Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.122

version 1.41.2.1, 2003/06/12 10:43:20 version 1.122, 2006/03/20 09:45:41
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.122  2006/03/20 09:45:41  brouard
      (Module): Weights can have a decimal point as for
   This program computes Healthy Life Expectancies from    English (a comma might work with a correct LC_NUMERIC environment,
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    otherwise the weight is truncated).
   first survey ("cross") where individuals from different ages are    Modification of warning when the covariates values are not 0 or
   interviewed on their health status or degree of disability (in the    1.
   case of a health survey which is our main interest) -2- at least a    Version 0.98g
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.121  2006/03/16 17:45:01  lievre
   computed from the time spent in each health state according to a    * imach.c (Module): Comments concerning covariates added
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    * imach.c (Module): refinements in the computation of lli if
   simplest model is the multinomial logistic model where pij is the    status=-2 in order to have more reliable computation if stepm is
   probability to be observed in state j at the second wave    not 1 month. Version 0.98f
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.120  2006/03/16 15:10:38  lievre
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): refinements in the computation of lli if
   complex model than "constant and age", you should modify the program    status=-2 in order to have more reliable computation if stepm is
   where the markup *Covariates have to be included here again* invites    not 1 month. Version 0.98f
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   The advantage of this computer programme, compared to a simple    computed as likelihood omitting the logarithm. Version O.98e
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.118  2006/03/14 18:20:07  brouard
   intermediate interview, the information is lost, but taken into    (Module): varevsij Comments added explaining the second
   account using an interpolation or extrapolation.      table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   hPijx is the probability to be observed in state i at age x+h    (Module): Function pstamp added
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Version 0.98d
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.117  2006/03/14 17:16:22  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): varevsij Comments added explaining the second
   matrix is simply the matrix product of nh*stepm elementary matrices    table of variances if popbased=1 .
   and the contribution of each individual to the likelihood is simply    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   hPijx.    (Module): Function pstamp added
     (Module): Version 0.98d
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.116  2006/03/06 10:29:27  brouard
      (Module): Variance-covariance wrong links and
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    varian-covariance of ej. is needed (Saito).
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.115  2006/02/27 12:17:45  brouard
   from the European Union.    (Module): One freematrix added in mlikeli! 0.98c
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.114  2006/02/26 12:57:58  brouard
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Some improvements in processing parameter
   **********************************************************************/    filename with strsep.
    
 #include <math.h>    Revision 1.113  2006/02/24 14:20:24  brouard
 #include <stdio.h>    (Module): Memory leaks checks with valgrind and:
 #include <stdlib.h>    datafile was not closed, some imatrix were not freed and on matrix
 #include <unistd.h>    allocation too.
   
 #define MAXLINE 256    Revision 1.112  2006/01/30 09:55:26  brouard
 #define GNUPLOTPROGRAM "wgnuplot"    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.111  2006/01/25 20:38:18  brouard
 /*#define DEBUG*/    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 /*#define windows*/    can be a simple dot '.'.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.108  2006/01/19 18:05:42  lievre
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Gnuplot problem appeared...
 #define NCOVMAX 8 /* Maximum number of covariates */    To be fixed
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.107  2006/01/19 16:20:37  brouard
 #define AGESUP 130    Test existence of gnuplot in imach path
 #define AGEBASE 40  
     Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 int erreur; /* Error number */  
 int nvar;    Revision 1.105  2006/01/05 20:23:19  lievre
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    *** empty log message ***
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.104  2005/09/30 16:11:43  lievre
 int ndeath=1; /* Number of dead states */    (Module): sump fixed, loop imx fixed, and simplifications.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): If the status is missing at the last wave but we know
 int popbased=0;    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 int *wav; /* Number of waves for this individuual 0 is possible */    contributions to the likelihood is 1 - Prob of dying from last
 int maxwav; /* Maxim number of waves */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int jmin, jmax; /* min, max spacing between 2 waves */    the healthy state at last known wave). Version is 0.98
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.103  2005/09/30 15:54:49  lievre
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): sump fixed, loop imx fixed, and simplifications.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.102  2004/09/15 17:31:30  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Add the possibility to read data file including tab characters.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.101  2004/09/15 10:38:38  brouard
 FILE *ficreseij;    Fix on curr_time
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.100  2004/07/12 18:29:06  brouard
   char fileresv[FILENAMELENGTH];    Add version for Mac OS X. Just define UNIX in Makefile
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.98  2004/05/16 15:05:56  brouard
 #define FTOL 1.0e-10    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 #define NRANSI    state at each age, but using a Gompertz model: log u =a + b*age .
 #define ITMAX 200    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 #define TOL 2.0e-4    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    The same imach parameter file can be used but the option for mle should be -3.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Agnès, who wrote this part of the code, tried to keep most of the
 #define GOLD 1.618034    former routines in order to include the new code within the former code.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Current limitations:
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    A) Even if you enter covariates, i.e. with the
      model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    B) There is no computation of Life Expectancy nor Life Table.
 #define rint(a) floor(a+0.5)  
     Revision 1.97  2004/02/20 13:25:42  lievre
 static double sqrarg;    Version 0.96d. Population forecasting command line is (temporarily)
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    suppressed.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.96  2003/07/15 15:38:55  brouard
 int imx;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int stepm;    rewritten within the same printf. Workaround: many printfs.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.95  2003/07/08 07:54:34  brouard
 int estepm;    * imach.c (Repository):
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.94  2003/06/27 13:00:02  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Just cleaning
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 double *weight;    exist so I changed back to asctime which exists.
 int **s; /* Status */    (Module): Version 0.96b
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    exist so I changed back to asctime which exists.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.91  2003/06/25 15:30:29  brouard
 /**************** split *************************/    * imach.c (Repository): Duplicated warning errors corrected.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Repository): Elapsed time after each iteration is now output. It
 {    helps to forecast when convergence will be reached. Elapsed time
    char *s;                             /* pointer */    is stamped in powell.  We created a new html file for the graphs
    int  l1, l2;                         /* length counters */    concerning matrix of covariance. It has extension -cov.htm.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.90  2003/06/24 12:34:15  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Some bugs corrected for windows. Also, when
 #ifdef windows    mle=-1 a template is output in file "or"mypar.txt with the design
    s = strrchr( path, '\\' );           /* find last / */    of the covariance matrix to be input.
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.89  2003/06/24 12:30:52  brouard
 #endif    (Module): Some bugs corrected for windows. Also, when
    if ( s == NULL ) {                   /* no directory, so use current */    mle=-1 a template is output in file "or"mypar.txt with the design
 #if     defined(__bsd__)                /* get current working directory */    of the covariance matrix to be input.
       extern char       *getwd( );  
     Revision 1.88  2003/06/23 17:54:56  brouard
       if ( getwd( dirc ) == NULL ) {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #else  
       extern char       *getcwd( );    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.86  2003/06/17 20:04:08  brouard
          return( GLOCK_ERROR_GETCWD );    (Module): Change position of html and gnuplot routines and added
       }    routine fileappend.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.85  2003/06/17 13:12:43  brouard
       s++;                              /* after this, the filename */    * imach.c (Repository): Check when date of death was earlier that
       l2 = strlen( s );                 /* length of filename */    current date of interview. It may happen when the death was just
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    prior to the death. In this case, dh was negative and likelihood
       strcpy( name, s );                /* save file name */    was wrong (infinity). We still send an "Error" but patch by
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    assuming that the date of death was just one stepm after the
       dirc[l1-l2] = 0;                  /* add zero */    interview.
    }    (Repository): Because some people have very long ID (first column)
    l1 = strlen( dirc );                 /* length of directory */    we changed int to long in num[] and we added a new lvector for
 #ifdef windows    memory allocation. But we also truncated to 8 characters (left
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    truncation)
 #else    (Repository): No more line truncation errors.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.84  2003/06/13 21:44:43  brouard
    s = strrchr( name, '.' );            /* find last / */    * imach.c (Repository): Replace "freqsummary" at a correct
    s++;    place. It differs from routine "prevalence" which may be called
    strcpy(ext,s);                       /* save extension */    many times. Probs is memory consuming and must be used with
    l1= strlen( name);    parcimony.
    l2= strlen( s)+1;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.83  2003/06/10 13:39:11  lievre
    return( 0 );                         /* we're done */    *** empty log message ***
 }  
     Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 /******************************************/  
   */
 void replace(char *s, char*t)  /*
 {     Interpolated Markov Chain
   int i;  
   int lg=20;    Short summary of the programme:
   i=0;    
   lg=strlen(t);    This program computes Healthy Life Expectancies from
   for(i=0; i<= lg; i++) {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     (s[i] = t[i]);    first survey ("cross") where individuals from different ages are
     if (t[i]== '\\') s[i]='/';    interviewed on their health status or degree of disability (in the
   }    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 int nbocc(char *s, char occ)    computed from the time spent in each health state according to a
 {    model. More health states you consider, more time is necessary to reach the
   int i,j=0;    Maximum Likelihood of the parameters involved in the model.  The
   int lg=20;    simplest model is the multinomial logistic model where pij is the
   i=0;    probability to be observed in state j at the second wave
   lg=strlen(s);    conditional to be observed in state i at the first wave. Therefore
   for(i=0; i<= lg; i++) {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   if  (s[i] == occ ) j++;    'age' is age and 'sex' is a covariate. If you want to have a more
   }    complex model than "constant and age", you should modify the program
   return j;    where the markup *Covariates have to be included here again* invites
 }    you to do it.  More covariates you add, slower the
     convergence.
 void cutv(char *u,char *v, char*t, char occ)  
 {    The advantage of this computer programme, compared to a simple
   int i,lg,j,p=0;    multinomial logistic model, is clear when the delay between waves is not
   i=0;    identical for each individual. Also, if a individual missed an
   for(j=0; j<=strlen(t)-1; j++) {    intermediate interview, the information is lost, but taken into
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    account using an interpolation or extrapolation.  
   }  
     hPijx is the probability to be observed in state i at age x+h
   lg=strlen(t);    conditional to the observed state i at age x. The delay 'h' can be
   for(j=0; j<p; j++) {    split into an exact number (nh*stepm) of unobserved intermediate
     (u[j] = t[j]);    states. This elementary transition (by month, quarter,
   }    semester or year) is modelled as a multinomial logistic.  The hPx
      u[p]='\0';    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
    for(j=0; j<= lg; j++) {    hPijx.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Also this programme outputs the covariance matrix of the parameters but also
 }    of the life expectancies. It also computes the period (stable) prevalence. 
     
 /********************** nrerror ********************/    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 void nrerror(char error_text[])    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   fprintf(stderr,"ERREUR ...\n");    It is copyrighted identically to a GNU software product, ie programme and
   fprintf(stderr,"%s\n",error_text);    software can be distributed freely for non commercial use. Latest version
   exit(1);    can be accessed at http://euroreves.ined.fr/imach .
 }  
 /*********************** vector *******************/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 double *vector(int nl, int nh)    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 {    
   double *v;    **********************************************************************/
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /*
   if (!v) nrerror("allocation failure in vector");    main
   return v-nl+NR_END;    read parameterfile
 }    read datafile
     concatwav
 /************************ free vector ******************/    freqsummary
 void free_vector(double*v, int nl, int nh)    if (mle >= 1)
 {      mlikeli
   free((FREE_ARG)(v+nl-NR_END));    print results files
 }    if mle==1 
        computes hessian
 /************************ivector *******************************/    read end of parameter file: agemin, agemax, bage, fage, estepm
 int *ivector(long nl,long nh)        begin-prev-date,...
 {    open gnuplot file
   int *v;    open html file
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    period (stable) prevalence
   if (!v) nrerror("allocation failure in ivector");     for age prevalim()
   return v-nl+NR_END;    h Pij x
 }    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 /******************free ivector **************************/    health expectancies
 void free_ivector(int *v, long nl, long nh)    Variance-covariance of DFLE
 {    prevalence()
   free((FREE_ARG)(v+nl-NR_END));     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 /******************* imatrix *******************************/    total life expectancies
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Variance of period (stable) prevalence
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   end
 {  */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  
    
   /* allocate pointers to rows */   
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #include <math.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <stdio.h>
   m += NR_END;  #include <stdlib.h>
   m -= nrl;  #include <string.h>
    #include <unistd.h>
    
