Diff for /imach/src/imach.c between versions 1.49 and 1.122

version 1.49, 2002/06/20 14:03:39 version 1.122, 2006/03/20 09:45:41
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.122  2006/03/20 09:45:41  brouard
      (Module): Weights can have a decimal point as for
   This program computes Healthy Life Expectancies from    English (a comma might work with a correct LC_NUMERIC environment,
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    otherwise the weight is truncated).
   first survey ("cross") where individuals from different ages are    Modification of warning when the covariates values are not 0 or
   interviewed on their health status or degree of disability (in the    1.
   case of a health survey which is our main interest) -2- at least a    Version 0.98g
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.121  2006/03/16 17:45:01  lievre
   computed from the time spent in each health state according to a    * imach.c (Module): Comments concerning covariates added
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    * imach.c (Module): refinements in the computation of lli if
   simplest model is the multinomial logistic model where pij is the    status=-2 in order to have more reliable computation if stepm is
   probability to be observed in state j at the second wave    not 1 month. Version 0.98f
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.120  2006/03/16 15:10:38  lievre
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): refinements in the computation of lli if
   complex model than "constant and age", you should modify the program    status=-2 in order to have more reliable computation if stepm is
   where the markup *Covariates have to be included here again* invites    not 1 month. Version 0.98f
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   The advantage of this computer programme, compared to a simple    computed as likelihood omitting the logarithm. Version O.98e
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.118  2006/03/14 18:20:07  brouard
   intermediate interview, the information is lost, but taken into    (Module): varevsij Comments added explaining the second
   account using an interpolation or extrapolation.      table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   hPijx is the probability to be observed in state i at age x+h    (Module): Function pstamp added
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Version 0.98d
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.117  2006/03/14 17:16:22  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): varevsij Comments added explaining the second
   matrix is simply the matrix product of nh*stepm elementary matrices    table of variances if popbased=1 .
   and the contribution of each individual to the likelihood is simply    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   hPijx.    (Module): Function pstamp added
     (Module): Version 0.98d
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.116  2006/03/06 10:29:27  brouard
      (Module): Variance-covariance wrong links and
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    varian-covariance of ej. is needed (Saito).
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.115  2006/02/27 12:17:45  brouard
   from the European Union.    (Module): One freematrix added in mlikeli! 0.98c
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.114  2006/02/26 12:57:58  brouard
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Some improvements in processing parameter
   **********************************************************************/    filename with strsep.
    
 #include <math.h>    Revision 1.113  2006/02/24 14:20:24  brouard
 #include <stdio.h>    (Module): Memory leaks checks with valgrind and:
 #include <stdlib.h>    datafile was not closed, some imatrix were not freed and on matrix
 #include <unistd.h>    allocation too.
   
 #define MAXLINE 256    Revision 1.112  2006/01/30 09:55:26  brouard
 #define GNUPLOTPROGRAM "gnuplot"    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.111  2006/01/25 20:38:18  brouard
 /*#define DEBUG*/    (Module): Lots of cleaning and bugs added (Gompertz)
 #define windows    (Module): Comments can be added in data file. Missing date values
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    can be a simple dot '.'.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.110  2006/01/25 00:51:50  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Lots of cleaning and bugs added (Gompertz)
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.109  2006/01/24 19:37:15  brouard
 #define NINTERVMAX 8    (Module): Comments (lines starting with a #) are allowed in data.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.108  2006/01/19 18:05:42  lievre
 #define NCOVMAX 8 /* Maximum number of covariates */    Gnuplot problem appeared...
 #define MAXN 20000    To be fixed
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.107  2006/01/19 16:20:37  brouard
 #define AGEBASE 40    Test existence of gnuplot in imach path
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.106  2006/01/19 13:24:36  brouard
 #else    Some cleaning and links added in html output
 #define DIRSEPARATOR '/'  
 #endif    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.104  2005/09/30 16:11:43  lievre
 int nvar;    (Module): sump fixed, loop imx fixed, and simplifications.
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    (Module): If the status is missing at the last wave but we know
 int npar=NPARMAX;    that the person is alive, then we can code his/her status as -2
 int nlstate=2; /* Number of live states */    (instead of missing=-1 in earlier versions) and his/her
 int ndeath=1; /* Number of dead states */    contributions to the likelihood is 1 - Prob of dying from last
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int popbased=0;    the healthy state at last known wave). Version is 0.98
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.103  2005/09/30 15:54:49  lievre
 int maxwav; /* Maxim number of waves */    (Module): sump fixed, loop imx fixed, and simplifications.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.102  2004/09/15 17:31:30  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Add the possibility to read data file including tab characters.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.101  2004/09/15 10:38:38  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Fix on curr_time
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.100  2004/07/12 18:29:06  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Add version for Mac OS X. Just define UNIX in Makefile
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.99  2004/06/05 08:57:40  brouard
 char filerese[FILENAMELENGTH];    *** empty log message ***
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.98  2004/05/16 15:05:56  brouard
 FILE  *ficresvpl;    New version 0.97 . First attempt to estimate force of mortality
 char fileresvpl[FILENAMELENGTH];    directly from the data i.e. without the need of knowing the health
 char title[MAXLINE];    state at each age, but using a Gompertz model: log u =a + b*age .
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    This is the basic analysis of mortality and should be done before any
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    from other sources like vital statistic data.
   
 char filerest[FILENAMELENGTH];    The same imach parameter file can be used but the option for mle should be -3.
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     The output is very simple: only an estimate of the intercept and of
 #define NR_END 1    the slope with 95% confident intervals.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Current limitations:
     A) Even if you enter covariates, i.e. with the
 #define NRANSI    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define ITMAX 200    B) There is no computation of Life Expectancy nor Life Table.
   
 #define TOL 2.0e-4    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 #define CGOLD 0.3819660    suppressed.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define GOLD 1.618034    rewritten within the same printf. Workaround: many printfs.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 static double maxarg1,maxarg2;    (Repository): Using imachwizard code to output a more meaningful covariance
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    matrix (cov(a12,c31) instead of numbers.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.94  2003/06/27 13:00:02  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Just cleaning
 #define rint(a) floor(a+0.5)  
     Revision 1.93  2003/06/25 16:33:55  brouard
 static double sqrarg;    (Module): On windows (cygwin) function asctime_r doesn't
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    exist so I changed back to asctime which exists.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): Version 0.96b
   
 int imx;    Revision 1.92  2003/06/25 16:30:45  brouard
 int stepm;    (Module): On windows (cygwin) function asctime_r doesn't
 /* Stepm, step in month: minimum step interpolation*/    exist so I changed back to asctime which exists.
   
 int estepm;    Revision 1.91  2003/06/25 15:30:29  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 int m,nb;    helps to forecast when convergence will be reached. Elapsed time
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    is stamped in powell.  We created a new html file for the graphs
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    concerning matrix of covariance. It has extension -cov.htm.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 double *weight;    mle=-1 a template is output in file "or"mypar.txt with the design
 int **s; /* Status */    of the covariance matrix to be input.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    mle=-1 a template is output in file "or"mypar.txt with the design
 double ftolhess; /* Tolerance for computing hessian */    of the covariance matrix to be input.
   
 /**************** split *************************/    Revision 1.88  2003/06/23 17:54:56  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 {  
    char *s;                             /* pointer */    Revision 1.87  2003/06/18 12:26:01  brouard
    int  l1, l2;                         /* length counters */    Version 0.96
   
    l1 = strlen( path );                 /* length of path */    Revision 1.86  2003/06/17 20:04:08  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Change position of html and gnuplot routines and added
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    routine fileappend.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.85  2003/06/17 13:12:43  brouard
       extern char       *getwd( );    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
       if ( getwd( dirc ) == NULL ) {    prior to the death. In this case, dh was negative and likelihood
 #else    was wrong (infinity). We still send an "Error" but patch by
       extern char       *getcwd( );    assuming that the date of death was just one stepm after the
     interview.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Repository): Because some people have very long ID (first column)
 #endif    we changed int to long in num[] and we added a new lvector for
          return( GLOCK_ERROR_GETCWD );    memory allocation. But we also truncated to 8 characters (left
       }    truncation)
       strcpy( name, path );             /* we've got it */    (Repository): No more line truncation errors.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.84  2003/06/13 21:44:43  brouard
       l2 = strlen( s );                 /* length of filename */    * imach.c (Repository): Replace "freqsummary" at a correct
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    place. It differs from routine "prevalence" which may be called
       strcpy( name, s );                /* save file name */    many times. Probs is memory consuming and must be used with
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    parcimony.
       dirc[l1-l2] = 0;                  /* add zero */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.83  2003/06/10 13:39:11  lievre
 #ifdef windows    *** empty log message ***
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.82  2003/06/05 15:57:20  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Add log in  imach.c and  fullversion number is now printed.
 #endif  
    s = strrchr( name, '.' );            /* find last / */  */
    s++;  /*
    strcpy(ext,s);                       /* save extension */     Interpolated Markov Chain
    l1= strlen( name);  
    l2= strlen( s)+1;    Short summary of the programme:
    strncpy( finame, name, l1-l2);    
    finame[l1-l2]= 0;    This program computes Healthy Life Expectancies from
    return( 0 );                         /* we're done */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 }    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 /******************************************/    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 void replace(char *s, char*t)    computed from the time spent in each health state according to a
 {    model. More health states you consider, more time is necessary to reach the
   int i;    Maximum Likelihood of the parameters involved in the model.  The
   int lg=20;    simplest model is the multinomial logistic model where pij is the
   i=0;    probability to be observed in state j at the second wave
   lg=strlen(t);    conditional to be observed in state i at the first wave. Therefore
   for(i=0; i<= lg; i++) {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     (s[i] = t[i]);    'age' is age and 'sex' is a covariate. If you want to have a more
     if (t[i]== '\\') s[i]='/';    complex model than "constant and age", you should modify the program
   }    where the markup *Covariates have to be included here again* invites
 }    you to do it.  More covariates you add, slower the
     convergence.
 int nbocc(char *s, char occ)  
 {    The advantage of this computer programme, compared to a simple
   int i,j=0;    multinomial logistic model, is clear when the delay between waves is not
   int lg=20;    identical for each individual. Also, if a individual missed an
   i=0;    intermediate interview, the information is lost, but taken into
   lg=strlen(s);    account using an interpolation or extrapolation.  
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    hPijx is the probability to be observed in state i at age x+h
   }    conditional to the observed state i at age x. The delay 'h' can be
   return j;    split into an exact number (nh*stepm) of unobserved intermediate
 }    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 void cutv(char *u,char *v, char*t, char occ)    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
   int i,lg,j,p=0;    hPijx.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Also this programme outputs the covariance matrix of the parameters but also
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    of the life expectancies. It also computes the period (stable) prevalence. 
   }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   lg=strlen(t);             Institut national d'études démographiques, Paris.
   for(j=0; j<p; j++) {    This software have been partly granted by Euro-REVES, a concerted action
     (u[j] = t[j]);    from the European Union.
   }    It is copyrighted identically to a GNU software product, ie programme and
      u[p]='\0';    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
     **********************************************************************/
 /********************** nrerror ********************/  /*
     main
 void nrerror(char error_text[])    read parameterfile
 {    read datafile
   fprintf(stderr,"ERREUR ...\n");    concatwav
   fprintf(stderr,"%s\n",error_text);    freqsummary
   exit(1);    if (mle >= 1)
 }      mlikeli
 /*********************** vector *******************/    print results files
 double *vector(int nl, int nh)    if mle==1 
 {       computes hessian
   double *v;    read end of parameter file: agemin, agemax, bage, fage, estepm
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));        begin-prev-date,...
   if (!v) nrerror("allocation failure in vector");    open gnuplot file
   return v-nl+NR_END;    open html file
 }    period (stable) prevalence
      for age prevalim()
 /************************ free vector ******************/    h Pij x
 void free_vector(double*v, int nl, int nh)    variance of p varprob
 {    forecasting if prevfcast==1 prevforecast call prevalence()
   free((FREE_ARG)(v+nl-NR_END));    health expectancies
 }    Variance-covariance of DFLE
     prevalence()
 /************************ivector *******************************/     movingaverage()
 int *ivector(long nl,long nh)    varevsij() 
 {    if popbased==1 varevsij(,popbased)
   int *v;    total life expectancies
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Variance of period (stable) prevalence
   if (!v) nrerror("allocation failure in ivector");   end
   return v-nl+NR_END;  */
 }  
   
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)   
 {  #include <math.h>
   free((FREE_ARG)(v+nl-NR_END));  #include <stdio.h>
 }  #include <stdlib.h>
   #include <string.h>
 /******************* imatrix *******************************/  #include <unistd.h>
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #include <limits.h>
 {  #include <sys/types.h>
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #include <sys/stat.h>
   int **m;  #include <errno.h>
    extern int errno;
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  /* #include <sys/time.h> */
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <time.h>
   m += NR_END;  #include "timeval.h"
   m -= nrl;  
    /* #include <libintl.h> */
    /* #define _(String) gettext (String) */
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define MAXLINE 256
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define GNUPLOTPROGRAM "gnuplot"
   m[nrl] -= ncl;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    #define FILENAMELENGTH 132
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   /* return pointer to array of pointers to rows */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   return m;  
 }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define NINTERVMAX 8
       int **m;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       long nch,ncl,nrh,nrl;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
      /* free an int matrix allocated by imatrix() */  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define YEARM 12. /* Number of months per year */
   free((FREE_ARG) (m+nrl-NR_END));  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 /******************* matrix *******************************/  #ifdef UNIX
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define ODIRSEPARATOR '\\'
   double **m;  #else
   #define DIRSEPARATOR '\\'
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define CHARSEPARATOR "\\"
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ODIRSEPARATOR '/'
   m += NR_END;  #endif
   m -= nrl;  
   /* $Id$ */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /* $State$ */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   m[nrl] -= ncl;  char fullversion[]="$Revision$ $Date$"; 
   char strstart[80];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   return m;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /*************************free matrix ************************/  int npar=NPARMAX;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   free((FREE_ARG)(m+nrl-NR_END));  int popbased=0;
 }  
   int *wav; /* Number of waves for this individuual 0 is possible */
 /******************* ma3x *******************************/  int maxwav; /* Maxim number of waves */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int jmin, jmax; /* min, max spacing between 2 waves */
 {  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int gipmx, gsw; /* Global variables on the number of contributions 
   double ***m;                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   if (!m) nrerror("allocation failure 1 in matrix()");  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m += NR_END;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m -= nrl;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double **oldm, **newm, **savm; /* Working pointers to matrices */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   m[nrl] += NR_END;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m[nrl] -= ncl;  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  double sw; /* Sum of weights */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char filerespow[FILENAMELENGTH];
   m[nrl][ncl] += NR_END;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m[nrl][ncl] -= nll;  FILE *ficresilk;
   for (j=ncl+1; j<=nch; j++)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     m[nrl][j]=m[nrl][j-1]+nlay;  FILE *ficresprobmorprev;
    FILE *fichtm, *fichtmcov; /* Html File */
   for (i=nrl+1; i<=nrh; i++) {  FILE *ficreseij;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char filerese[FILENAMELENGTH];
     for (j=ncl+1; j<=nch; j++)  FILE *ficresstdeij;
       m[i][j]=m[i][j-1]+nlay;  char fileresstde[FILENAMELENGTH];
   }  FILE *ficrescveij;
   return m;  char filerescve[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 /*************************free ma3x ************************/  FILE  *ficresvpl;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 /***************** f1dim *************************/  
 extern int ncom;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  char filelog[FILENAMELENGTH]; /* Log file */
    char filerest[FILENAMELENGTH];
 double f1dim(double x)  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   int j;  
   double f;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double *xt;  
    struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   xt=vector(1,ncom);  struct timezone tzp;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  extern int gettimeofday();
   f=(*nrfunc)(xt);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   free_vector(xt,1,ncom);  long time_value;
   return f;  extern long time();
 }  char strcurr[80], strfor[80];
   
