Diff for /imach/src/imach.c between versions 1.101 and 1.125

version 1.101, 2004/09/15 10:38:38 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   Fix on curr_time    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   Revision 1.100  2004/07/12 18:29:06  brouard  
   Add version for Mac OS X. Just define UNIX in Makefile    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
   Revision 1.99  2004/06/05 08:57:40  brouard    The log-likelihood is printed in the log file
   *** empty log message ***  
     Revision 1.123  2006/03/20 10:52:43  brouard
   Revision 1.98  2004/05/16 15:05:56  brouard    * imach.c (Module): <title> changed, corresponds to .htm file
   New version 0.97 . First attempt to estimate force of mortality    name. <head> headers where missing.
   directly from the data i.e. without the need of knowing the health  
   state at each age, but using a Gompertz model: log u =a + b*age .    * imach.c (Module): Weights can have a decimal point as for
   This is the basic analysis of mortality and should be done before any    English (a comma might work with a correct LC_NUMERIC environment,
   other analysis, in order to test if the mortality estimated from the    otherwise the weight is truncated).
   cross-longitudinal survey is different from the mortality estimated    Modification of warning when the covariates values are not 0 or
   from other sources like vital statistic data.    1.
     Version 0.98g
   The same imach parameter file can be used but the option for mle should be -3.  
     Revision 1.122  2006/03/20 09:45:41  brouard
   Agnès, who wrote this part of the code, tried to keep most of the    (Module): Weights can have a decimal point as for
   former routines in order to include the new code within the former code.    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   The output is very simple: only an estimate of the intercept and of    Modification of warning when the covariates values are not 0 or
   the slope with 95% confident intervals.    1.
     Version 0.98g
   Current limitations:  
   A) Even if you enter covariates, i.e. with the    Revision 1.121  2006/03/16 17:45:01  lievre
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    * imach.c (Module): Comments concerning covariates added
   B) There is no computation of Life Expectancy nor Life Table.  
     * imach.c (Module): refinements in the computation of lli if
   Revision 1.97  2004/02/20 13:25:42  lievre    status=-2 in order to have more reliable computation if stepm is
   Version 0.96d. Population forecasting command line is (temporarily)    not 1 month. Version 0.98f
   suppressed.  
     Revision 1.120  2006/03/16 15:10:38  lievre
   Revision 1.96  2003/07/15 15:38:55  brouard    (Module): refinements in the computation of lli if
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    status=-2 in order to have more reliable computation if stepm is
   rewritten within the same printf. Workaround: many printfs.    not 1 month. Version 0.98f
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   * imach.c (Repository):    (Module): Bug if status = -2, the loglikelihood was
   (Repository): Using imachwizard code to output a more meaningful covariance    computed as likelihood omitting the logarithm. Version O.98e
   matrix (cov(a12,c31) instead of numbers.  
     Revision 1.118  2006/03/14 18:20:07  brouard
   Revision 1.94  2003/06/27 13:00:02  brouard    (Module): varevsij Comments added explaining the second
   Just cleaning    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Revision 1.93  2003/06/25 16:33:55  brouard    (Module): Function pstamp added
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): Version 0.98d
   exist so I changed back to asctime which exists.  
   (Module): Version 0.96b    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
   Revision 1.92  2003/06/25 16:30:45  brouard    table of variances if popbased=1 .
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   exist so I changed back to asctime which exists.    (Module): Function pstamp added
     (Module): Version 0.98d
   Revision 1.91  2003/06/25 15:30:29  brouard  
   * imach.c (Repository): Duplicated warning errors corrected.    Revision 1.116  2006/03/06 10:29:27  brouard
   (Repository): Elapsed time after each iteration is now output. It    (Module): Variance-covariance wrong links and
   helps to forecast when convergence will be reached. Elapsed time    varian-covariance of ej. is needed (Saito).
   is stamped in powell.  We created a new html file for the graphs  
   concerning matrix of covariance. It has extension -cov.htm.    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
   Revision 1.90  2003/06/24 12:34:15  brouard  
   (Module): Some bugs corrected for windows. Also, when    Revision 1.114  2006/02/26 12:57:58  brouard
   mle=-1 a template is output in file "or"mypar.txt with the design    (Module): Some improvements in processing parameter
   of the covariance matrix to be input.    filename with strsep.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Memory leaks checks with valgrind and:
   mle=-1 a template is output in file "or"mypar.txt with the design    datafile was not closed, some imatrix were not freed and on matrix
   of the covariance matrix to be input.    allocation too.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   Version 0.96    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
   Revision 1.86  2003/06/17 20:04:08  brouard    can be a simple dot '.'.
   (Module): Change position of html and gnuplot routines and added  
   routine fileappend.    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   Revision 1.85  2003/06/17 13:12:43  brouard  
   * imach.c (Repository): Check when date of death was earlier that    Revision 1.109  2006/01/24 19:37:15  brouard
   current date of interview. It may happen when the death was just    (Module): Comments (lines starting with a #) are allowed in data.
   prior to the death. In this case, dh was negative and likelihood  
   was wrong (infinity). We still send an "Error" but patch by    Revision 1.108  2006/01/19 18:05:42  lievre
   assuming that the date of death was just one stepm after the    Gnuplot problem appeared...
   interview.    To be fixed
   (Repository): Because some people have very long ID (first column)  
   we changed int to long in num[] and we added a new lvector for    Revision 1.107  2006/01/19 16:20:37  brouard
   memory allocation. But we also truncated to 8 characters (left    Test existence of gnuplot in imach path
   truncation)  
   (Repository): No more line truncation errors.    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
   Revision 1.84  2003/06/13 21:44:43  brouard  
   * imach.c (Repository): Replace "freqsummary" at a correct    Revision 1.105  2006/01/05 20:23:19  lievre
   place. It differs from routine "prevalence" which may be called    *** empty log message ***
   many times. Probs is memory consuming and must be used with  
   parcimony.    Revision 1.104  2005/09/30 16:11:43  lievre
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
   Revision 1.83  2003/06/10 13:39:11  lievre    that the person is alive, then we can code his/her status as -2
   *** empty log message ***    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
   Revision 1.82  2003/06/05 15:57:20  brouard    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   Add log in  imach.c and  fullversion number is now printed.    the healthy state at last known wave). Version is 0.98
   
 */    Revision 1.103  2005/09/30 15:54:49  lievre
 /*    (Module): sump fixed, loop imx fixed, and simplifications.
    Interpolated Markov Chain  
     Revision 1.102  2004/09/15 17:31:30  brouard
   Short summary of the programme:    Add the possibility to read data file including tab characters.
     
   This program computes Healthy Life Expectancies from    Revision 1.101  2004/09/15 10:38:38  brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Fix on curr_time
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.100  2004/07/12 18:29:06  brouard
   case of a health survey which is our main interest) -2- at least a    Add version for Mac OS X. Just define UNIX in Makefile
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.99  2004/06/05 08:57:40  brouard
   computed from the time spent in each health state according to a    *** empty log message ***
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.98  2004/05/16 15:05:56  brouard
   simplest model is the multinomial logistic model where pij is the    New version 0.97 . First attempt to estimate force of mortality
   probability to be observed in state j at the second wave    directly from the data i.e. without the need of knowing the health
   conditional to be observed in state i at the first wave. Therefore    state at each age, but using a Gompertz model: log u =a + b*age .
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    This is the basic analysis of mortality and should be done before any
   'age' is age and 'sex' is a covariate. If you want to have a more    other analysis, in order to test if the mortality estimated from the
   complex model than "constant and age", you should modify the program    cross-longitudinal survey is different from the mortality estimated
   where the markup *Covariates have to be included here again* invites    from other sources like vital statistic data.
   you to do it.  More covariates you add, slower the  
   convergence.    The same imach parameter file can be used but the option for mle should be -3.
   
   The advantage of this computer programme, compared to a simple    Agnès, who wrote this part of the code, tried to keep most of the
   multinomial logistic model, is clear when the delay between waves is not    former routines in order to include the new code within the former code.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    The output is very simple: only an estimate of the intercept and of
   account using an interpolation or extrapolation.      the slope with 95% confident intervals.
   
   hPijx is the probability to be observed in state i at age x+h    Current limitations:
   conditional to the observed state i at age x. The delay 'h' can be    A) Even if you enter covariates, i.e. with the
   split into an exact number (nh*stepm) of unobserved intermediate    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   states. This elementary transition (by month, quarter,    B) There is no computation of Life Expectancy nor Life Table.
   semester or year) is modelled as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.97  2004/02/20 13:25:42  lievre
   and the contribution of each individual to the likelihood is simply    Version 0.96d. Population forecasting command line is (temporarily)
   hPijx.    suppressed.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.96  2003/07/15 15:38:55  brouard
   of the life expectancies. It also computes the stable prevalence.     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       rewritten within the same printf. Workaround: many printfs.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.95  2003/07/08 07:54:34  brouard
   This software have been partly granted by Euro-REVES, a concerted action    * imach.c (Repository):
   from the European Union.    (Repository): Using imachwizard code to output a more meaningful covariance
   It is copyrighted identically to a GNU software product, ie programme and    matrix (cov(a12,c31) instead of numbers.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach  
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    Revision 1.93  2003/06/25 16:33:55  brouard
       (Module): On windows (cygwin) function asctime_r doesn't
   **********************************************************************/    exist so I changed back to asctime which exists.
 /*    (Module): Version 0.96b
   main  
   read parameterfile    Revision 1.92  2003/06/25 16:30:45  brouard
   read datafile    (Module): On windows (cygwin) function asctime_r doesn't
   concatwav    exist so I changed back to asctime which exists.
   freqsummary  
   if (mle >= 1)    Revision 1.91  2003/06/25 15:30:29  brouard
     mlikeli    * imach.c (Repository): Duplicated warning errors corrected.
   print results files    (Repository): Elapsed time after each iteration is now output. It
   if mle==1     helps to forecast when convergence will be reached. Elapsed time
      computes hessian    is stamped in powell.  We created a new html file for the graphs
   read end of parameter file: agemin, agemax, bage, fage, estepm    concerning matrix of covariance. It has extension -cov.htm.
       begin-prev-date,...  
   open gnuplot file    Revision 1.90  2003/06/24 12:34:15  brouard
   open html file    (Module): Some bugs corrected for windows. Also, when
   stable prevalence    mle=-1 a template is output in file "or"mypar.txt with the design
    for age prevalim()    of the covariance matrix to be input.
   h Pij x  
   variance of p varprob    Revision 1.89  2003/06/24 12:30:52  brouard
   forecasting if prevfcast==1 prevforecast call prevalence()    (Module): Some bugs corrected for windows. Also, when
   health expectancies    mle=-1 a template is output in file "or"mypar.txt with the design
   Variance-covariance of DFLE    of the covariance matrix to be input.
   prevalence()  
    movingaverage()    Revision 1.88  2003/06/23 17:54:56  brouard
   varevsij()     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   if popbased==1 varevsij(,popbased)  
   total life expectancies    Revision 1.87  2003/06/18 12:26:01  brouard
   Variance of stable prevalence    Version 0.96
  end  
 */    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
     routine fileappend.
   
      Revision 1.85  2003/06/17 13:12:43  brouard
 #include <math.h>    * imach.c (Repository): Check when date of death was earlier that
 #include <stdio.h>    current date of interview. It may happen when the death was just
 #include <stdlib.h>    prior to the death. In this case, dh was negative and likelihood
 #include <unistd.h>    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 /* #include <sys/time.h> */    interview.
 #include <time.h>    (Repository): Because some people have very long ID (first column)
 #include "timeval.h"    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /* #include <libintl.h> */    truncation)
 /* #define _(String) gettext (String) */    (Repository): No more line truncation errors.
   
 #define MAXLINE 256    Revision 1.84  2003/06/13 21:44:43  brouard
 #define GNUPLOTPROGRAM "gnuplot"    * imach.c (Repository): Replace "freqsummary" at a correct
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    place. It differs from routine "prevalence" which may be called
 #define FILENAMELENGTH 132    many times. Probs is memory consuming and must be used with
 /*#define DEBUG*/    parcimony.
 /*#define windows*/    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  */
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  /*
 #define NCOVMAX 8 /* Maximum number of covariates */     Interpolated Markov Chain
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Short summary of the programme:
 #define AGESUP 130   
 #define AGEBASE 40    This program computes Healthy Life Expectancies from
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #ifdef UNIX    first survey ("cross") where individuals from different ages are
 #define DIRSEPARATOR '/'    interviewed on their health status or degree of disability (in the
 #define ODIRSEPARATOR '\\'    case of a health survey which is our main interest) -2- at least a
 #else    second wave of interviews ("longitudinal") which measure each change
 #define DIRSEPARATOR '\\'    (if any) in individual health status.  Health expectancies are
 #define ODIRSEPARATOR '/'    computed from the time spent in each health state according to a
 #endif    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 /* $Id$ */    simplest model is the multinomial logistic model where pij is the
 /* $State$ */    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 char fullversion[]="$Revision$ $Date$";     'age' is age and 'sex' is a covariate. If you want to have a more
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    complex model than "constant and age", you should modify the program
 int nvar;    where the markup *Covariates have to be included here again* invites
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    you to do it.  More covariates you add, slower the
 int npar=NPARMAX;    convergence.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    The advantage of this computer programme, compared to a simple
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    multinomial logistic model, is clear when the delay between waves is not
 int popbased=0;    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 int *wav; /* Number of waves for this individuual 0 is possible */    account using an interpolation or extrapolation.  
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    hPijx is the probability to be observed in state i at age x+h
 int gipmx, gsw; /* Global variables on the number of contributions     conditional to the observed state i at age x. The delay 'h' can be
                    to the likelihood and the sum of weights (done by funcone)*/    split into an exact number (nh*stepm) of unobserved intermediate
 int mle, weightopt;    states. This elementary transition (by month, quarter,
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    semester or year) is modelled as a multinomial logistic.  The hPx
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    matrix is simply the matrix product of nh*stepm elementary matrices
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    and the contribution of each individual to the likelihood is simply
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    hPijx.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Also this programme outputs the covariance matrix of the parameters but also
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    of the life expectancies. It also computes the period (stable) prevalence.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;   
 FILE *ficlog, *ficrespow;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int globpr; /* Global variable for printing or not */             Institut national d'études démographiques, Paris.
 double fretone; /* Only one call to likelihood */    This software have been partly granted by Euro-REVES, a concerted action
 long ipmx; /* Number of contributions */    from the European Union.
 double sw; /* Sum of weights */    It is copyrighted identically to a GNU software product, ie programme and
 char filerespow[FILENAMELENGTH];    software can be distributed freely for non commercial use. Latest version
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */    can be accessed at http://euroreves.ined.fr/imach .
 FILE *ficresilk;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 FILE *ficresprobmorprev;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 FILE *fichtm, *fichtmcov; /* Html File */   
 FILE *ficreseij;    **********************************************************************/
 char filerese[FILENAMELENGTH];  /*
 FILE  *ficresvij;    main
 char fileresv[FILENAMELENGTH];    read parameterfile
 FILE  *ficresvpl;    read datafile
 char fileresvpl[FILENAMELENGTH];    concatwav
 char title[MAXLINE];    freqsummary
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    if (mle >= 1)
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      mlikeli
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];     print results files
 char command[FILENAMELENGTH];    if mle==1
 int  outcmd=0;       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        begin-prev-date,...
     open gnuplot file
 char filelog[FILENAMELENGTH]; /* Log file */    open html file
 char filerest[FILENAMELENGTH];    period (stable) prevalence
 char fileregp[FILENAMELENGTH];     for age prevalim()
 char popfile[FILENAMELENGTH];    h Pij x
     variance of p varprob
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;    Variance-covariance of DFLE
 struct timezone tzp;    prevalence()
 extern int gettimeofday();     movingaverage()
 struct tm tmg, tm, tmf, *gmtime(), *localtime();    varevsij()
 long time_value;    if popbased==1 varevsij(,popbased)
 extern long time();    total life expectancies
 char strcurr[80], strfor[80];    Variance of period (stable) prevalence
    end
 #define NR_END 1  */
 #define FREE_ARG char*  
 #define FTOL 1.0e-10  
   
 #define NRANSI    
 #define ITMAX 200   #include <math.h>
   #include <stdio.h>
 #define TOL 2.0e-4   #include <stdlib.h>
   #include <string.h>
 #define CGOLD 0.3819660   #include <unistd.h>
 #define ZEPS 1.0e-10   
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   #include <limits.h>
   #include <sys/types.h>
 #define GOLD 1.618034   #include <sys/stat.h>
 #define GLIMIT 100.0   #include <errno.h>
 #define TINY 1.0e-20   extern int errno;
   
 static double maxarg1,maxarg2;  /* #include <sys/time.h> */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #include <time.h>
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #include "timeval.h"
     
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  /* #include <libintl.h> */
 #define rint(a) floor(a+0.5)  /* #define _(String) gettext (String) */
   
 static double sqrarg;  #define MAXLINE 256
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   #define GNUPLOTPROGRAM "gnuplot"
 int agegomp= AGEGOMP;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 int imx;   
 int stepm=1;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 /* Stepm, step in month: minimum step interpolation*/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 int estepm;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 int m,nb;  #define NINTERVMAX 8
 long *num;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define NCOVMAX 8 /* Maximum number of covariates */
 double **pmmij, ***probs;  #define MAXN 20000
 double *ageexmed,*agecens;  #define YEARM 12. /* Number of months per year */
 double dateintmean=0;  #define AGESUP 130
   #define AGEBASE 40
 double *weight;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 int **s; /* Status */  #ifdef UNIX
 double *agedc, **covar, idx;  #define DIRSEPARATOR '/'
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #else
 double ftolhess; /* Tolerance for computing hessian */  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
 /**************** split *************************/  #define ODIRSEPARATOR '/'
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #endif
 {  
   /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)  /* $Id$ */
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  /* $State$ */
   */   
   char  *ss;                            /* pointer */  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   int   l1, l2;                         /* length counters */  char fullversion[]="$Revision$ $Date$";
   char strstart[80];
   l1 = strlen(path );                   /* length of path */  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  int nvar;
   if ( ss == NULL ) {                   /* no directory, so use current */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  int npar=NPARMAX;
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  int nlstate=2; /* Number of live states */
     /* get current working directory */  int ndeath=1; /* Number of dead states */
     /*    extern  char* getcwd ( char *buf , int len);*/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int popbased=0;
       return( GLOCK_ERROR_GETCWD );  
     }  int *wav; /* Number of waves for this individuual 0 is possible */
     strcpy( name, path );               /* we've got it */  int maxwav; /* Maxim number of waves */
   } else {                              /* strip direcotry from path */  int jmin, jmax; /* min, max spacing between 2 waves */
     ss++;                               /* after this, the filename */  int ijmin, ijmax; /* Individuals having jmin and jmax */
     l2 = strlen( ss );                  /* length of filename */  int gipmx, gsw; /* Global variables on the number of contributions
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );                     to the likelihood and the sum of weights (done by funcone)*/
     strcpy( name, ss );         /* save file name */  int mle, weightopt;
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     dirc[l1-l2] = 0;                    /* add zero */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   l1 = strlen( dirc );                  /* length of directory */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   /*#ifdef windows  double jmean; /* Mean space between 2 waves */
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #else  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #endif  FILE *ficlog, *ficrespow;
   */  int globpr; /* Global variable for printing or not */
   ss = strrchr( name, '.' );            /* find last / */  double fretone; /* Only one call to likelihood */
   if (ss >0){  long ipmx; /* Number of contributions */
     ss++;  double sw; /* Sum of weights */
     strcpy(ext,ss);                     /* save extension */  char filerespow[FILENAMELENGTH];
     l1= strlen( name);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     l2= strlen(ss)+1;  FILE *ficresilk;
     strncpy( finame, name, l1-l2);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     finame[l1-l2]= 0;  FILE *ficresprobmorprev;
   }  FILE *fichtm, *fichtmcov; /* Html File */
   return( 0 );                          /* we're done */  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
   char fileresstde[FILENAMELENGTH];
 /******************************************/  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
 void replace_back_to_slash(char *s, char*t)  FILE  *ficresvij;
 {  char fileresv[FILENAMELENGTH];
   int i;  FILE  *ficresvpl;
   int lg=0;  char fileresvpl[FILENAMELENGTH];
   i=0;  char title[MAXLINE];
   lg=strlen(t);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     (s[i] = t[i]);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
     if (t[i]== '\\') s[i]='/';  char command[FILENAMELENGTH];
   }  int  outcmd=0;
 }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 int nbocc(char *s, char occ)  
 {  char filelog[FILENAMELENGTH]; /* Log file */
   int i,j=0;  char filerest[FILENAMELENGTH];
   int lg=20;  char fileregp[FILENAMELENGTH];
   i=0;  char popfile[FILENAMELENGTH];
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   if  (s[i] == occ ) j++;  
   }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   return j;  struct timezone tzp;
 }  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 void cutv(char *u,char *v, char*t, char occ)  long time_value;
 {  extern long time();
   /* cuts string t into u and v where u is ended by char occ excluding it  char strcurr[80], strfor[80];
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */  char *endptr;
   int i,lg,j,p=0;  long lval;
   i=0;  double dval;
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define NR_END 1
   }  #define FREE_ARG char*
   #define FTOL 1.0e-10
   lg=strlen(t);  
   for(j=0; j<p; j++) {  #define NRANSI
     (u[j] = t[j]);  #define ITMAX 200
   }  
      u[p]='\0';  #define TOL 2.0e-4
   
    for(j=0; j<= lg; j++) {  #define CGOLD 0.3819660
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define ZEPS 1.0e-10
   }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
 }  
   #define GOLD 1.618034
 /********************** nrerror ********************/  #define GLIMIT 100.0
   #define TINY 1.0e-20
 void nrerror(char error_text[])  
 {  static double maxarg1,maxarg2;
   fprintf(stderr,"ERREUR ...\n");  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   fprintf(stderr,"%s\n",error_text);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   exit(EXIT_FAILURE);   
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 /*********************** vector *******************/  #define rint(a) floor(a+0.5)
 double *vector(int nl, int nh)  
 {  static double sqrarg;
   double *v;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   if (!v) nrerror("allocation failure in vector");  int agegomp= AGEGOMP;
   return v-nl+NR_END;  
 }  int imx;
   int stepm=1;
 /************************ free vector ******************/  /* Stepm, step in month: minimum step interpolation*/
 void free_vector(double*v, int nl, int nh)  
 {  int estepm;
   free((FREE_ARG)(v+nl-NR_END));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /************************ivector *******************************/  long *num;
 int *ivector(long nl,long nh)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   int *v;  double **pmmij, ***probs;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double *ageexmed,*agecens;
   if (!v) nrerror("allocation failure in ivector");  double dateintmean=0;
   return v-nl+NR_END;  
 }  double *weight;
   int **s; /* Status */
 /******************free ivector **************************/  double *agedc, **covar, idx;
 void free_ivector(int *v, long nl, long nh)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 {  double *lsurv, *lpop, *tpop;
   free((FREE_ARG)(v+nl-NR_END));  
 }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 /************************lvector *******************************/  
 long *lvector(long nl,long nh)  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   long *v;  {
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   if (!v) nrerror("allocation failure in ivector");       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   return v-nl+NR_END;    */
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 /******************free lvector **************************/  
 void free_lvector(long *v, long nl, long nh)    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   free((FREE_ARG)(v+nl-NR_END));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
 /******************* imatrix *******************************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 int **imatrix(long nrl, long nrh, long ncl, long nch)         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */       /* get current working directory */
 {       /*    extern  char* getcwd ( char *buf , int len);*/
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   int **m;         return( GLOCK_ERROR_GETCWD );
         }
   /* allocate pointers to rows */       /* got dirc from getcwd*/
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));       printf(" DIRC = %s \n",dirc);
   if (!m) nrerror("allocation failure 1 in matrix()");     } else {                              /* strip direcotry from path */
   m += NR_END;       ss++;                               /* after this, the filename */
   m -= nrl;       l2 = strlen( ss );                  /* length of filename */
         if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         strcpy( name, ss );         /* save file name */
   /* allocate rows and set pointers to them */       strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));       dirc[l1-l2] = 0;                    /* add zero */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       printf(" DIRC2 = %s \n",dirc);
   m[nrl] += NR_END;     }
   m[nrl] -= ncl;     /* We add a separator at the end of dirc if not exists */
       l1 = strlen( dirc );                  /* length of directory */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;     if( dirc[l1-1] != DIRSEPARATOR ){
         dirc[l1] =  DIRSEPARATOR;
   /* return pointer to array of pointers to rows */       dirc[l1+1] = 0;
   return m;       printf(" DIRC3 = %s \n",dirc);
 }     }
     ss = strrchr( name, '.' );            /* find last / */
 /****************** free_imatrix *************************/    if (ss >0){
 void free_imatrix(m,nrl,nrh,ncl,nch)      ss++;
       int **m;      strcpy(ext,ss);                     /* save extension */
       long nch,ncl,nrh,nrl;       l1= strlen( name);
      /* free an int matrix allocated by imatrix() */       l2= strlen(ss)+1;
 {       strncpy( finame, name, l1-l2);
   free((FREE_ARG) (m[nrl]+ncl-NR_END));       finame[l1-l2]= 0;
   free((FREE_ARG) (m+nrl-NR_END));     }
 }   
     return( 0 );                          /* we're done */
 /******************* matrix *******************************/  }
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  /******************************************/
   double **m;  
   void replace_back_to_slash(char *s, char*t)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    int i;
   m += NR_END;    int lg=0;
   m -= nrl;    i=0;
     lg=strlen(t);
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    for(i=0; i<= lg; i++) {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      (s[i] = t[i]);
   m[nrl] += NR_END;      if (t[i]== '\\') s[i]='/';
   m[nrl] -= ncl;    }
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  int nbocc(char *s, char occ)
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   {
    */    int i,j=0;
 }    int lg=20;
     i=0;
 /*************************free matrix ************************/    lg=strlen(s);
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    for(i=0; i<= lg; i++) {
 {    if  (s[i] == occ ) j++;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    }
   free((FREE_ARG)(m+nrl-NR_END));    return j;
 }  }
   