   /* allocate rows and set pointers to them */  #include <limits.h>
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #include <sys/types.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <sys/stat.h>
   m[nrl] += NR_END;  #include <errno.h>
   m[nrl] -= ncl;  extern int errno;
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  /* #include <sys/time.h> */
    #include <time.h>
   /* return pointer to array of pointers to rows */  #include "timeval.h"
   return m;  
 }  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define MAXLINE 256
       int **m;  
       long nch,ncl,nrh,nrl;  #define GNUPLOTPROGRAM "gnuplot"
      /* free an int matrix allocated by imatrix() */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 {  #define FILENAMELENGTH 132
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /******************* matrix *******************************/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define NINTERVMAX 8
   double **m;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define NCOVMAX 8 /* Maximum number of covariates */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define MAXN 20000
   m += NR_END;  #define YEARM 12. /* Number of months per year */
   m -= nrl;  #define AGESUP 130
   #define AGEBASE 40
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #ifdef UNIX
   m[nrl] += NR_END;  #define DIRSEPARATOR '/'
   m[nrl] -= ncl;  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #else
   return m;  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 /*************************free matrix ************************/  #endif
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  /* $Id$ */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /* $State$ */
   free((FREE_ARG)(m+nrl-NR_END));  
 }  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   char fullversion[]="$Revision$ $Date$"; 
 /******************* ma3x *******************************/  char strstart[80];
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 {  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int nvar;
   double ***m;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int nlstate=2; /* Number of live states */
   if (!m) nrerror("allocation failure 1 in matrix()");  int ndeath=1; /* Number of dead states */
   m += NR_END;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m -= nrl;  int popbased=0;
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int *wav; /* Number of waves for this individuual 0 is possible */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int maxwav; /* Maxim number of waves */
   m[nrl] += NR_END;  int jmin, jmax; /* min, max spacing between 2 waves */
   m[nrl] -= ncl;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   int gipmx, gsw; /* Global variables on the number of contributions 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m[nrl][ncl] += NR_END;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m[nrl][ncl] -= nll;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   for (j=ncl+1; j<=nch; j++)  double jmean; /* Mean space between 2 waves */
     m[nrl][j]=m[nrl][j-1]+nlay;  double **oldm, **newm, **savm; /* Working pointers to matrices */
    double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for (i=nrl+1; i<=nrh; i++) {  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  FILE *ficlog, *ficrespow;
     for (j=ncl+1; j<=nch; j++)  int globpr; /* Global variable for printing or not */
       m[i][j]=m[i][j-1]+nlay;  double fretone; /* Only one call to likelihood */
   }  long ipmx; /* Number of contributions */
   return m;  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /*************************free ma3x ************************/  FILE *ficresilk;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  FILE *fichtm, *fichtmcov; /* Html File */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  FILE *ficreseij;
   free((FREE_ARG)(m+nrl-NR_END));  char filerese[FILENAMELENGTH];
 }  FILE *ficresstdeij;
   char fileresstde[FILENAMELENGTH];
 /***************** f1dim *************************/  FILE *ficrescveij;
 extern int ncom;  char filerescve[FILENAMELENGTH];
 extern double *pcom,*xicom;  FILE  *ficresvij;
 extern double (*nrfunc)(double []);  char fileresv[FILENAMELENGTH];
    FILE  *ficresvpl;
 double f1dim(double x)  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   int j;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double f;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   double *xt;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
    char command[FILENAMELENGTH];
   xt=vector(1,ncom);  int  outcmd=0;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   free_vector(xt,1,ncom);  
   return f;  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 /*****************brent *************************/  char popfile[FILENAMELENGTH];
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   int iter;  
   double a,b,d,etemp;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   double fu,fv,fw,fx;  struct timezone tzp;
   double ftemp;  extern int gettimeofday();
   double p,q,r,tol1,tol2,u,v,w,x,xm;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   double e=0.0;  long time_value;
    extern long time();
   a=(ax < cx ? ax : cx);  char strcurr[80], strfor[80];
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  char *endptr;
   fw=fv=fx=(*f)(x);  long lval;
   for (iter=1;iter<=ITMAX;iter++) {  double dval;
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define NR_END 1
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define FREE_ARG char*
     printf(".");fflush(stdout);  #define FTOL 1.0e-10
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define NRANSI 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define ITMAX 200 
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define TOL 2.0e-4 
       *xmin=x;  
       return fx;  #define CGOLD 0.3819660 
     }  #define ZEPS 1.0e-10 
     ftemp=fu;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  #define GOLD 1.618034 
       q=(x-v)*(fx-fw);  #define GLIMIT 100.0 
       p=(x-v)*q-(x-w)*r;  #define TINY 1.0e-20 
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  static double maxarg1,maxarg2;
       q=fabs(q);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       etemp=e;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       e=d;    
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define rint(a) floor(a+0.5)
       else {  
         d=p/q;  static double sqrarg;
         u=x+d;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         if (u-a < tol2 || b-u < tol2)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
           d=SIGN(tol1,xm-x);  int agegomp= AGEGOMP;
       }  
     } else {  int imx; 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  int stepm=1;
     }  /* Stepm, step in month: minimum step interpolation*/
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  int estepm;
     if (fu <= fx) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  int m,nb;
         SHFT(fv,fw,fx,fu)  long *num;
         } else {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
           if (u < x) a=u; else b=u;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
           if (fu <= fw || w == x) {  double **pmmij, ***probs;
             v=w;  double *ageexmed,*agecens;
             w=u;  double dateintmean=0;
             fv=fw;  
             fw=fu;  double *weight;
           } else if (fu <= fv || v == x || v == w) {  int **s; /* Status */
             v=u;  double *agedc, **covar, idx;
             fv=fu;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
           }  double *lsurv, *lpop, *tpop;
         }  
   }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   nrerror("Too many iterations in brent");  double ftolhess; /* Tolerance for computing hessian */
   *xmin=x;  
   return fx;  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /****************** mnbrak ***********************/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    */ 
             double (*func)(double))    char  *ss;                            /* pointer */
 {    int   l1, l2;                         /* length counters */
   double ulim,u,r,q, dum;  
   double fu;    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   *fa=(*func)(*ax);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   *fb=(*func)(*bx);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   if (*fb > *fa) {      strcpy( name, path );               /* we got the fullname name because no directory */
     SHFT(dum,*ax,*bx,dum)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       SHFT(dum,*fb,*fa,dum)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       }      /* get current working directory */
   *cx=(*bx)+GOLD*(*bx-*ax);      /*    extern  char* getcwd ( char *buf , int len);*/
   *fc=(*func)(*cx);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   while (*fb > *fc) {        return( GLOCK_ERROR_GETCWD );
     r=(*bx-*ax)*(*fb-*fc);      }
     q=(*bx-*cx)*(*fb-*fa);      /* got dirc from getcwd*/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      printf(" DIRC = %s \n",dirc);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    } else {                              /* strip direcotry from path */
     ulim=(*bx)+GLIMIT*(*cx-*bx);      ss++;                               /* after this, the filename */
     if ((*bx-u)*(u-*cx) > 0.0) {      l2 = strlen( ss );                  /* length of filename */
       fu=(*func)(u);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     } else if ((*cx-u)*(u-ulim) > 0.0) {      strcpy( name, ss );         /* save file name */
       fu=(*func)(u);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       if (fu < *fc) {      dirc[l1-l2] = 0;                    /* add zero */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      printf(" DIRC2 = %s \n",dirc);
           SHFT(*fb,*fc,fu,(*func)(u))    }
           }    /* We add a separator at the end of dirc if not exists */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    l1 = strlen( dirc );                  /* length of directory */
       u=ulim;    if( dirc[l1-1] != DIRSEPARATOR ){
       fu=(*func)(u);      dirc[l1] =  DIRSEPARATOR;
     } else {      dirc[l1+1] = 0; 
       u=(*cx)+GOLD*(*cx-*bx);      printf(" DIRC3 = %s \n",dirc);
       fu=(*func)(u);    }
     }    ss = strrchr( name, '.' );            /* find last / */
     SHFT(*ax,*bx,*cx,u)    if (ss >0){
       SHFT(*fa,*fb,*fc,fu)      ss++;
       }      strcpy(ext,ss);                     /* save extension */
 }      l1= strlen( name);
       l2= strlen(ss)+1;
 /*************** linmin ************************/      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
 int ncom;    }
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    return( 0 );                          /* we're done */
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  
   double brent(double ax, double bx, double cx,  /******************************************/
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  void replace_back_to_slash(char *s, char*t)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    int i;
   int j;    int lg=0;
   double xx,xmin,bx,ax;    i=0;
   double fx,fb,fa;    lg=strlen(t);
      for(i=0; i<= lg; i++) {
   ncom=n;      (s[i] = t[i]);
   pcom=vector(1,n);      if (t[i]== '\\') s[i]='/';
   xicom=vector(1,n);    }
   nrfunc=func;  }
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  int nbocc(char *s, char occ)
     xicom[j]=xi[j];  {
   }    int i,j=0;
   ax=0.0;    int lg=20;
   xx=1.0;    i=0;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    lg=strlen(s);
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    for(i=0; i<= lg; i++) {
 #ifdef DEBUG    if  (s[i] == occ ) j++;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    }
 #endif    return j;
   for (j=1;j<=n;j++) {  }
     xi[j] *= xmin;  
     p[j] += xi[j];  void cutv(char *u,char *v, char*t, char occ)
   }  {
   free_vector(xicom,1,n);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   free_vector(pcom,1,n);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 }       gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
 /*************** powell ************************/    i=0;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    for(j=0; j<=strlen(t)-1; j++) {
             double (*func)(double []))      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 {    }
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));    lg=strlen(t);
   int i,ibig,j;    for(j=0; j<p; j++) {
   double del,t,*pt,*ptt,*xit;      (u[j] = t[j]);
   double fp,fptt;    }
   double *xits;       u[p]='\0';
   pt=vector(1,n);  
   ptt=vector(1,n);     for(j=0; j<= lg; j++) {
   xit=vector(1,n);      if (j>=(p+1))(v[j-p-1] = t[j]);
   xits=vector(1,n);    }
   *fret=(*func)(p);  }
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /********************** nrerror ********************/
     fp=(*fret);  
     ibig=0;  void nrerror(char error_text[])
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    fprintf(stderr,"ERREUR ...\n");
     for (i=1;i<=n;i++)    fprintf(stderr,"%s\n",error_text);
       printf(" %d %.12f",i, p[i]);    exit(EXIT_FAILURE);
     printf("\n");  }
     for (i=1;i<=n;i++) {  /*********************** vector *******************/
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  double *vector(int nl, int nh)
       fptt=(*fret);  {
 #ifdef DEBUG    double *v;
       printf("fret=%lf \n",*fret);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 #endif    if (!v) nrerror("allocation failure in vector");
       printf("%d",i);fflush(stdout);    return v-nl+NR_END;
       linmin(p,xit,n,fret,func);  }
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  /************************ free vector ******************/
         ibig=i;  void free_vector(double*v, int nl, int nh)
       }  {
 #ifdef DEBUG    free((FREE_ARG)(v+nl-NR_END));
       printf("%d %.12e",i,(*fret));  }
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /************************ivector *******************************/
         printf(" x(%d)=%.12e",j,xit[j]);  int *ivector(long nl,long nh)
       }  {
       for(j=1;j<=n;j++)    int *v;
         printf(" p=%.12e",p[j]);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       printf("\n");    if (!v) nrerror("allocation failure in ivector");
 #endif    return v-nl+NR_END;
     }  }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /******************free ivector **************************/
       int k[2],l;  void free_ivector(int *v, long nl, long nh)
       k[0]=1;  {
       k[1]=-1;    free((FREE_ARG)(v+nl-NR_END));
       printf("Max: %.12e",(*func)(p));  }
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  /************************lvector *******************************/
       printf("\n");  long *lvector(long nl,long nh)
       for(l=0;l<=1;l++) {  {
         for (j=1;j<=n;j++) {    long *v;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    if (!v) nrerror("allocation failure in ivector");
         }    return v-nl+NR_END;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  }
       }  
 #endif  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
   {
       free_vector(xit,1,n);    free((FREE_ARG)(v+nl-NR_END));
       free_vector(xits,1,n);  }
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  /******************* imatrix *******************************/
       return;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  { 
     for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       ptt[j]=2.0*p[j]-pt[j];    int **m; 
       xit[j]=p[j]-pt[j];    
       pt[j]=p[j];    /* allocate pointers to rows */ 
     }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     fptt=(*func)(ptt);    if (!m) nrerror("allocation failure 1 in matrix()"); 
     if (fptt < fp) {    m += NR_END; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m -= nrl; 
       if (t < 0.0) {    
         linmin(p,xit,n,fret,func);    
         for (j=1;j<=n;j++) {    /* allocate rows and set pointers to them */ 
           xi[j][ibig]=xi[j][n];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
           xi[j][n]=xit[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         }    m[nrl] += NR_END; 
 #ifdef DEBUG    m[nrl] -= ncl; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    
         for(j=1;j<=n;j++)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
           printf(" %.12e",xit[j]);    
         printf("\n");    /* return pointer to array of pointers to rows */ 
 #endif    return m; 
       }  } 
     }  
   }  /****************** free_imatrix *************************/
 }  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
 /**** Prevalence limit ****************/        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  { 
 {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    free((FREE_ARG) (m+nrl-NR_END)); 
      matrix by transitions matrix until convergence is reached */  } 
   
   int i, ii,j,k;  /******************* matrix *******************************/
   double min, max, maxmin, maxmax,sumnew=0.;  double **matrix(long nrl, long nrh, long ncl, long nch)
   double **matprod2();  {
   double **out, cov[NCOVMAX], **pmij();    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double **newm;    double **m;
   double agefin, delaymax=50 ; /* Max number of years to converge */  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (ii=1;ii<=nlstate+ndeath;ii++)    if (!m) nrerror("allocation failure 1 in matrix()");
     for (j=1;j<=nlstate+ndeath;j++){    m += NR_END;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m -= nrl;
     }  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
    cov[1]=1.;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m[nrl] -= ncl;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     /* Covariates have to be included here again */    return m;
      cov[2]=agefin;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       */
       for (k=1; k<=cptcovn;k++) {  }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  /*************************free matrix ************************/
       }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    free((FREE_ARG)(m+nrl-NR_END));
   }
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /******************* ma3x *******************************/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     savm=oldm;    double ***m;
     oldm=newm;  
     maxmax=0.;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(j=1;j<=nlstate;j++){    if (!m) nrerror("allocation failure 1 in matrix()");
       min=1.;    m += NR_END;
       max=0.;    m -= nrl;
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         prlim[i][j]= newm[i][j]/(1-sumnew);    m[nrl] += NR_END;
         max=FMAX(max,prlim[i][j]);    m[nrl] -= ncl;
         min=FMIN(min,prlim[i][j]);  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     if(maxmax < ftolpl){    m[nrl][ncl] += NR_END;
       return prlim;    m[nrl][ncl] -= nll;
     }    for (j=ncl+1; j<=nch; j++) 
   }      m[nrl][j]=m[nrl][j-1]+nlay;
 }    
     for (i=nrl+1; i<=nrh; i++) {
 /*************** transition probabilities ***************/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        m[i][j]=m[i][j-1]+nlay;
 {    }
   double s1, s2;    return m; 
   /*double t34;*/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   int i,j,j1, nc, ii, jj;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
     for(i=1; i<= nlstate; i++){  }
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*************************free ma3x ************************/
         /*s2 += param[i][j][nc]*cov[nc];*/  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       ps[i][j]=s2;    free((FREE_ARG)(m+nrl-NR_END));
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  }
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  /*************** function subdirf ***********/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char *subdirf(char fileres[])
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
       ps[i][j]=s2;    strcat(tmpout,"/"); /* Add to the right */
     }    strcat(tmpout,fileres);
   }    return tmpout;
     /*ps[3][2]=1;*/  }
   
   for(i=1; i<= nlstate; i++){  /*************** function subdirf2 ***********/
      s1=0;  char *subdirf2(char fileres[], char *preop)
     for(j=1; j<i; j++)  {
       s1+=exp(ps[i][j]);    
     for(j=i+1; j<=nlstate+ndeath; j++)    /* Caution optionfilefiname is hidden */
       s1+=exp(ps[i][j]);    strcpy(tmpout,optionfilefiname);
     ps[i][i]=1./(s1+1.);    strcat(tmpout,"/");
     for(j=1; j<i; j++)    strcat(tmpout,preop);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcat(tmpout,fileres);
     for(j=i+1; j<=nlstate+ndeath; j++)    return tmpout;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    
       ps[ii][jj]=0;    /* Caution optionfilefiname is hidden */
       ps[ii][ii]=1;    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
   }    strcat(tmpout,preop);
     strcat(tmpout,preop2);
     strcat(tmpout,fileres);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    return tmpout;
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
      printf("%lf ",ps[ii][jj]);  
    }  /***************** f1dim *************************/
     printf("\n ");  extern int ncom; 
     }  extern double *pcom,*xicom;
     printf("\n ");printf("%lf ",cov[2]);*/  extern double (*nrfunc)(double []); 
 /*   
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  double f1dim(double x) 
   goto end;*/  { 
     return ps;    int j; 
 }    double f;
     double *xt; 
 /**************** Product of 2 matrices ******************/   
     xt=vector(1,ncom); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 {    f=(*nrfunc)(xt); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    free_vector(xt,1,ncom); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    return f; 
   /* in, b, out are matrice of pointers which should have been initialized  } 
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  /*****************brent *************************/
   long i, j, k;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   for(i=nrl; i<= nrh; i++)  { 
     for(k=ncolol; k<=ncoloh; k++)    int iter; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    double a,b,d,etemp;
         out[i][k] +=in[i][j]*b[j][k];    double fu,fv,fw,fx;
     double ftemp;
   return out;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
 }    double e=0.0; 
    
     a=(ax < cx ? ax : cx); 
 /************* Higher Matrix Product ***************/    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    fw=fv=fx=(*f)(x); 
 {    for (iter=1;iter<=ITMAX;iter++) { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      xm=0.5*(a+b); 
      duration (i.e. until      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      printf(".");fflush(stdout);
      (typically every 2 years instead of every month which is too big).      fprintf(ficlog,".");fflush(ficlog);
      Model is determined by parameters x and covariates have to be  #ifdef DEBUG
      included manually here.      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
   int i, j, d, h, k;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double **out, cov[NCOVMAX];        *xmin=x; 
   double **newm;        return fx; 
       } 
   /* Hstepm could be zero and should return the unit matrix */      ftemp=fu;
   for (i=1;i<=nlstate+ndeath;i++)      if (fabs(e) > tol1) { 
     for (j=1;j<=nlstate+ndeath;j++){        r=(x-w)*(fx-fv); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        q=(x-v)*(fx-fw); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        p=(x-v)*q-(x-w)*r; 
     }        q=2.0*(q-r); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        if (q > 0.0) p = -p; 
   for(h=1; h <=nhstepm; h++){        q=fabs(q); 
     for(d=1; d <=hstepm; d++){        etemp=e; 
       newm=savm;        e=d; 
       /* Covariates have to be included here again */        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       cov[1]=1.;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        else { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          d=p/q; 
       for (k=1; k<=cptcovage;k++)          u=x+d; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          if (u-a < tol2 || b-u < tol2) 
       for (k=1; k<=cptcovprod;k++)            d=SIGN(tol1,xm-x); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        } 
       } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      } 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      fu=(*f)(u); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      if (fu <= fx) { 
       savm=oldm;        if (u >= x) a=x; else b=x; 
       oldm=newm;        SHFT(v,w,x,u) 
     }          SHFT(fv,fw,fx,fu) 
     for(i=1; i<=nlstate+ndeath; i++)          } else { 
       for(j=1;j<=nlstate+ndeath;j++) {            if (u < x) a=u; else b=u; 
         po[i][j][h]=newm[i][j];            if (fu <= fw || w == x) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);              v=w; 
          */              w=u; 
       }              fv=fw; 
   } /* end h */              fw=fu; 
   return po;            } else if (fu <= fv || v == x || v == w) { 
 }              v=u; 
               fv=fu; 
             } 
 /*************** log-likelihood *************/          } 
 double func( double *x)    } 
 {    nrerror("Too many iterations in brent"); 
   int i, ii, j, k, mi, d, kk;    *xmin=x; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    return fx; 
   double **out;  } 
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  /****************** mnbrak ***********************/
   long ipmx;  
   /*extern weight */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   /* We are differentiating ll according to initial status */              double (*func)(double)) 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  { 
   /*for(i=1;i<imx;i++)    double ulim,u,r,q, dum;
     printf(" %d\n",s[4][i]);    double fu; 
   */   
   cov[1]=1.;    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    if (*fb > *fa) { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      SHFT(dum,*ax,*bx,dum) 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        SHFT(dum,*fb,*fa,dum) 
     for(mi=1; mi<= wav[i]-1; mi++){        } 
       for (ii=1;ii<=nlstate+ndeath;ii++)    *cx=(*bx)+GOLD*(*bx-*ax); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    *fc=(*func)(*cx); 
       for(d=0; d<dh[mi][i]; d++){    while (*fb > *fc) { 
         newm=savm;      r=(*bx-*ax)*(*fb-*fc); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      q=(*bx-*cx)*(*fb-*fa); 
         for (kk=1; kk<=cptcovage;kk++) {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
              if ((*bx-u)*(u-*cx) > 0.0) { 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        fu=(*func)(u); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         savm=oldm;        fu=(*func)(u); 
         oldm=newm;        if (fu < *fc) { 
                  SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                    SHFT(*fb,*fc,fu,(*func)(u)) 
       } /* end mult */            } 
            } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        u=ulim; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        fu=(*func)(u); 
       ipmx +=1;      } else { 
       sw += weight[i];        u=(*cx)+GOLD*(*cx-*bx); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        fu=(*func)(u); 
     } /* end of wave */      } 
   } /* end of individual */      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        } 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  } 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;  /*************** linmin ************************/
 }  
   int ncom; 
   double *pcom,*xicom;
 /*********** Maximum Likelihood Estimation ***************/  double (*nrfunc)(double []); 
    