 /*****************brent *************************/  char *endptr;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  long lval;
 {  double dval;
   int iter;  
   double a,b,d,etemp;  #define NR_END 1
   double fu,fv,fw,fx;  #define FREE_ARG char*
   double ftemp;  #define FTOL 1.0e-10
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  #define NRANSI 
    #define ITMAX 200 
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  #define TOL 2.0e-4 
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  #define CGOLD 0.3819660 
   for (iter=1;iter<=ITMAX;iter++) {  #define ZEPS 1.0e-10 
     xm=0.5*(a+b);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define GOLD 1.618034 
     printf(".");fflush(stdout);  #define GLIMIT 100.0 
 #ifdef DEBUG  #define TINY 1.0e-20 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  static double maxarg1,maxarg2;
 #endif  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       *xmin=x;    
       return fx;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     }  #define rint(a) floor(a+0.5)
     ftemp=fu;  
     if (fabs(e) > tol1) {  static double sqrarg;
       r=(x-w)*(fx-fv);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       q=(x-v)*(fx-fw);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       p=(x-v)*q-(x-w)*r;  int agegomp= AGEGOMP;
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  int imx; 
       q=fabs(q);  int stepm=1;
       etemp=e;  /* Stepm, step in month: minimum step interpolation*/
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int estepm;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       else {  
         d=p/q;  int m,nb;
         u=x+d;  long *num;
         if (u-a < tol2 || b-u < tol2)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
           d=SIGN(tol1,xm-x);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       }  double **pmmij, ***probs;
     } else {  double *ageexmed,*agecens;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  double dateintmean=0;
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double *weight;
     fu=(*f)(u);  int **s; /* Status */
     if (fu <= fx) {  double *agedc, **covar, idx;
       if (u >= x) a=x; else b=x;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       SHFT(v,w,x,u)  double *lsurv, *lpop, *tpop;
         SHFT(fv,fw,fx,fu)  
         } else {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
           if (u < x) a=u; else b=u;  double ftolhess; /* Tolerance for computing hessian */
           if (fu <= fw || w == x) {  
             v=w;  /**************** split *************************/
             w=u;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
             fv=fw;  {
             fw=fu;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
           } else if (fu <= fv || v == x || v == w) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
             v=u;    */ 
             fv=fu;    char  *ss;                            /* pointer */
           }    int   l1, l2;                         /* length counters */
         }  
   }    l1 = strlen(path );                   /* length of path */
   nrerror("Too many iterations in brent");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   *xmin=x;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   return fx;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 }      strcpy( name, path );               /* we got the fullname name because no directory */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 /****************** mnbrak ***********************/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      /*    extern  char* getcwd ( char *buf , int len);*/
             double (*func)(double))      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 {        return( GLOCK_ERROR_GETCWD );
   double ulim,u,r,q, dum;      }
   double fu;      /* got dirc from getcwd*/
        printf(" DIRC = %s \n",dirc);
   *fa=(*func)(*ax);    } else {                              /* strip direcotry from path */
   *fb=(*func)(*bx);      ss++;                               /* after this, the filename */
   if (*fb > *fa) {      l2 = strlen( ss );                  /* length of filename */
     SHFT(dum,*ax,*bx,dum)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       SHFT(dum,*fb,*fa,dum)      strcpy( name, ss );         /* save file name */
       }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   *cx=(*bx)+GOLD*(*bx-*ax);      dirc[l1-l2] = 0;                    /* add zero */
   *fc=(*func)(*cx);      printf(" DIRC2 = %s \n",dirc);
   while (*fb > *fc) {    }
     r=(*bx-*ax)*(*fb-*fc);    /* We add a separator at the end of dirc if not exists */
     q=(*bx-*cx)*(*fb-*fa);    l1 = strlen( dirc );                  /* length of directory */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if( dirc[l1-1] != DIRSEPARATOR ){
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      dirc[l1] =  DIRSEPARATOR;
     ulim=(*bx)+GLIMIT*(*cx-*bx);      dirc[l1+1] = 0; 
     if ((*bx-u)*(u-*cx) > 0.0) {      printf(" DIRC3 = %s \n",dirc);
       fu=(*func)(u);    }
     } else if ((*cx-u)*(u-ulim) > 0.0) {    ss = strrchr( name, '.' );            /* find last / */
       fu=(*func)(u);    if (ss >0){
       if (fu < *fc) {      ss++;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      strcpy(ext,ss);                     /* save extension */
           SHFT(*fb,*fc,fu,(*func)(u))      l1= strlen( name);
           }      l2= strlen(ss)+1;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      strncpy( finame, name, l1-l2);
       u=ulim;      finame[l1-l2]= 0;
       fu=(*func)(u);    }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);    return( 0 );                          /* we're done */
       fu=(*func)(u);  }
     }  
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  /******************************************/
       }  
 }  void replace_back_to_slash(char *s, char*t)
   {
 /*************** linmin ************************/    int i;
     int lg=0;
 int ncom;    i=0;
 double *pcom,*xicom;    lg=strlen(t);
 double (*nrfunc)(double []);    for(i=0; i<= lg; i++) {
        (s[i] = t[i]);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      if (t[i]== '\\') s[i]='/';
 {    }
   double brent(double ax, double bx, double cx,  }
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  int nbocc(char *s, char occ)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    int i,j=0;
   int j;    int lg=20;
   double xx,xmin,bx,ax;    i=0;
   double fx,fb,fa;    lg=strlen(s);
      for(i=0; i<= lg; i++) {
   ncom=n;    if  (s[i] == occ ) j++;
   pcom=vector(1,n);    }
   xicom=vector(1,n);    return j;
   nrfunc=func;  }
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  void cutv(char *u,char *v, char*t, char occ)
     xicom[j]=xi[j];  {
   }    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   ax=0.0;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   xx=1.0;       gives u="abcedf" and v="ghi2j" */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    int i,lg,j,p=0;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    i=0;
 #ifdef DEBUG    for(j=0; j<=strlen(t)-1; j++) {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 #endif    }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;    lg=strlen(t);
     p[j] += xi[j];    for(j=0; j<p; j++) {
   }      (u[j] = t[j]);
   free_vector(xicom,1,n);    }
   free_vector(pcom,1,n);       u[p]='\0';
 }  
      for(j=0; j<= lg; j++) {
 /*************** powell ************************/      if (j>=(p+1))(v[j-p-1] = t[j]);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    }
             double (*func)(double []))  }
 {  
   void linmin(double p[], double xi[], int n, double *fret,  /********************** nrerror ********************/
               double (*func)(double []));  
   int i,ibig,j;  void nrerror(char error_text[])
   double del,t,*pt,*ptt,*xit;  {
   double fp,fptt;    fprintf(stderr,"ERREUR ...\n");
   double *xits;    fprintf(stderr,"%s\n",error_text);
   pt=vector(1,n);    exit(EXIT_FAILURE);
   ptt=vector(1,n);  }
   xit=vector(1,n);  /*********************** vector *******************/
   xits=vector(1,n);  double *vector(int nl, int nh)
   *fret=(*func)(p);  {
   for (j=1;j<=n;j++) pt[j]=p[j];    double *v;
   for (*iter=1;;++(*iter)) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     fp=(*fret);    if (!v) nrerror("allocation failure in vector");
     ibig=0;    return v-nl+NR_END;
     del=0.0;  }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  /************************ free vector ******************/
       printf(" %d %.12f",i, p[i]);  void free_vector(double*v, int nl, int nh)
     printf("\n");  {
     for (i=1;i<=n;i++) {    free((FREE_ARG)(v+nl-NR_END));
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  }
       fptt=(*fret);  
 #ifdef DEBUG  /************************ivector *******************************/
       printf("fret=%lf \n",*fret);  int *ivector(long nl,long nh)
 #endif  {
       printf("%d",i);fflush(stdout);    int *v;
       linmin(p,xit,n,fret,func);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       if (fabs(fptt-(*fret)) > del) {    if (!v) nrerror("allocation failure in ivector");
         del=fabs(fptt-(*fret));    return v-nl+NR_END;
         ibig=i;  }
       }  
 #ifdef DEBUG  /******************free ivector **************************/
       printf("%d %.12e",i,(*fret));  void free_ivector(int *v, long nl, long nh)
       for (j=1;j<=n;j++) {  {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    free((FREE_ARG)(v+nl-NR_END));
         printf(" x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++)  /************************lvector *******************************/
         printf(" p=%.12e",p[j]);  long *lvector(long nl,long nh)
       printf("\n");  {
 #endif    long *v;
     }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    if (!v) nrerror("allocation failure in ivector");
 #ifdef DEBUG    return v-nl+NR_END;
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  /******************free lvector **************************/
       printf("Max: %.12e",(*func)(p));  void free_lvector(long *v, long nl, long nh)
       for (j=1;j<=n;j++)  {
         printf(" %.12e",p[j]);    free((FREE_ARG)(v+nl-NR_END));
       printf("\n");  }
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /******************* imatrix *******************************/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         }  { 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       }    int **m; 
 #endif    
     /* allocate pointers to rows */ 
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       free_vector(xit,1,n);    if (!m) nrerror("allocation failure 1 in matrix()"); 
       free_vector(xits,1,n);    m += NR_END; 
       free_vector(ptt,1,n);    m -= nrl; 
       free_vector(pt,1,n);    
       return;    
     }    /* allocate rows and set pointers to them */ 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       ptt[j]=2.0*p[j]-pt[j];    m[nrl] += NR_END; 
       xit[j]=p[j]-pt[j];    m[nrl] -= ncl; 
       pt[j]=p[j];    
     }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     fptt=(*func)(ptt);    
     if (fptt < fp) {    /* return pointer to array of pointers to rows */ 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    return m; 
       if (t < 0.0) {  } 
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /****************** free_imatrix *************************/
           xi[j][ibig]=xi[j][n];  void free_imatrix(m,nrl,nrh,ncl,nch)
           xi[j][n]=xit[j];        int **m;
         }        long nch,ncl,nrh,nrl; 
 #ifdef DEBUG       /* free an int matrix allocated by imatrix() */ 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  { 
         for(j=1;j<=n;j++)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
           printf(" %.12e",xit[j]);    free((FREE_ARG) (m+nrl-NR_END)); 
         printf("\n");  } 
 #endif  
       }  /******************* matrix *******************************/
     }  double **matrix(long nrl, long nrh, long ncl, long nch)
   }  {
 }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
 /**** Prevalence limit ****************/  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    if (!m) nrerror("allocation failure 1 in matrix()");
 {    m += NR_END;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    m -= nrl;
      matrix by transitions matrix until convergence is reached */  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   int i, ii,j,k;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double min, max, maxmin, maxmax,sumnew=0.;    m[nrl] += NR_END;
   double **matprod2();    m[nrl] -= ncl;
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double agefin, delaymax=50 ; /* Max number of years to converge */    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   for (ii=1;ii<=nlstate+ndeath;ii++)     */
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
    cov[1]=1.;  {
      free((FREE_ARG)(m[nrl]+ncl-NR_END));
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    free((FREE_ARG)(m+nrl-NR_END));
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  }
     newm=savm;  
     /* Covariates have to be included here again */  /******************* ma3x *******************************/
      cov[2]=agefin;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
    {
       for (k=1; k<=cptcovn;k++) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double ***m;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if (!m) nrerror("allocation failure 1 in matrix()");
       for (k=1; k<=cptcovprod;k++)    m += NR_END;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m -= nrl;
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    m[nrl] += NR_END;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    m[nrl] -= ncl;
   
     savm=oldm;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     oldm=newm;  
     maxmax=0.;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     for(j=1;j<=nlstate;j++){    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       min=1.;    m[nrl][ncl] += NR_END;
       max=0.;    m[nrl][ncl] -= nll;
       for(i=1; i<=nlstate; i++) {    for (j=ncl+1; j<=nch; j++) 
         sumnew=0;      m[nrl][j]=m[nrl][j-1]+nlay;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    
         prlim[i][j]= newm[i][j]/(1-sumnew);    for (i=nrl+1; i<=nrh; i++) {
         max=FMAX(max,prlim[i][j]);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         min=FMIN(min,prlim[i][j]);      for (j=ncl+1; j<=nch; j++) 
       }        m[i][j]=m[i][j-1]+nlay;
       maxmin=max-min;    }
       maxmax=FMAX(maxmax,maxmin);    return m; 
     }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     if(maxmax < ftolpl){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       return prlim;    */
     }  }
   }  
 }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 /*************** transition probabilities ***************/  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   double s1, s2;  }
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
     for(i=1; i<= nlstate; i++){  {
     for(j=1; j<i;j++){    /* Caution optionfilefiname is hidden */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcpy(tmpout,optionfilefiname);
         /*s2 += param[i][j][nc]*cov[nc];*/    strcat(tmpout,"/"); /* Add to the right */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcat(tmpout,fileres);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    return tmpout;
       }  }
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  /*************** function subdirf2 ***********/
     }  char *subdirf2(char fileres[], char *preop)
     for(j=i+1; j<=nlstate+ndeath;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* Caution optionfilefiname is hidden */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/");
       ps[i][j]=s2;    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
   }    return tmpout;
     /*ps[3][2]=1;*/  }
   
