess; /* Tolerance for computing hessian */
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  /**************** split *************************/
     xicom[j]=xi[j];  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   }  {
   ax=0.0;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   xx=1.0;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    */ 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    char  *ss;                            /* pointer */
 #ifdef DEBUG    int   l1, l2;                         /* length counters */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    l1 = strlen(path );                   /* length of path */
   for (j=1;j<=n;j++) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     xi[j] *= xmin;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     p[j] += xi[j];    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   }      strcpy( name, path );               /* we got the fullname name because no directory */
   free_vector(xicom,1,n);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   free_vector(pcom,1,n);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 /*************** powell ************************/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        return( GLOCK_ERROR_GETCWD );
             double (*func)(double []))      }
 {      /* got dirc from getcwd*/
   void linmin(double p[], double xi[], int n, double *fret,      printf(" DIRC = %s \n",dirc);
               double (*func)(double []));    } else {                              /* strip direcotry from path */
   int i,ibig,j;      ss++;                               /* after this, the filename */
   double del,t,*pt,*ptt,*xit;      l2 = strlen( ss );                  /* length of filename */
   double fp,fptt;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double *xits;      strcpy( name, ss );         /* save file name */
   pt=vector(1,n);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   ptt=vector(1,n);      dirc[l1-l2] = 0;                    /* add zero */
   xit=vector(1,n);      printf(" DIRC2 = %s \n",dirc);
   xits=vector(1,n);    }
   *fret=(*func)(p);    /* We add a separator at the end of dirc if not exists */
   for (j=1;j<=n;j++) pt[j]=p[j];    l1 = strlen( dirc );                  /* length of directory */
   for (*iter=1;;++(*iter)) {    if( dirc[l1-1] != DIRSEPARATOR ){
     fp=(*fret);      dirc[l1] =  DIRSEPARATOR;
     ibig=0;      dirc[l1+1] = 0; 
     del=0.0;      printf(" DIRC3 = %s \n",dirc);
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    }
     for (i=1;i<=n;i++)    ss = strrchr( name, '.' );            /* find last / */
       printf(" %d %.12f",i, p[i]);    if (ss >0){
     printf("\n");      ss++;
     for (i=1;i<=n;i++) {      strcpy(ext,ss);                     /* save extension */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      l1= strlen( name);
       fptt=(*fret);      l2= strlen(ss)+1;
 #ifdef DEBUG      strncpy( finame, name, l1-l2);
       printf("fret=%lf \n",*fret);      finame[l1-l2]= 0;
 #endif    }
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);    return( 0 );                          /* we're done */
       if (fabs(fptt-(*fret)) > del) {  }
         del=fabs(fptt-(*fret));  
         ibig=i;  
       }  /******************************************/
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  void replace_back_to_slash(char *s, char*t)
       for (j=1;j<=n;j++) {  {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    int i;
         printf(" x(%d)=%.12e",j,xit[j]);    int lg=0;
       }    i=0;
       for(j=1;j<=n;j++)    lg=strlen(t);
         printf(" p=%.12e",p[j]);    for(i=0; i<= lg; i++) {
       printf("\n");      (s[i] = t[i]);
 #endif      if (t[i]== '\\') s[i]='/';
     }    }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  }
 #ifdef DEBUG  
       int k[2],l;  int nbocc(char *s, char occ)
       k[0]=1;  {
       k[1]=-1;    int i,j=0;
       printf("Max: %.12e",(*func)(p));    int lg=20;
       for (j=1;j<=n;j++)    i=0;
         printf(" %.12e",p[j]);    lg=strlen(s);
       printf("\n");    for(i=0; i<= lg; i++) {
       for(l=0;l<=1;l++) {    if  (s[i] == occ ) j++;
         for (j=1;j<=n;j++) {    }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    return j;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  void cutv(char *u,char *v, char*t, char occ)
       }  {
 #endif    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
        gives u="abcedf" and v="ghi2j" */
       free_vector(xit,1,n);    int i,lg,j,p=0;
       free_vector(xits,1,n);    i=0;
       free_vector(ptt,1,n);    for(j=0; j<=strlen(t)-1; j++) {
       free_vector(pt,1,n);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       return;    }
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    lg=strlen(t);
     for (j=1;j<=n;j++) {    for(j=0; j<p; j++) {
       ptt[j]=2.0*p[j]-pt[j];      (u[j] = t[j]);
       xit[j]=p[j]-pt[j];    }
       pt[j]=p[j];       u[p]='\0';
     }  
     fptt=(*func)(ptt);     for(j=0; j<= lg; j++) {
     if (fptt < fp) {      if (j>=(p+1))(v[j-p-1] = t[j]);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    }
       if (t < 0.0) {  }
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /********************** nrerror ********************/
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  void nrerror(char error_text[])
         }  {
 #ifdef DEBUG    fprintf(stderr,"ERREUR ...\n");
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    fprintf(stderr,"%s\n",error_text);
         for(j=1;j<=n;j++)    exit(EXIT_FAILURE);
           printf(" %.12e",xit[j]);  }
         printf("\n");  /*********************** vector *******************/
 #endif  double *vector(int nl, int nh)
       }  {
     }    double *v;
   }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 }    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
 /**** Prevalence limit ****************/  }
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /************************ free vector ******************/
 {  void free_vector(double*v, int nl, int nh)
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  {
      matrix by transitions matrix until convergence is reached */    free((FREE_ARG)(v+nl-NR_END));
   }
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  /************************ivector *******************************/
   double **matprod2();  int *ivector(long nl,long nh)
   double **out, cov[NCOVMAX], **pmij();  {
   double **newm;    int *v;
   double agefin, delaymax=50 ; /* Max number of years to converge */    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   for (ii=1;ii<=nlstate+ndeath;ii++)    return v-nl+NR_END;
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /******************free ivector **************************/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  void free_ivector(int *v, long nl, long nh)
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  {
     newm=savm;    free((FREE_ARG)(v+nl-NR_END));
     /* Covariates have to be included here again */  }
     cov[1]=1.;  
     cov[2]=agefin;  /************************lvector *******************************/
     if (cptcovn>0){  long *lvector(long nl,long nh)
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}  {
     }    long *v;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
     savm=oldm;    return v-nl+NR_END;
     oldm=newm;  }
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /******************free lvector **************************/
       min=1.;  void free_lvector(long *v, long nl, long nh)
       max=0.;  {
       for(i=1; i<=nlstate; i++) {    free((FREE_ARG)(v+nl-NR_END));
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  /******************* imatrix *******************************/
         max=FMAX(max,prlim[i][j]);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         min=FMIN(min,prlim[i][j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       }  { 
       maxmin=max-min;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       maxmax=FMAX(maxmax,maxmin);    int **m; 
     }    
     if(maxmax < ftolpl){    /* allocate pointers to rows */ 
       return prlim;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
   }    m += NR_END; 
 }    m -= nrl; 
     
 /*************** transition probabilities **********/    
     /* allocate rows and set pointers to them */ 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double s1, s2;    m[nrl] += NR_END; 
   /*double t34;*/    m[nrl] -= ncl; 
   int i,j,j1, nc, ii, jj;    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     for(i=1; i<= nlstate; i++){    
     for(j=1; j<i;j++){    /* return pointer to array of pointers to rows */ 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return m; 
         /*s2 += param[i][j][nc]*cov[nc];*/  } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /****************** free_imatrix *************************/
       }  void free_imatrix(m,nrl,nrh,ncl,nch)
       ps[i][j]=s2;        int **m;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        long nch,ncl,nrh,nrl; 
     }       /* free an int matrix allocated by imatrix() */ 
     for(j=i+1; j<=nlstate+ndeath;j++){  { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free((FREE_ARG) (m+nrl-NR_END)); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  } 
       }  
       ps[i][j]=s2;  /******************* matrix *******************************/
     }  double **matrix(long nrl, long nrh, long ncl, long nch)
   }  {
   for(i=1; i<= nlstate; i++){    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
      s1=0;    double **m;
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(j=i+1; j<=nlstate+ndeath; j++)    if (!m) nrerror("allocation failure 1 in matrix()");
       s1+=exp(ps[i][j]);    m += NR_END;
     ps[i][i]=1./(s1+1.);    m -= nrl;
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(j=i+1; j<=nlstate+ndeath; j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl] += NR_END;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    m[nrl] -= ncl;
   } /* end i */  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    return m;
     for(jj=1; jj<= nlstate+ndeath; jj++){    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       ps[ii][jj]=0;     */
       ps[ii][ii]=1;  }
     }  
   }  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      printf("%lf ",ps[ii][jj]);    free((FREE_ARG)(m+nrl-NR_END));
    }  }
     printf("\n ");  
     }  /******************* ma3x *******************************/
     printf("\n ");printf("%lf ",cov[2]);*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 /*  {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   goto end;*/    double ***m;
     return ps;  
 }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /**************** Product of 2 matrices ******************/    m += NR_END;
     m -= nrl;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    m[nrl] += NR_END;
   /* in, b, out are matrice of pointers which should have been initialized    m[nrl] -= ncl;
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     for(k=ncolol; k<=ncoloh; k++)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    m[nrl][ncl] += NR_END;
         out[i][k] +=in[i][j]*b[j][k];    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
   return out;      m[nrl][j]=m[nrl][j-1]+nlay;
 }    
     for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 /************* Higher Matrix Product ***************/      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    }
 {    return m; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
      duration (i.e. until             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  }
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  /*************************free ma3x ************************/
      included manually here.  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
      */    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   int i, j, d, h, k;    free((FREE_ARG)(m+nrl-NR_END));
   double **out, cov[NCOVMAX];  }
   double **newm;  
   /*************** function subdirf ***********/
   /* Hstepm could be zero and should return the unit matrix */  char *subdirf(char fileres[])
   for (i=1;i<=nlstate+ndeath;i++)  {
     for (j=1;j<=nlstate+ndeath;j++){    /* Caution optionfilefiname is hidden */
       oldm[i][j]=(i==j ? 1.0 : 0.0);    strcpy(tmpout,optionfilefiname);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    strcat(tmpout,"/"); /* Add to the right */
     }    strcat(tmpout,fileres);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    return tmpout;
   for(h=1; h <=nhstepm; h++){  }
     for(d=1; d <=hstepm; d++){  
       newm=savm;  /*************** function subdirf2 ***********/
       /* Covariates have to be included here again */  char *subdirf2(char fileres[], char *preop)
       cov[1]=1.;  {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    
       if (cptcovn>0){    /* Caution optionfilefiname is hidden */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    strcat(tmpout,preop);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    strcat(tmpout,fileres);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    return tmpout;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  }
       savm=oldm;  
       oldm=newm;  /*************** function subdirf3 ***********/
     }  char *subdirf3(char fileres[], char *preop, char *preop2)
     for(i=1; i<=nlstate+ndeath; i++)  {
       for(j=1;j<=nlstate+ndeath;j++) {    
         po[i][j][h]=newm[i][j];    /* Caution optionfilefiname is hidden */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    strcpy(tmpout,optionfilefiname);
          */    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
   } /* end h */    strcat(tmpout,preop2);
   return po;    strcat(tmpout,fileres);
 }    return tmpout;
   }
   
