Diff for /imach/src/imach.c between versions 1.124 and 1.125

version 1.124, 2006/03/22 17:13:53 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Errors in calculation of health expectancies. Age was not initialized.
   The log-likelihood is printed in the log file    Forecasting file added.
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.124  2006/03/22 17:13:53  lievre
   * imach.c (Module): <title> changed, corresponds to .htm file    Parameters are printed with %lf instead of %f (more numbers after the comma).
   name. <head> headers where missing.    The log-likelihood is printed in the log file
   
   * imach.c (Module): Weights can have a decimal point as for    Revision 1.123  2006/03/20 10:52:43  brouard
   English (a comma might work with a correct LC_NUMERIC environment,    * imach.c (Module): <title> changed, corresponds to .htm file
   otherwise the weight is truncated).    name. <head> headers where missing.
   Modification of warning when the covariates values are not 0 or  
   1.    * imach.c (Module): Weights can have a decimal point as for
   Version 0.98g    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.122  2006/03/20 09:45:41  brouard    Modification of warning when the covariates values are not 0 or
   (Module): Weights can have a decimal point as for    1.
   English (a comma might work with a correct LC_NUMERIC environment,    Version 0.98g
   otherwise the weight is truncated).  
   Modification of warning when the covariates values are not 0 or    Revision 1.122  2006/03/20 09:45:41  brouard
   1.    (Module): Weights can have a decimal point as for
   Version 0.98g    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.121  2006/03/16 17:45:01  lievre    Modification of warning when the covariates values are not 0 or
   * imach.c (Module): Comments concerning covariates added    1.
     Version 0.98g
   * imach.c (Module): refinements in the computation of lli if  
   status=-2 in order to have more reliable computation if stepm is    Revision 1.121  2006/03/16 17:45:01  lievre
   not 1 month. Version 0.98f    * imach.c (Module): Comments concerning covariates added
   
   Revision 1.120  2006/03/16 15:10:38  lievre    * imach.c (Module): refinements in the computation of lli if
   (Module): refinements in the computation of lli if    status=-2 in order to have more reliable computation if stepm is
   status=-2 in order to have more reliable computation if stepm is    not 1 month. Version 0.98f
   not 1 month. Version 0.98f  
     Revision 1.120  2006/03/16 15:10:38  lievre
   Revision 1.119  2006/03/15 17:42:26  brouard    (Module): refinements in the computation of lli if
   (Module): Bug if status = -2, the loglikelihood was    status=-2 in order to have more reliable computation if stepm is
   computed as likelihood omitting the logarithm. Version O.98e    not 1 month. Version 0.98f
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): varevsij Comments added explaining the second    (Module): Bug if status = -2, the loglikelihood was
   table of variances if popbased=1 .    computed as likelihood omitting the logarithm. Version O.98e
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.  
   (Module): Function pstamp added    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): Version 0.98d    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
   Revision 1.117  2006/03/14 17:16:22  brouard    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): varevsij Comments added explaining the second    (Module): Function pstamp added
   table of variances if popbased=1 .    (Module): Version 0.98d
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.  
   (Module): Function pstamp added    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): Version 0.98d    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
   Revision 1.116  2006/03/06 10:29:27  brouard    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Variance-covariance wrong links and    (Module): Function pstamp added
   varian-covariance of ej. is needed (Saito).    (Module): Version 0.98d
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
   Revision 1.114  2006/02/26 12:57:58  brouard  
   (Module): Some improvements in processing parameter    Revision 1.115  2006/02/27 12:17:45  brouard
   filename with strsep.    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Some improvements in processing parameter
   datafile was not closed, some imatrix were not freed and on matrix    filename with strsep.
   allocation too.  
     Revision 1.113  2006/02/24 14:20:24  brouard
   Revision 1.112  2006/01/30 09:55:26  brouard    (Module): Memory leaks checks with valgrind and:
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
   Revision 1.111  2006/01/25 20:38:18  brouard  
   (Module): Lots of cleaning and bugs added (Gompertz)    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Comments can be added in data file. Missing date values    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   can be a simple dot '.'.  
     Revision 1.111  2006/01/25 20:38:18  brouard
   Revision 1.110  2006/01/25 00:51:50  brouard    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
   Revision 1.109  2006/01/24 19:37:15  brouard  
   (Module): Comments (lines starting with a #) are allowed in data.    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   Revision 1.108  2006/01/19 18:05:42  lievre  
   Gnuplot problem appeared...    Revision 1.109  2006/01/24 19:37:15  brouard
   To be fixed    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.108  2006/01/19 18:05:42  lievre
   Test existence of gnuplot in imach path    Gnuplot problem appeared...
     To be fixed
   Revision 1.106  2006/01/19 13:24:36  brouard  
   Some cleaning and links added in html output    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
   Revision 1.105  2006/01/05 20:23:19  lievre  
   *** empty log message ***    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
   Revision 1.104  2005/09/30 16:11:43  lievre  
   (Module): sump fixed, loop imx fixed, and simplifications.    Revision 1.105  2006/01/05 20:23:19  lievre
   (Module): If the status is missing at the last wave but we know    *** empty log message ***
   that the person is alive, then we can code his/her status as -2  
   (instead of missing=-1 in earlier versions) and his/her    Revision 1.104  2005/09/30 16:11:43  lievre
   contributions to the likelihood is 1 - Prob of dying from last    (Module): sump fixed, loop imx fixed, and simplifications.
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    (Module): If the status is missing at the last wave but we know
   the healthy state at last known wave). Version is 0.98    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
   Revision 1.103  2005/09/30 15:54:49  lievre    contributions to the likelihood is 1 - Prob of dying from last
   (Module): sump fixed, loop imx fixed, and simplifications.    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
   Revision 1.102  2004/09/15 17:31:30  brouard  
   Add the possibility to read data file including tab characters.    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   Revision 1.101  2004/09/15 10:38:38  brouard  
   Fix on curr_time    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
   Revision 1.100  2004/07/12 18:29:06  brouard  
   Add version for Mac OS X. Just define UNIX in Makefile    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
   Revision 1.99  2004/06/05 08:57:40  brouard  
   *** empty log message ***    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
   Revision 1.98  2004/05/16 15:05:56  brouard  
   New version 0.97 . First attempt to estimate force of mortality    Revision 1.99  2004/06/05 08:57:40  brouard
   directly from the data i.e. without the need of knowing the health    *** empty log message ***
   state at each age, but using a Gompertz model: log u =a + b*age .  
   This is the basic analysis of mortality and should be done before any    Revision 1.98  2004/05/16 15:05:56  brouard
   other analysis, in order to test if the mortality estimated from the    New version 0.97 . First attempt to estimate force of mortality
   cross-longitudinal survey is different from the mortality estimated    directly from the data i.e. without the need of knowing the health
   from other sources like vital statistic data.    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
   The same imach parameter file can be used but the option for mle should be -3.    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
   Agnès, who wrote this part of the code, tried to keep most of the    from other sources like vital statistic data.
   former routines in order to include the new code within the former code.  
     The same imach parameter file can be used but the option for mle should be -3.
   The output is very simple: only an estimate of the intercept and of  
   the slope with 95% confident intervals.    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
   Current limitations:  
   A) Even if you enter covariates, i.e. with the    The output is very simple: only an estimate of the intercept and of
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    the slope with 95% confident intervals.
   B) There is no computation of Life Expectancy nor Life Table.  
     Current limitations:
   Revision 1.97  2004/02/20 13:25:42  lievre    A) Even if you enter covariates, i.e. with the
   Version 0.96d. Population forecasting command line is (temporarily)    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   suppressed.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.97  2004/02/20 13:25:42  lievre
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    Version 0.96d. Population forecasting command line is (temporarily)
   rewritten within the same printf. Workaround: many printfs.    suppressed.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository):    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   (Repository): Using imachwizard code to output a more meaningful covariance    rewritten within the same printf. Workaround: many printfs.
   matrix (cov(a12,c31) instead of numbers.  
     Revision 1.95  2003/07/08 07:54:34  brouard
   Revision 1.94  2003/06/27 13:00:02  brouard    * imach.c (Repository):
   Just cleaning    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
   Revision 1.93  2003/06/25 16:33:55  brouard  
   (Module): On windows (cygwin) function asctime_r doesn't    Revision 1.94  2003/06/27 13:00:02  brouard
   exist so I changed back to asctime which exists.    Just cleaning
   (Module): Version 0.96b  
     Revision 1.93  2003/06/25 16:33:55  brouard
   Revision 1.92  2003/06/25 16:30:45  brouard    (Module): On windows (cygwin) function asctime_r doesn't
   (Module): On windows (cygwin) function asctime_r doesn't    exist so I changed back to asctime which exists.
   exist so I changed back to asctime which exists.    (Module): Version 0.96b
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    (Module): On windows (cygwin) function asctime_r doesn't
   (Repository): Elapsed time after each iteration is now output. It    exist so I changed back to asctime which exists.
   helps to forecast when convergence will be reached. Elapsed time  
   is stamped in powell.  We created a new html file for the graphs    Revision 1.91  2003/06/25 15:30:29  brouard
   concerning matrix of covariance. It has extension -cov.htm.    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
   Revision 1.90  2003/06/24 12:34:15  brouard    helps to forecast when convergence will be reached. Elapsed time
   (Module): Some bugs corrected for windows. Also, when    is stamped in powell.  We created a new html file for the graphs
   mle=-1 a template is output in file "or"mypar.txt with the design    concerning matrix of covariance. It has extension -cov.htm.
   of the covariance matrix to be input.  
     Revision 1.90  2003/06/24 12:34:15  brouard
   Revision 1.89  2003/06/24 12:30:52  brouard    (Module): Some bugs corrected for windows. Also, when
   (Module): Some bugs corrected for windows. Also, when    mle=-1 a template is output in file "or"mypar.txt with the design
   mle=-1 a template is output in file "or"mypar.txt with the design    of the covariance matrix to be input.
   of the covariance matrix to be input.  
     Revision 1.89  2003/06/24 12:30:52  brouard
   Revision 1.88  2003/06/23 17:54:56  brouard    (Module): Some bugs corrected for windows. Also, when
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   Revision 1.87  2003/06/18 12:26:01  brouard  
   Version 0.96    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   Revision 1.86  2003/06/17 20:04:08  brouard  
   (Module): Change position of html and gnuplot routines and added    Revision 1.87  2003/06/18 12:26:01  brouard
   routine fileappend.    Version 0.96
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   * imach.c (Repository): Check when date of death was earlier that    (Module): Change position of html and gnuplot routines and added
   current date of interview. It may happen when the death was just    routine fileappend.
   prior to the death. In this case, dh was negative and likelihood  
   was wrong (infinity). We still send an "Error" but patch by    Revision 1.85  2003/06/17 13:12:43  brouard
   assuming that the date of death was just one stepm after the    * imach.c (Repository): Check when date of death was earlier that
   interview.    current date of interview. It may happen when the death was just
   (Repository): Because some people have very long ID (first column)    prior to the death. In this case, dh was negative and likelihood
   we changed int to long in num[] and we added a new lvector for    was wrong (infinity). We still send an "Error" but patch by
   memory allocation. But we also truncated to 8 characters (left    assuming that the date of death was just one stepm after the
   truncation)    interview.
   (Repository): No more line truncation errors.    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
   Revision 1.84  2003/06/13 21:44:43  brouard    memory allocation. But we also truncated to 8 characters (left
   * imach.c (Repository): Replace "freqsummary" at a correct    truncation)
   place. It differs from routine "prevalence" which may be called    (Repository): No more line truncation errors.
   many times. Probs is memory consuming and must be used with  
   parcimony.    Revision 1.84  2003/06/13 21:44:43  brouard
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
   Revision 1.83  2003/06/10 13:39:11  lievre    many times. Probs is memory consuming and must be used with
   *** empty log message ***    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   Revision 1.82  2003/06/05 15:57:20  brouard  
   Add log in  imach.c and  fullversion number is now printed.    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 */  
 /*    Revision 1.82  2003/06/05 15:57:20  brouard
    Interpolated Markov Chain    Add log in  imach.c and  fullversion number is now printed.
   
   Short summary of the programme:  */
     /*
   This program computes Healthy Life Expectancies from     Interpolated Markov Chain
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Short summary of the programme:
   interviewed on their health status or degree of disability (in the   
   case of a health survey which is our main interest) -2- at least a    This program computes Healthy Life Expectancies from
   second wave of interviews ("longitudinal") which measure each change    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   (if any) in individual health status.  Health expectancies are    first survey ("cross") where individuals from different ages are
   computed from the time spent in each health state according to a    interviewed on their health status or degree of disability (in the
   model. More health states you consider, more time is necessary to reach the    case of a health survey which is our main interest) -2- at least a
   Maximum Likelihood of the parameters involved in the model.  The    second wave of interviews ("longitudinal") which measure each change
   simplest model is the multinomial logistic model where pij is the    (if any) in individual health status.  Health expectancies are
   probability to be observed in state j at the second wave    computed from the time spent in each health state according to a
   conditional to be observed in state i at the first wave. Therefore    model. More health states you consider, more time is necessary to reach the
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Maximum Likelihood of the parameters involved in the model.  The
   'age' is age and 'sex' is a covariate. If you want to have a more    simplest model is the multinomial logistic model where pij is the
   complex model than "constant and age", you should modify the program    probability to be observed in state j at the second wave
   where the markup *Covariates have to be included here again* invites    conditional to be observed in state i at the first wave. Therefore
   you to do it.  More covariates you add, slower the    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   convergence.    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
   The advantage of this computer programme, compared to a simple    where the markup *Covariates have to be included here again* invites
   multinomial logistic model, is clear when the delay between waves is not    you to do it.  More covariates you add, slower the
   identical for each individual. Also, if a individual missed an    convergence.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
   hPijx is the probability to be observed in state i at age x+h    identical for each individual. Also, if a individual missed an
   conditional to the observed state i at age x. The delay 'h' can be    intermediate interview, the information is lost, but taken into
   split into an exact number (nh*stepm) of unobserved intermediate    account using an interpolation or extrapolation.  
   states. This elementary transition (by month, quarter,  
   semester or year) is modelled as a multinomial logistic.  The hPx    hPijx is the probability to be observed in state i at age x+h
   matrix is simply the matrix product of nh*stepm elementary matrices    conditional to the observed state i at age x. The delay 'h' can be
   and the contribution of each individual to the likelihood is simply    split into an exact number (nh*stepm) of unobserved intermediate
   hPijx.    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
   Also this programme outputs the covariance matrix of the parameters but also    matrix is simply the matrix product of nh*stepm elementary matrices
   of the life expectancies. It also computes the period (stable) prevalence.     and the contribution of each individual to the likelihood is simply
       hPijx.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Also this programme outputs the covariance matrix of the parameters but also
   This software have been partly granted by Euro-REVES, a concerted action    of the life expectancies. It also computes the period (stable) prevalence.
   from the European Union.   
   It is copyrighted identically to a GNU software product, ie programme and    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   software can be distributed freely for non commercial use. Latest version             Institut national d'études démographiques, Paris.
   can be accessed at http://euroreves.ined.fr/imach .    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    It is copyrighted identically to a GNU software product, ie programme and
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    software can be distributed freely for non commercial use. Latest version
       can be accessed at http://euroreves.ined.fr/imach .
   **********************************************************************/  
 /*    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   main    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   read parameterfile   
   read datafile    **********************************************************************/
   concatwav  /*
   freqsummary    main
   if (mle >= 1)    read parameterfile
     mlikeli    read datafile
   print results files    concatwav
   if mle==1     freqsummary
      computes hessian    if (mle >= 1)
   read end of parameter file: agemin, agemax, bage, fage, estepm      mlikeli
       begin-prev-date,...    print results files
   open gnuplot file    if mle==1
   open html file       computes hessian
   period (stable) prevalence    read end of parameter file: agemin, agemax, bage, fage, estepm
    for age prevalim()        begin-prev-date,...
   h Pij x    open gnuplot file
   variance of p varprob    open html file
   forecasting if prevfcast==1 prevforecast call prevalence()    period (stable) prevalence
   health expectancies     for age prevalim()
   Variance-covariance of DFLE    h Pij x
   prevalence()    variance of p varprob
    movingaverage()    forecasting if prevfcast==1 prevforecast call prevalence()
   varevsij()     health expectancies
   if popbased==1 varevsij(,popbased)    Variance-covariance of DFLE
   total life expectancies    prevalence()
   Variance of period (stable) prevalence     movingaverage()
  end    varevsij()
 */    if popbased==1 varevsij(,popbased)
     total life expectancies
     Variance of period (stable) prevalence
    end
    */
 #include <math.h>  
 #include <stdio.h>  
 #include <stdlib.h>  
 #include <string.h>   
 #include <unistd.h>  #include <math.h>
   #include <stdio.h>
 #include <limits.h>  #include <stdlib.h>
 #include <sys/types.h>  #include <string.h>
 #include <sys/stat.h>  #include <unistd.h>
 #include <errno.h>  
 extern int errno;  #include <limits.h>
   #include <sys/types.h>
 /* #include <sys/time.h> */  #include <sys/stat.h>
 #include <time.h>  #include <errno.h>
 #include "timeval.h"  extern int errno;
   
 /* #include <libintl.h> */  /* #include <sys/time.h> */
 /* #define _(String) gettext (String) */  #include <time.h>
   #include "timeval.h"
 #define MAXLINE 256  
   /* #include <libintl.h> */
 #define GNUPLOTPROGRAM "gnuplot"  /* #define _(String) gettext (String) */
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 132  #define MAXLINE 256
   
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #define GNUPLOTPROGRAM "gnuplot"
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000  #define NINTERVMAX 8
 #define YEARM 12. /* Number of months per year */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define AGESUP 130  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define AGEBASE 40  #define NCOVMAX 8 /* Maximum number of covariates */
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  #define MAXN 20000
 #ifdef UNIX  #define YEARM 12. /* Number of months per year */
 #define DIRSEPARATOR '/'  #define AGESUP 130
 #define CHARSEPARATOR "/"  #define AGEBASE 40
 #define ODIRSEPARATOR '\\'  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 #else  #ifdef UNIX
 #define DIRSEPARATOR '\\'  #define DIRSEPARATOR '/'
 #define CHARSEPARATOR "\\"  #define CHARSEPARATOR "/"
 #define ODIRSEPARATOR '/'  #define ODIRSEPARATOR '\\'
 #endif  #else
   #define DIRSEPARATOR '\\'
 /* $Id$ */  #define CHARSEPARATOR "\\"
 /* $State$ */  #define ODIRSEPARATOR '/'
   #endif
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";  
 char fullversion[]="$Revision$ $Date$";   /* $Id$ */
 char strstart[80];  /* $State$ */
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 int nvar;  char fullversion[]="$Revision$ $Date$";
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  char strstart[80];
 int npar=NPARMAX;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 int nlstate=2; /* Number of live states */  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 int ndeath=1; /* Number of dead states */  int nvar;
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int popbased=0;  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 int *wav; /* Number of waves for this individuual 0 is possible */  int ndeath=1; /* Number of dead states */
 int maxwav; /* Maxim number of waves */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int jmin, jmax; /* min, max spacing between 2 waves */  int popbased=0;
 int ijmin, ijmax; /* Individuals having jmin and jmax */   
 int gipmx, gsw; /* Global variables on the number of contributions   int *wav; /* Number of waves for this individuual 0 is possible */
                    to the likelihood and the sum of weights (done by funcone)*/  int maxwav; /* Maxim number of waves */
 int mle, weightopt;  int jmin, jmax; /* min, max spacing between 2 waves */
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  int ijmin, ijmax; /* Individuals having jmin and jmax */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  int gipmx, gsw; /* Global variables on the number of contributions
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between                     to the likelihood and the sum of weights (done by funcone)*/
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  int mle, weightopt;
 double jmean; /* Mean space between 2 waves */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 FILE *ficlog, *ficrespow;  double jmean; /* Mean space between 2 waves */
 int globpr; /* Global variable for printing or not */  double **oldm, **newm, **savm; /* Working pointers to matrices */
 double fretone; /* Only one call to likelihood */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 long ipmx; /* Number of contributions */  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 double sw; /* Sum of weights */  FILE *ficlog, *ficrespow;
 char filerespow[FILENAMELENGTH];  int globpr; /* Global variable for printing or not */
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  double fretone; /* Only one call to likelihood */
 FILE *ficresilk;  long ipmx; /* Number of contributions */
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  double sw; /* Sum of weights */
 FILE *ficresprobmorprev;  char filerespow[FILENAMELENGTH];
 FILE *fichtm, *fichtmcov; /* Html File */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 FILE *ficreseij;  FILE *ficresilk;
 char filerese[FILENAMELENGTH];  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 FILE *ficresstdeij;  FILE *ficresprobmorprev;
 char fileresstde[FILENAMELENGTH];  FILE *fichtm, *fichtmcov; /* Html File */
 FILE *ficrescveij;  FILE *ficreseij;
 char filerescve[FILENAMELENGTH];  char filerese[FILENAMELENGTH];
 FILE  *ficresvij;  FILE *ficresstdeij;
 char fileresv[FILENAMELENGTH];  char fileresstde[FILENAMELENGTH];
 FILE  *ficresvpl;  FILE *ficrescveij;
 char fileresvpl[FILENAMELENGTH];  char filerescve[FILENAMELENGTH];
 char title[MAXLINE];  FILE  *ficresvij;
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  char fileresv[FILENAMELENGTH];
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  FILE  *ficresvpl;
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   char fileresvpl[FILENAMELENGTH];
 char command[FILENAMELENGTH];  char title[MAXLINE];
 int  outcmd=0;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   char command[FILENAMELENGTH];
 char filelog[FILENAMELENGTH]; /* Log file */  int  outcmd=0;
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 char popfile[FILENAMELENGTH];  
   char filelog[FILENAMELENGTH]; /* Log file */
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  char popfile[FILENAMELENGTH];
 struct timezone tzp;  
 extern int gettimeofday();  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  
 long time_value;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 extern long time();  struct timezone tzp;
 char strcurr[80], strfor[80];  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 char *endptr;  long time_value;
 long lval;  extern long time();
 double dval;  char strcurr[80], strfor[80];
   
 #define NR_END 1  char *endptr;
 #define FREE_ARG char*  long lval;
 #define FTOL 1.0e-10  double dval;
   
 #define NRANSI   #define NR_END 1
 #define ITMAX 200   #define FREE_ARG char*
   #define FTOL 1.0e-10
 #define TOL 2.0e-4   
   #define NRANSI
 #define CGOLD 0.3819660   #define ITMAX 200
 #define ZEPS 1.0e-10   
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   #define TOL 2.0e-4
   
 #define GOLD 1.618034   #define CGOLD 0.3819660
 #define GLIMIT 100.0   #define ZEPS 1.0e-10
 #define TINY 1.0e-20   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   
 static double maxarg1,maxarg2;  #define GOLD 1.618034
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define GLIMIT 100.0
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define TINY 1.0e-20
     
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  static double maxarg1,maxarg2;
 #define rint(a) floor(a+0.5)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 static double sqrarg;   
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   #define rint(a) floor(a+0.5)
 int agegomp= AGEGOMP;  
   static double sqrarg;
 int imx;   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 int stepm=1;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
 /* Stepm, step in month: minimum step interpolation*/  int agegomp= AGEGOMP;
   
 int estepm;  int imx;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
 int m,nb;  
 long *num;  int estepm;
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs;  int m,nb;
 double *ageexmed,*agecens;  long *num;
 double dateintmean=0;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double *weight;  double **pmmij, ***probs;
 int **s; /* Status */  double *ageexmed,*agecens;
 double *agedc, **covar, idx;  double dateintmean=0;
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
 double *lsurv, *lpop, *tpop;  double *weight;
   int **s; /* Status */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  double *agedc, **covar, idx;
 double ftolhess; /* Tolerance for computing hessian */  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 {  double ftolhess; /* Tolerance for computing hessian */
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  /**************** split *************************/
   */   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   char  *ss;                            /* pointer */  {
   int   l1, l2;                         /* length counters */    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
   l1 = strlen(path );                   /* length of path */    */
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    char  *ss;                            /* pointer */
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    int   l1, l2;                         /* length counters */
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  
     strcpy( name, path );               /* we got the fullname name because no directory */    l1 = strlen(path );                   /* length of path */
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     /* get current working directory */    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     /*    extern  char* getcwd ( char *buf , int len);*/      strcpy( name, path );               /* we got the fullname name because no directory */
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       return( GLOCK_ERROR_GETCWD );        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     }      /* get current working directory */
     /* got dirc from getcwd*/      /*    extern  char* getcwd ( char *buf , int len);*/
     printf(" DIRC = %s \n",dirc);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   } else {                              /* strip direcotry from path */        return( GLOCK_ERROR_GETCWD );
     ss++;                               /* after this, the filename */      }
     l2 = strlen( ss );                  /* length of filename */      /* got dirc from getcwd*/
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );      printf(" DIRC = %s \n",dirc);
     strcpy( name, ss );         /* save file name */    } else {                              /* strip direcotry from path */
     strncpy( dirc, path, l1 - l2 );     /* now the directory */      ss++;                               /* after this, the filename */
     dirc[l1-l2] = 0;                    /* add zero */      l2 = strlen( ss );                  /* length of filename */
     printf(" DIRC2 = %s \n",dirc);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   }      strcpy( name, ss );         /* save file name */
   /* We add a separator at the end of dirc if not exists */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   l1 = strlen( dirc );                  /* length of directory */      dirc[l1-l2] = 0;                    /* add zero */
   if( dirc[l1-1] != DIRSEPARATOR ){      printf(" DIRC2 = %s \n",dirc);
     dirc[l1] =  DIRSEPARATOR;    }
     dirc[l1+1] = 0;     /* We add a separator at the end of dirc if not exists */
     printf(" DIRC3 = %s \n",dirc);    l1 = strlen( dirc );                  /* length of directory */
   }    if( dirc[l1-1] != DIRSEPARATOR ){
   ss = strrchr( name, '.' );            /* find last / */      dirc[l1] =  DIRSEPARATOR;
   if (ss >0){      dirc[l1+1] = 0;
     ss++;      printf(" DIRC3 = %s \n",dirc);
     strcpy(ext,ss);                     /* save extension */    }
     l1= strlen( name);    ss = strrchr( name, '.' );            /* find last / */
     l2= strlen(ss)+1;    if (ss >0){
     strncpy( finame, name, l1-l2);      ss++;
     finame[l1-l2]= 0;      strcpy(ext,ss);                     /* save extension */
   }      l1= strlen( name);
       l2= strlen(ss)+1;
   return( 0 );                          /* we're done */      strncpy( finame, name, l1-l2);
 }      finame[l1-l2]= 0;
     }
   
 /******************************************/    return( 0 );                          /* we're done */
   }
 void replace_back_to_slash(char *s, char*t)  
 {  
   int i;  /******************************************/
   int lg=0;  
   i=0;  void replace_back_to_slash(char *s, char*t)
   lg=strlen(t);  {
   for(i=0; i<= lg; i++) {    int i;
     (s[i] = t[i]);    int lg=0;
     if (t[i]== '\\') s[i]='/';    i=0;
   }    lg=strlen(t);
 }    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
 int nbocc(char *s, char occ)      if (t[i]== '\\') s[i]='/';
 {    }
   int i,j=0;  }
   int lg=20;  
   i=0;  int nbocc(char *s, char occ)
   lg=strlen(s);  {
   for(i=0; i<= lg; i++) {    int i,j=0;
   if  (s[i] == occ ) j++;    int lg=20;
   }    i=0;
   return j;    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 void cutv(char *u,char *v, char*t, char occ)    }
 {    return j;
   /* cuts string t into u and v where u ends before first occurence of char 'occ'   }
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  
      gives u="abcedf" and v="ghi2j" */  void cutv(char *u,char *v, char*t, char occ)
   int i,lg,j,p=0;  {
   i=0;    /* cuts string t into u and v where u ends before first occurence of char 'occ'
   for(j=0; j<=strlen(t)-1; j++) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;       gives u="abcedf" and v="ghi2j" */
   }    int i,lg,j,p=0;
     i=0;
   lg=strlen(t);    for(j=0; j<=strlen(t)-1; j++) {
   for(j=0; j<p; j++) {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     (u[j] = t[j]);    }
   }  
      u[p]='\0';    lg=strlen(t);
     for(j=0; j<p; j++) {
    for(j=0; j<= lg; j++) {      (u[j] = t[j]);
     if (j>=(p+1))(v[j-p-1] = t[j]);    }
   }       u[p]='\0';
 }  
      for(j=0; j<= lg; j++) {
 /********************** nrerror ********************/      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
 void nrerror(char error_text[])  }
 {  
   fprintf(stderr,"ERREUR ...\n");  /********************** nrerror ********************/
   fprintf(stderr,"%s\n",error_text);  
   exit(EXIT_FAILURE);  void nrerror(char error_text[])
 }  {
 /*********************** vector *******************/    fprintf(stderr,"ERREUR ...\n");
 double *vector(int nl, int nh)    fprintf(stderr,"%s\n",error_text);
 {    exit(EXIT_FAILURE);
   double *v;  }
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /*********************** vector *******************/
   if (!v) nrerror("allocation failure in vector");  double *vector(int nl, int nh)
   return v-nl+NR_END;  {
 }    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 /************************ free vector ******************/    if (!v) nrerror("allocation failure in vector");
 void free_vector(double*v, int nl, int nh)    return v-nl+NR_END;
 {  }
   free((FREE_ARG)(v+nl-NR_END));  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /************************ivector *******************************/  {
 int *ivector(long nl,long nh)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /************************ivector *******************************/
   if (!v) nrerror("allocation failure in ivector");  int *ivector(long nl,long nh)
   return v-nl+NR_END;  {
 }    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 /******************free ivector **************************/    if (!v) nrerror("allocation failure in ivector");
 void free_ivector(int *v, long nl, long nh)    return v-nl+NR_END;
 {  }
   free((FREE_ARG)(v+nl-NR_END));  
 }  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
 /************************lvector *******************************/  {
 long *lvector(long nl,long nh)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   long *v;  
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  /************************lvector *******************************/
   if (!v) nrerror("allocation failure in ivector");  long *lvector(long nl,long nh)
   return v-nl+NR_END;  {
 }    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 /******************free lvector **************************/    if (!v) nrerror("allocation failure in ivector");
 void free_lvector(long *v, long nl, long nh)    return v-nl+NR_END;
 {  }
   free((FREE_ARG)(v+nl-NR_END));  
 }  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
 /******************* imatrix *******************************/  {
 int **imatrix(long nrl, long nrh, long ncl, long nch)     free((FREE_ARG)(v+nl-NR_END));
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   }
 {   
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   /******************* imatrix *******************************/
   int **m;   int **imatrix(long nrl, long nrh, long ncl, long nch)
          /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   /* allocate pointers to rows */   {
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
   if (!m) nrerror("allocation failure 1 in matrix()");     int **m;
   m += NR_END;    
   m -= nrl;     /* allocate pointers to rows */
       m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
       if (!m) nrerror("allocation failure 1 in matrix()");
   /* allocate rows and set pointers to them */     m += NR_END;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));     m -= nrl;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    
   m[nrl] += NR_END;    
   m[nrl] -= ncl;     /* allocate rows and set pointers to them */
       m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       m[nrl] += NR_END;
   /* return pointer to array of pointers to rows */     m[nrl] -= ncl;
   return m;    
 }     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
    