 /******************* ma3x *******************************/  void cutv(char *u,char *v, char*t, char occ)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  {
 {    /* cuts string t into u and v where u ends before first occurence of char 'occ'
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   double ***m;       gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    i=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    for(j=0; j<=strlen(t)-1; j++) {
   m += NR_END;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m -= nrl;    }
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    lg=strlen(t);
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    for(j=0; j<p; j++) {
   m[nrl] += NR_END;      (u[j] = t[j]);
   m[nrl] -= ncl;    }
        u[p]='\0';
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
      for(j=0; j<= lg; j++) {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      if (j>=(p+1))(v[j-p-1] = t[j]);
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    }
   m[nrl][ncl] += NR_END;  }
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)   /********************** nrerror ********************/
     m[nrl][j]=m[nrl][j-1]+nlay;  
     void nrerror(char error_text[])
   for (i=nrl+1; i<=nrh; i++) {  {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    fprintf(stderr,"ERREUR ...\n");
     for (j=ncl+1; j<=nch; j++)     fprintf(stderr,"%s\n",error_text);
       m[i][j]=m[i][j-1]+nlay;    exit(EXIT_FAILURE);
   }  }
   return m;   /*********************** vector *******************/
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  double *vector(int nl, int nh)
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  {
   */    double *v;
 }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
 /*************************free ma3x ************************/    return v-nl+NR_END;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  }
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /************************ free vector ******************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  void free_vector(double*v, int nl, int nh)
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /*************** function subdirf ***********/  
 char *subdirf(char fileres[])  /************************ivector *******************************/
 {  int *ivector(long nl,long nh)
   /* Caution optionfilefiname is hidden */  {
   strcpy(tmpout,optionfilefiname);    int *v;
   strcat(tmpout,"/"); /* Add to the right */    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   strcat(tmpout,fileres);    if (!v) nrerror("allocation failure in ivector");
   return tmpout;    return v-nl+NR_END;
 }  }
   
 /*************** function subdirf2 ***********/  /******************free ivector **************************/
 char *subdirf2(char fileres[], char *preop)  void free_ivector(int *v, long nl, long nh)
 {  {
       free((FREE_ARG)(v+nl-NR_END));
   /* Caution optionfilefiname is hidden */  }
   strcpy(tmpout,optionfilefiname);  
   strcat(tmpout,"/");  /************************lvector *******************************/
   strcat(tmpout,preop);  long *lvector(long nl,long nh)
   strcat(tmpout,fileres);  {
   return tmpout;    long *v;
 }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
 /*************** function subdirf3 ***********/    return v-nl+NR_END;
 char *subdirf3(char fileres[], char *preop, char *preop2)  }
 {  
     /******************free lvector **************************/
   /* Caution optionfilefiname is hidden */  void free_lvector(long *v, long nl, long nh)
   strcpy(tmpout,optionfilefiname);  {
   strcat(tmpout,"/");    free((FREE_ARG)(v+nl-NR_END));
   strcat(tmpout,preop);  }
   strcat(tmpout,preop2);  
   strcat(tmpout,fileres);  /******************* imatrix *******************************/
   return tmpout;  int **imatrix(long nrl, long nrh, long ncl, long nch)
 }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   {
 /***************** f1dim *************************/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
 extern int ncom;     int **m;
 extern double *pcom,*xicom;   
 extern double (*nrfunc)(double []);     /* allocate pointers to rows */
      m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
 double f1dim(double x)     if (!m) nrerror("allocation failure 1 in matrix()");
 {     m += NR_END;
   int j;     m -= nrl;
   double f;   
   double *xt;    
      /* allocate rows and set pointers to them */
   xt=vector(1,ncom);     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   f=(*nrfunc)(xt);     m[nrl] += NR_END;
   free_vector(xt,1,ncom);     m[nrl] -= ncl;
   return f;    
 }     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
    
 /*****************brent *************************/    /* return pointer to array of pointers to rows */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)     return m;
 {   }
   int iter;   
   double a,b,d,etemp;  /****************** free_imatrix *************************/
   double fu,fv,fw,fx;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double ftemp;        int **m;
   double p,q,r,tol1,tol2,u,v,w,x,xm;         long nch,ncl,nrh,nrl;
   double e=0.0;        /* free an int matrix allocated by imatrix() */
    {
   a=(ax < cx ? ax : cx);     free((FREE_ARG) (m[nrl]+ncl-NR_END));
   b=(ax > cx ? ax : cx);     free((FREE_ARG) (m+nrl-NR_END));
   x=w=v=bx;   }
   fw=fv=fx=(*f)(x);   
   for (iter=1;iter<=ITMAX;iter++) {   /******************* matrix *******************************/
     xm=0.5*(a+b);   double **matrix(long nrl, long nrh, long ncl, long nch)
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);   {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     printf(".");fflush(stdout);    double **m;
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    if (!m) nrerror("allocation failure 1 in matrix()");
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    m += NR_END;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    m -= nrl;
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       *xmin=x;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       return fx;     m[nrl] += NR_END;
     }     m[nrl] -= ncl;
     ftemp=fu;  
     if (fabs(e) > tol1) {     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       r=(x-w)*(fx-fv);     return m;
       q=(x-v)*(fx-fw);     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
       p=(x-v)*q-(x-w)*r;      */
       q=2.0*(q-r);   }
       if (q > 0.0) p = -p;   
       q=fabs(q);   /*************************free matrix ************************/
       etemp=e;   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       e=d;   {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     free((FREE_ARG)(m[nrl]+ncl-NR_END));
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     free((FREE_ARG)(m+nrl-NR_END));
       else {   }
         d=p/q;   
         u=x+d;   /******************* ma3x *******************************/
         if (u-a < tol2 || b-u < tol2)   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
           d=SIGN(tol1,xm-x);   {
       }     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     } else {     double ***m;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));   
     }     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     if (!m) nrerror("allocation failure 1 in matrix()");
     fu=(*f)(u);     m += NR_END;
     if (fu <= fx) {     m -= nrl;
       if (u >= x) a=x; else b=x;   
       SHFT(v,w,x,u)     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         SHFT(fv,fw,fx,fu)     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         } else {     m[nrl] += NR_END;
           if (u < x) a=u; else b=u;     m[nrl] -= ncl;
           if (fu <= fw || w == x) {   
             v=w;     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
             w=u;   
             fv=fw;     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
             fw=fu;     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           } else if (fu <= fv || v == x || v == w) {     m[nrl][ncl] += NR_END;
             v=u;     m[nrl][ncl] -= nll;
             fv=fu;     for (j=ncl+1; j<=nch; j++)
           }       m[nrl][j]=m[nrl][j-1]+nlay;
         }    
   }     for (i=nrl+1; i<=nrh; i++) {
   nrerror("Too many iterations in brent");       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   *xmin=x;       for (j=ncl+1; j<=nch; j++)
   return fx;         m[i][j]=m[i][j-1]+nlay;
 }     }
     return m;
 /****************** mnbrak ***********************/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     */
             double (*func)(double))   }
 {   
   double ulim,u,r,q, dum;  /*************************free ma3x ************************/
   double fu;   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    {
   *fa=(*func)(*ax);     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   *fb=(*func)(*bx);     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   if (*fb > *fa) {     free((FREE_ARG)(m+nrl-NR_END));
     SHFT(dum,*ax,*bx,dum)   }
       SHFT(dum,*fb,*fa,dum)   
       }   /*************** function subdirf ***********/
   *cx=(*bx)+GOLD*(*bx-*ax);   char *subdirf(char fileres[])
   *fc=(*func)(*cx);   {
   while (*fb > *fc) {     /* Caution optionfilefiname is hidden */
     r=(*bx-*ax)*(*fb-*fc);     strcpy(tmpout,optionfilefiname);
     q=(*bx-*cx)*(*fb-*fa);     strcat(tmpout,"/"); /* Add to the right */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     strcat(tmpout,fileres);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     return tmpout;
     ulim=(*bx)+GLIMIT*(*cx-*bx);   }
     if ((*bx-u)*(u-*cx) > 0.0) {   
       fu=(*func)(u);   /*************** function subdirf2 ***********/
     } else if ((*cx-u)*(u-ulim) > 0.0) {   char *subdirf2(char fileres[], char *preop)
       fu=(*func)(u);   {
       if (fu < *fc) {    
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))     /* Caution optionfilefiname is hidden */
           SHFT(*fb,*fc,fu,(*func)(u))     strcpy(tmpout,optionfilefiname);
           }     strcat(tmpout,"/");
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     strcat(tmpout,preop);
       u=ulim;     strcat(tmpout,fileres);
       fu=(*func)(u);     return tmpout;
     } else {   }
       u=(*cx)+GOLD*(*cx-*bx);   
       fu=(*func)(u);   /*************** function subdirf3 ***********/
     }   char *subdirf3(char fileres[], char *preop, char *preop2)
     SHFT(*ax,*bx,*cx,u)   {
       SHFT(*fa,*fb,*fc,fu)    
       }     /* Caution optionfilefiname is hidden */
 }     strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 /*************** linmin ************************/    strcat(tmpout,preop);
     strcat(tmpout,preop2);
 int ncom;     strcat(tmpout,fileres);
 double *pcom,*xicom;    return tmpout;
 double (*nrfunc)(double []);   }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   /***************** f1dim *************************/
 {   extern int ncom;
   double brent(double ax, double bx, double cx,   extern double *pcom,*xicom;
                double (*f)(double), double tol, double *xmin);   extern double (*nrfunc)(double []);
   double f1dim(double x);    
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   double f1dim(double x)
               double *fc, double (*func)(double));   {
   int j;     int j;
   double xx,xmin,bx,ax;     double f;
   double fx,fb,fa;    double *xt;
     
   ncom=n;     xt=vector(1,ncom);
   pcom=vector(1,n);     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
   xicom=vector(1,n);     f=(*nrfunc)(xt);
   nrfunc=func;     free_vector(xt,1,ncom);
   for (j=1;j<=n;j++) {     return f;
     pcom[j]=p[j];   }
     xicom[j]=xi[j];   
   }   /*****************brent *************************/
   ax=0.0;   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
   xx=1.0;   {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     int iter;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     double a,b,d,etemp;
 #ifdef DEBUG    double fu,fv,fw,fx;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double ftemp;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    double p,q,r,tol1,tol2,u,v,w,x,xm;
 #endif    double e=0.0;
   for (j=1;j<=n;j++) {    
     xi[j] *= xmin;     a=(ax < cx ? ax : cx);
     p[j] += xi[j];     b=(ax > cx ? ax : cx);
   }     x=w=v=bx;
   free_vector(xicom,1,n);     fw=fv=fx=(*f)(x);
   free_vector(pcom,1,n);     for (iter=1;iter<=ITMAX;iter++) {
 }       xm=0.5*(a+b);
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
 char *asc_diff_time(long time_sec, char ascdiff[])      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 {      printf(".");fflush(stdout);
   long sec_left, days, hours, minutes;      fprintf(ficlog,".");fflush(ficlog);
   days = (time_sec) / (60*60*24);  #ifdef DEBUG
   sec_left = (time_sec) % (60*60*24);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   hours = (sec_left) / (60*60) ;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   sec_left = (sec_left) %(60*60);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   minutes = (sec_left) /60;  #endif
   sec_left = (sec_left) % (60);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);          *xmin=x;
   return ascdiff;        return fx;
 }      }
       ftemp=fu;
 /*************** powell ************************/      if (fabs(e) > tol1) {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,         r=(x-w)*(fx-fv);
             double (*func)(double []))         q=(x-v)*(fx-fw);
 {         p=(x-v)*q-(x-w)*r;
   void linmin(double p[], double xi[], int n, double *fret,         q=2.0*(q-r);
               double (*func)(double []));         if (q > 0.0) p = -p;
   int i,ibig,j;         q=fabs(q);
   double del,t,*pt,*ptt,*xit;        etemp=e;
   double fp,fptt;        e=d;
   double *xits;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
   int niterf, itmp;          d=CGOLD*(e=(x >= xm ? a-x : b-x));
         else {
   pt=vector(1,n);           d=p/q;
   ptt=vector(1,n);           u=x+d;
   xit=vector(1,n);           if (u-a < tol2 || b-u < tol2)
   xits=vector(1,n);             d=SIGN(tol1,xm-x);
   *fret=(*func)(p);         }
   for (j=1;j<=n;j++) pt[j]=p[j];       } else {
   for (*iter=1;;++(*iter)) {         d=CGOLD*(e=(x >= xm ? a-x : b-x));
     fp=(*fret);       }
     ibig=0;       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
     del=0.0;       fu=(*f)(u);
     last_time=curr_time;      if (fu <= fx) {
     (void) gettimeofday(&curr_time,&tzp);        if (u >= x) a=x; else b=x;
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);        SHFT(v,w,x,u)
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);          SHFT(fv,fw,fx,fu)
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);          } else {
     */            if (u < x) a=u; else b=u;
    for (i=1;i<=n;i++) {            if (fu <= fw || w == x) {
       printf(" %d %.12f",i, p[i]);              v=w;
       fprintf(ficlog," %d %.12lf",i, p[i]);              w=u;
       fprintf(ficrespow," %.12lf", p[i]);              fv=fw;
     }              fw=fu;
     printf("\n");            } else if (fu <= fv || v == x || v == w) {
     fprintf(ficlog,"\n");              v=u;
     fprintf(ficrespow,"\n");fflush(ficrespow);              fv=fu;
     if(*iter <=3){            }
       tm = *localtime(&curr_time.tv_sec);          }
       strcpy(strcurr,asctime(&tm));    }
 /*       asctime_r(&tm,strcurr); */    nrerror("Too many iterations in brent");
       forecast_time=curr_time;     *xmin=x;
       itmp = strlen(strcurr);    return fx;
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */  }
         strcurr[itmp-1]='\0';  
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  /****************** mnbrak ***********************/
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  
       for(niterf=10;niterf<=30;niterf+=10){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);              double (*func)(double))
         tmf = *localtime(&forecast_time.tv_sec);  {
 /*      asctime_r(&tmf,strfor); */    double ulim,u,r,q, dum;
         strcpy(strfor,asctime(&tmf));    double fu;
         itmp = strlen(strfor);   
         if(strfor[itmp-1]=='\n')    *fa=(*func)(*ax);
         strfor[itmp-1]='\0';    *fb=(*func)(*bx);
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    if (*fb > *fa) {
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);      SHFT(dum,*ax,*bx,dum)
       }        SHFT(dum,*fb,*fa,dum)
     }        }
     for (i=1;i<=n;i++) {     *cx=(*bx)+GOLD*(*bx-*ax);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     *fc=(*func)(*cx);
       fptt=(*fret);     while (*fb > *fc) {
 #ifdef DEBUG      r=(*bx-*ax)*(*fb-*fc);
       printf("fret=%lf \n",*fret);      q=(*bx-*cx)*(*fb-*fa);
       fprintf(ficlog,"fret=%lf \n",*fret);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
 #endif        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
       printf("%d",i);fflush(stdout);      ulim=(*bx)+GLIMIT*(*cx-*bx);
       fprintf(ficlog,"%d",i);fflush(ficlog);      if ((*bx-u)*(u-*cx) > 0.0) {
       linmin(p,xit,n,fret,func);         fu=(*func)(u);
       if (fabs(fptt-(*fret)) > del) {       } else if ((*cx-u)*(u-ulim) > 0.0) {
         del=fabs(fptt-(*fret));         fu=(*func)(u);
         ibig=i;         if (fu < *fc) {
       }           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
 #ifdef DEBUG            SHFT(*fb,*fc,fu,(*func)(u))
       printf("%d %.12e",i,(*fret));            }
       fprintf(ficlog,"%d %.12e",i,(*fret));      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
       for (j=1;j<=n;j++) {        u=ulim;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        fu=(*func)(u);
         printf(" x(%d)=%.12e",j,xit[j]);      } else {
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);        u=(*cx)+GOLD*(*cx-*bx);
       }        fu=(*func)(u);
       for(j=1;j<=n;j++) {      }
         printf(" p=%.12e",p[j]);      SHFT(*ax,*bx,*cx,u)
         fprintf(ficlog," p=%.12e",p[j]);        SHFT(*fa,*fb,*fc,fu)
       }        }
       printf("\n");  }
       fprintf(ficlog,"\n");  
 #endif  /*************** linmin ************************/
     }   
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int ncom;
 #ifdef DEBUG  double *pcom,*xicom;
       int k[2],l;  double (*nrfunc)(double []);
       k[0]=1;   
       k[1]=-1;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
       printf("Max: %.12e",(*func)(p));  {
       fprintf(ficlog,"Max: %.12e",(*func)(p));    double brent(double ax, double bx, double cx,
       for (j=1;j<=n;j++) {                 double (*f)(double), double tol, double *xmin);
         printf(" %.12e",p[j]);    double f1dim(double x);
         fprintf(ficlog," %.12e",p[j]);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       }                double *fc, double (*func)(double));
       printf("\n");    int j;
       fprintf(ficlog,"\n");    double xx,xmin,bx,ax;
       for(l=0;l<=1;l++) {    double fx,fb,fa;
         for (j=1;j<=n;j++) {   
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    ncom=n;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    pcom=vector(1,n);
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    xicom=vector(1,n);
         }    nrfunc=func;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    for (j=1;j<=n;j++) {
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      pcom[j]=p[j];
       }      xicom[j]=xi[j];
 #endif    }
     ax=0.0;
     xx=1.0;
       free_vector(xit,1,n);     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
       free_vector(xits,1,n);     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
       free_vector(ptt,1,n);   #ifdef DEBUG
       free_vector(pt,1,n);     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       return;     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }   #endif
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");     for (j=1;j<=n;j++) {
     for (j=1;j<=n;j++) {       xi[j] *= xmin;
       ptt[j]=2.0*p[j]-pt[j];       p[j] += xi[j];
       xit[j]=p[j]-pt[j];     }
       pt[j]=p[j];     free_vector(xicom,1,n);
     }     free_vector(pcom,1,n);
     fptt=(*func)(ptt);   }
     if (fptt < fp) {   
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);   char *asc_diff_time(long time_sec, char ascdiff[])
       if (t < 0.0) {   {
         linmin(p,xit,n,fret,func);     long sec_left, days, hours, minutes;
         for (j=1;j<=n;j++) {     days = (time_sec) / (60*60*24);
           xi[j][ibig]=xi[j][n];     sec_left = (time_sec) % (60*60*24);
           xi[j][n]=xit[j];     hours = (sec_left) / (60*60) ;
         }    sec_left = (sec_left) %(60*60);
 #ifdef DEBUG    minutes = (sec_left) /60;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    sec_left = (sec_left) % (60);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         for(j=1;j<=n;j++){    return ascdiff;
           printf(" %.12e",xit[j]);  }
           fprintf(ficlog," %.12e",xit[j]);  
         }  /*************** powell ************************/
         printf("\n");  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
         fprintf(ficlog,"\n");              double (*func)(double []))
 #endif  {
       }    void linmin(double p[], double xi[], int n, double *fret,
     }                 double (*func)(double []));
   }     int i,ibig,j;
 }     double del,t,*pt,*ptt,*xit;
     double fp,fptt;
 /**** Prevalence limit (stable prevalence)  ****************/    double *xits;
     int niterf, itmp;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {    pt=vector(1,n);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    ptt=vector(1,n);
      matrix by transitions matrix until convergence is reached */    xit=vector(1,n);
     xits=vector(1,n);
   int i, ii,j,k;    *fret=(*func)(p);
   double min, max, maxmin, maxmax,sumnew=0.;    for (j=1;j<=n;j++) pt[j]=p[j];
   double **matprod2();    for (*iter=1;;++(*iter)) {
   double **out, cov[NCOVMAX], **pmij();      fp=(*fret);
   double **newm;      ibig=0;
   double agefin, delaymax=50 ; /* Max number of years to converge */      del=0.0;
       last_time=curr_time;
   for (ii=1;ii<=nlstate+ndeath;ii++)      (void) gettimeofday(&curr_time,&tzp);
     for (j=1;j<=nlstate+ndeath;j++){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
      for (i=1;i<=n;i++) {
    cov[1]=1.;        printf(" %d %.12f",i, p[i]);
          fprintf(ficlog," %d %.12lf",i, p[i]);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fprintf(ficrespow," %.12lf", p[i]);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      }
     newm=savm;      printf("\n");
     /* Covariates have to be included here again */      fprintf(ficlog,"\n");
      cov[2]=agefin;      fprintf(ficrespow,"\n");fflush(ficrespow);
         if(*iter <=3){
       for (k=1; k<=cptcovn;k++) {        tm = *localtime(&curr_time.tv_sec);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        strcpy(strcurr,asctime(&tm));
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  /*       asctime_r(&tm,strcurr); */
       }        forecast_time=curr_time;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        itmp = strlen(strcurr);
       for (k=1; k<=cptcovprod;k++)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        for(niterf=10;niterf<=30;niterf+=10){
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
     savm=oldm;          strcpy(strfor,asctime(&tmf));
     oldm=newm;          itmp = strlen(strfor);
     maxmax=0.;          if(strfor[itmp-1]=='\n')
     for(j=1;j<=nlstate;j++){          strfor[itmp-1]='\0';
       min=1.;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       max=0.;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for(i=1; i<=nlstate; i++) {        }
         sumnew=0;      }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      for (i=1;i<=n;i++) {
         prlim[i][j]= newm[i][j]/(1-sumnew);        for (j=1;j<=n;j++) xit[j]=xi[j][i];
         max=FMAX(max,prlim[i][j]);        fptt=(*fret);
         min=FMIN(min,prlim[i][j]);  #ifdef DEBUG
       }        printf("fret=%lf \n",*fret);
       maxmin=max-min;        fprintf(ficlog,"fret=%lf \n",*fret);
       maxmax=FMAX(maxmax,maxmin);  #endif
     }        printf("%d",i);fflush(stdout);
     if(maxmax < ftolpl){        fprintf(ficlog,"%d",i);fflush(ficlog);
       return prlim;        linmin(p,xit,n,fret,func);
     }        if (fabs(fptt-(*fret)) > del) {
   }          del=fabs(fptt-(*fret));
 }          ibig=i;
         }
 /*************** transition probabilities ***************/   #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        fprintf(ficlog,"%d %.12e",i,(*fret));
 {        for (j=1;j<=n;j++) {
   double s1, s2;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   /*double t34;*/          printf(" x(%d)=%.12e",j,xit[j]);
   int i,j,j1, nc, ii, jj;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
     for(i=1; i<= nlstate; i++){        for(j=1;j<=n;j++) {
       for(j=1; j<i;j++){          printf(" p=%.12e",p[j]);
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          fprintf(ficlog," p=%.12e",p[j]);
           /*s2 += param[i][j][nc]*cov[nc];*/        }
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        printf("\n");
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */        fprintf(ficlog,"\n");
         }  #endif
         ps[i][j]=s2;      }
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       }  #ifdef DEBUG
       for(j=i+1; j<=nlstate+ndeath;j++){        int k[2],l;
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){        k[0]=1;
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        k[1]=-1;
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */        printf("Max: %.12e",(*func)(p));
         }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         ps[i][j]=s2;        for (j=1;j<=n;j++) {
       }          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
     /*ps[3][2]=1;*/        }
             printf("\n");
     for(i=1; i<= nlstate; i++){        fprintf(ficlog,"\n");
       s1=0;        for(l=0;l<=1;l++) {
       for(j=1; j<i; j++)          for (j=1;j<=n;j++) {
         s1+=exp(ps[i][j]);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       for(j=i+1; j<=nlstate+ndeath; j++)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         s1+=exp(ps[i][j]);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       ps[i][i]=1./(s1+1.);          }
       for(j=1; j<i; j++)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         ps[i][j]= exp(ps[i][j])*ps[i][i];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for(j=i+1; j<=nlstate+ndeath; j++)        }
         ps[i][j]= exp(ps[i][j])*ps[i][i];  #endif
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
     } /* end i */  
             free_vector(xit,1,n);
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        free_vector(xits,1,n);
       for(jj=1; jj<= nlstate+ndeath; jj++){        free_vector(ptt,1,n);
         ps[ii][jj]=0;        free_vector(pt,1,n);
         ps[ii][ii]=1;        return;
       }      }
     }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
           for (j=1;j<=n;j++) {
         ptt[j]=2.0*p[j]-pt[j];
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */        xit[j]=p[j]-pt[j];
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */        pt[j]=p[j];
 /*         printf("ddd %lf ",ps[ii][jj]); */      }
 /*       } */      fptt=(*func)(ptt);
 /*       printf("\n "); */      if (fptt < fp) {
 /*        } */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
 /*        printf("\n ");printf("%lf ",cov[2]); */        if (t < 0.0) {
        /*          linmin(p,xit,n,fret,func);
       for(i=1; i<= npar; i++) printf("%f ",x[i]);          for (j=1;j<=n;j++) {
       goto end;*/            xi[j][ibig]=xi[j][n];
     return ps;            xi[j][n]=xit[j];
 }          }
   #ifdef DEBUG
 /**************** Product of 2 matrices ******************/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          for(j=1;j<=n;j++){
 {            printf(" %.12e",xit[j]);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times            fprintf(ficlog," %.12e",xit[j]);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          }
   /* in, b, out are matrice of pointers which should have been initialized           printf("\n");
      before: only the contents of out is modified. The function returns          fprintf(ficlog,"\n");
      a pointer to pointers identical to out */  #endif
   long i, j, k;        }
   for(i=nrl; i<= nrh; i++)      }
     for(k=ncolol; k<=ncoloh; k++)    }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  }
         out[i][k] +=in[i][j]*b[j][k];  
   /**** Prevalence limit (stable or period prevalence)  ****************/
   return out;  
 }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 /************* Higher Matrix Product ***************/       matrix by transitions matrix until convergence is reached */
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    int i, ii,j,k;
 {    double min, max, maxmin, maxmax,sumnew=0.;
   /* Computes the transition matrix starting at age 'age' over     double **matprod2();
      'nhstepm*hstepm*stepm' months (i.e. until    double **out, cov[NCOVMAX], **pmij();
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying     double **newm;
      nhstepm*hstepm matrices.     double agefin, delaymax=50 ; /* Max number of years to converge */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   
      (typically every 2 years instead of every month which is too big     for (ii=1;ii<=nlstate+ndeath;ii++)
      for the memory).      for (j=1;j<=nlstate+ndeath;j++){
      Model is determined by parameters x and covariates have to be         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      included manually here.       }
   