   for(i=1; i<= nlstate; i++){  /*************** function subdirf3 ***********/
      s1=0;  char *subdirf3(char fileres[], char *preop, char *preop2)
     for(j=1; j<i; j++)  {
       s1+=exp(ps[i][j]);    
     for(j=i+1; j<=nlstate+ndeath; j++)    /* Caution optionfilefiname is hidden */
       s1+=exp(ps[i][j]);    strcpy(tmpout,optionfilefiname);
     ps[i][i]=1./(s1+1.);    strcat(tmpout,"/");
     for(j=1; j<i; j++)    strcat(tmpout,preop);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcat(tmpout,preop2);
     for(j=i+1; j<=nlstate+ndeath; j++)    strcat(tmpout,fileres);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    return tmpout;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  }
   } /* end i */  
   /***************** f1dim *************************/
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  extern int ncom; 
     for(jj=1; jj<= nlstate+ndeath; jj++){  extern double *pcom,*xicom;
       ps[ii][jj]=0;  extern double (*nrfunc)(double []); 
       ps[ii][ii]=1;   
     }  double f1dim(double x) 
   }  { 
     int j; 
     double f;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    double *xt; 
     for(jj=1; jj<= nlstate+ndeath; jj++){   
      printf("%lf ",ps[ii][jj]);    xt=vector(1,ncom); 
    }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     printf("\n ");    f=(*nrfunc)(xt); 
     }    free_vector(xt,1,ncom); 
     printf("\n ");printf("%lf ",cov[2]);*/    return f; 
 /*  } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  /*****************brent *************************/
     return ps;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 }  { 
     int iter; 
 /**************** Product of 2 matrices ******************/    double a,b,d,etemp;
     double fu,fv,fw,fx;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double ftemp;
 {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double e=0.0; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */   
   /* in, b, out are matrice of pointers which should have been initialized    a=(ax < cx ? ax : cx); 
      before: only the contents of out is modified. The function returns    b=(ax > cx ? ax : cx); 
      a pointer to pointers identical to out */    x=w=v=bx; 
   long i, j, k;    fw=fv=fx=(*f)(x); 
   for(i=nrl; i<= nrh; i++)    for (iter=1;iter<=ITMAX;iter++) { 
     for(k=ncolol; k<=ncoloh; k++)      xm=0.5*(a+b); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         out[i][k] +=in[i][j]*b[j][k];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
   return out;      fprintf(ficlog,".");fflush(ficlog);
 }  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 /************* Higher Matrix Product ***************/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 {        *xmin=x; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        return fx; 
      duration (i.e. until      } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      ftemp=fu;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      if (fabs(e) > tol1) { 
      (typically every 2 years instead of every month which is too big).        r=(x-w)*(fx-fv); 
      Model is determined by parameters x and covariates have to be        q=(x-v)*(fx-fw); 
      included manually here.        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
      */        if (q > 0.0) p = -p; 
         q=fabs(q); 
   int i, j, d, h, k;        etemp=e; 
   double **out, cov[NCOVMAX];        e=d; 
   double **newm;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /* Hstepm could be zero and should return the unit matrix */        else { 
   for (i=1;i<=nlstate+ndeath;i++)          d=p/q; 
     for (j=1;j<=nlstate+ndeath;j++){          u=x+d; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);          if (u-a < tol2 || b-u < tol2) 
       po[i][j][0]=(i==j ? 1.0 : 0.0);            d=SIGN(tol1,xm-x); 
     }        } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      } else { 
   for(h=1; h <=nhstepm; h++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for(d=1; d <=hstepm; d++){      } 
       newm=savm;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       /* Covariates have to be included here again */      fu=(*f)(u); 
       cov[1]=1.;      if (fu <= fx) { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        if (u >= x) a=x; else b=x; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        SHFT(v,w,x,u) 
       for (k=1; k<=cptcovage;k++)          SHFT(fv,fw,fx,fu) 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          } else { 
       for (k=1; k<=cptcovprod;k++)            if (u < x) a=u; else b=u; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            if (fu <= fw || w == x) { 
               v=w; 
               w=u; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/              fv=fw; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/              fw=fu; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,            } else if (fu <= fv || v == x || v == w) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));              v=u; 
       savm=oldm;              fv=fu; 
       oldm=newm;            } 
     }          } 
     for(i=1; i<=nlstate+ndeath; i++)    } 
       for(j=1;j<=nlstate+ndeath;j++) {    nrerror("Too many iterations in brent"); 
         po[i][j][h]=newm[i][j];    *xmin=x; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    return fx; 
          */  } 
       }  
   } /* end h */  /****************** mnbrak ***********************/
   return po;  
 }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
   { 
 /*************** log-likelihood *************/    double ulim,u,r,q, dum;
 double func( double *x)    double fu; 
 {   
   int i, ii, j, k, mi, d, kk;    *fa=(*func)(*ax); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    *fb=(*func)(*bx); 
   double **out;    if (*fb > *fa) { 
   double sw; /* Sum of weights */      SHFT(dum,*ax,*bx,dum) 
   double lli; /* Individual log likelihood */        SHFT(dum,*fb,*fa,dum) 
   long ipmx;        } 
   /*extern weight */    *cx=(*bx)+GOLD*(*bx-*ax); 
   /* We are differentiating ll according to initial status */    *fc=(*func)(*cx); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    while (*fb > *fc) { 
   /*for(i=1;i<imx;i++)      r=(*bx-*ax)*(*fb-*fc); 
     printf(" %d\n",s[4][i]);      q=(*bx-*cx)*(*fb-*fa); 
   */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   cov[1]=1.;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      if ((*bx-u)*(u-*cx) > 0.0) { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        fu=(*func)(u); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for(mi=1; mi<= wav[i]-1; mi++){        fu=(*func)(u); 
       for (ii=1;ii<=nlstate+ndeath;ii++)        if (fu < *fc) { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       for(d=0; d<dh[mi][i]; d++){            SHFT(*fb,*fc,fu,(*func)(u)) 
         newm=savm;            } 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         for (kk=1; kk<=cptcovage;kk++) {        u=ulim; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        fu=(*func)(u); 
         }      } else { 
                u=(*cx)+GOLD*(*cx-*bx); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        fu=(*func)(u); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      } 
         savm=oldm;      SHFT(*ax,*bx,*cx,u) 
         oldm=newm;        SHFT(*fa,*fb,*fc,fu) 
                } 
          } 
       } /* end mult */  
        /*************** linmin ************************/
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  int ncom; 
       ipmx +=1;  double *pcom,*xicom;
       sw += weight[i];  double (*nrfunc)(double []); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;   
     } /* end of wave */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   } /* end of individual */  { 
     double brent(double ax, double bx, double cx, 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];                 double (*f)(double), double tol, double *xmin); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    double f1dim(double x); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   return -l;                double *fc, double (*func)(double)); 
 }    int j; 
     double xx,xmin,bx,ax; 
     double fx,fb,fa;
 /*********** Maximum Likelihood Estimation ***************/   
     ncom=n; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    pcom=vector(1,n); 
 {    xicom=vector(1,n); 
   int i,j, iter;    nrfunc=func; 
   double **xi,*delti;    for (j=1;j<=n;j++) { 
   double fret;      pcom[j]=p[j]; 
   xi=matrix(1,npar,1,npar);      xicom[j]=xi[j]; 
   for (i=1;i<=npar;i++)    } 
     for (j=1;j<=npar;j++)    ax=0.0; 
       xi[i][j]=(i==j ? 1.0 : 0.0);    xx=1.0; 
   printf("Powell\n");    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   powell(p,xi,npar,ftol,&iter,&fret,func);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
 }    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
 /**** Computes Hessian and covariance matrix ***/      p[j] += xi[j]; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    } 
 {    free_vector(xicom,1,n); 
   double  **a,**y,*x,pd;    free_vector(pcom,1,n); 
   double **hess;  } 
   int i, j,jk;  
   int *indx;  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   double hessii(double p[], double delta, int theta, double delti[]);    long sec_left, days, hours, minutes;
   double hessij(double p[], double delti[], int i, int j);    days = (time_sec) / (60*60*24);
   void lubksb(double **a, int npar, int *indx, double b[]) ;    sec_left = (time_sec) % (60*60*24);
   void ludcmp(double **a, int npar, int *indx, double *d) ;    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   hess=matrix(1,npar,1,npar);    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
   printf("\nCalculation of the hessian matrix. Wait...\n");    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   for (i=1;i<=npar;i++){    return ascdiff;
     printf("%d",i);fflush(stdout);  }
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/  /*************** powell ************************/
     /*printf(" %lf ",hess[i][i]);*/  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   }              double (*func)(double [])) 
    { 
   for (i=1;i<=npar;i++) {    void linmin(double p[], double xi[], int n, double *fret, 
     for (j=1;j<=npar;j++)  {                double (*func)(double [])); 
       if (j>i) {    int i,ibig,j; 
         printf(".%d%d",i,j);fflush(stdout);    double del,t,*pt,*ptt,*xit;
         hess[i][j]=hessij(p,delti,i,j);    double fp,fptt;
         hess[j][i]=hess[i][j];        double *xits;
         /*printf(" %lf ",hess[i][j]);*/    int niterf, itmp;
       }  
     }    pt=vector(1,n); 
   }    ptt=vector(1,n); 
   printf("\n");    xit=vector(1,n); 
     xits=vector(1,n); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    *fret=(*func)(p); 
      for (j=1;j<=n;j++) pt[j]=p[j]; 
   a=matrix(1,npar,1,npar);    for (*iter=1;;++(*iter)) { 
   y=matrix(1,npar,1,npar);      fp=(*fret); 
   x=vector(1,npar);      ibig=0; 
   indx=ivector(1,npar);      del=0.0; 
   for (i=1;i<=npar;i++)      last_time=curr_time;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      (void) gettimeofday(&curr_time,&tzp);
   ludcmp(a,npar,indx,&pd);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   for (j=1;j<=npar;j++) {      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
     for (i=1;i<=npar;i++) x[i]=0;      */
     x[j]=1;     for (i=1;i<=n;i++) {
     lubksb(a,npar,indx,x);        printf(" %d %.12f",i, p[i]);
     for (i=1;i<=npar;i++){        fprintf(ficlog," %d %.12lf",i, p[i]);
       matcov[i][j]=x[i];        fprintf(ficrespow," %.12lf", p[i]);
     }      }
   }      printf("\n");
       fprintf(ficlog,"\n");
   printf("\n#Hessian matrix#\n");      fprintf(ficrespow,"\n");fflush(ficrespow);
   for (i=1;i<=npar;i++) {      if(*iter <=3){
     for (j=1;j<=npar;j++) {        tm = *localtime(&curr_time.tv_sec);
       printf("%.3e ",hess[i][j]);        strcpy(strcurr,asctime(&tm));
     }  /*       asctime_r(&tm,strcurr); */
     printf("\n");        forecast_time=curr_time; 
   }        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   /* Recompute Inverse */          strcurr[itmp-1]='\0';
   for (i=1;i<=npar;i++)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   ludcmp(a,npar,indx,&pd);        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   /*  printf("\n#Hessian matrix recomputed#\n");          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
   for (j=1;j<=npar;j++) {          strcpy(strfor,asctime(&tmf));
     for (i=1;i<=npar;i++) x[i]=0;          itmp = strlen(strfor);
     x[j]=1;          if(strfor[itmp-1]=='\n')
     lubksb(a,npar,indx,x);          strfor[itmp-1]='\0';
     for (i=1;i<=npar;i++){          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       y[i][j]=x[i];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       printf("%.3e ",y[i][j]);        }
     }      }
     printf("\n");      for (i=1;i<=n;i++) { 
   }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   */        fptt=(*fret); 
   #ifdef DEBUG
   free_matrix(a,1,npar,1,npar);        printf("fret=%lf \n",*fret);
   free_matrix(y,1,npar,1,npar);        fprintf(ficlog,"fret=%lf \n",*fret);
   free_vector(x,1,npar);  #endif
   free_ivector(indx,1,npar);        printf("%d",i);fflush(stdout);
   free_matrix(hess,1,npar,1,npar);        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
 }          del=fabs(fptt-(*fret)); 
           ibig=i; 
 /*************** hessian matrix ****************/        } 
 double hessii( double x[], double delta, int theta, double delti[])  #ifdef DEBUG
 {        printf("%d %.12e",i,(*fret));
   int i;        fprintf(ficlog,"%d %.12e",i,(*fret));
   int l=1, lmax=20;        for (j=1;j<=n;j++) {
   double k1,k2;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double p2[NPARMAX+1];          printf(" x(%d)=%.12e",j,xit[j]);
   double res;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        }
   double fx;        for(j=1;j<=n;j++) {
   int k=0,kmax=10;          printf(" p=%.12e",p[j]);
   double l1;          fprintf(ficlog," p=%.12e",p[j]);
         }
   fx=func(x);        printf("\n");
   for (i=1;i<=npar;i++) p2[i]=x[i];        fprintf(ficlog,"\n");
   for(l=0 ; l <=lmax; l++){  #endif
     l1=pow(10,l);      } 
     delts=delt;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for(k=1 ; k <kmax; k=k+1){  #ifdef DEBUG
       delt = delta*(l1*k);        int k[2],l;
       p2[theta]=x[theta] +delt;        k[0]=1;
       k1=func(p2)-fx;        k[1]=-1;
       p2[theta]=x[theta]-delt;        printf("Max: %.12e",(*func)(p));
       k2=func(p2)-fx;        fprintf(ficlog,"Max: %.12e",(*func)(p));
       /*res= (k1-2.0*fx+k2)/delt/delt; */        for (j=1;j<=n;j++) {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          printf(" %.12e",p[j]);
                fprintf(ficlog," %.12e",p[j]);
 #ifdef DEBUG        }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        printf("\n");
 #endif        fprintf(ficlog,"\n");
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        for(l=0;l<=1;l++) {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          for (j=1;j<=n;j++) {
         k=kmax;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         k=kmax; l=lmax*10.;          }
       }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         delts=delt;        }
       }  #endif
     }  
   }  
   delti[theta]=delts;        free_vector(xit,1,n); 
   return res;        free_vector(xits,1,n); 
          free_vector(ptt,1,n); 
 }        free_vector(pt,1,n); 
         return; 
 double hessij( double x[], double delti[], int thetai,int thetaj)      } 
 {      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   int i;      for (j=1;j<=n;j++) { 
   int l=1, l1, lmax=20;        ptt[j]=2.0*p[j]-pt[j]; 
   double k1,k2,k3,k4,res,fx;        xit[j]=p[j]-pt[j]; 
   double p2[NPARMAX+1];        pt[j]=p[j]; 
   int k;      } 
       fptt=(*func)(ptt); 
   fx=func(x);      if (fptt < fp) { 
   for (k=1; k<=2; k++) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     for (i=1;i<=npar;i++) p2[i]=x[i];        if (t < 0.0) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;          linmin(p,xit,n,fret,func); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          for (j=1;j<=n;j++) { 
     k1=func(p2)-fx;            xi[j][ibig]=xi[j][n]; 
              xi[j][n]=xit[j]; 
     p2[thetai]=x[thetai]+delti[thetai]/k;          }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #ifdef DEBUG
     k2=func(p2)-fx;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     p2[thetai]=x[thetai]-delti[thetai]/k;          for(j=1;j<=n;j++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            printf(" %.12e",xit[j]);
     k3=func(p2)-fx;            fprintf(ficlog," %.12e",xit[j]);
            }
     p2[thetai]=x[thetai]-delti[thetai]/k;          printf("\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          fprintf(ficlog,"\n");
     k4=func(p2)-fx;  #endif
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        }
 #ifdef DEBUG      } 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    } 
 #endif  } 
   }  
   return res;  /**** Prevalence limit (stable or period prevalence)  ****************/
 }  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 /************** Inverse of matrix **************/  {
 void ludcmp(double **a, int n, int *indx, double *d)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 {       matrix by transitions matrix until convergence is reached */
   int i,imax,j,k;  
   double big,dum,sum,temp;    int i, ii,j,k;
   double *vv;    double min, max, maxmin, maxmax,sumnew=0.;
      double **matprod2();
   vv=vector(1,n);    double **out, cov[NCOVMAX], **pmij();
   *d=1.0;    double **newm;
   for (i=1;i<=n;i++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
     big=0.0;  
     for (j=1;j<=n;j++)    for (ii=1;ii<=nlstate+ndeath;ii++)
       if ((temp=fabs(a[i][j])) > big) big=temp;      for (j=1;j<=nlstate+ndeath;j++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     vv[i]=1.0/big;      }
   }  
   for (j=1;j<=n;j++) {     cov[1]=1.;
     for (i=1;i<j;i++) {   
       sum=a[i][j];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       a[i][j]=sum;      newm=savm;
     }      /* Covariates have to be included here again */
     big=0.0;       cov[2]=agefin;
     for (i=j;i<=n;i++) {    
       sum=a[i][j];        for (k=1; k<=cptcovn;k++) {
       for (k=1;k<j;k++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         sum -= a[i][k]*a[k][j];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       a[i][j]=sum;        }
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         big=dum;        for (k=1; k<=cptcovprod;k++)
         imax=i;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }  
     }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     if (j != imax) {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       for (k=1;k<=n;k++) {        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         dum=a[imax][k];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         a[imax][k]=a[j][k];  
         a[j][k]=dum;      savm=oldm;
       }      oldm=newm;
       *d = -(*d);      maxmax=0.;
       vv[imax]=vv[j];      for(j=1;j<=nlstate;j++){
     }        min=1.;
     indx[j]=imax;        max=0.;
     if (a[j][j] == 0.0) a[j][j]=TINY;        for(i=1; i<=nlstate; i++) {
     if (j != n) {          sumnew=0;
       dum=1.0/(a[j][j]);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          prlim[i][j]= newm[i][j]/(1-sumnew);
     }          max=FMAX(max,prlim[i][j]);
   }          min=FMIN(min,prlim[i][j]);
   free_vector(vv,1,n);  /* Doesn't work */        }
 ;        maxmin=max-min;
 }        maxmax=FMAX(maxmax,maxmin);
       }
 void lubksb(double **a, int n, int *indx, double b[])      if(maxmax < ftolpl){
 {        return prlim;
   int i,ii=0,ip,j;      }
   double sum;    }
    }
   for (i=1;i<=n;i++) {  
     ip=indx[i];  /*************** transition probabilities ***************/ 
     sum=b[ip];  
     b[ip]=b[i];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     if (ii)  {
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    double s1, s2;
     else if (sum) ii=i;    /*double t34;*/
     b[i]=sum;    int i,j,j1, nc, ii, jj;
   }  
   for (i=n;i>=1;i--) {      for(i=1; i<= nlstate; i++){
     sum=b[i];        for(j=1; j<i;j++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     b[i]=sum/a[i][i];            /*s2 += param[i][j][nc]*cov[nc];*/
   }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           }
 /************ Frequencies ********************/          ps[i][j]=s2;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 {  /* Some frequencies */        }
          for(j=i+1; j<=nlstate+ndeath;j++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double ***freq; /* Frequencies */            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double *pp;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   double pos, k2, dateintsum=0,k2cpt=0;          }
   FILE *ficresp;          ps[i][j]=s2;
   char fileresp[FILENAMELENGTH];        }
        }
   pp=vector(1,nlstate);      /*ps[3][2]=1;*/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      
   strcpy(fileresp,"p");      for(i=1; i<= nlstate; i++){
   strcat(fileresp,fileres);        s1=0;
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for(j=1; j<i; j++)
     printf("Problem with prevalence resultfile: %s\n", fileresp);          s1+=exp(ps[i][j]);
     exit(0);        for(j=i+1; j<=nlstate+ndeath; j++)
   }          s1+=exp(ps[i][j]);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        ps[i][i]=1./(s1+1.);
   j1=0;        for(j=1; j<i; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
   j=cptcoveff;        for(j=i+1; j<=nlstate+ndeath; j++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ps[i][j]= exp(ps[i][j])*ps[i][i];
          /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for(k1=1; k1<=j;k1++){      } /* end i */
     for(i1=1; i1<=ncodemax[k1];i1++){      
       j1++;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        for(jj=1; jj<= nlstate+ndeath; jj++){
         scanf("%d", i);*/          ps[ii][jj]=0;
       for (i=-1; i<=nlstate+ndeath; i++)            ps[ii][ii]=1;
         for (jk=-1; jk<=nlstate+ndeath; jk++)          }
           for(m=agemin; m <= agemax+3; m++)      }
             freq[i][jk][m]=0;      
        
       dateintsum=0;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       k2cpt=0;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       for (i=1; i<=imx; i++) {  /*         printf("ddd %lf ",ps[ii][jj]); */
         bool=1;  /*       } */
         if  (cptcovn>0) {  /*       printf("\n "); */
           for (z1=1; z1<=cptcoveff; z1++)  /*        } */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*        printf("\n ");printf("%lf ",cov[2]); */
               bool=0;         /*
         }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         if (bool==1) {        goto end;*/
           for(m=firstpass; m<=lastpass; m++){      return ps;
             k2=anint[m][i]+(mint[m][i]/12.);  }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;  /**************** Product of 2 matrices ******************/
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  {
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
               }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
                  /* in, b, out are matrice of pointers which should have been initialized 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {       before: only the contents of out is modified. The function returns
                 dateintsum=dateintsum+k2;       a pointer to pointers identical to out */
                 k2cpt++;    long i, j, k;
               }    for(i=nrl; i<= nrh; i++)
             }      for(k=ncolol; k<=ncoloh; k++)
           }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         }          out[i][k] +=in[i][j]*b[j][k];
       }  
            return out;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  }
   
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");  /************* Higher Matrix Product ***************/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresp, "**********\n#");  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       }  {
       for(i=1; i<=nlstate;i++)    /* Computes the transition matrix starting at age 'age' over 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);       'nhstepm*hstepm*stepm' months (i.e. until
       fprintf(ficresp, "\n");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             nhstepm*hstepm matrices. 
       for(i=(int)agemin; i <= (int)agemax+3; i++){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         if(i==(int)agemax+3)       (typically every 2 years instead of every month which is too big 
           printf("Total");       for the memory).
         else       Model is determined by parameters x and covariates have to be 
           printf("Age %d", i);       included manually here. 
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)       */
             pp[jk] += freq[jk][m][i];  
         }    int i, j, d, h, k;
         for(jk=1; jk <=nlstate ; jk++){    double **out, cov[NCOVMAX];
           for(m=-1, pos=0; m <=0 ; m++)    double **newm;
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10)    /* Hstepm could be zero and should return the unit matrix */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    for (i=1;i<=nlstate+ndeath;i++)
           else      for (j=1;j<=nlstate+ndeath;j++){
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        oldm[i][j]=(i==j ? 1.0 : 0.0);
         }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
         for(jk=1; jk <=nlstate ; jk++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    for(h=1; h <=nhstepm; h++){
             pp[jk] += freq[jk][m][i];      for(d=1; d <=hstepm; d++){
         }        newm=savm;
         /* Covariates have to be included here again */
         for(jk=1,pos=0; jk <=nlstate ; jk++)        cov[1]=1.;
           pos += pp[jk];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           if(pos>=1.e-5)        for (k=1; k<=cptcovage;k++)
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           else        for (k=1; k<=cptcovprod;k++)
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
               probs[i][jk][j1]= pp[jk]/pos;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
             }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             else        savm=oldm;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        oldm=newm;
           }      }
         }      for(i=1; i<=nlstate+ndeath; i++)
                for(j=1;j<=nlstate+ndeath;j++) {
         for(jk=-1; jk <=nlstate+ndeath; jk++)          po[i][j][h]=newm[i][j];
           for(m=-1; m <=nlstate+ndeath; m++)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);           */
         if(i <= (int) agemax)        }
           fprintf(ficresp,"\n");    } /* end h */
         printf("\n");    return po;
       }  }
     }  
   }  
   dateintmean=dateintsum/k2cpt;  /*************** log-likelihood *************/
    double func( double *x)
   fclose(ficresp);  {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    int i, ii, j, k, mi, d, kk;
   free_vector(pp,1,nlstate);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      double **out;
   /* End of Freq */    double sw; /* Sum of weights */
 }    double lli; /* Individual log likelihood */
     int s1, s2;
 /************ Prevalence ********************/    double bbh, survp;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    long ipmx;
 {  /* Some frequencies */    /*extern weight */
      /* We are differentiating ll according to initial status */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double ***freq; /* Frequencies */    /*for(i=1;i<imx;i++) 
   double *pp;      printf(" %d\n",s[4][i]);
   double pos, k2;    */
     cov[1]=1.;
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    if(mle==1){
   j1=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   j=cptcoveff;        for(mi=1; mi<= wav[i]-1; mi++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   for(k1=1; k1<=j;k1++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i1=1; i1<=ncodemax[k1];i1++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       j1++;            }
                for(d=0; d<dh[mi][i]; d++){
       for (i=-1; i<=nlstate+ndeath; i++)              newm=savm;
         for (jk=-1; jk<=nlstate+ndeath; jk++)              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(m=agemin; m <= agemax+3; m++)            for (kk=1; kk<=cptcovage;kk++) {
             freq[i][jk][m]=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                  }
       for (i=1; i<=imx; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         bool=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if  (cptcovn>0) {            savm=oldm;
           for (z1=1; z1<=cptcoveff; z1++)            oldm=newm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          } /* end mult */
               bool=0;        
         }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         if (bool==1) {          /* But now since version 0.9 we anticipate for bias at large stepm.
           for(m=firstpass; m<=lastpass; m++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             k2=anint[m][i]+(mint[m][i]/12.);           * (in months) between two waves is not a multiple of stepm, we rounded to 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {           * the nearest (and in case of equal distance, to the lowest) interval but now
               if(agev[m][i]==0) agev[m][i]=agemax+1;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
               if(agev[m][i]==1) agev[m][i]=agemax+2;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
               if (m<lastpass) {           * probability in order to take into account the bias as a fraction of the way
                 if (calagedate>0)           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];           * -stepm/2 to stepm/2 .
                 else           * For stepm=1 the results are the same as for previous versions of Imach.
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * For stepm > 1 the results are less biased than in previous versions. 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];           */
               }          s1=s[mw[mi][i]][i];
             }          s2=s[mw[mi+1][i]][i];
           }          bbh=(double)bh[mi][i]/(double)stepm; 
         }          /* bias bh is positive if real duration
       }           * is higher than the multiple of stepm and negative otherwise.
       for(i=(int)agemin; i <= (int)agemax+3; i++){           */
         for(jk=1; jk <=nlstate ; jk++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          if( s2 > nlstate){ 
             pp[jk] += freq[jk][m][i];            /* i.e. if s2 is a death state and if the date of death is known 
         }               then the contribution to the likelihood is the probability to 
         for(jk=1; jk <=nlstate ; jk++){               die between last step unit time and current  step unit time, 
           for(m=-1, pos=0; m <=0 ; m++)               which is also equal to probability to die before dh 
             pos += freq[jk][m][i];               minus probability to die before dh-stepm . 
         }               In version up to 0.92 likelihood was computed
                  as if date of death was unknown. Death was treated as any other
         for(jk=1; jk <=nlstate ; jk++){          health state: the date of the interview describes the actual state
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          and not the date of a change in health state. The former idea was
             pp[jk] += freq[jk][m][i];          to consider that at each interview the state was recorded
         }          (healthy, disable or death) and IMaCh was corrected; but when we
                  introduced the exact date of death then we should have modified
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          the contribution of an exact death to the likelihood. This new
                  contribution is smaller and very dependent of the step unit
         for(jk=1; jk <=nlstate ; jk++){              stepm. It is no more the probability to die between last interview
           if( i <= (int) agemax){          and month of death but the probability to survive from last
             if(pos>=1.e-5){          interview up to one month before death multiplied by the
               probs[i][jk][j1]= pp[jk]/pos;          probability to die within a month. Thanks to Chris
             }          Jackson for correcting this bug.  Former versions increased
           }          mortality artificially. The bad side is that we add another loop
         }          which slows down the processing. The difference can be up to 10%
                  lower mortality.
       }            */
     }            lli=log(out[s1][s2] - savm[s1][s2]);
   }  
   