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 {  { 
   int i,j, iter;    double brent(double ax, double bx, double cx, 
   double **xi,*delti;                 double (*f)(double), double tol, double *xmin); 
   double fret;    double f1dim(double x); 
   xi=matrix(1,npar,1,npar);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for (i=1;i<=npar;i++)                double *fc, double (*func)(double)); 
     for (j=1;j<=npar;j++)    int j; 
       xi[i][j]=(i==j ? 1.0 : 0.0);    double xx,xmin,bx,ax; 
   printf("Powell\n");    double fx,fb,fa;
   powell(p,xi,npar,ftol,&iter,&fret,func);   
     ncom=n; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    pcom=vector(1,n); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    xicom=vector(1,n); 
     nrfunc=func; 
 }    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
 /**** Computes Hessian and covariance matrix ***/      xicom[j]=xi[j]; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    } 
 {    ax=0.0; 
   double  **a,**y,*x,pd;    xx=1.0; 
   double **hess;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   int i, j,jk;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   int *indx;  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double hessii(double p[], double delta, int theta, double delti[]);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double hessij(double p[], double delti[], int i, int j);  #endif
   void lubksb(double **a, int npar, int *indx, double b[]) ;    for (j=1;j<=n;j++) { 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      xi[j] *= xmin; 
       p[j] += xi[j]; 
   hess=matrix(1,npar,1,npar);    } 
     free_vector(xicom,1,n); 
   printf("\nCalculation of the hessian matrix. Wait...\n");    free_vector(pcom,1,n); 
   for (i=1;i<=npar;i++){  } 
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  char *asc_diff_time(long time_sec, char ascdiff[])
     /*printf(" %f ",p[i]);*/  {
     /*printf(" %lf ",hess[i][i]);*/    long sec_left, days, hours, minutes;
   }    days = (time_sec) / (60*60*24);
      sec_left = (time_sec) % (60*60*24);
   for (i=1;i<=npar;i++) {    hours = (sec_left) / (60*60) ;
     for (j=1;j<=npar;j++)  {    sec_left = (sec_left) %(60*60);
       if (j>i) {    minutes = (sec_left) /60;
         printf(".%d%d",i,j);fflush(stdout);    sec_left = (sec_left) % (60);
         hess[i][j]=hessij(p,delti,i,j);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         hess[j][i]=hess[i][j];        return ascdiff;
         /*printf(" %lf ",hess[i][j]);*/  }
       }  
     }  /*************** powell ************************/
   }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   printf("\n");              double (*func)(double [])) 
   { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    void linmin(double p[], double xi[], int n, double *fret, 
                  double (*func)(double [])); 
   a=matrix(1,npar,1,npar);    int i,ibig,j; 
   y=matrix(1,npar,1,npar);    double del,t,*pt,*ptt,*xit;
   x=vector(1,npar);    double fp,fptt;
   indx=ivector(1,npar);    double *xits;
   for (i=1;i<=npar;i++)    int niterf, itmp;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);    pt=vector(1,n); 
     ptt=vector(1,n); 
   for (j=1;j<=npar;j++) {    xit=vector(1,n); 
     for (i=1;i<=npar;i++) x[i]=0;    xits=vector(1,n); 
     x[j]=1;    *fret=(*func)(p); 
     lubksb(a,npar,indx,x);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (i=1;i<=npar;i++){    for (*iter=1;;++(*iter)) { 
       matcov[i][j]=x[i];      fp=(*fret); 
     }      ibig=0; 
   }      del=0.0; 
       last_time=curr_time;
   printf("\n#Hessian matrix#\n");      (void) gettimeofday(&curr_time,&tzp);
   for (i=1;i<=npar;i++) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for (j=1;j<=npar;j++) {      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       printf("%.3e ",hess[i][j]);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
     }      */
     printf("\n");     for (i=1;i<=n;i++) {
   }        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   /* Recompute Inverse */        fprintf(ficrespow," %.12lf", p[i]);
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      printf("\n");
   ludcmp(a,npar,indx,&pd);      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
   /*  printf("\n#Hessian matrix recomputed#\n");      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   for (j=1;j<=npar;j++) {        strcpy(strcurr,asctime(&tm));
     for (i=1;i<=npar;i++) x[i]=0;  /*       asctime_r(&tm,strcurr); */
     x[j]=1;        forecast_time=curr_time; 
     lubksb(a,npar,indx,x);        itmp = strlen(strcurr);
     for (i=1;i<=npar;i++){        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       y[i][j]=x[i];          strcurr[itmp-1]='\0';
       printf("%.3e ",y[i][j]);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     printf("\n");        for(niterf=10;niterf<=30;niterf+=10){
   }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   */          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
   free_matrix(a,1,npar,1,npar);          strcpy(strfor,asctime(&tmf));
   free_matrix(y,1,npar,1,npar);          itmp = strlen(strfor);
   free_vector(x,1,npar);          if(strfor[itmp-1]=='\n')
   free_ivector(indx,1,npar);          strfor[itmp-1]='\0';
   free_matrix(hess,1,npar,1,npar);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
 }      }
       for (i=1;i<=n;i++) { 
 /*************** hessian matrix ****************/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 double hessii( double x[], double delta, int theta, double delti[])        fptt=(*fret); 
 {  #ifdef DEBUG
   int i;        printf("fret=%lf \n",*fret);
   int l=1, lmax=20;        fprintf(ficlog,"fret=%lf \n",*fret);
   double k1,k2;  #endif
   double p2[NPARMAX+1];        printf("%d",i);fflush(stdout);
   double res;        fprintf(ficlog,"%d",i);fflush(ficlog);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        linmin(p,xit,n,fret,func); 
   double fx;        if (fabs(fptt-(*fret)) > del) { 
   int k=0,kmax=10;          del=fabs(fptt-(*fret)); 
   double l1;          ibig=i; 
         } 
   fx=func(x);  #ifdef DEBUG
   for (i=1;i<=npar;i++) p2[i]=x[i];        printf("%d %.12e",i,(*fret));
   for(l=0 ; l <=lmax; l++){        fprintf(ficlog,"%d %.12e",i,(*fret));
     l1=pow(10,l);        for (j=1;j<=n;j++) {
     delts=delt;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for(k=1 ; k <kmax; k=k+1){          printf(" x(%d)=%.12e",j,xit[j]);
       delt = delta*(l1*k);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       p2[theta]=x[theta] +delt;        }
       k1=func(p2)-fx;        for(j=1;j<=n;j++) {
       p2[theta]=x[theta]-delt;          printf(" p=%.12e",p[j]);
       k2=func(p2)-fx;          fprintf(ficlog," p=%.12e",p[j]);
       /*res= (k1-2.0*fx+k2)/delt/delt; */        }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        printf("\n");
              fprintf(ficlog,"\n");
 #ifdef DEBUG  #endif
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      } 
 #endif      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  #ifdef DEBUG
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        int k[2],l;
         k=kmax;        k[0]=1;
       }        k[1]=-1;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        printf("Max: %.12e",(*func)(p));
         k=kmax; l=lmax*10.;        fprintf(ficlog,"Max: %.12e",(*func)(p));
       }        for (j=1;j<=n;j++) {
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          printf(" %.12e",p[j]);
         delts=delt;          fprintf(ficlog," %.12e",p[j]);
       }        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
   delti[theta]=delts;        for(l=0;l<=1;l++) {
   return res;          for (j=1;j<=n;j++) {
              ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 double hessij( double x[], double delti[], int thetai,int thetaj)          }
 {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int i;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int l=1, l1, lmax=20;        }
   double k1,k2,k3,k4,res,fx;  #endif
   double p2[NPARMAX+1];  
   int k;  
         free_vector(xit,1,n); 
   fx=func(x);        free_vector(xits,1,n); 
   for (k=1; k<=2; k++) {        free_vector(ptt,1,n); 
     for (i=1;i<=npar;i++) p2[i]=x[i];        free_vector(pt,1,n); 
     p2[thetai]=x[thetai]+delti[thetai]/k;        return; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      } 
     k1=func(p2)-fx;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
        for (j=1;j<=n;j++) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;        ptt[j]=2.0*p[j]-pt[j]; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        xit[j]=p[j]-pt[j]; 
     k2=func(p2)-fx;        pt[j]=p[j]; 
        } 
     p2[thetai]=x[thetai]-delti[thetai]/k;      fptt=(*func)(ptt); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      if (fptt < fp) { 
     k3=func(p2)-fx;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
          if (t < 0.0) { 
     p2[thetai]=x[thetai]-delti[thetai]/k;          linmin(p,xit,n,fret,func); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          for (j=1;j<=n;j++) { 
     k4=func(p2)-fx;            xi[j][ibig]=xi[j][n]; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            xi[j][n]=xit[j]; 
 #ifdef DEBUG          }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  #ifdef DEBUG
 #endif          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   return res;          for(j=1;j<=n;j++){
 }            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
 /************** Inverse of matrix **************/          }
 void ludcmp(double **a, int n, int *indx, double *d)          printf("\n");
 {          fprintf(ficlog,"\n");
   int i,imax,j,k;  #endif
   double big,dum,sum,temp;        }
   double *vv;      } 
      } 
   vv=vector(1,n);  } 
   *d=1.0;  
   for (i=1;i<=n;i++) {  /**** Prevalence limit (stable or period prevalence)  ****************/
     big=0.0;  
     for (j=1;j<=n;j++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       if ((temp=fabs(a[i][j])) > big) big=temp;  {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     vv[i]=1.0/big;       matrix by transitions matrix until convergence is reached */
   }  
   for (j=1;j<=n;j++) {    int i, ii,j,k;
     for (i=1;i<j;i++) {    double min, max, maxmin, maxmax,sumnew=0.;
       sum=a[i][j];    double **matprod2();
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    double **out, cov[NCOVMAX], **pmij();
       a[i][j]=sum;    double **newm;
     }    double agefin, delaymax=50 ; /* Max number of years to converge */
     big=0.0;  
     for (i=j;i<=n;i++) {    for (ii=1;ii<=nlstate+ndeath;ii++)
       sum=a[i][j];      for (j=1;j<=nlstate+ndeath;j++){
       for (k=1;k<j;k++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         sum -= a[i][k]*a[k][j];      }
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {     cov[1]=1.;
         big=dum;   
         imax=i;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     }      newm=savm;
     if (j != imax) {      /* Covariates have to be included here again */
       for (k=1;k<=n;k++) {       cov[2]=agefin;
         dum=a[imax][k];    
         a[imax][k]=a[j][k];        for (k=1; k<=cptcovn;k++) {
         a[j][k]=dum;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       *d = -(*d);        }
       vv[imax]=vv[j];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     }        for (k=1; k<=cptcovprod;k++)
     indx[j]=imax;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       dum=1.0/(a[j][j]);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   }  
   free_vector(vv,1,n);  /* Doesn't work */      savm=oldm;
 ;      oldm=newm;
 }      maxmax=0.;
       for(j=1;j<=nlstate;j++){
 void lubksb(double **a, int n, int *indx, double b[])        min=1.;
 {        max=0.;
   int i,ii=0,ip,j;        for(i=1; i<=nlstate; i++) {
   double sum;          sumnew=0;
            for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for (i=1;i<=n;i++) {          prlim[i][j]= newm[i][j]/(1-sumnew);
     ip=indx[i];          max=FMAX(max,prlim[i][j]);
     sum=b[ip];          min=FMIN(min,prlim[i][j]);
     b[ip]=b[i];        }
     if (ii)        maxmin=max-min;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        maxmax=FMAX(maxmax,maxmin);
     else if (sum) ii=i;      }
     b[i]=sum;      if(maxmax < ftolpl){
   }        return prlim;
   for (i=n;i>=1;i--) {      }
     sum=b[i];    }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  }
     b[i]=sum/a[i][i];  
   }  /*************** transition probabilities ***************/ 
 }  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 /************ Frequencies ********************/  {
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    double s1, s2;
 {  /* Some frequencies */    /*double t34;*/
      int i,j,j1, nc, ii, jj;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */      for(i=1; i<= nlstate; i++){
   double *pp;        for(j=1; j<i;j++){
   double pos, k2, dateintsum=0,k2cpt=0;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   FILE *ficresp;            /*s2 += param[i][j][nc]*cov[nc];*/
   char fileresp[FILENAMELENGTH];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
    /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   pp=vector(1,nlstate);          }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          ps[i][j]=s2;
   strcpy(fileresp,"p");  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   strcat(fileresp,fileres);        }
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for(j=i+1; j<=nlstate+ndeath;j++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     exit(0);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          }
   j1=0;          ps[i][j]=s2;
          }
   j=cptcoveff;      }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      /*ps[3][2]=1;*/
        
   for(k1=1; k1<=j;k1++){      for(i=1; i<= nlstate; i++){
     for(i1=1; i1<=ncodemax[k1];i1++){        s1=0;
       j1++;        for(j=1; j<i; j++)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          s1+=exp(ps[i][j]);
         scanf("%d", i);*/        for(j=i+1; j<=nlstate+ndeath; j++)
       for (i=-1; i<=nlstate+ndeath; i++)            s1+=exp(ps[i][j]);
         for (jk=-1; jk<=nlstate+ndeath; jk++)          ps[i][i]=1./(s1+1.);
           for(m=agemin; m <= agemax+3; m++)        for(j=1; j<i; j++)
             freq[i][jk][m]=0;          ps[i][j]= exp(ps[i][j])*ps[i][i];
              for(j=i+1; j<=nlstate+ndeath; j++)
       dateintsum=0;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       k2cpt=0;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for (i=1; i<=imx; i++) {      } /* end i */
         bool=1;      
         if  (cptcovn>0) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           for (z1=1; z1<=cptcoveff; z1++)        for(jj=1; jj<= nlstate+ndeath; jj++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          ps[ii][jj]=0;
               bool=0;          ps[ii][ii]=1;
         }        }
         if (bool==1) {      }
           for(m=firstpass; m<=lastpass; m++){      
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
               if(agev[m][i]==0) agev[m][i]=agemax+1;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
               if(agev[m][i]==1) agev[m][i]=agemax+2;  /*         printf("ddd %lf ",ps[ii][jj]); */
               if (m<lastpass) {  /*       } */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*       printf("\n "); */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  /*        } */
               }  /*        printf("\n ");printf("%lf ",cov[2]); */
                       /*
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
                 dateintsum=dateintsum+k2;        goto end;*/
                 k2cpt++;      return ps;
               }  }
             }  
           }  /**************** Product of 2 matrices ******************/
         }  
       }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
          {
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       if  (cptcovn>0) {    /* in, b, out are matrice of pointers which should have been initialized 
         fprintf(ficresp, "\n#********** Variable ");       before: only the contents of out is modified. The function returns
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       a pointer to pointers identical to out */
         fprintf(ficresp, "**********\n#");    long i, j, k;
       }    for(i=nrl; i<= nrh; i++)
       for(i=1; i<=nlstate;i++)      for(k=ncolol; k<=ncoloh; k++)
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       fprintf(ficresp, "\n");          out[i][k] +=in[i][j]*b[j][k];
        
       for(i=(int)agemin; i <= (int)agemax+3; i++){    return out;
         if(i==(int)agemax+3)  }
           printf("Total");  
         else  
           printf("Age %d", i);  /************* Higher Matrix Product ***************/
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             pp[jk] += freq[jk][m][i];  {
         }    /* Computes the transition matrix starting at age 'age' over 
         for(jk=1; jk <=nlstate ; jk++){       'nhstepm*hstepm*stepm' months (i.e. until
           for(m=-1, pos=0; m <=0 ; m++)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             pos += freq[jk][m][i];       nhstepm*hstepm matrices. 
           if(pp[jk]>=1.e-10)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);       (typically every 2 years instead of every month which is too big 
           else       for the memory).
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);       Model is determined by parameters x and covariates have to be 
         }       included manually here. 
   