 /*************** log-likelihood *************/  /***************** f1dim *************************/
 double func( double *x)  extern int ncom; 
 {  extern double *pcom,*xicom;
   int i, ii, j, k, mi, d;  extern double (*nrfunc)(double []); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];   
   double **out;  double f1dim(double x) 
   double sw; /* Sum of weights */  { 
   double lli; /* Individual log likelihood */    int j; 
   long ipmx;    double f;
   /*extern weight */    double *xt; 
   /* We are differentiating ll according to initial status */   
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    xt=vector(1,ncom); 
   /*for(i=1;i<imx;i++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 printf(" %d\n",s[4][i]);    f=(*nrfunc)(xt); 
   */    free_vector(xt,1,ncom); 
     return f; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;  } 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
        for(mi=1; mi<= wav[i]-1; mi++){  /*****************brent *************************/
       for (ii=1;ii<=nlstate+ndeath;ii++)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  { 
             for(d=0; d<dh[mi][i]; d++){    int iter; 
         newm=savm;    double a,b,d,etemp;
           cov[1]=1.;    double fu,fv,fw,fx;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double ftemp;
           if (cptcovn>0){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];    double e=0.0; 
             }   
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    a=(ax < cx ? ax : cx); 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    b=(ax > cx ? ax : cx); 
           savm=oldm;    x=w=v=bx; 
           oldm=newm;    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
       } /* end mult */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
          /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      printf(".");fflush(stdout);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      fprintf(ficlog,".");fflush(ficlog);
       ipmx +=1;  #ifdef DEBUG
       sw += weight[i];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     } /* end of wave */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   } /* end of individual */  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        *xmin=x; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        return fx; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      } 
   return -l;      ftemp=fu;
 }      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
 /*********** Maximum Likelihood Estimation ***************/        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        if (q > 0.0) p = -p; 
 {        q=fabs(q); 
   int i,j, iter;        etemp=e; 
   double **xi,*delti;        e=d; 
   double fret;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   xi=matrix(1,npar,1,npar);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (i=1;i<=npar;i++)        else { 
     for (j=1;j<=npar;j++)          d=p/q; 
       xi[i][j]=(i==j ? 1.0 : 0.0);          u=x+d; 
   printf("Powell\n");          if (u-a < tol2 || b-u < tol2) 
   powell(p,xi,npar,ftol,&iter,&fret,func);            d=SIGN(tol1,xm-x); 
         } 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      } else { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
 }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
 /**** Computes Hessian and covariance matrix ***/      if (fu <= fx) { 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        if (u >= x) a=x; else b=x; 
 {        SHFT(v,w,x,u) 
   double  **a,**y,*x,pd;          SHFT(fv,fw,fx,fu) 
   double **hess;          } else { 
   int i, j,jk;            if (u < x) a=u; else b=u; 
   int *indx;            if (fu <= fw || w == x) { 
               v=w; 
   double hessii(double p[], double delta, int theta, double delti[]);              w=u; 
   double hessij(double p[], double delti[], int i, int j);              fv=fw; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;              fw=fu; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
               fv=fu; 
   hess=matrix(1,npar,1,npar);            } 
           } 
   printf("\nCalculation of the hessian matrix. Wait...\n");    } 
   for (i=1;i<=npar;i++){    nrerror("Too many iterations in brent"); 
     printf("%d",i);fflush(stdout);    *xmin=x; 
     hess[i][i]=hessii(p,ftolhess,i,delti);    return fx; 
     /*printf(" %f ",p[i]);*/  } 
   }  
   /****************** mnbrak ***********************/
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       if (j>i) {              double (*func)(double)) 
         printf(".%d%d",i,j);fflush(stdout);  { 
         hess[i][j]=hessij(p,delti,i,j);    double ulim,u,r,q, dum;
         hess[j][i]=hess[i][j];    double fu; 
       }   
     }    *fa=(*func)(*ax); 
   }    *fb=(*func)(*bx); 
   printf("\n");    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        SHFT(dum,*fb,*fa,dum) 
          } 
   a=matrix(1,npar,1,npar);    *cx=(*bx)+GOLD*(*bx-*ax); 
   y=matrix(1,npar,1,npar);    *fc=(*func)(*cx); 
   x=vector(1,npar);    while (*fb > *fc) { 
   indx=ivector(1,npar);      r=(*bx-*ax)*(*fb-*fc); 
   for (i=1;i<=npar;i++)      q=(*bx-*cx)*(*fb-*fa); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   ludcmp(a,npar,indx,&pd);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   for (j=1;j<=npar;j++) {      if ((*bx-u)*(u-*cx) > 0.0) { 
     for (i=1;i<=npar;i++) x[i]=0;        fu=(*func)(u); 
     x[j]=1;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     lubksb(a,npar,indx,x);        fu=(*func)(u); 
     for (i=1;i<=npar;i++){        if (fu < *fc) { 
       matcov[i][j]=x[i];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     }            SHFT(*fb,*fc,fu,(*func)(u)) 
   }            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   printf("\n#Hessian matrix#\n");        u=ulim; 
   for (i=1;i<=npar;i++) {        fu=(*func)(u); 
     for (j=1;j<=npar;j++) {      } else { 
       printf("%.3e ",hess[i][j]);        u=(*cx)+GOLD*(*cx-*bx); 
     }        fu=(*func)(u); 
     printf("\n");      } 
   }      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   /* Recompute Inverse */        } 
   for (i=1;i<=npar;i++)  } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  /*************** linmin ************************/
   