      */     cov[1]=1.;
    
   int i, j, d, h, k;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double **out, cov[NCOVMAX];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   double **newm;      newm=savm;
       /* Covariates have to be included here again */
   /* Hstepm could be zero and should return the unit matrix */       cov[2]=agefin;
   for (i=1;i<=nlstate+ndeath;i++)   
     for (j=1;j<=nlstate+ndeath;j++){        for (k=1; k<=cptcovn;k++) {
       oldm[i][j]=(i==j ? 1.0 : 0.0);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       po[i][j][0]=(i==j ? 1.0 : 0.0);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     }        }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for(h=1; h <=nhstepm; h++){        for (k=1; k<=cptcovprod;k++)
     for(d=1; d <=hstepm; d++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       newm=savm;  
       /* Covariates have to be included here again */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       cov[1]=1.;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      savm=oldm;
       for (k=1; k<=cptcovprod;k++)      oldm=newm;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      maxmax=0.;
       for(j=1;j<=nlstate;j++){
         min=1.;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        max=0.;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        for(i=1; i<=nlstate; i++) {
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,           sumnew=0;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       savm=oldm;          prlim[i][j]= newm[i][j]/(1-sumnew);
       oldm=newm;          max=FMAX(max,prlim[i][j]);
     }          min=FMIN(min,prlim[i][j]);
     for(i=1; i<=nlstate+ndeath; i++)        }
       for(j=1;j<=nlstate+ndeath;j++) {        maxmin=max-min;
         po[i][j][h]=newm[i][j];        maxmax=FMAX(maxmax,maxmin);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      }
          */      if(maxmax < ftolpl){
       }        return prlim;
   } /* end h */      }
   return po;    }
 }  }
   
   /*************** transition probabilities ***************/
 /*************** log-likelihood *************/  
 double func( double *x)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 {  {
   int i, ii, j, k, mi, d, kk;    double s1, s2;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    /*double t34;*/
   double **out;    int i,j,j1, nc, ii, jj;
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */      for(i=1; i<= nlstate; i++){
   int s1, s2;        for(j=1; j<i;j++){
   double bbh, survp;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   long ipmx;            /*s2 += param[i][j][nc]*cov[nc];*/
   /*extern weight */            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /* We are differentiating ll according to initial status */  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          }
   /*for(i=1;i<imx;i++)           ps[i][j]=s2;
     printf(" %d\n",s[4][i]);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   */        }
   cov[1]=1.;        for(j=i+1; j<=nlstate+ndeath;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for(k=1; k<=nlstate; k++) ll[k]=0.;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   if(mle==1){          }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          ps[i][j]=s2;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        }
       for(mi=1; mi<= wav[i]-1; mi++){      }
         for (ii=1;ii<=nlstate+ndeath;ii++)      /*ps[3][2]=1;*/
           for (j=1;j<=nlstate+ndeath;j++){     
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for(i=1; i<= nlstate; i++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        s1=0;
           }        for(j=1; j<i; j++)
         for(d=0; d<dh[mi][i]; d++){          s1+=exp(ps[i][j]);
           newm=savm;        for(j=i+1; j<=nlstate+ndeath; j++)
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          s1+=exp(ps[i][j]);
           for (kk=1; kk<=cptcovage;kk++) {        ps[i][i]=1./(s1+1.);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for(j=1; j<i; j++)
           }          ps[i][j]= exp(ps[i][j])*ps[i][i];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(j=i+1; j<=nlstate+ndeath; j++)
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          ps[i][j]= exp(ps[i][j])*ps[i][i];
           savm=oldm;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           oldm=newm;      } /* end i */
         } /* end mult */     
             for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        for(jj=1; jj<= nlstate+ndeath; jj++){
         /* But now since version 0.9 we anticipate for bias at large stepm.          ps[ii][jj]=0;
          * If stepm is larger than one month (smallest stepm) and if the exact delay           ps[ii][ii]=1;
          * (in months) between two waves is not a multiple of stepm, we rounded to         }
          * the nearest (and in case of equal distance, to the lowest) interval but now      }
          * we keep into memory the bias bh[mi][i] and also the previous matrix product     
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the  
          * probability in order to take into account the bias as a fraction of the way  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
          * -stepm/2 to stepm/2 .  /*         printf("ddd %lf ",ps[ii][jj]); */
          * For stepm=1 the results are the same as for previous versions of Imach.  /*       } */
          * For stepm > 1 the results are less biased than in previous versions.   /*       printf("\n "); */
          */  /*        } */
         s1=s[mw[mi][i]][i];  /*        printf("\n ");printf("%lf ",cov[2]); */
         s2=s[mw[mi+1][i]][i];         /*
         bbh=(double)bh[mi][i]/(double)stepm;         for(i=1; i<= npar; i++) printf("%f ",x[i]);
         /* bias bh is positive if real duration        goto end;*/
          * is higher than the multiple of stepm and negative otherwise.      return ps;
          */  }
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  
         if( s2 > nlstate){   /**************** Product of 2 matrices ******************/
           /* i.e. if s2 is a death state and if the date of death is known then the contribution  
              to the likelihood is the probability to die between last step unit time and current   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
              step unit time, which is also equal to probability to die before dh   {
              minus probability to die before dh-stepm .     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
              In version up to 0.92 likelihood was computed       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         as if date of death was unknown. Death was treated as any other    /* in, b, out are matrice of pointers which should have been initialized
         health state: the date of the interview describes the actual state       before: only the contents of out is modified. The function returns
         and not the date of a change in health state. The former idea was       a pointer to pointers identical to out */
         to consider that at each interview the state was recorded    long i, j, k;
         (healthy, disable or death) and IMaCh was corrected; but when we    for(i=nrl; i<= nrh; i++)
         introduced the exact date of death then we should have modified      for(k=ncolol; k<=ncoloh; k++)
         the contribution of an exact death to the likelihood. This new        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         contribution is smaller and very dependent of the step unit          out[i][k] +=in[i][j]*b[j][k];
         stepm. It is no more the probability to die between last interview  
         and month of death but the probability to survive from last    return out;
         interview up to one month before death multiplied by the  }
         probability to die within a month. Thanks to Chris  
         Jackson for correcting this bug.  Former versions increased  
         mortality artificially. The bad side is that we add another loop  /************* Higher Matrix Product ***************/
         which slows down the processing. The difference can be up to 10%  
         lower mortality.  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           */  {
           lli=log(out[s1][s2] - savm[s1][s2]);    /* Computes the transition matrix starting at age 'age' over
         }else{       'nhstepm*hstepm*stepm' months (i.e. until
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */       nhstepm*hstepm matrices.
         }        Output is stored in matrix po[i][j][h] for h every 'hstepm' step
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/       (typically every 2 years instead of every month which is too big
         /*if(lli ==000.0)*/       for the memory).
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */       Model is determined by parameters x and covariates have to be
         ipmx +=1;       included manually here.
         sw += weight[i];  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       */
       } /* end of wave */  
     } /* end of individual */    int i, j, d, h, k;
   }  else if(mle==2){    double **out, cov[NCOVMAX];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double **newm;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){    /* Hstepm could be zero and should return the unit matrix */
         for (ii=1;ii<=nlstate+ndeath;ii++)    for (i=1;i<=nlstate+ndeath;i++)
           for (j=1;j<=nlstate+ndeath;j++){      for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        oldm[i][j]=(i==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        po[i][j][0]=(i==j ? 1.0 : 0.0);
           }      }
         for(d=0; d<=dh[mi][i]; d++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           newm=savm;    for(h=1; h <=nhstepm; h++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for(d=1; d <=hstepm; d++){
           for (kk=1; kk<=cptcovage;kk++) {        newm=savm;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        /* Covariates have to be included here again */
           }        cov[1]=1.;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           savm=oldm;        for (k=1; k<=cptcovage;k++)
           oldm=newm;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         } /* end mult */        for (k=1; k<=cptcovprod;k++)
                 cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         s1=s[mw[mi][i]][i];  
         s2=s[mw[mi+1][i]][i];  
         bbh=(double)bh[mi][i]/(double)stepm;         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         ipmx +=1;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
         sw += weight[i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        savm=oldm;
       } /* end of wave */        oldm=newm;
     } /* end of individual */      }
   }  else if(mle==3){  /* exponential inter-extrapolation */      for(i=1; i<=nlstate+ndeath; i++)
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for(j=1;j<=nlstate+ndeath;j++) {
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          po[i][j][h]=newm[i][j];
       for(mi=1; mi<= wav[i]-1; mi++){          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         for (ii=1;ii<=nlstate+ndeath;ii++)           */
           for (j=1;j<=nlstate+ndeath;j++){        }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    } /* end h */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    return po;
           }  }
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*************** log-likelihood *************/
           for (kk=1; kk<=cptcovage;kk++) {  double func( double *x)
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  {
           }    int i, ii, j, k, mi, d, kk;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double l, ll[NLSTATEMAX], cov[NCOVMAX];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double **out;
           savm=oldm;    double sw; /* Sum of weights */
           oldm=newm;    double lli; /* Individual log likelihood */
         } /* end mult */    int s1, s2;
           double bbh, survp;
         s1=s[mw[mi][i]][i];    long ipmx;
         s2=s[mw[mi+1][i]][i];    /*extern weight */
         bbh=(double)bh[mi][i]/(double)stepm;     /* We are differentiating ll according to initial status */
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         ipmx +=1;    /*for(i=1;i<imx;i++)
         sw += weight[i];      printf(" %d\n",s[4][i]);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    */
       } /* end of wave */    cov[1]=1.;
     } /* end of individual */  
   }else if (mle==4){  /* ml=4 no inter-extrapolation */    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    if(mle==1){
       for(mi=1; mi<= wav[i]-1; mi++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (ii=1;ii<=nlstate+ndeath;ii++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for (j=1;j<=nlstate+ndeath;j++){        for(mi=1; mi<= wav[i]-1; mi++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          for (ii=1;ii<=nlstate+ndeath;ii++)
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(d=0; d<dh[mi][i]; d++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           newm=savm;            }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          for(d=0; d<dh[mi][i]; d++){
           for (kk=1; kk<=cptcovage;kk++) {            newm=savm;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
                       cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           savm=oldm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           oldm=newm;            savm=oldm;
         } /* end mult */            oldm=newm;
                 } /* end mult */
         s1=s[mw[mi][i]][i];       
         s2=s[mw[mi+1][i]][i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         if( s2 > nlstate){           /* But now since version 0.9 we anticipate for bias at large stepm.
           lli=log(out[s1][s2] - savm[s1][s2]);           * If stepm is larger than one month (smallest stepm) and if the exact delay
         }else{           * (in months) between two waves is not a multiple of stepm, we rounded to
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */           * the nearest (and in case of equal distance, to the lowest) interval but now
         }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         ipmx +=1;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         sw += weight[i];           * probability in order to take into account the bias as a fraction of the way
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */           * -stepm/2 to stepm/2 .
       } /* end of wave */           * For stepm=1 the results are the same as for previous versions of Imach.
     } /* end of individual */           * For stepm > 1 the results are less biased than in previous versions.
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */           */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          s1=s[mw[mi][i]][i];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          s2=s[mw[mi+1][i]][i];
       for(mi=1; mi<= wav[i]-1; mi++){          bbh=(double)bh[mi][i]/(double)stepm;
         for (ii=1;ii<=nlstate+ndeath;ii++)          /* bias bh is positive if real duration
           for (j=1;j<=nlstate+ndeath;j++){           * is higher than the multiple of stepm and negative otherwise.
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);           */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           }          if( s2 > nlstate){
         for(d=0; d<dh[mi][i]; d++){            /* i.e. if s2 is a death state and if the date of death is known
           newm=savm;               then the contribution to the likelihood is the probability to
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;               die between last step unit time and current  step unit time,
           for (kk=1; kk<=cptcovage;kk++) {               which is also equal to probability to die before dh
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];               minus probability to die before dh-stepm .
           }               In version up to 0.92 likelihood was computed
                   as if date of death was unknown. Death was treated as any other
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          health state: the date of the interview describes the actual state
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          and not the date of a change in health state. The former idea was
           savm=oldm;          to consider that at each interview the state was recorded
           oldm=newm;          (healthy, disable or death) and IMaCh was corrected; but when we
         } /* end mult */          introduced the exact date of death then we should have modified
                 the contribution of an exact death to the likelihood. This new
         s1=s[mw[mi][i]][i];          contribution is smaller and very dependent of the step unit
         s2=s[mw[mi+1][i]][i];          stepm. It is no more the probability to die between last interview
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          and month of death but the probability to survive from last
         ipmx +=1;          interview up to one month before death multiplied by the
         sw += weight[i];          probability to die within a month. Thanks to Chris
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          Jackson for correcting this bug.  Former versions increased
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          mortality artificially. The bad side is that we add another loop
       } /* end of wave */          which slows down the processing. The difference can be up to 10%
     } /* end of individual */          lower mortality.
   } /* End of if */            */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            lli=log(out[s1][s2] - savm[s1][s2]);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;          } else if  (s2==-2) {
 }            for (j=1,survp=0. ; j<=nlstate; j++)
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 /*************** log-likelihood *************/            /*survp += out[s1][j]; */
 double funcone( double *x)            lli= log(survp);
 {          }
   /* Same as likeli but slower because of a lot of printf and if */         
   int i, ii, j, k, mi, d, kk;          else if  (s2==-4) {
   double l, ll[NLSTATEMAX], cov[NCOVMAX];            for (j=3,survp=0. ; j<=nlstate; j++)  
   double **out;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double lli; /* Individual log likelihood */            lli= log(survp);
   double llt;          }
   int s1, s2;  
   double bbh, survp;          else if  (s2==-5) {
   /*extern weight */            for (j=1,survp=0. ; j<=2; j++)  
   /* We are differentiating ll according to initial status */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/            lli= log(survp);
   /*for(i=1;i<imx;i++)           }
     printf(" %d\n",s[4][i]);         
   */          else{
   cov[1]=1.;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   for(k=1; k<=nlstate; k++) ll[k]=0.;          }
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          /*if(lli ==000.0)*/
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for(mi=1; mi<= wav[i]-1; mi++){          ipmx +=1;
       for (ii=1;ii<=nlstate+ndeath;ii++)          sw += weight[i];
         for (j=1;j<=nlstate+ndeath;j++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);        } /* end of wave */
           savm[ii][j]=(ii==j ? 1.0 : 0.0);      } /* end of individual */
         }    }  else if(mle==2){
       for(d=0; d<dh[mi][i]; d++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         newm=savm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(mi=1; mi<= wav[i]-1; mi++){
         for (kk=1; kk<=cptcovage;kk++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            }
         savm=oldm;          for(d=0; d<=dh[mi][i]; d++){
         oldm=newm;            newm=savm;
       } /* end mult */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   for (kk=1; kk<=cptcovage;kk++) {
       s1=s[mw[mi][i]][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       s2=s[mw[mi+1][i]][i];            }
       bbh=(double)bh[mi][i]/(double)stepm;             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       /* bias is positive if real duration                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
        * is higher than the multiple of stepm and negative otherwise.            savm=oldm;
        */            oldm=newm;
       if( s2 > nlstate && (mle <5) ){  /* Jackson */          } /* end mult */
         lli=log(out[s1][s2] - savm[s1][s2]);       
       } else if (mle==1){          s1=s[mw[mi][i]][i];
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          s2=s[mw[mi+1][i]][i];
       } else if(mle==2){          bbh=(double)bh[mi][i]/(double)stepm;
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       } else if(mle==3){  /* exponential inter-extrapolation */          ipmx +=1;
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          sw += weight[i];
       } else if (mle==4){  /* mle=4 no inter-extrapolation */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         lli=log(out[s1][s2]); /* Original formula */        } /* end of wave */
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */      } /* end of individual */
         lli=log(out[s1][s2]); /* Original formula */    }  else if(mle==3){  /* exponential inter-extrapolation */
       } /* End of if */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       ipmx +=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       sw += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          for (ii=1;ii<=nlstate+ndeath;ii++)
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            for (j=1;j<=nlstate+ndeath;j++){
       if(globpr){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\              savm[ii][j]=(ii==j ? 1.0 : 0.0);
  %10.6f %10.6f %10.6f ", \            }
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],          for(d=0; d<dh[mi][i]; d++){
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);            newm=savm;
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           llt +=ll[k]*gipmx/gsw;            for (kk=1; kk<=cptcovage;kk++) {
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
         fprintf(ficresilk," %10.6f\n", -llt);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     } /* end of wave */            savm=oldm;
   } /* end of individual */            oldm=newm;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          } /* end mult */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */       
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          s1=s[mw[mi][i]][i];
   if(globpr==0){ /* First time we count the contributions and weights */          s2=s[mw[mi+1][i]][i];
     gipmx=ipmx;          bbh=(double)bh[mi][i]/(double)stepm;
     gsw=sw;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }          ipmx +=1;
   return -l;          sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       } /* end of individual */
 /*************** function likelione ***********/    }else if (mle==4){  /* ml=4 no inter-extrapolation */
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* This routine should help understanding what is done with         for(mi=1; mi<= wav[i]-1; mi++){
      the selection of individuals/waves and          for (ii=1;ii<=nlstate+ndeath;ii++)
      to check the exact contribution to the likelihood.            for (j=1;j<=nlstate+ndeath;j++){
      Plotting could be done.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k;            }
           for(d=0; d<dh[mi][i]; d++){
   if(*globpri !=0){ /* Just counts and sums, no printings */            newm=savm;
     strcpy(fileresilk,"ilk");             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     strcat(fileresilk,fileres);            for (kk=1; kk<=cptcovage;kk++) {
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       printf("Problem with resultfile: %s\n", fileresilk);            }
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);         
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");            savm=oldm;
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */            oldm=newm;
     for(k=1; k<=nlstate; k++)           } /* end mult */
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);       
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){
   *fretone=(*funcone)(p);            lli=log(out[s1][s2] - savm[s1][s2]);
   if(*globpri !=0){          }else{
     fclose(ficresilk);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));          }
     fflush(fichtm);           ipmx +=1;
   }           sw += weight[i];
   return;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
       } /* end of individual */
 /*********** Maximum Likelihood Estimation ***************/    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   int i,j, iter;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double **xi;            for (j=1;j<=nlstate+ndeath;j++){
   double fret;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double fretone; /* Only one call to likelihood */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  char filerespow[FILENAMELENGTH];*/            }
   xi=matrix(1,npar,1,npar);          for(d=0; d<dh[mi][i]; d++){
   for (i=1;i<=npar;i++)            newm=savm;
     for (j=1;j<=npar;j++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       xi[i][j]=(i==j ? 1.0 : 0.0);            for (kk=1; kk<=cptcovage;kk++) {
   printf("Powell\n");  fprintf(ficlog,"Powell\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   strcpy(filerespow,"pow");             }
   strcat(filerespow,fileres);         
   if((ficrespow=fopen(filerespow,"w"))==NULL) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf("Problem with resultfile: %s\n", filerespow);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);            savm=oldm;
   }            oldm=newm;
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          } /* end mult */
   for (i=1;i<=nlstate;i++)       
     for(j=1;j<=nlstate+ndeath;j++)          s1=s[mw[mi][i]][i];
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          s2=s[mw[mi+1][i]][i];
   fprintf(ficrespow,"\n");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
   powell(p,xi,npar,ftol,&iter,&fret,func);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fclose(ficrespow);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        } /* end of wave */
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      } /* end of individual */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /**** Computes Hessian and covariance matrix ***/    return -l;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  }
 {  
   double  **a,**y,*x,pd;  /*************** log-likelihood *************/
   double **hess;  double funcone( double *x)
   int i, j,jk;  {
   int *indx;    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    double **out;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double lli; /* Individual log likelihood */
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double llt;
   double gompertz(double p[]);    int s1, s2;
   hess=matrix(1,npar,1,npar);    double bbh, survp;
     /*extern weight */
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* We are differentiating ll according to initial status */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for (i=1;i<=npar;i++){    /*for(i=1;i<imx;i++)
     printf("%d",i);fflush(stdout);      printf(" %d\n",s[4][i]);
     fprintf(ficlog,"%d",i);fflush(ficlog);    */
        cov[1]=1.;
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);  
         for(k=1; k<=nlstate; k++) ll[k]=0.;
     /*  printf(" %f ",p[i]);  
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   for (i=1;i<=npar;i++) {        for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=npar;j++)  {          for (j=1;j<=nlstate+ndeath;j++){
       if (j>i) {             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf(".%d%d",i,j);fflush(stdout);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          }
         hess[i][j]=hessij(p,delti,i,j,func,npar);        for(d=0; d<dh[mi][i]; d++){
                   newm=savm;
         hess[j][i]=hess[i][j];              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         /*printf(" %lf ",hess[i][j]);*/          for (kk=1; kk<=cptcovage;kk++) {
       }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }          }
   }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("\n");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficlog,"\n");          savm=oldm;
           oldm=newm;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        } /* end mult */
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");       
           s1=s[mw[mi][i]][i];
   a=matrix(1,npar,1,npar);        s2=s[mw[mi+1][i]][i];
   y=matrix(1,npar,1,npar);        bbh=(double)bh[mi][i]/(double)stepm;
   x=vector(1,npar);        /* bias is positive if real duration
   indx=ivector(1,npar);         * is higher than the multiple of stepm and negative otherwise.
   for (i=1;i<=npar;i++)         */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   ludcmp(a,npar,indx,&pd);          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
   for (j=1;j<=npar;j++) {          for (j=1,survp=0. ; j<=nlstate; j++)
     for (i=1;i<=npar;i++) x[i]=0;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     x[j]=1;          lli= log(survp);
     lubksb(a,npar,indx,x);        }else if (mle==1){
     for (i=1;i<=npar;i++){           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       matcov[i][j]=x[i];        } else if(mle==2){
     }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   }        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   printf("\n#Hessian matrix#\n");        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   fprintf(ficlog,"\n#Hessian matrix#\n");          lli=log(out[s1][s2]); /* Original formula */
   for (i=1;i<=npar;i++) {         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     for (j=1;j<=npar;j++) {           lli=log(out[s1][s2]); /* Original formula */
       printf("%.3e ",hess[i][j]);        } /* End of if */
       fprintf(ficlog,"%.3e ",hess[i][j]);        ipmx +=1;
     }        sw += weight[i];
     printf("\n");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficlog,"\n");  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   }        if(globpr){
           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   /* Recompute Inverse */   %11.6f %11.6f %11.6f ", \
   for (i=1;i<=npar;i++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   ludcmp(a,npar,indx,&pd);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
   /*  printf("\n#Hessian matrix recomputed#\n");            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
   for (j=1;j<=npar;j++) {          fprintf(ficresilk," %10.6f\n", -llt);
     for (i=1;i<=npar;i++) x[i]=0;        }
     x[j]=1;      } /* end of wave */
     lubksb(a,npar,indx,x);    } /* end of individual */
     for (i=1;i<=npar;i++){     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       y[i][j]=x[i];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       printf("%.3e ",y[i][j]);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       fprintf(ficlog,"%.3e ",y[i][j]);    if(globpr==0){ /* First time we count the contributions and weights */
     }      gipmx=ipmx;
     printf("\n");      gsw=sw;
     fprintf(ficlog,"\n");    }
   }    return -l;
   */  }
   