         for(jk=1; jk <=nlstate ; jk++){       */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    int i, j, d, h, k;
         }    double **out, cov[NCOVMAX];
     double **newm;
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];    /* Hstepm could be zero and should return the unit matrix */
         for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=nlstate+ndeath;i++)
           if(pos>=1.e-5)      for (j=1;j<=nlstate+ndeath;j++){
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        oldm[i][j]=(i==j ? 1.0 : 0.0);
           else        po[i][j][0]=(i==j ? 1.0 : 0.0);
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      }
           if( i <= (int) agemax){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             if(pos>=1.e-5){    for(h=1; h <=nhstepm; h++){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      for(d=1; d <=hstepm; d++){
               probs[i][jk][j1]= pp[jk]/pos;        newm=savm;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        /* Covariates have to be included here again */
             }        cov[1]=1.;
             else        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           }        for (k=1; k<=cptcovage;k++)
         }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                for (k=1; k<=cptcovprod;k++)
         for(jk=-1; jk <=nlstate+ndeath; jk++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for(m=-1; m <=nlstate+ndeath; m++)  
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
         if(i <= (int) agemax)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           fprintf(ficresp,"\n");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         printf("\n");        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     }        savm=oldm;
   }        oldm=newm;
   dateintmean=dateintsum/k2cpt;      }
        for(i=1; i<=nlstate+ndeath; i++)
   fclose(ficresp);        for(j=1;j<=nlstate+ndeath;j++) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          po[i][j][h]=newm[i][j];
   free_vector(pp,1,nlstate);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             */
   /* End of Freq */        }
 }    } /* end h */
     return po;
 /************ Prevalence ********************/  }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  
 {  /* Some frequencies */  
    /*************** log-likelihood *************/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  double func( double *x)
   double ***freq; /* Frequencies */  {
   double *pp;    int i, ii, j, k, mi, d, kk;
   double pos, k2;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   pp=vector(1,nlstate);    double sw; /* Sum of weights */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double lli; /* Individual log likelihood */
      int s1, s2;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double bbh, survp;
   j1=0;    long ipmx;
      /*extern weight */
   j=cptcoveff;    /* We are differentiating ll according to initial status */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
  for(k1=1; k1<=j;k1++){      printf(" %d\n",s[4][i]);
     for(i1=1; i1<=ncodemax[k1];i1++){    */
       j1++;    cov[1]=1.;
    
       for (i=-1; i<=nlstate+ndeath; i++)      for(k=1; k<=nlstate; k++) ll[k]=0.;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)    if(mle==1){
             freq[i][jk][m]=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (i=1; i<=imx; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
         bool=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
         if  (cptcovn>0) {            for (j=1;j<=nlstate+ndeath;j++){
           for (z1=1; z1<=cptcoveff; z1++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               bool=0;            }
         }          for(d=0; d<dh[mi][i]; d++){
         if (bool==1) {            newm=savm;
           for(m=firstpass; m<=lastpass; m++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             k2=anint[m][i]+(mint[m][i]/12.);            for (kk=1; kk<=cptcovage;kk++) {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if(agev[m][i]==0) agev[m][i]=agemax+1;            }
               if(agev[m][i]==1) agev[m][i]=agemax+2;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if (m<lastpass)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            savm=oldm;
               else            oldm=newm;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          } /* end mult */
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        
             }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           }          /* But now since version 0.9 we anticipate for bias at large stepm.
         }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       }           * (in months) between two waves is not a multiple of stepm, we rounded to 
         for(i=(int)agemin; i <= (int)agemax+3; i++){           * the nearest (and in case of equal distance, to the lowest) interval but now
           for(jk=1; jk <=nlstate ; jk++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
               pp[jk] += freq[jk][m][i];           * probability in order to take into account the bias as a fraction of the way
           }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           for(jk=1; jk <=nlstate ; jk++){           * -stepm/2 to stepm/2 .
             for(m=-1, pos=0; m <=0 ; m++)           * For stepm=1 the results are the same as for previous versions of Imach.
             pos += freq[jk][m][i];           * For stepm > 1 the results are less biased than in previous versions. 
         }           */
                  s1=s[mw[mi][i]][i];
          for(jk=1; jk <=nlstate ; jk++){          s2=s[mw[mi+1][i]][i];
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          bbh=(double)bh[mi][i]/(double)stepm; 
              pp[jk] += freq[jk][m][i];          /* bias bh is positive if real duration
          }           * is higher than the multiple of stepm and negative otherwise.
                     */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
          for(jk=1; jk <=nlstate ; jk++){                      /* i.e. if s2 is a death state and if the date of death is known 
            if( i <= (int) agemax){               then the contribution to the likelihood is the probability to 
              if(pos>=1.e-5){               die between last step unit time and current  step unit time, 
                probs[i][jk][j1]= pp[jk]/pos;               which is also equal to probability to die before dh 
              }               minus probability to die before dh-stepm . 
            }               In version up to 0.92 likelihood was computed
          }          as if date of death was unknown. Death was treated as any other
                    health state: the date of the interview describes the actual state
         }          and not the date of a change in health state. The former idea was
     }          to consider that at each interview the state was recorded
   }          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
            the contribution of an exact death to the likelihood. This new
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          contribution is smaller and very dependent of the step unit
   free_vector(pp,1,nlstate);          stepm. It is no more the probability to die between last interview
            and month of death but the probability to survive from last
 }  /* End of Freq */          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
 /************* Waves Concatenation ***************/          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          which slows down the processing. The difference can be up to 10%
 {          lower mortality.
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            */
      Death is a valid wave (if date is known).            lli=log(out[s1][s2] - savm[s1][s2]);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.          } else if  (s2==-2) {
      */            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int i, mi, m;            /*survp += out[s1][j]; */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            lli= log(survp);
      double sum=0., jmean=0.;*/          }
           
   int j, k=0,jk, ju, jl;          else if  (s2==-4) { 
   double sum=0.;            for (j=3,survp=0. ; j<=nlstate; j++)  
   jmin=1e+5;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   jmax=-1;            lli= log(survp); 
   jmean=0.;          } 
   for(i=1; i<=imx; i++){  
     mi=0;          else if  (s2==-5) { 
     m=firstpass;            for (j=1,survp=0. ; j<=2; j++)  
     while(s[m][i] <= nlstate){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       if(s[m][i]>=1)            lli= log(survp); 
         mw[++mi][i]=m;          } 
       if(m >=lastpass)          
         break;          else{
       else            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         m++;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     }/* end while */          } 
     if (s[m][i] > nlstate){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       mi++;     /* Death is another wave */          /*if(lli ==000.0)*/
       /* if(mi==0)  never been interviewed correctly before death */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
          /* Only death is a correct wave */          ipmx +=1;
       mw[mi][i]=m;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     wav[i]=mi;      } /* end of individual */
     if(mi==0)    }  else if(mle==2){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=imx; i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(mi=1; mi<wav[i];mi++){            for (j=1;j<=nlstate+ndeath;j++){
       if (stepm <=0)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         dh[mi][i]=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else{            }
         if (s[mw[mi+1][i]][i] > nlstate) {          for(d=0; d<=dh[mi][i]; d++){
           if (agedc[i] < 2*AGESUP) {            newm=savm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if(j==0) j=1;  /* Survives at least one month after exam */            for (kk=1; kk<=cptcovage;kk++) {
           k=k+1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if (j >= jmax) jmax=j;            }
           if (j <= jmin) jmin=j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           sum=sum+j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            savm=oldm;
           }            oldm=newm;
         }          } /* end mult */
         else{        
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          s1=s[mw[mi][i]][i];
           k=k+1;          s2=s[mw[mi+1][i]][i];
           if (j >= jmax) jmax=j;          bbh=(double)bh[mi][i]/(double)stepm; 
           else if (j <= jmin)jmin=j;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          ipmx +=1;
           sum=sum+j;          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         jk= j/stepm;        } /* end of wave */
         jl= j -jk*stepm;      } /* end of individual */
         ju= j -(jk+1)*stepm;    }  else if(mle==3){  /* exponential inter-extrapolation */
         if(jl <= -ju)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           dh[mi][i]=jk;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else        for(mi=1; mi<= wav[i]-1; mi++){
           dh[mi][i]=jk+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
         if(dh[mi][i]==0)            for (j=1;j<=nlstate+ndeath;j++){
           dh[mi][i]=1; /* At least one step */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
   }          for(d=0; d<dh[mi][i]; d++){
   jmean=sum/k;            newm=savm;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  }            for (kk=1; kk<=cptcovage;kk++) {
 /*********** Tricode ****************************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void tricode(int *Tvar, int **nbcode, int imx)            }
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int Ndum[20],ij=1, k, j, i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int cptcode=0;            savm=oldm;
   cptcoveff=0;            oldm=newm;
            } /* end mult */
   for (k=0; k<19; k++) Ndum[k]=0;        
   for (k=1; k<=7; k++) ncodemax[k]=0;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          bbh=(double)bh[mi][i]/(double)stepm; 
     for (i=1; i<=imx; i++) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       ij=(int)(covar[Tvar[j]][i]);          ipmx +=1;
       Ndum[ij]++;          sw += weight[i];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if (ij > cptcode) cptcode=ij;        } /* end of wave */
     }      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
     for (i=0; i<=cptcode; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(Ndum[i]!=0) ncodemax[j]++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     ij=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=ncodemax[j]; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=0; k<=19; k++) {            }
         if (Ndum[k] != 0) {          for(d=0; d<dh[mi][i]; d++){
           nbcode[Tvar[j]][ij]=k;            newm=savm;
                      cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           ij++;            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (ij > ncodemax[j]) break;            }
       }            
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
  for (k=0; k<19; k++) Ndum[k]=0;            oldm=newm;
           } /* end mult */
  for (i=1; i<=ncovmodel-2; i++) {        
       ij=Tvar[i];          s1=s[mw[mi][i]][i];
       Ndum[ij]++;          s2=s[mw[mi+1][i]][i];
     }          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
  ij=1;          }else{
  for (i=1; i<=10; i++) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
    if((Ndum[i]!=0) && (i<=ncovcol)){          }
      Tvaraff[ij]=i;          ipmx +=1;
      ij++;          sw += weight[i];
    }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          } /* end of wave */
     cptcoveff=ij-1;      } /* end of individual */
 }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*********** Health Expectancies ****************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Health expectancies */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            }
   double age, agelim, hf;          for(d=0; d<dh[mi][i]; d++){
   double ***p3mat,***varhe;            newm=savm;
   double **dnewm,**doldm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double *xp;            for (kk=1; kk<=cptcovage;kk++) {
   double **gp, **gm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double ***gradg, ***trgradg;            }
   int theta;          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   xp=vector(1,npar);            savm=oldm;
   dnewm=matrix(1,nlstate*2,1,npar);            oldm=newm;
   doldm=matrix(1,nlstate*2,1,nlstate*2);          } /* end mult */
          
   fprintf(ficreseij,"# Health expectancies\n");          s1=s[mw[mi][i]][i];
   fprintf(ficreseij,"# Age");          s2=s[mw[mi+1][i]][i];
   for(i=1; i<=nlstate;i++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(j=1; j<=nlstate;j++)          ipmx +=1;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          sw += weight[i];
   fprintf(ficreseij,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   if(estepm < stepm){        } /* end of wave */
     printf ("Problem %d lower than %d\n",estepm, stepm);      } /* end of individual */
   }    } /* End of if */
   else  hstepm=estepm;      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* We compute the life expectancy from trapezoids spaced every estepm months    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
    * This is mainly to measure the difference between two models: for example    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
    * if stepm=24 months pijx are given only every 2 years and by summing them    return -l;
    * we are calculating an estimate of the Life Expectancy assuming a linear  }
    * progression inbetween and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we  /*************** log-likelihood *************/
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  double funcone( double *x)
    * to compare the new estimate of Life expectancy with the same linear  {
    * hypothesis. A more precise result, taking into account a more precise    /* Same as likeli but slower because of a lot of printf and if */
    * curvature will be obtained if estepm is as small as stepm. */    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
   /* For example we decided to compute the life expectancy with the smallest unit */    double **out;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double lli; /* Individual log likelihood */
      nhstepm is the number of hstepm from age to agelim    double llt;
      nstepm is the number of stepm from age to agelin.    int s1, s2;
      Look at hpijx to understand the reason of that which relies in memory size    double bbh, survp;
      and note for a fixed period like estepm months */    /*extern weight */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* We are differentiating ll according to initial status */
      survival function given by stepm (the optimization length). Unfortunately it    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      means that if the survival funtion is printed only each two years of age and if    /*for(i=1;i<imx;i++) 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      printf(" %d\n",s[4][i]);
      results. So we changed our mind and took the option of the best precision.    */
   */    cov[1]=1.;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /* nhstepm age range expressed in number of stepm */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      for(mi=1; mi<= wav[i]-1; mi++){
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        for (ii=1;ii<=nlstate+ndeath;ii++)
     /* if (stepm >= YEARM) hstepm=1;*/          for (j=1;j<=nlstate+ndeath;j++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          }
     gp=matrix(0,nhstepm,1,nlstate*2);        for(d=0; d<dh[mi][i]; d++){
     gm=matrix(0,nhstepm,1,nlstate*2);          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          for (kk=1; kk<=cptcovage;kk++) {
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            }
            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          savm=oldm;
           oldm=newm;
     /* Computing Variances of health expectancies */        } /* end mult */
         
      for(theta=1; theta <=npar; theta++){        s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++){        s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        bbh=(double)bh[mi][i]/(double)stepm; 
       }        /* bias is positive if real duration
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);           * is higher than the multiple of stepm and negative otherwise.
           */
       cptj=0;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       for(j=1; j<= nlstate; j++){          lli=log(out[s1][s2] - savm[s1][s2]);
         for(i=1; i<=nlstate; i++){        } else if  (s2==-2) {
           cptj=cptj+1;          for (j=1,survp=0. ; j<=nlstate; j++) 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          lli= log(survp);
           }        }else if (mle==1){
         }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }        } else if(mle==2){
                lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
              } else if(mle==3){  /* exponential inter-extrapolation */
       for(i=1; i<=npar; i++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            lli=log(out[s1][s2]); /* Original formula */
              } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       cptj=0;          lli=log(out[s1][s2]); /* Original formula */
       for(j=1; j<= nlstate; j++){        } /* End of if */
         for(i=1;i<=nlstate;i++){        ipmx +=1;
           cptj=cptj+1;        sw += weight[i];
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           }        if(globpr){
         }          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       }   %11.6f %11.6f %11.6f ", \
                        num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                      2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for(j=1; j<= nlstate*2; j++)            llt +=ll[k]*gipmx/gsw;
         for(h=0; h<=nhstepm-1; h++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          }
         }          fprintf(ficresilk," %10.6f\n", -llt);
         }
      }      } /* end of wave */
        } /* end of individual */
 /* End theta */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
      for(h=0; h<=nhstepm-1; h++)      gipmx=ipmx;
       for(j=1; j<=nlstate*2;j++)      gsw=sw;
         for(theta=1; theta <=npar; theta++)    }
         trgradg[h][j][theta]=gradg[h][theta][j];    return -l;
   }
   