   /*  printf("\n#Hessian matrix recomputed#\n");  int ncom; 
   double *pcom,*xicom;
   for (j=1;j<=npar;j++) {  double (*nrfunc)(double []); 
     for (i=1;i<=npar;i++) x[i]=0;   
     x[j]=1;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     lubksb(a,npar,indx,x);  { 
     for (i=1;i<=npar;i++){    double brent(double ax, double bx, double cx, 
       y[i][j]=x[i];                 double (*f)(double), double tol, double *xmin); 
       printf("%.3e ",y[i][j]);    double f1dim(double x); 
     }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     printf("\n");                double *fc, double (*func)(double)); 
   }    int j; 
   */    double xx,xmin,bx,ax; 
     double fx,fb,fa;
   free_matrix(a,1,npar,1,npar);   
   free_matrix(y,1,npar,1,npar);    ncom=n; 
   free_vector(x,1,npar);    pcom=vector(1,n); 
   free_ivector(indx,1,npar);    xicom=vector(1,n); 
   free_matrix(hess,1,npar,1,npar);    nrfunc=func; 
     for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
 }      xicom[j]=xi[j]; 
     } 
 /*************** hessian matrix ****************/    ax=0.0; 
 double hessii( double x[], double delta, int theta, double delti[])    xx=1.0; 
 {    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   int i;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   int l=1, lmax=20;  #ifdef DEBUG
   double k1,k2;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double p2[NPARMAX+1];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double res;  #endif
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    for (j=1;j<=n;j++) { 
   double fx;      xi[j] *= xmin; 
   int k=0,kmax=10;      p[j] += xi[j]; 
   double l1;    } 
     free_vector(xicom,1,n); 
   fx=func(x);    free_vector(pcom,1,n); 
   for (i=1;i<=npar;i++) p2[i]=x[i];  } 
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  char *asc_diff_time(long time_sec, char ascdiff[])
     delts=delt;  {
     for(k=1 ; k <kmax; k=k+1){    long sec_left, days, hours, minutes;
       delt = delta*(l1*k);    days = (time_sec) / (60*60*24);
       p2[theta]=x[theta] +delt;    sec_left = (time_sec) % (60*60*24);
       k1=func(p2)-fx;    hours = (sec_left) / (60*60) ;
       p2[theta]=x[theta]-delt;    sec_left = (sec_left) %(60*60);
       k2=func(p2)-fx;    minutes = (sec_left) /60;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    sec_left = (sec_left) % (60);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
          return ascdiff;
 #ifdef DEBUG  }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif  /*************** powell ************************/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){              double (*func)(double [])) 
         k=kmax;  { 
       }    void linmin(double p[], double xi[], int n, double *fret, 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */                double (*func)(double [])); 
         k=kmax; l=lmax*10.;    int i,ibig,j; 
       }    double del,t,*pt,*ptt,*xit;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    double fp,fptt;
         delts=delt;    double *xits;
       }    int niterf, itmp;
     }  
   }    pt=vector(1,n); 
   delti[theta]=delts;    ptt=vector(1,n); 
   return res;    xit=vector(1,n); 
      xits=vector(1,n); 
 }    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
 double hessij( double x[], double delti[], int thetai,int thetaj)    for (*iter=1;;++(*iter)) { 
 {      fp=(*fret); 
   int i;      ibig=0; 
   int l=1, l1, lmax=20;      del=0.0; 
   double k1,k2,k3,k4,res,fx;      last_time=curr_time;
   double p2[NPARMAX+1];      (void) gettimeofday(&curr_time,&tzp);
   int k;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   fx=func(x);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   for (k=1; k<=2; k++) {      */
     for (i=1;i<=npar;i++) p2[i]=x[i];     for (i=1;i<=n;i++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;        printf(" %d %.12f",i, p[i]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fprintf(ficlog," %d %.12lf",i, p[i]);
     k1=func(p2)-fx;        fprintf(ficrespow," %.12lf", p[i]);
        }
     p2[thetai]=x[thetai]+delti[thetai]/k;      printf("\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      fprintf(ficlog,"\n");
     k2=func(p2)-fx;      fprintf(ficrespow,"\n");fflush(ficrespow);
        if(*iter <=3){
     p2[thetai]=x[thetai]-delti[thetai]/k;        tm = *localtime(&curr_time.tv_sec);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        strcpy(strcurr,asctime(&tm));
     k3=func(p2)-fx;  /*       asctime_r(&tm,strcurr); */
          forecast_time=curr_time; 
     p2[thetai]=x[thetai]-delti[thetai]/k;        itmp = strlen(strcurr);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     k4=func(p2)-fx;          strcurr[itmp-1]='\0';
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 #ifdef DEBUG        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for(niterf=10;niterf<=30;niterf+=10){
 #endif          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   }          tmf = *localtime(&forecast_time.tv_sec);
   return res;  /*      asctime_r(&tmf,strfor); */
 }          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
 /************** Inverse of matrix **************/          if(strfor[itmp-1]=='\n')
 void ludcmp(double **a, int n, int *indx, double *d)          strfor[itmp-1]='\0';
 {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   int i,imax,j,k;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double big,dum,sum,temp;        }
   double *vv;      }
        for (i=1;i<=n;i++) { 
   vv=vector(1,n);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   *d=1.0;        fptt=(*fret); 
   for (i=1;i<=n;i++) {  #ifdef DEBUG
     big=0.0;        printf("fret=%lf \n",*fret);
     for (j=1;j<=n;j++)        fprintf(ficlog,"fret=%lf \n",*fret);
       if ((temp=fabs(a[i][j])) > big) big=temp;  #endif
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        printf("%d",i);fflush(stdout);
     vv[i]=1.0/big;        fprintf(ficlog,"%d",i);fflush(ficlog);
   }        linmin(p,xit,n,fret,func); 
   for (j=1;j<=n;j++) {        if (fabs(fptt-(*fret)) > del) { 
     for (i=1;i<j;i++) {          del=fabs(fptt-(*fret)); 
       sum=a[i][j];          ibig=i; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        } 
       a[i][j]=sum;  #ifdef DEBUG
     }        printf("%d %.12e",i,(*fret));
     big=0.0;        fprintf(ficlog,"%d %.12e",i,(*fret));
     for (i=j;i<=n;i++) {        for (j=1;j<=n;j++) {
       sum=a[i][j];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       for (k=1;k<j;k++)          printf(" x(%d)=%.12e",j,xit[j]);
         sum -= a[i][k]*a[k][j];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       a[i][j]=sum;        }
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for(j=1;j<=n;j++) {
         big=dum;          printf(" p=%.12e",p[j]);
         imax=i;          fprintf(ficlog," p=%.12e",p[j]);
       }        }
     }        printf("\n");
     if (j != imax) {        fprintf(ficlog,"\n");
       for (k=1;k<=n;k++) {  #endif
         dum=a[imax][k];      } 
         a[imax][k]=a[j][k];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         a[j][k]=dum;  #ifdef DEBUG
       }        int k[2],l;
       *d = -(*d);        k[0]=1;
       vv[imax]=vv[j];        k[1]=-1;
     }        printf("Max: %.12e",(*func)(p));
     indx[j]=imax;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     if (a[j][j] == 0.0) a[j][j]=TINY;        for (j=1;j<=n;j++) {
     if (j != n) {          printf(" %.12e",p[j]);
       dum=1.0/(a[j][j]);          fprintf(ficlog," %.12e",p[j]);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
   free_vector(vv,1,n);  /* Doesn't work */        for(l=0;l<=1;l++) {
 ;          for (j=1;j<=n;j++) {
 }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 void lubksb(double **a, int n, int *indx, double b[])            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 {          }
   int i,ii=0,ip,j;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double sum;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          }
   for (i=1;i<=n;i++) {  #endif
     ip=indx[i];  
     sum=b[ip];  
     b[ip]=b[i];        free_vector(xit,1,n); 
     if (ii)        free_vector(xits,1,n); 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        free_vector(ptt,1,n); 
     else if (sum) ii=i;        free_vector(pt,1,n); 
     b[i]=sum;        return; 
   }      } 
   for (i=n;i>=1;i--) {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     sum=b[i];      for (j=1;j<=n;j++) { 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        ptt[j]=2.0*p[j]-pt[j]; 
     b[i]=sum/a[i][i];        xit[j]=p[j]-pt[j]; 
   }        pt[j]=p[j]; 
 }      } 
       fptt=(*func)(ptt); 
 /************ Frequencies ********************/      if (fptt < fp) { 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 {  /* Some frequencies */        if (t < 0.0) { 
            linmin(p,xit,n,fret,func); 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          for (j=1;j<=n;j++) { 
   double ***freq; /* Frequencies */            xi[j][ibig]=xi[j][n]; 
   double *pp;            xi[j][n]=xit[j]; 
   double pos;          }
   FILE *ficresp;  #ifdef DEBUG
   char fileresp[FILENAMELENGTH];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   pp=vector(1,nlstate);          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   strcpy(fileresp,"p");            fprintf(ficlog," %.12e",xit[j]);
   strcat(fileresp,fileres);          }
   if((ficresp=fopen(fileresp,"w"))==NULL) {          printf("\n");
     printf("Problem with prevalence resultfile: %s\n", fileresp);          fprintf(ficlog,"\n");
     exit(0);  #endif
   }        }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      } 
   j1=0;    } 
   } 
   j=cptcovn;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /**** Prevalence limit (stable or period prevalence)  ****************/
   