            } else if  (s2==-2) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            for (j=1,survp=0. ; j<=nlstate; j++) 
   free_vector(pp,1,nlstate);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              /*survp += out[s1][j]; */
 }  /* End of Freq */            lli= log(survp);
           }
 /************* Waves Concatenation ***************/          
           else if  (s2==-4) { 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            for (j=3,survp=0. ; j<=nlstate; j++)  
 {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            lli= log(survp); 
      Death is a valid wave (if date is known).          } 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          else if  (s2==-5) { 
      and mw[mi+1][i]. dh depends on stepm.            for (j=1,survp=0. ; j<=2; j++)  
      */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
   int i, mi, m;          } 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          
      double sum=0., jmean=0.;*/          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int j, k=0,jk, ju, jl;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double sum=0.;          } 
   jmin=1e+5;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   jmax=-1;          /*if(lli ==000.0)*/
   jmean=0.;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   for(i=1; i<=imx; i++){          ipmx +=1;
     mi=0;          sw += weight[i];
     m=firstpass;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     while(s[m][i] <= nlstate){        } /* end of wave */
       if(s[m][i]>=1)      } /* end of individual */
         mw[++mi][i]=m;    }  else if(mle==2){
       if(m >=lastpass)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         break;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       else        for(mi=1; mi<= wav[i]-1; mi++){
         m++;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }/* end while */            for (j=1;j<=nlstate+ndeath;j++){
     if (s[m][i] > nlstate){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       mi++;     /* Death is another wave */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       /* if(mi==0)  never been interviewed correctly before death */            }
          /* Only death is a correct wave */          for(d=0; d<=dh[mi][i]; d++){
       mw[mi][i]=m;            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     wav[i]=mi;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if(mi==0)            }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   for(i=1; i<=imx; i++){            oldm=newm;
     for(mi=1; mi<wav[i];mi++){          } /* end mult */
       if (stepm <=0)        
         dh[mi][i]=1;          s1=s[mw[mi][i]][i];
       else{          s2=s[mw[mi+1][i]][i];
         if (s[mw[mi+1][i]][i] > nlstate) {          bbh=(double)bh[mi][i]/(double)stepm; 
           if (agedc[i] < 2*AGESUP) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          ipmx +=1;
           if(j==0) j=1;  /* Survives at least one month after exam */          sw += weight[i];
           k=k+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if (j >= jmax) jmax=j;        } /* end of wave */
           if (j <= jmin) jmin=j;      } /* end of individual */
           sum=sum+j;    }  else if(mle==3){  /* exponential inter-extrapolation */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
         else{          for (ii=1;ii<=nlstate+ndeath;ii++)
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            for (j=1;j<=nlstate+ndeath;j++){
           k=k+1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (j >= jmax) jmax=j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           else if (j <= jmin)jmin=j;            }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          for(d=0; d<dh[mi][i]; d++){
           sum=sum+j;            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         jk= j/stepm;            for (kk=1; kk<=cptcovage;kk++) {
         jl= j -jk*stepm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         ju= j -(jk+1)*stepm;            }
         if(jl <= -ju)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           dh[mi][i]=jk;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         else            savm=oldm;
           dh[mi][i]=jk+1;            oldm=newm;
         if(dh[mi][i]==0)          } /* end mult */
           dh[mi][i]=1; /* At least one step */        
       }          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
   jmean=sum/k;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          ipmx +=1;
  }          sw += weight[i];
 /*********** Tricode ****************************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void tricode(int *Tvar, int **nbcode, int imx)        } /* end of wave */
 {      } /* end of individual */
   int Ndum[20],ij=1, k, j, i;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   int cptcode=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   cptcoveff=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   for (k=0; k<19; k++) Ndum[k]=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (k=1; k<=7; k++) ncodemax[k]=0;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=imx; i++) {            }
       ij=(int)(covar[Tvar[j]][i]);          for(d=0; d<dh[mi][i]; d++){
       Ndum[ij]++;            newm=savm;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if (ij > cptcode) cptcode=ij;            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     for (i=0; i<=cptcode; i++) {          
       if(Ndum[i]!=0) ncodemax[j]++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     ij=1;            savm=oldm;
             oldm=newm;
           } /* end mult */
     for (i=1; i<=ncodemax[j]; i++) {        
       for (k=0; k<=19; k++) {          s1=s[mw[mi][i]][i];
         if (Ndum[k] != 0) {          s2=s[mw[mi+1][i]][i];
           nbcode[Tvar[j]][ij]=k;          if( s2 > nlstate){ 
                      lli=log(out[s1][s2] - savm[s1][s2]);
           ij++;          }else{
         }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         if (ij > ncodemax[j]) break;          }
       }            ipmx +=1;
     }          sw += weight[i];
   }            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
  for (k=0; k<19; k++) Ndum[k]=0;        } /* end of wave */
       } /* end of individual */
  for (i=1; i<=ncovmodel-2; i++) {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       ij=Tvar[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       Ndum[ij]++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
  ij=1;            for (j=1;j<=nlstate+ndeath;j++){
  for (i=1; i<=10; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    if((Ndum[i]!=0) && (i<=ncovcol)){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      Tvaraff[ij]=i;            }
      ij++;          for(d=0; d<dh[mi][i]; d++){
    }            newm=savm;
  }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
     cptcoveff=ij-1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
           
 /*********** Health Expectancies ****************/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            savm=oldm;
             oldm=newm;
 {          } /* end mult */
   /* Health expectancies */        
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          s1=s[mw[mi][i]][i];
   double age, agelim, hf;          s2=s[mw[mi+1][i]][i];
   double ***p3mat,***varhe;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double **dnewm,**doldm;          ipmx +=1;
   double *xp;          sw += weight[i];
   double **gp, **gm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***gradg, ***trgradg;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   int theta;        } /* end of wave */
       } /* end of individual */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    } /* End of if */
   xp=vector(1,npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   dnewm=matrix(1,nlstate*2,1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   doldm=matrix(1,nlstate*2,1,nlstate*2);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      return -l;
   fprintf(ficreseij,"# Health expectancies\n");  }
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)  /*************** log-likelihood *************/
     for(j=1; j<=nlstate;j++)  double funcone( double *x)
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  {
   fprintf(ficreseij,"\n");    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
   if(estepm < stepm){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     printf ("Problem %d lower than %d\n",estepm, stepm);    double **out;
   }    double lli; /* Individual log likelihood */
   else  hstepm=estepm;      double llt;
   /* We compute the life expectancy from trapezoids spaced every estepm months    int s1, s2;
    * This is mainly to measure the difference between two models: for example    double bbh, survp;
    * if stepm=24 months pijx are given only every 2 years and by summing them    /*extern weight */
    * we are calculating an estimate of the Life Expectancy assuming a linear    /* We are differentiating ll according to initial status */
    * progression inbetween and thus overestimating or underestimating according    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
    * to the curvature of the survival function. If, for the same date, we    /*for(i=1;i<imx;i++) 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      printf(" %d\n",s[4][i]);
    * to compare the new estimate of Life expectancy with the same linear    */
    * hypothesis. A more precise result, taking into account a more precise    cov[1]=1.;
    * curvature will be obtained if estepm is as small as stepm. */  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      nhstepm is the number of hstepm from age to agelim      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      nstepm is the number of stepm from age to agelin.      for(mi=1; mi<= wav[i]-1; mi++){
      Look at hpijx to understand the reason of that which relies in memory size        for (ii=1;ii<=nlstate+ndeath;ii++)
      and note for a fixed period like estepm months */          for (j=1;j<=nlstate+ndeath;j++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      survival function given by stepm (the optimization length). Unfortunately it            savm[ii][j]=(ii==j ? 1.0 : 0.0);
      means that if the survival funtion is printed only each two years of age and if          }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        for(d=0; d<dh[mi][i]; d++){
      results. So we changed our mind and took the option of the best precision.          newm=savm;
   */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   agelim=AGESUP;          }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     /* nhstepm age range expressed in number of stepm */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          savm=oldm;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          oldm=newm;
     /* if (stepm >= YEARM) hstepm=1;*/        } /* end mult */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        s1=s[mw[mi][i]][i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        s2=s[mw[mi+1][i]][i];
     gp=matrix(0,nhstepm,1,nlstate*2);        bbh=(double)bh[mi][i]/(double)stepm; 
     gm=matrix(0,nhstepm,1,nlstate*2);        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
     /* Computed by stepm unit matrices, product of hstepm matrices, stored         */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            lli=log(out[s1][s2] - savm[s1][s2]);
          } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
     /* Computing Variances of health expectancies */        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      for(theta=1; theta <=npar; theta++){        } else if(mle==2){
       for(i=1; i<=npar; i++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        } else if(mle==3){  /* exponential inter-extrapolation */
       }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          } else if (mle==4){  /* mle=4 no inter-extrapolation */
            lli=log(out[s1][s2]); /* Original formula */
       cptj=0;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       for(j=1; j<= nlstate; j++){          lli=log(out[s1][s2]); /* Original formula */
         for(i=1; i<=nlstate; i++){        } /* End of if */
           cptj=cptj+1;        ipmx +=1;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        sw += weight[i];
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        if(globpr){
       }          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         %11.6f %11.6f %11.6f ", \
                        num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       for(i=1; i<=npar; i++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              llt +=ll[k]*gipmx/gsw;
                  fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       cptj=0;          }
       for(j=1; j<= nlstate; j++){          fprintf(ficresilk," %10.6f\n", -llt);
         for(i=1;i<=nlstate;i++){        }
           cptj=cptj+1;      } /* end of wave */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    } /* end of individual */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    if(globpr==0){ /* First time we count the contributions and weights */
       for(j=1; j<= nlstate*2; j++)      gipmx=ipmx;
         for(h=0; h<=nhstepm-1; h++){      gsw=sw;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    }
         }    return -l;
      }  }
      
 /* End theta */  
   /*************** function likelione ***********/
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
      for(h=0; h<=nhstepm-1; h++)    /* This routine should help understanding what is done with 
       for(j=1; j<=nlstate*2;j++)       the selection of individuals/waves and
         for(theta=1; theta <=npar; theta++)       to check the exact contribution to the likelihood.
           trgradg[h][j][theta]=gradg[h][theta][j];       Plotting could be done.
           */
     int k;
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)    if(*globpri !=0){ /* Just counts and sums, no printings */
         varhe[i][j][(int)age] =0.;      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
      printf("%d|",(int)age);fflush(stdout);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
      for(h=0;h<=nhstepm-1;h++){        printf("Problem with resultfile: %s\n", fileresilk);
       for(k=0;k<=nhstepm-1;k++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         for(i=1;i<=nlstate*2;i++)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           for(j=1;j<=nlstate*2;j++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      for(k=1; k<=nlstate; k++) 
       }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     /* Computing expectancies */    }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)    *fretone=(*funcone)(p);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    if(*globpri !=0){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      fclose(ficresilk);
                fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      fflush(fichtm); 
     } 
         }    return;
   }
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;  
     for(i=1; i<=nlstate;i++)  /*********** Maximum Likelihood Estimation ***************/
       for(j=1; j<=nlstate;j++){  
         cptj++;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  {
       }    int i,j, iter;
     fprintf(ficreseij,"\n");    double **xi;
        double fret;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    double fretone; /* Only one call to likelihood */
     free_matrix(gp,0,nhstepm,1,nlstate*2);    /*  char filerespow[FILENAMELENGTH];*/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    xi=matrix(1,npar,1,npar);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    for (i=1;i<=npar;i++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=npar;j++)
   }        xi[i][j]=(i==j ? 1.0 : 0.0);
   printf("\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
   free_vector(xp,1,npar);    strcat(filerespow,fileres);
   free_matrix(dnewm,1,nlstate*2,1,npar);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      printf("Problem with resultfile: %s\n", filerespow);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 }    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 /************ Variance ******************/    for (i=1;i<=nlstate;i++)
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      for(j=1;j<=nlstate+ndeath;j++)
 {        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   /* Variance of health expectancies */    fprintf(ficrespow,"\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    powell(p,xi,npar,ftol,&iter,&fret,func);
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm, h, nstepm ;    free_matrix(xi,1,npar,1,npar);
   int k, cptcode;    fclose(ficrespow);
   double *xp;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   double **gp, **gm;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double ***gradg, ***trgradg;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double ***p3mat;  
   double age,agelim, hf;  }
   int theta;  
   /**** Computes Hessian and covariance matrix ***/
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   fprintf(ficresvij,"# Age");  {
   for(i=1; i<=nlstate;i++)    double  **a,**y,*x,pd;
     for(j=1; j<=nlstate;j++)    double **hess;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    int i, j,jk;
   fprintf(ficresvij,"\n");    int *indx;
   
   xp=vector(1,npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   dnewm=matrix(1,nlstate,1,npar);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   doldm=matrix(1,nlstate,1,nlstate);    void lubksb(double **a, int npar, int *indx, double b[]) ;
      void ludcmp(double **a, int npar, int *indx, double *d) ;
   if(estepm < stepm){    double gompertz(double p[]);
     printf ("Problem %d lower than %d\n",estepm, stepm);    hess=matrix(1,npar,1,npar);
   }  
   else  hstepm=estepm;      printf("\nCalculation of the hessian matrix. Wait...\n");
   /* For example we decided to compute the life expectancy with the smallest unit */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (i=1;i<=npar;i++){
      nhstepm is the number of hstepm from age to agelim      printf("%d",i);fflush(stdout);
      nstepm is the number of stepm from age to agelin.      fprintf(ficlog,"%d",i);fflush(ficlog);
      Look at hpijx to understand the reason of that which relies in memory size     
      and note for a fixed period like k years */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      
      survival function given by stepm (the optimization length). Unfortunately it      /*  printf(" %f ",p[i]);
      means that if the survival funtion is printed only each two years of age and if          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    }
      results. So we changed our mind and took the option of the best precision.    
   */    for (i=1;i<=npar;i++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for (j=1;j<=npar;j++)  {
   agelim = AGESUP;        if (j>i) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          printf(".%d%d",i,j);fflush(stdout);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          hess[i][j]=hessij(p,delti,i,j,func,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          hess[j][i]=hess[i][j];    
     gp=matrix(0,nhstepm,1,nlstate);          /*printf(" %lf ",hess[i][j]);*/
     gm=matrix(0,nhstepm,1,nlstate);        }
       }
     for(theta=1; theta <=npar; theta++){    }
       for(i=1; i<=npar; i++){ /* Computes gradient */    printf("\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficlog,"\n");
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
       if (popbased==1) {    a=matrix(1,npar,1,npar);
         for(i=1; i<=nlstate;i++)    y=matrix(1,npar,1,npar);
           prlim[i][i]=probs[(int)age][i][ij];    x=vector(1,npar);
       }    indx=ivector(1,npar);
      for (i=1;i<=npar;i++)
       for(j=1; j<= nlstate; j++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         for(h=0; h<=nhstepm; h++){    ludcmp(a,npar,indx,&pd);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (j=1;j<=npar;j++) {
         }      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
          lubksb(a,npar,indx,x);
       for(i=1; i<=npar; i++) /* Computes gradient */      for (i=1;i<=npar;i++){ 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        matcov[i][j]=x[i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
    