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)  /*************** function likelione ***********/
         varhe[i][j][(int)age] =0.;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
     for(h=0;h<=nhstepm-1;h++){    /* This routine should help understanding what is done with 
       for(k=0;k<=nhstepm-1;k++){       the selection of individuals/waves and
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);       to check the exact contribution to the likelihood.
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);       Plotting could be done.
         for(i=1;i<=nlstate*2;i++)     */
           for(j=1;j<=nlstate*2;j++)    int k;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }    if(*globpri !=0){ /* Just counts and sums, no printings */
     }      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
            if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     /* Computing expectancies */        printf("Problem with resultfile: %s\n", fileresilk);
     for(i=1; i<=nlstate;i++)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       for(j=1; j<=nlstate;j++)      }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
                /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;    *fretone=(*funcone)(p);
     for(i=1; i<=nlstate;i++)    if(*globpri !=0){
       for(j=1; j<=nlstate;j++){      fclose(ficresilk);
         cptj++;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      fflush(fichtm); 
       }    } 
     fprintf(ficreseij,"\n");    return;
      }
     free_matrix(gm,0,nhstepm,1,nlstate*2);  
     free_matrix(gp,0,nhstepm,1,nlstate*2);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  /*********** Maximum Likelihood Estimation ***************/
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   }  {
   free_vector(xp,1,npar);    int i,j, iter;
   free_matrix(dnewm,1,nlstate*2,1,npar);    double **xi;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    double fret;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    double fretone; /* Only one call to likelihood */
 }    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
 /************ Variance ******************/    for (i=1;i<=npar;i++)
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      for (j=1;j<=npar;j++)
 {        xi[i][j]=(i==j ? 1.0 : 0.0);
   /* Variance of health expectancies */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    strcpy(filerespow,"pow"); 
   double **newm;    strcat(filerespow,fileres);
   double **dnewm,**doldm;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   int i, j, nhstepm, hstepm, h, nstepm ;      printf("Problem with resultfile: %s\n", filerespow);
   int k, cptcode;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double *xp;    }
   double **gp, **gm;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   double ***gradg, ***trgradg;    for (i=1;i<=nlstate;i++)
   double ***p3mat;      for(j=1;j<=nlstate+ndeath;j++)
   double age,agelim, hf;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   int theta;    fprintf(ficrespow,"\n");
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");    powell(p,xi,npar,ftol,&iter,&fret,func);
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    free_matrix(xi,1,npar,1,npar);
     for(j=1; j<=nlstate;j++)    fclose(ficrespow);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   fprintf(ficresvij,"\n");    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  }
   doldm=matrix(1,nlstate,1,nlstate);  
    /**** Computes Hessian and covariance matrix ***/
   if(estepm < stepm){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     printf ("Problem %d lower than %d\n",estepm, stepm);  {
   }    double  **a,**y,*x,pd;
   else  hstepm=estepm;      double **hess;
   /* For example we decided to compute the life expectancy with the smallest unit */    int i, j,jk;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int *indx;
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      Look at hpijx to understand the reason of that which relies in memory size    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      and note for a fixed period like k years */    void lubksb(double **a, int npar, int *indx, double b[]) ;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    void ludcmp(double **a, int npar, int *indx, double *d) ;
      survival function given by stepm (the optimization length). Unfortunately it    double gompertz(double p[]);
      means that if the survival funtion is printed only each two years of age and if    hess=matrix(1,npar,1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.    printf("\nCalculation of the hessian matrix. Wait...\n");
   */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (i=1;i<=npar;i++){
   agelim = AGESUP;      printf("%d",i);fflush(stdout);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(ficlog,"%d",i);fflush(ficlog);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      /*  printf(" %f ",p[i]);
     gp=matrix(0,nhstepm,1,nlstate);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     gm=matrix(0,nhstepm,1,nlstate);    }
     
     for(theta=1; theta <=npar; theta++){    for (i=1;i<=npar;i++) {
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (j=1;j<=npar;j++)  {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if (j>i) { 
       }          printf(".%d%d",i,j);fflush(stdout);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
       if (popbased==1) {          hess[j][i]=hess[i][j];    
         for(i=1; i<=nlstate;i++)          /*printf(" %lf ",hess[i][j]);*/
           prlim[i][i]=probs[(int)age][i][ij];        }
       }      }
      }
       for(j=1; j<= nlstate; j++){    printf("\n");
         for(h=0; h<=nhstepm; h++){    fprintf(ficlog,"\n");
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    
        a=matrix(1,npar,1,npar);
       for(i=1; i<=npar; i++) /* Computes gradient */    y=matrix(1,npar,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    x=vector(1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      indx=ivector(1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       if (popbased==1) {    ludcmp(a,npar,indx,&pd);
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
       for(j=1; j<= nlstate; j++){      lubksb(a,npar,indx,x);
         for(h=0; h<=nhstepm; h++){      for (i=1;i<=npar;i++){ 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        matcov[i][j]=x[i];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      }
         }    }
       }  
     printf("\n#Hessian matrix#\n");
       for(j=1; j<= nlstate; j++)    fprintf(ficlog,"\n#Hessian matrix#\n");
         for(h=0; h<=nhstepm; h++){    for (i=1;i<=npar;i++) { 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (j=1;j<=npar;j++) { 
         }        printf("%.3e ",hess[i][j]);
     } /* End theta */        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      printf("\n");
       fprintf(ficlog,"\n");
     for(h=0; h<=nhstepm; h++)    }
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)    /* Recompute Inverse */
           trgradg[h][j][theta]=gradg[h][theta][j];    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    ludcmp(a,npar,indx,&pd);
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    /*  printf("\n#Hessian matrix recomputed#\n");
         vareij[i][j][(int)age] =0.;  
     for (j=1;j<=npar;j++) {
     for(h=0;h<=nhstepm;h++){      for (i=1;i<=npar;i++) x[i]=0;
       for(k=0;k<=nhstepm;k++){      x[j]=1;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      lubksb(a,npar,indx,x);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      for (i=1;i<=npar;i++){ 
         for(i=1;i<=nlstate;i++)        y[i][j]=x[i];
           for(j=1;j<=nlstate;j++)        printf("%.3e ",y[i][j]);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        fprintf(ficlog,"%.3e ",y[i][j]);
       }      }
     }      printf("\n");
       fprintf(ficlog,"\n");
     fprintf(ficresvij,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    */
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    free_matrix(a,1,npar,1,npar);
       }    free_matrix(y,1,npar,1,npar);
     fprintf(ficresvij,"\n");    free_vector(x,1,npar);
     free_matrix(gp,0,nhstepm,1,nlstate);    free_ivector(indx,1,npar);
     free_matrix(gm,0,nhstepm,1,nlstate);    free_matrix(hess,1,npar,1,npar);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
   } /* End age */  
    /*************** hessian matrix ****************/
   free_vector(xp,1,npar);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   free_matrix(doldm,1,nlstate,1,npar);  {
   free_matrix(dnewm,1,nlstate,1,nlstate);    int i;
     int l=1, lmax=20;
 }    double k1,k2;
     double p2[NPARMAX+1];
 /************ Variance of prevlim ******************/    double res;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 {    double fx;
   /* Variance of prevalence limit */    int k=0,kmax=10;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double l1;
   double **newm;  
   double **dnewm,**doldm;    fx=func(x);
   int i, j, nhstepm, hstepm;    for (i=1;i<=npar;i++) p2[i]=x[i];
   int k, cptcode;    for(l=0 ; l <=lmax; l++){
   double *xp;      l1=pow(10,l);
   double *gp, *gm;      delts=delt;
   double **gradg, **trgradg;      for(k=1 ; k <kmax; k=k+1){
   double age,agelim;        delt = delta*(l1*k);
   int theta;        p2[theta]=x[theta] +delt;
            k1=func(p2)-fx;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        p2[theta]=x[theta]-delt;
   fprintf(ficresvpl,"# Age");        k2=func(p2)-fx;
   for(i=1; i<=nlstate;i++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
       fprintf(ficresvpl," %1d-%1d",i,i);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   fprintf(ficresvpl,"\n");        
   #ifdef DEBUG
   xp=vector(1,npar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   doldm=matrix(1,nlstate,1,nlstate);  #endif
          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   hstepm=1*YEARM; /* Every year of age */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          k=kmax;
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          k=kmax; l=lmax*10.;
     if (stepm >= YEARM) hstepm=1;        }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     gradg=matrix(1,npar,1,nlstate);          delts=delt;
     gp=vector(1,nlstate);        }
     gm=vector(1,nlstate);      }
     }
     for(theta=1; theta <=npar; theta++){    delti[theta]=delts;
       for(i=1; i<=npar; i++){ /* Computes gradient */    return res; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    
       }  }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         gp[i] = prlim[i][i];  {
        int i;
       for(i=1; i<=npar; i++) /* Computes gradient */    int l=1, l1, lmax=20;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double k1,k2,k3,k4,res,fx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double p2[NPARMAX+1];
       for(i=1;i<=nlstate;i++)    int k;
         gm[i] = prlim[i][i];  
     fx=func(x);
       for(i=1;i<=nlstate;i++)    for (k=1; k<=2; k++) {
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      for (i=1;i<=npar;i++) p2[i]=x[i];
     } /* End theta */      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     trgradg =matrix(1,nlstate,1,npar);      k1=func(p2)-fx;
     
     for(j=1; j<=nlstate;j++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(theta=1; theta <=npar; theta++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         trgradg[j][theta]=gradg[theta][j];      k2=func(p2)-fx;
     
     for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
       varpl[i][(int)age] =0.;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      k3=func(p2)-fx;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    
     for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
     fprintf(ficresvpl,"%.0f ",age );      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(i=1; i<=nlstate;i++)  #ifdef DEBUG
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(ficresvpl,"\n");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     free_vector(gp,1,nlstate);  #endif
     free_vector(gm,1,nlstate);    }
     free_matrix(gradg,1,npar,1,nlstate);    return res;
     free_matrix(trgradg,1,nlstate,1,npar);  }
   } /* End age */  
   /************** Inverse of matrix **************/
   free_vector(xp,1,npar);  void ludcmp(double **a, int n, int *indx, double *d) 
   free_matrix(doldm,1,nlstate,1,npar);  { 
   free_matrix(dnewm,1,nlstate,1,nlstate);    int i,imax,j,k; 
     double big,dum,sum,temp; 
 }    double *vv; 
    
 /************ Variance of one-step probabilities  ******************/    vv=vector(1,n); 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    *d=1.0; 
 {    for (i=1;i<=n;i++) { 
   int i, j, i1, k1, j1, z1;      big=0.0; 
   int k=0, cptcode;      for (j=1;j<=n;j++) 
   double **dnewm,**doldm;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   double *xp;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double *gp, *gm;      vv[i]=1.0/big; 
   double **gradg, **trgradg;    } 
   double age,agelim, cov[NCOVMAX];    for (j=1;j<=n;j++) { 
   int theta;      for (i=1;i<j;i++) { 
   char fileresprob[FILENAMELENGTH];        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   strcpy(fileresprob,"prob");        a[i][j]=sum; 
   strcat(fileresprob,fileres);      } 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      big=0.0; 
     printf("Problem with resultfile: %s\n", fileresprob);      for (i=j;i<=n;i++) { 
   }        sum=a[i][j]; 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");        a[i][j]=sum; 
   fprintf(ficresprob,"# Age");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   for(i=1; i<=nlstate;i++)          big=dum; 
     for(j=1; j<=(nlstate+ndeath);j++)          imax=i; 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        } 
       } 
       if (j != imax) { 
   fprintf(ficresprob,"\n");        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
   xp=vector(1,npar);          a[j][k]=dum; 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        } 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        *d = -(*d); 
          vv[imax]=vv[j]; 
   cov[1]=1;      } 
   j=cptcoveff;      indx[j]=imax; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      if (a[j][j] == 0.0) a[j][j]=TINY; 
   j1=0;      if (j != n) { 
   for(k1=1; k1<=1;k1++){        dum=1.0/(a[j][j]); 
     for(i1=1; i1<=ncodemax[k1];i1++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     j1++;      } 
     } 
     if  (cptcovn>0) {    free_vector(vv,1,n);  /* Doesn't work */
       fprintf(ficresprob, "\n#********** Variable ");  ;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  } 
       fprintf(ficresprob, "**********\n#");  
     }  void lubksb(double **a, int n, int *indx, double b[]) 
      { 
       for (age=bage; age<=fage; age ++){    int i,ii=0,ip,j; 
         cov[2]=age;    double sum; 
         for (k=1; k<=cptcovn;k++) {   
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    for (i=1;i<=n;i++) { 
                ip=indx[i]; 
         }      sum=b[ip]; 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      b[ip]=b[i]; 
         for (k=1; k<=cptcovprod;k++)      if (ii) 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
              else if (sum) ii=i; 
         gradg=matrix(1,npar,1,9);      b[i]=sum; 
         trgradg=matrix(1,9,1,npar);    } 
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    for (i=n;i>=1;i--) { 
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      sum=b[i]; 
          for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         for(theta=1; theta <=npar; theta++){      b[i]=sum/a[i][i]; 
           for(i=1; i<=npar; i++)    } 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  } 
            
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  void pstamp(FILE *fichier)
            {
           k=0;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           for(i=1; i<= (nlstate+ndeath); i++){  }
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;  /************ Frequencies ********************/
               gp[k]=pmmij[i][j];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
             }  {  /* Some frequencies */
           }    
              int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           for(i=1; i<=npar; i++)    int first;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    double ***freq; /* Frequencies */
        double *pp, **prop;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           k=0;    char fileresp[FILENAMELENGTH];
           for(i=1; i<=(nlstate+ndeath); i++){    
             for(j=1; j<=(nlstate+ndeath);j++){    pp=vector(1,nlstate);
               k=k+1;    prop=matrix(1,nlstate,iagemin,iagemax+3);
               gm[k]=pmmij[i][j];    strcpy(fileresp,"p");
             }    strcat(fileresp,fileres);
           }    if((ficresp=fopen(fileresp,"w"))==NULL) {
            printf("Problem with prevalence resultfile: %s\n", fileresp);
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        exit(0);
         }    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    j1=0;
           for(theta=1; theta <=npar; theta++)    
             trgradg[j][theta]=gradg[theta][j];    j=cptcoveff;
            if (cptcovn<1) {j=1;ncodemax[1]=1;}
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    first=1;
          
         pmij(pmmij,cov,ncovmodel,x,nlstate);    for(k1=1; k1<=j;k1++){
              for(i1=1; i1<=ncodemax[k1];i1++){
         k=0;        j1++;
         for(i=1; i<=(nlstate+ndeath); i++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           for(j=1; j<=(nlstate+ndeath);j++){          scanf("%d", i);*/
             k=k+1;        for (i=-5; i<=nlstate+ndeath; i++)  
             gm[k]=pmmij[i][j];          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           }            for(m=iagemin; m <= iagemax+3; m++)
         }              freq[i][jk][m]=0;
        
      /*printf("\n%d ",(int)age);      for (i=1; i<=nlstate; i++)  
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        for(m=iagemin; m <= iagemax+3; m++)
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          prop[i][m]=0;
      }*/        
         dateintsum=0;
         fprintf(ficresprob,"\n%d ",(int)age);        k2cpt=0;
         for (i=1; i<=imx; i++) {
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)          bool=1;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          if  (cptcovn>0) {
              for (z1=1; z1<=cptcoveff; z1++) 
       }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     }                bool=0;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          if (bool==1){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            for(m=firstpass; m<=lastpass; m++){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              k2=anint[m][i]+(mint[m][i]/12.);
   }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   free_vector(xp,1,npar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fclose(ficresprob);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 }                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 /******************* Printing html file ***********/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                }
  int lastpass, int stepm, int weightopt, char model[],\                
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\                  dateintsum=dateintsum+k2;
  char version[], int popforecast, int estepm ){                  k2cpt++;
   int jj1, k1, i1, cpt;                }
   FILE *fichtm;                /*}*/
   /*char optionfilehtm[FILENAMELENGTH];*/            }
           }
   strcpy(optionfilehtm,optionfile);        }
   strcat(optionfilehtm,".htm");         
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     printf("Problem with %s \n",optionfilehtm), exit(0);        pstamp(ficresp);
   }        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          fprintf(ficresp, "**********\n#");
 \n        }
 Total number of observations=%d <br>\n        for(i=1; i<=nlstate;i++) 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 <hr  size=\"2\" color=\"#EC5E5E\">        fprintf(ficresp, "\n");
  <ul><li>Outputs files<br>\n        
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        for(i=iagemin; i <= iagemax+3; i++){
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n          if(i==iagemax+3){
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            fprintf(ficlog,"Total");
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n          }else{
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n            if(first==1){
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);              first=0;
               printf("See log file for details...\n");
  fprintf(fichtm,"\n            }
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n            fprintf(ficlog,"Age %d", i);
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          }
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          for(jk=1; jk <=nlstate ; jk++){
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              pp[jk] += freq[jk][m][i]; 
           }
  if(popforecast==1) fprintf(fichtm,"\n          for(jk=1; jk <=nlstate ; jk++){
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            for(m=-1, pos=0; m <=0 ; m++)
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              pos += freq[jk][m][i];
         <br>",fileres,fileres,fileres,fileres);            if(pp[jk]>=1.e-10){
  else              if(first==1){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 fprintf(fichtm," <li>Graphs</li><p>");              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  m=cptcoveff;            }else{
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  jj1=0;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  for(k1=1; k1<=m;k1++){            }
    for(i1=1; i1<=ncodemax[k1];i1++){          }
        jj1++;  
        if (cptcovn > 0) {          for(jk=1; jk <=nlstate ; jk++){
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
          for (cpt=1; cpt<=cptcoveff;cpt++)              pp[jk] += freq[jk][m][i];
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          }       
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
        }            pos += pp[jk];
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            posprop += prop[jk][i];
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              }
        for(cpt=1; cpt<nlstate;cpt++){          for(jk=1; jk <=nlstate ; jk++){
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            if(pos>=1.e-5){
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              if(first==1)
        }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     for(cpt=1; cpt<=nlstate;cpt++) {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            }else{
 interval) in state (%d): v%s%d%d.gif <br>              if(first==1)
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
      }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
      for(cpt=1; cpt<=nlstate;cpt++) {            }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            if( i <= iagemax){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              if(pos>=1.e-5){
      }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                /*probs[i][jk][j1]= pp[jk]/pos;*/
 health expectancies in states (1) and (2): e%s%d.gif<br>                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              }
 fprintf(fichtm,"\n</body>");              else
    }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
    }            }
 fclose(fichtm);          }
 }          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
 /******************* Gnuplot file **************/            for(m=-1; m <=nlstate+ndeath; m++)
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              if(freq[jk][m][i] !=0 ) {
               if(first==1)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   strcpy(optionfilegnuplot,optionfilefiname);              }
   strcat(optionfilegnuplot,".gp.txt");          if(i <= iagemax)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            fprintf(ficresp,"\n");
     printf("Problem with file %s",optionfilegnuplot);          if(first==1)
   }            printf("Others in log...\n");
           fprintf(ficlog,"\n");
 #ifdef windows        }
     fprintf(ficgp,"cd \"%s\" \n",pathc);      }
 #endif    }
 m=pow(2,cptcoveff);    dateintmean=dateintsum/k2cpt; 
     