 /****************** free_imatrix *************************/    /* return pointer to array of pointers to rows */
 void free_imatrix(m,nrl,nrh,ncl,nch)    return m;
       int **m;  }
       long nch,ncl,nrh,nrl;   
      /* free an int matrix allocated by imatrix() */   /****************** free_imatrix *************************/
 {   void free_imatrix(m,nrl,nrh,ncl,nch)
   free((FREE_ARG) (m[nrl]+ncl-NR_END));         int **m;
   free((FREE_ARG) (m+nrl-NR_END));         long nch,ncl,nrh,nrl;
 }        /* free an int matrix allocated by imatrix() */
   {
 /******************* matrix *******************************/    free((FREE_ARG) (m[nrl]+ncl-NR_END));
 double **matrix(long nrl, long nrh, long ncl, long nch)    free((FREE_ARG) (m+nrl-NR_END));
 {  }
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   m += NR_END;    double **m;
   m -= nrl;  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if (!m) nrerror("allocation failure 1 in matrix()");
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    m += NR_END;
   m[nrl] += NR_END;    m -= nrl;
   m[nrl] -= ncl;  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   return m;    m[nrl] += NR_END;
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])     m[nrl] -= ncl;
    */  
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
 /*************************free matrix ************************/    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)     */
 {  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /*************************free matrix ************************/
 }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 /******************* ma3x *******************************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   m += NR_END;    double ***m;
   m -= nrl;  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if (!m) nrerror("allocation failure 1 in matrix()");
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    m += NR_END;
   m[nrl] += NR_END;    m -= nrl;
   m[nrl] -= ncl;  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    m[nrl] -= ncl;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     m[nrl][j]=m[nrl][j-1]+nlay;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       m[nrl][ncl] += NR_END;
   for (i=nrl+1; i<=nrh; i++) {    m[nrl][ncl] -= nll;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    for (j=ncl+1; j<=nch; j++)
     for (j=ncl+1; j<=nch; j++)       m[nrl][j]=m[nrl][j-1]+nlay;
       m[i][j]=m[i][j-1]+nlay;   
   }    for (i=nrl+1; i<=nrh; i++) {
   return m;       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])      for (j=ncl+1; j<=nch; j++)
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)        m[i][j]=m[i][j-1]+nlay;
   */    }
 }    return m;
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 /*************************free ma3x ************************/             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    */
 {  }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /*************************free ma3x ************************/
   free((FREE_ARG)(m+nrl-NR_END));  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 }  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 /*************** function subdirf ***********/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 char *subdirf(char fileres[])    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   /* Caution optionfilefiname is hidden */  
   strcpy(tmpout,optionfilefiname);  /*************** function subdirf ***********/
   strcat(tmpout,"/"); /* Add to the right */  char *subdirf(char fileres[])
   strcat(tmpout,fileres);  {
   return tmpout;    /* Caution optionfilefiname is hidden */
 }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
 /*************** function subdirf2 ***********/    strcat(tmpout,fileres);
 char *subdirf2(char fileres[], char *preop)    return tmpout;
 {  }
     
   /* Caution optionfilefiname is hidden */  /*************** function subdirf2 ***********/
   strcpy(tmpout,optionfilefiname);  char *subdirf2(char fileres[], char *preop)
   strcat(tmpout,"/");  {
   strcat(tmpout,preop);   
   strcat(tmpout,fileres);    /* Caution optionfilefiname is hidden */
   return tmpout;    strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/");
     strcat(tmpout,preop);
 /*************** function subdirf3 ***********/    strcat(tmpout,fileres);
 char *subdirf3(char fileres[], char *preop, char *preop2)    return tmpout;
 {  }
     
   /* Caution optionfilefiname is hidden */  /*************** function subdirf3 ***********/
   strcpy(tmpout,optionfilefiname);  char *subdirf3(char fileres[], char *preop, char *preop2)
   strcat(tmpout,"/");  {
   strcat(tmpout,preop);   
   strcat(tmpout,preop2);    /* Caution optionfilefiname is hidden */
   strcat(tmpout,fileres);    strcpy(tmpout,optionfilefiname);
   return tmpout;    strcat(tmpout,"/");
 }    strcat(tmpout,preop);
     strcat(tmpout,preop2);
 /***************** f1dim *************************/    strcat(tmpout,fileres);
 extern int ncom;     return tmpout;
 extern double *pcom,*xicom;  }
 extern double (*nrfunc)(double []);   
    /***************** f1dim *************************/
 double f1dim(double x)   extern int ncom;
 {   extern double *pcom,*xicom;
   int j;   extern double (*nrfunc)(double []);
   double f;   
   double *xt;   double f1dim(double x)
    {
   xt=vector(1,ncom);     int j;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     double f;
   f=(*nrfunc)(xt);     double *xt;
   free_vector(xt,1,ncom);    
   return f;     xt=vector(1,ncom);
 }     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
     f=(*nrfunc)(xt);
 /*****************brent *************************/    free_vector(xt,1,ncom);
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)     return f;
 {   }
   int iter;   
   double a,b,d,etemp;  /*****************brent *************************/
   double fu,fv,fw,fx;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;     int iter;
   double e=0.0;     double a,b,d,etemp;
      double fu,fv,fw,fx;
   a=(ax < cx ? ax : cx);     double ftemp;
   b=(ax > cx ? ax : cx);     double p,q,r,tol1,tol2,u,v,w,x,xm;
   x=w=v=bx;     double e=0.0;
   fw=fv=fx=(*f)(x);    
   for (iter=1;iter<=ITMAX;iter++) {     a=(ax < cx ? ax : cx);
     xm=0.5*(a+b);     b=(ax > cx ? ax : cx);
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     x=w=v=bx;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    fw=fv=fx=(*f)(x);
     printf(".");fflush(stdout);    for (iter=1;iter<=ITMAX;iter++) {
     fprintf(ficlog,".");fflush(ficlog);      xm=0.5*(a+b);
 #ifdef DEBUG      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      printf(".");fflush(stdout);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      fprintf(ficlog,".");fflush(ficlog);
 #endif  #ifdef DEBUG
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       *xmin=x;       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       return fx;       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     }   #endif
     ftemp=fu;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
     if (fabs(e) > tol1) {         *xmin=x;
       r=(x-w)*(fx-fv);         return fx;
       q=(x-v)*(fx-fw);       }
       p=(x-v)*q-(x-w)*r;       ftemp=fu;
       q=2.0*(q-r);       if (fabs(e) > tol1) {
       if (q > 0.0) p = -p;         r=(x-w)*(fx-fv);
       q=fabs(q);         q=(x-v)*(fx-fw);
       etemp=e;         p=(x-v)*q-(x-w)*r;
       e=d;         q=2.0*(q-r);
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))         if (q > 0.0) p = -p;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));         q=fabs(q);
       else {         etemp=e;
         d=p/q;         e=d;
         u=x+d;         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
         if (u-a < tol2 || b-u < tol2)           d=CGOLD*(e=(x >= xm ? a-x : b-x));
           d=SIGN(tol1,xm-x);         else {
       }           d=p/q;
     } else {           u=x+d;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));           if (u-a < tol2 || b-u < tol2)
     }             d=SIGN(tol1,xm-x);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));         }
     fu=(*f)(u);       } else {
     if (fu <= fx) {         d=CGOLD*(e=(x >= xm ? a-x : b-x));
       if (u >= x) a=x; else b=x;       }
       SHFT(v,w,x,u)       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
         SHFT(fv,fw,fx,fu)       fu=(*f)(u);
         } else {       if (fu <= fx) {
           if (u < x) a=u; else b=u;         if (u >= x) a=x; else b=x;
           if (fu <= fw || w == x) {         SHFT(v,w,x,u)
             v=w;           SHFT(fv,fw,fx,fu)
             w=u;           } else {
             fv=fw;             if (u < x) a=u; else b=u;
             fw=fu;             if (fu <= fw || w == x) {
           } else if (fu <= fv || v == x || v == w) {               v=w;
             v=u;               w=u;
             fv=fu;               fv=fw;
           }               fw=fu;
         }             } else if (fu <= fv || v == x || v == w) {
   }               v=u;
   nrerror("Too many iterations in brent");               fv=fu;
   *xmin=x;             }
   return fx;           }
 }     }
     nrerror("Too many iterations in brent");
 /****************** mnbrak ***********************/    *xmin=x;
     return fx;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,   }
             double (*func)(double))   
 {   /****************** mnbrak ***********************/
   double ulim,u,r,q, dum;  
   double fu;   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
                double (*func)(double))
   *fa=(*func)(*ax);   {
   *fb=(*func)(*bx);     double ulim,u,r,q, dum;
   if (*fb > *fa) {     double fu;
     SHFT(dum,*ax,*bx,dum)    
       SHFT(dum,*fb,*fa,dum)     *fa=(*func)(*ax);
       }     *fb=(*func)(*bx);
   *cx=(*bx)+GOLD*(*bx-*ax);     if (*fb > *fa) {
   *fc=(*func)(*cx);       SHFT(dum,*ax,*bx,dum)
   while (*fb > *fc) {         SHFT(dum,*fb,*fa,dum)
     r=(*bx-*ax)*(*fb-*fc);         }
     q=(*bx-*cx)*(*fb-*fa);     *cx=(*bx)+GOLD*(*bx-*ax);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     *fc=(*func)(*cx);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     while (*fb > *fc) {
     ulim=(*bx)+GLIMIT*(*cx-*bx);       r=(*bx-*ax)*(*fb-*fc);
     if ((*bx-u)*(u-*cx) > 0.0) {       q=(*bx-*cx)*(*fb-*fa);
       fu=(*func)(u);       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
     } else if ((*cx-u)*(u-ulim) > 0.0) {         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
       fu=(*func)(u);       ulim=(*bx)+GLIMIT*(*cx-*bx);
       if (fu < *fc) {       if ((*bx-u)*(u-*cx) > 0.0) {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))         fu=(*func)(u);
           SHFT(*fb,*fc,fu,(*func)(u))       } else if ((*cx-u)*(u-ulim) > 0.0) {
           }         fu=(*func)(u);
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {         if (fu < *fc) {
       u=ulim;           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
       fu=(*func)(u);             SHFT(*fb,*fc,fu,(*func)(u))
     } else {             }
       u=(*cx)+GOLD*(*cx-*bx);       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
       fu=(*func)(u);         u=ulim;
     }         fu=(*func)(u);
     SHFT(*ax,*bx,*cx,u)       } else {
       SHFT(*fa,*fb,*fc,fu)         u=(*cx)+GOLD*(*cx-*bx);
       }         fu=(*func)(u);
 }       }
       SHFT(*ax,*bx,*cx,u)
 /*************** linmin ************************/        SHFT(*fa,*fb,*fc,fu)
         }
 int ncom;   }
 double *pcom,*xicom;  
 double (*nrfunc)(double []);   /*************** linmin ************************/
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   int ncom;
 {   double *pcom,*xicom;
   double brent(double ax, double bx, double cx,   double (*nrfunc)(double []);
                double (*f)(double), double tol, double *xmin);    
   double f1dim(double x);   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   {
               double *fc, double (*func)(double));     double brent(double ax, double bx, double cx,
   int j;                  double (*f)(double), double tol, double *xmin);
   double xx,xmin,bx,ax;     double f1dim(double x);
   double fx,fb,fa;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
                  double *fc, double (*func)(double));
   ncom=n;     int j;
   pcom=vector(1,n);     double xx,xmin,bx,ax;
   xicom=vector(1,n);     double fx,fb,fa;
   nrfunc=func;    
   for (j=1;j<=n;j++) {     ncom=n;
     pcom[j]=p[j];     pcom=vector(1,n);
     xicom[j]=xi[j];     xicom=vector(1,n);
   }     nrfunc=func;
   ax=0.0;     for (j=1;j<=n;j++) {
   xx=1.0;       pcom[j]=p[j];
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);       xicom[j]=xi[j];
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     }
 #ifdef DEBUG    ax=0.0;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    xx=1.0;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
 #endif    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
   for (j=1;j<=n;j++) {   #ifdef DEBUG
     xi[j] *= xmin;     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     p[j] += xi[j];     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }   #endif
   free_vector(xicom,1,n);     for (j=1;j<=n;j++) {
   free_vector(pcom,1,n);       xi[j] *= xmin;
 }       p[j] += xi[j];
     }
 char *asc_diff_time(long time_sec, char ascdiff[])    free_vector(xicom,1,n);
 {    free_vector(pcom,1,n);
   long sec_left, days, hours, minutes;  }
   days = (time_sec) / (60*60*24);  
   sec_left = (time_sec) % (60*60*24);  char *asc_diff_time(long time_sec, char ascdiff[])
   hours = (sec_left) / (60*60) ;  {
   sec_left = (sec_left) %(60*60);    long sec_left, days, hours, minutes;
   minutes = (sec_left) /60;    days = (time_sec) / (60*60*24);
   sec_left = (sec_left) % (60);    sec_left = (time_sec) % (60*60*24);
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);      hours = (sec_left) / (60*60) ;
   return ascdiff;    sec_left = (sec_left) %(60*60);
 }    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
 /*************** powell ************************/    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     return ascdiff;
             double (*func)(double []))   }
 {   
   void linmin(double p[], double xi[], int n, double *fret,   /*************** powell ************************/
               double (*func)(double []));   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
   int i,ibig,j;               double (*func)(double []))
   double del,t,*pt,*ptt,*xit;  {
   double fp,fptt;    void linmin(double p[], double xi[], int n, double *fret,
   double *xits;                double (*func)(double []));
   int niterf, itmp;    int i,ibig,j;
     double del,t,*pt,*ptt,*xit;
   pt=vector(1,n);     double fp,fptt;
   ptt=vector(1,n);     double *xits;
   xit=vector(1,n);     int niterf, itmp;
   xits=vector(1,n);   
   *fret=(*func)(p);     pt=vector(1,n);
   for (j=1;j<=n;j++) pt[j]=p[j];     ptt=vector(1,n);
   for (*iter=1;;++(*iter)) {     xit=vector(1,n);
     fp=(*fret);     xits=vector(1,n);
     ibig=0;     *fret=(*func)(p);
     del=0.0;     for (j=1;j<=n;j++) pt[j]=p[j];
     last_time=curr_time;    for (*iter=1;;++(*iter)) {
     (void) gettimeofday(&curr_time,&tzp);      fp=(*fret);
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);      ibig=0;
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);      del=0.0;
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */      last_time=curr_time;
    for (i=1;i<=n;i++) {      (void) gettimeofday(&curr_time,&tzp);
       printf(" %d %.12f",i, p[i]);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fprintf(ficlog," %d %.12lf",i, p[i]);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       fprintf(ficrespow," %.12lf", p[i]);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     }     for (i=1;i<=n;i++) {
     printf("\n");        printf(" %d %.12f",i, p[i]);
     fprintf(ficlog,"\n");        fprintf(ficlog," %d %.12lf",i, p[i]);
     fprintf(ficrespow,"\n");fflush(ficrespow);        fprintf(ficrespow," %.12lf", p[i]);
     if(*iter <=3){      }
       tm = *localtime(&curr_time.tv_sec);      printf("\n");
       strcpy(strcurr,asctime(&tm));      fprintf(ficlog,"\n");
 /*       asctime_r(&tm,strcurr); */      fprintf(ficrespow,"\n");fflush(ficrespow);
       forecast_time=curr_time;       if(*iter <=3){
       itmp = strlen(strcurr);        tm = *localtime(&curr_time.tv_sec);
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */        strcpy(strcurr,asctime(&tm));
         strcurr[itmp-1]='\0';  /*       asctime_r(&tm,strcurr); */
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        forecast_time=curr_time;
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        itmp = strlen(strcurr);
       for(niterf=10;niterf<=30;niterf+=10){        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);          strcurr[itmp-1]='\0';
         tmf = *localtime(&forecast_time.tv_sec);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 /*      asctime_r(&tmf,strfor); */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         strcpy(strfor,asctime(&tmf));        for(niterf=10;niterf<=30;niterf+=10){
         itmp = strlen(strfor);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         if(strfor[itmp-1]=='\n')          tmf = *localtime(&forecast_time.tv_sec);
         strfor[itmp-1]='\0';  /*      asctime_r(&tmf,strfor); */
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);          strcpy(strfor,asctime(&tmf));
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);          itmp = strlen(strfor);
       }          if(strfor[itmp-1]=='\n')
     }          strfor[itmp-1]='\0';
     for (i=1;i<=n;i++) {           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       fptt=(*fret);         }
 #ifdef DEBUG      }
       printf("fret=%lf \n",*fret);      for (i=1;i<=n;i++) {
       fprintf(ficlog,"fret=%lf \n",*fret);        for (j=1;j<=n;j++) xit[j]=xi[j][i];
 #endif        fptt=(*fret);
       printf("%d",i);fflush(stdout);  #ifdef DEBUG
       fprintf(ficlog,"%d",i);fflush(ficlog);        printf("fret=%lf \n",*fret);
       linmin(p,xit,n,fret,func);         fprintf(ficlog,"fret=%lf \n",*fret);
       if (fabs(fptt-(*fret)) > del) {   #endif
         del=fabs(fptt-(*fret));         printf("%d",i);fflush(stdout);
         ibig=i;         fprintf(ficlog,"%d",i);fflush(ficlog);
       }         linmin(p,xit,n,fret,func);
 #ifdef DEBUG        if (fabs(fptt-(*fret)) > del) {
       printf("%d %.12e",i,(*fret));          del=fabs(fptt-(*fret));
       fprintf(ficlog,"%d %.12e",i,(*fret));          ibig=i;
       for (j=1;j<=n;j++) {        }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #ifdef DEBUG
         printf(" x(%d)=%.12e",j,xit[j]);        printf("%d %.12e",i,(*fret));
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);        fprintf(ficlog,"%d %.12e",i,(*fret));
       }        for (j=1;j<=n;j++) {
       for(j=1;j<=n;j++) {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         printf(" p=%.12e",p[j]);          printf(" x(%d)=%.12e",j,xit[j]);
         fprintf(ficlog," p=%.12e",p[j]);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       printf("\n");        for(j=1;j<=n;j++) {
       fprintf(ficlog,"\n");          printf(" p=%.12e",p[j]);
 #endif          fprintf(ficlog," p=%.12e",p[j]);
     }         }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        printf("\n");
 #ifdef DEBUG        fprintf(ficlog,"\n");
       int k[2],l;  #endif
       k[0]=1;      }
       k[1]=-1;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       printf("Max: %.12e",(*func)(p));  #ifdef DEBUG
       fprintf(ficlog,"Max: %.12e",(*func)(p));        int k[2],l;
       for (j=1;j<=n;j++) {        k[0]=1;
         printf(" %.12e",p[j]);        k[1]=-1;
         fprintf(ficlog," %.12e",p[j]);        printf("Max: %.12e",(*func)(p));
       }        fprintf(ficlog,"Max: %.12e",(*func)(p));
       printf("\n");        for (j=1;j<=n;j++) {
       fprintf(ficlog,"\n");          printf(" %.12e",p[j]);
       for(l=0;l<=1;l++) {          fprintf(ficlog," %.12e",p[j]);
         for (j=1;j<=n;j++) {        }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        printf("\n");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        fprintf(ficlog,"\n");
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        for(l=0;l<=1;l++) {
         }          for (j=1;j<=n;j++) {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 #endif          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       free_vector(xit,1,n);         }
       free_vector(xits,1,n);   #endif
       free_vector(ptt,1,n);   
       free_vector(pt,1,n);   
       return;         free_vector(xit,1,n);
     }         free_vector(xits,1,n);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");         free_vector(ptt,1,n);
     for (j=1;j<=n;j++) {         free_vector(pt,1,n);
       ptt[j]=2.0*p[j]-pt[j];         return;
       xit[j]=p[j]-pt[j];       }
       pt[j]=p[j];       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
     }       for (j=1;j<=n;j++) {
     fptt=(*func)(ptt);         ptt[j]=2.0*p[j]-pt[j];
     if (fptt < fp) {         xit[j]=p[j]-pt[j];
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);         pt[j]=p[j];
       if (t < 0.0) {       }
         linmin(p,xit,n,fret,func);       fptt=(*func)(ptt);
         for (j=1;j<=n;j++) {       if (fptt < fp) {
           xi[j][ibig]=xi[j][n];         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
           xi[j][n]=xit[j];         if (t < 0.0) {
         }          linmin(p,xit,n,fret,func);
 #ifdef DEBUG          for (j=1;j<=n;j++) {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);            xi[j][ibig]=xi[j][n];
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);            xi[j][n]=xit[j];
         for(j=1;j<=n;j++){          }
           printf(" %.12e",xit[j]);  #ifdef DEBUG
           fprintf(ficlog," %.12e",xit[j]);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         printf("\n");          for(j=1;j<=n;j++){
         fprintf(ficlog,"\n");            printf(" %.12e",xit[j]);
 #endif            fprintf(ficlog," %.12e",xit[j]);
       }          }
     }           printf("\n");
   }           fprintf(ficlog,"\n");
 }   #endif
         }
 /**** Prevalence limit (stable or period prevalence)  ****************/      }
     }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /**** Prevalence limit (stable or period prevalence)  ****************/
      matrix by transitions matrix until convergence is reached */  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   int i, ii,j,k;  {
   double min, max, maxmin, maxmax,sumnew=0.;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double **matprod2();       matrix by transitions matrix until convergence is reached */
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;    int i, ii,j,k;
   double agefin, delaymax=50 ; /* Max number of years to converge */    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   for (ii=1;ii<=nlstate+ndeath;ii++)    double **out, cov[NCOVMAX], **pmij();
     for (j=1;j<=nlstate+ndeath;j++){    double **newm;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double agefin, delaymax=50 ; /* Max number of years to converge */
     }  
     for (ii=1;ii<=nlstate+ndeath;ii++)
    cov[1]=1.;      for (j=1;j<=nlstate+ndeath;j++){
          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;     cov[1]=1.;
     /* Covariates have to be included here again */   
      cov[2]=agefin;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       for (k=1; k<=cptcovn;k++) {      newm=savm;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      /* Covariates have to be included here again */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/       cov[2]=agefin;
       }   
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for (k=1; k<=cptcovn;k++) {
       for (k=1; k<=cptcovprod;k++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        for (k=1; k<=cptcovprod;k++)
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     savm=oldm;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     oldm=newm;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     maxmax=0.;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     for(j=1;j<=nlstate;j++){  
       min=1.;      savm=oldm;
       max=0.;      oldm=newm;
       for(i=1; i<=nlstate; i++) {      maxmax=0.;
         sumnew=0;      for(j=1;j<=nlstate;j++){
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        min=1.;
         prlim[i][j]= newm[i][j]/(1-sumnew);        max=0.;
         max=FMAX(max,prlim[i][j]);        for(i=1; i<=nlstate; i++) {
         min=FMIN(min,prlim[i][j]);          sumnew=0;
       }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       maxmin=max-min;          prlim[i][j]= newm[i][j]/(1-sumnew);
       maxmax=FMAX(maxmax,maxmin);          max=FMAX(max,prlim[i][j]);
     }          min=FMIN(min,prlim[i][j]);
     if(maxmax < ftolpl){        }
       return prlim;        maxmin=max-min;
     }        maxmax=FMAX(maxmax,maxmin);
   }      }
 }      if(maxmax < ftolpl){
         return prlim;
 /*************** transition probabilities ***************/       }
     }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  }
 {  
   double s1, s2;  /*************** transition probabilities ***************/
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
     for(i=1; i<= nlstate; i++){    double s1, s2;
       for(j=1; j<i;j++){    /*double t34;*/
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){    int i,j,j1, nc, ii, jj;
           /*s2 += param[i][j][nc]*cov[nc];*/  
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      for(i=1; i<= nlstate; i++){
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */        for(j=1; j<i;j++){
         }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         ps[i][j]=s2;            /*s2 += param[i][j][nc]*cov[nc];*/
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       for(j=i+1; j<=nlstate+ndeath;j++){          }
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          ps[i][j]=s2;
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */        }
         }        for(j=i+1; j<=nlstate+ndeath;j++){
         ps[i][j]=s2;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     /*ps[3][2]=1;*/          }
               ps[i][j]=s2;
     for(i=1; i<= nlstate; i++){        }
       s1=0;      }
       for(j=1; j<i; j++)      /*ps[3][2]=1;*/
         s1+=exp(ps[i][j]);     
       for(j=i+1; j<=nlstate+ndeath; j++)      for(i=1; i<= nlstate; i++){
         s1+=exp(ps[i][j]);        s1=0;
       ps[i][i]=1./(s1+1.);        for(j=1; j<i; j++)
       for(j=1; j<i; j++)          s1+=exp(ps[i][j]);
         ps[i][j]= exp(ps[i][j])*ps[i][i];        for(j=i+1; j<=nlstate+ndeath; j++)
       for(j=i+1; j<=nlstate+ndeath; j++)          s1+=exp(ps[i][j]);
         ps[i][j]= exp(ps[i][j])*ps[i][i];        ps[i][i]=1./(s1+1.);
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        for(j=1; j<i; j++)
     } /* end i */          ps[i][j]= exp(ps[i][j])*ps[i][i];
             for(j=i+1; j<=nlstate+ndeath; j++)
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(jj=1; jj<= nlstate+ndeath; jj++){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         ps[ii][jj]=0;      } /* end i */
         ps[ii][ii]=1;     
       }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     }        for(jj=1; jj<= nlstate+ndeath; jj++){
               ps[ii][jj]=0;
           ps[ii][ii]=1;
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */        }
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */      }
 /*         printf("ddd %lf ",ps[ii][jj]); */     
 /*       } */  
 /*       printf("\n "); */  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 /*        } */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 /*        printf("\n ");printf("%lf ",cov[2]); */  /*         printf("ddd %lf ",ps[ii][jj]); */
        /*  /*       } */
       for(i=1; i<= npar; i++) printf("%f ",x[i]);  /*       printf("\n "); */
       goto end;*/  /*        } */
     return ps;  /*        printf("\n ");printf("%lf ",cov[2]); */
 }         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
 /**************** Product of 2 matrices ******************/        goto end;*/
       return ps;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  }
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  /**************** Product of 2 matrices ******************/
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
      before: only the contents of out is modified. The function returns  {
      a pointer to pointers identical to out */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   long i, j, k;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for(i=nrl; i<= nrh; i++)    /* in, b, out are matrice of pointers which should have been initialized
     for(k=ncolol; k<=ncoloh; k++)       before: only the contents of out is modified. The function returns
       for(j=ncl,out[i][k]=0.; j<=nch; j++)       a pointer to pointers identical to out */
         out[i][k] +=in[i][j]*b[j][k];    long i, j, k;
     for(i=nrl; i<= nrh; i++)
   return out;      for(k=ncolol; k<=ncoloh; k++)
 }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   
 /************* Higher Matrix Product ***************/    return out;
   }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  
   /* Computes the transition matrix starting at age 'age' over   /************* Higher Matrix Product ***************/
      'nhstepm*hstepm*stepm' months (i.e. until  
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
      nhstepm*hstepm matrices.   {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step     /* Computes the transition matrix starting at age 'age' over
      (typically every 2 years instead of every month which is too big        'nhstepm*hstepm*stepm' months (i.e. until
      for the memory).       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
      Model is determined by parameters x and covariates have to be        nhstepm*hstepm matrices.
      included manually here.        Output is stored in matrix po[i][j][h] for h every 'hstepm' step
        (typically every 2 years instead of every month which is too big
      */       for the memory).
        Model is determined by parameters x and covariates have to be
   int i, j, d, h, k;       included manually here.
   double **out, cov[NCOVMAX];  
   double **newm;       */
   