       if (popbased==1) {    printf("\n#Hessian matrix#\n");
         for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n#Hessian matrix#\n");
           prlim[i][i]=probs[(int)age][i][ij];    for (i=1;i<=npar;i++) { 
       }      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
       for(j=1; j<= nlstate; j++){        fprintf(ficlog,"%.3e ",hess[i][j]);
         for(h=0; h<=nhstepm; h++){      }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      printf("\n");
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      fprintf(ficlog,"\n");
         }    }
       }  
     /* Recompute Inverse */
       for(j=1; j<= nlstate; j++)    for (i=1;i<=npar;i++)
         for(h=0; h<=nhstepm; h++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    ludcmp(a,npar,indx,&pd);
         }  
     } /* End theta */    /*  printf("\n#Hessian matrix recomputed#\n");
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     for(h=0; h<=nhstepm; h++)      x[j]=1;
       for(j=1; j<=nlstate;j++)      lubksb(a,npar,indx,x);
         for(theta=1; theta <=npar; theta++)      for (i=1;i<=npar;i++){ 
           trgradg[h][j][theta]=gradg[h][theta][j];        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        fprintf(ficlog,"%.3e ",y[i][j]);
     for(i=1;i<=nlstate;i++)      }
       for(j=1;j<=nlstate;j++)      printf("\n");
         vareij[i][j][(int)age] =0.;      fprintf(ficlog,"\n");
     }
     for(h=0;h<=nhstepm;h++){    */
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    free_matrix(a,1,npar,1,npar);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    free_matrix(y,1,npar,1,npar);
         for(i=1;i<=nlstate;i++)    free_vector(x,1,npar);
           for(j=1;j<=nlstate;j++)    free_ivector(indx,1,npar);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    free_matrix(hess,1,npar,1,npar);
       }  
     }  
   }
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  /*************** hessian matrix ****************/
       for(j=1; j<=nlstate;j++){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  {
       }    int i;
     fprintf(ficresvij,"\n");    int l=1, lmax=20;
     free_matrix(gp,0,nhstepm,1,nlstate);    double k1,k2;
     free_matrix(gm,0,nhstepm,1,nlstate);    double p2[NPARMAX+1];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double res;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double fx;
   } /* End age */    int k=0,kmax=10;
      double l1;
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    fx=func(x);
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
 }      l1=pow(10,l);
       delts=delt;
 /************ Variance of prevlim ******************/      for(k=1 ; k <kmax; k=k+1){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        delt = delta*(l1*k);
 {        p2[theta]=x[theta] +delt;
   /* Variance of prevalence limit */        k1=func(p2)-fx;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        p2[theta]=x[theta]-delt;
   double **newm;        k2=func(p2)-fx;
   double **dnewm,**doldm;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   int i, j, nhstepm, hstepm;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   int k, cptcode;        
   double *xp;  #ifdef DEBUG
   double *gp, *gm;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double **gradg, **trgradg;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double age,agelim;  #endif
   int theta;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
            if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          k=kmax;
   fprintf(ficresvpl,"# Age");        }
   for(i=1; i<=nlstate;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       fprintf(ficresvpl," %1d-%1d",i,i);          k=kmax; l=lmax*10.;
   fprintf(ficresvpl,"\n");        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   xp=vector(1,npar);          delts=delt;
   dnewm=matrix(1,nlstate,1,npar);        }
   doldm=matrix(1,nlstate,1,nlstate);      }
      }
   hstepm=1*YEARM; /* Every year of age */    delti[theta]=delts;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    return res; 
   agelim = AGESUP;    
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  {
     gradg=matrix(1,npar,1,nlstate);    int i;
     gp=vector(1,nlstate);    int l=1, l1, lmax=20;
     gm=vector(1,nlstate);    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
     for(theta=1; theta <=npar; theta++){    int k;
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fx=func(x);
       }    for (k=1; k<=2; k++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
         gp[i] = prlim[i][i];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k1=func(p2)-fx;
       for(i=1; i<=npar; i++) /* Computes gradient */    
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      p2[thetai]=x[thetai]+delti[thetai]/k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(i=1;i<=nlstate;i++)      k2=func(p2)-fx;
         gm[i] = prlim[i][i];    
       p2[thetai]=x[thetai]-delti[thetai]/k;
       for(i=1;i<=nlstate;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      k3=func(p2)-fx;
     } /* End theta */    
       p2[thetai]=x[thetai]-delti[thetai]/k;
     trgradg =matrix(1,nlstate,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
     for(j=1; j<=nlstate;j++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for(theta=1; theta <=npar; theta++)  #ifdef DEBUG
         trgradg[j][theta]=gradg[theta][j];      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(i=1;i<=nlstate;i++)  #endif
       varpl[i][(int)age] =0.;    }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    return res;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
     fprintf(ficresvpl,"%.0f ",age );  { 
     for(i=1; i<=nlstate;i++)    int i,imax,j,k; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double big,dum,sum,temp; 
     fprintf(ficresvpl,"\n");    double *vv; 
     free_vector(gp,1,nlstate);   
     free_vector(gm,1,nlstate);    vv=vector(1,n); 
     free_matrix(gradg,1,npar,1,nlstate);    *d=1.0; 
     free_matrix(trgradg,1,nlstate,1,npar);    for (i=1;i<=n;i++) { 
   } /* End age */      big=0.0; 
       for (j=1;j<=n;j++) 
   free_vector(xp,1,npar);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   free_matrix(doldm,1,nlstate,1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   free_matrix(dnewm,1,nlstate,1,nlstate);      vv[i]=1.0/big; 
     } 
 }    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
 /************ Variance of one-step probabilities  ******************/        sum=a[i][j]; 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 {        a[i][j]=sum; 
   int i, j=0,  i1, k1, l1, t, tj;      } 
   int k2, l2, j1,  z1;      big=0.0; 
   int k=0,l, cptcode;      for (i=j;i<=n;i++) { 
   int first=1;        sum=a[i][j]; 
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;        for (k=1;k<j;k++) 
   double **dnewm,**doldm;          sum -= a[i][k]*a[k][j]; 
   double *xp;        a[i][j]=sum; 
   double *gp, *gm;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   double **gradg, **trgradg;          big=dum; 
   double **mu;          imax=i; 
   double age,agelim, cov[NCOVMAX];        } 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      } 
   int theta;      if (j != imax) { 
   char fileresprob[FILENAMELENGTH];        for (k=1;k<=n;k++) { 
   char fileresprobcov[FILENAMELENGTH];          dum=a[imax][k]; 
   char fileresprobcor[FILENAMELENGTH];          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
   double ***varpij;        } 
         *d = -(*d); 
   strcpy(fileresprob,"prob");        vv[imax]=vv[j]; 
   strcat(fileresprob,fileres);      } 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      indx[j]=imax; 
     printf("Problem with resultfile: %s\n", fileresprob);      if (a[j][j] == 0.0) a[j][j]=TINY; 
   }      if (j != n) { 
   strcpy(fileresprobcov,"probcov");        dum=1.0/(a[j][j]); 
   strcat(fileresprobcov,fileres);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      } 
     printf("Problem with resultfile: %s\n", fileresprobcov);    } 
   }    free_vector(vv,1,n);  /* Doesn't work */
   strcpy(fileresprobcor,"probcor");  ;
   strcat(fileresprobcor,fileres);  } 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcor);  void lubksb(double **a, int n, int *indx, double b[]) 
   }  { 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    int i,ii=0,ip,j; 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double sum; 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);   
      for (i=1;i<=n;i++) { 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      ip=indx[i]; 
   fprintf(ficresprob,"# Age");      sum=b[ip]; 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      b[ip]=b[i]; 
   fprintf(ficresprobcov,"# Age");      if (ii) 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   fprintf(ficresprobcov,"# Age");      else if (sum) ii=i; 
       b[i]=sum; 
     } 
   for(i=1; i<=nlstate;i++)    for (i=n;i>=1;i--) { 
     for(j=1; j<=(nlstate+ndeath);j++){      sum=b[i]; 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      b[i]=sum/a[i][i]; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    } 
     }    } 
   fprintf(ficresprob,"\n");  
   fprintf(ficresprobcov,"\n");  void pstamp(FILE *fichier)
   fprintf(ficresprobcor,"\n");  {
   xp=vector(1,npar);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  /************ Frequencies ********************/
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   first=1;  {  /* Some frequencies */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     exit(0);    int first;
   }    double ***freq; /* Frequencies */
   else{    double *pp, **prop;
     fprintf(ficgp,"\n# Routine varprob");    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   }    char fileresp[FILENAMELENGTH];
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    
     printf("Problem with html file: %s\n", optionfilehtm);    pp=vector(1,nlstate);
     exit(0);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   }    strcpy(fileresp,"p");
   else{    strcat(fileresp,fileres);
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      printf("Problem with prevalence resultfile: %s\n", fileresp);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
   }    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
      j1=0;
   cov[1]=1;    
   tj=cptcoveff;    j=cptcoveff;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   j1=0;  
   for(t=1; t<=tj;t++){    first=1;
     for(i1=1; i1<=ncodemax[t];i1++){  
       j1++;    for(k1=1; k1<=j;k1++){
            for(i1=1; i1<=ncodemax[k1];i1++){
       if  (cptcovn>0) {        j1++;
         fprintf(ficresprob, "\n#********** Variable ");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          scanf("%d", i);*/
         fprintf(ficresprob, "**********\n#");        for (i=-5; i<=nlstate+ndeath; i++)  
         fprintf(ficresprobcov, "\n#********** Variable ");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for(m=iagemin; m <= iagemax+3; m++)
         fprintf(ficresprobcov, "**********\n#");              freq[i][jk][m]=0;
          
         fprintf(ficgp, "\n#********** Variable ");      for (i=1; i<=nlstate; i++)  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(m=iagemin; m <= iagemax+3; m++)
         fprintf(ficgp, "**********\n#");          prop[i][m]=0;
                
                dateintsum=0;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");        k2cpt=0;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (i=1; i<=imx; i++) {
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");          bool=1;
                  if  (cptcovn>0) {
         fprintf(ficresprobcor, "\n#********** Variable ");                for (z1=1; z1<=cptcoveff; z1++) 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         fprintf(ficgp, "**********\n#");                    bool=0;
       }          }
                if (bool==1){
       for (age=bage; age<=fage; age ++){            for(m=firstpass; m<=lastpass; m++){
         cov[2]=age;              k2=anint[m][i]+(mint[m][i]/12.);
         for (k=1; k<=cptcovn;k++) {              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         for (k=1; k<=cptcovprod;k++)                if (m<lastpass) {
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                          freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));                }
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);                
         gp=vector(1,(nlstate)*(nlstate+ndeath));                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         gm=vector(1,(nlstate)*(nlstate+ndeath));                  dateintsum=dateintsum+k2;
                      k2cpt++;
         for(theta=1; theta <=npar; theta++){                }
           for(i=1; i<=npar; i++)                /*}*/
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            }
                    }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        }
                   
           k=0;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           for(i=1; i<= (nlstate); i++){        pstamp(ficresp);
             for(j=1; j<=(nlstate+ndeath);j++){        if  (cptcovn>0) {
               k=k+1;          fprintf(ficresp, "\n#********** Variable "); 
               gp[k]=pmmij[i][j];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             }          fprintf(ficresp, "**********\n#");
           }        }
                  for(i=1; i<=nlstate;i++) 
           for(i=1; i<=npar; i++)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        fprintf(ficresp, "\n");
            
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        for(i=iagemin; i <= iagemax+3; i++){
           k=0;          if(i==iagemax+3){
           for(i=1; i<=(nlstate); i++){            fprintf(ficlog,"Total");
             for(j=1; j<=(nlstate+ndeath);j++){          }else{
               k=k+1;            if(first==1){
               gm[k]=pmmij[i][j];              first=0;
             }              printf("See log file for details...\n");
           }            }
                  fprintf(ficlog,"Age %d", i);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          }
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            for(jk=1; jk <=nlstate ; jk++){
         }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          }
           for(theta=1; theta <=npar; theta++)          for(jk=1; jk <=nlstate ; jk++){
             trgradg[j][theta]=gradg[theta][j];            for(m=-1, pos=0; m <=0 ; m++)
                      pos += freq[jk][m][i];
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);            if(pp[jk]>=1.e-10){
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);              if(first==1){
                      printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         pmij(pmmij,cov,ncovmodel,x,nlstate);              }
                      fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         k=0;            }else{
         for(i=1; i<=(nlstate); i++){              if(first==1)
           for(j=1; j<=(nlstate+ndeath);j++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             k=k+1;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             mu[k][(int) age]=pmmij[i][j];            }
           }          }
         }  
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          for(jk=1; jk <=nlstate ; jk++){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             varpij[i][j][(int)age] = doldm[i][j];              pp[jk] += freq[jk][m][i];
           }       
         /*printf("\n%d ",(int)age);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            pos += pp[jk];
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            posprop += prop[jk][i];
      }*/          }
           for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficresprob,"\n%d ",(int)age);            if(pos>=1.e-5){
         fprintf(ficresprobcov,"\n%d ",(int)age);              if(first==1)
         fprintf(ficresprobcor,"\n%d ",(int)age);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            }else{
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              if(first==1)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            }
         }            if( i <= iagemax){
         i=0;              if(pos>=1.e-5){
         for (k=1; k<=(nlstate);k++){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           for (l=1; l<=(nlstate+ndeath);l++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
             i=i++;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);              else
             for (j=1; j<=i;j++){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);            }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          }
             }          
           }          for(jk=-1; jk <=nlstate+ndeath; jk++)
         }/* end of loop for state */            for(m=-1; m <=nlstate+ndeath; m++)
       } /* end of loop for age */              if(freq[jk][m][i] !=0 ) {
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              if(first==1)
       for (k1=1; k1<=(nlstate);k1++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         for (l1=1; l1<=(nlstate+ndeath);l1++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           if(l1==k1) continue;              }
           i=(k1-1)*(nlstate+ndeath)+l1;          if(i <= iagemax)
           for (k2=1; k2<=(nlstate);k2++){            fprintf(ficresp,"\n");
             for (l2=1; l2<=(nlstate+ndeath);l2++){          if(first==1)
               if(l2==k2) continue;            printf("Others in log...\n");
               j=(k2-1)*(nlstate+ndeath)+l2;          fprintf(ficlog,"\n");
               if(j<=i) continue;        }
               for (age=bage; age<=fage; age ++){      }
                 if ((int)age %5==0){    }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    dateintmean=dateintsum/k2cpt; 
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;   
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    fclose(ficresp);
                   mu1=mu[i][(int) age]/stepm*YEARM ;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                   mu2=mu[j][(int) age]/stepm*YEARM;    free_vector(pp,1,nlstate);
                   /* Computing eigen value of matrix of covariance */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    /* End of Freq */
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));  }
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);  
                   /* Eigen vectors */  /************ Prevalence ********************/
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                   v21=sqrt(1.-v11*v11);  {  
                   v12=-v21;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   v22=v11;       in each health status at the date of interview (if between dateprev1 and dateprev2).
                   /*printf(fignu*/       We still use firstpass and lastpass as another selection.
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    */
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */   
                   if(first==1){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
                     first=0;    double ***freq; /* Frequencies */
                     fprintf(ficgp,"\nset parametric;set nolabel");    double *pp, **prop;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);    double pos,posprop; 
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    double  y2; /* in fractional years */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);    int iagemin, iagemax;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);  
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);    iagemin= (int) agemin;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    iagemax= (int) agemax;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    /*pp=vector(1,nlstate);*/
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    prop=matrix(1,nlstate,iagemin,iagemax+3); 
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    j1=0;
                   }else{    
                     first=0;    j=cptcoveff;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    for(k1=1; k1<=j;k1++){
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      for(i1=1; i1<=ncodemax[k1];i1++){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);        j1++;
                   }/* if first */        
                 } /* age mod 5 */        for (i=1; i<=nlstate; i++)  
               } /* end loop age */          for(m=iagemin; m <= iagemax+3; m++)
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);            prop[i][m]=0.0;
               first=1;       
             } /*l12 */        for (i=1; i<=imx; i++) { /* Each individual */
           } /* k12 */          bool=1;
         } /*l1 */          if  (cptcovn>0) {
       }/* k1 */            for (z1=1; z1<=cptcoveff; z1++) 
     } /* loop covariates */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                bool=0;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          } 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          if (bool==1) { 
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   free_vector(xp,1,npar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fclose(ficresprob);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   fclose(ficresprobcov);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   fclose(ficresprobcor);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   fclose(ficgp);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   fclose(fichtm);                  prop[s[m][i]][iagemax+3] += weight[i]; 
 }                } 
               }
             } /* end selection of waves */
 /******************* Printing html file ***********/          }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        }
                   int lastpass, int stepm, int weightopt, char model[],\        for(i=iagemin; i <= iagemax+3; i++){  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          
                   int popforecast, int estepm ,\          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   double jprev1, double mprev1,double anprev1, \            posprop += prop[jk][i]; 
                   double jprev2, double mprev2,double anprev2){          } 
   int jj1, k1, i1, cpt;  
   /*char optionfilehtm[FILENAMELENGTH];*/          for(jk=1; jk <=nlstate ; jk++){     
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            if( i <=  iagemax){ 
     printf("Problem with %s \n",optionfilehtm), exit(0);              if(posprop>=1.e-5){ 
   }                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n            } 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          }/* end jk */ 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        }/* end i */ 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      } /* end i1 */
  - Life expectancies by age and initial health status (estepm=%2d months):    } /* end k1 */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  }  /* End of prevalence */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  /************* Waves Concatenation ***************/
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  {
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
  if(popforecast==1) fprintf(fichtm,"\n       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n       and mw[mi+1][i]. dh depends on stepm.
         <br>",fileres,fileres,fileres,fileres);       */
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    int i, mi, m;
 fprintf(fichtm," <li><b>Graphs</b></li><p>");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
  m=cptcoveff;    int first;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    int j, k=0,jk, ju, jl;
     double sum=0.;
  jj1=0;    first=0;
  for(k1=1; k1<=m;k1++){    jmin=1e+5;
    for(i1=1; i1<=ncodemax[k1];i1++){    jmax=-1;
      jj1++;    jmean=0.;
      if (cptcovn > 0) {    for(i=1; i<=imx; i++){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      mi=0;
        for (cpt=1; cpt<=cptcoveff;cpt++)      m=firstpass;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      while(s[m][i] <= nlstate){
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
      }          mw[++mi][i]=m;
      /* Pij */        if(m >=lastpass)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          break;
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            else
      /* Quasi-incidences */          m++;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>      }/* end while */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      if (s[m][i] > nlstate){
        /* Stable prevalence in each health state */        mi++;     /* Death is another wave */
        for(cpt=1; cpt<nlstate;cpt++){        /* if(mi==0)  never been interviewed correctly before death */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>           /* Only death is a correct wave */
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        mw[mi][i]=m;
        }      }
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      wav[i]=mi;
 interval) in state (%d): v%s%d%d.png <br>      if(mi==0){
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          nbwarn++;
      }        if(first==0){
      for(cpt=1; cpt<=nlstate;cpt++) {          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          first=1;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        }
      }        if(first==1){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 health expectancies in states (1) and (2): e%s%d.png<br>        }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      } /* end mi==0 */
    }    } /* End individuals */
  }  
 fclose(fichtm);    for(i=1; i<=imx; i++){
 }      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
 /******************* Gnuplot file **************/          dh[mi][i]=1;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            if (agedc[i] < 2*AGESUP) {
   int ng;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              if(j==0) j=1;  /* Survives at least one month after exam */
     printf("Problem with file %s",optionfilegnuplot);              else if(j<0){
   }                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 #ifdef windows                j=1; /* Temporary Dangerous patch */
     fprintf(ficgp,"cd \"%s\" \n",pathc);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 #endif                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 m=pow(2,cptcoveff);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                }
  /* 1eme*/              k=k+1;
   for (cpt=1; cpt<= nlstate ; cpt ++) {              if (j >= jmax){
    for (k1=1; k1<= m ; k1 ++) {                jmax=j;
                 ijmax=i;
 #ifdef windows              }
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              if (j <= jmin){
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);                jmin=j;
 #endif                ijmin=i;
 #ifdef unix              }
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              sum=sum+j;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 #endif              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
 for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {            k=k+1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if (j >= jmax) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");              jmax=j;
 }              ijmax=i;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            }
      for (i=1; i<= nlstate ; i ++) {            else if (j <= jmin){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              jmin=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              ijmin=i;
 }              }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 #ifdef unix            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");            if(j<0){
 #endif              nberr++;
    }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /*2 eme*/            }
             sum=sum+j;
   for (k1=1; k1<= m ; k1 ++) {          }
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          jk= j/stepm;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          jl= j -jk*stepm;
              ju= j -(jk+1)*stepm;
     for (i=1; i<= nlstate+1 ; i ++) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       k=2*i;            if(jl==0){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              dh[mi][i]=jk;
       for (j=1; j<= nlstate+1 ; j ++) {              bh[mi][i]=0;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }else{ /* We want a negative bias in order to only have interpolation ie
   else fprintf(ficgp," \%%*lf (\%%*lf)");                    * at the price of an extra matrix product in likelihood */
 }                dh[mi][i]=jk+1;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              bh[mi][i]=ju;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          }else{
       for (j=1; j<= nlstate+1 ; j ++) {            if(jl <= -ju){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              dh[mi][i]=jk;
         else fprintf(ficgp," \%%*lf (\%%*lf)");              bh[mi][i]=jl;       /* bias is positive if real duration
 }                                     * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficgp,"\" t\"\" w l 0,");                                   */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {            else{
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              dh[mi][i]=jk+1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              bh[mi][i]=ju;
 }              }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            if(dh[mi][i]==0){
       else fprintf(ficgp,"\" t\"\" w l 0,");              dh[mi][i]=1; /* At least one step */
     }              bh[mi][i]=ju; /* At least one step */
   }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
              }
   /*3eme*/          } /* end if mle */
         }
   for (k1=1; k1<= m ; k1 ++) {      } /* end wave */
     for (cpt=1; cpt<= nlstate ; cpt ++) {    }
       k=2+nlstate*(2*cpt-2);    jmean=sum/k;
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  /*********** Tricode ****************************/
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  void tricode(int *Tvar, int **nbcode, int imx)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    
     int Ndum[20],ij=1, k, j, i, maxncov=19;
 */    int cptcode=0;
       for (i=1; i< nlstate ; i ++) {    cptcoveff=0; 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
       }    for (k=1; k<=7; k++) ncodemax[k]=0;
     }  
   }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
        for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   /* CV preval stat */                                 modality*/ 
     for (k1=1; k1<= m ; k1 ++) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     for (cpt=1; cpt<nlstate ; cpt ++) {        Ndum[ij]++; /*store the modality */
       k=3;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
       for (i=1; i< nlstate ; i ++)      }
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      for (i=0; i<=cptcode; i++) {
              if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       l=3+(nlstate+ndeath)*cpt;      }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {      ij=1; 
         l=3+(nlstate+ndeath)*cpt;      for (i=1; i<=ncodemax[j]; i++) {
         fprintf(ficgp,"+$%d",l+i+1);        for (k=0; k<= maxncov; k++) {
       }          if (Ndum[k] != 0) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              nbcode[Tvar[j]][ij]=k; 
     }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   }              
              ij++;
   /* proba elementaires */          }
    for(i=1,jk=1; i <=nlstate; i++){          if (ij > ncodemax[j]) break; 
     for(k=1; k <=(nlstate+ndeath); k++){        }  
       if (k != i) {      } 
         for(j=1; j <=ncovmodel; j++){    }  
          