  /* 1eme*/    fclose(ficresp);
   for (cpt=1; cpt<= nlstate ; cpt ++) {    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
    for (k1=1; k1<= m ; k1 ++) {    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    /* End of Freq */
   }
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  /************ Prevalence ********************/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 }  {  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     for (i=1; i<= nlstate ; i ++) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       We still use firstpass and lastpass as another selection.
   else fprintf(ficgp," \%%*lf (\%%*lf)");    */
 }   
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      for (i=1; i<= nlstate ; i ++) {    double ***freq; /* Frequencies */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double *pp, **prop;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double pos,posprop; 
 }      double  y2; /* in fractional years */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    int iagemin, iagemax;
   
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    iagemin= (int) agemin;
    }    iagemax= (int) agemax;
   }    /*pp=vector(1,nlstate);*/
   /*2 eme*/    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   for (k1=1; k1<= m ; k1 ++) {    j1=0;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    
        j=cptcoveff;
     for (i=1; i<= nlstate+1 ; i ++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       k=2*i;    
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    for(k1=1; k1<=j;k1++){
       for (j=1; j<= nlstate+1 ; j ++) {      for(i1=1; i1<=ncodemax[k1];i1++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        j1++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        
 }          for (i=1; i<=nlstate; i++)  
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          for(m=iagemin; m <= iagemax+3; m++)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            prop[i][m]=0.0;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);       
       for (j=1; j<= nlstate+1 ; j ++) {        for (i=1; i<=imx; i++) { /* Each individual */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          bool=1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");          if  (cptcovn>0) {
 }              for (z1=1; z1<=cptcoveff; z1++) 
       fprintf(ficgp,"\" t\"\" w l 0,");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                bool=0;
       for (j=1; j<= nlstate+1 ; j ++) {          } 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          if (bool==1) { 
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 }                y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       else fprintf(ficgp,"\" t\"\" w l 0,");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   /*3eme*/                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
   for (k1=1; k1<= m ; k1 ++) {                } 
     for (cpt=1; cpt<= nlstate ; cpt ++) {              }
       k=2+nlstate*(2*cpt-2);            } /* end selection of waves */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for(i=iagemin; i <= iagemax+3; i++){  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            posprop += prop[jk][i]; 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          } 
   
 */          for(jk=1; jk <=nlstate ; jk++){     
       for (i=1; i< nlstate ; i ++) {            if( i <=  iagemax){ 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
       }              } 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            } 
     }          }/* end jk */ 
     }        }/* end i */ 
        } /* end i1 */
   /* CV preval stat */    } /* end k1 */
     for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<nlstate ; cpt ++) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       k=3;    /*free_vector(pp,1,nlstate);*/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);  /************* Waves Concatenation ***************/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
        void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       l=3+(nlstate+ndeath)*cpt;  {
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       for (i=1; i< nlstate ; i ++) {       Death is a valid wave (if date is known).
         l=3+(nlstate+ndeath)*cpt;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         fprintf(ficgp,"+$%d",l+i+1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       }       and mw[mi+1][i]. dh depends on stepm.
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);         */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }    int i, mi, m;
   }      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         double sum=0., jmean=0.;*/
   /* proba elementaires */    int first;
    for(i=1,jk=1; i <=nlstate; i++){    int j, k=0,jk, ju, jl;
     for(k=1; k <=(nlstate+ndeath); k++){    double sum=0.;
       if (k != i) {    first=0;
         for(j=1; j <=ncovmodel; j++){    jmin=1e+5;
            jmax=-1;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    jmean=0.;
           jk++;    for(i=1; i<=imx; i++){
           fprintf(ficgp,"\n");      mi=0;
         }      m=firstpass;
       }      while(s[m][i] <= nlstate){
     }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     }          mw[++mi][i]=m;
         if(m >=lastpass)
     for(jk=1; jk <=m; jk++) {          break;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        else
    i=1;          m++;
    for(k2=1; k2<=nlstate; k2++) {      }/* end while */
      k3=i;      if (s[m][i] > nlstate){
      for(k=1; k<=(nlstate+ndeath); k++) {        mi++;     /* Death is another wave */
        if (k != k2){        /* if(mi==0)  never been interviewed correctly before death */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);           /* Only death is a correct wave */
 ij=1;        mw[mi][i]=m;
         for(j=3; j <=ncovmodel; j++) {      }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      wav[i]=mi;
             ij++;      if(mi==0){
           }        nbwarn++;
           else        if(first==0){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         }          first=1;
           fprintf(ficgp,")/(1");        }
                if(first==1){
         for(k1=1; k1 <=nlstate; k1++){            fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        }
 ij=1;      } /* end mi==0 */
           for(j=3; j <=ncovmodel; j++){    } /* End individuals */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for(i=1; i<=imx; i++){
             ij++;      for(mi=1; mi<wav[i];mi++){
           }        if (stepm <=0)
           else          dh[mi][i]=1;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        else{
           }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           fprintf(ficgp,")");            if (agedc[i] < 2*AGESUP) {
         }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);              if(j==0) j=1;  /* Survives at least one month after exam */
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              else if(j<0){
         i=i+ncovmodel;                nberr++;
        }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      }                j=1; /* Temporary Dangerous patch */
    }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                  }
   fclose(ficgp);              k=k+1;
 }  /* end gnuplot */              if (j >= jmax){
                 jmax=j;
                 ijmax=i;
 /*************** Moving average **************/              }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              if (j <= jmin){
                 jmin=j;
   int i, cpt, cptcod;                ijmin=i;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)              }
       for (i=1; i<=nlstate;i++)              sum=sum+j;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           mobaverage[(int)agedeb][i][cptcod]=0.;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          }
       for (i=1; i<=nlstate;i++){          else{
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           for (cpt=0;cpt<=4;cpt++){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }            k=k+1;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            if (j >= jmax) {
         }              jmax=j;
       }              ijmax=i;
     }            }
                else if (j <= jmin){
 }              jmin=j;
               ijmin=i;
             }
 /************** Forecasting ******************/            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
              if(j<0){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              nberr++;
   int *popage;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double *popeffectif,*popcount;            }
   double ***p3mat;            sum=sum+j;
   char fileresf[FILENAMELENGTH];          }
           jk= j/stepm;
  agelim=AGESUP;          jl= j -jk*stepm;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            if(jl==0){
                dh[mi][i]=jk;
                bh[mi][i]=0;
   strcpy(fileresf,"f");            }else{ /* We want a negative bias in order to only have interpolation ie
   strcat(fileresf,fileres);                    * at the price of an extra matrix product in likelihood */
   if((ficresf=fopen(fileresf,"w"))==NULL) {              dh[mi][i]=jk+1;
     printf("Problem with forecast resultfile: %s\n", fileresf);              bh[mi][i]=ju;
   }            }
   printf("Computing forecasting: result on file '%s' \n", fileresf);          }else{
             if(jl <= -ju){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   if (mobilav==1) {                                   * is higher than the multiple of stepm and negative otherwise.
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                                   */
     movingaverage(agedeb, fage, ageminpar, mobaverage);            }
   }            else{
               dh[mi][i]=jk+1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;              bh[mi][i]=ju;
   if (stepm<=12) stepsize=1;            }
              if(dh[mi][i]==0){
   agelim=AGESUP;              dh[mi][i]=1; /* At least one step */
                bh[mi][i]=ju; /* At least one step */
   hstepm=1;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   hstepm=hstepm/stepm;            }
   yp1=modf(dateintmean,&yp);          } /* end if mle */
   anprojmean=yp;        }
   yp2=modf((yp1*12),&yp);      } /* end wave */
   mprojmean=yp;    }
   yp1=modf((yp2*30.5),&yp);    jmean=sum/k;
   jprojmean=yp;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   if(jprojmean==0) jprojmean=1;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   if(mprojmean==0) jprojmean=1;   }
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx)
   for(cptcov=1;cptcov<=i2;cptcov++){  {
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    
       k=k+1;    int Ndum[20],ij=1, k, j, i, maxncov=19;
       fprintf(ficresf,"\n#******");    int cptcode=0;
       for(j=1;j<=cptcoveff;j++) {    cptcoveff=0; 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
       }    for (k=0; k<maxncov; k++) Ndum[k]=0;
       fprintf(ficresf,"******\n");    for (k=1; k<=7; k++) ncodemax[k]=0;
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
            for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                       modality*/ 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         fprintf(ficresf,"\n");        Ndum[ij]++; /*store the modality */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                                         Tvar[j]. If V=sex and male is 0 and 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                                         female is 1, then  cptcode=1.*/
           nhstepm = nhstepm/hstepm;      }
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=0; i<=cptcode; i++) {
           oldm=oldms;savm=savms;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }
          
           for (h=0; h<=nhstepm; h++){      ij=1; 
             if (h==(int) (calagedate+YEARM*cpt)) {      for (i=1; i<=ncodemax[j]; i++) {
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        for (k=0; k<= maxncov; k++) {
             }          if (Ndum[k] != 0) {
             for(j=1; j<=nlstate+ndeath;j++) {            nbcode[Tvar[j]][ij]=k; 
               kk1=0.;kk2=0;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
               for(i=1; i<=nlstate;i++) {                          
                 if (mobilav==1)            ij++;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          }
                 else {          if (ij > ncodemax[j]) break; 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        }  
                 }      } 
                    }  
               }  
               if (h==(int)(calagedate+12*cpt)){   for (k=0; k< maxncov; k++) Ndum[k]=0;
                 fprintf(ficresf," %.3f", kk1);  
                           for (i=1; i<=ncovmodel-2; i++) { 
               }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
             }     ij=Tvar[i];
           }     Ndum[ij]++;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   }
         }  
       }   ij=1;
     }   for (i=1; i<= maxncov; i++) {
   }     if((Ndum[i]!=0) && (i<=ncovcol)){
               Tvaraff[ij]=i; /*For printing */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       ij++;
      }
   fclose(ficresf);   }
 }   
 /************** Forecasting ******************/   cptcoveff=ij-1; /*Number of simple covariates*/
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  }
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  /*********** Health Expectancies ****************/
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;  {
   char filerespop[FILENAMELENGTH];    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double age, agelim, hf;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double ***p3mat;
   agelim=AGESUP;    double eip;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
      pstamp(ficreseij);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
      fprintf(ficreseij,"# Age");
      for(i=1; i<=nlstate;i++){
   strcpy(filerespop,"pop");      for(j=1; j<=nlstate;j++){
   strcat(filerespop,fileres);        fprintf(ficreseij," e%1d%1d ",i,j);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      }
     printf("Problem with forecast resultfile: %s\n", filerespop);      fprintf(ficreseij," e%1d. ",i);
   }    }
   printf("Computing forecasting: result on file '%s' \n", filerespop);    fprintf(ficreseij,"\n");
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    
     if(estepm < stepm){
   if (mobilav==1) {      printf ("Problem %d lower than %d\n",estepm, stepm);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
     movingaverage(agedeb, fage, ageminpar, mobaverage);    else  hstepm=estepm;   
   }    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   stepsize=(int) (stepm+YEARM-1)/YEARM;     * if stepm=24 months pijx are given only every 2 years and by summing them
   if (stepm<=12) stepsize=1;     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
   agelim=AGESUP;     * to the curvature of the survival function. If, for the same date, we 
       * estimate the model with stepm=1 month, we can keep estepm to 24 months
   hstepm=1;     * to compare the new estimate of Life expectancy with the same linear 
   hstepm=hstepm/stepm;     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {    /* For example we decided to compute the life expectancy with the smallest unit */
       printf("Problem with population file : %s\n",popfile);exit(0);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     }       nhstepm is the number of hstepm from age to agelim 
     popage=ivector(0,AGESUP);       nstepm is the number of stepm from age to agelin. 
     popeffectif=vector(0,AGESUP);       Look at hpijx to understand the reason of that which relies in memory size
     popcount=vector(0,AGESUP);       and note for a fixed period like estepm months */
        /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     i=1;         survival function given by stepm (the optimization length). Unfortunately it
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;       means that if the survival funtion is printed only each two years of age and if
           you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     imx=i;       results. So we changed our mind and took the option of the best precision.
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   for(cptcov=1;cptcov<=i2;cptcov++){    agelim=AGESUP;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* nhstepm age range expressed in number of stepm */
       k=k+1;    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       fprintf(ficrespop,"\n#******");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for(j=1;j<=cptcoveff;j++) {    /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       if (popforecast==1)  fprintf(ficrespop," [Population]");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
            
       for (cpt=0; cpt<=0;cpt++) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        
              hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      printf("%d|",(int)age);fflush(stdout);
           nhstepm = nhstepm/hstepm;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Computing expectancies */
           oldm=oldms;savm=savms;      for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=1; j<=nlstate;j++)
                  for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           for (h=0; h<=nhstepm; h++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             if (h==(int) (calagedate+YEARM*cpt)) {            
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             }  
             for(j=1; j<=nlstate+ndeath;j++) {          }
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                    fprintf(ficreseij,"%3.0f",age );
                 if (mobilav==1)      for(i=1; i<=nlstate;i++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        eip=0;
                 else {        for(j=1; j<=nlstate;j++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          eip +=eij[i][j][(int)age];
                 }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
               }        }
               if (h==(int)(calagedate+12*cpt)){        fprintf(ficreseij,"%9.4f", eip );
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      }
                   /*fprintf(ficrespop," %.3f", kk1);      fprintf(ficreseij,"\n");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      
               }    }
             }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             for(i=1; i<=nlstate;i++){    printf("\n");
               kk1=0.;    fprintf(ficlog,"\n");
                 for(j=1; j<=nlstate;j++){    
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  }
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
             }  
   {
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    /* Covariances of health expectancies eij and of total life expectancies according
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);     to initial status i, ei. .
           }    */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
         }    double age, agelim, hf;
       }    double ***p3matp, ***p3matm, ***varhe;
      double **dnewm,**doldm;
   /******/    double *xp, *xm;
     double **gp, **gm;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    double ***gradg, ***trgradg;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      int theta;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double eip, vip;
           nhstepm = nhstepm/hstepm;  
              varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    xp=vector(1,npar);
           oldm=oldms;savm=savms;    xm=vector(1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      dnewm=matrix(1,nlstate*nlstate,1,npar);
           for (h=0; h<=nhstepm; h++){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
             if (h==(int) (calagedate+YEARM*cpt)) {    
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    pstamp(ficresstdeij);
             }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficresstdeij,"# Age");
               kk1=0.;kk2=0;    for(i=1; i<=nlstate;i++){
               for(i=1; i<=nlstate;i++) {                    for(j=1; j<=nlstate;j++)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
               }      fprintf(ficresstdeij," e%1d. ",i);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    }
             }    fprintf(ficresstdeij,"\n");
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    pstamp(ficrescveij);
         }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       }    fprintf(ficrescveij,"# Age");
    }    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++){
          cptj= (j-1)*nlstate+i;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
   if (popforecast==1) {            cptj2= (j2-1)*nlstate+i2;
     free_ivector(popage,0,AGESUP);            if(cptj2 <= cptj)
     free_vector(popeffectif,0,AGESUP);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     free_vector(popcount,0,AGESUP);          }
   }      }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficrescveij,"\n");
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   fclose(ficrespop);    if(estepm < stepm){
 }      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
 /***********************************************/    else  hstepm=estepm;   
 /**************** Main Program *****************/    /* We compute the life expectancy from trapezoids spaced every estepm months
 /***********************************************/     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
 int main(int argc, char *argv[])     * we are calculating an estimate of the Life Expectancy assuming a linear 
 {     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   double agedeb, agefin,hf;     * to compare the new estimate of Life expectancy with the same linear 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   double fret;  
   double **xi,tmp,delta;    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double dum; /* Dummy variable */       nhstepm is the number of hstepm from age to agelim 
   double ***p3mat;       nstepm is the number of stepm from age to agelin. 
   int *indx;       Look at hpijx to understand the reason of that which relies in memory size
   char line[MAXLINE], linepar[MAXLINE];       and note for a fixed period like estepm months */
   char title[MAXLINE];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];       survival function given by stepm (the optimization length). Unfortunately it
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];       results. So we changed our mind and took the option of the best precision.
     */
   char filerest[FILENAMELENGTH];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   char fileregp[FILENAMELENGTH];  
   char popfile[FILENAMELENGTH];    /* If stepm=6 months */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    /* nhstepm age range expressed in number of stepm */
   int firstobs=1, lastobs=10;    agelim=AGESUP;
   int sdeb, sfin; /* Status at beginning and end */    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   int c,  h , cpt,l;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   int ju,jl, mi;    /* if (stepm >= YEARM) hstepm=1;*/
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    
   int mobilav=0,popforecast=0;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int hstepm, nhstepm;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   double bage, fage, age, agelim, agebase;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   double ftolpl=FTOL;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   double **prlim;  
   double *severity;    for (age=bage; age<=fage; age ++){ 
   double ***param; /* Matrix of parameters */  
   double  *p;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   double **matcov; /* Matrix of covariance */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   double ***delti3; /* Scale */   
   double *delti; /* Scale */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */      /* Computing  Variances of health expectancies */
   double *epj, vepp;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   double kk1, kk2;         decrease memory allocation */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   char *alph[]={"a","a","b","c","d","e"}, str[4];        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   char z[1]="c", occ;    
 #include <sys/time.h>        for(j=1; j<= nlstate; j++){
 #include <time.h>          for(i=1; i<=nlstate; i++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            for(h=0; h<=nhstepm-1; h++){
                gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   /* long total_usecs;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   struct timeval start_time, end_time;            }
            }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        }
   getcwd(pathcd, size);       
         for(ij=1; ij<= nlstate*nlstate; ij++)
   printf("\n%s",version);          for(h=0; h<=nhstepm-1; h++){
   if(argc <=1){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     printf("\nEnter the parameter file name: ");          }
     scanf("%s",pathtot);      }/* End theta */
   }      
   else{      
     strcpy(pathtot,argv[1]);      for(h=0; h<=nhstepm-1; h++)
   }        for(j=1; j<=nlstate*nlstate;j++)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          for(theta=1; theta <=npar; theta++)
   /*cygwin_split_path(pathtot,path,optionfile);            trgradg[h][j][theta]=gradg[h][theta][j];
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      
   /* cutv(path,optionfile,pathtot,'\\');*/  
        for(ij=1;ij<=nlstate*nlstate;ij++)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        for(ji=1;ji<=nlstate*nlstate;ji++)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          varhe[ij][ji][(int)age] =0.;
   chdir(path);  
   replace(pathc,path);       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 /*-------- arguments in the command line --------*/       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
   strcpy(fileres,"r");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   strcat(fileres, optionfilefiname);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   strcat(fileres,".txt");    /* Other files have txt extension */          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
   /*---------arguments file --------*/              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      }
     printf("Problem with optionfile %s\n",optionfile);      /* Computing expectancies */
     goto end;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   strcpy(filereso,"o");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   strcat(filereso,fileres);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   if((ficparo=fopen(filereso,"w"))==NULL) {            
     printf("Problem with Output resultfile: %s\n", filereso);goto end;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   }  
           }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresstdeij,"%3.0f",age );
     ungetc(c,ficpar);      for(i=1; i<=nlstate;i++){
     fgets(line, MAXLINE, ficpar);        eip=0.;
     puts(line);        vip=0.;
     fputs(line,ficparo);        for(j=1; j<=nlstate;j++){
   }          eip += eij[i][j][(int)age];
   ungetc(c,ficpar);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);      fprintf(ficresstdeij,"\n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);      fprintf(ficrescveij,"%3.0f",age );
     fputs(line,ficparo);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   ungetc(c,ficpar);          cptj= (j-1)*nlstate+i;
            for(i2=1; i2<=nlstate;i2++)
                for(j2=1; j2<=nlstate;j2++){
   covar=matrix(0,NCOVMAX,1,n);              cptj2= (j2-1)*nlstate+i2;
   cptcovn=0;              if(cptj2 <= cptj)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
   ncovmodel=2+cptcovn;        }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      fprintf(ficrescveij,"\n");
       