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  /*************** function likelione ***********/
   free_vector(x,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   free_ivector(indx,1,npar);  {
   free_matrix(hess,1,npar,1,npar);    /* This routine should help understanding what is done with
        the selection of individuals/waves and
        to check the exact contribution to the likelihood.
 }       Plotting could be done.
      */
 /*************** hessian matrix ****************/    int k;
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)  
 {    if(*globpri !=0){ /* Just counts and sums, no printings */
   int i;      strcpy(fileresilk,"ilk");
   int l=1, lmax=20;      strcat(fileresilk,fileres);
   double k1,k2;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double p2[NPARMAX+1];        printf("Problem with resultfile: %s\n", fileresilk);
   double res;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;      }
   double fx;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int k=0,kmax=10;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double l1;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++)
   fx=func(x);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   for (i=1;i<=npar;i++) p2[i]=x[i];      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   for(l=0 ; l <=lmax; l++){    }
     l1=pow(10,l);  
     delts=delt;    *fretone=(*funcone)(p);
     for(k=1 ; k <kmax; k=k+1){    if(*globpri !=0){
       delt = delta*(l1*k);      fclose(ficresilk);
       p2[theta]=x[theta] +delt;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       k1=func(p2)-fx;      fflush(fichtm);
       p2[theta]=x[theta]-delt;    }
       k2=func(p2)-fx;    return;
       /*res= (k1-2.0*fx+k2)/delt/delt; */  }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
         
 #ifdef DEBUG  /*********** Maximum Likelihood Estimation ***************/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 #endif  {
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    int i,j, iter;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    double **xi;
         k=kmax;    double fret;
       }    double fretone; /* Only one call to likelihood */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    /*  char filerespow[FILENAMELENGTH];*/
         k=kmax; l=lmax*10.;    xi=matrix(1,npar,1,npar);
       }    for (i=1;i<=npar;i++)
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){       for (j=1;j<=npar;j++)
         delts=delt;        xi[i][j]=(i==j ? 1.0 : 0.0);
       }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     }    strcpy(filerespow,"pow");
   }    strcat(filerespow,fileres);
   delti[theta]=delts;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   return res;       printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 }    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)    for (i=1;i<=nlstate;i++)
 {      for(j=1;j<=nlstate+ndeath;j++)
   int i;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   int l=1, l1, lmax=20;    fprintf(ficrespow,"\n");
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];    powell(p,xi,npar,ftol,&iter,&fret,func);
   int k;  
     free_matrix(xi,1,npar,1,npar);
   fx=func(x);    fclose(ficrespow);
   for (k=1; k<=2; k++) {    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     for (i=1;i<=npar;i++) p2[i]=x[i];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     p2[thetai]=x[thetai]+delti[thetai]/k;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;  }
     
     p2[thetai]=x[thetai]+delti[thetai]/k;  /**** Computes Hessian and covariance matrix ***/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     k2=func(p2)-fx;  {
       double  **a,**y,*x,pd;
     p2[thetai]=x[thetai]-delti[thetai]/k;    double **hess;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int i, j,jk;
     k3=func(p2)-fx;    int *indx;
     
     p2[thetai]=x[thetai]-delti[thetai]/k;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     k4=func(p2)-fx;    void lubksb(double **a, int npar, int *indx, double b[]) ;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    void ludcmp(double **a, int npar, int *indx, double *d) ;
 #ifdef DEBUG    double gompertz(double p[]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    hess=matrix(1,npar,1,npar);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif    printf("\nCalculation of the hessian matrix. Wait...\n");
   }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   return res;    for (i=1;i<=npar;i++){
 }      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
 /************** Inverse of matrix **************/     
 void ludcmp(double **a, int n, int *indx, double *d)        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 {      
   int i,imax,j,k;       /*  printf(" %f ",p[i]);
   double big,dum,sum,temp;           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double *vv;     }
     
   vv=vector(1,n);     for (i=1;i<=npar;i++) {
   *d=1.0;       for (j=1;j<=npar;j++)  {
   for (i=1;i<=n;i++) {         if (j>i) {
     big=0.0;           printf(".%d%d",i,j);fflush(stdout);
     for (j=1;j<=n;j++)           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       if ((temp=fabs(a[i][j])) > big) big=temp;           hess[i][j]=hessij(p,delti,i,j,func,npar);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          
     vv[i]=1.0/big;           hess[j][i]=hess[i][j];    
   }           /*printf(" %lf ",hess[i][j]);*/
   for (j=1;j<=n;j++) {         }
     for (i=1;i<j;i++) {       }
       sum=a[i][j];     }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];     printf("\n");
       a[i][j]=sum;     fprintf(ficlog,"\n");
     }   
     big=0.0;     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     for (i=j;i<=n;i++) {     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       sum=a[i][j];    
       for (k=1;k<j;k++)     a=matrix(1,npar,1,npar);
         sum -= a[i][k]*a[k][j];     y=matrix(1,npar,1,npar);
       a[i][j]=sum;     x=vector(1,npar);
       if ( (dum=vv[i]*fabs(sum)) >= big) {     indx=ivector(1,npar);
         big=dum;     for (i=1;i<=npar;i++)
         imax=i;       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       }     ludcmp(a,npar,indx,&pd);
     }   
     if (j != imax) {     for (j=1;j<=npar;j++) {
       for (k=1;k<=n;k++) {       for (i=1;i<=npar;i++) x[i]=0;
         dum=a[imax][k];       x[j]=1;
         a[imax][k]=a[j][k];       lubksb(a,npar,indx,x);
         a[j][k]=dum;       for (i=1;i<=npar;i++){
       }         matcov[i][j]=x[i];
       *d = -(*d);       }
       vv[imax]=vv[j];     }
     }   
     indx[j]=imax;     printf("\n#Hessian matrix#\n");
     if (a[j][j] == 0.0) a[j][j]=TINY;     fprintf(ficlog,"\n#Hessian matrix#\n");
     if (j != n) {     for (i=1;i<=npar;i++) {
       dum=1.0/(a[j][j]);       for (j=1;j<=npar;j++) {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;         printf("%.3e ",hess[i][j]);
     }         fprintf(ficlog,"%.3e ",hess[i][j]);
   }       }
   free_vector(vv,1,n);  /* Doesn't work */      printf("\n");
 ;      fprintf(ficlog,"\n");
 }     }
   
 void lubksb(double **a, int n, int *indx, double b[])     /* Recompute Inverse */
 {     for (i=1;i<=npar;i++)
   int i,ii=0,ip,j;       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double sum;     ludcmp(a,npar,indx,&pd);
    
   for (i=1;i<=n;i++) {     /*  printf("\n#Hessian matrix recomputed#\n");
     ip=indx[i];   
     sum=b[ip];     for (j=1;j<=npar;j++) {
     b[ip]=b[i];       for (i=1;i<=npar;i++) x[i]=0;
     if (ii)       x[j]=1;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       lubksb(a,npar,indx,x);
     else if (sum) ii=i;       for (i=1;i<=npar;i++){
     b[i]=sum;         y[i][j]=x[i];
   }         printf("%.3e ",y[i][j]);
   for (i=n;i>=1;i--) {         fprintf(ficlog,"%.3e ",y[i][j]);
     sum=b[i];       }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       printf("\n");
     b[i]=sum/a[i][i];       fprintf(ficlog,"\n");
   }     }
 }     */
   
 /************ Frequencies ********************/    free_matrix(a,1,npar,1,npar);
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)    free_matrix(y,1,npar,1,npar);
 {  /* Some frequencies */    free_vector(x,1,npar);
       free_ivector(indx,1,npar);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    free_matrix(hess,1,npar,1,npar);
   int first;  
   double ***freq; /* Frequencies */  
   double *pp, **prop;  }
   double pos,posprop, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;  /*************** hessian matrix ****************/
   char fileresp[FILENAMELENGTH];  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     {
   pp=vector(1,nlstate);    int i;
   prop=matrix(1,nlstate,iagemin,iagemax+3);    int l=1, lmax=20;
   strcpy(fileresp,"p");    double k1,k2;
   strcat(fileresp,fileres);    double p2[NPARMAX+1];
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double res;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    double fx;
     exit(0);    int k=0,kmax=10;
   }    double l1;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);  
   j1=0;    fx=func(x);
       for (i=1;i<=npar;i++) p2[i]=x[i];
   j=cptcoveff;    for(l=0 ; l <=lmax; l++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      l1=pow(10,l);
       delts=delt;
   first=1;      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   for(k1=1; k1<=j;k1++){        p2[theta]=x[theta] +delt;
     for(i1=1; i1<=ncodemax[k1];i1++){        k1=func(p2)-fx;
       j1++;        p2[theta]=x[theta]-delt;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        k2=func(p2)-fx;
         scanf("%d", i);*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
       for (i=-1; i<=nlstate+ndeath; i++)          res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         for (jk=-1; jk<=nlstate+ndeath; jk++)         
           for(m=iagemin; m <= iagemax+3; m++)  #ifdef DEBUG
             freq[i][jk][m]=0;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for (i=1; i<=nlstate; i++)    #endif
       for(m=iagemin; m <= iagemax+3; m++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         prop[i][m]=0;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                 k=kmax;
       dateintsum=0;        }
       k2cpt=0;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       for (i=1; i<=imx; i++) {          k=kmax; l=lmax*10.;
         bool=1;        }
         if  (cptcovn>0) {        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
           for (z1=1; z1<=cptcoveff; z1++)           delts=delt;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])         }
               bool=0;      }
         }    }
         if (bool==1){    delti[theta]=delts;
           for(m=firstpass; m<=lastpass; m++){    return res;
             k2=anint[m][i]+(mint[m][i]/12.);   
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/  }
               if(agev[m][i]==0) agev[m][i]=iagemax+1;  
               if(agev[m][i]==1) agev[m][i]=iagemax+2;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];  {
               if (m<lastpass) {    int i;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    int l=1, l1, lmax=20;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];    double k1,k2,k3,k4,res,fx;
               }    double p2[NPARMAX+1];
                   int k;
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {  
                 dateintsum=dateintsum+k2;    fx=func(x);
                 k2cpt++;    for (k=1; k<=2; k++) {
               }      for (i=1;i<=npar;i++) p2[i]=x[i];
               /*}*/      p2[thetai]=x[thetai]+delti[thetai]/k;
           }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         }      k1=func(p2)-fx;
       }   
              p2[thetai]=x[thetai]+delti[thetai]/k;
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
       if  (cptcovn>0) {   
         fprintf(ficresp, "\n#********** Variable ");       p2[thetai]=x[thetai]-delti[thetai]/k;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         fprintf(ficresp, "**********\n#");      k3=func(p2)-fx;
       }   
       for(i=1; i<=nlstate;i++)       p2[thetai]=x[thetai]-delti[thetai]/k;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       fprintf(ficresp, "\n");      k4=func(p2)-fx;
             res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for(i=iagemin; i <= iagemax+3; i++){  #ifdef DEBUG
         if(i==iagemax+3){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           fprintf(ficlog,"Total");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         }else{  #endif
           if(first==1){    }
             first=0;    return res;
             printf("See log file for details...\n");  }
           }  
           fprintf(ficlog,"Age %d", i);  /************** Inverse of matrix **************/
         }  void ludcmp(double **a, int n, int *indx, double *d)
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    int i,imax,j,k;
             pp[jk] += freq[jk][m][i];     double big,dum,sum,temp;
         }    double *vv;
         for(jk=1; jk <=nlstate ; jk++){   
           for(m=-1, pos=0; m <=0 ; m++)    vv=vector(1,n);
             pos += freq[jk][m][i];    *d=1.0;
           if(pp[jk]>=1.e-10){    for (i=1;i<=n;i++) {
             if(first==1){      big=0.0;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      for (j=1;j<=n;j++)
             }        if ((temp=fabs(a[i][j])) > big) big=temp;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
           }else{      vv[i]=1.0/big;
             if(first==1)    }
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for (j=1;j<=n;j++) {
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1;i<j;i++) {
           }        sum=a[i][j];
         }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
         a[i][j]=sum;
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      big=0.0;
             pp[jk] += freq[jk][m][i];      for (i=j;i<=n;i++) {
         }               sum=a[i][j];
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){        for (k=1;k<j;k++)
           pos += pp[jk];          sum -= a[i][k]*a[k][j];
           posprop += prop[jk][i];        a[i][j]=sum;
         }        if ( (dum=vv[i]*fabs(sum)) >= big) {
         for(jk=1; jk <=nlstate ; jk++){          big=dum;
           if(pos>=1.e-5){          imax=i;
             if(first==1)        }
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      }
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      if (j != imax) {
           }else{        for (k=1;k<=n;k++) {
             if(first==1)          dum=a[imax][k];
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          a[imax][k]=a[j][k];
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          a[j][k]=dum;
           }        }
           if( i <= iagemax){        *d = -(*d);
             if(pos>=1.e-5){        vv[imax]=vv[j];
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);      }
               /*probs[i][jk][j1]= pp[jk]/pos;*/      indx[j]=imax;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      if (a[j][j] == 0.0) a[j][j]=TINY;
             }      if (j != n) {
             else        dum=1.0/(a[j][j]);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);        for (i=j+1;i<=n;i++) a[i][j] *= dum;
           }      }
         }    }
             free_vector(vv,1,n);  /* Doesn't work */
         for(jk=-1; jk <=nlstate+ndeath; jk++)  ;
           for(m=-1; m <=nlstate+ndeath; m++)  }
             if(freq[jk][m][i] !=0 ) {  
             if(first==1)  void lubksb(double **a, int n, int *indx, double b[])
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  {
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    int i,ii=0,ip,j;
             }    double sum;
         if(i <= iagemax)   
           fprintf(ficresp,"\n");    for (i=1;i<=n;i++) {
         if(first==1)      ip=indx[i];
           printf("Others in log...\n");      sum=b[ip];
         fprintf(ficlog,"\n");      b[ip]=b[i];
       }      if (ii)
     }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
   }      else if (sum) ii=i;
   dateintmean=dateintsum/k2cpt;       b[i]=sum;
      }
   fclose(ficresp);    for (i=n;i>=1;i--) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);      sum=b[i];
   free_vector(pp,1,nlstate);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);      b[i]=sum/a[i][i];
   /* End of Freq */    }
 }  }
   
 /************ Prevalence ********************/  void pstamp(FILE *fichier)
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)  {
 {      fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people  }
      in each health status at the date of interview (if between dateprev1 and dateprev2).  
      We still use firstpass and lastpass as another selection.  /************ Frequencies ********************/
   */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
    {  /* Some frequencies */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;   
   double ***freq; /* Frequencies */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   double *pp, **prop;    int first;
   double pos,posprop;     double ***freq; /* Frequencies */
   double  y2; /* in fractional years */    double *pp, **prop;
   int iagemin, iagemax;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     char fileresp[FILENAMELENGTH];
   iagemin= (int) agemin;   
   iagemax= (int) agemax;    pp=vector(1,nlstate);
   /*pp=vector(1,nlstate);*/    prop=matrix(1,nlstate,iagemin,iagemax+3);
   prop=matrix(1,nlstate,iagemin,iagemax+3);     strcpy(fileresp,"p");
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    strcat(fileresp,fileres);
   j1=0;    if((ficresp=fopen(fileresp,"w"))==NULL) {
         printf("Problem with prevalence resultfile: %s\n", fileresp);
   j=cptcoveff;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      exit(0);
       }
   for(k1=1; k1<=j;k1++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     for(i1=1; i1<=ncodemax[k1];i1++){    j1=0;
       j1++;   
           j=cptcoveff;
       for (i=1; i<=nlstate; i++)      if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(m=iagemin; m <= iagemax+3; m++)  
           prop[i][m]=0.0;    first=1;
        
       for (i=1; i<=imx; i++) { /* Each individual */    for(k1=1; k1<=j;k1++){
         bool=1;      for(i1=1; i1<=ncodemax[k1];i1++){
         if  (cptcovn>0) {        j1++;
           for (z1=1; z1<=cptcoveff; z1++)         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           scanf("%d", i);*/
               bool=0;        for (i=-5; i<=nlstate+ndeath; i++)  
         }           for (jk=-5; jk<=nlstate+ndeath; jk++)  
         if (bool==1) {             for(m=iagemin; m <= iagemax+3; m++)
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/              freq[i][jk][m]=0;
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */  
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */      for (i=1; i<=nlstate; i++)  
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        for(m=iagemin; m <= iagemax+3; m++)
               if(agev[m][i]==1) agev[m][i]=iagemax+2;          prop[i][m]=0;
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);        
               if (s[m][i]>0 && s[m][i]<=nlstate) {         dateintsum=0;
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/        k2cpt=0;
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];        for (i=1; i<=imx; i++) {
                 prop[s[m][i]][iagemax+3] += weight[i];           bool=1;
               }           if  (cptcovn>0) {
             }            for (z1=1; z1<=cptcoveff; z1++)
           } /* end selection of waves */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
         }                bool=0;
       }          }
       for(i=iagemin; i <= iagemax+3; i++){            if (bool==1){
                     for(m=firstpass; m<=lastpass; m++){
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {               k2=anint[m][i]+(mint[m][i]/12.);
           posprop += prop[jk][i];               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         }                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for(jk=1; jk <=nlstate ; jk++){                     if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           if( i <=  iagemax){                 if (m<lastpass) {
             if(posprop>=1.e-5){                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
               probs[i][jk][j1]= prop[jk][i]/posprop;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
             }                 }
           }                
         }/* end jk */                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       }/* end i */                   dateintsum=dateintsum+k2;
     } /* end i1 */                  k2cpt++;
   } /* end k1 */                }
                   /*}*/
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/            }
   /*free_vector(pp,1,nlstate);*/          }
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);        }
 }  /* End of prevalence */         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 /************* Waves Concatenation ***************/        pstamp(ficresp);
         if  (cptcovn>0) {
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          fprintf(ficresp, "\n#********** Variable ");
 {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          fprintf(ficresp, "**********\n#");
      Death is a valid wave (if date is known).        }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for(i=1; i<=nlstate;i++)
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      and mw[mi+1][i]. dh depends on stepm.        fprintf(ficresp, "\n");
      */       
         for(i=iagemin; i <= iagemax+3; i++){
   int i, mi, m;          if(i==iagemax+3){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            fprintf(ficlog,"Total");
      double sum=0., jmean=0.;*/          }else{
   int first;            if(first==1){
   int j, k=0,jk, ju, jl;              first=0;
   double sum=0.;              printf("See log file for details...\n");
   first=0;            }
   jmin=1e+5;            fprintf(ficlog,"Age %d", i);
   jmax=-1;          }
   jmean=0.;          for(jk=1; jk <=nlstate ; jk++){
   for(i=1; i<=imx; i++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     mi=0;              pp[jk] += freq[jk][m][i];
     m=firstpass;          }
     while(s[m][i] <= nlstate){          for(jk=1; jk <=nlstate ; jk++){
       if(s[m][i]>=1)            for(m=-1, pos=0; m <=0 ; m++)
         mw[++mi][i]=m;              pos += freq[jk][m][i];
       if(m >=lastpass)            if(pp[jk]>=1.e-10){
         break;              if(first==1){
       else              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         m++;              }
     }/* end while */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     if (s[m][i] > nlstate){            }else{
       mi++;     /* Death is another wave */              if(first==1)
       /* if(mi==0)  never been interviewed correctly before death */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
          /* Only death is a correct wave */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       mw[mi][i]=m;            }
     }          }
   