   for(k1=1; k1<=j;k1++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
    for(i1=1; i1<=ncodemax[k1];i1++){  {
        j1++;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
         for (i=-1; i<=nlstate+ndeath; i++)    
          for (jk=-1; jk<=nlstate+ndeath; jk++)      int i, ii,j,k;
            for(m=agemin; m <= agemax+3; m++)    double min, max, maxmin, maxmax,sumnew=0.;
              freq[i][jk][m]=0;    double **matprod2();
            double **out, cov[NCOVMAX], **pmij();
        for (i=1; i<=imx; i++) {    double **newm;
          bool=1;    double agefin, delaymax=50 ; /* Max number of years to converge */
          if  (cptcovn>0) {  
            for (z1=1; z1<=cptcovn; z1++)    for (ii=1;ii<=nlstate+ndeath;ii++)
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;      for (j=1;j<=nlstate+ndeath;j++){
          }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (bool==1) {      }
            for(m=firstpass; m<=lastpass-1; m++){  
              if(agev[m][i]==0) agev[m][i]=agemax+1;     cov[1]=1.;
              if(agev[m][i]==1) agev[m][i]=agemax+2;   
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
            }      newm=savm;
          }      /* Covariates have to be included here again */
        }       cov[2]=agefin;
         if  (cptcovn>0) {    
          fprintf(ficresp, "\n#Variable");        for (k=1; k<=cptcovn;k++) {
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
        }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
        fprintf(ficresp, "\n#");        }
        for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for (k=1; k<=cptcovprod;k++)
        fprintf(ficresp, "\n");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          
   for(i=(int)agemin; i <= (int)agemax+3; i++){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     if(i==(int)agemax+3)        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       printf("Total");        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     else      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       printf("Age %d", i);  
     for(jk=1; jk <=nlstate ; jk++){      savm=oldm;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      oldm=newm;
         pp[jk] += freq[jk][m][i];      maxmax=0.;
     }      for(j=1;j<=nlstate;j++){
     for(jk=1; jk <=nlstate ; jk++){        min=1.;
       for(m=-1, pos=0; m <=0 ; m++)        max=0.;
         pos += freq[jk][m][i];        for(i=1; i<=nlstate; i++) {
       if(pp[jk]>=1.e-10)          sumnew=0;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       else          prlim[i][j]= newm[i][j]/(1-sumnew);
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          max=FMAX(max,prlim[i][j]);
     }          min=FMIN(min,prlim[i][j]);
     for(jk=1; jk <=nlstate ; jk++){        }
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)        maxmin=max-min;
         pp[jk] += freq[jk][m][i];        maxmax=FMAX(maxmax,maxmin);
     }      }
     for(jk=1,pos=0; jk <=nlstate ; jk++)      if(maxmax < ftolpl){
       pos += pp[jk];        return prlim;
     for(jk=1; jk <=nlstate ; jk++){      }
       if(pos>=1.e-5)    }
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  }
       else  
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  /*************** transition probabilities ***************/ 
       if( i <= (int) agemax){  
         if(pos>=1.e-5)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  {
       else    double s1, s2;
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    /*double t34;*/
       }    int i,j,j1, nc, ii, jj;
     }  
     for(jk=-1; jk <=nlstate+ndeath; jk++)      for(i=1; i<= nlstate; i++){
       for(m=-1; m <=nlstate+ndeath; m++)        for(j=1; j<i;j++){
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     if(i <= (int) agemax)            /*s2 += param[i][j][nc]*cov[nc];*/
       fprintf(ficresp,"\n");            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     printf("\n");  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     }          }
     }          ps[i][j]=s2;
  }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
          }
   fclose(ficresp);        for(j=i+1; j<=nlstate+ndeath;j++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   free_vector(pp,1,nlstate);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 }  /* End of Freq */          }
           ps[i][j]=s2;
 /************* Waves Concatenation ***************/        }
       }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      /*ps[3][2]=1;*/
 {      
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      for(i=1; i<= nlstate; i++){
      Death is a valid wave (if date is known).        s1=0;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for(j=1; j<i; j++)
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          s1+=exp(ps[i][j]);
      and mw[mi+1][i]. dh depends on stepm.        for(j=i+1; j<=nlstate+ndeath; j++)
      */          s1+=exp(ps[i][j]);
         ps[i][i]=1./(s1+1.);
   int i, mi, m;        for(j=1; j<i; j++)
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          ps[i][j]= exp(ps[i][j])*ps[i][i];
 float sum=0.;        for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
   for(i=1; i<=imx; i++){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     mi=0;      } /* end i */
     m=firstpass;      
     while(s[m][i] <= nlstate){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       if(s[m][i]>=1)        for(jj=1; jj<= nlstate+ndeath; jj++){
         mw[++mi][i]=m;          ps[ii][jj]=0;
       if(m >=lastpass)          ps[ii][ii]=1;
         break;        }
       else      }
         m++;      
     }/* end while */  
     if (s[m][i] > nlstate){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       mi++;     /* Death is another wave */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       /* if(mi==0)  never been interviewed correctly before death */  /*         printf("ddd %lf ",ps[ii][jj]); */
          /* Only death is a correct wave */  /*       } */
       mw[mi][i]=m;  /*       printf("\n "); */
     }  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
     wav[i]=mi;         /*
     if(mi==0)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        goto end;*/
   }      return ps;
   }
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){  /**************** Product of 2 matrices ******************/
       if (stepm <=0)  
         dh[mi][i]=1;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       else{  {
         if (s[mw[mi+1][i]][i] > nlstate) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           if(j=0) j=1;  /* Survives at least one month after exam */    /* in, b, out are matrice of pointers which should have been initialized 
         }       before: only the contents of out is modified. The function returns
         else{       a pointer to pointers identical to out */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    long i, j, k;
           k=k+1;    for(i=nrl; i<= nrh; i++)
           if (j >= jmax) jmax=j;      for(k=ncolol; k<=ncoloh; k++)
           else if (j <= jmin)jmin=j;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           sum=sum+j;          out[i][k] +=in[i][j]*b[j][k];
         }  
         jk= j/stepm;    return out;
         jl= j -jk*stepm;  }
         ju= j -(jk+1)*stepm;  
         if(jl <= -ju)  
           dh[mi][i]=jk;  /************* Higher Matrix Product ***************/
         else  
           dh[mi][i]=jk+1;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         if(dh[mi][i]==0)  {
           dh[mi][i]=1; /* At least one step */    /* Computes the transition matrix starting at age 'age' over 
       }       'nhstepm*hstepm*stepm' months (i.e. until
     }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   }       nhstepm*hstepm matrices. 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 }       (typically every 2 years instead of every month which is too big 
 /*********** Tricode ****************************/       for the memory).
 void tricode(int *Tvar, int **nbcode, int imx)       Model is determined by parameters x and covariates have to be 
 {       included manually here. 
   int Ndum[80],ij, k, j, i;  
   int cptcode=0;       */
   for (k=0; k<79; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;    int i, j, d, h, k;
      double **out, cov[NCOVMAX];
   for (j=1; j<=cptcovn; j++) {    double **newm;
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);    /* Hstepm could be zero and should return the unit matrix */
       Ndum[ij]++;    for (i=1;i<=nlstate+ndeath;i++)
       if (ij > cptcode) cptcode=ij;      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[i][j]=(i==j ? 1.0 : 0.0);
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/        po[i][j][0]=(i==j ? 1.0 : 0.0);
     for (i=0; i<=cptcode; i++) {      }
       if(Ndum[i]!=0) ncodemax[j]++;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(h=1; h <=nhstepm; h++){
        for(d=1; d <=hstepm; d++){
     ij=1;        newm=savm;
     for (i=1; i<=ncodemax[j]; i++) {        /* Covariates have to be included here again */
       for (k=0; k<=79; k++) {        cov[1]=1.;
         if (Ndum[k] != 0) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           nbcode[Tvar[j]][ij]=k;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           ij++;        for (k=1; k<=cptcovage;k++)
         }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         if (ij > ncodemax[j]) break;        for (k=1; k<=cptcovprod;k++)
       }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }  
   }    
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 /*********** Health Expectancies ****************/                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        oldm=newm;
 {      }
   /* Health expectancies */      for(i=1; i<=nlstate+ndeath; i++)
   int i, j, nhstepm, hstepm, h;        for(j=1;j<=nlstate+ndeath;j++) {
   double age, agelim,hf;          po[i][j][h]=newm[i][j];
   double ***p3mat;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             */
   fprintf(ficreseij,"# Health expectancies\n");        }
   fprintf(ficreseij,"# Age");    } /* end h */
   for(i=1; i<=nlstate;i++)    return po;
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficreseij," %1d-%1d",i,j);  
   fprintf(ficreseij,"\n");  
   /*************** log-likelihood *************/
   hstepm=1*YEARM; /*  Every j years of age (in month) */  double func( double *x)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  {
     int i, ii, j, k, mi, d, kk;
   agelim=AGESUP;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double **out;
     /* nhstepm age range expressed in number of stepm */    double sw; /* Sum of weights */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    double lli; /* Individual log likelihood */
     /* Typically if 20 years = 20*12/6=40 stepm */    int s1, s2;
     if (stepm >= YEARM) hstepm=1;    double bbh, survp;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    long ipmx;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*extern weight */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* We are differentiating ll according to initial status */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     */
     for(i=1; i<=nlstate;i++)    cov[1]=1.;
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
           eij[i][j][(int)age] +=p3mat[i][j][h];  
         }    if(mle==1){
          for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     hf=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (stepm >= YEARM) hf=stepm/YEARM;        for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficreseij,"%.0f",age );          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate;j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     fprintf(ficreseij,"\n");          for(d=0; d<dh[mi][i]; d++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************ Variance ******************/            }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* Variance of health expectancies */            savm=oldm;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            oldm=newm;
   double **newm;          } /* end mult */
   double **dnewm,**doldm;        
   int i, j, nhstepm, hstepm, h;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   int k, cptcode;          /* But now since version 0.9 we anticipate for bias at large stepm.
    double *xp;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double **gp, **gm;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double ***gradg, ***trgradg;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double ***p3mat;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double age,agelim;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   int theta;           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
    fprintf(ficresvij,"# Covariances of life expectancies\n");           * -stepm/2 to stepm/2 .
   fprintf(ficresvij,"# Age");           * For stepm=1 the results are the same as for previous versions of Imach.
   for(i=1; i<=nlstate;i++)           * For stepm > 1 the results are less biased than in previous versions. 
     for(j=1; j<=nlstate;j++)           */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          s1=s[mw[mi][i]][i];
   fprintf(ficresvij,"\n");          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   xp=vector(1,npar);          /* bias bh is positive if real duration
   dnewm=matrix(1,nlstate,1,npar);           * is higher than the multiple of stepm and negative otherwise.
   doldm=matrix(1,nlstate,1,nlstate);           */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   hstepm=1*YEARM; /* Every year of age */          if( s2 > nlstate){ 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            /* i.e. if s2 is a death state and if the date of death is known 
   agelim = AGESUP;               then the contribution to the likelihood is the probability to 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */               die between last step unit time and current  step unit time, 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */               which is also equal to probability to die before dh 
     if (stepm >= YEARM) hstepm=1;               minus probability to die before dh-stepm . 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */               In version up to 0.92 likelihood was computed
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          as if date of death was unknown. Death was treated as any other
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          health state: the date of the interview describes the actual state
     gp=matrix(0,nhstepm,1,nlstate);          and not the date of a change in health state. The former idea was
     gm=matrix(0,nhstepm,1,nlstate);          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
     for(theta=1; theta <=npar; theta++){          introduced the exact date of death then we should have modified
       for(i=1; i<=npar; i++){ /* Computes gradient */          the contribution of an exact death to the likelihood. This new
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            and month of death but the probability to survive from last
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          interview up to one month before death multiplied by the
       for(j=1; j<= nlstate; j++){          probability to die within a month. Thanks to Chris
         for(h=0; h<=nhstepm; h++){          Jackson for correcting this bug.  Former versions increased
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          mortality artificially. The bad side is that we add another loop
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          which slows down the processing. The difference can be up to 10%
         }          lower mortality.
       }            */
                lli=log(out[s1][s2] - savm[s1][s2]);
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            } else if  (s2==-2) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for (j=1,survp=0. ; j<=nlstate; j++) 
       for(j=1; j<= nlstate; j++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for(h=0; h<=nhstepm; h++){            /*survp += out[s1][j]; */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            lli= log(survp);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          }
         }          
       }          else if  (s2==-4) { 
       for(j=1; j<= nlstate; j++)            for (j=3,survp=0. ; j<=nlstate; j++)  
         for(h=0; h<=nhstepm; h++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            lli= log(survp); 
         }          } 
     } /* End theta */  
           else if  (s2==-5) { 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(h=0; h<=nhstepm; h++)            lli= log(survp); 
       for(j=1; j<=nlstate;j++)          } 
         for(theta=1; theta <=npar; theta++)          
           trgradg[h][j][theta]=gradg[h][theta][j];          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for(i=1;i<=nlstate;i++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       for(j=1;j<=nlstate;j++)          } 
         vareij[i][j][(int)age] =0.;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for(h=0;h<=nhstepm;h++){          /*if(lli ==000.0)*/
       for(k=0;k<=nhstepm;k++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          ipmx +=1;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          sw += weight[i];
         for(i=1;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(j=1;j<=nlstate;j++)        } /* end of wave */
             vareij[i][j][(int)age] += doldm[i][j];      } /* end of individual */
       }    }  else if(mle==2){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     h=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (stepm >= YEARM) h=stepm/YEARM;        for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficresvij,"%.0f ",age );          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate;j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     fprintf(ficresvij,"\n");          for(d=0; d<=dh[mi][i]; d++){
     free_matrix(gp,0,nhstepm,1,nlstate);            newm=savm;
     free_matrix(gm,0,nhstepm,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   } /* End age */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_vector(xp,1,npar);            savm=oldm;
   free_matrix(doldm,1,nlstate,1,npar);            oldm=newm;
   free_matrix(dnewm,1,nlstate,1,nlstate);          } /* end mult */
         