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);   for (k=0; k< maxncov; k++) Ndum[k]=0;
           jk++;  
           fprintf(ficgp,"\n");   for (i=1; i<=ncovmodel-2; i++) { 
         }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       }     ij=Tvar[i];
     }     Ndum[ij]++;
    }   }
   
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/   ij=1;
      for(jk=1; jk <=m; jk++) {   for (i=1; i<= maxncov; i++) {
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);     if((Ndum[i]!=0) && (i<=ncovcol)){
        if (ng==2)       Tvaraff[ij]=i; /*For printing */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");       ij++;
        else     }
          fprintf(ficgp,"\nset title \"Probability\"\n");   }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);   
        i=1;   cptcoveff=ij-1; /*Number of simple covariates*/
        for(k2=1; k2<=nlstate; k2++) {  }
          k3=i;  
          for(k=1; k<=(nlstate+ndeath); k++) {  /*********** Health Expectancies ****************/
            if (k != k2){  
              if(ng==2)  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  
              else  {
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /* Health expectancies, no variances */
              ij=1;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
              for(j=3; j <=ncovmodel; j++) {    double age, agelim, hf;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double ***p3mat;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double eip;
                  ij++;  
                }    pstamp(ficreseij);
                else    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    fprintf(ficreseij,"# Age");
              }    for(i=1; i<=nlstate;i++){
              fprintf(ficgp,")/(1");      for(j=1; j<=nlstate;j++){
                      fprintf(ficreseij," e%1d%1d ",i,j);
              for(k1=1; k1 <=nlstate; k1++){        }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      fprintf(ficreseij," e%1d. ",i);
                ij=1;    }
                for(j=3; j <=ncovmodel; j++){    fprintf(ficreseij,"\n");
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    
                    ij++;    if(estepm < stepm){
                  }      printf ("Problem %d lower than %d\n",estepm, stepm);
                  else    }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    else  hstepm=estepm;   
                }    /* We compute the life expectancy from trapezoids spaced every estepm months
                fprintf(ficgp,")");     * This is mainly to measure the difference between two models: for example
              }     * if stepm=24 months pijx are given only every 2 years and by summing them
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);     * we are calculating an estimate of the Life Expectancy assuming a linear 
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");     * progression in between and thus overestimating or underestimating according
              i=i+ncovmodel;     * to the curvature of the survival function. If, for the same date, we 
            }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
          }     * to compare the new estimate of Life expectancy with the same linear 
        }     * hypothesis. A more precise result, taking into account a more precise
      }     * curvature will be obtained if estepm is as small as stepm. */
    }  
    fclose(ficgp);    /* For example we decided to compute the life expectancy with the smallest unit */
 }  /* end gnuplot */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
 /*************** Moving average **************/       Look at hpijx to understand the reason of that which relies in memory size
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   int i, cpt, cptcod;       survival function given by stepm (the optimization length). Unfortunately it
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)       means that if the survival funtion is printed only each two years of age and if
       for (i=1; i<=nlstate;i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)       results. So we changed our mind and took the option of the best precision.
           mobaverage[(int)agedeb][i][cptcod]=0.;    */
        hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){    agelim=AGESUP;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* nhstepm age range expressed in number of stepm */
           for (cpt=0;cpt<=4;cpt++){    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           }    /* if (stepm >= YEARM) hstepm=1;*/
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }  
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          /* Computed by stepm unit matrices, product of hstepm matrices, stored
 }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 /************** Forecasting ******************/      
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      printf("%d|",(int)age);fflush(stdout);
   int *popage;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      
   double *popeffectif,*popcount;      /* Computing expectancies */
   double ***p3mat;      for(i=1; i<=nlstate;i++)
   char fileresf[FILENAMELENGTH];        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  agelim=AGESUP;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
            }
    
   strcpy(fileresf,"f");      fprintf(ficreseij,"%3.0f",age );
   strcat(fileresf,fileres);      for(i=1; i<=nlstate;i++){
   if((ficresf=fopen(fileresf,"w"))==NULL) {        eip=0;
     printf("Problem with forecast resultfile: %s\n", fileresf);        for(j=1; j<=nlstate;j++){
   }          eip +=eij[i][j][(int)age];
   printf("Computing forecasting: result on file '%s' \n", fileresf);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        fprintf(ficreseij,"%9.4f", eip );
       }
   if (mobilav==1) {      fprintf(ficreseij,"\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
     movingaverage(agedeb, fage, ageminpar, mobaverage);    }
   }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficlog,"\n");
   if (stepm<=12) stepsize=1;    
    }
   agelim=AGESUP;  
    void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   hstepm=1;  
   hstepm=hstepm/stepm;  {
   yp1=modf(dateintmean,&yp);    /* Covariances of health expectancies eij and of total life expectancies according
   anprojmean=yp;     to initial status i, ei. .
   yp2=modf((yp1*12),&yp);    */
   mprojmean=yp;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   yp1=modf((yp2*30.5),&yp);    double age, agelim, hf;
   jprojmean=yp;    double ***p3matp, ***p3matm, ***varhe;
   if(jprojmean==0) jprojmean=1;    double **dnewm,**doldm;
   if(mprojmean==0) jprojmean=1;    double *xp, *xm;
      double **gp, **gm;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double ***gradg, ***trgradg;
      int theta;
   for(cptcov=1;cptcov<=i2;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double eip, vip;
       k=k+1;  
       fprintf(ficresf,"\n#******");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       for(j=1;j<=cptcoveff;j++) {    xp=vector(1,npar);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    xm=vector(1,npar);
       }    dnewm=matrix(1,nlstate*nlstate,1,npar);
       fprintf(ficresf,"******\n");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficresf,"# StartingAge FinalAge");    
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    pstamp(ficresstdeij);
          fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
          fprintf(ficresstdeij,"# Age");
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    for(i=1; i<=nlstate;i++){
         fprintf(ficresf,"\n");      for(j=1; j<=nlstate;j++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficresstdeij,"\n");
           nhstepm = nhstepm/hstepm;  
              pstamp(ficrescveij);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           oldm=oldms;savm=savms;    fprintf(ficrescveij,"# Age");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for(i=1; i<=nlstate;i++)
              for(j=1; j<=nlstate;j++){
           for (h=0; h<=nhstepm; h++){        cptj= (j-1)*nlstate+i;
             if (h==(int) (calagedate+YEARM*cpt)) {        for(i2=1; i2<=nlstate;i2++)
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          for(j2=1; j2<=nlstate;j2++){
             }            cptj2= (j2-1)*nlstate+i2;
             for(j=1; j<=nlstate+ndeath;j++) {            if(cptj2 <= cptj)
               kk1=0.;kk2=0;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
               for(i=1; i<=nlstate;i++) {                        }
                 if (mobilav==1)      }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficrescveij,"\n");
                 else {    
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    if(estepm < stepm){
                 }      printf ("Problem %d lower than %d\n",estepm, stepm);
                    }
               }    else  hstepm=estepm;   
               if (h==(int)(calagedate+12*cpt)){    /* We compute the life expectancy from trapezoids spaced every estepm months
                 fprintf(ficresf," %.3f", kk1);     * This is mainly to measure the difference between two models: for example
                             * if stepm=24 months pijx are given only every 2 years and by summing them
               }     * we are calculating an estimate of the Life Expectancy assuming a linear 
             }     * progression in between and thus overestimating or underestimating according
           }     * to the curvature of the survival function. If, for the same date, we 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         }     * to compare the new estimate of Life expectancy with the same linear 
       }     * hypothesis. A more precise result, taking into account a more precise
     }     * curvature will be obtained if estepm is as small as stepm. */
   }  
            /* For example we decided to compute the life expectancy with the smallest unit */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   fclose(ficresf);       nstepm is the number of stepm from age to agelin. 
 }       Look at hpijx to understand the reason of that which relies in memory size
 /************** Forecasting ******************/       and note for a fixed period like estepm months */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       means that if the survival funtion is printed only each two years of age and if
   int *popage;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       results. So we changed our mind and took the option of the best precision.
   double *popeffectif,*popcount;    */
   double ***p3mat,***tabpop,***tabpopprev;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   char filerespop[FILENAMELENGTH];  
     /* If stepm=6 months */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* nhstepm age range expressed in number of stepm */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    agelim=AGESUP;
   agelim=AGESUP;    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      /* if (stepm >= YEARM) hstepm=1;*/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      
      p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(filerespop,"pop");    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(filerespop,fileres);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     printf("Problem with forecast resultfile: %s\n", filerespop);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
     for (age=bage; age<=fage; age ++){ 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   if (mobilav==1) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
     movingaverage(agedeb, fage, ageminpar, mobaverage);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }  
       /* Computing  Variances of health expectancies */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   if (stepm<=12) stepsize=1;         decrease memory allocation */
        for(theta=1; theta <=npar; theta++){
   agelim=AGESUP;        for(i=1; i<=npar; i++){ 
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   hstepm=1;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   hstepm=hstepm/stepm;        }
          hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   if (popforecast==1) {        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     if((ficpop=fopen(popfile,"r"))==NULL) {    
       printf("Problem with population file : %s\n",popfile);exit(0);        for(j=1; j<= nlstate; j++){
     }          for(i=1; i<=nlstate; i++){
     popage=ivector(0,AGESUP);            for(h=0; h<=nhstepm-1; h++){
     popeffectif=vector(0,AGESUP);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     popcount=vector(0,AGESUP);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                }
     i=1;            }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        }
           
     imx=i;        for(ij=1; ij<= nlstate*nlstate; ij++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          for(h=0; h<=nhstepm-1; h++){
   }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
   for(cptcov=1;cptcov<=i2;cptcov++){      }/* End theta */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      
       k=k+1;      
       fprintf(ficrespop,"\n#******");      for(h=0; h<=nhstepm-1; h++)
       for(j=1;j<=cptcoveff;j++) {        for(j=1; j<=nlstate*nlstate;j++)
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(theta=1; theta <=npar; theta++)
       }            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficrespop,"******\n");      
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);       for(ij=1;ij<=nlstate*nlstate;ij++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");        for(ji=1;ji<=nlstate*nlstate;ji++)
                varhe[ij][ji][(int)age] =0.;
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         printf("%d|",(int)age);fflush(stdout);
               fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       for(h=0;h<=nhstepm-1;h++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(k=0;k<=nhstepm-1;k++){
           nhstepm = nhstepm/hstepm;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                    matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(ij=1;ij<=nlstate*nlstate;ij++)
           oldm=oldms;savm=savms;            for(ji=1;ji<=nlstate*nlstate;ji++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
                }
           for (h=0; h<=nhstepm; h++){      }
             if (h==(int) (calagedate+YEARM*cpt)) {      /* Computing expectancies */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
             }      for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {        for(j=1; j<=nlstate;j++)
               kk1=0.;kk2=0;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               for(i=1; i<=nlstate;i++) {                          eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                 if (mobilav==1)            
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          }
                 }  
               }      fprintf(ficresstdeij,"%3.0f",age );
               if (h==(int)(calagedate+12*cpt)){      for(i=1; i<=nlstate;i++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        eip=0.;
                   /*fprintf(ficrespop," %.3f", kk1);        vip=0.;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        for(j=1; j<=nlstate;j++){
               }          eip += eij[i][j][(int)age];
             }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             for(i=1; i<=nlstate;i++){            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
               kk1=0.;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
                 for(j=1; j<=nlstate;j++){        }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
                 }      }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      fprintf(ficresstdeij,"\n");
             }  
       fprintf(ficrescveij,"%3.0f",age );
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      for(i=1; i<=nlstate;i++)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        for(j=1; j<=nlstate;j++){
           }          cptj= (j-1)*nlstate+i;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i2=1; i2<=nlstate;i2++)
         }            for(j2=1; j2<=nlstate;j2++){
       }              cptj2= (j2-1)*nlstate+i2;
                if(cptj2 <= cptj)
   /******/                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        fprintf(ficrescveij,"\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
              free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           oldm=oldms;savm=savms;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for (h=0; h<=nhstepm; h++){    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             if (h==(int) (calagedate+YEARM*cpt)) {    printf("\n");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficlog,"\n");
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    free_vector(xm,1,npar);
               kk1=0.;kk2=0;    free_vector(xp,1,npar);
               for(i=1; i<=nlstate;i++) {                  free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
               }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  }
             }  
           }  /************ Variance ******************/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         }  {
       }    /* Variance of health expectancies */
    }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   }    /* double **newm;*/
      double **dnewm,**doldm;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
   if (popforecast==1) {    int k, cptcode;
     free_ivector(popage,0,AGESUP);    double *xp;
     free_vector(popeffectif,0,AGESUP);    double **gp, **gm;  /* for var eij */
     free_vector(popcount,0,AGESUP);    double ***gradg, ***trgradg; /*for var eij */
   }    double **gradgp, **trgradgp; /* for var p point j */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *gpp, *gmp; /* for var p point j */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   fclose(ficrespop);    double ***p3mat;
 }    double age,agelim, hf;
     double ***mobaverage;
 /***********************************************/    int theta;
 /**************** Main Program *****************/    char digit[4];
 /***********************************************/    char digitp[25];
   