     wav[i]=mi;          for(jk=1; jk <=nlstate ; jk++){
     if(mi==0){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       nbwarn++;              pp[jk] += freq[jk][m][i];
       if(first==0){          }      
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         first=1;            pos += pp[jk];
       }            posprop += prop[jk][i];
       if(first==1){          }
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);          for(jk=1; jk <=nlstate ; jk++){
       }            if(pos>=1.e-5){
     } /* end mi==0 */              if(first==1)
   } /* End individuals */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   for(i=1; i<=imx; i++){            }else{
     for(mi=1; mi<wav[i];mi++){              if(first==1)
       if (stepm <=0)                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         dh[mi][i]=1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       else{            }
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */            if( i <= iagemax){
           if (agedc[i] < 2*AGESUP) {              if(pos>=1.e-5){
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
             if(j==0) j=1;  /* Survives at least one month after exam */                /*probs[i][jk][j1]= pp[jk]/pos;*/
             else if(j<0){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               nberr++;              }
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              else
               j=1; /* Temporary Dangerous patch */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);            }
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          }
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);         
             }          for(jk=-1; jk <=nlstate+ndeath; jk++)
             k=k+1;            for(m=-1; m <=nlstate+ndeath; m++)
             if (j >= jmax) jmax=j;              if(freq[jk][m][i] !=0 ) {
             if (j <= jmin) jmin=j;              if(first==1)
             sum=sum+j;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/              }
           }          if(i <= iagemax)
         }            fprintf(ficresp,"\n");
         else{          if(first==1)
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            printf("Others in log...\n");
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/          fprintf(ficlog,"\n");
           k=k+1;        }
           if (j >= jmax) jmax=j;      }
           else if (j <= jmin)jmin=j;    }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    dateintmean=dateintsum/k2cpt;
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/   
           if(j<0){    fclose(ficresp);
             nberr++;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    free_vector(pp,1,nlstate);
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           }    /* End of Freq */
           sum=sum+j;  }
         }  
         jk= j/stepm;  /************ Prevalence ********************/
         jl= j -jk*stepm;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         ju= j -(jk+1)*stepm;  {  
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           if(jl==0){       in each health status at the date of interview (if between dateprev1 and dateprev2).
             dh[mi][i]=jk;       We still use firstpass and lastpass as another selection.
             bh[mi][i]=0;    */
           }else{ /* We want a negative bias in order to only have interpolation ie   
                   * at the price of an extra matrix product in likelihood */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
             dh[mi][i]=jk+1;    double ***freq; /* Frequencies */
             bh[mi][i]=ju;    double *pp, **prop;
           }    double pos,posprop;
         }else{    double  y2; /* in fractional years */
           if(jl <= -ju){    int iagemin, iagemax;
             dh[mi][i]=jk;  
             bh[mi][i]=jl;       /* bias is positive if real duration    iagemin= (int) agemin;
                                  * is higher than the multiple of stepm and negative otherwise.    iagemax= (int) agemax;
                                  */    /*pp=vector(1,nlstate);*/
           }    prop=matrix(1,nlstate,iagemin,iagemax+3);
           else{    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
             dh[mi][i]=jk+1;    j1=0;
             bh[mi][i]=ju;   
           }    j=cptcoveff;
           if(dh[mi][i]==0){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             dh[mi][i]=1; /* At least one step */   
             bh[mi][i]=ju; /* At least one step */    for(k1=1; k1<=j;k1++){
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/      for(i1=1; i1<=ncodemax[k1];i1++){
           }        j1++;
         } /* end if mle */       
       }        for (i=1; i<=nlstate; i++)  
     } /* end wave */          for(m=iagemin; m <= iagemax+3; m++)
   }            prop[i][m]=0.0;
   jmean=sum/k;       
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        for (i=1; i<=imx; i++) { /* Each individual */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          bool=1;
  }          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++)
 /*********** Tricode ****************************/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
 void tricode(int *Tvar, int **nbcode, int imx)                bool=0;
 {          }
             if (bool==1) {
   int Ndum[20],ij=1, k, j, i, maxncov=19;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   int cptcode=0;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   cptcoveff=0;               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
   for (k=0; k<maxncov; k++) Ndum[k]=0;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   for (k=1; k<=7; k++) ncodemax[k]=0;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
                 if (s[m][i]>0 && s[m][i]<=nlstate) {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
                                modality*/                   prop[s[m][i]][iagemax+3] += weight[i];
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/                }
       Ndum[ij]++; /*store the modality */              }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            } /* end selection of waves */
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable           }
                                        Tvar[j]. If V=sex and male is 0 and         }
                                        female is 1, then  cptcode=1.*/        for(i=iagemin; i <= iagemax+3; i++){  
     }         
           for(jk=1,posprop=0; jk <=nlstate ; jk++) {
     for (i=0; i<=cptcode; i++) {            posprop += prop[jk][i];
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */          }
     }  
           for(jk=1; jk <=nlstate ; jk++){    
     ij=1;             if( i <=  iagemax){
     for (i=1; i<=ncodemax[j]; i++) {              if(posprop>=1.e-5){
       for (k=0; k<= maxncov; k++) {                probs[i][jk][j1]= prop[jk][i]/posprop;
         if (Ndum[k] != 0) {              }
           nbcode[Tvar[j]][ij]=k;             }
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */          }/* end jk */
                   }/* end i */
           ij++;      } /* end i1 */
         }    } /* end k1 */
         if (ij > ncodemax[j]) break;    
       }      /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     }     /*free_vector(pp,1,nlstate);*/
   }      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
  for (k=0; k< maxncov; k++) Ndum[k]=0;  
   /************* Waves Concatenation ***************/
  for (i=1; i<=ncovmodel-2; i++) {   
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    ij=Tvar[i];  {
    Ndum[ij]++;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  }       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  ij=1;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  for (i=1; i<= maxncov; i++) {       and mw[mi+1][i]. dh depends on stepm.
    if((Ndum[i]!=0) && (i<=ncovcol)){       */
      Tvaraff[ij]=i; /*For printing */  
      ij++;    int i, mi, m;
    }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
  }       double sum=0., jmean=0.;*/
      int first;
  cptcoveff=ij-1; /*Number of simple covariates*/    int j, k=0,jk, ju, jl;
 }    double sum=0.;
     first=0;
 /*********** Health Expectancies ****************/    jmin=1e+5;
     jmax=-1;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    jmean=0.;
     for(i=1; i<=imx; i++){
 {      mi=0;
   /* Health expectancies */      m=firstpass;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      while(s[m][i] <= nlstate){
   double age, agelim, hf;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   double ***p3mat,***varhe;          mw[++mi][i]=m;
   double **dnewm,**doldm;        if(m >=lastpass)
   double *xp;          break;
   double **gp, **gm;        else
   double ***gradg, ***trgradg;          m++;
   int theta;      }/* end while */
       if (s[m][i] > nlstate){
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);        mi++;     /* Death is another wave */
   xp=vector(1,npar);        /* if(mi==0)  never been interviewed correctly before death */
   dnewm=matrix(1,nlstate*nlstate,1,npar);           /* Only death is a correct wave */
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);        mw[mi][i]=m;
         }
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");      wav[i]=mi;
   for(i=1; i<=nlstate;i++)      if(mi==0){
     for(j=1; j<=nlstate;j++)        nbwarn++;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        if(first==0){
   fprintf(ficreseij,"\n");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
   if(estepm < stepm){        }
     printf ("Problem %d lower than %d\n",estepm, stepm);        if(first==1){
   }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   else  hstepm=estepm;           }
   /* We compute the life expectancy from trapezoids spaced every estepm months      } /* end mi==0 */
    * This is mainly to measure the difference between two models: for example    } /* End individuals */
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear     for(i=1; i<=imx; i++){
    * progression in between and thus overestimating or underestimating according      for(mi=1; mi<wav[i];mi++){
    * to the curvature of the survival function. If, for the same date, we         if (stepm <=0)
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          dh[mi][i]=1;
    * to compare the new estimate of Life expectancy with the same linear         else{
    * hypothesis. A more precise result, taking into account a more precise          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    * curvature will be obtained if estepm is as small as stepm. */            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
   /* For example we decided to compute the life expectancy with the smallest unit */              if(j==0) j=1;  /* Survives at least one month after exam */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.               else if(j<0){
      nhstepm is the number of hstepm from age to agelim                 nberr++;
      nstepm is the number of stepm from age to agelin.                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      Look at hpijx to understand the reason of that which relies in memory size                j=1; /* Temporary Dangerous patch */
      and note for a fixed period like estepm months */                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      survival function given by stepm (the optimization length). Unfortunately it                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
      means that if the survival funtion is printed only each two years of age and if              }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same               k=k+1;
      results. So we changed our mind and took the option of the best precision.              if (j >= jmax){
   */                jmax=j;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                 ijmax=i;
               }
   agelim=AGESUP;              if (j <= jmin){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                jmin=j;
     /* nhstepm age range expressed in number of stepm */                ijmin=i;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);               }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */               sum=sum+j;
     /* if (stepm >= YEARM) hstepm=1;*/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);          }
     gp=matrix(0,nhstepm,1,nlstate*nlstate);          else{
     gm=matrix(0,nhstepm,1,nlstate*nlstate);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            k=k+1;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              if (j >= jmax) {
                jmax=j;
               ijmax=i;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            }
             else if (j <= jmin){
     /* Computing  Variances of health expectancies */              jmin=j;
               ijmin=i;
      for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++){             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       }            if(j<0){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                nberr++;
                 printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       cptj=0;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(j=1; j<= nlstate; j++){            }
         for(i=1; i<=nlstate; i++){            sum=sum+j;
           cptj=cptj+1;          }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          jk= j/stepm;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          jl= j -jk*stepm;
           }          ju= j -(jk+1)*stepm;
         }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       }            if(jl==0){
                    dh[mi][i]=jk;
                    bh[mi][i]=0;
       for(i=1; i<=npar; i++)             }else{ /* We want a negative bias in order to only have interpolation ie
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                    * at the price of an extra matrix product in likelihood */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                dh[mi][i]=jk+1;
                     bh[mi][i]=ju;
       cptj=0;            }
       for(j=1; j<= nlstate; j++){          }else{
         for(i=1;i<=nlstate;i++){            if(jl <= -ju){
           cptj=cptj+1;              dh[mi][i]=jk;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                                   */
           }            }
         }            else{
       }              dh[mi][i]=jk+1;
       for(j=1; j<= nlstate*nlstate; j++)              bh[mi][i]=ju;
         for(h=0; h<=nhstepm-1; h++){            }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            if(dh[mi][i]==0){
         }              dh[mi][i]=1; /* At least one step */
      }               bh[mi][i]=ju; /* At least one step */
                  /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 /* End theta */            }
           } /* end if mle */
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);        }
       } /* end wave */
      for(h=0; h<=nhstepm-1; h++)    }
       for(j=1; j<=nlstate*nlstate;j++)    jmean=sum/k;
         for(theta=1; theta <=npar; theta++)    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           trgradg[h][j][theta]=gradg[h][theta][j];    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         }
   
      for(i=1;i<=nlstate*nlstate;i++)  /*********** Tricode ****************************/
       for(j=1;j<=nlstate*nlstate;j++)  void tricode(int *Tvar, int **nbcode, int imx)
         varhe[i][j][(int)age] =0.;  {
    
      printf("%d|",(int)age);fflush(stdout);    int Ndum[20],ij=1, k, j, i, maxncov=19;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    int cptcode=0;
      for(h=0;h<=nhstepm-1;h++){    cptcoveff=0;
       for(k=0;k<=nhstepm-1;k++){   
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);    for (k=0; k<maxncov; k++) Ndum[k]=0;
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);    for (k=1; k<=7; k++) ncodemax[k]=0;
         for(i=1;i<=nlstate*nlstate;i++)  
           for(j=1;j<=nlstate*nlstate;j++)    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
       }                                 modality*/
     }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     /* Computing expectancies */        Ndum[ij]++; /*store the modality */
     for(i=1; i<=nlstate;i++)        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       for(j=1; j<=nlstate;j++)        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){                                         Tvar[j]. If V=sex and male is 0 and
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;                                         female is 1, then  cptcode=1.*/
                 }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
       for (i=0; i<=cptcode; i++) {
         }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;      ij=1;
     for(i=1; i<=nlstate;i++)      for (i=1; i<=ncodemax[j]; i++) {
       for(j=1; j<=nlstate;j++){        for (k=0; k<= maxncov; k++) {
         cptj++;          if (Ndum[k] != 0) {
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );            nbcode[Tvar[j]][ij]=k;
       }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     fprintf(ficreseij,"\n");           
                ij++;
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);          }
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);          if (ij > ncodemax[j]) break;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);        }  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);      }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }  
   }  
   printf("\n");   for (k=0; k< maxncov; k++) Ndum[k]=0;
   fprintf(ficlog,"\n");  
    for (i=1; i<=ncovmodel-2; i++) {
   free_vector(xp,1,npar);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);     ij=Tvar[i];
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);     Ndum[ij]++;
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);   }
 }  
    ij=1;
 /************ Variance ******************/   for (i=1; i<= maxncov; i++) {
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)     if((Ndum[i]!=0) && (i<=ncovcol)){
 {       Tvaraff[ij]=i; /*For printing */
   /* Variance of health expectancies */       ij++;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/     }
   /* double **newm;*/   }
   double **dnewm,**doldm;   
   double **dnewmp,**doldmp;   cptcoveff=ij-1; /*Number of simple covariates*/
   int i, j, nhstepm, hstepm, h, nstepm ;  }
   int k, cptcode;  
   double *xp;  /*********** Health Expectancies ****************/
   double **gp, **gm;  /* for var eij */  
   double ***gradg, ***trgradg; /*for var eij */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   double **gradgp, **trgradgp; /* for var p point j */  
   double *gpp, *gmp; /* for var p point j */  {
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    /* Health expectancies, no variances */
   double ***p3mat;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   double age,agelim, hf;    double age, agelim, hf;
   double ***mobaverage;    double ***p3mat;
   int theta;    double eip;
   char digit[4];  
   char digitp[25];    pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   char fileresprobmorprev[FILENAMELENGTH];    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
   if(popbased==1){      for(j=1; j<=nlstate;j++){
     if(mobilav!=0)        fprintf(ficreseij," e%1d%1d ",i,j);
       strcpy(digitp,"-populbased-mobilav-");      }
     else strcpy(digitp,"-populbased-nomobil-");      fprintf(ficreseij," e%1d. ",i);
   }    }
   else     fprintf(ficreseij,"\n");
     strcpy(digitp,"-stablbased-");  
    
   if (mobilav!=0) {    if(estepm < stepm){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf ("Problem %d lower than %d\n",estepm, stepm);
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    else  hstepm=estepm;  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    /* We compute the life expectancy from trapezoids spaced every estepm months
     }     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear
   strcpy(fileresprobmorprev,"prmorprev");      * progression in between and thus overestimating or underestimating according
   sprintf(digit,"%-d",ij);     * to the curvature of the survival function. If, for the same date, we
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   strcat(fileresprobmorprev,digit); /* Tvar to be done */     * to compare the new estimate of Life expectancy with the same linear
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */     * hypothesis. A more precise result, taking into account a more precise
   strcat(fileresprobmorprev,fileres);     * curvature will be obtained if estepm is as small as stepm. */
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    /* For example we decided to compute the life expectancy with the smallest unit */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   }       nhstepm is the number of hstepm from age to agelim
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);       nstepm is the number of stepm from age to agelin.
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);       Look at hpijx to understand the reason of that which relies in memory size
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);       and note for a fixed period like estepm months */
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){       survival function given by stepm (the optimization length). Unfortunately it
     fprintf(ficresprobmorprev," p.%-d SE",j);       means that if the survival funtion is printed only each two years of age and if
     for(i=1; i<=nlstate;i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);       results. So we changed our mind and took the option of the best precision.
   }      */
   fprintf(ficresprobmorprev,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   fprintf(ficgp,"\n# Routine varevsij");  
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    agelim=AGESUP;
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    /* If stepm=6 months */
 /*   } */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  /* nhstepm age range expressed in number of stepm */
   fprintf(ficresvij,"# Age");    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   for(i=1; i<=nlstate;i++)    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     for(j=1; j<=nlstate;j++)    /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(ficresvij,"\n");    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   xp=vector(1,npar);    for (age=bage; age<=fage; age ++){
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);     
   gpp=vector(nlstate+1,nlstate+ndeath);      printf("%d|",(int)age);fflush(stdout);
   gmp=vector(nlstate+1,nlstate+ndeath);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/     
     
   if(estepm < stepm){      /* Computing expectancies */
     printf ("Problem %d lower than %d\n",estepm, stepm);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
   else  hstepm=estepm;             for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /* For example we decided to compute the life expectancy with the smallest unit */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            
      nhstepm is the number of hstepm from age to agelim             /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      nstepm is the number of stepm from age to agelin.   
      Look at hpijx to understand the reason of that which relies in memory size          }
      and note for a fixed period like k years */     
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      fprintf(ficreseij,"%3.0f",age );
      survival function given by stepm (the optimization length). Unfortunately it      for(i=1; i<=nlstate;i++){
      means that if the survival funtion is printed every two years of age and if        eip=0;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same         for(j=1; j<=nlstate;j++){
      results. So we changed our mind and took the option of the best precision.          eip +=eij[i][j][(int)age];
   */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */         }
   agelim = AGESUP;        fprintf(ficreseij,"%9.4f", eip );
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       fprintf(ficreseij,"\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */     
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gp=matrix(0,nhstepm,1,nlstate);    printf("\n");
     gm=matrix(0,nhstepm,1,nlstate);    fprintf(ficlog,"\n");
    
   }
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* Covariances of health expectancies eij and of total life expectancies according
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     to initial status i, ei. .
     */
       if (popbased==1) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
         if(mobilav ==0){    double age, agelim, hf;
           for(i=1; i<=nlstate;i++)    double ***p3matp, ***p3matm, ***varhe;
             prlim[i][i]=probs[(int)age][i][ij];    double **dnewm,**doldm;
         }else{ /* mobilav */     double *xp, *xm;
           for(i=1; i<=nlstate;i++)    double **gp, **gm;
             prlim[i][i]=mobaverage[(int)age][i][ij];    double ***gradg, ***trgradg;
         }    int theta;
       }  
       double eip, vip;
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    xp=vector(1,npar);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    xm=vector(1,npar);
         }    dnewm=matrix(1,nlstate*nlstate,1,npar);
       }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       /* This for computing probability of death (h=1 means   
          computed over hstepm matrices product = hstepm*stepm months)     pstamp(ficresstdeij);
          as a weighted average of prlim.    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       */    fprintf(ficresstdeij,"# Age");
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    for(i=1; i<=nlstate;i++){
         for(i=1,gpp[j]=0.; i<= nlstate; i++)      for(j=1; j<=nlstate;j++)
           gpp[j] += prlim[i][i]*p3mat[i][j][1];        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       }          fprintf(ficresstdeij," e%1d. ",i);
       /* end probability of death */    }
     fprintf(ficresstdeij,"\n");
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    pstamp(ficrescveij);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficrescveij,"# Age");
      for(i=1; i<=nlstate;i++)
       if (popbased==1) {      for(j=1; j<=nlstate;j++){
         if(mobilav ==0){        cptj= (j-1)*nlstate+i;
           for(i=1; i<=nlstate;i++)        for(i2=1; i2<=nlstate;i2++)
             prlim[i][i]=probs[(int)age][i][ij];          for(j2=1; j2<=nlstate;j2++){
         }else{ /* mobilav */             cptj2= (j2-1)*nlstate+i2;
           for(i=1; i<=nlstate;i++)            if(cptj2 <= cptj)
             prlim[i][i]=mobaverage[(int)age][i][ij];              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         }          }
       }      }
     fprintf(ficrescveij,"\n");
       for(j=1; j<= nlstate; j++){   
         for(h=0; h<=nhstepm; h++){    if(estepm < stepm){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      printf ("Problem %d lower than %d\n",estepm, stepm);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    }
         }    else  hstepm=estepm;  
       }    /* We compute the life expectancy from trapezoids spaced every estepm months
       /* This for computing probability of death (h=1 means     * This is mainly to measure the difference between two models: for example
          computed over hstepm matrices product = hstepm*stepm months)      * if stepm=24 months pijx are given only every 2 years and by summing them
          as a weighted average of prlim.     * we are calculating an estimate of the Life Expectancy assuming a linear
       */     * progression in between and thus overestimating or underestimating according
       for(j=nlstate+1;j<=nlstate+ndeath;j++){     * to the curvature of the survival function. If, for the same date, we
         for(i=1,gmp[j]=0.; i<= nlstate; i++)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
          gmp[j] += prlim[i][i]*p3mat[i][j][1];     * to compare the new estimate of Life expectancy with the same linear
       }         * hypothesis. A more precise result, taking into account a more precise
       /* end probability of death */     * curvature will be obtained if estepm is as small as stepm. */
   
       for(j=1; j<= nlstate; j++) /* vareij */    /* For example we decided to compute the life expectancy with the smallest unit */
         for(h=0; h<=nhstepm; h++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];       nhstepm is the number of hstepm from age to agelim
         }       nstepm is the number of stepm from age to agelin.
        Look at hpijx to understand the reason of that which relies in memory size
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */       and note for a fixed period like estepm months */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       }       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
     } /* End theta */       you sum them up and add 1 year (area under the trapezoids) you won't get the same
        results. So we changed our mind and took the option of the best precision.
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     for(h=0; h<=nhstepm; h++) /* veij */  
       for(j=1; j<=nlstate;j++)    /* If stepm=6 months */
         for(theta=1; theta <=npar; theta++)    /* nhstepm age range expressed in number of stepm */
           trgradg[h][j][theta]=gradg[h][theta][j];    agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
       for(theta=1; theta <=npar; theta++)    /* if (stepm >= YEARM) hstepm=1;*/
         trgradgp[j][theta]=gradgp[theta][j];    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=1;i<=nlstate;i++)    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       for(j=1;j<=nlstate;j++)    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         vareij[i][j][(int)age] =0.;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){    for (age=bage; age<=fage; age ++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         for(i=1;i<=nlstate;i++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           for(j=1;j<=nlstate;j++)   
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       }  
     }      /* Computing  Variances of health expectancies */
         /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     /* pptj */         decrease memory allocation */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      for(theta=1; theta <=npar; theta++){
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        for(i=1; i<=npar; i++){
     for(j=nlstate+1;j<=nlstate+ndeath;j++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         varppt[j][i]=doldmp[j][i];        }
     /* end ppptj */        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     /*  x centered again */        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);     
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        for(j=1; j<= nlstate; j++){
            for(i=1; i<=nlstate; i++){
     if (popbased==1) {            for(h=0; h<=nhstepm-1; h++){
       if(mobilav ==0){              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         for(i=1; i<=nlstate;i++)              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           prlim[i][i]=probs[(int)age][i][ij];            }
       }else{ /* mobilav */           }
         for(i=1; i<=nlstate;i++)        }
           prlim[i][i]=mobaverage[(int)age][i][ij];       
       }        for(ij=1; ij<= nlstate*nlstate; ij++)
     }          for(h=0; h<=nhstepm-1; h++){
                          gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     /* This for computing probability of death (h=1 means          }
        computed over hstepm (estepm) matrices product = hstepm*stepm months)       }/* End theta */
        as a weighted average of prlim.     
     */     
     for(j=nlstate+1;j<=nlstate+ndeath;j++){      for(h=0; h<=nhstepm-1; h++)
       for(i=1,gmp[j]=0.;i<= nlstate; i++)         for(j=1; j<=nlstate*nlstate;j++)
         gmp[j] += prlim[i][i]*p3mat[i][j][1];           for(theta=1; theta <=npar; theta++)
     }                trgradg[h][j][theta]=gradg[h][theta][j];
     /* end probability of death */     
   