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /************ Variance of prevlim ******************/          bbh=(double)bh[mi][i]/(double)stepm; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 {          ipmx +=1;
   /* Variance of prevalence limit */          sw += weight[i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **newm;        } /* end of wave */
   double **dnewm,**doldm;      } /* end of individual */
   int i, j, nhstepm, hstepm;    }  else if(mle==3){  /* exponential inter-extrapolation */
   int k, cptcode;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *xp;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double *gp, *gm;        for(mi=1; mi<= wav[i]-1; mi++){
   double **gradg, **trgradg;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double age,agelim;            for (j=1;j<=nlstate+ndeath;j++){
   int theta;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            }
   fprintf(ficresvpl,"# Age");          for(d=0; d<dh[mi][i]; d++){
   for(i=1; i<=nlstate;i++)            newm=savm;
       fprintf(ficresvpl," %1d-%1d",i,i);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficresvpl,"\n");            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   xp=vector(1,npar);            }
   dnewm=matrix(1,nlstate,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   doldm=matrix(1,nlstate,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   hstepm=1*YEARM; /* Every year of age */            oldm=newm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          } /* end mult */
   agelim = AGESUP;        
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          s1=s[mw[mi][i]][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          s2=s[mw[mi+1][i]][i];
     if (stepm >= YEARM) hstepm=1;          bbh=(double)bh[mi][i]/(double)stepm; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     gradg=matrix(1,npar,1,nlstate);          ipmx +=1;
     gp=vector(1,nlstate);          sw += weight[i];
     gm=vector(1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     for(theta=1; theta <=npar; theta++){      } /* end of individual */
       for(i=1; i<=npar; i++){ /* Computes gradient */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for(mi=1; mi<= wav[i]-1; mi++){
       for(i=1;i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         gp[i] = prlim[i][i];            for (j=1;j<=nlstate+ndeath;j++){
                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++) /* Computes gradient */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(d=0; d<dh[mi][i]; d++){
       for(i=1;i<=nlstate;i++)            newm=savm;
         gm[i] = prlim[i][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
       for(i=1;i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            }
     } /* End theta */          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     trgradg =matrix(1,nlstate,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     for(j=1; j<=nlstate;j++)            oldm=newm;
       for(theta=1; theta <=npar; theta++)          } /* end mult */
         trgradg[j][theta]=gradg[theta][j];        
           s1=s[mw[mi][i]][i];
     for(i=1;i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
       varpl[i][(int)age] =0.;          if( s2 > nlstate){ 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            lli=log(out[s1][s2] - savm[s1][s2]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          }else{
     for(i=1;i<=nlstate;i++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          }
           ipmx +=1;
     fprintf(ficresvpl,"%.0f ",age );          sw += weight[i];
     for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     fprintf(ficresvpl,"\n");        } /* end of wave */
     free_vector(gp,1,nlstate);      } /* end of individual */
     free_vector(gm,1,nlstate);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     free_matrix(gradg,1,npar,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_matrix(trgradg,1,nlstate,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   } /* End age */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   free_vector(xp,1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   free_matrix(doldm,1,nlstate,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(dnewm,1,nlstate,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /***********************************************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /**************** Main Program *****************/            }
 /***********************************************/          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /*int main(int argc, char *argv[])*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 int main()            savm=oldm;
 {            oldm=newm;
           } /* end mult */
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;        
   double agedeb, agefin,hf;          s1=s[mw[mi][i]][i];
   double agemin=1.e20, agemax=-1.e20;          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double fret;          ipmx +=1;
   double **xi,tmp,delta;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double dum; /* Dummy variable */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double ***p3mat;        } /* end of wave */
   int *indx;      } /* end of individual */
   char line[MAXLINE], linepar[MAXLINE];    } /* End of if */
   char title[MAXLINE];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   char filerest[FILENAMELENGTH];    return -l;
   char fileregp[FILENAMELENGTH];  }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;  /*************** log-likelihood *************/
   int sdeb, sfin; /* Status at beginning and end */  double funcone( double *x)
   int c,  h , cpt,l;  {
   int ju,jl, mi;    /* Same as likeli but slower because of a lot of printf and if */
   int i1,j1, k1,jk,aa,bb, stepsize;    int i, ii, j, k, mi, d, kk;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      double **out;
   int hstepm, nhstepm;    double lli; /* Individual log likelihood */
   double bage, fage, age, agelim, agebase;    double llt;
   double ftolpl=FTOL;    int s1, s2;
   double **prlim;    double bbh, survp;
   double *severity;    /*extern weight */
   double ***param; /* Matrix of parameters */    /* We are differentiating ll according to initial status */
   double  *p;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double **matcov; /* Matrix of covariance */    /*for(i=1;i<imx;i++) 
   double ***delti3; /* Scale */      printf(" %d\n",s[4][i]);
   double *delti; /* Scale */    */
   double ***eij, ***vareij;    cov[1]=1.;
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char z[1]="c", occ;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 #include <sys/time.h>      for(mi=1; mi<= wav[i]-1; mi++){
 #include <time.h>        for (ii=1;ii<=nlstate+ndeath;ii++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          for (j=1;j<=nlstate+ndeath;j++){
   /* long total_usecs;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   struct timeval start_time, end_time;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
            }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   printf("\nIMACH, Version 0.63");          for (kk=1; kk<=cptcovage;kk++) {
   printf("\nEnter the parameter file name: ");            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
 #ifdef windows          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   scanf("%s",pathtot);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   getcwd(pathcd, size);          savm=oldm;
   cutv(path,optionfile,pathtot,'\\');          oldm=newm;
   chdir(path);        } /* end mult */
   replace(pathc,path);        
 #endif        s1=s[mw[mi][i]][i];
 #ifdef unix        s2=s[mw[mi+1][i]][i];
   scanf("%s",optionfile);        bbh=(double)bh[mi][i]/(double)stepm; 
 #endif        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
 /*-------- arguments in the command line --------*/         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
   strcpy(fileres,"r");          lli=log(out[s1][s2] - savm[s1][s2]);
   strcat(fileres, optionfile);        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
   /*---------arguments file --------*/            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        }else if (mle==1){
     printf("Problem with optionfile %s\n",optionfile);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     goto end;        } else if(mle==2){
   }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
   strcpy(filereso,"o");          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   strcat(filereso,fileres);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   if((ficparo=fopen(filereso,"w"))==NULL) {          lli=log(out[s1][s2]); /* Original formula */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   }          lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
   /* Reads comments: lines beginning with '#' */        ipmx +=1;
   while((c=getc(ficpar))=='#' && c!= EOF){        sw += weight[i];
     ungetc(c,ficpar);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fgets(line, MAXLINE, ficpar);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     puts(line);        if(globpr){
     fputs(line,ficparo);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   }   %11.6f %11.6f %11.6f ", \
   ungetc(c,ficpar);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);            llt +=ll[k]*gipmx/gsw;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
   covar=matrix(1,NCOVMAX,1,n);              fprintf(ficresilk," %10.6f\n", -llt);
   if (strlen(model)<=1) cptcovn=0;        }
   else {      } /* end of wave */
     j=0;    } /* end of individual */
     j=nbocc(model,'+');    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     cptcovn=j+1;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
   ncovmodel=2+cptcovn;      gipmx=ipmx;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      gsw=sw;
      }
   /* Read guess parameters */    return -l;
   /* Reads comments: lines beginning with '#' */  }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /*************** function likelione ***********/
     puts(line);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     fputs(line,ficparo);  {
   }    /* This routine should help understanding what is done with 
   ungetc(c,ficpar);       the selection of individuals/waves and
         to check the exact contribution to the likelihood.
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       Plotting could be done.
     for(i=1; i <=nlstate; i++)     */
     for(j=1; j <=nlstate+ndeath-1; j++){    int k;
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);    if(*globpri !=0){ /* Just counts and sums, no printings */
       printf("%1d%1d",i,j);      strcpy(fileresilk,"ilk"); 
       for(k=1; k<=ncovmodel;k++){      strcat(fileresilk,fileres);
         fscanf(ficpar," %lf",&param[i][j][k]);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf(" %lf",param[i][j][k]);        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficparo," %lf",param[i][j][k]);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }      }
       fscanf(ficpar,"\n");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       printf("\n");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       fprintf(ficparo,"\n");      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     }      for(k=1; k<=nlstate; k++) 
          fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   p=param[1][1];    }
    
   /* Reads comments: lines beginning with '#' */    *fretone=(*funcone)(p);
   while((c=getc(ficpar))=='#' && c!= EOF){    if(*globpri !=0){
     ungetc(c,ficpar);      fclose(ficresilk);
     fgets(line, MAXLINE, ficpar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     puts(line);      fflush(fichtm); 
     fputs(line,ficparo);    } 
   }    return;
   ungetc(c,ficpar);  }
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  /*********** Maximum Likelihood Estimation ***************/
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       fscanf(ficpar,"%1d%1d",&i1,&j1);  {
       printf("%1d%1d",i,j);    int i,j, iter;
       fprintf(ficparo,"%1d%1d",i1,j1);    double **xi;
       for(k=1; k<=ncovmodel;k++){    double fret;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    double fretone; /* Only one call to likelihood */
         printf(" %le",delti3[i][j][k]);    /*  char filerespow[FILENAMELENGTH];*/
         fprintf(ficparo," %le",delti3[i][j][k]);    xi=matrix(1,npar,1,npar);
       }    for (i=1;i<=npar;i++)
       fscanf(ficpar,"\n");      for (j=1;j<=npar;j++)
       printf("\n");        xi[i][j]=(i==j ? 1.0 : 0.0);
       fprintf(ficparo,"\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     }    strcpy(filerespow,"pow"); 
   }    strcat(filerespow,fileres);
   delti=delti3[1][1];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", filerespow);
   /* Reads comments: lines beginning with '#' */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     fgets(line, MAXLINE, ficpar);    for (i=1;i<=nlstate;i++)
     puts(line);      for(j=1;j<=nlstate+ndeath;j++)
     fputs(line,ficparo);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   }    fprintf(ficrespow,"\n");
   ungetc(c,ficpar);  
      powell(p,xi,npar,ftol,&iter,&fret,func);
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){    free_matrix(xi,1,npar,1,npar);
     fscanf(ficpar,"%s",&str);    fclose(ficrespow);
     printf("%s",str);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficparo,"%s",str);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(j=1; j <=i; j++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);  }
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }  /**** Computes Hessian and covariance matrix ***/
     fscanf(ficpar,"\n");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     printf("\n");  {
     fprintf(ficparo,"\n");    double  **a,**y,*x,pd;
   }    double **hess;
   for(i=1; i <=npar; i++)    int i, j,jk;
     for(j=i+1;j<=npar;j++)    int *indx;
       matcov[i][j]=matcov[j][i];  
        double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   printf("\n");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
    if(mle==1){    double gompertz(double p[]);
     /*-------- data file ----------*/    hess=matrix(1,npar,1,npar);
     if((ficres =fopen(fileres,"w"))==NULL) {  
       printf("Problem with resultfile: %s\n", fileres);goto end;    printf("\nCalculation of the hessian matrix. Wait...\n");
     }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficres,"#%s\n",version);    for (i=1;i<=npar;i++){
          printf("%d",i);fflush(stdout);
     if((fic=fopen(datafile,"r"))==NULL)    {      fprintf(ficlog,"%d",i);fflush(ficlog);
       printf("Problem with datafile: %s\n", datafile);goto end;     
     }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
     n= lastobs;      /*  printf(" %f ",p[i]);
     severity = vector(1,maxwav);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     outcome=imatrix(1,maxwav+1,1,n);    }
     num=ivector(1,n);    
     moisnais=vector(1,n);    for (i=1;i<=npar;i++) {
     annais=vector(1,n);      for (j=1;j<=npar;j++)  {
     moisdc=vector(1,n);        if (j>i) { 
     andc=vector(1,n);          printf(".%d%d",i,j);fflush(stdout);
     agedc=vector(1,n);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     cod=ivector(1,n);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     weight=vector(1,n);          
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          hess[j][i]=hess[i][j];    
     mint=matrix(1,maxwav,1,n);          /*printf(" %lf ",hess[i][j]);*/
     anint=matrix(1,maxwav,1,n);        }
     s=imatrix(1,maxwav+1,1,n);      }
     adl=imatrix(1,maxwav+1,1,n);        }
     tab=ivector(1,NCOVMAX);    printf("\n");
     ncodemax=ivector(1,8);    fprintf(ficlog,"\n");
   