   /* Read guess parameters */    }
   /* Reads comments: lines beginning with '#' */    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     ungetc(c,ficpar);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     fgets(line, MAXLINE, ficpar);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     puts(line);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficparo);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    printf("\n");
   ungetc(c,ficpar);    fprintf(ficlog,"\n");
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    free_vector(xm,1,npar);
     for(i=1; i <=nlstate; i++)    free_vector(xp,1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficparo,"%1d%1d",i1,j1);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       printf("%1d%1d",i,j);  }
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);  /************ Variance ******************/
         printf(" %lf",param[i][j][k]);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         fprintf(ficparo," %lf",param[i][j][k]);  {
       }    /* Variance of health expectancies */
       fscanf(ficpar,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       printf("\n");    /* double **newm;*/
       fprintf(ficparo,"\n");    double **dnewm,**doldm;
     }    double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    int k, cptcode;
     double *xp;
   p=param[1][1];    double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
   /* Reads comments: lines beginning with '#' */    double **gradgp, **trgradgp; /* for var p point j */
   while((c=getc(ficpar))=='#' && c!= EOF){    double *gpp, *gmp; /* for var p point j */
     ungetc(c,ficpar);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     fgets(line, MAXLINE, ficpar);    double ***p3mat;
     puts(line);    double age,agelim, hf;
     fputs(line,ficparo);    double ***mobaverage;
   }    int theta;
   ungetc(c,ficpar);    char digit[4];
     char digitp[25];
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    char fileresprobmorprev[FILENAMELENGTH];
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){    if(popbased==1){
       fscanf(ficpar,"%1d%1d",&i1,&j1);      if(mobilav!=0)
       printf("%1d%1d",i,j);        strcpy(digitp,"-populbased-mobilav-");
       fprintf(ficparo,"%1d%1d",i1,j1);      else strcpy(digitp,"-populbased-nomobil-");
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar,"%le",&delti3[i][j][k]);    else 
         printf(" %le",delti3[i][j][k]);      strcpy(digitp,"-stablbased-");
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }    if (mobilav!=0) {
       fscanf(ficpar,"\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("\n");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       fprintf(ficparo,"\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   }      }
   delti=delti3[1][1];    }
    
   /* Reads comments: lines beginning with '#' */    strcpy(fileresprobmorprev,"prmorprev"); 
   while((c=getc(ficpar))=='#' && c!= EOF){    sprintf(digit,"%-d",ij);
     ungetc(c,ficpar);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     puts(line);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     fputs(line,ficparo);    strcat(fileresprobmorprev,fileres);
   }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   matcov=matrix(1,npar,1,npar);    }
   for(i=1; i <=npar; i++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fscanf(ficpar,"%s",&str);   
     printf("%s",str);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficparo,"%s",str);    pstamp(ficresprobmorprev);
     for(j=1; j <=i; j++){    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fscanf(ficpar," %le",&matcov[i][j]);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       printf(" %.5le",matcov[i][j]);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficparo," %.5le",matcov[i][j]);      fprintf(ficresprobmorprev," p.%-d SE",j);
     }      for(i=1; i<=nlstate;i++)
     fscanf(ficpar,"\n");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     printf("\n");    }  
     fprintf(ficparo,"\n");    fprintf(ficresprobmorprev,"\n");
   }    fprintf(ficgp,"\n# Routine varevsij");
   for(i=1; i <=npar; i++)    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     for(j=i+1;j<=npar;j++)    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       matcov[i][j]=matcov[j][i];    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      /*   } */
   printf("\n");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     /*-------- Rewriting paramater file ----------*/    if(popbased==1)
      strcpy(rfileres,"r");    /* "Rparameterfile */      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    else
      strcat(rfileres,".");    /* */      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    fprintf(ficresvij,"# Age");
     if((ficres =fopen(rfileres,"w"))==NULL) {    for(i=1; i<=nlstate;i++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      for(j=1; j<=nlstate;j++)
     }        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficres,"#%s\n",version);    fprintf(ficresvij,"\n");
      
     /*-------- data file ----------*/    xp=vector(1,npar);
     if((fic=fopen(datafile,"r"))==NULL)    {    dnewm=matrix(1,nlstate,1,npar);
       printf("Problem with datafile: %s\n", datafile);goto end;    doldm=matrix(1,nlstate,1,nlstate);
     }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     n= lastobs;  
     severity = vector(1,maxwav);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     outcome=imatrix(1,maxwav+1,1,n);    gpp=vector(nlstate+1,nlstate+ndeath);
     num=ivector(1,n);    gmp=vector(nlstate+1,nlstate+ndeath);
     moisnais=vector(1,n);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     annais=vector(1,n);    
     moisdc=vector(1,n);    if(estepm < stepm){
     andc=vector(1,n);      printf ("Problem %d lower than %d\n",estepm, stepm);
     agedc=vector(1,n);    }
     cod=ivector(1,n);    else  hstepm=estepm;   
     weight=vector(1,n);    /* For example we decided to compute the life expectancy with the smallest unit */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     mint=matrix(1,maxwav,1,n);       nhstepm is the number of hstepm from age to agelim 
     anint=matrix(1,maxwav,1,n);       nstepm is the number of stepm from age to agelin. 
     s=imatrix(1,maxwav+1,1,n);       Look at hpijx to understand the reason of that which relies in memory size
     adl=imatrix(1,maxwav+1,1,n);           and note for a fixed period like k years */
     tab=ivector(1,NCOVMAX);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     ncodemax=ivector(1,8);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
     i=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     while (fgets(line, MAXLINE, fic) != NULL)    {       results. So we changed our mind and took the option of the best precision.
       if ((i >= firstobs) && (i <=lastobs)) {    */
            hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         for (j=maxwav;j>=1;j--){    agelim = AGESUP;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           strcpy(line,stra);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
              gp=matrix(0,nhstepm,1,nlstate);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      gm=matrix(0,nhstepm,1,nlstate);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(theta=1; theta <=npar; theta++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         for (j=ncovcol;j>=1;j--){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }  
         num[i]=atol(stra);        if (popbased==1) {
                  if(mobilav ==0){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            for(i=1; i<=nlstate;i++)
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
         i=i+1;            for(i=1; i<=nlstate;i++)
       }              prlim[i][i]=mobaverage[(int)age][i][ij];
     }          }
     /* printf("ii=%d", ij);        }
        scanf("%d",i);*/    
   imx=i-1; /* Number of individuals */        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
   /* for (i=1; i<=imx; i++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        }
     }*/        /* This for computing probability of death (h=1 means
    /*  for (i=1; i<=imx; i++){           computed over hstepm matrices product = hstepm*stepm months) 
      if (s[4][i]==9)  s[4][i]=-1;           as a weighted average of prlim.
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
   /* Calculation of the number of parameter from char model*/            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   Tvar=ivector(1,15);        }    
   Tprod=ivector(1,15);        /* end probability of death */
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   Tage=ivector(1,15);                xp[i] = x[i] - (i==theta ?delti[theta]:0);
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if (strlen(model) >1){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     j=0, j1=0, k1=1, k2=1;   
     j=nbocc(model,'+');        if (popbased==1) {
     j1=nbocc(model,'*');          if(mobilav ==0){
     cptcovn=j+1;            for(i=1; i<=nlstate;i++)
     cptcovprod=j1;              prlim[i][i]=probs[(int)age][i][ij];
              }else{ /* mobilav */ 
     strcpy(modelsav,model);            for(i=1; i<=nlstate;i++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              prlim[i][i]=mobaverage[(int)age][i][ij];
       printf("Error. Non available option model=%s ",model);          }
       goto end;        }
     }  
            for(j=1; j<= nlstate; j++){
     for(i=(j+1); i>=1;i--){          for(h=0; h<=nhstepm; h++){
       cutv(stra,strb,modelsav,'+');            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          }
       /*scanf("%d",i);*/        }
       if (strchr(strb,'*')) {        /* This for computing probability of death (h=1 means
         cutv(strd,strc,strb,'*');           computed over hstepm matrices product = hstepm*stepm months) 
         if (strcmp(strc,"age")==0) {           as a weighted average of prlim.
           cptcovprod--;        */
           cutv(strb,stre,strd,'V');        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           Tvar[i]=atoi(stre);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           cptcovage++;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
             Tage[cptcovage]=i;        }    
             /*printf("stre=%s ", stre);*/        /* end probability of death */
         }  
         else if (strcmp(strd,"age")==0) {        for(j=1; j<= nlstate; j++) /* vareij */
           cptcovprod--;          for(h=0; h<=nhstepm; h++){
           cutv(strb,stre,strc,'V');            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           Tvar[i]=atoi(stre);          }
           cptcovage++;  
           Tage[cptcovage]=i;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         else {        }
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncovcol+k1;      } /* End theta */
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);      for(h=0; h<=nhstepm; h++) /* veij */
           Tvar[cptcovn+k2]=Tvard[k1][1];        for(j=1; j<=nlstate;j++)
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          for(theta=1; theta <=npar; theta++)
           for (k=1; k<=lastobs;k++)            trgradg[h][j][theta]=gradg[h][theta][j];
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           k2=k2+2;        for(theta=1; theta <=npar; theta++)
         }          trgradgp[j][theta]=gradgp[theta][j];
       }    
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        /*  scanf("%d",i);*/      for(i=1;i<=nlstate;i++)
       cutv(strd,strc,strb,'V');        for(j=1;j<=nlstate;j++)
       Tvar[i]=atoi(strc);          vareij[i][j][(int)age] =0.;
       }  
       strcpy(modelsav,stra);        for(h=0;h<=nhstepm;h++){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        for(k=0;k<=nhstepm;k++){
         scanf("%d",i);*/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 }          for(i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate;j++)
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   printf("cptcovprod=%d ", cptcovprod);        }
   scanf("%d ",i);*/      }
     fclose(fic);    
       /* pptj */
     /*  if(mle==1){*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     if (weightopt != 1) { /* Maximisation without weights*/      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(i=1;i<=n;i++) weight[i]=1.0;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     /*-calculation of age at interview from date of interview and age at death -*/          varppt[j][i]=doldmp[j][i];
     agev=matrix(1,maxwav,1,imx);      /* end ppptj */
       /*  x centered again */
     for (i=1; i<=imx; i++) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       for(m=2; (m<= maxwav); m++) {      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){   
          anint[m][i]=9999;      if (popbased==1) {
          s[m][i]=-1;        if(mobilav ==0){
        }          for(i=1; i<=nlstate;i++)
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;            prlim[i][i]=probs[(int)age][i][ij];
       }        }else{ /* mobilav */ 
     }          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
     for (i=1; i<=imx; i++)  {        }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      }
       for(m=1; (m<= maxwav); m++){               
         if(s[m][i] >0){      /* This for computing probability of death (h=1 means
           if (s[m][i] >= nlstate+1) {         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             if(agedc[i]>0)         as a weighted average of prlim.
               if(moisdc[i]!=99 && andc[i]!=9999)      */
                 agev[m][i]=agedc[i];      for(j=nlstate+1;j<=nlstate+ndeath;j++){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            else {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
               if (andc[i]!=9999){      }    
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      /* end probability of death */
               agev[m][i]=-1;  
               }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
             }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           else if(s[m][i] !=9){ /* Should no more exist */        for(i=1; i<=nlstate;i++){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
             if(mint[m][i]==99 || anint[m][i]==9999)        }
               agev[m][i]=1;      } 
             else if(agev[m][i] <agemin){      fprintf(ficresprobmorprev,"\n");
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      fprintf(ficresvij,"%.0f ",age );
             }      for(i=1; i<=nlstate;i++)
             else if(agev[m][i] >agemax){        for(j=1; j<=nlstate;j++){
               agemax=agev[m][i];          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        }
             }      fprintf(ficresvij,"\n");
             /*agev[m][i]=anint[m][i]-annais[i];*/      free_matrix(gp,0,nhstepm,1,nlstate);
             /*   agev[m][i] = age[i]+2*m;*/      free_matrix(gm,0,nhstepm,1,nlstate);
           }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           else { /* =9 */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
             agev[m][i]=1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             s[m][i]=-1;    } /* End age */
           }    free_vector(gpp,nlstate+1,nlstate+ndeath);
         }    free_vector(gmp,nlstate+1,nlstate+ndeath);
         else /*= 0 Unknown */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           agev[m][i]=1;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
        /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     for (i=1; i<=imx; i++)  {  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       for(m=1; (m<= maxwav); m++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         if (s[m][i] > (nlstate+ndeath)) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           printf("Error: Wrong value in nlstate or ndeath\n");      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           goto end;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     free_vector(severity,1,maxwav);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);    free_vector(xp,1,npar);
     free_vector(annais,1,n);    free_matrix(doldm,1,nlstate,1,nlstate);
     /* free_matrix(mint,1,maxwav,1,n);    free_matrix(dnewm,1,nlstate,1,npar);
        free_matrix(anint,1,maxwav,1,n);*/    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_vector(moisdc,1,n);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_vector(andc,1,n);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        fclose(ficresprobmorprev);
     wav=ivector(1,imx);    fflush(ficgp);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    fflush(fichtm); 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  }  /* end varevsij */
      