   /* Hstepm could be zero and should return the unit matrix */    int i, j, d, h, k;
   for (i=1;i<=nlstate+ndeath;i++)    double **out, cov[NCOVMAX];
     for (j=1;j<=nlstate+ndeath;j++){    double **newm;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);    /* Hstepm could be zero and should return the unit matrix */
     }    for (i=1;i<=nlstate+ndeath;i++)
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      for (j=1;j<=nlstate+ndeath;j++){
   for(h=1; h <=nhstepm; h++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
     for(d=1; d <=hstepm; d++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
       newm=savm;      }
       /* Covariates have to be included here again */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       cov[1]=1.;    for(h=1; h <=nhstepm; h++){
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      for(d=1; d <=hstepm; d++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        newm=savm;
       for (k=1; k<=cptcovage;k++)        /* Covariates have to be included here again */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        cov[1]=1.;
       for (k=1; k<=cptcovprod;k++)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        for (k=1; k<=cptcovprod;k++)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       oldm=newm;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
     for(i=1; i<=nlstate+ndeath; i++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1;j<=nlstate+ndeath;j++) {        savm=oldm;
         po[i][j][h]=newm[i][j];        oldm=newm;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      }
          */      for(i=1; i<=nlstate+ndeath; i++)
       }        for(j=1;j<=nlstate+ndeath;j++) {
   } /* end h */          po[i][j][h]=newm[i][j];
   return po;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 }           */
         }
     } /* end h */
 /*************** log-likelihood *************/    return po;
 double func( double *x)  }
 {  
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  /*************** log-likelihood *************/
   double **out;  double func( double *x)
   double sw; /* Sum of weights */  {
   double lli; /* Individual log likelihood */    int i, ii, j, k, mi, d, kk;
   int s1, s2;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double bbh, survp;    double **out;
   long ipmx;    double sw; /* Sum of weights */
   /*extern weight */    double lli; /* Individual log likelihood */
   /* We are differentiating ll according to initial status */    int s1, s2;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double bbh, survp;
   /*for(i=1;i<imx;i++)     long ipmx;
     printf(" %d\n",s[4][i]);    /*extern weight */
   */    /* We are differentiating ll according to initial status */
   cov[1]=1.;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++)
   for(k=1; k<=nlstate; k++) ll[k]=0.;      printf(" %d\n",s[4][i]);
     */
   if(mle==1){    cov[1]=1.;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)    if(mle==1){
           for (j=1;j<=nlstate+ndeath;j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(d=0; d<dh[mi][i]; d++){            for (j=1;j<=nlstate+ndeath;j++){
           newm=savm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (kk=1; kk<=cptcovage;kk++) {            }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            for (kk=1; kk<=cptcovage;kk++) {
           savm=oldm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           oldm=newm;            }
         } /* end mult */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */            savm=oldm;
         /* But now since version 0.9 we anticipate for bias at large stepm.            oldm=newm;
          * If stepm is larger than one month (smallest stepm) and if the exact delay           } /* end mult */
          * (in months) between two waves is not a multiple of stepm, we rounded to        
          * the nearest (and in case of equal distance, to the lowest) interval but now          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
          * we keep into memory the bias bh[mi][i] and also the previous matrix product          /* But now since version 0.9 we anticipate for bias at large stepm.
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the           * If stepm is larger than one month (smallest stepm) and if the exact delay
          * probability in order to take into account the bias as a fraction of the way           * (in months) between two waves is not a multiple of stepm, we rounded to
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies           * the nearest (and in case of equal distance, to the lowest) interval but now
          * -stepm/2 to stepm/2 .           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          * For stepm=1 the results are the same as for previous versions of Imach.           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
          * For stepm > 1 the results are less biased than in previous versions.            * probability in order to take into account the bias as a fraction of the way
          */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         s1=s[mw[mi][i]][i];           * -stepm/2 to stepm/2 .
         s2=s[mw[mi+1][i]][i];           * For stepm=1 the results are the same as for previous versions of Imach.
         bbh=(double)bh[mi][i]/(double)stepm;            * For stepm > 1 the results are less biased than in previous versions.
         /* bias bh is positive if real duration           */
          * is higher than the multiple of stepm and negative otherwise.          s1=s[mw[mi][i]][i];
          */          s2=s[mw[mi+1][i]][i];
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/          bbh=(double)bh[mi][i]/(double)stepm;
         if( s2 > nlstate){           /* bias bh is positive if real duration
           /* i.e. if s2 is a death state and if the date of death is known            * is higher than the multiple of stepm and negative otherwise.
              then the contribution to the likelihood is the probability to            */
              die between last step unit time and current  step unit time,           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
              which is also equal to probability to die before dh           if( s2 > nlstate){
              minus probability to die before dh-stepm .             /* i.e. if s2 is a death state and if the date of death is known
              In version up to 0.92 likelihood was computed               then the contribution to the likelihood is the probability to
         as if date of death was unknown. Death was treated as any other               die between last step unit time and current  step unit time,
         health state: the date of the interview describes the actual state               which is also equal to probability to die before dh
         and not the date of a change in health state. The former idea was               minus probability to die before dh-stepm .
         to consider that at each interview the state was recorded               In version up to 0.92 likelihood was computed
         (healthy, disable or death) and IMaCh was corrected; but when we          as if date of death was unknown. Death was treated as any other
         introduced the exact date of death then we should have modified          health state: the date of the interview describes the actual state
         the contribution of an exact death to the likelihood. This new          and not the date of a change in health state. The former idea was
         contribution is smaller and very dependent of the step unit          to consider that at each interview the state was recorded
         stepm. It is no more the probability to die between last interview          (healthy, disable or death) and IMaCh was corrected; but when we
         and month of death but the probability to survive from last          introduced the exact date of death then we should have modified
         interview up to one month before death multiplied by the          the contribution of an exact death to the likelihood. This new
         probability to die within a month. Thanks to Chris          contribution is smaller and very dependent of the step unit
         Jackson for correcting this bug.  Former versions increased          stepm. It is no more the probability to die between last interview
         mortality artificially. The bad side is that we add another loop          and month of death but the probability to survive from last
         which slows down the processing. The difference can be up to 10%          interview up to one month before death multiplied by the
         lower mortality.          probability to die within a month. Thanks to Chris
           */          Jackson for correcting this bug.  Former versions increased
           lli=log(out[s1][s2] - savm[s1][s2]);          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
           lower mortality.
         } else if  (s2==-2) {            */
           for (j=1,survp=0. ; j<=nlstate; j++)             lli=log(out[s1][s2] - savm[s1][s2]);
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];  
           /*survp += out[s1][j]; */  
           lli= log(survp);          } else if  (s2==-2) {
         }            for (j=1,survp=0. ; j<=nlstate; j++)
                       survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         else if  (s2==-4) {             /*survp += out[s1][j]; */
           for (j=3,survp=0. ; j<=nlstate; j++)              lli= log(survp);
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];          }
           lli= log(survp);          
         }           else if  (s2==-4) {
             for (j=3,survp=0. ; j<=nlstate; j++)  
         else if  (s2==-5) {               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for (j=1,survp=0. ; j<=2; j++)              lli= log(survp);
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];          }
           lli= log(survp);   
         }           else if  (s2==-5) {
                     for (j=1,survp=0. ; j<=2; j++)  
         else{              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */            lli= log(survp);
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */          }
         }          
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          else{
         /*if(lli ==000.0)*/            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         ipmx +=1;          }
         sw += weight[i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          /*if(lli ==000.0)*/
       } /* end of wave */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     } /* end of individual */          ipmx +=1;
   }  else if(mle==2){          sw += weight[i];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        } /* end of wave */
       for(mi=1; mi<= wav[i]-1; mi++){      } /* end of individual */
         for (ii=1;ii<=nlstate+ndeath;ii++)    }  else if(mle==2){
           for (j=1;j<=nlstate+ndeath;j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(d=0; d<=dh[mi][i]; d++){            for (j=1;j<=nlstate+ndeath;j++){
           newm=savm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (kk=1; kk<=cptcovage;kk++) {            }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          for(d=0; d<=dh[mi][i]; d++){
           }            newm=savm;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            for (kk=1; kk<=cptcovage;kk++) {
           savm=oldm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           oldm=newm;            }
         } /* end mult */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         s1=s[mw[mi][i]][i];            savm=oldm;
         s2=s[mw[mi+1][i]][i];            oldm=newm;
         bbh=(double)bh[mi][i]/(double)stepm;           } /* end mult */
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */       
         ipmx +=1;          s1=s[mw[mi][i]][i];
         sw += weight[i];          s2=s[mw[mi+1][i]][i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          bbh=(double)bh[mi][i]/(double)stepm;
       } /* end of wave */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     } /* end of individual */          ipmx +=1;
   }  else if(mle==3){  /* exponential inter-extrapolation */          sw += weight[i];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        } /* end of wave */
       for(mi=1; mi<= wav[i]-1; mi++){      } /* end of individual */
         for (ii=1;ii<=nlstate+ndeath;ii++)    }  else if(mle==3){  /* exponential inter-extrapolation */
           for (j=1;j<=nlstate+ndeath;j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(d=0; d<dh[mi][i]; d++){            for (j=1;j<=nlstate+ndeath;j++){
           newm=savm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (kk=1; kk<=cptcovage;kk++) {            }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            for (kk=1; kk<=cptcovage;kk++) {
           savm=oldm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           oldm=newm;            }
         } /* end mult */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         s1=s[mw[mi][i]][i];            savm=oldm;
         s2=s[mw[mi+1][i]][i];            oldm=newm;
         bbh=(double)bh[mi][i]/(double)stepm;           } /* end mult */
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */       
         ipmx +=1;          s1=s[mw[mi][i]][i];
         sw += weight[i];          s2=s[mw[mi+1][i]][i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          bbh=(double)bh[mi][i]/(double)stepm;
       } /* end of wave */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     } /* end of individual */          ipmx +=1;
   }else if (mle==4){  /* ml=4 no inter-extrapolation */          sw += weight[i];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        } /* end of wave */
       for(mi=1; mi<= wav[i]-1; mi++){      } /* end of individual */
         for (ii=1;ii<=nlstate+ndeath;ii++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           for (j=1;j<=nlstate+ndeath;j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(d=0; d<dh[mi][i]; d++){            for (j=1;j<=nlstate+ndeath;j++){
           newm=savm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (kk=1; kk<=cptcovage;kk++) {            }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
                     cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            for (kk=1; kk<=cptcovage;kk++) {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           savm=oldm;            }
           oldm=newm;         
         } /* end mult */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         s1=s[mw[mi][i]][i];            savm=oldm;
         s2=s[mw[mi+1][i]][i];            oldm=newm;
         if( s2 > nlstate){           } /* end mult */
           lli=log(out[s1][s2] - savm[s1][s2]);       
         }else{          s1=s[mw[mi][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          s2=s[mw[mi+1][i]][i];
         }          if( s2 > nlstate){
         ipmx +=1;            lli=log(out[s1][s2] - savm[s1][s2]);
         sw += weight[i];          }else{
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          }
       } /* end of wave */          ipmx +=1;
     } /* end of individual */          sw += weight[i];
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        } /* end of wave */
       for(mi=1; mi<= wav[i]-1; mi++){      } /* end of individual */
         for (ii=1;ii<=nlstate+ndeath;ii++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           for (j=1;j<=nlstate+ndeath;j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(d=0; d<dh[mi][i]; d++){            for (j=1;j<=nlstate+ndeath;j++){
           newm=savm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (kk=1; kk<=cptcovage;kk++) {            }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
                     cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            for (kk=1; kk<=cptcovage;kk++) {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           savm=oldm;            }
           oldm=newm;         
         } /* end mult */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         s1=s[mw[mi][i]][i];            savm=oldm;
         s2=s[mw[mi+1][i]][i];            oldm=newm;
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          } /* end mult */
         ipmx +=1;       
         sw += weight[i];          s1=s[mw[mi][i]][i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          s2=s[mw[mi+1][i]][i];
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       } /* end of wave */          ipmx +=1;
     } /* end of individual */          sw += weight[i];
   } /* End of if */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        } /* end of wave */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      } /* end of individual */
   return -l;    } /* End of if */
 }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 /*************** log-likelihood *************/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 double funcone( double *x)    return -l;
 {  }
   /* Same as likeli but slower because of a lot of printf and if */  
   int i, ii, j, k, mi, d, kk;  /*************** log-likelihood *************/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  double funcone( double *x)
   double **out;  {
   double lli; /* Individual log likelihood */    /* Same as likeli but slower because of a lot of printf and if */
   double llt;    int i, ii, j, k, mi, d, kk;
   int s1, s2;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double bbh, survp;    double **out;
   /*extern weight */    double lli; /* Individual log likelihood */
   /* We are differentiating ll according to initial status */    double llt;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    int s1, s2;
   /*for(i=1;i<imx;i++)     double bbh, survp;
     printf(" %d\n",s[4][i]);    /*extern weight */
   */    /* We are differentiating ll according to initial status */
   cov[1]=1.;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++)
   for(k=1; k<=nlstate; k++) ll[k]=0.;      printf(" %d\n",s[4][i]);
     */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    cov[1]=1.;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           savm[ii][j]=(ii==j ? 1.0 : 0.0);      for(mi=1; mi<= wav[i]-1; mi++){
         }        for (ii=1;ii<=nlstate+ndeath;ii++)
       for(d=0; d<dh[mi][i]; d++){          for (j=1;j<=nlstate+ndeath;j++){
         newm=savm;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (kk=1; kk<=cptcovage;kk++) {          }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for(d=0; d<dh[mi][i]; d++){
         }          newm=savm;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          for (kk=1; kk<=cptcovage;kk++) {
         savm=oldm;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         oldm=newm;          }
       } /* end mult */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                              1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       s1=s[mw[mi][i]][i];          savm=oldm;
       s2=s[mw[mi+1][i]][i];          oldm=newm;
       bbh=(double)bh[mi][i]/(double)stepm;         } /* end mult */
       /* bias is positive if real duration       
        * is higher than the multiple of stepm and negative otherwise.        s1=s[mw[mi][i]][i];
        */        s2=s[mw[mi+1][i]][i];
       if( s2 > nlstate && (mle <5) ){  /* Jackson */        bbh=(double)bh[mi][i]/(double)stepm;
         lli=log(out[s1][s2] - savm[s1][s2]);        /* bias is positive if real duration
       } else if  (s2==-2) {         * is higher than the multiple of stepm and negative otherwise.
         for (j=1,survp=0. ; j<=nlstate; j++)          */
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         lli= log(survp);          lli=log(out[s1][s2] - savm[s1][s2]);
       }else if (mle==1){        } else if  (s2==-2) {
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          for (j=1,survp=0. ; j<=nlstate; j++)
       } else if(mle==2){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          lli= log(survp);
       } else if(mle==3){  /* exponential inter-extrapolation */        }else if (mle==1){
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       } else if (mle==4){  /* mle=4 no inter-extrapolation */        } else if(mle==2){
         lli=log(out[s1][s2]); /* Original formula */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */        } else if(mle==3){  /* exponential inter-extrapolation */
         lli=log(out[s1][s2]); /* Original formula */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       } /* End of if */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       ipmx +=1;          lli=log(out[s1][s2]); /* Original formula */
       sw += weight[i];        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          lli=log(out[s1][s2]); /* Original formula */
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        } /* End of if */
       if(globpr){        ipmx +=1;
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\        sw += weight[i];
  %11.6f %11.6f %11.6f ", \        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);        if(globpr){
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
           llt +=ll[k]*gipmx/gsw;   %11.6f %11.6f %11.6f ", \
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         fprintf(ficresilk," %10.6f\n", -llt);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       }            llt +=ll[k]*gipmx/gsw;
     } /* end of wave */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   } /* end of individual */          }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          fprintf(ficresilk," %10.6f\n", -llt);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      } /* end of wave */
   if(globpr==0){ /* First time we count the contributions and weights */    } /* end of individual */
     gipmx=ipmx;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     gsw=sw;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   return -l;    if(globpr==0){ /* First time we count the contributions and weights */
 }      gipmx=ipmx;
       gsw=sw;
     }
 /*************** function likelione ***********/    return -l;
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))  }
 {  
   /* This routine should help understanding what is done with   
      the selection of individuals/waves and  /*************** function likelione ***********/
      to check the exact contribution to the likelihood.  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      Plotting could be done.  {
    */    /* This routine should help understanding what is done with
   int k;       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
   if(*globpri !=0){ /* Just counts and sums, no printings */       Plotting could be done.
     strcpy(fileresilk,"ilk");      */
     strcat(fileresilk,fileres);    int k;
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {  
       printf("Problem with resultfile: %s\n", fileresilk);    if(*globpri !=0){ /* Just counts and sums, no printings */
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);      strcpy(fileresilk,"ilk");
     }      strcat(fileresilk,fileres);
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");        printf("Problem with resultfile: %s\n", fileresilk);
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for(k=1; k<=nlstate; k++)       }
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++)
   *fretone=(*funcone)(p);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   if(*globpri !=0){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     fclose(ficresilk);    }
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));  
     fflush(fichtm);     *fretone=(*funcone)(p);
   }     if(*globpri !=0){
   return;      fclose(ficresilk);
 }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm);
     }
 /*********** Maximum Likelihood Estimation ***************/    return;
   }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  
   int i,j, iter;  /*********** Maximum Likelihood Estimation ***************/
   double **xi;  
   double fret;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   double fretone; /* Only one call to likelihood */  {
   /*  char filerespow[FILENAMELENGTH];*/    int i,j, iter;
   xi=matrix(1,npar,1,npar);    double **xi;
   for (i=1;i<=npar;i++)    double fret;
     for (j=1;j<=npar;j++)    double fretone; /* Only one call to likelihood */
       xi[i][j]=(i==j ? 1.0 : 0.0);    /*  char filerespow[FILENAMELENGTH];*/
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    xi=matrix(1,npar,1,npar);
   strcpy(filerespow,"pow");     for (i=1;i<=npar;i++)
   strcat(filerespow,fileres);      for (j=1;j<=npar;j++)
   if((ficrespow=fopen(filerespow,"w"))==NULL) {        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Problem with resultfile: %s\n", filerespow);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);    strcpy(filerespow,"pow");
   }    strcat(filerespow,fileres);
   fprintf(ficrespow,"# Powell\n# iter -2*LL");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   for (i=1;i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
     for(j=1;j<=nlstate+ndeath;j++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);    }
   fprintf(ficrespow,"\n");    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
   powell(p,xi,npar,ftol,&iter,&fret,func);      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   free_matrix(xi,1,npar,1,npar);    fprintf(ficrespow,"\n");
   fclose(ficrespow);  
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    powell(p,xi,npar,ftol,&iter,&fret,func);
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
 }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 /**** Computes Hessian and covariance matrix ***/    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {  }
   double  **a,**y,*x,pd;  
   double **hess;  /**** Computes Hessian and covariance matrix ***/
   int i, j,jk;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   int *indx;  {
     double  **a,**y,*x,pd;
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    double **hess;
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    int i, j,jk;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    int *indx;
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   double gompertz(double p[]);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   hess=matrix(1,npar,1,npar);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
   printf("\nCalculation of the hessian matrix. Wait...\n");    void ludcmp(double **a, int npar, int *indx, double *d) ;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    double gompertz(double p[]);
   for (i=1;i<=npar;i++){    hess=matrix(1,npar,1,npar);
     printf("%d",i);fflush(stdout);  
     fprintf(ficlog,"%d",i);fflush(ficlog);    printf("\nCalculation of the hessian matrix. Wait...\n");
        fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);    for (i=1;i<=npar;i++){
           printf("%d",i);fflush(stdout);
     /*  printf(" %f ",p[i]);      fprintf(ficlog,"%d",i);fflush(ficlog);
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/     
   }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
        
   for (i=1;i<=npar;i++) {      /*  printf(" %f ",p[i]);
     for (j=1;j<=npar;j++)  {          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       if (j>i) {     }
         printf(".%d%d",i,j);fflush(stdout);   
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    for (i=1;i<=npar;i++) {
         hess[i][j]=hessij(p,delti,i,j,func,npar);      for (j=1;j<=npar;j++)  {
                 if (j>i) {
         hess[j][i]=hess[i][j];              printf(".%d%d",i,j);fflush(stdout);
         /*printf(" %lf ",hess[i][j]);*/          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       }          hess[i][j]=hessij(p,delti,i,j,func,npar);
     }         
   }          hess[j][i]=hess[i][j];    
   printf("\n");          /*printf(" %lf ",hess[i][j]);*/
   fprintf(ficlog,"\n");        }
       }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    }
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    printf("\n");
       fprintf(ficlog,"\n");
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   x=vector(1,npar);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   indx=ivector(1,npar);   
   for (i=1;i<=npar;i++)    a=matrix(1,npar,1,npar);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    y=matrix(1,npar,1,npar);
   ludcmp(a,npar,indx,&pd);    x=vector(1,npar);
     indx=ivector(1,npar);
   for (j=1;j<=npar;j++) {    for (i=1;i<=npar;i++)
     for (i=1;i<=npar;i++) x[i]=0;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     x[j]=1;    ludcmp(a,npar,indx,&pd);
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){     for (j=1;j<=npar;j++) {
       matcov[i][j]=x[i];      for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
   }      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){
   printf("\n#Hessian matrix#\n");        matcov[i][j]=x[i];
   fprintf(ficlog,"\n#Hessian matrix#\n");      }
   for (i=1;i<=npar;i++) {     }
     for (j=1;j<=npar;j++) {   
       printf("%.3e ",hess[i][j]);    printf("\n#Hessian matrix#\n");
       fprintf(ficlog,"%.3e ",hess[i][j]);    fprintf(ficlog,"\n#Hessian matrix#\n");
     }    for (i=1;i<=npar;i++) {
     printf("\n");      for (j=1;j<=npar;j++) {
     fprintf(ficlog,"\n");        printf("%.3e ",hess[i][j]);
   }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
   /* Recompute Inverse */      printf("\n");
   for (i=1;i<=npar;i++)      fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    }
   ludcmp(a,npar,indx,&pd);  
     /* Recompute Inverse */
   /*  printf("\n#Hessian matrix recomputed#\n");    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   for (j=1;j<=npar;j++) {    ludcmp(a,npar,indx,&pd);
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    /*  printf("\n#Hessian matrix recomputed#\n");
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){     for (j=1;j<=npar;j++) {
       y[i][j]=x[i];      for (i=1;i<=npar;i++) x[i]=0;
       printf("%.3e ",y[i][j]);      x[j]=1;
       fprintf(ficlog,"%.3e ",y[i][j]);      lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){
     printf("\n");        y[i][j]=x[i];
     fprintf(ficlog,"\n");        printf("%.3e ",y[i][j]);
   }        fprintf(ficlog,"%.3e ",y[i][j]);
   */      }
       printf("\n");
   free_matrix(a,1,npar,1,npar);      fprintf(ficlog,"\n");
   free_matrix(y,1,npar,1,npar);    }
   free_vector(x,1,npar);    */
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
 }    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
 /*************** hessian matrix ****************/  
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)  
 {  }
   int i;  
   int l=1, lmax=20;  /*************** hessian matrix ****************/
   double k1,k2;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   double p2[NPARMAX+1];  {
   double res;    int i;
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;    int l=1, lmax=20;
   double fx;    double k1,k2;
   int k=0,kmax=10;    double p2[NPARMAX+1];
   double l1;    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   fx=func(x);    double fx;
   for (i=1;i<=npar;i++) p2[i]=x[i];    int k=0,kmax=10;
   for(l=0 ; l <=lmax; l++){    double l1;
     l1=pow(10,l);  
     delts=delt;    fx=func(x);
     for(k=1 ; k <kmax; k=k+1){    for (i=1;i<=npar;i++) p2[i]=x[i];
       delt = delta*(l1*k);    for(l=0 ; l <=lmax; l++){
       p2[theta]=x[theta] +delt;      l1=pow(10,l);
       k1=func(p2)-fx;      delts=delt;
       p2[theta]=x[theta]-delt;      for(k=1 ; k <kmax; k=k+1){
       k2=func(p2)-fx;        delt = delta*(l1*k);
       /*res= (k1-2.0*fx+k2)/delt/delt; */        p2[theta]=x[theta] +delt;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        k1=func(p2)-fx;
               p2[theta]=x[theta]-delt;
 #ifdef DEBUG        k2=func(p2)-fx;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        /*res= (k1-2.0*fx+k2)/delt/delt; */
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 #endif       
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  #ifdef DEBUG
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         k=kmax;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }  #endif
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         k=kmax; l=lmax*10.;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       }          k=kmax;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){         }
         delts=delt;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       }          k=kmax; l=lmax*10.;
     }        }
   }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
   delti[theta]=delts;          delts=delt;
   return res;         }
         }
 }    }
     delti[theta]=delts;
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)    return res;
 {   
   int i;  }
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   double p2[NPARMAX+1];  {
   int k;    int i;
     int l=1, l1, lmax=20;
   fx=func(x);    double k1,k2,k3,k4,res,fx;
   for (k=1; k<=2; k++) {    double p2[NPARMAX+1];
     for (i=1;i<=npar;i++) p2[i]=x[i];    int k;
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    fx=func(x);
     k1=func(p2)-fx;    for (k=1; k<=2; k++) {
         for (i=1;i<=npar;i++) p2[i]=x[i];
     p2[thetai]=x[thetai]+delti[thetai]/k;      p2[thetai]=x[thetai]+delti[thetai]/k;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     k2=func(p2)-fx;      k1=func(p2)-fx;
      
     p2[thetai]=x[thetai]-delti[thetai]/k;      p2[thetai]=x[thetai]+delti[thetai]/k;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     k3=func(p2)-fx;      k2=func(p2)-fx;
      
     p2[thetai]=x[thetai]-delti[thetai]/k;      p2[thetai]=x[thetai]-delti[thetai]/k;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     k4=func(p2)-fx;      k3=func(p2)-fx;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */   
 #ifdef DEBUG      p2[thetai]=x[thetai]-delti[thetai]/k;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      k4=func(p2)-fx;
 #endif      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   }  #ifdef DEBUG
   return res;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
 /************** Inverse of matrix **************/    }
 void ludcmp(double **a, int n, int *indx, double *d)     return res;
 {   }
   int i,imax,j,k;   
   double big,dum,sum,temp;   /************** Inverse of matrix **************/
   double *vv;   void ludcmp(double **a, int n, int *indx, double *d)
    {
   vv=vector(1,n);     int i,imax,j,k;
   *d=1.0;     double big,dum,sum,temp;
   for (i=1;i<=n;i++) {     double *vv;
     big=0.0;    
     for (j=1;j<=n;j++)     vv=vector(1,n);
       if ((temp=fabs(a[i][j])) > big) big=temp;     *d=1.0;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");     for (i=1;i<=n;i++) {
     vv[i]=1.0/big;       big=0.0;
   }       for (j=1;j<=n;j++)
   for (j=1;j<=n;j++) {         if ((temp=fabs(a[i][j])) > big) big=temp;
     for (i=1;i<j;i++) {       if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
       sum=a[i][j];       vv[i]=1.0/big;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];     }
       a[i][j]=sum;     for (j=1;j<=n;j++) {
     }       for (i=1;i<j;i++) {
     big=0.0;         sum=a[i][j];
     for (i=j;i<=n;i++) {         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
       sum=a[i][j];         a[i][j]=sum;
       for (k=1;k<j;k++)       }
         sum -= a[i][k]*a[k][j];       big=0.0;
       a[i][j]=sum;       for (i=j;i<=n;i++) {
       if ( (dum=vv[i]*fabs(sum)) >= big) {         sum=a[i][j];
         big=dum;         for (k=1;k<j;k++)
         imax=i;           sum -= a[i][k]*a[k][j];
       }         a[i][j]=sum;
     }         if ( (dum=vv[i]*fabs(sum)) >= big) {
     if (j != imax) {           big=dum;
       for (k=1;k<=n;k++) {           imax=i;
         dum=a[imax][k];         }
         a[imax][k]=a[j][k];       }
         a[j][k]=dum;       if (j != imax) {
       }         for (k=1;k<=n;k++) {
       *d = -(*d);           dum=a[imax][k];
       vv[imax]=vv[j];           a[imax][k]=a[j][k];
     }           a[j][k]=dum;
     indx[j]=imax;         }
     if (a[j][j] == 0.0) a[j][j]=TINY;         *d = -(*d);
     if (j != n) {         vv[imax]=vv[j];
       dum=1.0/(a[j][j]);       }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;       indx[j]=imax;
     }       if (a[j][j] == 0.0) a[j][j]=TINY;
   }       if (j != n) {
   free_vector(vv,1,n);  /* Doesn't work */        dum=1.0/(a[j][j]);
 ;        for (i=j+1;i<=n;i++) a[i][j] *= dum;
 }       }
     }
 void lubksb(double **a, int n, int *indx, double b[])     free_vector(vv,1,n);  /* Doesn't work */
 {   ;
   int i,ii=0,ip,j;   }
   double sum;   
    void lubksb(double **a, int n, int *indx, double b[])
   for (i=1;i<=n;i++) {   {
     ip=indx[i];     int i,ii=0,ip,j;
     sum=b[ip];     double sum;
     b[ip]=b[i];    
     if (ii)     for (i=1;i<=n;i++) {
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       ip=indx[i];
     else if (sum) ii=i;       sum=b[ip];
     b[i]=sum;       b[ip]=b[i];
   }       if (ii)
   for (i=n;i>=1;i--) {         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
     sum=b[i];       else if (sum) ii=i;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       b[i]=sum;
     b[i]=sum/a[i][i];     }
   }     for (i=n;i>=1;i--) {
 }       sum=b[i];
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
 void pstamp(FILE *fichier)      b[i]=sum/a[i][i];
 {    }
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);  }
 }  
   void pstamp(FILE *fichier)
 /************ Frequencies ********************/  {
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 {  /* Some frequencies */  }
     
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  /************ Frequencies ********************/
   int first;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   double ***freq; /* Frequencies */  {  /* Some frequencies */
   double *pp, **prop;   
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   char fileresp[FILENAMELENGTH];    int first;
       double ***freq; /* Frequencies */
   pp=vector(1,nlstate);    double *pp, **prop;
   prop=matrix(1,nlstate,iagemin,iagemax+3);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   strcpy(fileresp,"p");    char fileresp[FILENAMELENGTH];
   strcat(fileresp,fileres);   
   if((ficresp=fopen(fileresp,"w"))==NULL) {    pp=vector(1,nlstate);
     printf("Problem with prevalence resultfile: %s\n", fileresp);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    strcpy(fileresp,"p");
     exit(0);    strcat(fileresp,fileres);
   }    if((ficresp=fopen(fileresp,"w"))==NULL) {
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   j1=0;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         exit(0);
   j=cptcoveff;    }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
   first=1;   
     j=cptcoveff;
   for(k1=1; k1<=j;k1++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;    first=1;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/    for(k1=1; k1<=j;k1++){
       for (i=-5; i<=nlstate+ndeath; i++)        for(i1=1; i1<=ncodemax[k1];i1++){
         for (jk=-5; jk<=nlstate+ndeath; jk++)          j1++;
           for(m=iagemin; m <= iagemax+3; m++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             freq[i][jk][m]=0;          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
     for (i=1; i<=nlstate; i++)            for (jk=-5; jk<=nlstate+ndeath; jk++)  
       for(m=iagemin; m <= iagemax+3; m++)            for(m=iagemin; m <= iagemax+3; m++)
         prop[i][m]=0;              freq[i][jk][m]=0;
         
       dateintsum=0;      for (i=1; i<=nlstate; i++)  
       k2cpt=0;        for(m=iagemin; m <= iagemax+3; m++)
       for (i=1; i<=imx; i++) {          prop[i][m]=0;
         bool=1;       
         if  (cptcovn>0) {        dateintsum=0;
           for (z1=1; z1<=cptcoveff; z1++)         k2cpt=0;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])         for (i=1; i<=imx; i++) {
               bool=0;          bool=1;
         }          if  (cptcovn>0) {
         if (bool==1){            for (z1=1; z1<=cptcoveff; z1++)
           for(m=firstpass; m<=lastpass; m++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
             k2=anint[m][i]+(mint[m][i]/12.);                bool=0;
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/          }
               if(agev[m][i]==0) agev[m][i]=iagemax+1;          if (bool==1){
               if(agev[m][i]==1) agev[m][i]=iagemax+2;            for(m=firstpass; m<=lastpass; m++){
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];              k2=anint[m][i]+(mint[m][i]/12.);
               if (m<lastpass) {              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                               if (m<lastpass) {
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                 dateintsum=dateintsum+k2;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 k2cpt++;                }
               }               
               /*}*/                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           }                  dateintsum=dateintsum+k2;
         }                  k2cpt++;
       }                }
                        /*}*/
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/            }
       pstamp(ficresp);          }
       if  (cptcovn>0) {        }
         fprintf(ficresp, "\n#********** Variable ");          
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         fprintf(ficresp, "**********\n#");        pstamp(ficresp);
       }        if  (cptcovn>0) {
       for(i=1; i<=nlstate;i++)           fprintf(ficresp, "\n#********** Variable ");
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficresp, "\n");          fprintf(ficresp, "**********\n#");
               }
       for(i=iagemin; i <= iagemax+3; i++){        for(i=1; i<=nlstate;i++)
         if(i==iagemax+3){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           fprintf(ficlog,"Total");        fprintf(ficresp, "\n");
           fprintf(fichtm,"<br>Total<br>");       
         }else{        for(i=iagemin; i <= iagemax+3; i++){
           if(first==1){          if(i==iagemax+3){
             first=0;            fprintf(ficlog,"Total");
             printf("See log file for details...\n");          }else{
           }            if(first==1){
           fprintf(ficlog,"Age %d", i);              first=0;
         }              printf("See log file for details...\n");
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            fprintf(ficlog,"Age %d", i);
             pp[jk] += freq[jk][m][i];           }
         }          for(jk=1; jk <=nlstate ; jk++){
         for(jk=1; jk <=nlstate ; jk++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           for(m=-1, pos=0; m <=0 ; m++)              pp[jk] += freq[jk][m][i];
             pos += freq[jk][m][i];          }
           if(pp[jk]>=1.e-10){          for(jk=1; jk <=nlstate ; jk++){
             if(first==1){            for(m=-1, pos=0; m <=0 ; m++)
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              pos += freq[jk][m][i];
             }            if(pp[jk]>=1.e-10){
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              if(first==1){
           }else{              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             if(first==1)              }
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            }else{
           }              if(first==1)
         }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          }
             pp[jk] += freq[jk][m][i];  
         }                 for(jk=1; jk <=nlstate ; jk++){
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           pos += pp[jk];              pp[jk] += freq[jk][m][i];
           posprop += prop[jk][i];          }      
         }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         for(jk=1; jk <=nlstate ; jk++){            pos += pp[jk];
           if(pos>=1.e-5){            posprop += prop[jk][i];
             if(first==1)          }
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          for(jk=1; jk <=nlstate ; jk++){
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            if(pos>=1.e-5){
           }else{              if(first==1)
             if(first==1)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            }else{
           }              if(first==1)
           if( i <= iagemax){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             if(pos>=1.e-5){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);            }
               /*probs[i][jk][j1]= pp[jk]/pos;*/            if( i <= iagemax){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/              if(pos>=1.e-5){
             }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
             else                /*probs[i][jk][j1]= pp[jk]/pos;*/
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           }              }
         }              else
                         fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         for(jk=-1; jk <=nlstate+ndeath; jk++)            }
           for(m=-1; m <=nlstate+ndeath; m++)          }
             if(freq[jk][m][i] !=0 ) {         
             if(first==1)          for(jk=-1; jk <=nlstate+ndeath; jk++)
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            for(m=-1; m <=nlstate+ndeath; m++)
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);              if(freq[jk][m][i] !=0 ) {
             }              if(first==1)
         if(i <= iagemax)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           fprintf(ficresp,"\n");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         if(first==1)              }
           printf("Others in log...\n");          if(i <= iagemax)
         fprintf(ficlog,"\n");            fprintf(ficresp,"\n");
       }          if(first==1)
     }            printf("Others in log...\n");
   }          fprintf(ficlog,"\n");
   dateintmean=dateintsum/k2cpt;         }
        }
   fclose(ficresp);    }
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);    dateintmean=dateintsum/k2cpt;
   free_vector(pp,1,nlstate);   
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    fclose(ficresp);
   /* End of Freq */    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 }    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 /************ Prevalence ********************/    /* End of Freq */
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)  }
 {    
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people  /************ Prevalence ********************/
      in each health status at the date of interview (if between dateprev1 and dateprev2).  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
      We still use firstpass and lastpass as another selection.  {  
   */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         in each health status at the date of interview (if between dateprev1 and dateprev2).
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;       We still use firstpass and lastpass as another selection.
   double ***freq; /* Frequencies */    */
   double *pp, **prop;   
   double pos,posprop;     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   double  y2; /* in fractional years */    double ***freq; /* Frequencies */
   int iagemin, iagemax;    double *pp, **prop;
     double pos,posprop;
   iagemin= (int) agemin;    double  y2; /* in fractional years */
   iagemax= (int) agemax;    int iagemin, iagemax;
   /*pp=vector(1,nlstate);*/  
   prop=matrix(1,nlstate,iagemin,iagemax+3);     iagemin= (int) agemin;
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    iagemax= (int) agemax;
   j1=0;    /*pp=vector(1,nlstate);*/
       prop=matrix(1,nlstate,iagemin,iagemax+3);
   j=cptcoveff;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    j1=0;
      