     i=1;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     while (fgets(line, MAXLINE, fic) != NULL)    {    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       if ((i >= firstobs) && (i <=lastobs)) {    
            a=matrix(1,npar,1,npar);
         for (j=maxwav;j>=1;j--){    y=matrix(1,npar,1,npar);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    x=vector(1,npar);
           strcpy(line,stra);    indx=ivector(1,npar);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1;i<=npar;i++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         }    ludcmp(a,npar,indx,&pd);
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    for (j=1;j<=npar;j++) {
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      lubksb(a,npar,indx,x);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      }
         for (j=ncov;j>=1;j--){    }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    printf("\n#Hessian matrix#\n");
         num[i]=atol(stra);    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]),  (mint[5][i]), (anint[5][i]), (s[5][i]),  (mint[6][i]), (anint[6][i]), (s[6][i]));*/      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
         i=i+1;        fprintf(ficlog,"%.3e ",hess[i][j]);
       }      }
     }      printf("\n");
       fprintf(ficlog,"\n");
     /*scanf("%d",i);*/    }
   imx=i-1; /* Number of individuals */  
     /* Recompute Inverse */
   /* Calculation of the number of parameter from char model*/    for (i=1;i<=npar;i++)
   Tvar=ivector(1,8);          for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
        ludcmp(a,npar,indx,&pd);
   if (strlen(model) >1){  
     j=0;    /*  printf("\n#Hessian matrix recomputed#\n");
     j=nbocc(model,'+');  
     cptcovn=j+1;    for (j=1;j<=npar;j++) {
          for (i=1;i<=npar;i++) x[i]=0;
     strcpy(modelsav,model);      x[j]=1;
     if (j==0) {      lubksb(a,npar,indx,x);
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);      for (i=1;i<=npar;i++){ 
     }        y[i][j]=x[i];
     else {        printf("%.3e ",y[i][j]);
       for(i=j; i>=1;i--){        fprintf(ficlog,"%.3e ",y[i][j]);
         cutv(stra,strb,modelsav,'+');      }
         if (strchr(strb,'*')) {      printf("\n");
           cutv(strd,strc,strb,'*');      fprintf(ficlog,"\n");
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;    }
           cutv(strb,strc,strd,'V');    */
           for (k=1; k<=lastobs;k++)  
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    free_matrix(a,1,npar,1,npar);
         }    free_matrix(y,1,npar,1,npar);
         else {cutv(strd,strc,strb,'V');    free_vector(x,1,npar);
         Tvar[i+1]=atoi(strc);    free_ivector(indx,1,npar);
         }    free_matrix(hess,1,npar,1,npar);
         strcpy(modelsav,stra);    
       }  
       cutv(strd,strc,stra,'V');  }
       Tvar[1]=atoi(strc);  
     }  /*************** hessian matrix ****************/
   }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   /*printf("tvar=%d ",Tvar[1]);  {
   scanf("%d ",i);*/    int i;
     fclose(fic);    int l=1, lmax=20;
     double k1,k2;
     if (weightopt != 1) { /* Maximisation without weights*/    double p2[NPARMAX+1];
       for(i=1;i<=n;i++) weight[i]=1.0;    double res;
     }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     /*-calculation of age at interview from date of interview and age at death -*/    double fx;
     agev=matrix(1,maxwav,1,imx);    int k=0,kmax=10;
        double l1;
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fx=func(x);
       for(m=1; (m<= maxwav); m++){    for (i=1;i<=npar;i++) p2[i]=x[i];
         if(s[m][i] >0){    for(l=0 ; l <=lmax; l++){
           if (s[m][i] == nlstate+1) {      l1=pow(10,l);
             if(agedc[i]>0)      delts=delt;
               if(moisdc[i]!=99 && andc[i]!=9999)      for(k=1 ; k <kmax; k=k+1){
               agev[m][i]=agedc[i];        delt = delta*(l1*k);
             else{        p2[theta]=x[theta] +delt;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        k1=func(p2)-fx;
               agev[m][i]=-1;        p2[theta]=x[theta]-delt;
             }        k2=func(p2)-fx;
           }        /*res= (k1-2.0*fx+k2)/delt/delt; */
           else if(s[m][i] !=9){ /* Should no more exist */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        
             if(mint[m][i]==99 || anint[m][i]==9999)  #ifdef DEBUG
               agev[m][i]=1;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             else if(agev[m][i] <agemin){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
               agemin=agev[m][i];  #endif
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
             }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
             else if(agev[m][i] >agemax){          k=kmax;
               agemax=agev[m][i];        }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
             }          k=kmax; l=lmax*10.;
             /*agev[m][i]=anint[m][i]-annais[i];*/        }
             /*   agev[m][i] = age[i]+2*m;*/        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           }          delts=delt;
           else { /* =9 */        }
             agev[m][i]=1;      }
             s[m][i]=-1;    }
           }    delti[theta]=delts;
         }    return res; 
         else /*= 0 Unknown */    
           agev[m][i]=1;  }
       }  
      double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     }  {
     for (i=1; i<=imx; i++)  {    int i;
       for(m=1; (m<= maxwav); m++){    int l=1, l1, lmax=20;
         if (s[m][i] > (nlstate+ndeath)) {    double k1,k2,k3,k4,res,fx;
           printf("Error: Wrong value in nlstate or ndeath\n");      double p2[NPARMAX+1];
           goto end;    int k;
         }  
       }    fx=func(x);
     }    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     free_vector(severity,1,maxwav);      k1=func(p2)-fx;
     free_imatrix(outcome,1,maxwav+1,1,n);    
     free_vector(moisnais,1,n);      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_vector(annais,1,n);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     free_matrix(mint,1,maxwav,1,n);      k2=func(p2)-fx;
     free_matrix(anint,1,maxwav,1,n);    
     free_vector(moisdc,1,n);      p2[thetai]=x[thetai]-delti[thetai]/k;
     free_vector(andc,1,n);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
        