 int main(int argc, char *argv[])    char fileresprobmorprev[FILENAMELENGTH];
 {  
     if(popbased==1){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      if(mobilav!=0)
   double agedeb, agefin,hf;        strcpy(digitp,"-populbased-mobilav-");
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      else strcpy(digitp,"-populbased-nomobil-");
     }
   double fret;    else 
   double **xi,tmp,delta;      strcpy(digitp,"-stablbased-");
   
   double dum; /* Dummy variable */    if (mobilav!=0) {
   double ***p3mat;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int *indx;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   char line[MAXLINE], linepar[MAXLINE];        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   int firstobs=1, lastobs=10;      }
   int sdeb, sfin; /* Status at beginning and end */    }
   int c,  h , cpt,l;  
   int ju,jl, mi;    strcpy(fileresprobmorprev,"prmorprev"); 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    sprintf(digit,"%-d",ij);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   int mobilav=0,popforecast=0;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   int hstepm, nhstepm;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   double bage, fage, age, agelim, agebase;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   double ftolpl=FTOL;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   double **prlim;    }
   double *severity;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   double ***param; /* Matrix of parameters */   
   double  *p;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   double **matcov; /* Matrix of covariance */    pstamp(ficresprobmorprev);
   double ***delti3; /* Scale */    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   double *delti; /* Scale */    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   double ***eij, ***vareij;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   double **varpl; /* Variances of prevalence limits by age */      fprintf(ficresprobmorprev," p.%-d SE",j);
   double *epj, vepp;      for(i=1; i<=nlstate;i++)
   double kk1, kk2;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    }  
      fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   char z[1]="c", occ;  /*   } */
 #include <sys/time.h>    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 #include <time.h>    pstamp(ficresvij);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
      if(popbased==1)
   /* long total_usecs;      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   struct timeval start_time, end_time;    else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fprintf(ficresvij,"# Age");
   getcwd(pathcd, size);    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   printf("\n%s",version);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   if(argc <=1){    fprintf(ficresvij,"\n");
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
   else{    doldm=matrix(1,nlstate,1,nlstate);
     strcpy(pathtot,argv[1]);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    gpp=vector(nlstate+1,nlstate+ndeath);
   /* cutv(path,optionfile,pathtot,'\\');*/    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    if(estepm < stepm){
   chdir(path);      printf ("Problem %d lower than %d\n",estepm, stepm);
   replace(pathc,path);    }
     else  hstepm=estepm;   
 /*-------- arguments in the command line --------*/    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   strcpy(fileres,"r");       nhstepm is the number of hstepm from age to agelim 
   strcat(fileres, optionfilefiname);       nstepm is the number of stepm from age to agelin. 
   strcat(fileres,".txt");    /* Other files have txt extension */       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
   /*---------arguments file --------*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       means that if the survival funtion is printed every two years of age and if
     printf("Problem with optionfile %s\n",optionfile);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     goto end;       results. So we changed our mind and took the option of the best precision.
   }    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   strcpy(filereso,"o");    agelim = AGESUP;
   strcat(filereso,fileres);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   if((ficparo=fopen(filereso,"w"))==NULL) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   /* Reads comments: lines beginning with '#' */      gp=matrix(0,nhstepm,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){      gm=matrix(0,nhstepm,1,nlstate);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  
     puts(line);      for(theta=1; theta <=npar; theta++){
     fputs(line,ficparo);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   ungetc(c,ficpar);        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        if (popbased==1) {
 while((c=getc(ficpar))=='#' && c!= EOF){          if(mobilav ==0){
     ungetc(c,ficpar);            for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);              prlim[i][i]=probs[(int)age][i][ij];
     puts(line);          }else{ /* mobilav */ 
     fputs(line,ficparo);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=mobaverage[(int)age][i][ij];
   ungetc(c,ficpar);          }
          }
        
   covar=matrix(0,NCOVMAX,1,n);        for(j=1; j<= nlstate; j++){
   cptcovn=0;          for(h=0; h<=nhstepm; h++){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   ncovmodel=2+cptcovn;          }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        }
          /* This for computing probability of death (h=1 means
   /* Read guess parameters */           computed over hstepm matrices product = hstepm*stepm months) 
   /* Reads comments: lines beginning with '#' */           as a weighted average of prlim.
   while((c=getc(ficpar))=='#' && c!= EOF){        */
     ungetc(c,ficpar);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fgets(line, MAXLINE, ficpar);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     puts(line);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     fputs(line,ficparo);        }    
   }        /* end probability of death */
   ungetc(c,ficpar);  
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     for(i=1; i <=nlstate; i++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     for(j=1; j <=nlstate+ndeath-1; j++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fscanf(ficpar,"%1d%1d",&i1,&j1);   
       fprintf(ficparo,"%1d%1d",i1,j1);        if (popbased==1) {
       printf("%1d%1d",i,j);          if(mobilav ==0){
       for(k=1; k<=ncovmodel;k++){            for(i=1; i<=nlstate;i++)
         fscanf(ficpar," %lf",&param[i][j][k]);              prlim[i][i]=probs[(int)age][i][ij];
         printf(" %lf",param[i][j][k]);          }else{ /* mobilav */ 
         fprintf(ficparo," %lf",param[i][j][k]);            for(i=1; i<=nlstate;i++)
       }              prlim[i][i]=mobaverage[(int)age][i][ij];
       fscanf(ficpar,"\n");          }
       printf("\n");        }
       fprintf(ficparo,"\n");  
     }        for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   p=param[1][1];          }
          }
   /* Reads comments: lines beginning with '#' */        /* This for computing probability of death (h=1 means
   while((c=getc(ficpar))=='#' && c!= EOF){           computed over hstepm matrices product = hstepm*stepm months) 
     ungetc(c,ficpar);           as a weighted average of prlim.
     fgets(line, MAXLINE, ficpar);        */
     puts(line);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fputs(line,ficparo);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   ungetc(c,ficpar);        }    
         /* end probability of death */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        for(j=1; j<= nlstate; j++) /* vareij */
   for(i=1; i <=nlstate; i++){          for(h=0; h<=nhstepm; h++){
     for(j=1; j <=nlstate+ndeath-1; j++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fscanf(ficpar,"%1d%1d",&i1,&j1);          }
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       for(k=1; k<=ncovmodel;k++){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         fscanf(ficpar,"%le",&delti3[i][j][k]);        }
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);      } /* End theta */
       }  
       fscanf(ficpar,"\n");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       printf("\n");  
       fprintf(ficparo,"\n");      for(h=0; h<=nhstepm; h++) /* veij */
     }        for(j=1; j<=nlstate;j++)
   }          for(theta=1; theta <=npar; theta++)
   delti=delti3[1][1];            trgradg[h][j][theta]=gradg[h][theta][j];
    
   /* Reads comments: lines beginning with '#' */      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   while((c=getc(ficpar))=='#' && c!= EOF){        for(theta=1; theta <=npar; theta++)
     ungetc(c,ficpar);          trgradgp[j][theta]=gradgp[theta][j];
     fgets(line, MAXLINE, ficpar);    
     puts(line);  
     fputs(line,ficparo);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }      for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);        for(j=1;j<=nlstate;j++)
            vareij[i][j][(int)age] =0.;
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){      for(h=0;h<=nhstepm;h++){
     fscanf(ficpar,"%s",&str);        for(k=0;k<=nhstepm;k++){
     printf("%s",str);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     fprintf(ficparo,"%s",str);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     for(j=1; j <=i; j++){          for(i=1;i<=nlstate;i++)
       fscanf(ficpar," %le",&matcov[i][j]);            for(j=1;j<=nlstate;j++)
       printf(" %.5le",matcov[i][j]);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       fprintf(ficparo," %.5le",matcov[i][j]);        }
     }      }
     fscanf(ficpar,"\n");    
     printf("\n");      /* pptj */
     fprintf(ficparo,"\n");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   for(i=1; i <=npar; i++)      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     for(j=i+1;j<=npar;j++)        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       matcov[i][j]=matcov[j][i];          varppt[j][i]=doldmp[j][i];
          /* end ppptj */
   printf("\n");      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     /*-------- Rewriting paramater file ----------*/   
      strcpy(rfileres,"r");    /* "Rparameterfile */      if (popbased==1) {
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        if(mobilav ==0){
      strcat(rfileres,".");    /* */          for(i=1; i<=nlstate;i++)
      strcat(rfileres,optionfilext);    /* Other files have txt extension */            prlim[i][i]=probs[(int)age][i][ij];
     if((ficres =fopen(rfileres,"w"))==NULL) {        }else{ /* mobilav */ 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          for(i=1; i<=nlstate;i++)
     }            prlim[i][i]=mobaverage[(int)age][i][ij];
     fprintf(ficres,"#%s\n",version);        }
          }
     /*-------- data file ----------*/               
     if((fic=fopen(datafile,"r"))==NULL)    {      /* This for computing probability of death (h=1 means
       printf("Problem with datafile: %s\n", datafile);goto end;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     }         as a weighted average of prlim.
       */
     n= lastobs;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     severity = vector(1,maxwav);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     outcome=imatrix(1,maxwav+1,1,n);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     num=ivector(1,n);      }    
     moisnais=vector(1,n);      /* end probability of death */
     annais=vector(1,n);  
     moisdc=vector(1,n);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     andc=vector(1,n);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     agedc=vector(1,n);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     cod=ivector(1,n);        for(i=1; i<=nlstate;i++){
     weight=vector(1,n);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        }
     mint=matrix(1,maxwav,1,n);      } 
     anint=matrix(1,maxwav,1,n);      fprintf(ficresprobmorprev,"\n");
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);          fprintf(ficresvij,"%.0f ",age );
     tab=ivector(1,NCOVMAX);      for(i=1; i<=nlstate;i++)
     ncodemax=ivector(1,8);        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     i=1;        }
     while (fgets(line, MAXLINE, fic) != NULL)    {      fprintf(ficresvij,"\n");
       if ((i >= firstobs) && (i <=lastobs)) {      free_matrix(gp,0,nhstepm,1,nlstate);
              free_matrix(gm,0,nhstepm,1,nlstate);
         for (j=maxwav;j>=1;j--){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           strcpy(line,stra);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    } /* End age */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_vector(gpp,nlstate+1,nlstate+ndeath);
         }    free_vector(gmp,nlstate+1,nlstate+ndeath);
            free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         for (j=ncovcol;j>=1;j--){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         num[i]=atol(stra);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
            fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         i=i+1;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       }  
     }    free_vector(xp,1,npar);
     /* printf("ii=%d", ij);    free_matrix(doldm,1,nlstate,1,nlstate);
        scanf("%d",i);*/    free_matrix(dnewm,1,nlstate,1,npar);
   imx=i-1; /* Number of individuals */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   /* for (i=1; i<=imx; i++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    fclose(ficresprobmorprev);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    fflush(ficgp);
     }*/    fflush(fichtm); 
    /*  for (i=1; i<=imx; i++){  }  /* end varevsij */
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
    {
   /* Calculation of the number of parameter from char model*/    /* Variance of prevalence limit */
   Tvar=ivector(1,15);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   Tprod=ivector(1,15);    double **newm;
   Tvaraff=ivector(1,15);    double **dnewm,**doldm;
   Tvard=imatrix(1,15,1,2);    int i, j, nhstepm, hstepm;
   Tage=ivector(1,15);          int k, cptcode;
        double *xp;
   if (strlen(model) >1){    double *gp, *gm;
     j=0, j1=0, k1=1, k2=1;    double **gradg, **trgradg;
     j=nbocc(model,'+');    double age,agelim;
     j1=nbocc(model,'*');    int theta;
     cptcovn=j+1;    
     cptcovprod=j1;    pstamp(ficresvpl);
        fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     strcpy(modelsav,model);    fprintf(ficresvpl,"# Age");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    for(i=1; i<=nlstate;i++)
       printf("Error. Non available option model=%s ",model);        fprintf(ficresvpl," %1d-%1d",i,i);
       goto end;    fprintf(ficresvpl,"\n");
     }  
        xp=vector(1,npar);
     for(i=(j+1); i>=1;i--){    dnewm=matrix(1,nlstate,1,npar);
       cutv(stra,strb,modelsav,'+');    doldm=matrix(1,nlstate,1,nlstate);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    hstepm=1*YEARM; /* Every year of age */
       /*scanf("%d",i);*/    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       if (strchr(strb,'*')) {    agelim = AGESUP;
         cutv(strd,strc,strb,'*');    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         if (strcmp(strc,"age")==0) {      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           cptcovprod--;      if (stepm >= YEARM) hstepm=1;
           cutv(strb,stre,strd,'V');      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           Tvar[i]=atoi(stre);      gradg=matrix(1,npar,1,nlstate);
           cptcovage++;      gp=vector(1,nlstate);
             Tage[cptcovage]=i;      gm=vector(1,nlstate);
             /*printf("stre=%s ", stre);*/  
         }      for(theta=1; theta <=npar; theta++){
         else if (strcmp(strd,"age")==0) {        for(i=1; i<=npar; i++){ /* Computes gradient */
           cptcovprod--;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           cutv(strb,stre,strc,'V');        }
           Tvar[i]=atoi(stre);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           cptcovage++;        for(i=1;i<=nlstate;i++)
           Tage[cptcovage]=i;          gp[i] = prlim[i][i];
         }      
         else {        for(i=1; i<=npar; i++) /* Computes gradient */
           cutv(strb,stre,strc,'V');          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           Tvar[i]=ncovcol+k1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           cutv(strb,strc,strd,'V');        for(i=1;i<=nlstate;i++)
           Tprod[k1]=i;          gm[i] = prlim[i][i];
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);        for(i=1;i<=nlstate;i++)
           Tvar[cptcovn+k2]=Tvard[k1][1];          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      } /* End theta */
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      trgradg =matrix(1,nlstate,1,npar);
           k1++;  
           k2=k2+2;      for(j=1; j<=nlstate;j++)
         }        for(theta=1; theta <=npar; theta++)
       }          trgradg[j][theta]=gradg[theta][j];
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      for(i=1;i<=nlstate;i++)
        /*  scanf("%d",i);*/        varpl[i][(int)age] =0.;
       cutv(strd,strc,strb,'V');      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       Tvar[i]=atoi(strc);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }      for(i=1;i<=nlstate;i++)
       strcpy(modelsav,stra);          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/      fprintf(ficresvpl,"%.0f ",age );
     }      for(i=1; i<=nlstate;i++)
 }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      free_vector(gp,1,nlstate);
   printf("cptcovprod=%d ", cptcovprod);      free_vector(gm,1,nlstate);
   scanf("%d ",i);*/      free_matrix(gradg,1,npar,1,nlstate);
     fclose(fic);      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/    free_vector(xp,1,npar);
       for(i=1;i<=n;i++) weight[i]=1.0;    free_matrix(doldm,1,nlstate,1,npar);
     }    free_matrix(dnewm,1,nlstate,1,nlstate);
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);  }
   
     for (i=1; i<=imx; i++) {  /************ Variance of one-step probabilities  ******************/
       for(m=2; (m<= maxwav); m++) {  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  {
          anint[m][i]=9999;    int i, j=0,  i1, k1, l1, t, tj;
          s[m][i]=-1;    int k2, l2, j1,  z1;
        }    int k=0,l, cptcode;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    int first=1, first1;
       }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     }    double **dnewm,**doldm;
     double *xp;
     for (i=1; i<=imx; i++)  {    double *gp, *gm;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    double **gradg, **trgradg;
       for(m=1; (m<= maxwav); m++){    double **mu;
         if(s[m][i] >0){    double age,agelim, cov[NCOVMAX];
           if (s[m][i] >= nlstate+1) {    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
             if(agedc[i]>0)    int theta;
               if(moisdc[i]!=99 && andc[i]!=9999)    char fileresprob[FILENAMELENGTH];
                 agev[m][i]=agedc[i];    char fileresprobcov[FILENAMELENGTH];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    char fileresprobcor[FILENAMELENGTH];
            else {  
               if (andc[i]!=9999){    double ***varpij;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;    strcpy(fileresprob,"prob"); 
               }    strcat(fileresprob,fileres);
             }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", fileresprob);
           else if(s[m][i] !=9){ /* Should no more exist */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    }
             if(mint[m][i]==99 || anint[m][i]==9999)    strcpy(fileresprobcov,"probcov"); 
               agev[m][i]=1;    strcat(fileresprobcov,fileres);
             else if(agev[m][i] <agemin){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
               agemin=agev[m][i];      printf("Problem with resultfile: %s\n", fileresprobcov);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
             }    }
             else if(agev[m][i] >agemax){    strcpy(fileresprobcor,"probcor"); 
               agemax=agev[m][i];    strcat(fileresprobcor,fileres);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
             }      printf("Problem with resultfile: %s\n", fileresprobcor);
             /*agev[m][i]=anint[m][i]-annais[i];*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
             /*   agev[m][i] = age[i]+2*m;*/    }
           }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           else { /* =9 */    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
             agev[m][i]=1;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             s[m][i]=-1;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         else /*= 0 Unknown */    pstamp(ficresprob);
           agev[m][i]=1;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       }    fprintf(ficresprob,"# Age");
        pstamp(ficresprobcov);
     }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     for (i=1; i<=imx; i++)  {    fprintf(ficresprobcov,"# Age");
       for(m=1; (m<= maxwav); m++){    pstamp(ficresprobcor);
         if (s[m][i] > (nlstate+ndeath)) {    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           printf("Error: Wrong value in nlstate or ndeath\n");      fprintf(ficresprobcor,"# Age");
           goto end;  
         }  
       }    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
     free_vector(severity,1,maxwav);      }  
     free_imatrix(outcome,1,maxwav+1,1,n);   /* fprintf(ficresprob,"\n");
     free_vector(moisnais,1,n);    fprintf(ficresprobcov,"\n");
     free_vector(annais,1,n);    fprintf(ficresprobcor,"\n");
     /* free_matrix(mint,1,maxwav,1,n);   */
        free_matrix(anint,1,maxwav,1,n);*/   xp=vector(1,npar);
     free_vector(moisdc,1,n);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(andc,1,n);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
        varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     wav=ivector(1,imx);    first=1;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    fprintf(ficgp,"\n# Routine varprob");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
        fprintf(fichtm,"\n");
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
       Tcode=ivector(1,100);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  and drawn. It helps understanding how is the covariance between two incidences.\
       ncodemax[1]=1;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
        It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    codtab=imatrix(1,100,1,10);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
    h=0;  standard deviations wide on each axis. <br>\
    m=pow(2,cptcoveff);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
    for(k=1;k<=cptcoveff; k++){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){    cov[1]=1;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    tj=cptcoveff;
            h++;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    j1=0;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    for(t=1; t<=tj;t++){
          }      for(i1=1; i1<=ncodemax[t];i1++){ 
        }        j1++;
      }        if  (cptcovn>0) {
    }          fprintf(ficresprob, "\n#********** Variable "); 
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       codtab[1][2]=1;codtab[2][2]=2; */          fprintf(ficresprob, "**********\n#\n");
    /* for(i=1; i <=m ;i++){          fprintf(ficresprobcov, "\n#********** Variable "); 
       for(k=1; k <=cptcovn; k++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          fprintf(ficresprobcov, "**********\n#\n");
       }          
       printf("\n");          fprintf(ficgp, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       scanf("%d",i);*/          fprintf(ficgp, "**********\n#\n");
              