   for(k1=1; k1<=j;k1++){    j=cptcoveff;
     for(i1=1; i1<=ncodemax[k1];i1++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       j1++;   
           for(k1=1; k1<=j;k1++){
       for (i=1; i<=nlstate; i++)        for(i1=1; i1<=ncodemax[k1];i1++){
         for(m=iagemin; m <= iagemax+3; m++)        j1++;
           prop[i][m]=0.0;       
              for (i=1; i<=nlstate; i++)  
       for (i=1; i<=imx; i++) { /* Each individual */          for(m=iagemin; m <= iagemax+3; m++)
         bool=1;            prop[i][m]=0.0;
         if  (cptcovn>0) {       
           for (z1=1; z1<=cptcoveff; z1++)         for (i=1; i<=imx; i++) { /* Each individual */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           bool=1;
               bool=0;          if  (cptcovn>0) {
         }             for (z1=1; z1<=cptcoveff; z1++)
         if (bool==1) {               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/                bool=0;
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */          }
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */          if (bool==1) {
               if(agev[m][i]==0) agev[m][i]=iagemax+1;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               if(agev[m][i]==1) agev[m][i]=iagemax+2;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
               if (s[m][i]>0 && s[m][i]<=nlstate) {                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
                 prop[s[m][i]][iagemax+3] += weight[i];                 if (s[m][i]>0 && s[m][i]<=nlstate) {
               }                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           } /* end selection of waves */                  prop[s[m][i]][iagemax+3] += weight[i];
         }                }
       }              }
       for(i=iagemin; i <= iagemax+3; i++){              } /* end selection of waves */
                   }
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {         }
           posprop += prop[jk][i];         for(i=iagemin; i <= iagemax+3; i++){  
         }          
           for(jk=1,posprop=0; jk <=nlstate ; jk++) {
         for(jk=1; jk <=nlstate ; jk++){                 posprop += prop[jk][i];
           if( i <=  iagemax){           }
             if(posprop>=1.e-5){   
               probs[i][jk][j1]= prop[jk][i]/posprop;          for(jk=1; jk <=nlstate ; jk++){    
             }             if( i <=  iagemax){
           }               if(posprop>=1.e-5){
         }/* end jk */                 probs[i][jk][j1]= prop[jk][i]/posprop;
       }/* end i */               }
     } /* end i1 */            }
   } /* end k1 */          }/* end jk */
           }/* end i */
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/      } /* end i1 */
   /*free_vector(pp,1,nlstate);*/    } /* end k1 */
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);   
 }  /* End of prevalence */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
 /************* Waves Concatenation ***************/    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {  /************* Waves Concatenation ***************/
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  
      Death is a valid wave (if date is known).  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  {
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
      and mw[mi+1][i]. dh depends on stepm.       Death is a valid wave (if date is known).
      */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   int i, mi, m;       and mw[mi+1][i]. dh depends on stepm.
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;       */
      double sum=0., jmean=0.;*/  
   int first;    int i, mi, m;
   int j, k=0,jk, ju, jl;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   double sum=0.;       double sum=0., jmean=0.;*/
   first=0;    int first;
   jmin=1e+5;    int j, k=0,jk, ju, jl;
   jmax=-1;    double sum=0.;
   jmean=0.;    first=0;
   for(i=1; i<=imx; i++){    jmin=1e+5;
     mi=0;    jmax=-1;
     m=firstpass;    jmean=0.;
     while(s[m][i] <= nlstate){    for(i=1; i<=imx; i++){
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)      mi=0;
         mw[++mi][i]=m;      m=firstpass;
       if(m >=lastpass)      while(s[m][i] <= nlstate){
         break;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       else          mw[++mi][i]=m;
         m++;        if(m >=lastpass)
     }/* end while */          break;
     if (s[m][i] > nlstate){        else
       mi++;     /* Death is another wave */          m++;
       /* if(mi==0)  never been interviewed correctly before death */      }/* end while */
          /* Only death is a correct wave */      if (s[m][i] > nlstate){
       mw[mi][i]=m;        mi++;     /* Death is another wave */
     }        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
     wav[i]=mi;        mw[mi][i]=m;
     if(mi==0){      }
       nbwarn++;  
       if(first==0){      wav[i]=mi;
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);      if(mi==0){
         first=1;        nbwarn++;
       }        if(first==0){
       if(first==1){          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);          first=1;
       }        }
     } /* end mi==0 */        if(first==1){
   } /* End individuals */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
   for(i=1; i<=imx; i++){      } /* end mi==0 */
     for(mi=1; mi<wav[i];mi++){    } /* End individuals */
       if (stepm <=0)  
         dh[mi][i]=1;    for(i=1; i<=imx; i++){
       else{      for(mi=1; mi<wav[i];mi++){
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */        if (stepm <=0)
           if (agedc[i] < 2*AGESUP) {          dh[mi][i]=1;
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);         else{
             if(j==0) j=1;  /* Survives at least one month after exam */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             else if(j<0){            if (agedc[i] < 2*AGESUP) {
               nberr++;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              if(j==0) j=1;  /* Survives at least one month after exam */
               j=1; /* Temporary Dangerous patch */              else if(j<0){
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);                nberr++;
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);                j=1; /* Temporary Dangerous patch */
             }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             k=k+1;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             if (j >= jmax){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               jmax=j;              }
               ijmax=i;              k=k+1;
             }              if (j >= jmax){
             if (j <= jmin){                jmax=j;
               jmin=j;                ijmax=i;
               ijmin=i;              }
             }              if (j <= jmin){
             sum=sum+j;                jmin=j;
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/                ijmin=i;
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/              }
           }              sum=sum+j;
         }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         else{              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            }
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */          }
           else{
           k=k+1;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           if (j >= jmax) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
             jmax=j;  
             ijmax=i;            k=k+1;
           }            if (j >= jmax) {
           else if (j <= jmin){              jmax=j;
             jmin=j;              ijmax=i;
             ijmin=i;            }
           }            else if (j <= jmin){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */              jmin=j;
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/              ijmin=i;
           if(j<0){            }
             nberr++;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            if(j<0){
           }              nberr++;
           sum=sum+j;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         jk= j/stepm;            }
         jl= j -jk*stepm;            sum=sum+j;
         ju= j -(jk+1)*stepm;          }
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */          jk= j/stepm;
           if(jl==0){          jl= j -jk*stepm;
             dh[mi][i]=jk;          ju= j -(jk+1)*stepm;
             bh[mi][i]=0;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           }else{ /* We want a negative bias in order to only have interpolation ie            if(jl==0){
                   * at the price of an extra matrix product in likelihood */              dh[mi][i]=jk;
             dh[mi][i]=jk+1;              bh[mi][i]=0;
             bh[mi][i]=ju;            }else{ /* We want a negative bias in order to only have interpolation ie
           }                    * at the price of an extra matrix product in likelihood */
         }else{              dh[mi][i]=jk+1;
           if(jl <= -ju){              bh[mi][i]=ju;
             dh[mi][i]=jk;            }
             bh[mi][i]=jl;       /* bias is positive if real duration          }else{
                                  * is higher than the multiple of stepm and negative otherwise.            if(jl <= -ju){
                                  */              dh[mi][i]=jk;
           }              bh[mi][i]=jl;       /* bias is positive if real duration
           else{                                   * is higher than the multiple of stepm and negative otherwise.
             dh[mi][i]=jk+1;                                   */
             bh[mi][i]=ju;            }
           }            else{
           if(dh[mi][i]==0){              dh[mi][i]=jk+1;
             dh[mi][i]=1; /* At least one step */              bh[mi][i]=ju;
             bh[mi][i]=ju; /* At least one step */            }
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/            if(dh[mi][i]==0){
           }              dh[mi][i]=1; /* At least one step */
         } /* end if mle */              bh[mi][i]=ju; /* At least one step */
       }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     } /* end wave */            }
   }          } /* end if mle */
   jmean=sum/k;        }
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);      } /* end wave */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);    }
  }    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 /*********** Tricode ****************************/    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 void tricode(int *Tvar, int **nbcode, int imx)   }
 {  
     /*********** Tricode ****************************/
   int Ndum[20],ij=1, k, j, i, maxncov=19;  void tricode(int *Tvar, int **nbcode, int imx)
   int cptcode=0;  {
   cptcoveff=0;    
      int Ndum[20],ij=1, k, j, i, maxncov=19;
   for (k=0; k<maxncov; k++) Ndum[k]=0;    int cptcode=0;
   for (k=1; k<=7; k++) ncodemax[k]=0;    cptcoveff=0;
    
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum     for (k=1; k<=7; k++) ncodemax[k]=0;
                                modality*/   
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       Ndum[ij]++; /*store the modality */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/                                 modality*/
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                                        Tvar[j]. If V=sex and male is 0 and         Ndum[ij]++; /*store the modality */
                                        female is 1, then  cptcode=1.*/        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
                                          Tvar[j]. If V=sex and male is 0 and
     for (i=0; i<=cptcode; i++) {                                         female is 1, then  cptcode=1.*/
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */      }
     }  
       for (i=0; i<=cptcode; i++) {
     ij=1;         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     for (i=1; i<=ncodemax[j]; i++) {      }
       for (k=0; k<= maxncov; k++) {  
         if (Ndum[k] != 0) {      ij=1;
           nbcode[Tvar[j]][ij]=k;       for (i=1; i<=ncodemax[j]; i++) {
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */        for (k=0; k<= maxncov; k++) {
                     if (Ndum[k] != 0) {
           ij++;            nbcode[Tvar[j]][ij]=k;
         }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         if (ij > ncodemax[j]) break;            
       }              ij++;
     }           }
   }            if (ij > ncodemax[j]) break;
         }  
  for (k=0; k< maxncov; k++) Ndum[k]=0;      }
     }  
  for (i=1; i<=ncovmodel-2; i++) {   
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/   for (k=0; k< maxncov; k++) Ndum[k]=0;
    ij=Tvar[i];  
    Ndum[ij]++;   for (i=1; i<=ncovmodel-2; i++) {
  }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
  ij=1;     Ndum[ij]++;
  for (i=1; i<= maxncov; i++) {   }
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i; /*For printing */   ij=1;
      ij++;   for (i=1; i<= maxncov; i++) {
    }     if((Ndum[i]!=0) && (i<=ncovcol)){
  }       Tvaraff[ij]=i; /*For printing */
         ij++;
  cptcoveff=ij-1; /*Number of simple covariates*/     }
 }   }
    
 /*********** Health Expectancies ****************/   cptcoveff=ij-1; /*Number of simple covariates*/
   }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )  
   /*********** Health Expectancies ****************/
 {  
   /* Health expectancies, no variances */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;  
   double age, agelim, hf;  {
   double ***p3mat;    /* Health expectancies, no variances */
   double eip;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     double age, agelim, hf;
   pstamp(ficreseij);    double ***p3mat;
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");    double eip;
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++){    pstamp(ficreseij);
     for(j=1; j<=nlstate;j++){    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       fprintf(ficreseij," e%1d%1d ",i,j);    fprintf(ficreseij,"# Age");
     }    for(i=1; i<=nlstate;i++){
     fprintf(ficreseij," e%1d. ",i);      for(j=1; j<=nlstate;j++){
   }        fprintf(ficreseij," e%1d%1d ",i,j);
   fprintf(ficreseij,"\n");      }
       fprintf(ficreseij," e%1d. ",i);
       }
   if(estepm < stepm){    fprintf(ficreseij,"\n");
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }   
   else  hstepm=estepm;       if(estepm < stepm){
   /* We compute the life expectancy from trapezoids spaced every estepm months      printf ("Problem %d lower than %d\n",estepm, stepm);
    * This is mainly to measure the difference between two models: for example    }
    * if stepm=24 months pijx are given only every 2 years and by summing them    else  hstepm=estepm;  
    * we are calculating an estimate of the Life Expectancy assuming a linear     /* We compute the life expectancy from trapezoids spaced every estepm months
    * progression in between and thus overestimating or underestimating according     * This is mainly to measure the difference between two models: for example
    * to the curvature of the survival function. If, for the same date, we      * if stepm=24 months pijx are given only every 2 years and by summing them
    * estimate the model with stepm=1 month, we can keep estepm to 24 months     * we are calculating an estimate of the Life Expectancy assuming a linear
    * to compare the new estimate of Life expectancy with the same linear      * progression in between and thus overestimating or underestimating according
    * hypothesis. A more precise result, taking into account a more precise     * to the curvature of the survival function. If, for the same date, we
    * curvature will be obtained if estepm is as small as stepm. */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear
   /* For example we decided to compute the life expectancy with the smallest unit */     * hypothesis. A more precise result, taking into account a more precise
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      * curvature will be obtained if estepm is as small as stepm. */
      nhstepm is the number of hstepm from age to agelim   
      nstepm is the number of stepm from age to agelin.     /* For example we decided to compute the life expectancy with the smallest unit */
      Look at hpijx to understand the reason of that which relies in memory size    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
      and note for a fixed period like estepm months */       nhstepm is the number of hstepm from age to agelim
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the       nstepm is the number of stepm from age to agelin.
      survival function given by stepm (the optimization length). Unfortunately it       Look at hpijx to understand the reason of that which relies in memory size
      means that if the survival funtion is printed only each two years of age and if       and note for a fixed period like estepm months */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      results. So we changed our mind and took the option of the best precision.       survival function given by stepm (the optimization length). Unfortunately it
   */       means that if the survival funtion is printed only each two years of age and if
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        you sum them up and add 1 year (area under the trapezoids) you won't get the same
        results. So we changed our mind and took the option of the best precision.
   agelim=AGESUP;    */
   /* nhstepm age range expressed in number of stepm */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   nstepm=(int) rint((agelim-age)*YEARM/stepm);   
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */     agelim=AGESUP;
   /* if (stepm >= YEARM) hstepm=1;*/    /* If stepm=6 months */
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /* nhstepm age range expressed in number of stepm */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
         /* if (stepm >= YEARM) hstepm=1;*/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
         for (age=bage; age<=fage; age ++){
     printf("%d|",(int)age);fflush(stdout);  
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);  
           hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     /* Computing expectancies */     
     for(i=1; i<=nlstate;i++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(j=1; j<=nlstate;j++)     
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      printf("%d|",(int)age);fflush(stdout);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
       /* Computing expectancies */
         }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
     fprintf(ficreseij,"%3.0f",age );          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     for(i=1; i<=nlstate;i++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       eip=0;           
       for(j=1; j<=nlstate;j++){            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         eip +=eij[i][j][(int)age];  
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );          }
       }     
       fprintf(ficreseij,"%9.4f", eip );      fprintf(ficreseij,"%3.0f",age );
     }      for(i=1; i<=nlstate;i++){
     fprintf(ficreseij,"\n");        eip=0;
             for(j=1; j<=nlstate;j++){
   }          eip +=eij[i][j][(int)age];
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   printf("\n");        }
   fprintf(ficlog,"\n");        fprintf(ficreseij,"%9.4f", eip );
         }
 }      fprintf(ficreseij,"\n");
      
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 {    printf("\n");
   /* Covariances of health expectancies eij and of total life expectancies according    fprintf(ficlog,"\n");
    to initial status i, ei. .   
   */  }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;  
   double age, agelim, hf;  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   double ***p3matp, ***p3matm, ***varhe;  
   double **dnewm,**doldm;  {
   double *xp, *xm;    /* Covariances of health expectancies eij and of total life expectancies according
   double **gp, **gm;     to initial status i, ei. .
   double ***gradg, ***trgradg;    */
   int theta;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     double age, agelim, hf;
   double eip, vip;    double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);    double *xp, *xm;
   xp=vector(1,npar);    double **gp, **gm;
   xm=vector(1,npar);    double ***gradg, ***trgradg;
   dnewm=matrix(1,nlstate*nlstate,1,npar);    int theta;
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);  
       double eip, vip;
   pstamp(ficresstdeij);  
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   fprintf(ficresstdeij,"# Age");    xp=vector(1,npar);
   for(i=1; i<=nlstate;i++){    xm=vector(1,npar);
     for(j=1; j<=nlstate;j++)    dnewm=matrix(1,nlstate*nlstate,1,npar);
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     fprintf(ficresstdeij," e%1d. ",i);   
   }    pstamp(ficresstdeij);
   fprintf(ficresstdeij,"\n");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
   pstamp(ficrescveij);    for(i=1; i<=nlstate;i++){
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");      for(j=1; j<=nlstate;j++)
   fprintf(ficrescveij,"# Age");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   for(i=1; i<=nlstate;i++)      fprintf(ficresstdeij," e%1d. ",i);
     for(j=1; j<=nlstate;j++){    }
       cptj= (j-1)*nlstate+i;    fprintf(ficresstdeij,"\n");
       for(i2=1; i2<=nlstate;i2++)  
         for(j2=1; j2<=nlstate;j2++){    pstamp(ficrescveij);
           cptj2= (j2-1)*nlstate+i2;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           if(cptj2 <= cptj)    fprintf(ficrescveij,"# Age");
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);    for(i=1; i<=nlstate;i++)
         }      for(j=1; j<=nlstate;j++){
     }        cptj= (j-1)*nlstate+i;
   fprintf(ficrescveij,"\n");        for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
   if(estepm < stepm){            cptj2= (j2-1)*nlstate+i2;
     printf ("Problem %d lower than %d\n",estepm, stepm);            if(cptj2 <= cptj)
   }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   else  hstepm=estepm;             }
   /* We compute the life expectancy from trapezoids spaced every estepm months      }
    * This is mainly to measure the difference between two models: for example    fprintf(ficrescveij,"\n");
    * if stepm=24 months pijx are given only every 2 years and by summing them   
    * we are calculating an estimate of the Life Expectancy assuming a linear     if(estepm < stepm){
    * progression in between and thus overestimating or underestimating according      printf ("Problem %d lower than %d\n",estepm, stepm);
    * to the curvature of the survival function. If, for the same date, we     }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    else  hstepm=estepm;  
    * to compare the new estimate of Life expectancy with the same linear     /* We compute the life expectancy from trapezoids spaced every estepm months
    * hypothesis. A more precise result, taking into account a more precise     * This is mainly to measure the difference between two models: for example
    * curvature will be obtained if estepm is as small as stepm. */     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear
   /* For example we decided to compute the life expectancy with the smallest unit */     * progression in between and thus overestimating or underestimating according
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      * to the curvature of the survival function. If, for the same date, we
      nhstepm is the number of hstepm from age to agelim      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      nstepm is the number of stepm from age to agelin.      * to compare the new estimate of Life expectancy with the same linear
      Look at hpijx to understand the reason of that which relies in memory size     * hypothesis. A more precise result, taking into account a more precise
      and note for a fixed period like estepm months */     * curvature will be obtained if estepm is as small as stepm. */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    /* For example we decided to compute the life expectancy with the smallest unit */
      means that if the survival funtion is printed only each two years of age and if    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        nhstepm is the number of hstepm from age to agelim
      results. So we changed our mind and took the option of the best precision.       nstepm is the number of stepm from age to agelin.
   */       Look at hpijx to understand the reason of that which relies in memory size
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /* If stepm=6 months */       survival function given by stepm (the optimization length). Unfortunately it
   /* nhstepm age range expressed in number of stepm */       means that if the survival funtion is printed only each two years of age and if
   agelim=AGESUP;       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   nstepm=(int) rint((agelim-age)*YEARM/stepm);        results. So we changed our mind and took the option of the best precision.
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */     */
   /* if (stepm >= YEARM) hstepm=1;*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
       /* If stepm=6 months */
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* nhstepm age range expressed in number of stepm */
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    agelim=AGESUP;
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   gp=matrix(0,nhstepm,1,nlstate*nlstate);    /* if (stepm >= YEARM) hstepm=1;*/
   gm=matrix(0,nhstepm,1,nlstate*nlstate);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    
   for (age=bage; age<=fage; age ++){     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      gp=matrix(0,nhstepm,1,nlstate*nlstate);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     /* Computing  Variances of health expectancies */    for (age=bage; age<=fage; age ++){
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to  
        decrease memory allocation */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     for(theta=1; theta <=npar; theta++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       for(i=1; i<=npar; i++){    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         xm[i] = x[i] - (i==theta ?delti[theta]:0);  
       }      /* Computing  Variances of health expectancies */
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);        /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);           decrease memory allocation */
         for(theta=1; theta <=npar; theta++){
       for(j=1; j<= nlstate; j++){        for(i=1; i<=npar; i++){
         for(i=1; i<=nlstate; i++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for(h=0; h<=nhstepm-1; h++){          xm[i] = x[i] - (i==theta ?delti[theta]:0);
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;        }
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
           }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         }   
       }        for(j=1; j<= nlstate; j++){
                for(i=1; i<=nlstate; i++){
       for(ij=1; ij<= nlstate*nlstate; ij++)            for(h=0; h<=nhstepm-1; h++){
         for(h=0; h<=nhstepm-1; h++){              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         }            }
     }/* End theta */          }
             }
            
     for(h=0; h<=nhstepm-1; h++)        for(ij=1; ij<= nlstate*nlstate; ij++)
       for(j=1; j<=nlstate*nlstate;j++)          for(h=0; h<=nhstepm-1; h++){
         for(theta=1; theta <=npar; theta++)            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           trgradg[h][j][theta]=gradg[h][theta][j];          }
           }/* End theta */
      
      for(ij=1;ij<=nlstate*nlstate;ij++)     
       for(ji=1;ji<=nlstate*nlstate;ji++)      for(h=0; h<=nhstepm-1; h++)
         varhe[ij][ji][(int)age] =0.;        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
      printf("%d|",(int)age);fflush(stdout);            trgradg[h][j][theta]=gradg[h][theta][j];
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);     
      for(h=0;h<=nhstepm-1;h++){  
       for(k=0;k<=nhstepm-1;k++){       for(ij=1;ij<=nlstate*nlstate;ij++)
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);        for(ji=1;ji<=nlstate*nlstate;ji++)
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);          varhe[ij][ji][(int)age] =0.;
         for(ij=1;ij<=nlstate*nlstate;ij++)  
           for(ji=1;ji<=nlstate*nlstate;ji++)       printf("%d|",(int)age);fflush(stdout);
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       }       for(h=0;h<=nhstepm-1;h++){
     }        for(k=0;k<=nhstepm-1;k++){
     /* Computing expectancies */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     for(i=1; i<=nlstate;i++)          for(ij=1;ij<=nlstate*nlstate;ij++)
       for(j=1; j<=nlstate;j++)            for(ji=1;ji<=nlstate*nlstate;ji++)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;        }
                 }
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
       /* Computing expectancies */
         }      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
     fprintf(ficresstdeij,"%3.0f",age );        for(j=1; j<=nlstate;j++)
     for(i=1; i<=nlstate;i++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       eip=0.;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       vip=0.;           
       for(j=1; j<=nlstate;j++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         eip += eij[i][j][(int)age];  
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */          }
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];  
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );      fprintf(ficresstdeij,"%3.0f",age );
       }      for(i=1; i<=nlstate;i++){
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));        eip=0.;
     }        vip=0.;
     fprintf(ficresstdeij,"\n");        for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
     fprintf(ficrescveij,"%3.0f",age );          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     for(i=1; i<=nlstate;i++)            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
       for(j=1; j<=nlstate;j++){          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         cptj= (j-1)*nlstate+i;        }
         for(i2=1; i2<=nlstate;i2++)        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
           for(j2=1; j2<=nlstate;j2++){      }
             cptj2= (j2-1)*nlstate+i2;      fprintf(ficresstdeij,"\n");
             if(cptj2 <= cptj)  
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);      fprintf(ficrescveij,"%3.0f",age );
           }      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++){
     fprintf(ficrescveij,"\n");          cptj= (j-1)*nlstate+i;
              for(i2=1; i2<=nlstate;i2++)
   }            for(j2=1; j2<=nlstate;j2++){
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);              cptj2= (j2-1)*nlstate+i2;
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);              if(cptj2 <= cptj)
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);            }
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficrescveij,"\n");
   printf("\n");     
   fprintf(ficlog,"\n");    }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   free_vector(xm,1,npar);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   free_vector(xp,1,npar);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }    printf("\n");
     fprintf(ficlog,"\n");
 /************ Variance ******************/  
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])    free_vector(xm,1,npar);
 {    free_vector(xp,1,npar);
   /* Variance of health expectancies */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   /* double **newm;*/    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   double **dnewm,**doldm;  }
   double **dnewmp,**doldmp;  
   int i, j, nhstepm, hstepm, h, nstepm ;  /************ Variance ******************/
   int k, cptcode;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   double *xp;  {
   double **gp, **gm;  /* for var eij */    /* Variance of health expectancies */
   double ***gradg, ***trgradg; /*for var eij */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   double **gradgp, **trgradgp; /* for var p point j */    /* double **newm;*/
   double *gpp, *gmp; /* for var p point j */    double **dnewm,**doldm;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    double **dnewmp,**doldmp;
   double ***p3mat;    int i, j, nhstepm, hstepm, h, nstepm ;
   double age,agelim, hf;    int k, cptcode;
   double ***mobaverage;    double *xp;
   int theta;    double **gp, **gm;  /* for var eij */
   char digit[4];    double ***gradg, ***trgradg; /*for var eij */
   char digitp[25];    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
   char fileresprobmorprev[FILENAMELENGTH];    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
   if(popbased==1){    double age,agelim, hf;
     if(mobilav!=0)    double ***mobaverage;
       strcpy(digitp,"-populbased-mobilav-");    int theta;
     else strcpy(digitp,"-populbased-nomobil-");    char digit[4];
   }    char digitp[25];
   else   
     strcpy(digitp,"-stablbased-");    char fileresprobmorprev[FILENAMELENGTH];
   
   if (mobilav!=0) {    if(popbased==1){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if(mobilav!=0)
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){        strcpy(digitp,"-populbased-mobilav-");
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      else strcpy(digitp,"-populbased-nomobil-");
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    }
     }    else
   }      strcpy(digitp,"-stablbased-");
   
   strcpy(fileresprobmorprev,"prmorprev");     if (mobilav!=0) {
   sprintf(digit,"%-d",ij);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   strcat(fileresprobmorprev,digit); /* Tvar to be done */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcat(fileresprobmorprev,fileres);      }
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprobmorprev);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    strcpy(fileresprobmorprev,"prmorprev");
   }    sprintf(digit,"%-d",ij);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      strcat(fileresprobmorprev,digit); /* Tvar to be done */
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   pstamp(ficresprobmorprev);    strcat(fileresprobmorprev,fileres);
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     fprintf(ficresprobmorprev," p.%-d SE",j);    }
     for(i=1; i<=nlstate;i++)    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);   
   }      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(ficresprobmorprev,"\n");    pstamp(ficresprobmorprev);
   fprintf(ficgp,"\n# Routine varevsij");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);      fprintf(ficresprobmorprev," p.%-d SE",j);
 /*   } */      for(i=1; i<=nlstate;i++)
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   pstamp(ficresvij);    }  
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");    fprintf(ficresprobmorprev,"\n");
   if(popbased==1)    fprintf(ficgp,"\n# Routine varevsij");
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   else    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   fprintf(ficresvij,"# Age");  /*   } */
   for(i=1; i<=nlstate;i++)    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for(j=1; j<=nlstate;j++)    pstamp(ficresvij);
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   fprintf(ficresvij,"\n");    if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   xp=vector(1,npar);    else
   dnewm=matrix(1,nlstate,1,npar);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   doldm=matrix(1,nlstate,1,nlstate);    fprintf(ficresvij,"# Age");
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    for(i=1; i<=nlstate;i++)
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    fprintf(ficresvij,"\n");
   gpp=vector(nlstate+1,nlstate+ndeath);  
   gmp=vector(nlstate+1,nlstate+ndeath);    xp=vector(1,npar);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    dnewm=matrix(1,nlstate,1,npar);
       doldm=matrix(1,nlstate,1,nlstate);
   if(estepm < stepm){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     printf ("Problem %d lower than %d\n",estepm, stepm);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
   else  hstepm=estepm;       gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   /* For example we decided to compute the life expectancy with the smallest unit */    gpp=vector(nlstate+1,nlstate+ndeath);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     gmp=vector(nlstate+1,nlstate+ndeath);
      nhstepm is the number of hstepm from age to agelim     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      nstepm is the number of stepm from age to agelin.    
      Look at hpijx to understand the reason of that which relies in memory size    if(estepm < stepm){
      and note for a fixed period like k years */      printf ("Problem %d lower than %d\n",estepm, stepm);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    }
      survival function given by stepm (the optimization length). Unfortunately it    else  hstepm=estepm;  
      means that if the survival funtion is printed every two years of age and if    /* For example we decided to compute the life expectancy with the smallest unit */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
      results. So we changed our mind and took the option of the best precision.       nhstepm is the number of hstepm from age to agelim
   */       nstepm is the number of stepm from age to agelin.
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        Look at hpijx to understand the reason of that which relies in memory size
   agelim = AGESUP;       and note for a fixed period like k years */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        survival function given by stepm (the optimization length). Unfortunately it
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       means that if the survival funtion is printed every two years of age and if
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);       results. So we changed our mind and took the option of the best precision.
     gp=matrix(0,nhstepm,1,nlstate);    */
     gm=matrix(0,nhstepm,1,nlstate);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for(theta=1; theta <=npar; theta++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        gp=matrix(0,nhstepm,1,nlstate);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      gm=matrix(0,nhstepm,1,nlstate);
   
       if (popbased==1) {  
         if(mobilav ==0){      for(theta=1; theta <=npar; theta++){
           for(i=1; i<=nlstate;i++)        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
             prlim[i][i]=probs[(int)age][i][ij];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }else{ /* mobilav */         }
           for(i=1; i<=nlstate;i++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             prlim[i][i]=mobaverage[(int)age][i][ij];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }  
       }        if (popbased==1) {
             if(mobilav ==0){
       for(j=1; j<= nlstate; j++){            for(i=1; i<=nlstate;i++)
         for(h=0; h<=nhstepm; h++){              prlim[i][i]=probs[(int)age][i][ij];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          }else{ /* mobilav */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            for(i=1; i<=nlstate;i++)
         }              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
       /* This for computing probability of death (h=1 means        }
          computed over hstepm matrices product = hstepm*stepm months)    
          as a weighted average of prlim.        for(j=1; j<= nlstate; j++){
       */          for(h=0; h<=nhstepm; h++){
       for(j=nlstate+1;j<=nlstate+ndeath;j++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         for(i=1,gpp[j]=0.; i<= nlstate; i++)              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          }
       }            }
       /* end probability of death */        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months)
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */           as a weighted average of prlim.
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(j=nlstate+1;j<=nlstate+ndeath;j++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
       if (popbased==1) {        }    
         if(mobilav ==0){        /* end probability of death */
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][ij];        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         }else{ /* mobilav */           xp[i] = x[i] - (i==theta ?delti[theta]:0);
           for(i=1; i<=nlstate;i++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             prlim[i][i]=mobaverage[(int)age][i][ij];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }   
       }        if (popbased==1) {
           if(mobilav ==0){
       for(j=1; j<= nlstate; j++){            for(i=1; i<=nlstate;i++)
         for(h=0; h<=nhstepm; h++){              prlim[i][i]=probs[(int)age][i][ij];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          }else{ /* mobilav */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            for(i=1; i<=nlstate;i++)
         }              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
       /* This for computing probability of death (h=1 means        }
          computed over hstepm matrices product = hstepm*stepm months)   
          as a weighted average of prlim.        for(j=1; j<= nlstate; j++){
       */          for(h=0; h<=nhstepm; h++){
       for(j=nlstate+1;j<=nlstate+ndeath;j++){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         for(i=1,gmp[j]=0.; i<= nlstate; i++)              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
          gmp[j] += prlim[i][i]*p3mat[i][j][1];          }
       }            }
       /* end probability of death */        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months)
       for(j=1; j<= nlstate; j++) /* vareij */           as a weighted average of prlim.
         for(h=0; h<=nhstepm; h++){        */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        }    
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];        /* end probability of death */
       }  
         for(j=1; j<= nlstate; j++) /* vareij */
     } /* End theta */          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          }
   