     wav=ivector(1,imx);      p2[thetai]=x[thetai]-delti[thetai]/k;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      k4=func(p2)-fx;
          res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     /* Concatenates waves */  #ifdef DEBUG
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
 Tcode=ivector(1,100);    }
    nbcode=imatrix(1,nvar,1,8);      return res;
    ncodemax[1]=1;  }
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
    /************** Inverse of matrix **************/
    codtab=imatrix(1,100,1,10);  void ludcmp(double **a, int n, int *indx, double *d) 
    h=0;  { 
    m=pow(2,cptcovn);    int i,imax,j,k; 
      double big,dum,sum,temp; 
    for(k=1;k<=cptcovn; k++){    double *vv; 
      for(i=1; i <=(m/pow(2,k));i++){   
        for(j=1; j <= ncodemax[k]; j++){    vv=vector(1,n); 
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){    *d=1.0; 
            h++;    for (i=1;i<=n;i++) { 
            if (h>m) h=1;codtab[h][k]=j;      big=0.0; 
          }      for (j=1;j<=n;j++) 
        }        if ((temp=fabs(a[i][j])) > big) big=temp; 
      }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
    }      vv[i]=1.0/big; 
     } 
    /*for(i=1; i <=m ;i++){    for (j=1;j<=n;j++) { 
      for(k=1; k <=cptcovn; k++){      for (i=1;i<j;i++) { 
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);        sum=a[i][j]; 
      }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      printf("\n");        a[i][j]=sum; 
    }*/      } 
    /*scanf("%d",i);*/      big=0.0; 
          for (i=j;i<=n;i++) { 
    /* Calculates basic frequencies. Computes observed prevalence at single age        sum=a[i][j]; 
        and prints on file fileres'p'. */        for (k=1;k<j;k++) 
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
   /*scanf("%d ",i);*/          big=dum; 
           imax=i; 
         } 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if (j != imax) { 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (k=1;k<=n;k++) { 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          dum=a[imax][k]; 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          a[imax][k]=a[j][k]; 
              a[j][k]=dum; 
     /* For Powell, parameters are in a vector p[] starting at p[1]        } 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        *d = -(*d); 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        vv[imax]=vv[j]; 
          } 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
          if (j != n) { 
     /*--------- results files --------------*/        dum=1.0/(a[j][j]); 
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
          } 
    jk=1;    } 
    fprintf(ficres,"# Parameters\n");    free_vector(vv,1,n);  /* Doesn't work */
    printf("# Parameters\n");  ;
    for(i=1,jk=1; i <=nlstate; i++){  } 
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)  void lubksb(double **a, int n, int *indx, double b[]) 
          {  { 
            printf("%d%d ",i,k);    int i,ii=0,ip,j; 
            fprintf(ficres,"%1d%1d ",i,k);    double sum; 
            for(j=1; j <=ncovmodel; j++){   
              printf("%f ",p[jk]);    for (i=1;i<=n;i++) { 
              fprintf(ficres,"%f ",p[jk]);      ip=indx[i]; 
              jk++;      sum=b[ip]; 
            }      b[ip]=b[i]; 
            printf("\n");      if (ii) 
            fprintf(ficres,"\n");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
          }      else if (sum) ii=i; 
      }      b[i]=sum; 
    }    } 
     for (i=n;i>=1;i--) { 
     /* Computing hessian and covariance matrix */      sum=b[i]; 
     ftolhess=ftol; /* Usually correct */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     hesscov(matcov, p, npar, delti, ftolhess, func);      b[i]=sum/a[i][i]; 
     fprintf(ficres,"# Scales\n");    } 
     printf("# Scales\n");  } 
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){  void pstamp(FILE *fichier)
         if (j!=i) {  {
           fprintf(ficres,"%1d%1d",i,j);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           printf("%1d%1d",i,j);  }
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);  /************ Frequencies ********************/
             fprintf(ficres," %.5e",delti[jk]);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
             jk++;  {  /* Some frequencies */
           }    
           printf("\n");    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           fprintf(ficres,"\n");    int first;
         }    double ***freq; /* Frequencies */
       }    double *pp, **prop;
       }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        char fileresp[FILENAMELENGTH];
     k=1;    
     fprintf(ficres,"# Covariance\n");    pp=vector(1,nlstate);
     printf("# Covariance\n");    prop=matrix(1,nlstate,iagemin,iagemax+3);
     for(i=1;i<=npar;i++){    strcpy(fileresp,"p");
       /*  if (k>nlstate) k=1;    strcat(fileresp,fileres);
       i1=(i-1)/(ncovmodel*nlstate)+1;    if((ficresp=fopen(fileresp,"w"))==NULL) {
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       printf("%s%d%d",alph[k],i1,tab[i]);*/      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficres,"%3d",i);      exit(0);
       printf("%3d",i);    }
       for(j=1; j<=i;j++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         fprintf(ficres," %.5e",matcov[i][j]);    j1=0;
         printf(" %.5e",matcov[i][j]);    
       }    j=cptcoveff;
       fprintf(ficres,"\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       printf("\n");  
       k++;    first=1;
     }  
        for(k1=1; k1<=j;k1++){
     while((c=getc(ficpar))=='#' && c!= EOF){      for(i1=1; i1<=ncodemax[k1];i1++){
       ungetc(c,ficpar);        j1++;
       fgets(line, MAXLINE, ficpar);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       puts(line);          scanf("%d", i);*/
       fputs(line,ficparo);        for (i=-5; i<=nlstate+ndeath; i++)  
     }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     ungetc(c,ficpar);            for(m=iagemin; m <= iagemax+3; m++)
                freq[i][jk][m]=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
          for (i=1; i<=nlstate; i++)  
     if (fage <= 2) {        for(m=iagemin; m <= iagemax+3; m++)
       bage = agemin;          prop[i][m]=0;
       fage = agemax;        
     }        dateintsum=0;
         k2cpt=0;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        for (i=1; i<=imx; i++) {
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          bool=1;
 /*------------ gnuplot -------------*/          if  (cptcovn>0) {
 chdir(pathcd);            for (z1=1; z1<=cptcoveff; z1++) 
   if((ficgp=fopen("graph.plt","w"))==NULL) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     printf("Problem with file graph.gp");goto end;                bool=0;
   }          }
 #ifdef windows          if (bool==1){
   fprintf(ficgp,"cd \"%s\" \n",pathc);            for(m=firstpass; m<=lastpass; m++){
 #endif              k2=anint[m][i]+(mint[m][i]/12.);
 m=pow(2,cptcovn);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
  /* 1eme*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   for (cpt=1; cpt<= nlstate ; cpt ++) {                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
    for (k1=1; k1<= m ; k1 ++) {                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 #ifdef windows                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);                }
 #endif                
 #ifdef unix                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);                  dateintsum=dateintsum+k2;
 #endif                  k2cpt++;
                 }
 for (i=1; i<= nlstate ; i ++) {                /*}*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }        }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);         
     for (i=1; i<= nlstate ; i ++) {        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        pstamp(ficresp);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if  (cptcovn>0) {
 }          fprintf(ficresp, "\n#********** Variable "); 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      for (i=1; i<= nlstate ; i ++) {          fprintf(ficresp, "**********\n#");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1; i<=nlstate;i++) 
 }            fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        fprintf(ficresp, "\n");
 #ifdef unix        
 fprintf(ficgp,"\nset ter gif small size 400,300");        for(i=iagemin; i <= iagemax+3; i++){
 #endif          if(i==iagemax+3){
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            fprintf(ficlog,"Total");
    }          }else{
   }            if(first==1){
   /*2 eme*/              first=0;
               printf("See log file for details...\n");
   for (k1=1; k1<= m ; k1 ++) {            }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);            fprintf(ficlog,"Age %d", i);
              }
     for (i=1; i<= nlstate+1 ; i ++) {          for(jk=1; jk <=nlstate ; jk++){
       k=2*i;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              pp[jk] += freq[jk][m][i]; 
       for (j=1; j<= nlstate+1 ; j ++) {          }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for(jk=1; jk <=nlstate ; jk++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(m=-1, pos=0; m <=0 ; m++)
 }                pos += freq[jk][m][i];
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            if(pp[jk]>=1.e-10){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              if(first==1){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for (j=1; j<= nlstate+1 ; j ++) {              }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         else fprintf(ficgp," \%%*lf (\%%*lf)");            }else{
 }                if(first==1)
       fprintf(ficgp,"\" t\"\" w l 0,");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for (j=1; j<= nlstate+1 ; j ++) {            }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }            for(jk=1; jk <=nlstate ; jk++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       else fprintf(ficgp,"\" t\"\" w l 0,");              pp[jk] += freq[jk][m][i];
     }          }       
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   }            pos += pp[jk];
              posprop += prop[jk][i];
   /*3eme*/          }
           for(jk=1; jk <=nlstate ; jk++){
    for (k1=1; k1<= m ; k1 ++) {            if(pos>=1.e-5){
     for (cpt=1; cpt<= nlstate ; cpt ++) {              if(first==1)
       k=2+nlstate*(cpt-1);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for (i=1; i< nlstate ; i ++) {            }else{
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);              if(first==1)
       }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     }            }
    }            if( i <= iagemax){
                if(pos>=1.e-5){
   /* CV preval stat */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for (k1=1; k1<= m ; k1 ++) {                /*probs[i][jk][j1]= pp[jk]/pos;*/
     for (cpt=1; cpt<nlstate ; cpt ++) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       k=3;              }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);              else
       for (i=1; i< nlstate ; i ++)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         fprintf(ficgp,"+$%d",k+i+1);            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          }
                
       l=3+(nlstate+ndeath)*cpt;          for(jk=-1; jk <=nlstate+ndeath; jk++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            for(m=-1; m <=nlstate+ndeath; m++)
       for (i=1; i< nlstate ; i ++) {              if(freq[jk][m][i] !=0 ) {
         l=3+(nlstate+ndeath)*cpt;              if(first==1)
         fprintf(ficgp,"+$%d",l+i+1);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                }
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          if(i <= iagemax)
     }            fprintf(ficresp,"\n");
   }          if(first==1)
              printf("Others in log...\n");
   /* proba elementaires */          fprintf(ficlog,"\n");
   for(i=1,jk=1; i <=nlstate; i++){        }
     for(k=1; k <=(nlstate+ndeath); k++){      }
       if (k != i) {    }
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/    dateintmean=dateintsum/k2cpt; 
         for(j=1; j <=ncovmodel; j++){   
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);    fclose(ficresp);
           jk++;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           fprintf(ficgp,"\n");    free_vector(pp,1,nlstate);
         }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       }    /* End of Freq */
     }  }
   }  
   for(jk=1; jk <=m; jk++) {  /************ Prevalence ********************/
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   for(i=1; i <=nlstate; i++) {  {  
     for(k=1; k <=(nlstate+ndeath); k++){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       if (k != i) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);       We still use firstpass and lastpass as another selection.
         for(j=3; j <=ncovmodel; j++)    */
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   
         fprintf(ficgp,")/(1");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         for(k1=1; k1 <=(nlstate+ndeath); k1++)    double ***freq; /* Frequencies */
           if (k1 != i) {    double *pp, **prop;
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);    double pos,posprop; 
             for(j=3; j <=ncovmodel; j++)    double  y2; /* in fractional years */
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int iagemin, iagemax;
             fprintf(ficgp,")");  
           }    iagemin= (int) agemin;
         fprintf(ficgp,") t \"p%d%d\" ", i,k);    iagemax= (int) agemax;
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    /*pp=vector(1,nlstate);*/
       }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   }    j1=0;
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      
   }    j=cptcoveff;
      if (cptcovn<1) {j=1;ncodemax[1]=1;}
  fclose(ficgp);    
     for(k1=1; k1<=j;k1++){
     chdir(path);      for(i1=1; i1<=ncodemax[k1];i1++){
     free_matrix(agev,1,maxwav,1,imx);        j1++;
     free_ivector(wav,1,imx);        
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        for (i=1; i<=nlstate; i++)  
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          for(m=iagemin; m <= iagemax+3; m++)
                prop[i][m]=0.0;
     free_imatrix(s,1,maxwav+1,1,n);       
            for (i=1; i<=imx; i++) { /* Each individual */
              bool=1;
     free_ivector(num,1,n);          if  (cptcovn>0) {
     free_vector(agedc,1,n);            for (z1=1; z1<=cptcoveff; z1++) 
     free_vector(weight,1,n);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     /*free_matrix(covar,1,NCOVMAX,1,n);*/                bool=0;
     fclose(ficparo);          } 
     fclose(ficres);          if (bool==1) { 
    }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                  y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
    /*________fin mle=1_________*/              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                    if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     /* No more information from the sample is required now */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   /* Reads comments: lines beginning with '#' */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   while((c=getc(ficpar))=='#' && c!= EOF){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     ungetc(c,ficpar);                  prop[s[m][i]][iagemax+3] += weight[i]; 
     fgets(line, MAXLINE, ficpar);                } 
     puts(line);              }
     fputs(line,ficparo);            } /* end selection of waves */
   }          }
   ungetc(c,ficpar);        }
          for(i=iagemin; i <= iagemax+3; i++){  
           