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);       for(ij=1;ij<=nlstate*nlstate;ij++)
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        for(ji=1;ji<=nlstate*nlstate;ji++)
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          varhe[ij][ji][(int)age] =0.;
       for(i=1; i<=nlstate;i++){  
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);       printf("%d|",(int)age);fflush(stdout);
       }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     }        for(h=0;h<=nhstepm-1;h++){
     fprintf(ficresprobmorprev,"\n");        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     fprintf(ficresvij,"%.0f ",age );          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     for(i=1; i<=nlstate;i++)          for(ij=1;ij<=nlstate*nlstate;ij++)
       for(j=1; j<=nlstate;j++){            for(ji=1;ji<=nlstate*nlstate;ji++)
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       }        }
     fprintf(ficresvij,"\n");      }
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);      /* Computing expectancies */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      for(i=1; i<=nlstate;i++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<=nlstate;j++)
   } /* End age */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   free_vector(gpp,nlstate+1,nlstate+ndeath);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   free_vector(gmp,nlstate+1,nlstate+ndeath);           
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");          }
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */  
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      fprintf(ficresstdeij,"%3.0f",age );
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */      for(i=1; i<=nlstate;i++){
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */        eip=0.;
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */        vip=0.;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));        for(j=1; j<=nlstate;j++){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));          eip += eij[i][j][(int)age];
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);        }
 */        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */      }
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      fprintf(ficresstdeij,"\n");
   
   free_vector(xp,1,npar);      fprintf(ficrescveij,"%3.0f",age );
   free_matrix(doldm,1,nlstate,1,nlstate);      for(i=1; i<=nlstate;i++)
   free_matrix(dnewm,1,nlstate,1,npar);        for(j=1; j<=nlstate;j++){
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          cptj= (j-1)*nlstate+i;
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);          for(i2=1; i2<=nlstate;i2++)
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            for(j2=1; j2<=nlstate;j2++){
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              cptj2= (j2-1)*nlstate+i2;
   fclose(ficresprobmorprev);              if(cptj2 <= cptj)
   fflush(ficgp);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   fflush(fichtm);             }
 }  /* end varevsij */        }
       fprintf(ficrescveij,"\n");
 /************ Variance of prevlim ******************/     
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    }
 {    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   /* Variance of prevalence limit */    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   double **newm;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   double **dnewm,**doldm;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int i, j, nhstepm, hstepm;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int k, cptcode;    printf("\n");
   double *xp;    fprintf(ficlog,"\n");
   double *gp, *gm;  
   double **gradg, **trgradg;    free_vector(xm,1,npar);
   double age,agelim;    free_vector(xp,1,npar);
   int theta;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
        free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   fprintf(ficresvpl,"# Age");  }
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);  /************ Variance ******************/
   fprintf(ficresvpl,"\n");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
   xp=vector(1,npar);    /* Variance of health expectancies */
   dnewm=matrix(1,nlstate,1,npar);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   doldm=matrix(1,nlstate,1,nlstate);    /* double **newm;*/
       double **dnewm,**doldm;
   hstepm=1*YEARM; /* Every year of age */    double **dnewmp,**doldmp;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */     int i, j, nhstepm, hstepm, h, nstepm ;
   agelim = AGESUP;    int k, cptcode;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double *xp;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     double **gp, **gm;  /* for var eij */
     if (stepm >= YEARM) hstepm=1;    double ***gradg, ***trgradg; /*for var eij */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double **gradgp, **trgradgp; /* for var p point j */
     gradg=matrix(1,npar,1,nlstate);    double *gpp, *gmp; /* for var p point j */
     gp=vector(1,nlstate);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     gm=vector(1,nlstate);    double ***p3mat;
     double age,agelim, hf;
     for(theta=1; theta <=npar; theta++){    double ***mobaverage;
       for(i=1; i<=npar; i++){ /* Computes gradient */    int theta;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    char digit[4];
       }    char digitp[25];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    char fileresprobmorprev[FILENAMELENGTH];
         gp[i] = prlim[i][i];  
         if(popbased==1){
       for(i=1; i<=npar; i++) /* Computes gradient */      if(mobilav!=0)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        strcpy(digitp,"-populbased-mobilav-");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      else strcpy(digitp,"-populbased-nomobil-");
       for(i=1;i<=nlstate;i++)    }
         gm[i] = prlim[i][i];    else
       strcpy(digitp,"-stablbased-");
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    if (mobilav!=0) {
     } /* End theta */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     trgradg =matrix(1,nlstate,1,npar);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
     for(j=1; j<=nlstate;j++)      }
       for(theta=1; theta <=npar; theta++)    }
         trgradg[j][theta]=gradg[theta][j];  
     strcpy(fileresprobmorprev,"prmorprev");
     for(i=1;i<=nlstate;i++)    sprintf(digit,"%-d",ij);
       varpl[i][(int)age] =0.;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     for(i=1;i<=nlstate;i++)    strcat(fileresprobmorprev,fileres);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
     fprintf(ficresvpl,"%.0f ",age );      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     for(i=1; i<=nlstate;i++)    }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresvpl,"\n");   
     free_vector(gp,1,nlstate);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     free_vector(gm,1,nlstate);    pstamp(ficresprobmorprev);
     free_matrix(gradg,1,npar,1,nlstate);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     free_matrix(trgradg,1,nlstate,1,npar);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   } /* End age */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
   free_vector(xp,1,npar);      for(i=1; i<=nlstate;i++)
   free_matrix(doldm,1,nlstate,1,npar);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   free_matrix(dnewm,1,nlstate,1,nlstate);    }  
     fprintf(ficresprobmorprev,"\n");
 }    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 /************ Variance of one-step probabilities  ******************/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 {  /*   } */
   int i, j=0,  i1, k1, l1, t, tj;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int k2, l2, j1,  z1;    pstamp(ficresvij);
   int k=0,l, cptcode;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   int first=1, first1;    if(popbased==1)
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   double **dnewm,**doldm;    else
   double *xp;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   double *gp, *gm;    fprintf(ficresvij,"# Age");
   double **gradg, **trgradg;    for(i=1; i<=nlstate;i++)
   double **mu;      for(j=1; j<=nlstate;j++)
   double age,agelim, cov[NCOVMAX];        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    fprintf(ficresvij,"\n");
   int theta;  
   char fileresprob[FILENAMELENGTH];    xp=vector(1,npar);
   char fileresprobcov[FILENAMELENGTH];    dnewm=matrix(1,nlstate,1,npar);
   char fileresprobcor[FILENAMELENGTH];    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   double ***varpij;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
   strcpy(fileresprob,"prob");     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   strcat(fileresprob,fileres);    gpp=vector(nlstate+1,nlstate+ndeath);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    gmp=vector(nlstate+1,nlstate+ndeath);
     printf("Problem with resultfile: %s\n", fileresprob);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);   
   }    if(estepm < stepm){
   strcpy(fileresprobcov,"probcov");       printf ("Problem %d lower than %d\n",estepm, stepm);
   strcat(fileresprobcov,fileres);    }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    else  hstepm=estepm;  
     printf("Problem with resultfile: %s\n", fileresprobcov);    /* For example we decided to compute the life expectancy with the smallest unit */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   }       nhstepm is the number of hstepm from age to agelim
   strcpy(fileresprobcor,"probcor");        nstepm is the number of stepm from age to agelin.
   strcat(fileresprobcor,fileres);       Look at hpijx to understand the reason of that which relies in memory size
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {       and note for a fixed period like k years */
     printf("Problem with resultfile: %s\n", fileresprobcor);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed every two years of age and if
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);       results. So we changed our mind and took the option of the best precision.
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    agelim = AGESUP;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(ficresprob,"# Age");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   fprintf(ficresprobcov,"# Age");      gp=matrix(0,nhstepm,1,nlstate);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      gm=matrix(0,nhstepm,1,nlstate);
   fprintf(ficresprobcov,"# Age");  
   
       for(theta=1; theta <=npar; theta++){
   for(i=1; i<=nlstate;i++)        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     for(j=1; j<=(nlstate+ndeath);j++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        }
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }    
  /* fprintf(ficresprob,"\n");        if (popbased==1) {
   fprintf(ficresprobcov,"\n");          if(mobilav ==0){
   fprintf(ficresprobcor,"\n");            for(i=1; i<=nlstate;i++)
  */              prlim[i][i]=probs[(int)age][i][ij];
  xp=vector(1,npar);          }else{ /* mobilav */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            for(i=1; i<=nlstate;i++)
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));              prlim[i][i]=mobaverage[(int)age][i][ij];
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          }
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        }
   first=1;   
   fprintf(ficgp,"\n# Routine varprob");        for(j=1; j<= nlstate; j++){
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");          for(h=0; h<=nhstepm; h++){
   fprintf(fichtm,"\n");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);          }
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\        }
   file %s<br>\n",optionfilehtmcov);        /* This for computing probability of death (h=1 means
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\           computed over hstepm matrices product = hstepm*stepm months)
 and drawn. It helps understanding how is the covariance between two incidences.\           as a weighted average of prlim.
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        */
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \          for(i=1,gpp[j]=0.; i<= nlstate; i++)
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \            gpp[j] += prlim[i][i]*p3mat[i][j][1];
 standard deviations wide on each axis. <br>\        }    
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\        /* end probability of death */
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\  
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   cov[1]=1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   tj=cptcoveff;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}   
   j1=0;        if (popbased==1) {
   for(t=1; t<=tj;t++){          if(mobilav ==0){
     for(i1=1; i1<=ncodemax[t];i1++){             for(i=1; i<=nlstate;i++)
       j1++;              prlim[i][i]=probs[(int)age][i][ij];
       if  (cptcovn>0) {          }else{ /* mobilav */
         fprintf(ficresprob, "\n#********** Variable ");             for(i=1; i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficresprob, "**********\n#\n");          }
         fprintf(ficresprobcov, "\n#********** Variable ");         }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprobcov, "**********\n#\n");        for(j=1; j<= nlstate; j++){
                   for(h=0; h<=nhstepm; h++){
         fprintf(ficgp, "\n#********** Variable ");             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(ficgp, "**********\n#\n");          }
                 }
                 /* This for computing probability of death (h=1 means
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");            computed over hstepm matrices product = hstepm*stepm months)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           as a weighted average of prlim.
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        */
                 for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficresprobcor, "\n#********** Variable ");              for(i=1,gmp[j]=0.; i<= nlstate; i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         fprintf(ficresprobcor, "**********\n#");            }    
       }        /* end probability of death */
         
       for (age=bage; age<=fage; age ++){         for(j=1; j<= nlstate; j++) /* vareij */
         cov[2]=age;          for(h=0; h<=nhstepm; h++){
         for (k=1; k<=cptcovn;k++) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          }
         }  
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         for (k=1; k<=cptcovprod;k++)          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        }
           
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      } /* End theta */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  
         gp=vector(1,(nlstate)*(nlstate+ndeath));      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         gm=vector(1,(nlstate)*(nlstate+ndeath));  
           for(h=0; h<=nhstepm; h++) /* veij */
         for(theta=1; theta <=npar; theta++){        for(j=1; j<=nlstate;j++)
           for(i=1; i<=npar; i++)          for(theta=1; theta <=npar; theta++)
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);            trgradg[h][j][theta]=gradg[h][theta][j];
             
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                   for(theta=1; theta <=npar; theta++)
           k=0;          trgradgp[j][theta]=gradgp[theta][j];
           for(i=1; i<= (nlstate); i++){   
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               gp[k]=pmmij[i][j];      for(i=1;i<=nlstate;i++)
             }        for(j=1;j<=nlstate;j++)
           }          vareij[i][j][(int)age] =0.;
             
           for(i=1; i<=npar; i++)      for(h=0;h<=nhstepm;h++){
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);        for(k=0;k<=nhstepm;k++){
               matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           k=0;          for(i=1;i<=nlstate;i++)
           for(i=1; i<=(nlstate); i++){            for(j=1;j<=nlstate;j++)
             for(j=1; j<=(nlstate+ndeath);j++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
               k=k+1;        }
               gm[k]=pmmij[i][j];      }
             }   
           }      /* pptj */
            matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];        for(j=nlstate+1;j<=nlstate+ndeath;j++)
         }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      /* end ppptj */
           for(theta=1; theta <=npar; theta++)      /*  x centered again */
             trgradg[j][theta]=gradg[theta][j];      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
               prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      if (popbased==1) {
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        if(mobilav ==0){
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          for(i=1; i<=nlstate;i++)
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            prlim[i][i]=probs[(int)age][i][ij];
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }else{ /* mobilav */
           for(i=1; i<=nlstate;i++)
         pmij(pmmij,cov,ncovmodel,x,nlstate);            prlim[i][i]=mobaverage[(int)age][i][ij];
                 }
         k=0;      }
         for(i=1; i<=(nlstate); i++){               
           for(j=1; j<=(nlstate+ndeath);j++){      /* This for computing probability of death (h=1 means
             k=k+1;         computed over hstepm (estepm) matrices product = hstepm*stepm months)
             mu[k][(int) age]=pmmij[i][j];         as a weighted average of prlim.
           }      */
         }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        for(i=1,gmp[j]=0.;i<= nlstate; i++)
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          gmp[j] += prlim[i][i]*p3mat[i][j][1];
             varpij[i][j][(int)age] = doldm[i][j];      }    
       /* end probability of death */
         /*printf("\n%d ",(int)age);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           }*/        for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         fprintf(ficresprob,"\n%d ",(int)age);        }
         fprintf(ficresprobcov,"\n%d ",(int)age);      }
         fprintf(ficresprobcor,"\n%d ",(int)age);      fprintf(ficresprobmorprev,"\n");
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      fprintf(ficresvij,"%.0f ",age );
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      for(i=1; i<=nlstate;i++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(j=1; j<=nlstate;j++){
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        }
         }      fprintf(ficresvij,"\n");
         i=0;      free_matrix(gp,0,nhstepm,1,nlstate);
         for (k=1; k<=(nlstate);k++){      free_matrix(gm,0,nhstepm,1,nlstate);
           for (l=1; l<=(nlstate+ndeath);l++){       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
             i=i++;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    } /* End age */
             for (j=1; j<=i;j++){    free_vector(gpp,nlstate+1,nlstate+ndeath);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    free_vector(gmp,nlstate+1,nlstate+ndeath);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
             }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         }/* end of loop for state */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       } /* end of loop for age */    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       /* Confidence intervalle of pij  */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       /*  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficgp,"\nset noparametric;unset label");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  */
       */  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  
       first1=1;    free_vector(xp,1,npar);
       for (k2=1; k2<=(nlstate);k2++){    free_matrix(doldm,1,nlstate,1,nlstate);
         for (l2=1; l2<=(nlstate+ndeath);l2++){     free_matrix(dnewm,1,nlstate,1,npar);
           if(l2==k2) continue;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           j=(k2-1)*(nlstate+ndeath)+l2;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           for (k1=1; k1<=(nlstate);k1++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             for (l1=1; l1<=(nlstate+ndeath);l1++){     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               if(l1==k1) continue;    fclose(ficresprobmorprev);
               i=(k1-1)*(nlstate+ndeath)+l1;    fflush(ficgp);
               if(i<=j) continue;    fflush(fichtm);
               for (age=bage; age<=fage; age ++){   }  /* end varevsij */
                 if ((int)age %5==0){  
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  /************ Variance of prevlim ******************/
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  {
                   mu1=mu[i][(int) age]/stepm*YEARM ;    /* Variance of prevalence limit */
                   mu2=mu[j][(int) age]/stepm*YEARM;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                   c12=cv12/sqrt(v1*v2);    double **newm;
                   /* Computing eigen value of matrix of covariance */    double **dnewm,**doldm;
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    int i, j, nhstepm, hstepm;
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    int k, cptcode;
                   /* Eigen vectors */    double *xp;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    double *gp, *gm;
                   /*v21=sqrt(1.-v11*v11); *//* error */    double **gradg, **trgradg;
                   v21=(lc1-v1)/cv12*v11;    double age,agelim;
                   v12=-v21;    int theta;
                   v22=v11;   
                   tnalp=v21/v11;    pstamp(ficresvpl);
                   if(first1==1){    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
                     first1=0;    fprintf(ficresvpl,"# Age");
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    for(i=1; i<=nlstate;i++)
                   }        fprintf(ficresvpl," %1d-%1d",i,i);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    fprintf(ficresvpl,"\n");
                   /*printf(fignu*/  
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    xp=vector(1,npar);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    dnewm=matrix(1,nlstate,1,npar);
                   if(first==1){    doldm=matrix(1,nlstate,1,nlstate);
                     first=0;   
                     fprintf(ficgp,"\nset parametric;unset label");    hstepm=1*YEARM; /* Every year of age */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    agelim = AGESUP;
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\      if (stepm >= YEARM) hstepm=1;
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      gradg=matrix(1,npar,1,nlstate);
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      gp=vector(1,nlstate);
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);      gm=vector(1,nlstate);
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      for(theta=1; theta <=npar; theta++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        for(i=1; i<=npar; i++){ /* Computes gradient */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        }
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   }else{        for(i=1;i<=nlstate;i++)
                     first=0;          gp[i] = prlim[i][i];
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);     
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        for(i=1; i<=npar; i++) /* Computes gradient */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        for(i=1;i<=nlstate;i++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          gm[i] = prlim[i][i];
                   }/* if first */  
                 } /* age mod 5 */        for(i=1;i<=nlstate;i++)
               } /* end loop age */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      } /* End theta */
               first=1;  
             } /*l12 */      trgradg =matrix(1,nlstate,1,npar);
           } /* k12 */  
         } /*l1 */      for(j=1; j<=nlstate;j++)
       }/* k1 */        for(theta=1; theta <=npar; theta++)
     } /* loop covariates */          trgradg[j][theta]=gradg[theta][j];
   }  
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      for(i=1;i<=nlstate;i++)
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        varpl[i][(int)age] =0.;
   free_vector(xp,1,npar);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   fclose(ficresprob);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   fclose(ficresprobcov);      for(i=1;i<=nlstate;i++)
   fclose(ficresprobcor);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   fflush(ficgp);  
   fflush(fichtmcov);      fprintf(ficresvpl,"%.0f ",age );
 }      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
 /******************* Printing html file ***********/      free_vector(gp,1,nlstate);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      free_vector(gm,1,nlstate);
                   int lastpass, int stepm, int weightopt, char model[],\      free_matrix(gradg,1,npar,1,nlstate);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      free_matrix(trgradg,1,nlstate,1,npar);
                   int popforecast, int estepm ,\    } /* End age */
                   double jprev1, double mprev1,double anprev1, \  
                   double jprev2, double mprev2,double anprev2){    free_vector(xp,1,npar);
   int jj1, k1, i1, cpt;    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",  }
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));  
    fprintf(fichtm,"\  /************ Variance of one-step probabilities  ******************/
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));  {
    fprintf(fichtm,"\    int i, j=0,  i1, k1, l1, t, tj;
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",    int k2, l2, j1,  z1;
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));    int k=0,l, cptcode;
    fprintf(fichtm,"\    int first=1, first1;
  - Life expectancies by age and initial health status (estepm=%2d months): \    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
    <a href=\"%s\">%s</a> <br>\n</li>",    double **dnewm,**doldm;
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));    double *xp;
     double *gp, *gm;
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    double **gradg, **trgradg;
     double **mu;
  m=cptcoveff;    double age,agelim, cov[NCOVMAX];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
  jj1=0;    char fileresprob[FILENAMELENGTH];
  for(k1=1; k1<=m;k1++){    char fileresprobcov[FILENAMELENGTH];
    for(i1=1; i1<=ncodemax[k1];i1++){    char fileresprobcor[FILENAMELENGTH];
      jj1++;  
      if (cptcovn > 0) {    double ***varpij;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)     strcpy(fileresprob,"prob");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    strcat(fileresprob,fileres);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
      }      printf("Problem with resultfile: %s\n", fileresprob);
      /* Pij */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \    }
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);         strcpy(fileresprobcov,"probcov");
      /* Quasi-incidences */    strcat(fileresprobcov,fileres);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \      printf("Problem with resultfile: %s\n", fileresprobcov);
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        /* Stable prevalence in each health state */    }
        for(cpt=1; cpt<nlstate;cpt++){    strcpy(fileresprobcor,"probcor");
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \    strcat(fileresprobcor,fileres);
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        }      printf("Problem with resultfile: %s\n", fileresprobcor);
      for(cpt=1; cpt<=nlstate;cpt++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \    }
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    } /* end i1 */    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  }/* End k1 */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  fprintf(fichtm,"</ul>");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
  fprintf(fichtm,"\    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 \n<br><li><h4> Result files (second order: variances)</h4>\n\    fprintf(ficresprob,"# Age");
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);    pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    fprintf(ficresprobcov,"# Age");
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));    pstamp(ficresprobcor);
  fprintf(fichtm,"\    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    fprintf(ficresprobcor,"# Age");
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));  
   
  fprintf(fichtm,"\    for(i=1; i<=nlstate;i++)
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",      for(j=1; j<=(nlstate+ndeath);j++){
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
  fprintf(fichtm,"\        fprintf(ficresprobcov," p%1d-%1d ",i,j);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",        fprintf(ficresprobcor," p%1d-%1d ",i,j);
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));      }  
  fprintf(fichtm,"\   /* fprintf(ficresprob,"\n");
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",    fprintf(ficresprobcov,"\n");
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));    fprintf(ficresprobcor,"\n");
  fprintf(fichtm,"\   */
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\   xp=vector(1,npar);
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 /*  if(popforecast==1) fprintf(fichtm,"\n */    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    first=1;
 /*      <br>",fileres,fileres,fileres,fileres); */    fprintf(ficgp,"\n# Routine varprob");
 /*  else  */    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */    fprintf(fichtm,"\n");
  fflush(fichtm);  
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
  m=cptcoveff;    file %s<br>\n",optionfilehtmcov);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
  jj1=0;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
  for(k1=1; k1<=m;k1++){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
    for(i1=1; i1<=ncodemax[k1];i1++){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
      jj1++;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
      if (cptcovn > 0) {  standard deviations wide on each axis. <br>\
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
        for (cpt=1; cpt<=cptcoveff;cpt++)    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }    cov[1]=1;
      for(cpt=1; cpt<=nlstate;cpt++) {    tj=cptcoveff;
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\    j1=0;
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);      for(t=1; t<=tj;t++){
      }      for(i1=1; i1<=ncodemax[t];i1++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \        j1++;
 health expectancies in states (1) and (2): %s%d.png<br>\        if  (cptcovn>0) {
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);          fprintf(ficresprob, "\n#********** Variable ");
    } /* end i1 */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  }/* End k1 */          fprintf(ficresprob, "**********\n#\n");
  fprintf(fichtm,"</ul>");          fprintf(ficresprobcov, "\n#********** Variable ");
  fflush(fichtm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }          fprintf(ficresprobcov, "**********\n#\n");
          