     for(h=0; h<=nhstepm; h++) /* veij */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       for(j=1; j<=nlstate;j++)          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         for(theta=1; theta <=npar; theta++)        }
           trgradg[h][j][theta]=gradg[h][theta][j];  
       } /* End theta */
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */  
       for(theta=1; theta <=npar; theta++)      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         trgradgp[j][theta]=gradgp[theta][j];  
         for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          for(theta=1; theta <=npar; theta++)
     for(i=1;i<=nlstate;i++)            trgradg[h][j][theta]=gradg[h][theta][j];
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
     for(h=0;h<=nhstepm;h++){          trgradgp[j][theta]=gradgp[theta][j];
       for(k=0;k<=nhstepm;k++){   
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for(i=1;i<=nlstate;i++)      for(i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate;j++)        for(j=1;j<=nlstate;j++)
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          vareij[i][j][(int)age] =0.;
       }  
     }      for(h=0;h<=nhstepm;h++){
           for(k=0;k<=nhstepm;k++){
     /* pptj */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          for(i=1;i<=nlstate;i++)
     for(j=nlstate+1;j<=nlstate+ndeath;j++)            for(j=1;j<=nlstate;j++)
       for(i=nlstate+1;i<=nlstate+ndeath;i++)              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         varppt[j][i]=doldmp[j][i];        }
     /* end ppptj */      }
     /*  x centered again */   
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        /* pptj */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     if (popbased==1) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       if(mobilav ==0){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         for(i=1; i<=nlstate;i++)          varppt[j][i]=doldmp[j][i];
           prlim[i][i]=probs[(int)age][i][ij];      /* end ppptj */
       }else{ /* mobilav */       /*  x centered again */
         for(i=1; i<=nlstate;i++)      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           prlim[i][i]=mobaverage[(int)age][i][ij];      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       }   
     }      if (popbased==1) {
                      if(mobilav ==0){
     /* This for computing probability of death (h=1 means          for(i=1; i<=nlstate;i++)
        computed over hstepm (estepm) matrices product = hstepm*stepm months)             prlim[i][i]=probs[(int)age][i][ij];
        as a weighted average of prlim.        }else{ /* mobilav */
     */          for(i=1; i<=nlstate;i++)
     for(j=nlstate+1;j<=nlstate+ndeath;j++){            prlim[i][i]=mobaverage[(int)age][i][ij];
       for(i=1,gmp[j]=0.;i<= nlstate; i++)         }
         gmp[j] += prlim[i][i]*p3mat[i][j][1];       }
     }                   
     /* end probability of death */      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months)
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);         as a weighted average of prlim.
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      */
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(i=1; i<=nlstate;i++){        for(i=1,gmp[j]=0.;i<= nlstate; i++)
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);          gmp[j] += prlim[i][i]*p3mat[i][j][1];
       }      }    
     }       /* end probability of death */
     fprintf(ficresprobmorprev,"\n");  
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     fprintf(ficresvij,"%.0f ",age );      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     for(i=1; i<=nlstate;i++)        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       for(j=1; j<=nlstate;j++){        for(i=1; i<=nlstate;i++){
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       }        }
     fprintf(ficresvij,"\n");      }
     free_matrix(gp,0,nhstepm,1,nlstate);      fprintf(ficresprobmorprev,"\n");
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      fprintf(ficresvij,"%.0f ",age );
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      for(i=1; i<=nlstate;i++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<=nlstate;j++){
   } /* End age */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   free_vector(gpp,nlstate+1,nlstate+ndeath);        }
   free_vector(gmp,nlstate+1,nlstate+ndeath);      fprintf(ficresvij,"\n");
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      free_matrix(gp,0,nhstepm,1,nlstate);
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      free_matrix(gm,0,nhstepm,1,nlstate);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    } /* End age */
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */    free_vector(gpp,nlstate+1,nlstate+ndeath);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */    free_vector(gmp,nlstate+1,nlstate+ndeath);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   free_vector(xp,1,npar);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   free_matrix(doldm,1,nlstate,1,nlstate);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   free_matrix(dnewm,1,nlstate,1,npar);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  */
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   fclose(ficresprobmorprev);  
   fflush(ficgp);    free_vector(xp,1,npar);
   fflush(fichtm);     free_matrix(doldm,1,nlstate,1,nlstate);
 }  /* end varevsij */    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 /************ Variance of prevlim ******************/    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* Variance of prevalence limit */    fclose(ficresprobmorprev);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    fflush(ficgp);
   double **newm;    fflush(fichtm);
   double **dnewm,**doldm;  }  /* end varevsij */
   int i, j, nhstepm, hstepm;  
   int k, cptcode;  /************ Variance of prevlim ******************/
   double *xp;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   double *gp, *gm;  {
   double **gradg, **trgradg;    /* Variance of prevalence limit */
   double age,agelim;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   int theta;    double **newm;
       double **dnewm,**doldm;
   pstamp(ficresvpl);    int i, j, nhstepm, hstepm;
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");    int k, cptcode;
   fprintf(ficresvpl,"# Age");    double *xp;
   for(i=1; i<=nlstate;i++)    double *gp, *gm;
       fprintf(ficresvpl," %1d-%1d",i,i);    double **gradg, **trgradg;
   fprintf(ficresvpl,"\n");    double age,agelim;
     int theta;
   xp=vector(1,npar);   
   dnewm=matrix(1,nlstate,1,npar);    pstamp(ficresvpl);
   doldm=matrix(1,nlstate,1,nlstate);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       fprintf(ficresvpl,"# Age");
   hstepm=1*YEARM; /* Every year of age */    for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */         fprintf(ficresvpl," %1d-%1d",i,i);
   agelim = AGESUP;    fprintf(ficresvpl,"\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     xp=vector(1,npar);
     if (stepm >= YEARM) hstepm=1;    dnewm=matrix(1,nlstate,1,npar);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    doldm=matrix(1,nlstate,1,nlstate);
     gradg=matrix(1,npar,1,nlstate);   
     gp=vector(1,nlstate);    hstepm=1*YEARM; /* Every year of age */
     gm=vector(1,nlstate);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
     agelim = AGESUP;
     for(theta=1; theta <=npar; theta++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(i=1; i<=npar; i++){ /* Computes gradient */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      if (stepm >= YEARM) hstepm=1;
       }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      gradg=matrix(1,npar,1,nlstate);
       for(i=1;i<=nlstate;i++)      gp=vector(1,nlstate);
         gp[i] = prlim[i][i];      gm=vector(1,nlstate);
       
       for(i=1; i<=npar; i++) /* Computes gradient */      for(theta=1; theta <=npar; theta++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(i=1; i<=npar; i++){ /* Computes gradient */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(i=1;i<=nlstate;i++)        }
         gm[i] = prlim[i][i];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
       for(i=1;i<=nlstate;i++)          gp[i] = prlim[i][i];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];     
     } /* End theta */        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
     trgradg =matrix(1,nlstate,1,npar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
     for(j=1; j<=nlstate;j++)          gm[i] = prlim[i][i];
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     for(i=1;i<=nlstate;i++)      } /* End theta */
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      trgradg =matrix(1,nlstate,1,npar);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)      for(j=1; j<=nlstate;j++)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)      for(i=1;i<=nlstate;i++)
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        varpl[i][(int)age] =0.;
     fprintf(ficresvpl,"\n");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     free_vector(gp,1,nlstate);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     free_vector(gm,1,nlstate);      for(i=1;i<=nlstate;i++)
     free_matrix(gradg,1,npar,1,nlstate);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   free_vector(xp,1,npar);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   free_matrix(doldm,1,nlstate,1,npar);      fprintf(ficresvpl,"\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
 }      free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
 /************ Variance of one-step probabilities  ******************/    } /* End age */
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])  
 {    free_vector(xp,1,npar);
   int i, j=0,  i1, k1, l1, t, tj;    free_matrix(doldm,1,nlstate,1,npar);
   int k2, l2, j1,  z1;    free_matrix(dnewm,1,nlstate,1,nlstate);
   int k=0,l, cptcode;  
   int first=1, first1;  }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;  
   double **dnewm,**doldm;  /************ Variance of one-step probabilities  ******************/
   double *xp;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   double *gp, *gm;  {
   double **gradg, **trgradg;    int i, j=0,  i1, k1, l1, t, tj;
   double **mu;    int k2, l2, j1,  z1;
   double age,agelim, cov[NCOVMAX];    int k=0,l, cptcode;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    int first=1, first1;
   int theta;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   char fileresprob[FILENAMELENGTH];    double **dnewm,**doldm;
   char fileresprobcov[FILENAMELENGTH];    double *xp;
   char fileresprobcor[FILENAMELENGTH];    double *gp, *gm;
     double **gradg, **trgradg;
   double ***varpij;    double **mu;
     double age,agelim, cov[NCOVMAX];
   strcpy(fileresprob,"prob");     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   strcat(fileresprob,fileres);    int theta;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    char fileresprob[FILENAMELENGTH];
     printf("Problem with resultfile: %s\n", fileresprob);    char fileresprobcov[FILENAMELENGTH];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    char fileresprobcor[FILENAMELENGTH];
   }  
   strcpy(fileresprobcov,"probcov");     double ***varpij;
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    strcpy(fileresprob,"prob");
     printf("Problem with resultfile: %s\n", fileresprobcov);    strcat(fileresprob,fileres);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprob);
   strcpy(fileresprobcor,"probcor");       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   strcat(fileresprobcor,fileres);    }
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    strcpy(fileresprobcov,"probcov");
     printf("Problem with resultfile: %s\n", fileresprobcor);    strcat(fileresprobcov,fileres);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcov);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    strcpy(fileresprobcor,"probcor");
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    strcat(fileresprobcor,fileres);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      printf("Problem with resultfile: %s\n", fileresprobcor);
   pstamp(ficresprob);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    }
   fprintf(ficresprob,"# Age");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   pstamp(ficresprobcov);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fprintf(ficresprobcov,"# Age");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   pstamp(ficresprobcor);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fprintf(ficresprobcor,"# Age");    pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
   for(i=1; i<=nlstate;i++)    pstamp(ficresprobcov);
     for(j=1; j<=(nlstate+ndeath);j++){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    fprintf(ficresprobcov,"# Age");
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    pstamp(ficresprobcor);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     }      fprintf(ficresprobcor,"# Age");
  /* fprintf(ficresprob,"\n");  
   fprintf(ficresprobcov,"\n");  
   fprintf(ficresprobcor,"\n");    for(i=1; i<=nlstate;i++)
  */      for(j=1; j<=(nlstate+ndeath);j++){
  xp=vector(1,npar);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      }  
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);   /* fprintf(ficresprob,"\n");
   first=1;    fprintf(ficresprobcov,"\n");
   fprintf(ficgp,"\n# Routine varprob");    fprintf(ficresprobcor,"\n");
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");   */
   fprintf(fichtm,"\n");   xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   file %s<br>\n",optionfilehtmcov);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\    first=1;
 and drawn. It helps understanding how is the covariance between two incidences.\    fprintf(ficgp,"\n# Routine varprob");
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \    fprintf(fichtm,"\n");
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \  
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 standard deviations wide on each axis. <br>\    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\    file %s<br>\n",optionfilehtmcov);
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   cov[1]=1;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   tj=cptcoveff;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   j1=0;  standard deviations wide on each axis. <br>\
   for(t=1; t<=tj;t++){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     for(i1=1; i1<=ncodemax[t];i1++){    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       j1++;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       if  (cptcovn>0) {  
         fprintf(ficresprob, "\n#********** Variable ");     cov[1]=1;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    tj=cptcoveff;
         fprintf(ficresprob, "**********\n#\n");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         fprintf(ficresprobcov, "\n#********** Variable ");     j1=0;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for(t=1; t<=tj;t++){
         fprintf(ficresprobcov, "**********\n#\n");      for(i1=1; i1<=ncodemax[t];i1++){
                 j1++;
         fprintf(ficgp, "\n#********** Variable ");         if  (cptcovn>0) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficresprob, "\n#********** Variable ");
         fprintf(ficgp, "**********\n#\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   fprintf(ficresprob, "**********\n#\n");
                   fprintf(ficresprobcov, "\n#********** Variable ");
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficresprobcov, "**********\n#\n");
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");         
                   fprintf(ficgp, "\n#********** Variable ");
         fprintf(ficresprobcor, "\n#********** Variable ");              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficgp, "**********\n#\n");
         fprintf(ficresprobcor, "**********\n#");             
       }         
                 fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
       for (age=bage; age<=fage; age ++){           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         cov[2]=age;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         for (k=1; k<=cptcovn;k++) {         
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          fprintf(ficresprobcor, "\n#********** Variable ");    
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          fprintf(ficresprobcor, "**********\n#");    
         for (k=1; k<=cptcovprod;k++)        }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];       
                 for (age=bage; age<=fage; age ++){
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          cov[2]=age;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          for (k=1; k<=cptcovn;k++) {
         gp=vector(1,(nlstate)*(nlstate+ndeath));            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         gm=vector(1,(nlstate)*(nlstate+ndeath));          }
               for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for(theta=1; theta <=npar; theta++){          for (k=1; k<=cptcovprod;k++)
           for(i=1; i<=npar; i++)            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);         
                     gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                     gp=vector(1,(nlstate)*(nlstate+ndeath));
           k=0;          gm=vector(1,(nlstate)*(nlstate+ndeath));
           for(i=1; i<= (nlstate); i++){     
             for(j=1; j<=(nlstate+ndeath);j++){          for(theta=1; theta <=npar; theta++){
               k=k+1;            for(i=1; i<=npar; i++)
               gp[k]=pmmij[i][j];              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             }           
           }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                      
           for(i=1; i<=npar; i++)            k=0;
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);            for(i=1; i<= (nlstate); i++){
                   for(j=1; j<=(nlstate+ndeath);j++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                k=k+1;
           k=0;                gp[k]=pmmij[i][j];
           for(i=1; i<=(nlstate); i++){              }
             for(j=1; j<=(nlstate+ndeath);j++){            }
               k=k+1;           
               gm[k]=pmmij[i][j];            for(i=1; i<=npar; i++)
             }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           }     
                  pmij(pmmij,cov,ncovmodel,xp,nlstate);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)             k=0;
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];              for(i=1; i<=(nlstate); i++){
         }              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)                gm[k]=pmmij[i][j];
           for(theta=1; theta <=npar; theta++)              }
             trgradg[j][theta]=gradg[theta][j];            }
                
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          }
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
         pmij(pmmij,cov,ncovmodel,x,nlstate);         
                   matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
         k=0;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         for(i=1; i<=(nlstate); i++){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           for(j=1; j<=(nlstate+ndeath);j++){          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
             k=k+1;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             mu[k][(int) age]=pmmij[i][j];          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           }  
         }          pmij(pmmij,cov,ncovmodel,x,nlstate);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)         
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          k=0;
             varpij[i][j][(int)age] = doldm[i][j];          for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
         /*printf("\n%d ",(int)age);              k=k+1;
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              mu[k][(int) age]=pmmij[i][j];
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            }
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          }
           }*/          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         fprintf(ficresprob,"\n%d ",(int)age);              varpij[i][j][(int)age] = doldm[i][j];
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            }*/
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          fprintf(ficresprob,"\n%d ",(int)age);
         }          fprintf(ficresprobcov,"\n%d ",(int)age);
         i=0;          fprintf(ficresprobcor,"\n%d ",(int)age);
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             i=i++;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             for (j=1; j<=i;j++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          i=0;
             }          for (k=1; k<=(nlstate);k++){
           }            for (l=1; l<=(nlstate+ndeath);l++){
         }/* end of loop for state */              i=i++;
       } /* end of loop for age */              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       /* Confidence intervalle of pij  */              for (j=1; j<=i;j++){
       /*                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         fprintf(ficgp,"\nset noparametric;unset label");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");              }
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            }
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          }/* end of loop for state */
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        } /* end of loop for age */
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);        /* Confidence intervalle of pij  */
       */        /*
           fprintf(ficgp,"\nset noparametric;unset label");
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       first1=1;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       for (k2=1; k2<=(nlstate);k2++){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         for (l2=1; l2<=(nlstate+ndeath);l2++){           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           if(l2==k2) continue;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           j=(k2-1)*(nlstate+ndeath)+l2;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           for (k1=1; k1<=(nlstate);k1++){        */
             for (l1=1; l1<=(nlstate+ndeath);l1++){   
               if(l1==k1) continue;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
               i=(k1-1)*(nlstate+ndeath)+l1;        first1=1;
               if(i<=j) continue;        for (k2=1; k2<=(nlstate);k2++){
               for (age=bage; age<=fage; age ++){           for (l2=1; l2<=(nlstate+ndeath);l2++){
                 if ((int)age %5==0){            if(l2==k2) continue;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            j=(k2-1)*(nlstate+ndeath)+l2;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;            for (k1=1; k1<=(nlstate);k1++){
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              for (l1=1; l1<=(nlstate+ndeath);l1++){
                   mu1=mu[i][(int) age]/stepm*YEARM ;                if(l1==k1) continue;
                   mu2=mu[j][(int) age]/stepm*YEARM;                i=(k1-1)*(nlstate+ndeath)+l1;
                   c12=cv12/sqrt(v1*v2);                if(i<=j) continue;
                   /* Computing eigen value of matrix of covariance */                for (age=bage; age<=fage; age ++){
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;                  if ((int)age %5==0){
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                   /* Eigen vectors */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   /*v21=sqrt(1.-v11*v11); *//* error */                    mu1=mu[i][(int) age]/stepm*YEARM ;
                   v21=(lc1-v1)/cv12*v11;                    mu2=mu[j][(int) age]/stepm*YEARM;
                   v12=-v21;                    c12=cv12/sqrt(v1*v2);
                   v22=v11;                    /* Computing eigen value of matrix of covariance */
                   tnalp=v21/v11;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   if(first1==1){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     first1=0;                    /* Eigen vectors */
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                   }                    /*v21=sqrt(1.-v11*v11); *//* error */
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);                    v21=(lc1-v1)/cv12*v11;
                   /*printf(fignu*/                    v12=-v21;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */                    v22=v11;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */                    tnalp=v21/v11;
                   if(first==1){                    if(first1==1){
                     first=0;                      first1=0;
                     fprintf(ficgp,"\nset parametric;unset label");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);                    }
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\                    /*printf(fignu*/
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\                    if(first==1){
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                      first=0;
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                      fprintf(ficgp,"\nset parametric;unset label");
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   }else{                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                     first=0;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   }/* if first */                    }else{
                 } /* age mod 5 */                      first=0;
               } /* end loop age */                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
               first=1;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
             } /*l12 */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           } /* k12 */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         } /*l1 */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }/* k1 */                    }/* if first */
     } /* loop covariates */                  } /* age mod 5 */
   }                } /* end loop age */
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);                first=1;
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));              } /*l12 */
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);            } /* k12 */
   free_vector(xp,1,npar);          } /*l1 */
   fclose(ficresprob);        }/* k1 */
   fclose(ficresprobcov);      } /* loop covariates */
   fclose(ficresprobcor);    }
   fflush(ficgp);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   fflush(fichtmcov);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
 /******************* Printing html file ***********/    fclose(ficresprob);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    fclose(ficresprobcov);
                   int lastpass, int stepm, int weightopt, char model[],\    fclose(ficresprobcor);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    fflush(ficgp);
                   int popforecast, int estepm ,\    fflush(fichtmcov);
                   double jprev1, double mprev1,double anprev1, \  }
                   double jprev2, double mprev2,double anprev2){  
   int jj1, k1, i1, cpt;  
   /******************* Printing html file ***********/
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \                    int lastpass, int stepm, int weightopt, char model[],\
 </ul>");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \                    int popforecast, int estepm ,\
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",                    double jprev1, double mprev1,double anprev1, \
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));                    double jprev2, double mprev2,double anprev2){
    fprintf(fichtm,"\    int jj1, k1, i1, cpt;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",  
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
    fprintf(fichtm,"\     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",  </ul>");
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    fprintf(fichtm,"\   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
    <a href=\"%s\">%s</a> <br>\n</li>",     fprintf(fichtm,"\
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
  m=cptcoveff;     fprintf(fichtm,"\
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
  jj1=0;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
  for(k1=1; k1<=m;k1++){     fprintf(fichtm,"\
    for(i1=1; i1<=ncodemax[k1];i1++){   - Population projections by age and states: \
      jj1++;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
        for (cpt=1; cpt<=cptcoveff;cpt++)   
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);   m=cptcoveff;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      }  
      /* Pij */   jj1=0;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \   for(k1=1; k1<=m;k1++){
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);          for(i1=1; i1<=ncodemax[k1];i1++){
      /* Quasi-incidences */       jj1++;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\       if (cptcovn > 0) {
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);          for (cpt=1; cpt<=cptcoveff;cpt++)
        /* Period (stable) prevalence in each health state */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
        for(cpt=1; cpt<nlstate;cpt++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \       }
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);       /* Pij */
        }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
      for(cpt=1; cpt<=nlstate;cpt++) {  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \       /* Quasi-incidences */
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
      }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
    } /* end i1 */  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
  }/* End k1 */         /* Period (stable) prevalence in each health state */
  fprintf(fichtm,"</ul>");         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
  fprintf(fichtm,"\         }
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\       for(cpt=1; cpt<=nlstate;cpt++) {
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",       }
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));     } /* end i1 */
  fprintf(fichtm,"\   }/* End k1 */
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",   fprintf(fichtm,"</ul>");
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));  
   
  fprintf(fichtm,"\   fprintf(fichtm,"\
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
  fprintf(fichtm,"\  
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    <a href=\"%s\">%s</a> <br>\n</li>",           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));   fprintf(fichtm,"\
  fprintf(fichtm,"\   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
    <a href=\"%s\">%s</a> <br>\n</li>",  
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));   fprintf(fichtm,"\
  fprintf(fichtm,"\   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));   fprintf(fichtm,"\
  fprintf(fichtm,"\   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",     <a href=\"%s\">%s</a> <br>\n</li>",
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
  fprintf(fichtm,"\   fprintf(fichtm,"\
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 /*  if(popforecast==1) fprintf(fichtm,"\n */   fprintf(fichtm,"\
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 /*      <br>",fileres,fileres,fileres,fileres); */   fprintf(fichtm,"\
 /*  else  */   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
  fflush(fichtm);   fprintf(fichtm,"\
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
  jj1=0;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
  for(k1=1; k1<=m;k1++){  /*      <br>",fileres,fileres,fileres,fileres); */
    for(i1=1; i1<=ncodemax[k1];i1++){  /*  else  */
      jj1++;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      if (cptcovn > 0) {   fflush(fichtm);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
        for (cpt=1; cpt<=cptcoveff;cpt++)   
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);   m=cptcoveff;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {   jj1=0;
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \   for(k1=1; k1<=m;k1++){
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\     for(i1=1; i1<=ncodemax[k1];i1++){
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);         jj1++;
      }       if (cptcovn > 0) {
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 health expectancies in states (1) and (2): %s%d.png<br>\         for (cpt=1; cpt<=cptcoveff;cpt++)
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    } /* end i1 */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
  }/* End k1 */       }
  fprintf(fichtm,"</ul>");       for(cpt=1; cpt<=nlstate;cpt++) {
  fflush(fichtm);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 }  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
 /******************* Gnuplot file **************/       }
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   char dirfileres[132],optfileres[132];  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;     } /* end i1 */
   int ng;   }/* End k1 */
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */   fprintf(fichtm,"</ul>");
 /*     printf("Problem with file %s",optionfilegnuplot); */   fflush(fichtm);
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */  }
 /*   } */  
   /******************* Gnuplot file **************/
   /*#ifdef windows */  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
     /*#endif */    char dirfileres[132],optfileres[132];
   m=pow(2,cptcoveff);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   strcpy(dirfileres,optionfilefiname);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   strcpy(optfileres,"vpl");  /*     printf("Problem with file %s",optionfilegnuplot); */
  /* 1eme*/  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   for (cpt=1; cpt<= nlstate ; cpt ++) {  /*   } */
    for (k1=1; k1<= m ; k1 ++) {  
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);    /*#ifdef windows */
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);    fprintf(ficgp,"cd \"%s\" \n",pathc);
      fprintf(ficgp,"set xlabel \"Age\" \n\      /*#endif */
 set ylabel \"Probability\" \n\    m=pow(2,cptcoveff);
 set ter png small\n\  
 set size 0.65,0.65\n\    strcpy(dirfileres,optionfilefiname);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);    strcpy(optfileres,"vpl");
    /* 1eme*/
      for (i=1; i<= nlstate ; i ++) {    for (cpt=1; cpt<= nlstate ; cpt ++) {
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     for (k1=1; k1<= m ; k1 ++) {
        else fprintf(ficgp," \%%*lf (\%%*lf)");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
      }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);       fprintf(ficgp,"set xlabel \"Age\" \n\
      for (i=1; i<= nlstate ; i ++) {  set ylabel \"Probability\" \n\
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  set ter png small\n\
        else fprintf(ficgp," \%%*lf (\%%*lf)");  set size 0.65,0.65\n\
      }   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);   
      for (i=1; i<= nlstate ; i ++) {       for (i=1; i<= nlstate ; i ++) {
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
        else fprintf(ficgp," \%%*lf (\%%*lf)");         else fprintf(ficgp," \%%*lf (\%%*lf)");
      }         }
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
    }       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /*2 eme*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
          }
   for (k1=1; k1<= m ; k1 ++) {        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);       for (i=1; i<= nlstate ; i ++) {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
              else fprintf(ficgp," \%%*lf (\%%*lf)");
     for (i=1; i<= nlstate+1 ; i ++) {       }  
       k=2*i;       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);     }
       for (j=1; j<= nlstate+1 ; j ++) {    }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /*2 eme*/
         else fprintf(ficgp," \%%*lf (\%%*lf)");   
       }       for (k1=1; k1<= m ; k1 ++) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);     
       for (j=1; j<= nlstate+1 ; j ++) {      for (i=1; i<= nlstate+1 ; i ++) {
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        k=2*i;
         else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       }           for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficgp,"\" t\"\" w l 0,");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       for (j=1; j<= nlstate+1 ; j ++) {        }  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp," \%%*lf (\%%*lf)");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       }           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for (j=1; j<= nlstate+1 ; j ++) {
       else fprintf(ficgp,"\" t\"\" w l 0,");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }        }  
           fprintf(ficgp,"\" t\"\" w l 0,");
   /*3eme*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           for (j=1; j<= nlstate+1 ; j ++) {
   for (k1=1; k1<= m ; k1 ++) {           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     for (cpt=1; cpt<= nlstate ; cpt ++) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
       /*       k=2+nlstate*(2*cpt-2); */        }  
       k=2+(nlstate+1)*(cpt-1);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);        else fprintf(ficgp,"\" t\"\" w l 0,");
       fprintf(ficgp,"set ter png small\n\      }
 set size 0.65,0.65\n\    }
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);   
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /*3eme*/
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");   
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    for (k1=1; k1<= m ; k1 ++) {
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      for (cpt=1; cpt<= nlstate ; cpt ++) {
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        /*       k=2+nlstate*(2*cpt-2); */
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        k=2+(nlstate+1)*(cpt-1);
                 fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       */        fprintf(ficgp,"set ter png small\n\
       for (i=1; i< nlstate ; i ++) {  set size 0.65,0.65\n\
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       }           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
            
   /* CV preval stable (period) */        */
   for (k1=1; k1<= m ; k1 ++) {         for (i=1; i< nlstate ; i ++) {
     for (cpt=1; cpt<=nlstate ; cpt ++) {          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
       k=3;          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);         
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\        }
 set ter png small\nset size 0.65,0.65\n\        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
 unset log y\n\      }
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);    }
          
       for (i=1; i< nlstate ; i ++)    /* CV preval stable (period) */
         fprintf(ficgp,"+$%d",k+i+1);    for (k1=1; k1<= m ; k1 ++) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      for (cpt=1; cpt<=nlstate ; cpt ++) {
               k=3;
       l=3+(nlstate+ndeath)*cpt;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       for (i=1; i< nlstate ; i ++) {  set ter png small\nset size 0.65,0.65\n\
         l=3+(nlstate+ndeath)*cpt;  unset log y\n\
         fprintf(ficgp,"+$%d",l+i+1);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
       }       
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);           for (i=1; i< nlstate ; i ++)
     }           fprintf(ficgp,"+$%d",k+i+1);
   }          fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
          