     /* Concatenates waves */  /************ Variance of prevlim ******************/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
       Tcode=ivector(1,100);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    double **newm;
       ncodemax[1]=1;    double **dnewm,**doldm;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    int i, j, nhstepm, hstepm;
          int k, cptcode;
    codtab=imatrix(1,100,1,10);    double *xp;
    h=0;    double *gp, *gm;
    m=pow(2,cptcoveff);    double **gradg, **trgradg;
      double age,agelim;
    for(k=1;k<=cptcoveff; k++){    int theta;
      for(i=1; i <=(m/pow(2,k));i++){    
        for(j=1; j <= ncodemax[k]; j++){    pstamp(ficresvpl);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
            h++;    fprintf(ficresvpl,"# Age");
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    for(i=1; i<=nlstate;i++)
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        fprintf(ficresvpl," %1d-%1d",i,i);
          }    fprintf(ficresvpl,"\n");
        }  
      }    xp=vector(1,npar);
    }    dnewm=matrix(1,nlstate,1,npar);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    doldm=matrix(1,nlstate,1,nlstate);
       codtab[1][2]=1;codtab[2][2]=2; */    
    /* for(i=1; i <=m ;i++){    hstepm=1*YEARM; /* Every year of age */
       for(k=1; k <=cptcovn; k++){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    agelim = AGESUP;
       }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       printf("\n");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       }      if (stepm >= YEARM) hstepm=1;
       scanf("%d",i);*/      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
          gradg=matrix(1,npar,1,nlstate);
    /* Calculates basic frequencies. Computes observed prevalence at single age      gp=vector(1,nlstate);
        and prints on file fileres'p'. */      gm=vector(1,nlstate);
   
          for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++){ /* Computes gradient */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1;i<=nlstate;i++)
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          gp[i] = prlim[i][i];
            
     /* For Powell, parameters are in a vector p[] starting at p[1]        for(i=1; i<=npar; i++) /* Computes gradient */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
     if(mle==1){          gm[i] = prlim[i][i];
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }        for(i=1;i<=nlstate;i++)
              gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     /*--------- results files --------------*/      } /* End theta */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
        trgradg =matrix(1,nlstate,1,npar);
   
    jk=1;      for(j=1; j<=nlstate;j++)
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for(theta=1; theta <=npar; theta++)
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          trgradg[j][theta]=gradg[theta][j];
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){      for(i=1;i<=nlstate;i++)
        if (k != i)        varpl[i][(int)age] =0.;
          {      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
            printf("%d%d ",i,k);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
            fprintf(ficres,"%1d%1d ",i,k);      for(i=1;i<=nlstate;i++)
            for(j=1; j <=ncovmodel; j++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);      fprintf(ficresvpl,"%.0f ",age );
              jk++;      for(i=1; i<=nlstate;i++)
            }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
            printf("\n");      fprintf(ficresvpl,"\n");
            fprintf(ficres,"\n");      free_vector(gp,1,nlstate);
          }      free_vector(gm,1,nlstate);
      }      free_matrix(gradg,1,npar,1,nlstate);
    }      free_matrix(trgradg,1,nlstate,1,npar);
  if(mle==1){    } /* End age */
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */    free_vector(xp,1,npar);
     hesscov(matcov, p, npar, delti, ftolhess, func);    free_matrix(doldm,1,nlstate,1,npar);
  }    free_matrix(dnewm,1,nlstate,1,nlstate);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");  }
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){  /************ Variance of one-step probabilities  ******************/
         if (j!=i) {  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
           fprintf(ficres,"%1d%1d",i,j);  {
           printf("%1d%1d",i,j);    int i, j=0,  i1, k1, l1, t, tj;
           for(k=1; k<=ncovmodel;k++){    int k2, l2, j1,  z1;
             printf(" %.5e",delti[jk]);    int k=0,l, cptcode;
             fprintf(ficres," %.5e",delti[jk]);    int first=1, first1;
             jk++;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           }    double **dnewm,**doldm;
           printf("\n");    double *xp;
           fprintf(ficres,"\n");    double *gp, *gm;
         }    double **gradg, **trgradg;
       }    double **mu;
      }    double age,agelim, cov[NCOVMAX];
        double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     k=1;    int theta;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    char fileresprob[FILENAMELENGTH];
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    char fileresprobcov[FILENAMELENGTH];
     for(i=1;i<=npar;i++){    char fileresprobcor[FILENAMELENGTH];
       /*  if (k>nlstate) k=1;  
       i1=(i-1)/(ncovmodel*nlstate)+1;    double ***varpij;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/    strcpy(fileresprob,"prob"); 
       fprintf(ficres,"%3d",i);    strcat(fileresprob,fileres);
       printf("%3d",i);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       for(j=1; j<=i;j++){      printf("Problem with resultfile: %s\n", fileresprob);
         fprintf(ficres," %.5e",matcov[i][j]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         printf(" %.5e",matcov[i][j]);    }
       }    strcpy(fileresprobcov,"probcov"); 
       fprintf(ficres,"\n");    strcat(fileresprobcov,fileres);
       printf("\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       k++;      printf("Problem with resultfile: %s\n", fileresprobcov);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        }
     while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(fileresprobcor,"probcor"); 
       ungetc(c,ficpar);    strcat(fileresprobcor,fileres);
       fgets(line, MAXLINE, ficpar);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       puts(line);      printf("Problem with resultfile: %s\n", fileresprobcor);
       fputs(line,ficparo);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }    }
     ungetc(c,ficpar);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     estepm=0;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     if (estepm==0 || estepm < stepm) estepm=stepm;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     if (fage <= 2) {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       bage = ageminpar;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fage = agemaxpar;    pstamp(ficresprob);
     }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
        fprintf(ficresprob,"# Age");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    pstamp(ficresprobcov);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fprintf(ficresprobcov,"# Age");
      pstamp(ficresprobcor);
     while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     ungetc(c,ficpar);    fprintf(ficresprobcor,"# Age");
     fgets(line, MAXLINE, ficpar);  
     puts(line);  
     fputs(line,ficparo);    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=(nlstate+ndeath);j++){
   ungetc(c,ficpar);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
          fprintf(ficresprobcov," p%1d-%1d ",i,j);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      }  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   /* fprintf(ficresprob,"\n");
          fprintf(ficresprobcov,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprobcor,"\n");
     ungetc(c,ficpar);   */
     fgets(line, MAXLINE, ficpar);   xp=vector(1,npar);
     puts(line);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     fputs(line,ficparo);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   ungetc(c,ficpar);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      first=1;
     fprintf(ficgp,"\n# Routine varprob");
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    fprintf(fichtm,"\n");
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   fprintf(ficparo,"pop_based=%d\n",popbased);      fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   fprintf(ficres,"pop_based=%d\n",popbased);      file %s<br>\n",optionfilehtmcov);
      fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   while((c=getc(ficpar))=='#' && c!= EOF){  and drawn. It helps understanding how is the covariance between two incidences.\
     ungetc(c,ficpar);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fgets(line, MAXLINE, ficpar);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     puts(line);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     fputs(line,ficparo);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   }  standard deviations wide on each axis. <br>\
   ungetc(c,ficpar);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 while((c=getc(ficpar))=='#' && c!= EOF){    j1=0;
     ungetc(c,ficpar);    for(t=1; t<=tj;t++){
     fgets(line, MAXLINE, ficpar);      for(i1=1; i1<=ncodemax[t];i1++){ 
     puts(line);        j1++;
     fputs(line,ficparo);        if  (cptcovn>0) {
   }          fprintf(ficresprob, "\n#********** Variable "); 
   ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          fprintf(ficresprobcov, "\n#********** Variable "); 
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          fprintf(ficresprobcov, "**********\n#\n");
           
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /*------------ gnuplot -------------*/          fprintf(ficgp, "**********\n#\n");
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);          
            
 /*------------ free_vector  -------------*/          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
  chdir(path);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
  free_ivector(wav,1,imx);          
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          fprintf(ficresprobcor, "\n#********** Variable ");    
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  free_ivector(num,1,n);          fprintf(ficresprobcor, "**********\n#");    
  free_vector(agedc,1,n);        }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        
  fclose(ficparo);        for (age=bage; age<=fage; age ++){ 
  fclose(ficres);          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
 /*--------- index.htm --------*/            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
              cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /*--------------- Prevalence limit --------------*/          
            gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   strcpy(filerespl,"pl");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   strcat(filerespl,fileres);          gp=vector(1,(nlstate)*(nlstate+ndeath));
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          gm=vector(1,(nlstate)*(nlstate+ndeath));
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      
   }          for(theta=1; theta <=npar; theta++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            for(i=1; i<=npar; i++)
   fprintf(ficrespl,"#Prevalence limit\n");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   fprintf(ficrespl,"#Age ");            
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   fprintf(ficrespl,"\n");            
              k=0;
   prlim=matrix(1,nlstate,1,nlstate);            for(i=1; i<= (nlstate); i++){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              for(j=1; j<=(nlstate+ndeath);j++){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                k=k+1;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                gp[k]=pmmij[i][j];
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            }
   k=0;            
   agebase=ageminpar;            for(i=1; i<=npar; i++)
   agelim=agemaxpar;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   ftolpl=1.e-10;      
   i1=cptcoveff;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   if (cptcovn < 1){i1=1;}            k=0;
             for(i=1; i<=(nlstate); i++){
   for(cptcov=1;cptcov<=i1;cptcov++){              for(j=1; j<=(nlstate+ndeath);j++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                k=k+1;
         k=k+1;                gm[k]=pmmij[i][j];
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              }
         fprintf(ficrespl,"\n#******");            }
         for(j=1;j<=cptcoveff;j++)       
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
         fprintf(ficrespl,"******\n");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                  }
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           fprintf(ficrespl,"%.0f",age );            for(theta=1; theta <=npar; theta++)
           for(i=1; i<=nlstate;i++)              trgradg[j][theta]=gradg[theta][j];
           fprintf(ficrespl," %.5f", prlim[i][i]);          
           fprintf(ficrespl,"\n");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
         }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   fclose(ficrespl);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   /*------------- h Pij x at various ages ------------*/  
            pmij(pmmij,cov,ncovmodel,x,nlstate);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          k=0;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          for(i=1; i<=(nlstate); i++){
   }            for(j=1; j<=(nlstate+ndeath);j++){
   printf("Computing pij: result on file '%s' \n", filerespij);              k=k+1;
                mu[k][(int) age]=pmmij[i][j];
   stepsize=(int) (stepm+YEARM-1)/YEARM;            }
   /*if (stepm<=24) stepsize=2;*/          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   agelim=AGESUP;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   hstepm=stepsize*YEARM; /* Every year of age */              varpij[i][j][(int)age] = doldm[i][j];
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
            /*printf("\n%d ",(int)age);
   k=0;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   for(cptcov=1;cptcov<=i1;cptcov++){            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       k=k+1;            }*/
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresprobcov,"\n%d ",(int)age);
         fprintf(ficrespij,"******\n");          fprintf(ficresprobcor,"\n%d ",(int)age);
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           oldm=oldms;savm=savms;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
           fprintf(ficrespij,"# Age");          i=0;
           for(i=1; i<=nlstate;i++)          for (k=1; k<=(nlstate);k++){
             for(j=1; j<=nlstate+ndeath;j++)            for (l=1; l<=(nlstate+ndeath);l++){ 
               fprintf(ficrespij," %1d-%1d",i,j);              i=i++;
           fprintf(ficrespij,"\n");              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
            for (h=0; h<=nhstepm; h++){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );              for (j=1; j<=i;j++){
             for(i=1; i<=nlstate;i++)                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
               for(j=1; j<=nlstate+ndeath;j++)                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              }
             fprintf(ficrespij,"\n");            }
              }          }/* end of loop for state */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } /* end of loop for age */
           fprintf(ficrespij,"\n");  
         }        /* Confidence intervalle of pij  */
     }        /*
   }          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   fclose(ficrespij);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   /*---------- Forecasting ------------------*/        */
   if((stepm == 1) && (strcmp(model,".")==0)){  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        first1=1;
   }        for (k2=1; k2<=(nlstate);k2++){
   else{          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     erreur=108;            if(l2==k2) continue;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);            j=(k2-1)*(nlstate+ndeath)+l2;
   }            for (k1=1; k1<=(nlstate);k1++){
                for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
   /*---------- Health expectancies and variances ------------*/                i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
   strcpy(filerest,"t");                for (age=bage; age<=fage; age ++){ 
   strcat(filerest,fileres);                  if ((int)age %5==0){
   if((ficrest=fopen(filerest,"w"))==NULL) {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
   strcpy(filerese,"e");                    /* Computing eigen value of matrix of covariance */
   strcat(filerese,fileres);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   if((ficreseij=fopen(filerese,"w"))==NULL) {                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                    /* Eigen vectors */
   }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                    /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
  strcpy(fileresv,"v");                    v12=-v21;
   strcat(fileresv,fileres);                    v22=v11;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                    tnalp=v21/v11;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                    if(first1==1){
   }                      first1=0;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   calagedate=-1;                    }
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
   k=0;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   for(cptcov=1;cptcov<=i1;cptcov++){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    if(first==1){
       k=k+1;                      first=0;
       fprintf(ficrest,"\n#****** ");                      fprintf(ficgp,"\nset parametric;unset label");
       for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       fprintf(ficrest,"******\n");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       fprintf(ficreseij,"\n#****** ");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       for(j=1;j<=cptcoveff;j++)                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficreseij,"******\n");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       fprintf(ficresvij,"\n#****** ");                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fprintf(ficresvij,"******\n");                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       oldm=oldms;savm=savms;                    }else{
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                        first=0;
                        fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       oldm=oldms;savm=savms;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                  mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }/* if first */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                  } /* age mod 5 */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                } /* end loop age */
       fprintf(ficrest,"\n");                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
       epj=vector(1,nlstate+1);              } /*l12 */
       for(age=bage; age <=fage ;age++){            } /* k12 */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          } /*l1 */
         if (popbased==1) {        }/* k1 */
           for(i=1; i<=nlstate;i++)      } /* loop covariates */
             prlim[i][i]=probs[(int)age][i][k];    }
         }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
            free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
         fprintf(ficrest," %4.0f",age);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    free_vector(xp,1,npar);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    fclose(ficresprob);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    fclose(ficresprobcov);
           }    fclose(ficresprobcor);
           epj[nlstate+1] +=epj[j];    fflush(ficgp);
         }    fflush(fichtmcov);
   }
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];  /******************* Printing html file ***********/
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         for(j=1;j <=nlstate;j++){                    int lastpass, int stepm, int weightopt, char model[],\
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         }                    int popforecast, int estepm ,\
         fprintf(ficrest,"\n");                    double jprev1, double mprev1,double anprev1, \
       }                    double jprev2, double mprev2,double anprev2){
     }    int jj1, k1, i1, cpt;
   }  
 free_matrix(mint,1,maxwav,1,n);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     free_vector(weight,1,n);  </ul>");
   fclose(ficreseij);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   fclose(ficresvij);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   fclose(ficrest);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   fclose(ficpar);     fprintf(fichtm,"\
   free_vector(epj,1,nlstate+1);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
               stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   /*------- Variance limit prevalence------*/       fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   strcpy(fileresvpl,"vpl");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   strcat(fileresvpl,fileres);     fprintf(fichtm,"\
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);     <a href=\"%s\">%s</a> <br>\n</li>",
     exit(0);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){   m=cptcoveff;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");   jj1=0;
       for(j=1;j<=cptcoveff;j++)   for(k1=1; k1<=m;k1++){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficresvpl,"******\n");       jj1++;
             if (cptcovn > 0) {
       varpl=matrix(1,nlstate,(int) bage, (int) fage);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       oldm=oldms;savm=savms;         for (cpt=1; cpt<=cptcoveff;cpt++) 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
  }       }
        /* Pij */
   fclose(ficresvpl);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   /*---------- End : free ----------------*/       /* Quasi-incidences */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);         /* Period (stable) prevalence in each health state */
           for(cpt=1; cpt<nlstate;cpt++){
             fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);         }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);       for(cpt=1; cpt<=nlstate;cpt++) {
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   free_matrix(matcov,1,npar,1,npar);       }
   free_vector(delti,1,npar);     } /* end i1 */
   free_matrix(agev,1,maxwav,1,imx);   }/* End k1 */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);   fprintf(fichtm,"</ul>");
   
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);   fprintf(fichtm,"\
   else   printf("End of Imach\n");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   /*printf("Total time was %d uSec.\n", total_usecs);*/           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   /*------ End -----------*/   fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
  end:  
   /* chdir(pathcd);*/   fprintf(fichtm,"\
  /*system("wgnuplot graph.plt");*/   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  /*system("../gp37mgw/wgnuplot graph.plt");*/           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
  /*system("cd ../gp37mgw");*/   fprintf(fichtm,"\
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
  strcpy(plotcmd,GNUPLOTPROGRAM);     <a href=\"%s\">%s</a> <br>\n</li>",
  strcat(plotcmd," ");             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
  strcat(plotcmd,optionfilegnuplot);   fprintf(fichtm,"\
  system(plotcmd);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
  /*#ifdef windows*/             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   while (z[0] != 'q') {   fprintf(fichtm,"\
     /* chdir(path); */   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     scanf("%s",z);   fprintf(fichtm,"\
     if (z[0] == 'c') system("./imach");   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
     else if (z[0] == 'e') system(optionfilehtm);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     else if (z[0] == 'g') system(plotcmd);   fprintf(fichtm,"\
     else if (z[0] == 'q') exit(0);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   }           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   /*#endif */  
 }  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.122


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>