 /******************* Gnuplot file **************/          fprintf(ficgp, "\n#********** Variable ");
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
   char dirfileres[132],optfileres[132];         
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;         
   int ng;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /*     printf("Problem with file %s",optionfilegnuplot); */          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */         
 /*   } */          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /*#ifdef windows */          fprintf(ficresprobcor, "**********\n#");    
   fprintf(ficgp,"cd \"%s\" \n",pathc);        }
     /*#endif */       
   m=pow(2,cptcoveff);        for (age=bage; age<=fage; age ++){
           cov[2]=age;
   strcpy(dirfileres,optionfilefiname);          for (k=1; k<=cptcovn;k++) {
   strcpy(optfileres,"vpl");            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
  /* 1eme*/          }
   for (cpt=1; cpt<= nlstate ; cpt ++) {          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    for (k1=1; k1<= m ; k1 ++) {          for (k=1; k<=cptcovprod;k++)
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);         
      fprintf(ficgp,"set xlabel \"Age\" \n\          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 set ylabel \"Probability\" \n\          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 set ter png small\n\          gp=vector(1,(nlstate)*(nlstate+ndeath));
 set size 0.65,0.65\n\          gm=vector(1,(nlstate)*(nlstate+ndeath));
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);     
           for(theta=1; theta <=npar; theta++){
      for (i=1; i<= nlstate ; i ++) {            for(i=1; i<=npar; i++)
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
        else fprintf(ficgp," \%%*lf (\%%*lf)");           
      }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);           
      for (i=1; i<= nlstate ; i ++) {            k=0;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            for(i=1; i<= (nlstate); i++){
        else fprintf(ficgp," \%%*lf (\%%*lf)");              for(j=1; j<=(nlstate+ndeath);j++){
      }                 k=k+1;
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);                 gp[k]=pmmij[i][j];
      for (i=1; i<= nlstate ; i ++) {              }
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
        else fprintf(ficgp," \%%*lf (\%%*lf)");           
      }              for(i=1; i<=npar; i++)
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
    }     
   }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   /*2 eme*/            k=0;
               for(i=1; i<=(nlstate); i++){
   for (k1=1; k1<= m ; k1 ++) {               for(j=1; j<=(nlstate+ndeath);j++){
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);                k=k+1;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                gm[k]=pmmij[i][j];
                   }
     for (i=1; i<= nlstate+1 ; i ++) {            }
       k=2*i;       
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
       for (j=1; j<= nlstate+1 ; j ++) {              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
       }             for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            for(theta=1; theta <=npar; theta++)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              trgradg[j][theta]=gradg[theta][j];
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);         
       for (j=1; j<= nlstate+1 ; j ++) {          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         else fprintf(ficgp," \%%*lf (\%%*lf)");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       }             free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       fprintf(ficgp,"\" t\"\" w l 0,");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          pmij(pmmij,cov,ncovmodel,x,nlstate);
         else fprintf(ficgp," \%%*lf (\%%*lf)");         
       }             k=0;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          for(i=1; i<=(nlstate); i++){
       else fprintf(ficgp,"\" t\"\" w l 0,");            for(j=1; j<=(nlstate+ndeath);j++){
     }              k=k+1;
   }              mu[k][(int) age]=pmmij[i][j];
               }
   /*3eme*/          }
             for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   for (k1=1; k1<= m ; k1 ++) {             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     for (cpt=1; cpt<= nlstate ; cpt ++) {              varpij[i][j][(int)age] = doldm[i][j];
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);          /*printf("\n%d ",(int)age);
       fprintf(ficgp,"set ter png small\n\            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 set size 0.65,0.65\n\            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            }*/
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          fprintf(ficresprob,"\n%d ",(int)age);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          fprintf(ficresprobcov,"\n%d ",(int)age);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          fprintf(ficresprobcor,"\n%d ",(int)age);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
                   for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       */            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       for (i=1; i< nlstate ; i ++) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                     fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       }           }
     }          i=0;
   }          for (k=1; k<=(nlstate);k++){
               for (l=1; l<=(nlstate+ndeath);l++){
   /* CV preval stable (period) */              i=i++;
   for (k1=1; k1<= m ; k1 ++) {               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     for (cpt=1; cpt<=nlstate ; cpt ++) {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       k=3;              for (j=1; j<=i;j++){
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 set ter png small\nset size 0.65,0.65\n\              }
 unset log y\n\            }
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);          }/* end of loop for state */
               } /* end of loop for age */
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);        /* Confidence intervalle of pij  */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        /*
                 fprintf(ficgp,"\nset noparametric;unset label");
       l=3+(nlstate+ndeath)*cpt;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       for (i=1; i< nlstate ; i ++) {          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         l=3+(nlstate+ndeath)*cpt;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         fprintf(ficgp,"+$%d",l+i+1);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       }          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);           */
     }   
   }          /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
           first1=1;
   /* proba elementaires */        for (k2=1; k2<=(nlstate);k2++){
   for(i=1,jk=1; i <=nlstate; i++){          for (l2=1; l2<=(nlstate+ndeath);l2++){
     for(k=1; k <=(nlstate+ndeath); k++){            if(l2==k2) continue;
       if (k != i) {            j=(k2-1)*(nlstate+ndeath)+l2;
         for(j=1; j <=ncovmodel; j++){            for (k1=1; k1<=(nlstate);k1++){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              for (l1=1; l1<=(nlstate+ndeath);l1++){
           jk++;                 if(l1==k1) continue;
           fprintf(ficgp,"\n");                i=(k1-1)*(nlstate+ndeath)+l1;
         }                if(i<=j) continue;
       }                for (age=bage; age<=fage; age ++){
     }                  if ((int)age %5==0){
    }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
      for(jk=1; jk <=m; jk++) {                    mu1=mu[i][(int) age]/stepm*YEARM ;
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);                     mu2=mu[j][(int) age]/stepm*YEARM;
        if (ng==2)                    c12=cv12/sqrt(v1*v2);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                    /* Computing eigen value of matrix of covariance */
        else                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
          fprintf(ficgp,"\nset title \"Probability\"\n");                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                    /* Eigen vectors */
        i=1;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
        for(k2=1; k2<=nlstate; k2++) {                    /*v21=sqrt(1.-v11*v11); *//* error */
          k3=i;                    v21=(lc1-v1)/cv12*v11;
          for(k=1; k<=(nlstate+ndeath); k++) {                    v12=-v21;
            if (k != k2){                    v22=v11;
              if(ng==2)                    tnalp=v21/v11;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);                    if(first1==1){
              else                      first1=0;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
              ij=1;                    }
              for(j=3; j <=ncovmodel; j++) {                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                    /*printf(fignu*/
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                  ij++;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                }                    if(first==1){
                else                      first=0;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                      fprintf(ficgp,"\nset parametric;unset label");
              }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
              fprintf(ficgp,")/(1");                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                                    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
              for(k1=1; k1 <=nlstate; k1++){      :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                ij=1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                for(j=3; j <=ncovmodel; j++){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                    ij++;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                  }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                  else                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                fprintf(ficgp,")");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
              }                    }else{
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                      first=0;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
              i=i+ncovmodel;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
            }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
          } /* end k */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
        } /* end k2 */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
      } /* end jk */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
    } /* end ng */                    }/* if first */
    fflush(ficgp);                   } /* age mod 5 */
 }  /* end gnuplot */                } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
 /*************** Moving average **************/              } /*l12 */
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){            } /* k12 */
           } /*l1 */
   int i, cpt, cptcod;        }/* k1 */
   int modcovmax =1;      } /* loop covariates */
   int mobilavrange, mob;    }
   double age;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                            a covariate has 2 modalities */    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */    free_vector(xp,1,npar);
     fclose(ficresprob);
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){    fclose(ficresprobcov);
     if(mobilav==1) mobilavrange=5; /* default */    fclose(ficresprobcor);
     else mobilavrange=mobilav;    fflush(ficgp);
     for (age=bage; age<=fage; age++)    fflush(fichtmcov);
       for (i=1; i<=nlstate;i++)  }
         for (cptcod=1;cptcod<=modcovmax;cptcod++)  
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];  
     /* We keep the original values on the extreme ages bage, fage and for   /******************* Printing html file ***********/
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
        we use a 5 terms etc. until the borders are no more concerned.                     int lastpass, int stepm, int weightopt, char model[],\
     */                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     for (mob=3;mob <=mobilavrange;mob=mob+2){                    int popforecast, int estepm ,\
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){                    double jprev1, double mprev1,double anprev1, \
         for (i=1; i<=nlstate;i++){                    double jprev2, double mprev2,double anprev2){
           for (cptcod=1;cptcod<=modcovmax;cptcod++){    int jj1, k1, i1, cpt;
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];  
               for (cpt=1;cpt<=(mob-1)/2;cpt++){     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];  </ul>");
               }     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
           }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
         }     fprintf(fichtm,"\
       }/* end age */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     }/* end mob */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   }else return -1;     fprintf(fichtm,"\
   return 0;   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 }/* End movingaverage */             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 /************** Forecasting ******************/     <a href=\"%s\">%s</a> <br>\n",
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   /* proj1, year, month, day of starting projection      fprintf(fichtm,"\
      agemin, agemax range of age   - Population projections by age and states: \
      dateprev1 dateprev2 range of dates during which prevalence is computed     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
      anproj2 year of en of projection (same day and month as proj1).  
   */  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;  
   int *popage;   m=cptcoveff;
   double agec; /* generic age */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;   jj1=0;
   double ***p3mat;   for(k1=1; k1<=m;k1++){
   double ***mobaverage;     for(i1=1; i1<=ncodemax[k1];i1++){
   char fileresf[FILENAMELENGTH];       jj1++;
        if (cptcovn > 0) {
   agelim=AGESUP;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);         for (cpt=1; cpt<=cptcoveff;cpt++)
             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   strcpy(fileresf,"f");          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   strcat(fileresf,fileres);       }
   if((ficresf=fopen(fileresf,"w"))==NULL) {       /* Pij */
     printf("Problem with forecast resultfile: %s\n", fileresf);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
   }       /* Quasi-incidences */
   printf("Computing forecasting: result on file '%s' \n", fileresf);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;         /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
   if (mobilav!=0) {           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){         }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);       for(cpt=1; cpt<=nlstate;cpt++) {
       printf(" Error in movingaverage mobilav=%d\n",mobilav);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
     }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   }       }
      } /* end i1 */
   stepsize=(int) (stepm+YEARM-1)/YEARM;   }/* End k1 */
   if (stepm<=12) stepsize=1;   fprintf(fichtm,"</ul>");
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }   fprintf(fichtm,"\
   else  hstepm=estepm;     \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   hstepm=hstepm/stepm;   
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                                fractional in yp1 */           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   anprojmean=yp;   fprintf(fichtm,"\
   yp2=modf((yp1*12),&yp);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   mprojmean=yp;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;   fprintf(fichtm,"\
   if(jprojmean==0) jprojmean=1;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   if(mprojmean==0) jprojmean=1;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
   i1=cptcoveff;   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   if (cptcovn < 1){i1=1;}     <a href=\"%s\">%s</a> <br>\n</li>",
                estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);    fprintf(fichtm,"\
      - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   fprintf(ficresf,"#****** Routine prevforecast **\n");     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 /*            if (h==(int)(YEARM*yearp)){ */   fprintf(fichtm,"\
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       k=k+1;   fprintf(fichtm,"\
       fprintf(ficresf,"\n#******");   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
       for(j=1;j<=cptcoveff;j++) {           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"\
       }   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       fprintf(ficresf,"******\n");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");  
       for(j=1; j<=nlstate+ndeath;j++){   /*  if(popforecast==1) fprintf(fichtm,"\n */
         for(i=1; i<=nlstate;i++)                /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
           fprintf(ficresf," p%d%d",i,j);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         fprintf(ficresf," p.%d",j);  /*      <br>",fileres,fileres,fileres,fileres); */
       }  /*  else  */
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
         fprintf(ficresf,"\n");   fflush(fichtm);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);      fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
         for (agec=fage; agec>=(ageminpar-1); agec--){    m=cptcoveff;
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           nhstepm = nhstepm/hstepm;   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   jj1=0;
           oldm=oldms;savm=savms;   for(k1=1; k1<=m;k1++){
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);       for(i1=1; i1<=ncodemax[k1];i1++){
                jj1++;
           for (h=0; h<=nhstepm; h++){       if (cptcovn > 0) {
             if (h*hstepm/YEARM*stepm ==yearp) {         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
               fprintf(ficresf,"\n");         for (cpt=1; cpt<=cptcoveff;cpt++)
               for(j=1;j<=cptcoveff;j++)            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);       }
             }        for(cpt=1; cpt<=nlstate;cpt++) {
             for(j=1; j<=nlstate+ndeath;j++) {         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
               ppij=0.;  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
               for(i=1; i<=nlstate;i++) {  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
                 if (mobilav==1)        }
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
                 else {  health expectancies in states (1) and (2): %s%d.png<br>\
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
                 }     } /* end i1 */
                 if (h*hstepm/YEARM*stepm== yearp) {   }/* End k1 */
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);   fprintf(fichtm,"</ul>");
                 }   fflush(fichtm);
               } /* end i */  }
               if (h*hstepm/YEARM*stepm==yearp) {  
                 fprintf(ficresf," %.3f", ppij);  /******************* Gnuplot file **************/
               }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
             }/* end j */  
           } /* end h */    char dirfileres[132],optfileres[132];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         } /* end agec */    int ng;
       } /* end yearp */  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     } /* end cptcod */  /*     printf("Problem with file %s",optionfilegnuplot); */
   } /* end  cptcov */  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
          /*   } */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     /*#ifdef windows */
   fclose(ficresf);    fprintf(ficgp,"cd \"%s\" \n",pathc);
 }      /*#endif */
     m=pow(2,cptcoveff);
 /************** Forecasting *****not tested NB*************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    strcpy(dirfileres,optionfilefiname);
       strcpy(optfileres,"vpl");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;   /* 1eme*/
   int *popage;    for (cpt=1; cpt<= nlstate ; cpt ++) {
   double calagedatem, agelim, kk1, kk2;     for (k1=1; k1<= m ; k1 ++) {
   double *popeffectif,*popcount;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   double ***p3mat,***tabpop,***tabpopprev;       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   double ***mobaverage;       fprintf(ficgp,"set xlabel \"Age\" \n\
   char filerespop[FILENAMELENGTH];  set ylabel \"Probability\" \n\
   set ter png small\n\
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  set size 0.65,0.65\n\
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   agelim=AGESUP;  
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;       for (i=1; i<= nlstate ; i ++) {
            if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);         else fprintf(ficgp," \%%*lf (\%%*lf)");
          }
          fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   strcpy(filerespop,"pop");        for (i=1; i<= nlstate ; i ++) {
   strcat(filerespop,fileres);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Problem with forecast resultfile: %s\n", filerespop);       }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   }       for (i=1; i<= nlstate ; i ++) {
   printf("Computing forecasting: result on file '%s' \n", filerespop);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
   if (mobilav!=0) {    }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*2 eme*/
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){   
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    for (k1=1; k1<= m ; k1 ++) {
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   }     
       for (i=1; i<= nlstate+1 ; i ++) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;        k=2*i;
   if (stepm<=12) stepsize=1;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           for (j=1; j<= nlstate+1 ; j ++) {
   agelim=AGESUP;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
   hstepm=1;        }  
   hstepm=hstepm/stepm;         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
           else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   if (popforecast==1) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     if((ficpop=fopen(popfile,"r"))==NULL) {        for (j=1; j<= nlstate+1 ; j ++) {
       printf("Problem with population file : %s\n",popfile);exit(0);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }         }  
     popage=ivector(0,AGESUP);        fprintf(ficgp,"\" t\"\" w l 0,");
     popeffectif=vector(0,AGESUP);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     popcount=vector(0,AGESUP);        for (j=1; j<= nlstate+1 ; j ++) {
               if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     i=1;             else fprintf(ficgp," \%%*lf (\%%*lf)");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        }  
            if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     imx=i;        else fprintf(ficgp,"\" t\"\" w l 0,");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      }
   }    }
    
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){    /*3eme*/
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   
       k=k+1;    for (k1=1; k1<= m ; k1 ++) {
       fprintf(ficrespop,"\n#******");      for (cpt=1; cpt<= nlstate ; cpt ++) {
       for(j=1;j<=cptcoveff;j++) {        /*       k=2+nlstate*(2*cpt-2); */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        k=2+(nlstate+1)*(cpt-1);
       }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       fprintf(ficrespop,"******\n");        fprintf(ficgp,"set ter png small\n\
       fprintf(ficrespop,"# Age");  set size 0.65,0.65\n\
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       if (popforecast==1)  fprintf(ficrespop," [Population]");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                 for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       for (cpt=0; cpt<=0;cpt++) {           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);             fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          
           nhstepm = nhstepm/hstepm;         */
                   for (i=1; i< nlstate ; i ++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           oldm=oldms;savm=savms;          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           
                 }
           for (h=0; h<=nhstepm; h++){        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
             if (h==(int) (calagedatem+YEARM*cpt)) {      }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    }
             }    
             for(j=1; j<=nlstate+ndeath;j++) {    /* CV preval stable (period) */
               kk1=0.;kk2=0;    for (k1=1; k1<= m ; k1 ++) {
               for(i=1; i<=nlstate;i++) {                    for (cpt=1; cpt<=nlstate ; cpt ++) {
                 if (mobilav==1)         k=3;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
                 else {        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  set ter png small\nset size 0.65,0.65\n\
                 }  unset log y\n\
               }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
               if (h==(int)(calagedatem+12*cpt)){       
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for (i=1; i< nlstate ; i ++)
                   /*fprintf(ficrespop," %.3f", kk1);          fprintf(ficgp,"+$%d",k+i+1);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
               }       
             }        l=3+(nlstate+ndeath)*cpt;
             for(i=1; i<=nlstate;i++){        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
               kk1=0.;        for (i=1; i< nlstate ; i ++) {
                 for(j=1; j<=nlstate;j++){          l=3+(nlstate+ndeath)*cpt;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];           fprintf(ficgp,"+$%d",l+i+1);
                 }        }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
             }      }
     }  
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)    
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    /* proba elementaires */
           }    for(i=1,jk=1; i <=nlstate; i++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(k=1; k <=(nlstate+ndeath); k++){
         }        if (k != i) {
       }          for(j=1; j <=ncovmodel; j++){
              fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   /******/            jk++;
             fprintf(ficgp,"\n");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {           }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);           }
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){       }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      }
           nhstepm = nhstepm/hstepm;   
                for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       for(jk=1; jk <=m; jk++) {
           oldm=oldms;savm=savms;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           if (ng==2)
           for (h=0; h<=nhstepm; h++){           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
             if (h==(int) (calagedatem+YEARM*cpt)) {         else
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);           fprintf(ficgp,"\nset title \"Probability\"\n");
             }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
             for(j=1; j<=nlstate+ndeath;j++) {         i=1;
               kk1=0.;kk2=0;         for(k2=1; k2<=nlstate; k2++) {
               for(i=1; i<=nlstate;i++) {                         k3=i;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];               for(k=1; k<=(nlstate+ndeath); k++) {
               }             if (k != k2){
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                       if(ng==2)
             }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           }               else
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
         }               ij=1;
       }               for(j=3; j <=ncovmodel; j++) {
    }                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                     ij++;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                 }
                  else
   if (popforecast==1) {                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     free_ivector(popage,0,AGESUP);               }
     free_vector(popeffectif,0,AGESUP);               fprintf(ficgp,")/(1");
     free_vector(popcount,0,AGESUP);               
   }               for(k1=1; k1 <=nlstate; k1++){  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                 ij=1;
   fclose(ficrespop);                 for(j=3; j <=ncovmodel; j++){
 } /* End of popforecast */                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 int fileappend(FILE *fichier, char *optionfich)                     ij++;
 {                   }
   if((fichier=fopen(optionfich,"a"))==NULL) {                   else
     printf("Problem with file: %s\n", optionfich);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     fprintf(ficlog,"Problem with file: %s\n", optionfich);                 }
     return (0);                 fprintf(ficgp,")");
   }               }
   fflush(fichier);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   return (1);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 }               i=i+ncovmodel;
              }
            } /* end k */
 /**************** function prwizard **********************/         } /* end k2 */
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)       } /* end jk */
 {     } /* end ng */
      fflush(ficgp);
   /* Wizard to print covariance matrix template */  }  /* end gnuplot */
   
   char ca[32], cb[32], cc[32];  
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;  /*************** Moving average **************/
   int numlinepar;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int i, cpt, cptcod;
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int modcovmax =1;
   for(i=1; i <=nlstate; i++){    int mobilavrange, mob;
     jj=0;    double age;
     for(j=1; j <=nlstate+ndeath; j++){  
       if(j==i) continue;    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
       jj++;                             a covariate has 2 modalities */
       /*ca[0]= k+'a'-1;ca[1]='\0';*/    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i,j);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       for(k=1; k<=ncovmodel;k++){      if(mobilav==1) mobilavrange=5; /* default */
         /*        printf(" %lf",param[i][j][k]); */      else mobilavrange=mobilav;
         /*        fprintf(ficparo," %lf",param[i][j][k]); */      for (age=bage; age<=fage; age++)
         printf(" 0.");        for (i=1; i<=nlstate;i++)
         fprintf(ficparo," 0.");          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       printf("\n");      /* We keep the original values on the extreme ages bage, fage and for
       fprintf(ficparo,"\n");         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     }         we use a 5 terms etc. until the borders are no more concerned.
   }      */
   printf("# Scales (for hessian or gradient estimation)\n");      for (mob=3;mob <=mobilavrange;mob=mob+2){
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/           for (i=1; i<=nlstate;i++){
   for(i=1; i <=nlstate; i++){            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     jj=0;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     for(j=1; j <=nlstate+ndeath; j++){                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       if(j==i) continue;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
       jj++;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       fprintf(ficparo,"%1d%1d",i,j);                }
       printf("%1d%1d",i,j);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       fflush(stdout);            }
       for(k=1; k<=ncovmodel;k++){          }
         /*      printf(" %le",delti3[i][j][k]); */        }/* end age */
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */      }/* end mob */
         printf(" 0.");    }else return -1;
         fprintf(ficparo," 0.");    return 0;
       }  }/* End movingaverage */
       numlinepar++;  
       printf("\n");  
       fprintf(ficparo,"\n");  /************** Forecasting ******************/
     }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   }    /* proj1, year, month, day of starting projection
   printf("# Covariance matrix\n");       agemin, agemax range of age
 /* # 121 Var(a12)\n\ */       dateprev1 dateprev2 range of dates during which prevalence is computed
 /* # 122 Cov(b12,a12) Var(b12)\n\ */       anproj2 year of en of projection (same day and month as proj1).
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    */
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    int *popage;
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */    double agec; /* generic age */
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    double *popeffectif,*popcount;
   fflush(stdout);    double ***p3mat;
   fprintf(ficparo,"# Covariance matrix\n");    double ***mobaverage;
   /* # 121 Var(a12)\n\ */    char fileresf[FILENAMELENGTH];
   /* # 122 Cov(b12,a12) Var(b12)\n\ */  
   /* #   ...\n\ */    agelim=AGESUP;
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
      
   for(itimes=1;itimes<=2;itimes++){    strcpy(fileresf,"f");
     jj=0;    strcat(fileresf,fileres);
     for(i=1; i <=nlstate; i++){    if((ficresf=fopen(fileresf,"w"))==NULL) {
       for(j=1; j <=nlstate+ndeath; j++){      printf("Problem with forecast resultfile: %s\n", fileresf);
         if(j==i) continue;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         for(k=1; k<=ncovmodel;k++){    }
           jj++;    printf("Computing forecasting: result on file '%s' \n", fileresf);
           ca[0]= k+'a'-1;ca[1]='\0';    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           if(itimes==1){  
             printf("#%1d%1d%d",i,j,k);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             fprintf(ficparo,"#%1d%1d%d",i,j,k);  
           }else{    if (mobilav!=0) {
             printf("%1d%1d%d",i,j,k);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             fprintf(ficparo,"%1d%1d%d",i,j,k);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
             /*  printf(" %.5le",matcov[i][j]); */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           ll=0;      }
           for(li=1;li <=nlstate; li++){    }
             for(lj=1;lj <=nlstate+ndeath; lj++){  
               if(lj==li) continue;    stepsize=(int) (stepm+YEARM-1)/YEARM;
               for(lk=1;lk<=ncovmodel;lk++){    if (stepm<=12) stepsize=1;
                 ll++;    if(estepm < stepm){
                 if(ll<=jj){      printf ("Problem %d lower than %d\n",estepm, stepm);
                   cb[0]= lk +'a'-1;cb[1]='\0';    }
                   if(ll<jj){    else  hstepm=estepm;  
                     if(itimes==1){  
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    hstepm=hstepm/stepm;
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                     }else{                                 fractional in yp1 */
                       printf(" 0.");    anprojmean=yp;
                       fprintf(ficparo," 0.");    yp2=modf((yp1*12),&yp);
                     }    mprojmean=yp;
                   }else{    yp1=modf((yp2*30.5),&yp);
                     if(itimes==1){    jprojmean=yp;
                       printf(" Var(%s%1d%1d)",ca,i,j);    if(jprojmean==0) jprojmean=1;
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);    if(mprojmean==0) jprojmean=1;
                     }else{  
                       printf(" 0.");    i1=cptcoveff;
                       fprintf(ficparo," 0.");    if (cptcovn < 1){i1=1;}
                     }   
                   }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
                 }   
               } /* end lk */    fprintf(ficresf,"#****** Routine prevforecast **\n");
             } /* end lj */  
           } /* end li */  /*            if (h==(int)(YEARM*yearp)){ */
           printf("\n");    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
           fprintf(ficparo,"\n");      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           numlinepar++;        k=k+1;
         } /* end k*/        fprintf(ficresf,"\n#******");
       } /*end j */        for(j=1;j<=cptcoveff;j++) {
     } /* end i */          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   } /* end itimes */        }
         fprintf(ficresf,"******\n");
 } /* end of prwizard */        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
 /******************* Gompertz Likelihood ******************************/        for(j=1; j<=nlstate+ndeath;j++){
 double gompertz(double x[])          for(i=1; i<=nlstate;i++)              
 {             fprintf(ficresf," p%d%d",i,j);
   double A,B,L=0.0,sump=0.,num=0.;          fprintf(ficresf," p.%d",j);
   int i,n=0; /* n is the size of the sample */        }
   for (i=0;i<=imx-1 ; i++) {        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
     sump=sump+weight[i];          fprintf(ficresf,"\n");
     sump=sump+1;          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
     num=num+1;  
   }          for (agec=fage; agec>=(ageminpar-1); agec--){
              nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
              nhstepm = nhstepm/hstepm;
   /* for (i=1; i<=imx; i++)             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   for (i=0;i<=imx-1 ; i++)         
     {            for (h=0; h<=nhstepm; h++){
       if (cens[i]==1 & wav[i]>1)              if (h*hstepm/YEARM*stepm ==yearp) {
         A=-x[1]/(x[2])*                fprintf(ficresf,"\n");
           (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));                for(j=1;j<=cptcoveff;j++)
                         fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       if (cens[i]==0 & wav[i]>1)                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
         A=-x[1]/(x[2])*              }
              (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))              for(j=1; j<=nlstate+ndeath;j++) {
           +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);                      ppij=0.;
                       for(i=1; i<=nlstate;i++) {
       if (wav[i]>1 & agecens[i]>15) {                  if (mobilav==1)
         L=L+A*weight[i];                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/                  else {
       }                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
     }                  }
                   if (h*hstepm/YEARM*stepm== yearp) {
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                    }
   return -2*L*num/sump;                } /* end i */
 }                if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
 /******************* Printing html file ***********/                }
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \              }/* end j */
                   int lastpass, int stepm, int weightopt, char model[],\            } /* end h */
                   int imx,  double p[],double **matcov){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int i;          } /* end agec */
         } /* end yearp */
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");      } /* end cptcod */
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);    } /* end  cptcov */
   for (i=1;i<=2;i++)          
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");  
   fprintf(fichtm,"</ul>");    fclose(ficresf);
   fflush(fichtm);  }
 }  
   /************** Forecasting *****not tested NB*************/
 /******************* Gnuplot file **************/  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){   
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   char dirfileres[132],optfileres[132];    int *popage;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    double calagedatem, agelim, kk1, kk2;
   int ng;    double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
   /*#ifdef windows */    char filerespop[FILENAMELENGTH];
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
     /*#endif */    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
   strcpy(dirfileres,optionfilefiname);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   strcpy(optfileres,"vpl");   
   fprintf(ficgp,"set out \"graphmort.png\"\n ");     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");    
   fprintf(ficgp, "set ter png small\n set log y\n");    
   fprintf(ficgp, "set size 0.65,0.65\n");    strcpy(filerespop,"pop");
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);    strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
 }       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
 /***********************************************/  
 /**************** Main Program *****************/    if (cptcoveff==0) ncodemax[cptcoveff]=1;
 /***********************************************/  
     if (mobilav!=0) {
 int main(int argc, char *argv[])      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 {      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   int jj, ll, li, lj, lk, imk;      }
   int numlinepar=0; /* Current linenumber of parameter file */    }
   int itimes;  
   int NDIM=2;    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
   char ca[32], cb[32], cc[32];   
   /*  FILE *fichtm; *//* Html File */    agelim=AGESUP;
   /* FILE *ficgp;*/ /*Gnuplot File */   
   double agedeb, agefin,hf;    hstepm=1;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    hstepm=hstepm/stepm;
    