   /* proba elementaires */        l=3+(nlstate+ndeath)*cpt;
   for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     for(k=1; k <=(nlstate+ndeath); k++){        for (i=1; i< nlstate ; i ++) {
       if (k != i) {          l=3+(nlstate+ndeath)*cpt;
         for(j=1; j <=ncovmodel; j++){          fprintf(ficgp,"+$%d",l+i+1);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        }
           jk++;         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
           fprintf(ficgp,"\n");      }
         }    }  
       }   
     }    /* proba elementaires */
    }    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        if (k != i) {
      for(jk=1; jk <=m; jk++) {          for(j=1; j <=ncovmodel; j++){
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
        if (ng==2)            jk++;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");            fprintf(ficgp,"\n");
        else          }
          fprintf(ficgp,"\nset title \"Probability\"\n");        }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      }
        i=1;     }
        for(k2=1; k2<=nlstate; k2++) {  
          k3=i;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
          for(k=1; k<=(nlstate+ndeath); k++) {       for(jk=1; jk <=m; jk++) {
            if (k != k2){         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
              if(ng==2)         if (ng==2)
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
              else         else
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);           fprintf(ficgp,"\nset title \"Probability\"\n");
              ij=1;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
              for(j=3; j <=ncovmodel; j++) {         i=1;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {         for(k2=1; k2<=nlstate; k2++) {
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);           k3=i;
                  ij++;           for(k=1; k<=(nlstate+ndeath); k++) {
                }             if (k != k2){
                else               if(ng==2)
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
              }               else
              fprintf(ficgp,")/(1");                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                             ij=1;
              for(k1=1; k1 <=nlstate; k1++){                  for(j=3; j <=ncovmodel; j++) {
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                ij=1;                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                for(j=3; j <=ncovmodel; j++){                   ij++;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                 }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                 else
                    ij++;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }               }
                  else               fprintf(ficgp,")/(1");
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);               
                }               for(k1=1; k1 <=nlstate; k1++){  
                fprintf(ficgp,")");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
              }                 ij=1;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                 for(j=3; j <=ncovmodel; j++){
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
              i=i+ncovmodel;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
            }                     ij++;
          } /* end k */                   }
        } /* end k2 */                   else
      } /* end jk */                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
    } /* end ng */                 }
    fflush(ficgp);                  fprintf(ficgp,")");
 }  /* end gnuplot */               }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 /*************** Moving average **************/               i=i+ncovmodel;
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){             }
            } /* end k */
   int i, cpt, cptcod;         } /* end k2 */
   int modcovmax =1;       } /* end jk */
   int mobilavrange, mob;     } /* end ng */
   double age;     fflush(ficgp);
   }  /* end gnuplot */
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose   
                            a covariate has 2 modalities */  
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){  
     if(mobilav==1) mobilavrange=5; /* default */    int i, cpt, cptcod;
     else mobilavrange=mobilav;    int modcovmax =1;
     for (age=bage; age<=fage; age++)    int mobilavrange, mob;
       for (i=1; i<=nlstate;i++)    double age;
         for (cptcod=1;cptcod<=modcovmax;cptcod++)  
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
     /* We keep the original values on the extreme ages bage, fage and for                              a covariate has 2 modalities */
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
        we use a 5 terms etc. until the borders are no more concerned.   
     */     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     for (mob=3;mob <=mobilavrange;mob=mob+2){      if(mobilav==1) mobilavrange=5; /* default */
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){      else mobilavrange=mobilav;
         for (i=1; i<=nlstate;i++){      for (age=bage; age<=fage; age++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++){        for (i=1; i<=nlstate;i++)
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];          for (cptcod=1;cptcod<=modcovmax;cptcod++)
               for (cpt=1;cpt<=(mob-1)/2;cpt++){            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];      /* We keep the original values on the extreme ages bage, fage and for
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
               }         we use a 5 terms etc. until the borders are no more concerned.
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;      */
           }      for (mob=3;mob <=mobilavrange;mob=mob+2){
         }        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       }/* end age */          for (i=1; i<=nlstate;i++){
     }/* end mob */            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   }else return -1;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   return 0;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
 }/* End movingaverage */                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
 /************** Forecasting ******************/              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){            }
   /* proj1, year, month, day of starting projection           }
      agemin, agemax range of age        }/* end age */
      dateprev1 dateprev2 range of dates during which prevalence is computed      }/* end mob */
      anproj2 year of en of projection (same day and month as proj1).    }else return -1;
   */    return 0;
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;  }/* End movingaverage */
   int *popage;  
   double agec; /* generic age */  
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  /************** Forecasting ******************/
   double *popeffectif,*popcount;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   double ***p3mat;    /* proj1, year, month, day of starting projection
   double ***mobaverage;       agemin, agemax range of age
   char fileresf[FILENAMELENGTH];       dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
   agelim=AGESUP;    */
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
      int *popage;
   strcpy(fileresf,"f");     double agec; /* generic age */
   strcat(fileresf,fileres);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    double *popeffectif,*popcount;
     printf("Problem with forecast resultfile: %s\n", fileresf);    double ***p3mat;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    double ***mobaverage;
   }    char fileresf[FILENAMELENGTH];
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   
     strcpy(fileresf,"f");
   if (mobilav!=0) {    strcat(fileresf,fileres);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if((ficresf=fopen(fileresf,"w"))==NULL) {
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){      printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    }
     }    printf("Computing forecasting: result on file '%s' \n", fileresf);
   }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   if (stepm<=12) stepsize=1;  
   if(estepm < stepm){    if (mobilav!=0) {
     printf ("Problem %d lower than %d\n",estepm, stepm);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   else  hstepm=estepm;           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   hstepm=hstepm/stepm;       }
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and    }
                                fractional in yp1 */  
   anprojmean=yp;    stepsize=(int) (stepm+YEARM-1)/YEARM;
   yp2=modf((yp1*12),&yp);    if (stepm<=12) stepsize=1;
   mprojmean=yp;    if(estepm < stepm){
   yp1=modf((yp2*30.5),&yp);      printf ("Problem %d lower than %d\n",estepm, stepm);
   jprojmean=yp;    }
   if(jprojmean==0) jprojmean=1;    else  hstepm=estepm;  
   if(mprojmean==0) jprojmean=1;  
     hstepm=hstepm/stepm;
   i1=cptcoveff;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   if (cptcovn < 1){i1=1;}                                 fractional in yp1 */
       anprojmean=yp;
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);     yp2=modf((yp1*12),&yp);
       mprojmean=yp;
   fprintf(ficresf,"#****** Routine prevforecast **\n");    yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
 /*            if (h==(int)(YEARM*yearp)){ */    if(jprojmean==0) jprojmean=1;
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){    if(mprojmean==0) jprojmean=1;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    i1=cptcoveff;
       fprintf(ficresf,"\n#******");    if (cptcovn < 1){i1=1;}
       for(j=1;j<=cptcoveff;j++) {   
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
       }   
       fprintf(ficresf,"******\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");  
       for(j=1; j<=nlstate+ndeath;j++){   /*            if (h==(int)(YEARM*yearp)){ */
         for(i=1; i<=nlstate;i++)                  for(cptcov=1, k=0;cptcov<=i1;cptcov++){
           fprintf(ficresf," p%d%d",i,j);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         fprintf(ficresf," p.%d",j);        k=k+1;
       }        fprintf(ficresf,"\n#******");
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {         for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresf,"\n");          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);           }
         fprintf(ficresf,"******\n");
         for (agec=fage; agec>=(ageminpar-1); agec--){         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);         for(j=1; j<=nlstate+ndeath;j++){
           nhstepm = nhstepm/hstepm;           for(i=1; i<=nlstate;i++)              
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficresf," p%d%d",i,j);
           oldm=oldms;savm=savms;          fprintf(ficresf," p.%d",j);
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);          }
                 for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
           for (h=0; h<=nhstepm; h++){          fprintf(ficresf,"\n");
             if (h*hstepm/YEARM*stepm ==yearp) {          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
               fprintf(ficresf,"\n");  
               for(j=1;j<=cptcoveff;j++)           for (agec=fage; agec>=(ageminpar-1); agec--){
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);            nhstepm = nhstepm/hstepm;
             }             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             for(j=1; j<=nlstate+ndeath;j++) {            oldm=oldms;savm=savms;
               ppij=0.;            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
               for(i=1; i<=nlstate;i++) {         
                 if (mobilav==1)             for (h=0; h<=nhstepm; h++){
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];              if (h*hstepm/YEARM*stepm ==yearp) {
                 else {                fprintf(ficresf,"\n");
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];                for(j=1;j<=cptcoveff;j++)
                 }                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 if (h*hstepm/YEARM*stepm== yearp) {                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);              }
                 }              for(j=1; j<=nlstate+ndeath;j++) {
               } /* end i */                ppij=0.;
               if (h*hstepm/YEARM*stepm==yearp) {                for(i=1; i<=nlstate;i++) {
                 fprintf(ficresf," %.3f", ppij);                  if (mobilav==1)
               }                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
             }/* end j */                  else {
           } /* end h */                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  }
         } /* end agec */                  if (h*hstepm/YEARM*stepm== yearp) {
       } /* end yearp */                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     } /* end cptcod */                  }
   } /* end  cptcov */                } /* end i */
                        if (h*hstepm/YEARM*stepm==yearp) {
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  fprintf(ficresf," %.3f", ppij);
                 }
   fclose(ficresf);              }/* end j */
 }            } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /************** Forecasting *****not tested NB*************/          } /* end agec */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        } /* end yearp */
         } /* end cptcod */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    } /* end  cptcov */
   int *popage;         
   double calagedatem, agelim, kk1, kk2;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;    fclose(ficresf);
   double ***mobaverage;  }
   char filerespop[FILENAMELENGTH];  
   /************** Forecasting *****not tested NB*************/
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
   agelim=AGESUP;    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    int *popage;
       double calagedatem, agelim, kk1, kk2;
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    double *popeffectif,*popcount;
       double ***p3mat,***tabpop,***tabpopprev;
       double ***mobaverage;
   strcpy(filerespop,"pop");     char filerespop[FILENAMELENGTH];
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem with forecast resultfile: %s\n", filerespop);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    agelim=AGESUP;
   }    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   printf("Computing forecasting: result on file '%s' \n", filerespop);   
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   
     strcpy(filerespop,"pop");
   if (mobilav!=0) {    strcat(filerespop,fileres);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){      printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    }
     }    printf("Computing forecasting: result on file '%s' \n", filerespop);
   }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   if (stepm<=12) stepsize=1;  
       if (mobilav!=0) {
   agelim=AGESUP;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   hstepm=1;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   hstepm=hstepm/stepm;         printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
   if (popforecast==1) {    }
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);    stepsize=(int) (stepm+YEARM-1)/YEARM;
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    if (stepm<=12) stepsize=1;
     }    
     popage=ivector(0,AGESUP);    agelim=AGESUP;
     popeffectif=vector(0,AGESUP);   
     popcount=vector(0,AGESUP);    hstepm=1;
         hstepm=hstepm/stepm;
     i=1;      
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    if (popforecast==1) {
          if((ficpop=fopen(popfile,"r"))==NULL) {
     imx=i;        printf("Problem with population file : %s\n",popfile);exit(0);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   }      }
       popage=ivector(0,AGESUP);
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){      popeffectif=vector(0,AGESUP);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      popcount=vector(0,AGESUP);
       k=k+1;     
       fprintf(ficrespop,"\n#******");      i=1;  
       for(j=1;j<=cptcoveff;j++) {      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
       }      imx=i;
       fprintf(ficrespop,"******\n");      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
       fprintf(ficrespop,"# Age");    }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
            for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       for (cpt=0; cpt<=0;cpt++) {         k=k+1;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);           fprintf(ficrespop,"\n#******");
                 for(j=1;j<=cptcoveff;j++) {
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         }
           nhstepm = nhstepm/hstepm;         fprintf(ficrespop,"******\n");
                   fprintf(ficrespop,"# Age");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
           oldm=oldms;savm=savms;        if (popforecast==1)  fprintf(ficrespop," [Population]");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         
                 for (cpt=0; cpt<=0;cpt++) {
           for (h=0; h<=nhstepm; h++){          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
             if (h==(int) (calagedatem+YEARM*cpt)) {         
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
             }             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
             for(j=1; j<=nlstate+ndeath;j++) {            nhstepm = nhstepm/hstepm;
               kk1=0.;kk2=0;           
               for(i=1; i<=nlstate;i++) {                          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 if (mobilav==1)             oldm=oldms;savm=savms;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                 else {         
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            for (h=0; h<=nhstepm; h++){
                 }              if (h==(int) (calagedatem+YEARM*cpt)) {
               }                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               if (h==(int)(calagedatem+12*cpt)){              }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              for(j=1; j<=nlstate+ndeath;j++) {
                   /*fprintf(ficrespop," %.3f", kk1);                kk1=0.;kk2=0;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                for(i=1; i<=nlstate;i++) {              
               }                  if (mobilav==1)
             }                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
             for(i=1; i<=nlstate;i++){                  else {
               kk1=0.;                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                 for(j=1; j<=nlstate;j++){                  }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                 }
                 }                if (h==(int)(calagedatem+12*cpt)){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
             }                    /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)                 }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              }
           }              for(i=1; i<=nlstate;i++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                kk1=0.;
         }                  for(j=1; j<=nlstate;j++){
       }                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
                    }
   /******/                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {   
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                 if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);             }
           nhstepm = nhstepm/hstepm;             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                     }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;   
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /******/
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedatem+YEARM*cpt)) {        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
             }           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
             for(j=1; j<=nlstate+ndeath;j++) {            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
               kk1=0.;kk2=0;            nhstepm = nhstepm/hstepm;
               for(i=1; i<=nlstate;i++) {                         
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               }            oldm=oldms;savm=savms;
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                    hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             }            for (h=0; h<=nhstepm; h++){
           }              if (h==(int) (calagedatem+YEARM*cpt)) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
         }              }
       }              for(j=1; j<=nlstate+ndeath;j++) {
    }                 kk1=0.;kk2=0;
   }                for(i=1; i<=nlstate;i++) {              
                    kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   if (popforecast==1) {              }
     free_ivector(popage,0,AGESUP);            }
     free_vector(popeffectif,0,AGESUP);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(popcount,0,AGESUP);          }
   }        }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   fclose(ficrespop);   
 } /* End of popforecast */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
 int fileappend(FILE *fichier, char *optionfich)    if (popforecast==1) {
 {      free_ivector(popage,0,AGESUP);
   if((fichier=fopen(optionfich,"a"))==NULL) {      free_vector(popeffectif,0,AGESUP);
     printf("Problem with file: %s\n", optionfich);      free_vector(popcount,0,AGESUP);
     fprintf(ficlog,"Problem with file: %s\n", optionfich);    }
     return (0);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fflush(fichier);    fclose(ficrespop);
   return (1);  } /* End of popforecast */
 }  
   int fileappend(FILE *fichier, char *optionfich)
   {
 /**************** function prwizard **********************/    if((fichier=fopen(optionfich,"a"))==NULL) {
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)      printf("Problem with file: %s\n", optionfich);
 {      fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
   /* Wizard to print covariance matrix template */    }
     fflush(fichier);
   char ca[32], cb[32], cc[32];    return (1);
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;  }
   int numlinepar;  
   
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /**************** function prwizard **********************/
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   for(i=1; i <=nlstate; i++){  {
     jj=0;  
     for(j=1; j <=nlstate+ndeath; j++){    /* Wizard to print covariance matrix template */
       if(j==i) continue;  
       jj++;    char ca[32], cb[32], cc[32];
       /*ca[0]= k+'a'-1;ca[1]='\0';*/    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
       printf("%1d%1d",i,j);    int numlinepar;
       fprintf(ficparo,"%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         /*        printf(" %lf",param[i][j][k]); */    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         /*        fprintf(ficparo," %lf",param[i][j][k]); */    for(i=1; i <=nlstate; i++){
         printf(" 0.");      jj=0;
         fprintf(ficparo," 0.");      for(j=1; j <=nlstate+ndeath; j++){
       }        if(j==i) continue;
       printf("\n");        jj++;
       fprintf(ficparo,"\n");        /*ca[0]= k+'a'-1;ca[1]='\0';*/
     }        printf("%1d%1d",i,j);
   }        fprintf(ficparo,"%1d%1d",i,j);
   printf("# Scales (for hessian or gradient estimation)\n");        for(k=1; k<=ncovmodel;k++){
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");          /*        printf(" %lf",param[i][j][k]); */
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/           /*        fprintf(ficparo," %lf",param[i][j][k]); */
   for(i=1; i <=nlstate; i++){          printf(" 0.");
     jj=0;          fprintf(ficparo," 0.");
     for(j=1; j <=nlstate+ndeath; j++){        }
       if(j==i) continue;        printf("\n");
       jj++;        fprintf(ficparo,"\n");
       fprintf(ficparo,"%1d%1d",i,j);      }
       printf("%1d%1d",i,j);    }
       fflush(stdout);    printf("# Scales (for hessian or gradient estimation)\n");
       for(k=1; k<=ncovmodel;k++){    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
         /*      printf(" %le",delti3[i][j][k]); */    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */    for(i=1; i <=nlstate; i++){
         printf(" 0.");      jj=0;
         fprintf(ficparo," 0.");      for(j=1; j <=nlstate+ndeath; j++){
       }        if(j==i) continue;
       numlinepar++;        jj++;
       printf("\n");        fprintf(ficparo,"%1d%1d",i,j);
       fprintf(ficparo,"\n");        printf("%1d%1d",i,j);
     }        fflush(stdout);
   }        for(k=1; k<=ncovmodel;k++){
   printf("# Covariance matrix\n");          /*      printf(" %le",delti3[i][j][k]); */
 /* # 121 Var(a12)\n\ */          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
 /* # 122 Cov(b12,a12) Var(b12)\n\ */          printf(" 0.");
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */          fprintf(ficparo," 0.");
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */        }
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */        numlinepar++;
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */        printf("\n");
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */        fprintf(ficparo,"\n");
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */      }
   fflush(stdout);    }
   fprintf(ficparo,"# Covariance matrix\n");    printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */  /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* #   ...\n\ */  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   for(itimes=1;itimes<=2;itimes++){  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
     jj=0;  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     for(i=1; i <=nlstate; i++){  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       for(j=1; j <=nlstate+ndeath; j++){    fflush(stdout);
         if(j==i) continue;    fprintf(ficparo,"# Covariance matrix\n");
         for(k=1; k<=ncovmodel;k++){    /* # 121 Var(a12)\n\ */
           jj++;    /* # 122 Cov(b12,a12) Var(b12)\n\ */
           ca[0]= k+'a'-1;ca[1]='\0';    /* #   ...\n\ */
           if(itimes==1){    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
             printf("#%1d%1d%d",i,j,k);   
             fprintf(ficparo,"#%1d%1d%d",i,j,k);    for(itimes=1;itimes<=2;itimes++){
           }else{      jj=0;
             printf("%1d%1d%d",i,j,k);      for(i=1; i <=nlstate; i++){
             fprintf(ficparo,"%1d%1d%d",i,j,k);        for(j=1; j <=nlstate+ndeath; j++){
             /*  printf(" %.5le",matcov[i][j]); */          if(j==i) continue;
           }          for(k=1; k<=ncovmodel;k++){
           ll=0;            jj++;
           for(li=1;li <=nlstate; li++){            ca[0]= k+'a'-1;ca[1]='\0';
             for(lj=1;lj <=nlstate+ndeath; lj++){            if(itimes==1){
               if(lj==li) continue;              printf("#%1d%1d%d",i,j,k);
               for(lk=1;lk<=ncovmodel;lk++){              fprintf(ficparo,"#%1d%1d%d",i,j,k);
                 ll++;            }else{
                 if(ll<=jj){              printf("%1d%1d%d",i,j,k);
                   cb[0]= lk +'a'-1;cb[1]='\0';              fprintf(ficparo,"%1d%1d%d",i,j,k);
                   if(ll<jj){              /*  printf(" %.5le",matcov[i][j]); */
                     if(itimes==1){            }
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            ll=0;
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            for(li=1;li <=nlstate; li++){
                     }else{              for(lj=1;lj <=nlstate+ndeath; lj++){
                       printf(" 0.");                if(lj==li) continue;
                       fprintf(ficparo," 0.");                for(lk=1;lk<=ncovmodel;lk++){
                     }                  ll++;
                   }else{                  if(ll<=jj){
                     if(itimes==1){                    cb[0]= lk +'a'-1;cb[1]='\0';
                       printf(" Var(%s%1d%1d)",ca,i,j);                    if(ll<jj){
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);                      if(itimes==1){
                     }else{                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       printf(" 0.");                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       fprintf(ficparo," 0.");                      }else{
                     }                        printf(" 0.");
                   }                        fprintf(ficparo," 0.");
                 }                      }
               } /* end lk */                    }else{
             } /* end lj */                      if(itimes==1){
           } /* end li */                        printf(" Var(%s%1d%1d)",ca,i,j);
           printf("\n");                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
           fprintf(ficparo,"\n");                      }else{
           numlinepar++;                        printf(" 0.");
         } /* end k*/                        fprintf(ficparo," 0.");
       } /*end j */                      }
     } /* end i */                    }
   } /* end itimes */                  }
                 } /* end lk */
 } /* end of prwizard */              } /* end lj */
 /******************* Gompertz Likelihood ******************************/            } /* end li */
 double gompertz(double x[])            printf("\n");
 {             fprintf(ficparo,"\n");
   double A,B,L=0.0,sump=0.,num=0.;            numlinepar++;
   int i,n=0; /* n is the size of the sample */          } /* end k*/
         } /*end j */
   for (i=0;i<=imx-1 ; i++) {      } /* end i */
     sump=sump+weight[i];    } /* end itimes */
     /*    sump=sump+1;*/  
     num=num+1;  } /* end of prwizard */
   }  /******************* Gompertz Likelihood ******************************/
    double gompertz(double x[])
    {
   /* for (i=0; i<=imx; i++)     double A,B,L=0.0,sump=0.,num=0.;
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/    int i,n=0; /* n is the size of the sample */
   
   for (i=1;i<=imx ; i++)    for (i=0;i<=imx-1 ; i++) {
     {      sump=sump+weight[i];
       if (cens[i] == 1 && wav[i]>1)      /*    sump=sump+1;*/
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));      num=num+1;
           }
       if (cens[i] == 0 && wav[i]>1)   
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))   
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);      /* for (i=0; i<=imx; i++)
              if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */  
       if (wav[i] > 1 ) { /* ??? */    for (i=1;i<=imx ; i++)
         L=L+A*weight[i];      {
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/        if (cens[i] == 1 && wav[i]>1)
       }          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
     }       
         if (cens[i] == 0 && wav[i]>1)
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                 +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   return -2*L*num/sump;       
 }        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
 /******************* Printing html file ***********/          L=L+A*weight[i];
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
                   int lastpass, int stepm, int weightopt, char model[],\        }
                   int imx,  double p[],double **matcov,double agemortsup){      }
   int i,k;  
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");   
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);    return -2*L*num/sump;
   for (i=1;i<=2;i++)   }
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));  
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");  /******************* Printing html file ***********/
   fprintf(fichtm,"</ul>");  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");                    int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");  
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
  for (k=agegomp;k<(agemortsup-2);k++)     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);    for (i=1;i<=2;i++)
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
      fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   fflush(fichtm);    fprintf(fichtm,"</ul>");
 }  
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 /******************* Gnuplot file **************/  
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
   char dirfileres[132],optfileres[132];   for (k=agegomp;k<(agemortsup-2);k++)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   int ng;  
    
     fflush(fichtm);
   /*#ifdef windows */  }
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
     /*#endif */  /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   strcpy(dirfileres,optionfilefiname);    char dirfileres[132],optfileres[132];
   strcpy(optfileres,"vpl");    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   fprintf(ficgp,"set out \"graphmort.png\"\n ");     int ng;
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");   
   fprintf(ficgp, "set ter png small\n set log y\n");   
   fprintf(ficgp, "set size 0.65,0.65\n");    /*#ifdef windows */
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
 }   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n ");
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
 /***********************************************/    fprintf(ficgp, "set ter png small\n set log y\n");
 /**************** Main Program *****************/    fprintf(ficgp, "set size 0.65,0.65\n");
 /***********************************************/    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
 int main(int argc, char *argv[])  }
 {  
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;  
   int linei, month, year,iout;  
   int jj, ll, li, lj, lk, imk;  
   int numlinepar=0; /* Current linenumber of parameter file */  /***********************************************/
   int itimes;  /**************** Main Program *****************/
   int NDIM=2;  /***********************************************/
   
   char ca[32], cb[32], cc[32];  int main(int argc, char *argv[])
   char dummy[]="                         ";  {
   /*  FILE *fichtm; *//* Html File */    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   /* FILE *ficgp;*/ /*Gnuplot File */    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   struct stat info;    int linei, month, year,iout;
   double agedeb, agefin,hf;    int jj, ll, li, lj, lk, imk;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
   double fret;    int NDIM=2;
   double **xi,tmp,delta;  
     char ca[32], cb[32], cc[32];
   double dum; /* Dummy variable */    char dummy[]="                         ";
   double ***p3mat;    /*  FILE *fichtm; *//* Html File */
   double ***mobaverage;    /* FILE *ficgp;*/ /*Gnuplot File */
   int *indx;    struct stat info;
   char line[MAXLINE], linepar[MAXLINE];    double agedeb, agefin,hf;
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   char pathr[MAXLINE], pathimach[MAXLINE];   
   char **bp, *tok, *val; /* pathtot */    double fret;
   int firstobs=1, lastobs=10;    double **xi,tmp,delta;
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;    double dum; /* Dummy variable */
   int ju,jl, mi;    double ***p3mat;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    double ***mobaverage;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;     int *indx;
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    char line[MAXLINE], linepar[MAXLINE];
   int mobilav=0,popforecast=0;    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   int hstepm, nhstepm;    char pathr[MAXLINE], pathimach[MAXLINE];
   int agemortsup;    char **bp, *tok, *val; /* pathtot */
   float  sumlpop=0.;    int firstobs=1, lastobs=10;
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    int sdeb, sfin; /* Status at beginning and end */
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;    int c,  h , cpt,l;
     int ju,jl, mi;
   double bage, fage, age, agelim, agebase;    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   double ftolpl=FTOL;    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
   double **prlim;    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   double *severity;    int mobilav=0,popforecast=0;
   double ***param; /* Matrix of parameters */    int hstepm, nhstepm;
   double  *p;    int agemortsup;
   double **matcov; /* Matrix of covariance */    float  sumlpop=0.;
   double ***delti3; /* Scale */    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   double *delti; /* Scale */    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */    double bage, fage, age, agelim, agebase;
   double *epj, vepp;    double ftolpl=FTOL;
   double kk1, kk2;    double **prlim;
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    double *severity;
   double **ximort;    double ***param; /* Matrix of parameters */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double  *p;
   int *dcwave;    double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
   char z[1]="c", occ;    double *delti; /* Scale */
     double ***eij, ***vareij;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double **varpl; /* Variances of prevalence limits by age */
   char  *strt, strtend[80];    double *epj, vepp;
   char *stratrunc;    double kk1, kk2;
   int lstra;    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
   long total_usecs;    char *alph[]={"a","a","b","c","d","e"}, str[4];
      int *dcwave;
 /*   setlocale (LC_ALL, ""); */  
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */    char z[1]="c", occ;
 /*   textdomain (PACKAGE); */  
 /*   setlocale (LC_CTYPE, ""); */    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
 /*   setlocale (LC_MESSAGES, ""); */    char  *strt, strtend[80];
     char *stratrunc;
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int lstra;
   (void) gettimeofday(&start_time,&tzp);  
   curr_time=start_time;    long total_usecs;
   tm = *localtime(&start_time.tv_sec);   
   tmg = *gmtime(&start_time.tv_sec);  /*   setlocale (LC_ALL, ""); */
   strcpy(strstart,asctime(&tm));  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
 /*  printf("Localtime (at start)=%s",strstart); */  /*   setlocale (LC_CTYPE, ""); */
 /*  tp.tv_sec = tp.tv_sec +86400; */  /*   setlocale (LC_MESSAGES, ""); */
 /*  tm = *localtime(&start_time.tv_sec); */  
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */    (void) gettimeofday(&start_time,&tzp);
 /*   tmg.tm_hour=tmg.tm_hour + 1; */    curr_time=start_time;
 /*   tp.tv_sec = mktime(&tmg); */    tm = *localtime(&start_time.tv_sec);
 /*   strt=asctime(&tmg); */    tmg = *gmtime(&start_time.tv_sec);
 /*   printf("Time(after) =%s",strstart);  */    strcpy(strstart,asctime(&tm));
 /*  (void) time (&time_value);  
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);  /*  printf("Localtime (at start)=%s",strstart); */
 *  tm = *localtime(&time_value);  /*  tp.tv_sec = tp.tv_sec +86400; */
 *  strstart=asctime(&tm);  /*  tm = *localtime(&start_time.tv_sec); */
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
 */  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   nberr=0; /* Number of errors and warnings */  /*   tp.tv_sec = mktime(&tmg); */
   nbwarn=0;  /*   strt=asctime(&tmg); */
   getcwd(pathcd, size);  /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   printf("\n%s\n%s",version,fullversion);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   if(argc <=1){  *  tm = *localtime(&time_value);
     printf("\nEnter the parameter file name: ");  *  strstart=asctime(&tm);
     fgets(pathr,FILENAMELENGTH,stdin);  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
     i=strlen(pathr);  */
     if(pathr[i-1]=='\n')  
       pathr[i-1]='\0';    nberr=0; /* Number of errors and warnings */
    for (tok = pathr; tok != NULL; ){    nbwarn=0;
       printf("Pathr |%s|\n",pathr);    getcwd(pathcd, size);
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');  
       printf("val= |%s| pathr=%s\n",val,pathr);    printf("\n%s\n%s",version,fullversion);
       strcpy (pathtot, val);    if(argc <=1){
       if(pathr[0] == '\0') break; /* Dirty */      printf("\nEnter the parameter file name: ");
     }      fgets(pathr,FILENAMELENGTH,stdin);
   }      i=strlen(pathr);
   else{      if(pathr[i-1]=='\n')
     strcpy(pathtot,argv[1]);        pathr[i-1]='\0';
   }     for (tok = pathr; tok != NULL; ){
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/        printf("Pathr |%s|\n",pathr);
   /*cygwin_split_path(pathtot,path,optionfile);        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        printf("val= |%s| pathr=%s\n",val,pathr);
   /* cutv(path,optionfile,pathtot,'\\');*/        strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
   /* Split argv[0], imach program to get pathimach */      }
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);    }
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    else{
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);      strcpy(pathtot,argv[1]);
  /*   strcpy(pathimach,argv[0]); */    }
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    /*cygwin_split_path(pathtot,path,optionfile);
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   chdir(path); /* Can be a relative path */    /* cutv(path,optionfile,pathtot,'\\');*/
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */  
     printf("Current directory %s!\n",pathcd);    /* Split argv[0], imach program to get pathimach */
   strcpy(command,"mkdir ");    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
   strcat(command,optionfilefiname);    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   if((outcmd=system(command)) != 0){    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);   /*   strcpy(pathimach,argv[0]); */
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     /* fclose(ficlog); */    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 /*     exit(1); */    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   }    chdir(path); /* Can be a relative path */
 /*   if((imk=mkdir(optionfilefiname))<0){ */    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
 /*     perror("mkdir"); */      printf("Current directory %s!\n",pathcd);
 /*   } */    strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
   /*-------- arguments in the command line --------*/    if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   /* Log file */      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   strcat(filelog, optionfilefiname);      /* fclose(ficlog); */
   strcat(filelog,".log");    /* */  /*     exit(1); */
   if((ficlog=fopen(filelog,"w"))==NULL)    {    }
     printf("Problem with logfile %s\n",filelog);  /*   if((imk=mkdir(optionfilefiname))<0){ */
     goto end;  /*     perror("mkdir"); */
   }  /*   } */
   fprintf(ficlog,"Log filename:%s\n",filelog);  
   fprintf(ficlog,"\n%s\n%s",version,fullversion);    /*-------- arguments in the command line --------*/
   fprintf(ficlog,"\nEnter the parameter file name: \n");  
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\    /* Log file */
  path=%s \n\    strcat(filelog, optionfilefiname);
  optionfile=%s\n\    strcat(filelog,".log");    /* */
  optionfilext=%s\n\    if((ficlog=fopen(filelog,"w"))==NULL)    {
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);      printf("Problem with logfile %s\n",filelog);
       goto end;
   printf("Local time (at start):%s",strstart);    }
   fprintf(ficlog,"Local time (at start): %s",strstart);    fprintf(ficlog,"Log filename:%s\n",filelog);
   fflush(ficlog);    fprintf(ficlog,"\n%s\n%s",version,fullversion);
 /*   (void) gettimeofday(&curr_time,&tzp); */    fprintf(ficlog,"\nEnter the parameter file name: \n");
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
   /* */   optionfile=%s\n\
   strcpy(fileres,"r");   optionfilext=%s\n\
   strcat(fileres, optionfilefiname);   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   strcat(fileres,".txt");    /* Other files have txt extension */  
     printf("Local time (at start):%s",strstart);
   /*---------arguments file --------*/    fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  /*   (void) gettimeofday(&curr_time,&tzp); */
     printf("Problem with optionfile %s\n",optionfile);  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);  
     fflush(ficlog);    /* */
     goto end;    strcpy(fileres,"r");
   }    strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   strcpy(filereso,"o");  
   strcat(filereso,fileres);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */      printf("Problem with optionfile %s\n",optionfile);
     printf("Problem with Output resultfile: %s\n", filereso);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);      fflush(ficlog);
     fflush(ficlog);      goto end;
     goto end;    }
   }  
   