    /* Calculates basic frequencies. Computes observed prevalence at single age          
        and prints on file fileres'p'. */          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
              
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprobcor, "\n#********** Variable ");    
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprobcor, "**********\n#");    
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        
              for (age=bage; age<=fage; age ++){ 
     /* For Powell, parameters are in a vector p[] starting at p[1]          cov[2]=age;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          for (k=1; k<=cptcovn;k++) {
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
     if(mle==1){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          for (k=1; k<=cptcovprod;k++)
     }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
              
     /*--------- results files --------------*/          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
    jk=1;      
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for(theta=1; theta <=npar; theta++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            for(i=1; i<=npar; i++)
    for(i=1,jk=1; i <=nlstate; i++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
      for(k=1; k <=(nlstate+ndeath); k++){            
        if (k != i)            pmij(pmmij,cov,ncovmodel,xp,nlstate);
          {            
            printf("%d%d ",i,k);            k=0;
            fprintf(ficres,"%1d%1d ",i,k);            for(i=1; i<= (nlstate); i++){
            for(j=1; j <=ncovmodel; j++){              for(j=1; j<=(nlstate+ndeath);j++){
              printf("%f ",p[jk]);                k=k+1;
              fprintf(ficres,"%f ",p[jk]);                gp[k]=pmmij[i][j];
              jk++;              }
            }            }
            printf("\n");            
            fprintf(ficres,"\n");            for(i=1; i<=npar; i++)
          }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
      }      
    }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
  if(mle==1){            k=0;
     /* Computing hessian and covariance matrix */            for(i=1; i<=(nlstate); i++){
     ftolhess=ftol; /* Usually correct */              for(j=1; j<=(nlstate+ndeath);j++){
     hesscov(matcov, p, npar, delti, ftolhess, func);                k=k+1;
  }                gm[k]=pmmij[i][j];
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");              }
     printf("# Scales (for hessian or gradient estimation)\n");            }
      for(i=1,jk=1; i <=nlstate; i++){       
       for(j=1; j <=nlstate+ndeath; j++){            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
         if (j!=i) {              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           fprintf(ficres,"%1d%1d",i,j);          }
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             printf(" %.5e",delti[jk]);            for(theta=1; theta <=npar; theta++)
             fprintf(ficres," %.5e",delti[jk]);              trgradg[j][theta]=gradg[theta][j];
             jk++;          
           }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           printf("\n");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           fprintf(ficres,"\n");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      
     k=1;          pmij(pmmij,cov,ncovmodel,x,nlstate);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          k=0;
     for(i=1;i<=npar;i++){          for(i=1; i<=(nlstate); i++){
       /*  if (k>nlstate) k=1;            for(j=1; j<=(nlstate+ndeath);j++){
       i1=(i-1)/(ncovmodel*nlstate)+1;              k=k+1;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              mu[k][(int) age]=pmmij[i][j];
       printf("%s%d%d",alph[k],i1,tab[i]);*/            }
       fprintf(ficres,"%3d",i);          }
       printf("%3d",i);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       for(j=1; j<=i;j++){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         fprintf(ficres," %.5e",matcov[i][j]);              varpij[i][j][(int)age] = doldm[i][j];
         printf(" %.5e",matcov[i][j]);  
       }          /*printf("\n%d ",(int)age);
       fprintf(ficres,"\n");            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       printf("\n");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       k++;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     }            }*/
      
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprob,"\n%d ",(int)age);
       ungetc(c,ficpar);          fprintf(ficresprobcov,"\n%d ",(int)age);
       fgets(line, MAXLINE, ficpar);          fprintf(ficresprobcor,"\n%d ",(int)age);
       puts(line);  
       fputs(line,ficparo);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     ungetc(c,ficpar);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     estepm=0;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     if (estepm==0 || estepm < stepm) estepm=stepm;          }
     if (fage <= 2) {          i=0;
       bage = ageminpar;          for (k=1; k<=(nlstate);k++){
       fage = agemaxpar;            for (l=1; l<=(nlstate+ndeath);l++){ 
     }              i=i++;
                  fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              for (j=1; j<=i;j++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                  fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);          }/* end of loop for state */
     puts(line);        } /* end of loop for age */
     fputs(line,ficparo);  
   }        /* Confidence intervalle of pij  */
   ungetc(c,ficpar);        /*
            fprintf(ficgp,"\nset noparametric;unset label");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     ungetc(c,ficpar);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     fgets(line, MAXLINE, ficpar);        */
     puts(line);  
     fputs(line,ficparo);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   }        first1=1;
   ungetc(c,ficpar);        for (k2=1; k2<=(nlstate);k2++){
            for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            j=(k2-1)*(nlstate+ndeath)+l2;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   fscanf(ficpar,"pop_based=%d\n",&popbased);                if(l1==k1) continue;
   fprintf(ficparo,"pop_based=%d\n",popbased);                  i=(k1-1)*(nlstate+ndeath)+l1;
   fprintf(ficres,"pop_based=%d\n",popbased);                  if(i<=j) continue;
                  for (age=bage; age<=fage; age ++){ 
   while((c=getc(ficpar))=='#' && c!= EOF){                  if ((int)age %5==0){
     ungetc(c,ficpar);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     fgets(line, MAXLINE, ficpar);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     puts(line);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fputs(line,ficparo);                    mu1=mu[i][(int) age]/stepm*YEARM ;
   }                    mu2=mu[j][(int) age]/stepm*YEARM;
   ungetc(c,ficpar);                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                    /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
 while((c=getc(ficpar))=='#' && c!= EOF){                    v21=(lc1-v1)/cv12*v11;
     ungetc(c,ficpar);                    v12=-v21;
     fgets(line, MAXLINE, ficpar);                    v22=v11;
     puts(line);                    tnalp=v21/v11;
     fputs(line,ficparo);                    if(first1==1){
   }                      first1=0;
   ungetc(c,ficpar);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    /*printf(fignu*/
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    if(first==1){
                       first=0;
 /*------------ gnuplot -------------*/                      fprintf(ficgp,"\nset parametric;unset label");
   strcpy(optionfilegnuplot,optionfilefiname);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   strcat(optionfilegnuplot,".gp");                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     printf("Problem with file %s",optionfilegnuplot);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   fclose(ficgp);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 /*--------- index.htm --------*/                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   strcpy(optionfilehtm,optionfile);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   strcat(optionfilehtm,".htm");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     printf("Problem with %s \n",optionfilehtm), exit(0);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                    }else{
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                      first=0;
 \n                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 Total number of observations=%d <br>\n                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 <hr  size=\"2\" color=\"#EC5E5E\">                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
  <ul><li><h4>Parameter files</h4>\n                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);                    }/* if first */
   fclose(fichtm);                  } /* age mod 5 */
                 } /* end loop age */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                  first=1;
 /*------------ free_vector  -------------*/              } /*l12 */
  chdir(path);            } /* k12 */
            } /*l1 */
  free_ivector(wav,1,imx);        }/* k1 */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      } /* loop covariates */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      }
  free_ivector(num,1,n);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
  free_vector(agedc,1,n);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  fclose(ficparo);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
  fclose(ficres);    free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
   /*--------------- Prevalence limit --------------*/    fclose(ficresprobcor);
      fflush(ficgp);
   strcpy(filerespl,"pl");    fflush(fichtmcov);
   strcat(filerespl,fileres);  }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }  /******************* Printing html file ***********/
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   fprintf(ficrespl,"#Prevalence limit\n");                    int lastpass, int stepm, int weightopt, char model[],\
   fprintf(ficrespl,"#Age ");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                    int popforecast, int estepm ,\
   fprintf(ficrespl,"\n");                    double jprev1, double mprev1,double anprev1, \
                      double jprev2, double mprev2,double anprev2){
   prlim=matrix(1,nlstate,1,nlstate);    int jj1, k1, i1, cpt;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  </ul>");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   k=0;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   agebase=ageminpar;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   agelim=agemaxpar;     fprintf(fichtm,"\
   ftolpl=1.e-10;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   i1=cptcoveff;             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   if (cptcovn < 1){i1=1;}     fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   for(cptcov=1;cptcov<=i1;cptcov++){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     fprintf(fichtm,"\
         k=k+1;   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/     <a href=\"%s\">%s</a> <br>\n</li>",
         fprintf(ficrespl,"\n#******");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
          
         for (age=agebase; age<=agelim; age++){   m=cptcoveff;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)   jj1=0;
           fprintf(ficrespl," %.5f", prlim[i][i]);   for(k1=1; k1<=m;k1++){
           fprintf(ficrespl,"\n");     for(i1=1; i1<=ncodemax[k1];i1++){
         }       jj1++;
       }       if (cptcovn > 0) {
     }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   fclose(ficrespl);         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   /*------------- h Pij x at various ages ------------*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);       /* Pij */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   }       /* Quasi-incidences */
   printf("Computing pij: result on file '%s' \n", filerespij);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   stepsize=(int) (stepm+YEARM-1)/YEARM;  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   /*if (stepm<=24) stepsize=2;*/         /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
   agelim=AGESUP;           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   hstepm=stepsize*YEARM; /* Every year of age */  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */         }
        for(cpt=1; cpt<=nlstate;cpt++) {
   /* hstepm=1;   aff par mois*/          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   k=0;       }
   for(cptcov=1;cptcov<=i1;cptcov++){     } /* end i1 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   }/* End k1 */
       k=k+1;   fprintf(fichtm,"</ul>");
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"\
         fprintf(ficrespij,"******\n");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
           - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
           /*      nhstepm=nhstepm*YEARM; aff par mois*/   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;   fprintf(fichtm,"\
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficrespij,"# Age");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
           for(i=1; i<=nlstate;i++)   fprintf(fichtm,"\
             for(j=1; j<=nlstate+ndeath;j++)   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
               fprintf(ficrespij," %1d-%1d",i,j);     <a href=\"%s\">%s</a> <br>\n</li>",
           fprintf(ficrespij,"\n");             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
            for (h=0; h<=nhstepm; h++){   fprintf(fichtm,"\
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
             for(i=1; i<=nlstate;i++)     <a href=\"%s\">%s</a> <br>\n</li>",
               for(j=1; j<=nlstate+ndeath;j++)             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);   fprintf(fichtm,"\
             fprintf(ficrespij,"\n");   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
              }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   fprintf(fichtm,"\
           fprintf(ficrespij,"\n");   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
         }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     }   fprintf(fichtm,"\
   }   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   fclose(ficrespij);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*---------- Forecasting ------------------*/  /*  else  */
   if((stepm == 1) && (strcmp(model,".")==0)){  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);   fflush(fichtm);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   }  
   else{   m=cptcoveff;
     erreur=108;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
   }   jj1=0;
     for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   /*---------- Health expectancies and variances ------------*/       jj1++;
        if (cptcovn > 0) {
   strcpy(filerest,"t");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   strcat(filerest,fileres);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   if((ficrest=fopen(filerest,"w"))==NULL) {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   }       }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   strcpy(filerese,"e");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   strcat(filerese,fileres);       }
   if((ficreseij=fopen(filerese,"w"))==NULL) {       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  health expectancies in states (1) and (2): %s%d.png<br>\
   }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);     } /* end i1 */
    }/* End k1 */
  strcpy(fileresv,"v");   fprintf(fichtm,"</ul>");
   strcat(fileresv,fileres);   fflush(fichtm);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }  /******************* Gnuplot file **************/
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   calagedate=-1;  
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   k=0;    int ng;
   for(cptcov=1;cptcov<=i1;cptcov++){  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*     printf("Problem with file %s",optionfilegnuplot); */
       k=k+1;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       fprintf(ficrest,"\n#****** ");  /*   } */
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*#ifdef windows */
       fprintf(ficrest,"******\n");    fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
       fprintf(ficreseij,"\n#****** ");    m=pow(2,cptcoveff);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(dirfileres,optionfilefiname);
       fprintf(ficreseij,"******\n");    strcpy(optfileres,"vpl");
    /* 1eme*/
       fprintf(ficresvij,"\n#****** ");    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for(j=1;j<=cptcoveff;j++)     for (k1=1; k1<= m ; k1 ++) {
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       fprintf(ficresvij,"******\n");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  set ylabel \"Probability\" \n\
       oldm=oldms;savm=savms;  set ter png small\n\
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    set size 0.65,0.65\n\
    plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;       for (i=1; i<= nlstate ; i ++) {
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
         fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");       for (i=1; i<= nlstate ; i ++) {
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficrest,"\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
       epj=vector(1,nlstate+1);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
       for(age=bage; age <=fage ;age++){       for (i=1; i<= nlstate ; i ++) {
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         if (popbased==1) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
           for(i=1; i<=nlstate;i++)       }  
             prlim[i][i]=probs[(int)age][i][k];       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
         }     }
            }
         fprintf(ficrest," %4.0f",age);    /*2 eme*/
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    for (k1=1; k1<= m ; k1 ++) { 
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
           }      
           epj[nlstate+1] +=epj[j];      for (i=1; i<= nlstate+1 ; i ++) {
         }        k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for(i=1, vepp=0.;i <=nlstate;i++)        for (j=1; j<= nlstate+1 ; j ++) {
           for(j=1;j <=nlstate;j++)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             vepp += vareij[i][j][(int)age];          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        }   
         for(j=1;j <=nlstate;j++){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         fprintf(ficrest,"\n");        for (j=1; j<= nlstate+1 ; j ++) {
       }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }        }   
 free_matrix(mint,1,maxwav,1,n);        fprintf(ficgp,"\" t\"\" w l 0,");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     free_vector(weight,1,n);        for (j=1; j<= nlstate+1 ; j ++) {
   fclose(ficreseij);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(ficresvij);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fclose(ficrest);        }   
   fclose(ficpar);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   free_vector(epj,1,nlstate+1);        else fprintf(ficgp,"\" t\"\" w l 0,");
        }
   /*------- Variance limit prevalence------*/      }
     
   strcpy(fileresvpl,"vpl");    /*3eme*/
   strcat(fileresvpl,fileres);    
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    for (k1=1; k1<= m ; k1 ++) { 
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      for (cpt=1; cpt<= nlstate ; cpt ++) {
     exit(0);        /*       k=2+nlstate*(2*cpt-2); */
   }        k=2+(nlstate+1)*(cpt-1);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   k=0;  set size 0.65,0.65\n\
   for(cptcov=1;cptcov<=i1;cptcov++){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       k=k+1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       fprintf(ficresvpl,"\n#****** ");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       for(j=1;j<=cptcoveff;j++)          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       fprintf(ficresvpl,"******\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        */
       oldm=oldms;savm=savms;        for (i=1; i< nlstate ; i ++) {
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
     }          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
  }          
         } 
   fclose(ficresvpl);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
   /*---------- End : free ----------------*/    }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    
      /* CV preval stable (period) */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    for (k1=1; k1<= m ; k1 ++) { 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      for (cpt=1; cpt<=nlstate ; cpt ++) {
          k=3;
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  set ter png small\nset size 0.65,0.65\n\
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  unset log y\n\
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
          
   free_matrix(matcov,1,npar,1,npar);        for (i=1; i< nlstate ; i ++)
   free_vector(delti,1,npar);          fprintf(ficgp,"+$%d",k+i+1);
   free_matrix(agev,1,maxwav,1,imx);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        
         l=3+(nlstate+ndeath)*cpt;
   fprintf(fichtm,"\n</body>");        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   fclose(fichtm);        for (i=1; i< nlstate ; i ++) {
   fclose(ficgp);          l=3+(nlstate+ndeath)*cpt;
            fprintf(ficgp,"+$%d",l+i+1);
         }
   if(erreur >0)        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     printf("End of Imach with error or warning %d\n",erreur);      } 
   else   printf("End of Imach\n");    }  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    
      /* proba elementaires */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    for(i=1,jk=1; i <=nlstate; i++){
   /*printf("Total time was %d uSec.\n", total_usecs);*/      for(k=1; k <=(nlstate+ndeath); k++){
   /*------ End -----------*/        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
  end:            jk++; 
 #ifdef windows            fprintf(ficgp,"\n");
   /* chdir(pathcd);*/          }
 #endif        }
  /*system("wgnuplot graph.plt");*/      }
  /*system("../gp37mgw/wgnuplot graph.plt");*/     }
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
  strcpy(plotcmd,GNUPLOTPROGRAM);       for(jk=1; jk <=m; jk++) {
  strcat(plotcmd," ");         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
  strcat(plotcmd,optionfilegnuplot);         if (ng==2)
  system(plotcmd);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
 #ifdef windows           fprintf(ficgp,"\nset title \"Probability\"\n");
   while (z[0] != 'q') {         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     /* chdir(path); */         i=1;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");         for(k2=1; k2<=nlstate; k2++) {
     scanf("%s",z);           k3=i;
     if (z[0] == 'c') system("./imach");           for(k=1; k<=(nlstate+ndeath); k++) {
     else if (z[0] == 'e') system(optionfilehtm);             if (k != k2){
     else if (z[0] == 'g') system(plotcmd);               if(ng==2)
     else if (z[0] == 'q') exit(0);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   }               else
 #endif                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 }               ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.49  
changed lines
  Added in v.1.122


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>