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);            posprop += prop[jk][i]; 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          } 
 /*--------- index.htm --------*/  
           for(jk=1; jk <=nlstate ; jk++){     
   if((fichtm=fopen("index.htm","w"))==NULL)    {            if( i <=  iagemax){ 
     printf("Problem with index.htm \n");goto end;              if(posprop>=1.e-5){ 
   }                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n            } 
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          }/* end jk */ 
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>        }/* end i */ 
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      } /* end i1 */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    } /* end k1 */
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    /*free_vector(pp,1,nlstate);*/
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  }  /* End of prevalence */
   
  fprintf(fichtm," <li>Graphs</li>\n<p>");  /************* Waves Concatenation ***************/
   
  m=cptcovn;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  j1=0;       Death is a valid wave (if date is known).
  for(k1=1; k1<=m;k1++){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
    for(i1=1; i1<=ncodemax[k1];i1++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        j1++;       and mw[mi+1][i]. dh depends on stepm.
        if (cptcovn > 0) {       */
          fprintf(fichtm,"<hr>************ Results for covariates");  
          for (cpt=1; cpt<=cptcovn;cpt++)    int i, mi, m;
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
          fprintf(fichtm," ************\n<hr>");       double sum=0., jmean=0.;*/
        }    int first;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    int j, k=0,jk, ju, jl;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        double sum=0.;
        for(cpt=1; cpt<nlstate;cpt++){    first=0;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    jmin=1e+5;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    jmax=-1;
        }    jmean=0.;
     for(cpt=1; cpt<=nlstate;cpt++) {    for(i=1; i<=imx; i++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      mi=0;
 interval) in state (%d): v%s%d%d.gif <br>      m=firstpass;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        while(s[m][i] <= nlstate){
      }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
      for(cpt=1; cpt<=nlstate;cpt++) {          mw[++mi][i]=m;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        if(m >=lastpass)
 <img src=\"ex%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          break;
      }        else
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          m++;
 health expectancies in states (1) and (2): e%s%d.gif<br>      }/* end while */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      if (s[m][i] > nlstate){
 fprintf(fichtm,"\n</body>");        mi++;     /* Death is another wave */
    }        /* if(mi==0)  never been interviewed correctly before death */
  }           /* Only death is a correct wave */
 fclose(fichtm);        mw[mi][i]=m;
       }
   /*--------------- Prevalence limit --------------*/  
        wav[i]=mi;
   strcpy(filerespl,"pl");      if(mi==0){
   strcat(filerespl,fileres);        nbwarn++;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        if(first==0){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   }          first=1;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        }
   fprintf(ficrespl,"#Prevalence limit\n");        if(first==1){
   fprintf(ficrespl,"#Age ");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        }
   fprintf(ficrespl,"\n");      } /* end mi==0 */
      } /* End individuals */
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(i=1; i<=imx; i++){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(mi=1; mi<wav[i];mi++){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if (stepm <=0)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          dh[mi][i]=1;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        else{
   k=0;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   agebase=agemin;            if (agedc[i] < 2*AGESUP) {
   agelim=agemax;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   ftolpl=1.e-10;              if(j==0) j=1;  /* Survives at least one month after exam */
   i1=cptcovn;              else if(j<0){
   if (cptcovn < 1){i1=1;}                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for(cptcov=1;cptcov<=i1;cptcov++){                j=1; /* Temporary Dangerous patch */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         k=k+1;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         fprintf(ficrespl,"\n#****** ");              }
         for(j=1;j<=cptcovn;j++)              k=k+1;
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);              if (j >= jmax){
         fprintf(ficrespl,"******\n");                jmax=j;
                        ijmax=i;
         for (age=agebase; age<=agelim; age++){              }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              if (j <= jmin){
           fprintf(ficrespl,"%.0f",age );                jmin=j;
           for(i=1; i<=nlstate;i++)                ijmin=i;
           fprintf(ficrespl," %.5f", prlim[i][i]);              }
           fprintf(ficrespl,"\n");              sum=sum+j;
         }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     }            }
   fclose(ficrespl);          }
   /*------------- h Pij x at various ages ------------*/          else{
              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            k=k+1;
   }            if (j >= jmax) {
   printf("Computing pij: result on file '%s' \n", filerespij);              jmax=j;
                ijmax=i;
   stepsize=(int) (stepm+YEARM-1)/YEARM;            }
   if (stepm<=24) stepsize=2;            else if (j <= jmin){
               jmin=j;
   agelim=AGESUP;              ijmin=i;
   hstepm=stepsize*YEARM; /* Every year of age */            }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   k=0;            if(j<0){
   for(cptcov=1;cptcov<=i1;cptcov++){              nberr++;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       k=k+1;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficrespij,"\n#****** ");            }
         for(j=1;j<=cptcovn;j++)            sum=sum+j;
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          }
         fprintf(ficrespij,"******\n");          jk= j/stepm;
                  jl= j -jk*stepm;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          ju= j -(jk+1)*stepm;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            if(jl==0){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              dh[mi][i]=jk;
           oldm=oldms;savm=savms;              bh[mi][i]=0;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              }else{ /* We want a negative bias in order to only have interpolation ie
           fprintf(ficrespij,"# Age");                    * at the price of an extra matrix product in likelihood */
           for(i=1; i<=nlstate;i++)              dh[mi][i]=jk+1;
             for(j=1; j<=nlstate+ndeath;j++)              bh[mi][i]=ju;
               fprintf(ficrespij," %1d-%1d",i,j);            }
           fprintf(ficrespij,"\n");          }else{
           for (h=0; h<=nhstepm; h++){            if(jl <= -ju){
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );              dh[mi][i]=jk;
             for(i=1; i<=nlstate;i++)              bh[mi][i]=jl;       /* bias is positive if real duration
               for(j=1; j<=nlstate+ndeath;j++)                                   * is higher than the multiple of stepm and negative otherwise.
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                                   */
             fprintf(ficrespij,"\n");            }
           }            else{
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              dh[mi][i]=jk+1;
           fprintf(ficrespij,"\n");              bh[mi][i]=ju;
         }            }
     }            if(dh[mi][i]==0){
   }              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
   fclose(ficrespij);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
   /*---------- Health expectancies and variances ------------*/          } /* end if mle */
         }
   strcpy(filerest,"t");      } /* end wave */
   strcat(filerest,fileres);    }
   if((ficrest=fopen(filerest,"w"))==NULL) {    jmean=sum/k;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);   }
   
   /*********** Tricode ****************************/
   strcpy(filerese,"e");  void tricode(int *Tvar, int **nbcode, int imx)
   strcat(filerese,fileres);  {
   if((ficreseij=fopen(filerese,"w"))==NULL) {    
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    int Ndum[20],ij=1, k, j, i, maxncov=19;
   }    int cptcode=0;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    cptcoveff=0; 
    
  strcpy(fileresv,"v");    for (k=0; k<maxncov; k++) Ndum[k]=0;
   strcat(fileresv,fileres);    for (k=1; k<=7; k++) ncodemax[k]=0;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   k=0;        Ndum[ij]++; /*store the modality */
   for(cptcov=1;cptcov<=i1;cptcov++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       k=k+1;                                         Tvar[j]. If V=sex and male is 0 and 
       fprintf(ficrest,"\n#****** ");                                         female is 1, then  cptcode=1.*/
       for(j=1;j<=cptcovn;j++)      }
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       fprintf(ficreseij,"\n#****** ");      }
       for(j=1;j<=cptcovn;j++)  
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      ij=1; 
       fprintf(ficreseij,"******\n");      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
       fprintf(ficresvij,"\n#****** ");          if (Ndum[k] != 0) {
       for(j=1;j<=cptcovn;j++)            nbcode[Tvar[j]][ij]=k; 
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       fprintf(ficresvij,"******\n");            
             ij++;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          }
       oldm=oldms;savm=savms;          if (ij > ncodemax[j]) break; 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);          }  
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      } 
       oldm=oldms;savm=savms;    }  
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
         for (k=0; k< maxncov; k++) Ndum[k]=0;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);   for (i=1; i<=ncovmodel-2; i++) { 
       fprintf(ficrest,"\n");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
             ij=Tvar[i];
       hf=1;     Ndum[ij]++;
       if (stepm >= YEARM) hf=stepm/YEARM;   }
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){   ij=1;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   for (i=1; i<= maxncov; i++) {
         fprintf(ficrest," %.0f",age);     if((Ndum[i]!=0) && (i<=ncovcol)){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){       Tvaraff[ij]=i; /*For printing */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {       ij++;
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];     }
           }   }
           epj[nlstate+1] +=epj[j];   
         }   cptcoveff=ij-1; /*Number of simple covariates*/
         for(i=1, vepp=0.;i <=nlstate;i++)  }
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];  /*********** Health Expectancies ****************/
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  
         for(j=1;j <=nlstate;j++){  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  
         }  {
         fprintf(ficrest,"\n");    /* Health expectancies, no variances */
       }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     }    double age, agelim, hf;
   }    double ***p3mat;
            double eip;
  fclose(ficreseij);  
  fclose(ficresvij);    pstamp(ficreseij);
   fclose(ficrest);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   fclose(ficpar);    fprintf(ficreseij,"# Age");
   free_vector(epj,1,nlstate+1);    for(i=1; i<=nlstate;i++){
   /*scanf("%d ",i); */      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
   /*------- Variance limit prevalence------*/        }
       fprintf(ficreseij," e%1d. ",i);
 strcpy(fileresvpl,"vpl");    }
   strcat(fileresvpl,fileres);    fprintf(ficreseij,"\n");
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    
     exit(0);    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    }
     else  hstepm=estepm;   
  k=0;    /* We compute the life expectancy from trapezoids spaced every estepm months
  for(cptcov=1;cptcov<=i1;cptcov++){     * This is mainly to measure the difference between two models: for example
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     * if stepm=24 months pijx are given only every 2 years and by summing them
      k=k+1;     * we are calculating an estimate of the Life Expectancy assuming a linear 
      fprintf(ficresvpl,"\n#****** ");     * progression in between and thus overestimating or underestimating according
      for(j=1;j<=cptcovn;j++)     * to the curvature of the survival function. If, for the same date, we 
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      fprintf(ficresvpl,"******\n");     * to compare the new estimate of Life expectancy with the same linear 
           * hypothesis. A more precise result, taking into account a more precise
      varpl=matrix(1,nlstate,(int) bage, (int) fage);     * curvature will be obtained if estepm is as small as stepm. */
      oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    /* For example we decided to compute the life expectancy with the smallest unit */
    }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  }       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   fclose(ficresvpl);       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   /*---------- End : free ----------------*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed only each two years of age and if
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       results. So we changed our mind and took the option of the best precision.
      */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    agelim=AGESUP;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* nhstepm age range expressed in number of stepm */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   free_matrix(matcov,1,npar,1,npar);    /* if (stepm >= YEARM) hstepm=1;*/
   free_vector(delti,1,npar);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   printf("End of Imach\n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   /*printf("Total time was %d uSec.\n", total_usecs);*/      
   /*------ End -----------*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
  end:      printf("%d|",(int)age);fflush(stdout);
 #ifdef windows      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
  chdir(pathcd);      
 #endif      /* Computing expectancies */
  system("wgnuplot graph.plt");      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
 #ifdef windows          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   while (z[0] != 'q') {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     chdir(pathcd);            
     printf("\nType e to edit output files, c to start again, and q for exiting: ");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");          }
     else if (z[0] == 'e') {  
       chdir(path);      fprintf(ficreseij,"%3.0f",age );
       system("index.htm");      for(i=1; i<=nlstate;i++){
     }        eip=0;
     else if (z[0] == 'q') exit(0);        for(j=1; j<=nlstate;j++){
   }          eip +=eij[i][j][(int)age];
 #endif          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 }        }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
   
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.3  
changed lines
  Added in v.1.122


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>