   /* Reads comments: lines beginning with '#' */  
   numlinepar=0;    strcpy(filereso,"o");
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(filereso,fileres);
     ungetc(c,ficpar);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
     fgets(line, MAXLINE, ficpar);      printf("Problem with Output resultfile: %s\n", filereso);
     numlinepar++;      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
     puts(line);      fflush(ficlog);
     fputs(line,ficparo);      goto end;
     fputs(line,ficlog);    }
   }  
   ungetc(c,ficpar);    /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    while((c=getc(ficpar))=='#' && c!= EOF){
   numlinepar++;      ungetc(c,ficpar);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      fgets(line, MAXLINE, ficpar);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      numlinepar++;
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      puts(line);
   fflush(ficlog);      fputs(line,ficparo);
   while((c=getc(ficpar))=='#' && c!= EOF){      fputs(line,ficlog);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    ungetc(c,ficpar);
     numlinepar++;  
     puts(line);    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     fputs(line,ficparo);    numlinepar++;
     fputs(line,ficlog);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   }    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   ungetc(c,ficpar);    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
        while((c=getc(ficpar))=='#' && c!= EOF){
   covar=matrix(0,NCOVMAX,1,n);       ungetc(c,ficpar);
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/      fgets(line, MAXLINE, ficpar);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      numlinepar++;
       puts(line);
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */      fputs(line,ficparo);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      fputs(line,ficlog);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/    }
     ungetc(c,ficpar);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=delti3[1][1];     
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    covar=matrix(0,NCOVMAX,1,n);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);  
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     fclose (ficparo);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     fclose (ficlog);  
     goto end;    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     exit(0);    delti=delti3[1][1];
   }    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
   else if(mle==-3) {    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     matcov=matrix(1,npar,1,npar);      fclose (ficparo);
   }      fclose (ficlog);
   else{      goto end;
     /* Read guess parameters */      exit(0);
     /* Reads comments: lines beginning with '#' */    }
     while((c=getc(ficpar))=='#' && c!= EOF){    else if(mle==-3) {
       ungetc(c,ficpar);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       fgets(line, MAXLINE, ficpar);      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       numlinepar++;      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       puts(line);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       fputs(line,ficparo);      matcov=matrix(1,npar,1,npar);
       fputs(line,ficlog);    }
     }    else{
     ungetc(c,ficpar);      /* Read guess parameters */
           /* Reads comments: lines beginning with '#' */
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      while((c=getc(ficpar))=='#' && c!= EOF){
     for(i=1; i <=nlstate; i++){        ungetc(c,ficpar);
       j=0;        fgets(line, MAXLINE, ficpar);
       for(jj=1; jj <=nlstate+ndeath; jj++){        numlinepar++;
         if(jj==i) continue;        puts(line);
         j++;        fputs(line,ficparo);
         fscanf(ficpar,"%1d%1d",&i1,&j1);        fputs(line,ficlog);
         if ((i1 != i) && (j1 != j)){      }
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \      ungetc(c,ficpar);
 It might be a problem of design; if ncovcol and the model are correct\n \     
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
           exit(1);      for(i=1; i <=nlstate; i++){
         }        j=0;
         fprintf(ficparo,"%1d%1d",i1,j1);        for(jj=1; jj <=nlstate+ndeath; jj++){
         if(mle==1)          if(jj==i) continue;
           printf("%1d%1d",i,j);          j++;
         fprintf(ficlog,"%1d%1d",i,j);          fscanf(ficpar,"%1d%1d",&i1,&j1);
         for(k=1; k<=ncovmodel;k++){          if ((i1 != i) && (j1 != j)){
           fscanf(ficpar," %lf",&param[i][j][k]);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
           if(mle==1){  It might be a problem of design; if ncovcol and the model are correct\n \
             printf(" %lf",param[i][j][k]);  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             fprintf(ficlog," %lf",param[i][j][k]);            exit(1);
           }          }
           else          fprintf(ficparo,"%1d%1d",i1,j1);
             fprintf(ficlog," %lf",param[i][j][k]);          if(mle==1)
           fprintf(ficparo," %lf",param[i][j][k]);            printf("%1d%1d",i,j);
         }          fprintf(ficlog,"%1d%1d",i,j);
         fscanf(ficpar,"\n");          for(k=1; k<=ncovmodel;k++){
         numlinepar++;            fscanf(ficpar," %lf",&param[i][j][k]);
         if(mle==1)            if(mle==1){
           printf("\n");              printf(" %lf",param[i][j][k]);
         fprintf(ficlog,"\n");              fprintf(ficlog," %lf",param[i][j][k]);
         fprintf(ficparo,"\n");            }
       }            else
     }                fprintf(ficlog," %lf",param[i][j][k]);
     fflush(ficlog);            fprintf(ficparo," %lf",param[i][j][k]);
           }
     p=param[1][1];          fscanf(ficpar,"\n");
               numlinepar++;
     /* Reads comments: lines beginning with '#' */          if(mle==1)
     while((c=getc(ficpar))=='#' && c!= EOF){            printf("\n");
       ungetc(c,ficpar);          fprintf(ficlog,"\n");
       fgets(line, MAXLINE, ficpar);          fprintf(ficparo,"\n");
       numlinepar++;        }
       puts(line);      }  
       fputs(line,ficparo);      fflush(ficlog);
       fputs(line,ficlog);  
     }      p=param[1][1];
     ungetc(c,ficpar);     
       /* Reads comments: lines beginning with '#' */
     for(i=1; i <=nlstate; i++){      while((c=getc(ficpar))=='#' && c!= EOF){
       for(j=1; j <=nlstate+ndeath-1; j++){        ungetc(c,ficpar);
         fscanf(ficpar,"%1d%1d",&i1,&j1);        fgets(line, MAXLINE, ficpar);
         if ((i1-i)*(j1-j)!=0){        numlinepar++;
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);        puts(line);
           exit(1);        fputs(line,ficparo);
         }        fputs(line,ficlog);
         printf("%1d%1d",i,j);      }
         fprintf(ficparo,"%1d%1d",i1,j1);      ungetc(c,ficpar);
         fprintf(ficlog,"%1d%1d",i1,j1);  
         for(k=1; k<=ncovmodel;k++){      for(i=1; i <=nlstate; i++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);        for(j=1; j <=nlstate+ndeath-1; j++){
           printf(" %le",delti3[i][j][k]);          fscanf(ficpar,"%1d%1d",&i1,&j1);
           fprintf(ficparo," %le",delti3[i][j][k]);          if ((i1-i)*(j1-j)!=0){
           fprintf(ficlog," %le",delti3[i][j][k]);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
         }            exit(1);
         fscanf(ficpar,"\n");          }
         numlinepar++;          printf("%1d%1d",i,j);
         printf("\n");          fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficparo,"\n");          fprintf(ficlog,"%1d%1d",i1,j1);
         fprintf(ficlog,"\n");          for(k=1; k<=ncovmodel;k++){
       }            fscanf(ficpar,"%le",&delti3[i][j][k]);
     }            printf(" %le",delti3[i][j][k]);
     fflush(ficlog);            fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
     delti=delti3[1][1];          }
           fscanf(ficpar,"\n");
           numlinepar++;
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */          printf("\n");
             fprintf(ficparo,"\n");
     /* Reads comments: lines beginning with '#' */          fprintf(ficlog,"\n");
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);      }
       fgets(line, MAXLINE, ficpar);      fflush(ficlog);
       numlinepar++;  
       puts(line);      delti=delti3[1][1];
       fputs(line,ficparo);  
       fputs(line,ficlog);  
     }      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     ungetc(c,ficpar);   
         /* Reads comments: lines beginning with '#' */
     matcov=matrix(1,npar,1,npar);      while((c=getc(ficpar))=='#' && c!= EOF){
     for(i=1; i <=npar; i++){        ungetc(c,ficpar);
       fscanf(ficpar,"%s",&str);        fgets(line, MAXLINE, ficpar);
       if(mle==1)        numlinepar++;
         printf("%s",str);        puts(line);
       fprintf(ficlog,"%s",str);        fputs(line,ficparo);
       fprintf(ficparo,"%s",str);        fputs(line,ficlog);
       for(j=1; j <=i; j++){      }
         fscanf(ficpar," %le",&matcov[i][j]);      ungetc(c,ficpar);
         if(mle==1){   
           printf(" %.5le",matcov[i][j]);      matcov=matrix(1,npar,1,npar);
         }      for(i=1; i <=npar; i++){
         fprintf(ficlog," %.5le",matcov[i][j]);        fscanf(ficpar,"%s",&str);
         fprintf(ficparo," %.5le",matcov[i][j]);        if(mle==1)
       }          printf("%s",str);
       fscanf(ficpar,"\n");        fprintf(ficlog,"%s",str);
       numlinepar++;        fprintf(ficparo,"%s",str);
       if(mle==1)        for(j=1; j <=i; j++){
         printf("\n");          fscanf(ficpar," %le",&matcov[i][j]);
       fprintf(ficlog,"\n");          if(mle==1){
       fprintf(ficparo,"\n");            printf(" %.5le",matcov[i][j]);
     }          }
     for(i=1; i <=npar; i++)          fprintf(ficlog," %.5le",matcov[i][j]);
       for(j=i+1;j<=npar;j++)          fprintf(ficparo," %.5le",matcov[i][j]);
         matcov[i][j]=matcov[j][i];        }
             fscanf(ficpar,"\n");
     if(mle==1)        numlinepar++;
       printf("\n");        if(mle==1)
     fprintf(ficlog,"\n");          printf("\n");
             fprintf(ficlog,"\n");
     fflush(ficlog);        fprintf(ficparo,"\n");
           }
     /*-------- Rewriting parameter file ----------*/      for(i=1; i <=npar; i++)
     strcpy(rfileres,"r");    /* "Rparameterfile */        for(j=i+1;j<=npar;j++)
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          matcov[i][j]=matcov[j][i];
     strcat(rfileres,".");    /* */     
     strcat(rfileres,optionfilext);    /* Other files have txt extension */      if(mle==1)
     if((ficres =fopen(rfileres,"w"))==NULL) {        printf("\n");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      fprintf(ficlog,"\n");
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;     
     }      fflush(ficlog);
     fprintf(ficres,"#%s\n",version);     
   }    /* End of mle != -3 */      /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
   /*-------- data file ----------*/      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
   if((fic=fopen(datafile,"r"))==NULL)    {      strcat(rfileres,".");    /* */
     printf("Problem while opening datafile: %s\n", datafile);goto end;      strcat(rfileres,optionfilext);    /* Other files have txt extension */
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;      if((ficres =fopen(rfileres,"w"))==NULL) {
   }        printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
   n= lastobs;      }
   severity = vector(1,maxwav);      fprintf(ficres,"#%s\n",version);
   outcome=imatrix(1,maxwav+1,1,n);    }    /* End of mle != -3 */
   num=lvector(1,n);  
   moisnais=vector(1,n);    /*-------- data file ----------*/
   annais=vector(1,n);    if((fic=fopen(datafile,"r"))==NULL)    {
   moisdc=vector(1,n);      printf("Problem while opening datafile: %s\n", datafile);goto end;
   andc=vector(1,n);      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
   agedc=vector(1,n);    }
   cod=ivector(1,n);  
   weight=vector(1,n);    n= lastobs;
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    severity = vector(1,maxwav);
   mint=matrix(1,maxwav,1,n);    outcome=imatrix(1,maxwav+1,1,n);
   anint=matrix(1,maxwav,1,n);    num=lvector(1,n);
   s=imatrix(1,maxwav+1,1,n);    moisnais=vector(1,n);
   tab=ivector(1,NCOVMAX);    annais=vector(1,n);
   ncodemax=ivector(1,8);    moisdc=vector(1,n);
     andc=vector(1,n);
   i=1;    agedc=vector(1,n);
   linei=0;    cod=ivector(1,n);
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {    weight=vector(1,n);
     linei=linei+1;    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */    mint=matrix(1,maxwav,1,n);
       if(line[j] == '\t')    anint=matrix(1,maxwav,1,n);
         line[j] = ' ';    s=imatrix(1,maxwav+1,1,n);
     }    tab=ivector(1,NCOVMAX);
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){    ncodemax=ivector(1,8);
       ;  
     };    i=1;
     line[j+1]=0;  /* Trims blanks at end of line */    linei=0;
     if(line[0]=='#'){    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       fprintf(ficlog,"Comment line\n%s\n",line);      linei=linei+1;
       printf("Comment line\n%s\n",line);      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
       continue;        if(line[j] == '\t')
     }          line[j] = ' ';
       }
     for (j=maxwav;j>=1;j--){      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
       cutv(stra, strb,line,' ');         ;
       errno=0;      };
       lval=strtol(strb,&endptr,10);       line[j+1]=0;  /* Trims blanks at end of line */
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/      if(line[0]=='#'){
       if( strb[0]=='\0' || (*endptr != '\0')){        fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);        printf("Comment line\n%s\n",line);
         exit(1);        continue;
       }      }
       s[j][i]=lval;  
             for (j=maxwav;j>=1;j--){
       strcpy(line,stra);        cutv(stra, strb,line,' ');
       cutv(stra, strb,line,' ');        errno=0;
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){        lval=strtol(strb,&endptr,10);
       }        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
       else  if(iout=sscanf(strb,"%s.") != 0){        if( strb[0]=='\0' || (*endptr != '\0')){
         month=99;          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
         year=9999;          exit(1);
       }else{        }
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);        s[j][i]=lval;
         exit(1);       
       }        strcpy(line,stra);
       anint[j][i]= (double) year;         cutv(stra, strb,line,' ');
       mint[j][i]= (double)month;         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       strcpy(line,stra);        }
     } /* ENd Waves */        else  if(iout=sscanf(strb,"%s.") != 0){
               month=99;
     cutv(stra, strb,line,' ');           year=9999;
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){        }else{
     }          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){          exit(1);
       month=99;        }
       year=9999;        anint[j][i]= (double) year;
     }else{        mint[j][i]= (double)month;
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);        strcpy(line,stra);
       exit(1);      } /* ENd Waves */
     }     
     andc[i]=(double) year;       cutv(stra, strb,line,' ');
     moisdc[i]=(double) month;       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     strcpy(line,stra);      }
           else  if(iout=sscanf(strb,"%s.",dummy) != 0){
     cutv(stra, strb,line,' ');         month=99;
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){        year=9999;
     }      }else{
     else  if(iout=sscanf(strb,"%s.") != 0){        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       month=99;        exit(1);
       year=9999;      }
     }else{      andc[i]=(double) year;
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);      moisdc[i]=(double) month;
       exit(1);      strcpy(line,stra);
     }     
     annais[i]=(double)(year);      cutv(stra, strb,line,' ');
     moisnais[i]=(double)(month);       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     strcpy(line,stra);      }
           else  if(iout=sscanf(strb,"%s.") != 0){
     cutv(stra, strb,line,' ');         month=99;
     errno=0;        year=9999;
     dval=strtod(strb,&endptr);       }else{
     if( strb[0]=='\0' || (*endptr != '\0')){        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);        exit(1);
       exit(1);      }
     }      annais[i]=(double)(year);
     weight[i]=dval;       moisnais[i]=(double)(month);
     strcpy(line,stra);      strcpy(line,stra);
          
     for (j=ncovcol;j>=1;j--){      cutv(stra, strb,line,' ');
       cutv(stra, strb,line,' ');       errno=0;
       errno=0;      dval=strtod(strb,&endptr);
       lval=strtol(strb,&endptr,10);       if( strb[0]=='\0' || (*endptr != '\0')){
       if( strb[0]=='\0' || (*endptr != '\0')){        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);        exit(1);
         exit(1);      }
       }      weight[i]=dval;
       if(lval <-1 || lval >1){      strcpy(line,stra);
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \     
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \      for (j=ncovcol;j>=1;j--){
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \        cutv(stra, strb,line,' ');
  For example, for multinomial values like 1, 2 and 3,\n \        errno=0;
  build V1=0 V2=0 for the reference value (1),\n \        lval=strtol(strb,&endptr,10);
         V1=1 V2=0 for (2) \n \        if( strb[0]=='\0' || (*endptr != '\0')){
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
  output of IMaCh is often meaningless.\n \          exit(1);
  Exiting.\n",lval,linei, i,line,j);        }
         exit(1);        if(lval <-1 || lval >1){
       }          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
       covar[j][i]=(double)(lval);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
       strcpy(line,stra);   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
     }    For example, for multinomial values like 1, 2 and 3,\n \
     lstra=strlen(stra);   build V1=0 V2=0 for the reference value (1),\n \
               V1=1 V2=0 for (2) \n \
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
       stratrunc = &(stra[lstra-9]);   output of IMaCh is often meaningless.\n \
       num[i]=atol(stratrunc);   Exiting.\n",lval,linei, i,line,j);
     }          exit(1);
     else        }
       num[i]=atol(stra);        covar[j][i]=(double)(lval);
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        strcpy(line,stra);
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      }
           lstra=strlen(stra);
     i=i+1;     
   } /* End loop reading  data */      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
   fclose(fic);        stratrunc = &(stra[lstra-9]);
   /* printf("ii=%d", ij);        num[i]=atol(stratrunc);
      scanf("%d",i);*/      }
   imx=i-1; /* Number of individuals */      else
         num[i]=atol(stra);
   /* for (i=1; i<=imx; i++){      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;     
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      i=i+1;
     }*/    } /* End loop reading  data */
    /*  for (i=1; i<=imx; i++){    fclose(fic);
      if (s[4][i]==9)  s[4][i]=-1;     /* printf("ii=%d", ij);
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/       scanf("%d",i);*/
       imx=i-1; /* Number of individuals */
   /* for (i=1; i<=imx; i++) */  
      /* for (i=1; i<=imx; i++){
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
      else weight[i]=1;*/      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
   /* Calculation of the number of parameters from char model */      }*/
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */     /*  for (i=1; i<=imx; i++){
   Tprod=ivector(1,15);        if (s[4][i]==9)  s[4][i]=-1;
   Tvaraff=ivector(1,15);        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
   Tvard=imatrix(1,15,1,2);   
   Tage=ivector(1,15);          /* for (i=1; i<=imx; i++) */
       
   if (strlen(model) >1){ /* If there is at least 1 covariate */     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
     j=0, j1=0, k1=1, k2=1;       else weight[i]=1;*/
     j=nbocc(model,'+'); /* j=Number of '+' */  
     j1=nbocc(model,'*'); /* j1=Number of '*' */    /* Calculation of the number of parameters from char model */
     cptcovn=j+1;     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     cptcovprod=j1; /*Number of products */    Tprod=ivector(1,15);
         Tvaraff=ivector(1,15);
     strcpy(modelsav,model);     Tvard=imatrix(1,15,1,2);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    Tage=ivector(1,15);      
       printf("Error. Non available option model=%s ",model);     
       fprintf(ficlog,"Error. Non available option model=%s ",model);    if (strlen(model) >1){ /* If there is at least 1 covariate */
       goto end;      j=0, j1=0, k1=1, k2=1;
     }      j=nbocc(model,'+'); /* j=Number of '+' */
           j1=nbocc(model,'*'); /* j1=Number of '*' */
     /* This loop fills the array Tvar from the string 'model'.*/      cptcovn=j+1;
       cptcovprod=j1; /*Number of products */
     for(i=(j+1); i>=1;i--){     
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */       strcpy(modelsav,model);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        printf("Error. Non available option model=%s ",model);
       /*scanf("%d",i);*/        fprintf(ficlog,"Error. Non available option model=%s ",model);
       if (strchr(strb,'*')) {  /* Model includes a product */        goto end;
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      }
         if (strcmp(strc,"age")==0) { /* Vn*age */     
           cptcovprod--;      /* This loop fills the array Tvar from the string 'model'.*/
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      for(i=(j+1); i>=1;i--){
           cptcovage++;        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
             Tage[cptcovage]=i;        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
             /*printf("stre=%s ", stre);*/        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         }        /*scanf("%d",i);*/
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        if (strchr(strb,'*')) {  /* Model includes a product */
           cptcovprod--;          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           cutv(strb,stre,strc,'V');          if (strcmp(strc,"age")==0) { /* Vn*age */
           Tvar[i]=atoi(stre);            cptcovprod--;
           cptcovage++;            cutv(strb,stre,strd,'V');
           Tage[cptcovage]=i;            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
         }            cptcovage++;
         else {  /* Age is not in the model */              Tage[cptcovage]=i;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/              /*printf("stre=%s ", stre);*/
           Tvar[i]=ncovcol+k1;          }
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */          else if (strcmp(strd,"age")==0) { /* or age*Vn */
           Tprod[k1]=i;            cptcovprod--;
           Tvard[k1][1]=atoi(strc); /* m*/            cutv(strb,stre,strc,'V');
           Tvard[k1][2]=atoi(stre); /* n */            Tvar[i]=atoi(stre);
           Tvar[cptcovn+k2]=Tvard[k1][1];            cptcovage++;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];             Tage[cptcovage]=i;
           for (k=1; k<=lastobs;k++)           }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          else {  /* Age is not in the model */
           k1++;            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
           k2=k2+2;            Tvar[i]=ncovcol+k1;
         }            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
       }            Tprod[k1]=i;
       else { /* no more sum */            Tvard[k1][1]=atoi(strc); /* m*/
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            Tvard[k1][2]=atoi(stre); /* n */
        /*  scanf("%d",i);*/            Tvar[cptcovn+k2]=Tvard[k1][1];
       cutv(strd,strc,strb,'V');            Tvar[cptcovn+k2+1]=Tvard[k1][2];
       Tvar[i]=atoi(strc);            for (k=1; k<=lastobs;k++)
       }              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
       strcpy(modelsav,stra);              k1++;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            k2=k2+2;
         scanf("%d",i);*/          }
     } /* end of loop + */        }
   } /* end model */        else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.         /*  scanf("%d",i);*/
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/        cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        }
   printf("cptcovprod=%d ", cptcovprod);        strcpy(modelsav,stra);  
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
   scanf("%d ",i);*/      } /* end of loop + */
     } /* end model */
     /*  if(mle==1){*/   
   if (weightopt != 1) { /* Maximisation without weights*/    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
     for(i=1;i<=n;i++) weight[i]=1.0;      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   }  
     /*-calculation of age at interview from date of interview and age at death -*/    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
   agev=matrix(1,maxwav,1,imx);    printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   for (i=1; i<=imx; i++) {  
     for(m=2; (m<= maxwav); m++) {    scanf("%d ",i);*/
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){  
         anint[m][i]=9999;      /*  if(mle==1){*/
         s[m][i]=-1;    if (weightopt != 1) { /* Maximisation without weights*/
       }      for(i=1;i<=n;i++) weight[i]=1.0;
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){    }
         nberr++;      /*-calculation of age at interview from date of interview and age at death -*/
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    agev=matrix(1,maxwav,1,imx);
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  
         s[m][i]=-1;    for (i=1; i<=imx; i++) {
       }      for(m=2; (m<= maxwav); m++) {
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
         nberr++;          anint[m][i]=9999;
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);           s[m][i]=-1;
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);         }
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
       }          nberr++;
     }          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   }          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
   for (i=1; i<=imx; i++)  {        }
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
     for(m=firstpass; (m<= lastpass); m++){          nberr++;
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
         if (s[m][i] >= nlstate+1) {          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
           if(agedc[i]>0)          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)        }
               agev[m][i]=agedc[i];      }
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    }
             else {  
               if ((int)andc[i]!=9999){    for (i=1; i<=imx; i++)  {
                 nbwarn++;      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);      for(m=firstpass; (m<= lastpass); m++){
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
                 agev[m][i]=-1;          if (s[m][i] >= nlstate+1) {
               }            if(agedc[i]>0)
             }              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
         }                agev[m][i]=agedc[i];
         else if(s[m][i] !=9){ /* Standard case, age in fractional            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
                                  years but with the precision of a month */              else {
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                if ((int)andc[i]!=9999){
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)                  nbwarn++;
             agev[m][i]=1;                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
           else if(agev[m][i] <agemin){                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
             agemin=agev[m][i];                  agev[m][i]=-1;
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                }
           }              }
           else if(agev[m][i] >agemax){          }
             agemax=agev[m][i];          else if(s[m][i] !=9){ /* Standard case, age in fractional
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                                   years but with the precision of a month */
           }            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
           /*agev[m][i]=anint[m][i]-annais[i];*/            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
           /*     agev[m][i] = age[i]+2*m;*/              agev[m][i]=1;
         }            else if(agev[m][i] <agemin){
         else { /* =9 */              agemin=agev[m][i];
           agev[m][i]=1;              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
           s[m][i]=-1;            }
         }            else if(agev[m][i] >agemax){
       }              agemax=agev[m][i];
       else /*= 0 Unknown */              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
         agev[m][i]=1;            }
     }            /*agev[m][i]=anint[m][i]-annais[i];*/
                 /*     agev[m][i] = age[i]+2*m;*/
   }          }
   for (i=1; i<=imx; i++)  {          else { /* =9 */
     for(m=firstpass; (m<=lastpass); m++){            agev[m][i]=1;
       if (s[m][i] > (nlstate+ndeath)) {            s[m][i]=-1;
         nberr++;          }
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             }
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             else /*= 0 Unknown */
         goto end;          agev[m][i]=1;
       }      }
     }     
   }    }
     for (i=1; i<=imx; i++)  {
   /*for (i=1; i<=imx; i++){      for(m=firstpass; (m<=lastpass); m++){
   for (m=firstpass; (m<lastpass); m++){        if (s[m][i] > (nlstate+ndeath)) {
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);          nberr++;
 }          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
 }*/          goto end;
         }
       }
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    }
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   
     /*for (i=1; i<=imx; i++){
   agegomp=(int)agemin;    for (m=firstpass; (m<lastpass); m++){
   free_vector(severity,1,maxwav);       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   free_imatrix(outcome,1,maxwav+1,1,n);  }
   free_vector(moisnais,1,n);  
   free_vector(annais,1,n);  }*/
   /* free_matrix(mint,1,maxwav,1,n);  
      free_matrix(anint,1,maxwav,1,n);*/  
   free_vector(moisdc,1,n);    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   free_vector(andc,1,n);    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
        agegomp=(int)agemin;
   wav=ivector(1,imx);    free_vector(severity,1,maxwav);
   dh=imatrix(1,lastpass-firstpass+1,1,imx);    free_imatrix(outcome,1,maxwav+1,1,n);
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    free_vector(moisnais,1,n);
   mw=imatrix(1,lastpass-firstpass+1,1,imx);    free_vector(annais,1,n);
        /* free_matrix(mint,1,maxwav,1,n);
   /* Concatenates waves */       free_matrix(anint,1,maxwav,1,n);*/
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */  
      
   Tcode=ivector(1,100);    wav=ivector(1,imx);
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     dh=imatrix(1,lastpass-firstpass+1,1,imx);
   ncodemax[1]=1;    bh=imatrix(1,lastpass-firstpass+1,1,imx);
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);    mw=imatrix(1,lastpass-firstpass+1,1,imx);
            
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of     /* Concatenates waves */
                                  the estimations*/    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   h=0;  
   m=pow(2,cptcoveff);    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
    
   for(k=1;k<=cptcoveff; k++){    Tcode=ivector(1,100);
     for(i=1; i <=(m/pow(2,k));i++){    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
       for(j=1; j <= ncodemax[k]; j++){    ncodemax[1]=1;
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
           h++;       
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                                   the estimations*/
         }     h=0;
       }    m=pow(2,cptcoveff);
     }   
   }     for(k=1;k<=cptcoveff; k++){
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       for(i=1; i <=(m/pow(2,k));i++){
      codtab[1][2]=1;codtab[2][2]=2; */        for(j=1; j <= ncodemax[k]; j++){
   /* for(i=1; i <=m ;i++){           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
      for(k=1; k <=cptcovn; k++){            h++;
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
      }            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
      printf("\n");          }
      }        }
      scanf("%d",i);*/      }
         }
   /*------------ gnuplot -------------*/    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
   strcpy(optionfilegnuplot,optionfilefiname);       codtab[1][2]=1;codtab[2][2]=2; */
   if(mle==-3)    /* for(i=1; i <=m ;i++){
     strcat(optionfilegnuplot,"-mort");       for(k=1; k <=cptcovn; k++){
   strcat(optionfilegnuplot,".gp");       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       printf("\n");
     printf("Problem with file %s",optionfilegnuplot);       }
   }       scanf("%d",i);*/
   else{     
     fprintf(ficgp,"\n# %s\n", version);     /*------------ gnuplot -------------*/
     fprintf(ficgp,"# %s\n", optionfilegnuplot);     strcpy(optionfilegnuplot,optionfilefiname);
     fprintf(ficgp,"set missing 'NaNq'\n");    if(mle==-3)
   }      strcat(optionfilegnuplot,"-mort");
   /*  fclose(ficgp);*/    strcat(optionfilegnuplot,".gp");
   /*--------- index.htm --------*/  
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */      printf("Problem with file %s",optionfilegnuplot);
   if(mle==-3)    }
     strcat(optionfilehtm,"-mort");    else{
   strcat(optionfilehtm,".htm");      fprintf(ficgp,"\n# %s\n", version);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      fprintf(ficgp,"# %s\n", optionfilegnuplot);
     printf("Problem with %s \n",optionfilehtm), exit(0);      fprintf(ficgp,"set missing 'NaNq'\n");
   }    }
     /*  fclose(ficgp);*/
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    /*--------- index.htm --------*/
   strcat(optionfilehtmcov,"-cov.htm");  
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     printf("Problem with %s \n",optionfilehtmcov), exit(0);    if(mle==-3)
   }      strcat(optionfilehtm,"-mort");
   else{    strcat(optionfilehtm,".htm");
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      printf("Problem with %s \n",optionfilehtm), exit(0);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\    }
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);  
   }    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      printf("Problem with %s \n",optionfilehtmcov), exit(0);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\    }
 \n\    else{
 <hr  size=\"2\" color=\"#EC5E5E\">\    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
  <ul><li><h4>Parameter files</h4>\n\  <hr size=\"2\" color=\"#EC5E5E\"> \n\
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\    }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\  
  - Date and time at start: %s</ul>\n",\    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\  <hr size=\"2\" color=\"#EC5E5E\"> \n\
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
           fileres,fileres,\  \n\
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);  <hr  size=\"2\" color=\"#EC5E5E\">\
   fflush(fichtm);   <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
   strcpy(pathr,path);   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
   strcat(pathr,optionfilefiname);   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
   chdir(optionfilefiname); /* Move to directory named optionfile */   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
      - Date and time at start: %s</ul>\n",\
   /* Calculates basic frequencies. Computes observed prevalence at single age            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
      and prints on file fileres'p'. */            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);            fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
   fprintf(fichtm,"\n");    fflush(fichtm);
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\  
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\    strcpy(pathr,path);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\    strcat(pathr,optionfilefiname);
           imx,agemin,agemax,jmin,jmax,jmean);    chdir(optionfilefiname); /* Move to directory named optionfile */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Calculates basic frequencies. Computes observed prevalence at single age
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       and prints on file fileres'p'. */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
         fprintf(fichtm,"\n");
        fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   /* For Powell, parameters are in a vector p[] starting at p[1]  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */            imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   if (mle==-3){      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     ximort=matrix(1,NDIM,1,NDIM);      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
     cens=ivector(1,n);     
     ageexmed=vector(1,n);     
     agecens=vector(1,n);    /* For Powell, parameters are in a vector p[] starting at p[1]
     dcwave=ivector(1,n);       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
      p=param[1][1]; /* *(*(*(param +1)+1)+0) */
     for (i=1; i<=imx; i++){  
       dcwave[i]=-1;    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
       for (m=firstpass; m<=lastpass; m++)  
         if (s[m][i]>nlstate) {    if (mle==-3){
           dcwave[i]=m;      ximort=matrix(1,NDIM,1,NDIM);
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/      cens=ivector(1,n);
           break;      ageexmed=vector(1,n);
         }      agecens=vector(1,n);
     }      dcwave=ivector(1,n);
    
     for (i=1; i<=imx; i++) {      for (i=1; i<=imx; i++){
       if (wav[i]>0){        dcwave[i]=-1;
         ageexmed[i]=agev[mw[1][i]][i];        for (m=firstpass; m<=lastpass; m++)
         j=wav[i];          if (s[m][i]>nlstate) {
         agecens[i]=1.;             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
         if (ageexmed[i]> 1 && wav[i] > 0){            break;
           agecens[i]=agev[mw[j][i]][i];          }
           cens[i]= 1;      }
         }else if (ageexmed[i]< 1)   
           cens[i]= -1;      for (i=1; i<=imx; i++) {
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)        if (wav[i]>0){
           cens[i]=0 ;          ageexmed[i]=agev[mw[1][i]][i];
       }          j=wav[i];
       else cens[i]=-1;          agecens[i]=1.;
     }  
               if (ageexmed[i]> 1 && wav[i] > 0){
     for (i=1;i<=NDIM;i++) {            agecens[i]=agev[mw[j][i]][i];
       for (j=1;j<=NDIM;j++)            cens[i]= 1;
         ximort[i][j]=(i == j ? 1.0 : 0.0);          }else if (ageexmed[i]< 1)
     }            cens[i]= -1;
               if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
     p[1]=0.0268; p[NDIM]=0.083;            cens[i]=0 ;
     /*printf("%lf %lf", p[1], p[2]);*/        }
             else cens[i]=-1;
           }
     printf("Powell\n");  fprintf(ficlog,"Powell\n");     
     strcpy(filerespow,"pow-mort");       for (i=1;i<=NDIM;i++) {
     strcat(filerespow,fileres);        for (j=1;j<=NDIM;j++)
     if((ficrespow=fopen(filerespow,"w"))==NULL) {          ximort[i][j]=(i == j ? 1.0 : 0.0);
       printf("Problem with resultfile: %s\n", filerespow);      }
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);     
     }      p[1]=0.0268; p[NDIM]=0.083;
     fprintf(ficrespow,"# Powell\n# iter -2*LL");      /*printf("%lf %lf", p[1], p[2]);*/
     /*  for (i=1;i<=nlstate;i++)     
         for(j=1;j<=nlstate+ndeath;j++)     
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     */      strcpy(filerespow,"pow-mort");
     fprintf(ficrespow,"\n");      strcat(filerespow,fileres);
           if((ficrespow=fopen(filerespow,"w"))==NULL) {
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);        printf("Problem with resultfile: %s\n", filerespow);
     fclose(ficrespow);        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           }
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
     for(i=1; i <=NDIM; i++)          for(j=1;j<=nlstate+ndeath;j++)
       for(j=i+1;j<=NDIM;j++)          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         matcov[i][j]=matcov[j][i];      */
           fprintf(ficrespow,"\n");
     printf("\nCovariance matrix\n ");     
     for(i=1; i <=NDIM; i++) {      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       for(j=1;j<=NDIM;j++){       fclose(ficrespow);
         printf("%f ",matcov[i][j]);     
       }      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
       printf("\n ");  
     }      for(i=1; i <=NDIM; i++)
             for(j=i+1;j<=NDIM;j++)
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);          matcov[i][j]=matcov[j][i];
     for (i=1;i<=NDIM;i++)      
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));      printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
     lsurv=vector(1,AGESUP);        for(j=1;j<=NDIM;j++){
     lpop=vector(1,AGESUP);          printf("%f ",matcov[i][j]);
     tpop=vector(1,AGESUP);        }
     lsurv[agegomp]=100000;        printf("\n ");
           }
     for (k=agegomp;k<=AGESUP;k++) {     
       agemortsup=k;      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;      for (i=1;i<=NDIM;i++)
     }        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       
     for (k=agegomp;k<agemortsup;k++)      lsurv=vector(1,AGESUP);
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));      lpop=vector(1,AGESUP);
           tpop=vector(1,AGESUP);
     for (k=agegomp;k<agemortsup;k++){      lsurv[agegomp]=100000;
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;     
       sumlpop=sumlpop+lpop[k];      for (k=agegomp;k<=AGESUP;k++) {
     }        agemortsup=k;
             if (p[1]*exp(p[2]*(k-agegomp))>1) break;
     tpop[agegomp]=sumlpop;      }
     for (k=agegomp;k<(agemortsup-3);k++){     
       /*  tpop[k+1]=2;*/      for (k=agegomp;k<agemortsup;k++)
       tpop[k+1]=tpop[k]-lpop[k];        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
     }     
           for (k=agegomp;k<agemortsup;k++){
             lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");        sumlpop=sumlpop+lpop[k];
     for (k=agegomp;k<(agemortsup-2);k++)       }
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);     
           tpop[agegomp]=sumlpop;
           for (k=agegomp;k<(agemortsup-3);k++){
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */        /*  tpop[k+1]=2;*/
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);        tpop[k+1]=tpop[k]-lpop[k];
           }
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \     
                      stepm, weightopt,\     
                      model,imx,p,matcov,agemortsup);      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
           for (k=agegomp;k<(agemortsup-2);k++)
     free_vector(lsurv,1,AGESUP);        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     free_vector(lpop,1,AGESUP);     
     free_vector(tpop,1,AGESUP);     
   } /* Endof if mle==-3 */      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
         printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   else{ /* For mle >=1 */     
         printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */                       stepm, weightopt,\
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);                       model,imx,p,matcov,agemortsup);
     for (k=1; k<=npar;k++)     
       printf(" %d %8.5f",k,p[k]);      free_vector(lsurv,1,AGESUP);
     printf("\n");      free_vector(lpop,1,AGESUP);
     globpr=1; /* to print the contributions */      free_vector(tpop,1,AGESUP);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    } /* Endof if mle==-3 */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);   
     for (k=1; k<=npar;k++)    else{ /* For mle >=1 */
       printf(" %d %8.5f",k,p[k]);   
     printf("\n");      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     if(mle>=1){ /* Could be 1 or 2 */      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      for (k=1; k<=npar;k++)
     }        printf(" %d %8.5f",k,p[k]);
           printf("\n");
     /*--------- results files --------------*/      globpr=1; /* to print the contributions */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
           printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
           for (k=1; k<=npar;k++)
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        printf(" %d %8.5f",k,p[k]);
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      printf("\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      if(mle>=1){ /* Could be 1 or 2 */
     for(i=1,jk=1; i <=nlstate; i++){        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       for(k=1; k <=(nlstate+ndeath); k++){      }
         if (k != i) {     
           printf("%d%d ",i,k);      /*--------- results files --------------*/
           fprintf(ficlog,"%d%d ",i,k);      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
           fprintf(ficres,"%1d%1d ",i,k);     
           for(j=1; j <=ncovmodel; j++){     
             printf("%lf ",p[jk]);      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
             fprintf(ficlog,"%lf ",p[jk]);      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
             fprintf(ficres,"%lf ",p[jk]);      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
             jk++;       for(i=1,jk=1; i <=nlstate; i++){
           }        for(k=1; k <=(nlstate+ndeath); k++){
           printf("\n");          if (k != i) {
           fprintf(ficlog,"\n");            printf("%d%d ",i,k);
           fprintf(ficres,"\n");            fprintf(ficlog,"%d%d ",i,k);
         }            fprintf(ficres,"%1d%1d ",i,k);
       }            for(j=1; j <=ncovmodel; j++){
     }              printf("%lf ",p[jk]);
     if(mle!=0){              fprintf(ficlog,"%lf ",p[jk]);
       /* Computing hessian and covariance matrix */              fprintf(ficres,"%lf ",p[jk]);
       ftolhess=ftol; /* Usually correct */              jk++;
       hesscov(matcov, p, npar, delti, ftolhess, func);            }
     }            printf("\n");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");            fprintf(ficlog,"\n");
     printf("# Scales (for hessian or gradient estimation)\n");            fprintf(ficres,"\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");          }
     for(i=1,jk=1; i <=nlstate; i++){        }
       for(j=1; j <=nlstate+ndeath; j++){      }
         if (j!=i) {      if(mle!=0){
           fprintf(ficres,"%1d%1d",i,j);        /* Computing hessian and covariance matrix */
           printf("%1d%1d",i,j);        ftolhess=ftol; /* Usually correct */
           fprintf(ficlog,"%1d%1d",i,j);        hesscov(matcov, p, npar, delti, ftolhess, func);
           for(k=1; k<=ncovmodel;k++){      }
             printf(" %.5e",delti[jk]);      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
             fprintf(ficlog," %.5e",delti[jk]);      printf("# Scales (for hessian or gradient estimation)\n");
             fprintf(ficres," %.5e",delti[jk]);      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
             jk++;      for(i=1,jk=1; i <=nlstate; i++){
           }        for(j=1; j <=nlstate+ndeath; j++){
           printf("\n");          if (j!=i) {
           fprintf(ficlog,"\n");            fprintf(ficres,"%1d%1d",i,j);
           fprintf(ficres,"\n");            printf("%1d%1d",i,j);
         }            fprintf(ficlog,"%1d%1d",i,j);
       }            for(k=1; k<=ncovmodel;k++){
     }              printf(" %.5e",delti[jk]);
                   fprintf(ficlog," %.5e",delti[jk]);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              fprintf(ficres," %.5e",delti[jk]);
     if(mle>=1)              jk++;
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            }
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            printf("\n");
     /* # 121 Var(a12)\n\ */            fprintf(ficlog,"\n");
     /* # 122 Cov(b12,a12) Var(b12)\n\ */            fprintf(ficres,"\n");
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */          }
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */        }
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */      }
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */     
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */      if(mle>=1)
             printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
           fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     /* Just to have a covariance matrix which will be more understandable      /* # 121 Var(a12)\n\ */
        even is we still don't want to manage dictionary of variables      /* # 122 Cov(b12,a12) Var(b12)\n\ */
     */      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     for(itimes=1;itimes<=2;itimes++){      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       jj=0;      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       for(i=1; i <=nlstate; i++){      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
         for(j=1; j <=nlstate+ndeath; j++){      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
           if(j==i) continue;      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
           for(k=1; k<=ncovmodel;k++){     
             jj++;     
             ca[0]= k+'a'-1;ca[1]='\0';      /* Just to have a covariance matrix which will be more understandable
             if(itimes==1){         even is we still don't want to manage dictionary of variables
               if(mle>=1)      */
                 printf("#%1d%1d%d",i,j,k);      for(itimes=1;itimes<=2;itimes++){
               fprintf(ficlog,"#%1d%1d%d",i,j,k);        jj=0;
               fprintf(ficres,"#%1d%1d%d",i,j,k);        for(i=1; i <=nlstate; i++){
             }else{          for(j=1; j <=nlstate+ndeath; j++){
               if(mle>=1)            if(j==i) continue;
                 printf("%1d%1d%d",i,j,k);            for(k=1; k<=ncovmodel;k++){
               fprintf(ficlog,"%1d%1d%d",i,j,k);              jj++;
               fprintf(ficres,"%1d%1d%d",i,j,k);              ca[0]= k+'a'-1;ca[1]='\0';
             }              if(itimes==1){
             ll=0;                if(mle>=1)
             for(li=1;li <=nlstate; li++){                  printf("#%1d%1d%d",i,j,k);
               for(lj=1;lj <=nlstate+ndeath; lj++){                fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 if(lj==li) continue;                fprintf(ficres,"#%1d%1d%d",i,j,k);
                 for(lk=1;lk<=ncovmodel;lk++){              }else{
                   ll++;                if(mle>=1)
                   if(ll<=jj){                  printf("%1d%1d%d",i,j,k);
                     cb[0]= lk +'a'-1;cb[1]='\0';                fprintf(ficlog,"%1d%1d%d",i,j,k);
                     if(ll<jj){                fprintf(ficres,"%1d%1d%d",i,j,k);
                       if(itimes==1){              }
                         if(mle>=1)              ll=0;
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);              for(li=1;li <=nlstate; li++){
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                for(lj=1;lj <=nlstate+ndeath; lj++){
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                  if(lj==li) continue;
                       }else{                  for(lk=1;lk<=ncovmodel;lk++){
                         if(mle>=1)                    ll++;
                           printf(" %.5e",matcov[jj][ll]);                     if(ll<=jj){
                         fprintf(ficlog," %.5e",matcov[jj][ll]);                       cb[0]= lk +'a'-1;cb[1]='\0';
                         fprintf(ficres," %.5e",matcov[jj][ll]);                       if(ll<jj){
                       }                        if(itimes==1){
                     }else{                          if(mle>=1)
                       if(itimes==1){                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         if(mle>=1)                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           printf(" Var(%s%1d%1d)",ca,i,j);                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);                        }else{
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);                          if(mle>=1)
                       }else{                            printf(" %.5e",matcov[jj][ll]);
                         if(mle>=1)                          fprintf(ficlog," %.5e",matcov[jj][ll]);
                           printf(" %.5e",matcov[jj][ll]);                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         fprintf(ficlog," %.5e",matcov[jj][ll]);                         }
                         fprintf(ficres," %.5e",matcov[jj][ll]);                       }else{
                       }                        if(itimes==1){
                     }                          if(mle>=1)
                   }                            printf(" Var(%s%1d%1d)",ca,i,j);
                 } /* end lk */                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
               } /* end lj */                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
             } /* end li */                        }else{
             if(mle>=1)                          if(mle>=1)
               printf("\n");                            printf(" %.5e",matcov[jj][ll]);
             fprintf(ficlog,"\n");                          fprintf(ficlog," %.5e",matcov[jj][ll]);
             fprintf(ficres,"\n");                          fprintf(ficres," %.5e",matcov[jj][ll]);
             numlinepar++;                        }
           } /* end k*/                      }
         } /*end j */                    }
       } /* end i */                  } /* end lk */
     } /* end itimes */                } /* end lj */
                   } /* end li */
     fflush(ficlog);              if(mle>=1)
     fflush(ficres);                printf("\n");
                   fprintf(ficlog,"\n");
     while((c=getc(ficpar))=='#' && c!= EOF){              fprintf(ficres,"\n");
       ungetc(c,ficpar);              numlinepar++;
       fgets(line, MAXLINE, ficpar);            } /* end k*/
       puts(line);          } /*end j */
       fputs(line,ficparo);        } /* end i */
     }      } /* end itimes */
     ungetc(c,ficpar);     
           fflush(ficlog);
     estepm=0;      fflush(ficres);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);     
     if (estepm==0 || estepm < stepm) estepm=stepm;      while((c=getc(ficpar))=='#' && c!= EOF){
     if (fage <= 2) {        ungetc(c,ficpar);
       bage = ageminpar;        fgets(line, MAXLINE, ficpar);
       fage = agemaxpar;        puts(line);
     }        fputs(line,ficparo);
           }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      ungetc(c,ficpar);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);     
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      estepm=0;
           fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     while((c=getc(ficpar))=='#' && c!= EOF){      if (estepm==0 || estepm < stepm) estepm=stepm;
       ungetc(c,ficpar);      if (fage <= 2) {
       fgets(line, MAXLINE, ficpar);        bage = ageminpar;
       puts(line);        fage = agemaxpar;
       fputs(line,ficparo);      }
     }     
     ungetc(c,ficpar);      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
           fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);      fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);     
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      while((c=getc(ficpar))=='#' && c!= EOF){
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        ungetc(c,ficpar);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        fgets(line, MAXLINE, ficpar);
             puts(line);
     while((c=getc(ficpar))=='#' && c!= EOF){        fputs(line,ficparo);
       ungetc(c,ficpar);      }
       fgets(line, MAXLINE, ficpar);      ungetc(c,ficpar);
       puts(line);     
       fputs(line,ficparo);      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     }      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     ungetc(c,ficpar);      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
           printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
           fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;     
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;      while((c=getc(ficpar))=='#' && c!= EOF){
             ungetc(c,ficpar);
     fscanf(ficpar,"pop_based=%d\n",&popbased);        fgets(line, MAXLINE, ficpar);
     fprintf(ficparo,"pop_based=%d\n",popbased);           puts(line);
     fprintf(ficres,"pop_based=%d\n",popbased);           fputs(line,ficparo);
           }
     while((c=getc(ficpar))=='#' && c!= EOF){      ungetc(c,ficpar);
       ungetc(c,ficpar);     
       fgets(line, MAXLINE, ficpar);     
       puts(line);      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       fputs(line,ficparo);      dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
     }     
     ungetc(c,ficpar);      fscanf(ficpar,"pop_based=%d\n",&popbased);
           fprintf(ficparo,"pop_based=%d\n",popbased);  
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      fprintf(ficres,"pop_based=%d\n",popbased);  
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      while((c=getc(ficpar))=='#' && c!= EOF){
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        ungetc(c,ficpar);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        fgets(line, MAXLINE, ficpar);
     /* day and month of proj2 are not used but only year anproj2.*/        puts(line);
             fputs(line,ficparo);
           }
           ungetc(c,ficpar);
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/     
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
           fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\      /* day and month of proj2 are not used but only year anproj2.*/
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\     
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);     
            
    /*------------ free_vector  -------------*/      /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
    /*  chdir(path); */      /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
     free_ivector(wav,1,imx);      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);     
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
     free_lvector(num,1,n);                   model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
     free_vector(agedc,1,n);                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/       
     /*free_matrix(covar,1,NCOVMAX,1,n);*/     /*------------ free_vector  -------------*/
     fclose(ficparo);     /*  chdir(path); */
     fclose(ficres);   
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/      free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
         free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
     strcpy(filerespl,"pl");      free_lvector(num,1,n);
     strcat(filerespl,fileres);      free_vector(agedc,1,n);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {      /*free_matrix(covar,0,NCOVMAX,1,n);*/
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;      /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;      fclose(ficparo);
     }      fclose(ficres);
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);  
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);  
     pstamp(ficrespl);      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     fprintf(ficrespl,"# Period (stable) prevalence \n");   
     fprintf(ficrespl,"#Age ");      strcpy(filerespl,"pl");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      strcat(filerespl,fileres);
     fprintf(ficrespl,"\n");      if((ficrespl=fopen(filerespl,"w"))==NULL) {
           printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
     prlim=matrix(1,nlstate,1,nlstate);        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
     agebase=ageminpar;      printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     agelim=agemaxpar;      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     ftolpl=1.e-10;      pstamp(ficrespl);
     i1=cptcoveff;      fprintf(ficrespl,"# Period (stable) prevalence \n");
     if (cptcovn < 1){i1=1;}      fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      fprintf(ficrespl,"\n");
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   
         k=k+1;      prlim=matrix(1,nlstate,1,nlstate);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");      agebase=ageminpar;
         printf("\n#******");      agelim=agemaxpar;
         fprintf(ficlog,"\n#******");      ftolpl=1.e-10;
         for(j=1;j<=cptcoveff;j++) {      i1=cptcoveff;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if (cptcovn < 1){i1=1;}
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         }        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         fprintf(ficrespl,"******\n");          k=k+1;
         printf("******\n");          /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficlog,"******\n");          fprintf(ficrespl,"\n#******");
                   printf("\n#******");
         for (age=agebase; age<=agelim; age++){          fprintf(ficlog,"\n#******");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl,"%.0f ",age );            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(j=1;j<=cptcoveff;j++)            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)          }
             fprintf(ficrespl," %.5f", prlim[i][i]);          fprintf(ficrespl,"******\n");
           fprintf(ficrespl,"\n");          printf("******\n");
         }          fprintf(ficlog,"******\n");
       }         
     }          for (age=agebase; age<=agelim; age++){
     fclose(ficrespl);            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
     /*------------- h Pij x at various ages ------------*/            for(j=1;j<=cptcoveff;j++)
                 fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);            for(i=1; i<=nlstate;i++)
     if((ficrespij=fopen(filerespij,"w"))==NULL) {              fprintf(ficrespl," %.5f", prlim[i][i]);
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            fprintf(ficrespl,"\n");
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;          }
     }        }
     printf("Computing pij: result on file '%s' \n", filerespij);      }
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      fclose(ficrespl);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;      /*------------- h Pij x at various ages ------------*/
     /*if (stepm<=24) stepsize=2;*/   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     agelim=AGESUP;      if((ficrespij=fopen(filerespij,"w"))==NULL) {
     hstepm=stepsize*YEARM; /* Every year of age */        printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
     /* hstepm=1;   aff par mois*/      printf("Computing pij: result on file '%s' \n", filerespij);
     pstamp(ficrespij);      fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      stepsize=(int) (stepm+YEARM-1)/YEARM;
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /*if (stepm<=24) stepsize=2;*/
         k=k+1;  
         fprintf(ficrespij,"\n#****** ");      agelim=AGESUP;
         for(j=1;j<=cptcoveff;j++)       hstepm=stepsize*YEARM; /* Every year of age */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
         fprintf(ficrespij,"******\n");  
               /* hstepm=1;   aff par mois*/
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      pstamp(ficrespij);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           /*      nhstepm=nhstepm*YEARM; aff par mois*/          k=k+1;
           fprintf(ficrespij,"\n#****** ");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(j=1;j<=cptcoveff;j++)
           oldm=oldms;savm=savms;            fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficrespij,"******\n");
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");         
           for(i=1; i<=nlstate;i++)          for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             for(j=1; j<=nlstate+ndeath;j++)            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
               fprintf(ficrespij," %1d-%1d",i,j);            nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){            /*      nhstepm=nhstepm*YEARM; aff par mois*/
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               for(j=1; j<=nlstate+ndeath;j++)            oldm=oldms;savm=savms;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"\n");            fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           }            for(i=1; i<=nlstate;i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              for(j=1; j<=nlstate+ndeath;j++)
           fprintf(ficrespij,"\n");                fprintf(ficrespij," %1d-%1d",i,j);
         }            fprintf(ficrespij,"\n");
       }            for (h=0; h<=nhstepm; h++){
     }              fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);                for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
     fclose(ficrespij);              fprintf(ficrespij,"\n");
             }
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=1;i<=AGESUP;i++)            fprintf(ficrespij,"\n");
       for(j=1;j<=NCOVMAX;j++)          }
         for(k=1;k<=NCOVMAX;k++)        }
           probs[i][j][k]=0.;      }
   
     /*---------- Forecasting ------------------*/      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/  
     if(prevfcast==1){      fclose(ficrespij);
       /*    if(stepm ==1){*/  
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);      probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/      for(i=1;i<=AGESUP;i++)
       /*      }  */        for(j=1;j<=NCOVMAX;j++)
       /*      else{ */          for(k=1;k<=NCOVMAX;k++)
       /*        erreur=108; */            probs[i][j][k]=0.;
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */  
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      /*---------- Forecasting ------------------*/
       /*      } */      /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     }      if(prevfcast==1){
           /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
     /*---------- Health expectancies and variances ------------*/        /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
     strcpy(filerest,"t");        /*      else{ */
     strcat(filerest,fileres);        /*        erreur=108; */
     if((ficrest=fopen(filerest,"w"))==NULL) {        /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;        /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        /*      } */
     }      }
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);    
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);   
       /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerese,"e");      strcpy(filerest,"t");
     strcat(filerese,fileres);      strcat(filerest,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {      if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }      }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);      printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
     strcpy(fileresstde,"stde");  
     strcat(fileresstde,fileres);      strcpy(filerese,"e");
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {      strcat(filerese,fileres);
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);      if((ficreseij=fopen(filerese,"w"))==NULL) {
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);        printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }        fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);      }
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);      printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
     strcpy(filerescve,"cve");  
     strcat(filerescve,fileres);      strcpy(fileresstde,"stde");
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {      strcat(fileresstde,fileres);
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);      if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);        printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
     }        fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      }
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
     strcpy(fileresv,"v");  
     strcat(fileresv,fileres);      strcpy(filerescve,"cve");
     if((ficresvij=fopen(fileresv,"w"))==NULL) {      strcat(filerescve,fileres);
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      if((ficrescveij=fopen(filerescve,"w"))==NULL) {
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
     }        fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      }
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */  
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      strcpy(fileresv,"v");
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\      strcat(fileresv,fileres);
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);      if((ficresvij=fopen(fileresv,"w"))==NULL) {
     */        printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     if (mobilav!=0) {      }
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
         printf(" Error in movingaverage mobilav=%d\n",mobilav);      /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       }      prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     }      /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;       if (mobilav!=0) {
         fprintf(ficrest,"\n#****** ");        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for(j=1;j<=cptcoveff;j++)         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficrest,"******\n");          printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
         fprintf(ficreseij,"\n#****** ");      }
         fprintf(ficresstdeij,"\n#****** ");  
         fprintf(ficrescveij,"\n#****** ");      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(j=1;j<=cptcoveff;j++) {        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          k=k+1;
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficrest,"\n#****** ");
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(j=1;j<=cptcoveff;j++)
         }            fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");          fprintf(ficrest,"******\n");
         fprintf(ficresstdeij,"******\n");  
         fprintf(ficrescveij,"******\n");          fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficresvij,"\n#****** ");          fprintf(ficrescveij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++)           for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");            fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          }
         oldm=oldms;savm=savms;          fprintf(ficreseij,"******\n");
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);            fprintf(ficresstdeij,"******\n");
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);            fprintf(ficrescveij,"******\n");
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(ficresvij,"\n#****** ");
         oldm=oldms;savm=savms;          for(j=1;j<=cptcoveff;j++)
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);            fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         if(popbased==1){          fprintf(ficresvij,"******\n");
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);  
         }          eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
         pstamp(ficrest);          evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");          cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);   
         fprintf(ficrest,"\n");          vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
         epj=vector(1,nlstate+1);          varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
         for(age=bage; age <=fage ;age++){          if(popbased==1){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           if (popbased==1) {          }
             if(mobilav ==0){  
               for(i=1; i<=nlstate;i++)          pstamp(ficrest);
                 prlim[i][i]=probs[(int)age][i][k];          fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
             }else{ /* mobilav */           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
               for(i=1; i<=nlstate;i++)          fprintf(ficrest,"\n");
                 prlim[i][i]=mobaverage[(int)age][i][k];  
             }          epj=vector(1,nlstate+1);
           }          for(age=bage; age <=fage ;age++){
                     prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrest," %4.0f",age);            if (popbased==1) {
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){              if(mobilav ==0){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {                for(i=1; i<=nlstate;i++)
               epj[j] += prlim[i][i]*eij[i][j][(int)age];                  prlim[i][i]=probs[(int)age][i][k];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/              }else{ /* mobilav */
             }                for(i=1; i<=nlstate;i++)
             epj[nlstate+1] +=epj[j];                  prlim[i][i]=mobaverage[(int)age][i][k];
           }              }
             }
           for(i=1, vepp=0.;i <=nlstate;i++)         
             for(j=1;j <=nlstate;j++)            fprintf(ficrest," %4.0f",age);
               vepp += vareij[i][j][(int)age];            for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));              for(i=1, epj[j]=0.;i <=nlstate;i++) {
           for(j=1;j <=nlstate;j++){                epj[j] += prlim[i][i]*eij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
           }              }
           fprintf(ficrest,"\n");              epj[nlstate+1] +=epj[j];
         }            }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            for(i=1, vepp=0.;i <=nlstate;i++)
         free_vector(epj,1,nlstate+1);              for(j=1;j <=nlstate;j++)
       }                vepp += vareij[i][j][(int)age];
     }            fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
     free_vector(weight,1,n);            for(j=1;j <=nlstate;j++){
     free_imatrix(Tvard,1,15,1,2);              fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
     free_imatrix(s,1,maxwav+1,1,n);            }
     free_matrix(anint,1,maxwav,1,n);             fprintf(ficrest,"\n");
     free_matrix(mint,1,maxwav,1,n);          }
     free_ivector(cod,1,n);          free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     free_ivector(tab,1,NCOVMAX);          free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     fclose(ficreseij);          free_vector(epj,1,nlstate+1);
     fclose(ficresstdeij);        }
     fclose(ficrescveij);      }
     fclose(ficresvij);      free_vector(weight,1,n);
     fclose(ficrest);      free_imatrix(Tvard,1,15,1,2);
     fclose(ficpar);      free_imatrix(s,1,maxwav+1,1,n);
         free_matrix(anint,1,maxwav,1,n);
     /*------- Variance of period (stable) prevalence------*/         free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
     strcpy(fileresvpl,"vpl");      free_ivector(tab,1,NCOVMAX);
     strcat(fileresvpl,fileres);      fclose(ficreseij);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      fclose(ficresstdeij);
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);      fclose(ficrescveij);
       exit(0);      fclose(ficresvij);
     }      fclose(ficrest);
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);      fclose(ficpar);
    
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      /*------- Variance of period (stable) prevalence------*/  
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;      strcpy(fileresvpl,"vpl");
         fprintf(ficresvpl,"\n#****** ");      strcat(fileresvpl,fileres);
         for(j=1;j<=cptcoveff;j++)       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         fprintf(ficresvpl,"******\n");        exit(0);
             }
         varpl=matrix(1,nlstate,(int) bage, (int) fage);      printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
         oldm=oldms;savm=savms;  
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
       }          k=k+1;
     }          fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
     fclose(ficresvpl);            fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
     /*---------- End : free ----------------*/       
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          varpl=matrix(1,nlstate,(int) bage, (int) fage);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
   }  /* mle==-3 arrives here for freeing */          free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
   free_matrix(prlim,1,nlstate,1,nlstate);        }
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      }
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      fclose(ficresvpl);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
     free_matrix(covar,0,NCOVMAX,1,n);      /*---------- End : free ----------------*/
     free_matrix(matcov,1,npar,1,npar);      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     /*free_vector(delti,1,npar);*/      free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);   
     free_matrix(agev,1,maxwav,1,imx);    }  /* mle==-3 arrives here for freeing */
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_ivector(ncodemax,1,8);      free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_ivector(Tvar,1,15);      free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_ivector(Tprod,1,15);      free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_ivector(Tvaraff,1,15);      free_matrix(covar,0,NCOVMAX,1,n);
     free_ivector(Tage,1,15);      free_matrix(matcov,1,npar,1,npar);
     free_ivector(Tcode,1,100);      /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);      free_matrix(agev,1,maxwav,1,imx);
     free_imatrix(codtab,1,100,1,10);      free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   fflush(fichtm);  
   fflush(ficgp);      free_ivector(ncodemax,1,8);
         free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
   if((nberr >0) || (nbwarn>0)){      free_ivector(Tvaraff,1,15);
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);      free_ivector(Tage,1,15);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);      free_ivector(Tcode,1,100);
   }else{  
     printf("End of Imach\n");      free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
     fprintf(ficlog,"End of Imach\n");      free_imatrix(codtab,1,100,1,10);
   }    fflush(fichtm);
   printf("See log file on %s\n",filelog);    fflush(ficgp);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   
   (void) gettimeofday(&end_time,&tzp);  
   tm = *localtime(&end_time.tv_sec);    if((nberr >0) || (nbwarn>0)){
   tmg = *gmtime(&end_time.tv_sec);      printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
   strcpy(strtend,asctime(&tm));      fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);     }else{
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);       printf("End of Imach\n");
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      fprintf(ficlog,"End of Imach\n");
     }
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);    printf("See log file on %s\n",filelog);
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));    /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);    (void) gettimeofday(&end_time,&tzp);
   /*  printf("Total time was %d uSec.\n", total_usecs);*/    tm = *localtime(&end_time.tv_sec);
 /*   if(fileappend(fichtm,optionfilehtm)){ */    tmg = *gmtime(&end_time.tv_sec);
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);    strcpy(strtend,asctime(&tm));
   fclose(fichtm);    printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);    fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
   fclose(fichtmcov);    printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   fclose(ficgp);  
   fclose(ficlog);    printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
   /*------ End -----------*/    fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
    printf("Before Current directory %s!\n",pathcd);  /*   if(fileappend(fichtm,optionfilehtm)){ */
    if(chdir(pathcd) != 0)    fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     printf("Can't move to directory %s!\n",path);    fclose(fichtm);
   if(getcwd(pathcd,MAXLINE) > 0)    fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     printf("Current directory %s!\n",pathcd);    fclose(fichtmcov);
   /*strcat(plotcmd,CHARSEPARATOR);*/    fclose(ficgp);
   sprintf(plotcmd,"gnuplot");    fclose(ficlog);
 #ifndef UNIX    /*------ End -----------*/
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);  
 #endif  
   if(!stat(plotcmd,&info)){     printf("Before Current directory %s!\n",pathcd);
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);     if(chdir(pathcd) != 0)
     if(!stat(getenv("GNUPLOTBIN"),&info)){      printf("Can't move to directory %s!\n",path);
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);    if(getcwd(pathcd,MAXLINE) > 0)
     }else      printf("Current directory %s!\n",pathcd);
       strcpy(pplotcmd,plotcmd);    /*strcat(plotcmd,CHARSEPARATOR);*/
 #ifdef UNIX    sprintf(plotcmd,"gnuplot");
     strcpy(plotcmd,GNUPLOTPROGRAM);  #ifndef UNIX
     if(!stat(plotcmd,&info)){    sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);  #endif
     }else    if(!stat(plotcmd,&info)){
       strcpy(pplotcmd,plotcmd);      printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
 #endif      if(!stat(getenv("GNUPLOTBIN"),&info)){
   }else        printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
     strcpy(pplotcmd,plotcmd);      }else
           strcpy(pplotcmd,plotcmd);
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);  #ifdef UNIX
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);      strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
   if((outcmd=system(plotcmd)) != 0){        printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
     printf("\n Problem with gnuplot\n");      }else
   }        strcpy(pplotcmd,plotcmd);
   printf(" Wait...");  #endif
   while (z[0] != 'q') {    }else
     /* chdir(path); */      strcpy(pplotcmd,plotcmd);
     printf("\nType e to edit output files, g to graph again and q for exiting: ");   
     scanf("%s",z);    sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
 /*     if (z[0] == 'c') system("./imach"); */    printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
     if (z[0] == 'e') {  
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);    if((outcmd=system(plotcmd)) != 0){
       system(optionfilehtm);      printf("\n Problem with gnuplot\n");
     }    }
     else if (z[0] == 'g') system(plotcmd);    printf(" Wait...");
     else if (z[0] == 'q') exit(0);    while (z[0] != 'q') {
   }      /* chdir(path); */
   end:      printf("\nType e to edit output files, g to graph again and q for exiting: ");
   while (z[0] != 'q') {      scanf("%s",z);
     printf("\nType  q for exiting: ");  /*     if (z[0] == 'c') system("./imach"); */
     scanf("%s",z);      if (z[0] == 'e') {
   }        printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
 }        system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.124  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>