   double fret;    if (popforecast==1) {
   double **xi,tmp,delta;      if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
   double dum; /* Dummy variable */        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   double ***p3mat;      }
   double ***mobaverage;      popage=ivector(0,AGESUP);
   int *indx;      popeffectif=vector(0,AGESUP);
   char line[MAXLINE], linepar[MAXLINE];      popcount=vector(0,AGESUP);
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];     
   char pathr[MAXLINE], pathimach[MAXLINE];       i=1;  
   int firstobs=1, lastobs=10;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   int sdeb, sfin; /* Status at beginning and end */     
   int c,  h , cpt,l;      imx=i;
   int ju,jl, mi;      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;   
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   int mobilav=0,popforecast=0;     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   int hstepm, nhstepm;        k=k+1;
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;        fprintf(ficrespop,"\n#******");
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   double bage, fage, age, agelim, agebase;        }
   double ftolpl=FTOL;        fprintf(ficrespop,"******\n");
   double **prlim;        fprintf(ficrespop,"# Age");
   double *severity;        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   double ***param; /* Matrix of parameters */        if (popforecast==1)  fprintf(ficrespop," [Population]");
   double  *p;       
   double **matcov; /* Matrix of covariance */        for (cpt=0; cpt<=0;cpt++) {
   double ***delti3; /* Scale */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   double *delti; /* Scale */         
   double ***eij, ***vareij;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   double **varpl; /* Variances of prevalence limits by age */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   double *epj, vepp;            nhstepm = nhstepm/hstepm;
   double kk1, kk2;           
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **ximort;            oldm=oldms;savm=savms;
   char *alph[]={"a","a","b","c","d","e"}, str[4];            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   int *dcwave;         
             for (h=0; h<=nhstepm; h++){
   char z[1]="c", occ;              if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];              }
   char strstart[80], *strt, strtend[80];              for(j=1; j<=nlstate+ndeath;j++) {
   char *stratrunc;                kk1=0.;kk2=0;
   int lstra;                for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1)
   long total_usecs;                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                    else {
 /*   setlocale (LC_ALL, ""); */                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */                  }
 /*   textdomain (PACKAGE); */                }
 /*   setlocale (LC_CTYPE, ""); */                if (h==(int)(calagedatem+12*cpt)){
 /*   setlocale (LC_MESSAGES, ""); */                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   (void) gettimeofday(&start_time,&tzp);                }
   curr_time=start_time;              }
   tm = *localtime(&start_time.tv_sec);              for(i=1; i<=nlstate;i++){
   tmg = *gmtime(&start_time.tv_sec);                kk1=0.;
   strcpy(strstart,asctime(&tm));                  for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
 /*  printf("Localtime (at start)=%s",strstart); */                  }
 /*  tp.tv_sec = tp.tv_sec +86400; */                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 /*  tm = *localtime(&start_time.tv_sec); */              }
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */  
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
 /*   tmg.tm_hour=tmg.tm_hour + 1; */                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 /*   tp.tv_sec = mktime(&tmg); */            }
 /*   strt=asctime(&tmg); */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*   printf("Time(after) =%s",strstart);  */          }
 /*  (void) time (&time_value);        }
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);   
 *  tm = *localtime(&time_value);    /******/
 *  strstart=asctime(&tm);  
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
 */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   nberr=0; /* Number of errors and warnings */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   nbwarn=0;            nhstepm = nhstepm/hstepm;
   getcwd(pathcd, size);           
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("\n%s\n%s",version,fullversion);            oldm=oldms;savm=savms;
   if(argc <=1){            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     printf("\nEnter the parameter file name: ");            for (h=0; h<=nhstepm; h++){
     scanf("%s",pathtot);              if (h==(int) (calagedatem+YEARM*cpt)) {
   }                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   else{              }
     strcpy(pathtot,argv[1]);              for(j=1; j<=nlstate+ndeath;j++) {
   }                kk1=0.;kk2=0;
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/                for(i=1; i<=nlstate;i++) {              
   /*cygwin_split_path(pathtot,path,optionfile);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                }
   /* cutv(path,optionfile,pathtot,'\\');*/                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);            }
  /*   strcpy(pathimach,argv[0]); */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          }
   printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);        }
   chdir(path);     }
   strcpy(command,"mkdir ");    }
   strcat(command,optionfilefiname);   
   if((outcmd=system(command)) != 0){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);  
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    if (popforecast==1) {
     /* fclose(ficlog); */      free_ivector(popage,0,AGESUP);
 /*     exit(1); */      free_vector(popeffectif,0,AGESUP);
   }      free_vector(popcount,0,AGESUP);
 /*   if((imk=mkdir(optionfilefiname))<0){ */    }
 /*     perror("mkdir"); */    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*   } */    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   /*-------- arguments in the command line --------*/  } /* End of popforecast */
   
   /* Log file */  int fileappend(FILE *fichier, char *optionfich)
   strcat(filelog, optionfilefiname);  {
   strcat(filelog,".log");    /* */    if((fichier=fopen(optionfich,"a"))==NULL) {
   if((ficlog=fopen(filelog,"w"))==NULL)    {      printf("Problem with file: %s\n", optionfich);
     printf("Problem with logfile %s\n",filelog);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
     goto end;      return (0);
   }    }
   fprintf(ficlog,"Log filename:%s\n",filelog);    fflush(fichier);
   fprintf(ficlog,"\n%s\n%s",version,fullversion);    return (1);
   fprintf(ficlog,"\nEnter the parameter file name: \n");  }
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\  
  path=%s \n\  
  optionfile=%s\n\  /**************** function prwizard **********************/
  optionfilext=%s\n\  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);  {
   
   printf("Local time (at start):%s",strstart);    /* Wizard to print covariance matrix template */
   fprintf(ficlog,"Local time (at start): %s",strstart);  
   fflush(ficlog);    char ca[32], cb[32], cc[32];
 /*   (void) gettimeofday(&curr_time,&tzp); */    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    int numlinepar;
   
   /* */    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   strcpy(fileres,"r");    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   strcat(fileres, optionfilefiname);    for(i=1; i <=nlstate; i++){
   strcat(fileres,".txt");    /* Other files have txt extension */      jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
   /*---------arguments file --------*/        if(j==i) continue;
         jj++;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        /*ca[0]= k+'a'-1;ca[1]='\0';*/
     printf("Problem with optionfile %s\n",optionfile);        printf("%1d%1d",i,j);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);        fprintf(ficparo,"%1d%1d",i,j);
     fflush(ficlog);        for(k=1; k<=ncovmodel;k++){
     goto end;          /*        printf(" %lf",param[i][j][k]); */
   }          /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
   strcpy(filereso,"o");        printf("\n");
   strcat(filereso,fileres);        fprintf(ficparo,"\n");
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */      }
     printf("Problem with Output resultfile: %s\n", filereso);    }
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    printf("# Scales (for hessian or gradient estimation)\n");
     fflush(ficlog);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     goto end;    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   }    for(i=1; i <=nlstate; i++){
       jj=0;
   /* Reads comments: lines beginning with '#' */      for(j=1; j <=nlstate+ndeath; j++){
   numlinepar=0;        if(j==i) continue;
   while((c=getc(ficpar))=='#' && c!= EOF){        jj++;
     ungetc(c,ficpar);        fprintf(ficparo,"%1d%1d",i,j);
     fgets(line, MAXLINE, ficpar);        printf("%1d%1d",i,j);
     numlinepar++;        fflush(stdout);
     puts(line);        for(k=1; k<=ncovmodel;k++){
     fputs(line,ficparo);          /*      printf(" %le",delti3[i][j][k]); */
     fputs(line,ficlog);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   }          printf(" 0.");
   ungetc(c,ficpar);          fprintf(ficparo," 0.");
         }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        numlinepar++;
   numlinepar++;        printf("\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        fprintf(ficparo,"\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      }
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    }
   fflush(ficlog);    printf("# Covariance matrix\n");
   while((c=getc(ficpar))=='#' && c!= EOF){  /* # 121 Var(a12)\n\ */
     ungetc(c,ficpar);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
     fgets(line, MAXLINE, ficpar);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     numlinepar++;  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     puts(line);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
     fputs(line,ficparo);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
     fputs(line,ficlog);  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   }  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   ungetc(c,ficpar);    fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
        /* # 121 Var(a12)\n\ */
   covar=matrix(0,NCOVMAX,1,n);     /* # 122 Cov(b12,a12) Var(b12)\n\ */
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    /* #   ...\n\ */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
    
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */    for(itimes=1;itimes<=2;itimes++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      jj=0;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/      for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          if(j==i) continue;
   delti=delti3[1][1];          for(k=1; k<=ncovmodel;k++){
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/            jj++;
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */            ca[0]= k+'a'-1;ca[1]='\0';
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);            if(itimes==1){
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);              printf("#%1d%1d%d",i,j,k);
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);              fprintf(ficparo,"#%1d%1d%d",i,j,k);
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);             }else{
     fclose (ficparo);              printf("%1d%1d%d",i,j,k);
     fclose (ficlog);              fprintf(ficparo,"%1d%1d%d",i,j,k);
     exit(0);              /*  printf(" %.5le",matcov[i][j]); */
   }            }
   else if(mle==-3) {            ll=0;
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);            for(li=1;li <=nlstate; li++){
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);              for(lj=1;lj <=nlstate+ndeath; lj++){
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);                if(lj==li) continue;
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                for(lk=1;lk<=ncovmodel;lk++){
     matcov=matrix(1,npar,1,npar);                  ll++;
   }                  if(ll<=jj){
   else{                    cb[0]= lk +'a'-1;cb[1]='\0';
     /* Read guess parameters */                    if(ll<jj){
     /* Reads comments: lines beginning with '#' */                      if(itimes==1){
     while((c=getc(ficpar))=='#' && c!= EOF){                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       ungetc(c,ficpar);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       fgets(line, MAXLINE, ficpar);                      }else{
       numlinepar++;                        printf(" 0.");
       puts(line);                        fprintf(ficparo," 0.");
       fputs(line,ficparo);                      }
       fputs(line,ficlog);                    }else{
     }                      if(itimes==1){
     ungetc(c,ficpar);                        printf(" Var(%s%1d%1d)",ca,i,j);
                             fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                      }else{
     for(i=1; i <=nlstate; i++){                        printf(" 0.");
       j=0;                        fprintf(ficparo," 0.");
       for(jj=1; jj <=nlstate+ndeath; jj++){                      }
         if(jj==i) continue;                    }
         j++;                  }
         fscanf(ficpar,"%1d%1d",&i1,&j1);                } /* end lk */
         if ((i1 != i) && (j1 != j)){              } /* end lj */
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);            } /* end li */
           exit(1);            printf("\n");
         }            fprintf(ficparo,"\n");
         fprintf(ficparo,"%1d%1d",i1,j1);            numlinepar++;
         if(mle==1)          } /* end k*/
           printf("%1d%1d",i,j);        } /*end j */
         fprintf(ficlog,"%1d%1d",i,j);      } /* end i */
         for(k=1; k<=ncovmodel;k++){    } /* end itimes */
           fscanf(ficpar," %lf",&param[i][j][k]);  
           if(mle==1){  } /* end of prwizard */
             printf(" %lf",param[i][j][k]);  /******************* Gompertz Likelihood ******************************/
             fprintf(ficlog," %lf",param[i][j][k]);  double gompertz(double x[])
           }  {
           else    double A,B,L=0.0,sump=0.,num=0.;
             fprintf(ficlog," %lf",param[i][j][k]);    int i,n=0; /* n is the size of the sample */
           fprintf(ficparo," %lf",param[i][j][k]);  
         }    for (i=0;i<=imx-1 ; i++) {
         fscanf(ficpar,"\n");      sump=sump+weight[i];
         numlinepar++;      /*    sump=sump+1;*/
         if(mle==1)      num=num+1;
           printf("\n");    }
         fprintf(ficlog,"\n");   
         fprintf(ficparo,"\n");   
       }    /* for (i=0; i<=imx; i++)
     }         if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     fflush(ficlog);  
     for (i=1;i<=imx ; i++)
       {
     p=param[1][1];        if (cens[i] == 1 && wav[i]>1)
               A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
     /* Reads comments: lines beginning with '#' */       
     while((c=getc(ficpar))=='#' && c!= EOF){        if (cens[i] == 0 && wav[i]>1)
       ungetc(c,ficpar);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
       fgets(line, MAXLINE, ficpar);               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
       numlinepar++;       
       puts(line);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
       fputs(line,ficparo);        if (wav[i] > 1 ) { /* ??? */
       fputs(line,ficlog);          L=L+A*weight[i];
     }          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
     ungetc(c,ficpar);        }
       }
     for(i=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath-1; j++){   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
         fscanf(ficpar,"%1d%1d",&i1,&j1);   
         if ((i1-i)*(j1-j)!=0){    return -2*L*num/sump;
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);  }
           exit(1);  
         }  /******************* Printing html file ***********/
         printf("%1d%1d",i,j);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
         fprintf(ficparo,"%1d%1d",i1,j1);                    int lastpass, int stepm, int weightopt, char model[],\
         fprintf(ficlog,"%1d%1d",i1,j1);                    int imx,  double p[],double **matcov,double agemortsup){
         for(k=1; k<=ncovmodel;k++){    int i,k;
           fscanf(ficpar,"%le",&delti3[i][j][k]);  
           printf(" %le",delti3[i][j][k]);    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
           fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
           fprintf(ficlog," %le",delti3[i][j][k]);    for (i=1;i<=2;i++)
         }      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fscanf(ficpar,"\n");    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
         numlinepar++;    fprintf(fichtm,"</ul>");
         printf("\n");  
         fprintf(ficparo,"\n");  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
         fprintf(ficlog,"\n");  
       }   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
     }  
     fflush(ficlog);   for (k=agegomp;k<(agemortsup-2);k++)
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     delti=delti3[1][1];  
    
     fflush(fichtm);
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */  }
     
     /* Reads comments: lines beginning with '#' */  /******************* Gnuplot file **************/
     while((c=getc(ficpar))=='#' && c!= EOF){  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);    char dirfileres[132],optfileres[132];
       numlinepar++;    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       puts(line);    int ng;
       fputs(line,ficparo);  
       fputs(line,ficlog);  
     }    /*#ifdef windows */
     ungetc(c,ficpar);    fprintf(ficgp,"cd \"%s\" \n",pathc);
         /*#endif */
     matcov=matrix(1,npar,1,npar);  
     for(i=1; i <=npar; i++){  
       fscanf(ficpar,"%s",&str);    strcpy(dirfileres,optionfilefiname);
       if(mle==1)    strcpy(optfileres,"vpl");
         printf("%s",str);    fprintf(ficgp,"set out \"graphmort.png\"\n ");
       fprintf(ficlog,"%s",str);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
       fprintf(ficparo,"%s",str);    fprintf(ficgp, "set ter png small\n set log y\n");
       for(j=1; j <=i; j++){    fprintf(ficgp, "set size 0.65,0.65\n");
         fscanf(ficpar," %le",&matcov[i][j]);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
         if(mle==1){  
           printf(" %.5le",matcov[i][j]);  }
         }  
         fprintf(ficlog," %.5le",matcov[i][j]);  
         fprintf(ficparo," %.5le",matcov[i][j]);  
       }  
       fscanf(ficpar,"\n");  
       numlinepar++;  /***********************************************/
       if(mle==1)  /**************** Main Program *****************/
         printf("\n");  /***********************************************/
       fprintf(ficlog,"\n");  
       fprintf(ficparo,"\n");  int main(int argc, char *argv[])
     }  {
     for(i=1; i <=npar; i++)    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
       for(j=i+1;j<=npar;j++)    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
         matcov[i][j]=matcov[j][i];    int linei, month, year,iout;
         int jj, ll, li, lj, lk, imk;
     if(mle==1)    int numlinepar=0; /* Current linenumber of parameter file */
       printf("\n");    int itimes;
     fprintf(ficlog,"\n");    int NDIM=2;
       
     fflush(ficlog);    char ca[32], cb[32], cc[32];
         char dummy[]="                         ";
     /*-------- Rewriting parameter file ----------*/    /*  FILE *fichtm; *//* Html File */
     strcpy(rfileres,"r");    /* "Rparameterfile */    /* FILE *ficgp;*/ /*Gnuplot File */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    struct stat info;
     strcat(rfileres,".");    /* */    double agedeb, agefin,hf;
     strcat(rfileres,optionfilext);    /* Other files have txt extension */    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    double fret;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    double **xi,tmp,delta;
     }  
     fprintf(ficres,"#%s\n",version);    double dum; /* Dummy variable */
   }    /* End of mle != -3 */    double ***p3mat;
     double ***mobaverage;
   /*-------- data file ----------*/    int *indx;
   if((fic=fopen(datafile,"r"))==NULL)    {    char line[MAXLINE], linepar[MAXLINE];
     printf("Problem with datafile: %s\n", datafile);goto end;    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    char pathr[MAXLINE], pathimach[MAXLINE];
   }    char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
   n= lastobs;    int sdeb, sfin; /* Status at beginning and end */
   severity = vector(1,maxwav);    int c,  h , cpt,l;
   outcome=imatrix(1,maxwav+1,1,n);    int ju,jl, mi;
   num=lvector(1,n);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   moisnais=vector(1,n);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
   annais=vector(1,n);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   moisdc=vector(1,n);    int mobilav=0,popforecast=0;
   andc=vector(1,n);    int hstepm, nhstepm;
   agedc=vector(1,n);    int agemortsup;
   cod=ivector(1,n);    float  sumlpop=0.;
   weight=vector(1,n);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   mint=matrix(1,maxwav,1,n);  
   anint=matrix(1,maxwav,1,n);    double bage, fage, age, agelim, agebase;
   s=imatrix(1,maxwav+1,1,n);    double ftolpl=FTOL;
   tab=ivector(1,NCOVMAX);    double **prlim;
   ncodemax=ivector(1,8);    double *severity;
     double ***param; /* Matrix of parameters */
   i=1;    double  *p;
   while (fgets(line, MAXLINE, fic) != NULL)    {    double **matcov; /* Matrix of covariance */
     if ((i >= firstobs) && (i <=lastobs)) {    double ***delti3; /* Scale */
             double *delti; /* Scale */
       for (j=maxwav;j>=1;j--){    double ***eij, ***vareij;
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);     double **varpl; /* Variances of prevalence limits by age */
         strcpy(line,stra);    double *epj, vepp;
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double kk1, kk2;
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
       }    double **ximort;
             char *alph[]={"a","a","b","c","d","e"}, str[4];
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    int *dcwave;
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
     char z[1]="c", occ;
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    char *stratrunc;
       for (j=ncovcol;j>=1;j--){    int lstra;
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
       }     long total_usecs;
       lstra=strlen(stra);   
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */  /*   setlocale (LC_ALL, ""); */
         stratrunc = &(stra[lstra-9]);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
         num[i]=atol(stratrunc);  /*   textdomain (PACKAGE); */
       }  /*   setlocale (LC_CTYPE, ""); */
       else  /*   setlocale (LC_MESSAGES, ""); */
         num[i]=atol(stra);  
             /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    (void) gettimeofday(&start_time,&tzp);
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
       i=i+1;    tmg = *gmtime(&start_time.tv_sec);
     }    strcpy(strstart,asctime(&tm));
   }  
   /* printf("ii=%d", ij);  /*  printf("Localtime (at start)=%s",strstart); */
      scanf("%d",i);*/  /*  tp.tv_sec = tp.tv_sec +86400; */
   imx=i-1; /* Number of individuals */  /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /* for (i=1; i<=imx; i++){  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  /*   tmg.tm_hour=tmg.tm_hour + 1; */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  /*   tp.tv_sec = mktime(&tmg); */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  /*   strt=asctime(&tmg); */
     }*/  /*   printf("Time(after) =%s",strstart);  */
    /*  for (i=1; i<=imx; i++){  /*  (void) time (&time_value);
      if (s[4][i]==9)  s[4][i]=-1;   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  *  tm = *localtime(&time_value);
     *  strstart=asctime(&tm);
  for (i=1; i<=imx; i++)  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
    */
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;  
      else weight[i]=1;*/    nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   /* Calculation of the number of parameter from char model*/    getcwd(pathcd, size);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */  
   Tprod=ivector(1,15);     printf("\n%s\n%s",version,fullversion);
   Tvaraff=ivector(1,15);     if(argc <=1){
   Tvard=imatrix(1,15,1,2);      printf("\nEnter the parameter file name: ");
   Tage=ivector(1,15);            fgets(pathr,FILENAMELENGTH,stdin);
          i=strlen(pathr);
   if (strlen(model) >1){ /* If there is at least 1 covariate */      if(pathr[i-1]=='\n')
     j=0, j1=0, k1=1, k2=1;        pathr[i-1]='\0';
     j=nbocc(model,'+'); /* j=Number of '+' */     for (tok = pathr; tok != NULL; ){
     j1=nbocc(model,'*'); /* j1=Number of '*' */        printf("Pathr |%s|\n",pathr);
     cptcovn=j+1;         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
     cptcovprod=j1; /*Number of products */        printf("val= |%s| pathr=%s\n",val,pathr);
             strcpy (pathtot, val);
     strcpy(modelsav,model);         if(pathr[0] == '\0') break; /* Dirty */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      }
       printf("Error. Non available option model=%s ",model);    }
       fprintf(ficlog,"Error. Non available option model=%s ",model);    else{
       goto end;      strcpy(pathtot,argv[1]);
     }    }
         /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /* This loop fills the array Tvar from the string 'model'.*/    /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     for(i=(j+1); i>=1;i--){    /* cutv(path,optionfile,pathtot,'\\');*/
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */   
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */    /* Split argv[0], imach program to get pathimach */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
       /*scanf("%d",i);*/    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
       if (strchr(strb,'*')) {  /* Model includes a product */    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/   /*   strcpy(pathimach,argv[0]); */
         if (strcmp(strc,"age")==0) { /* Vn*age */    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
           cptcovprod--;    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
           cutv(strb,stre,strd,'V');    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    chdir(path); /* Can be a relative path */
           cptcovage++;    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
             Tage[cptcovage]=i;      printf("Current directory %s!\n",pathcd);
             /*printf("stre=%s ", stre);*/    strcpy(command,"mkdir ");
         }    strcat(command,optionfilefiname);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    if((outcmd=system(command)) != 0){
           cptcovprod--;      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
           cutv(strb,stre,strc,'V');      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
           Tvar[i]=atoi(stre);      /* fclose(ficlog); */
           cptcovage++;  /*     exit(1); */
           Tage[cptcovage]=i;    }
         }  /*   if((imk=mkdir(optionfilefiname))<0){ */
         else {  /* Age is not in the model */  /*     perror("mkdir"); */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/  /*   } */
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    /*-------- arguments in the command line --------*/
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc); /* m*/    /* Log file */
           Tvard[k1][2]=atoi(stre); /* n */    strcat(filelog, optionfilefiname);
           Tvar[cptcovn+k2]=Tvard[k1][1];    strcat(filelog,".log");    /* */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];     if((ficlog=fopen(filelog,"w"))==NULL)    {
           for (k=1; k<=lastobs;k++)       printf("Problem with logfile %s\n",filelog);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      goto end;
           k1++;    }
           k2=k2+2;    fprintf(ficlog,"Log filename:%s\n",filelog);
         }    fprintf(ficlog,"\n%s\n%s",version,fullversion);
       }    fprintf(ficlog,"\nEnter the parameter file name: \n");
       else { /* no more sum */    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/   path=%s \n\
        /*  scanf("%d",i);*/   optionfile=%s\n\
       cutv(strd,strc,strb,'V');   optionfilext=%s\n\
       Tvar[i]=atoi(strc);   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
       }  
       strcpy(modelsav,stra);      printf("Local time (at start):%s",strstart);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fprintf(ficlog,"Local time (at start): %s",strstart);
         scanf("%d",i);*/    fflush(ficlog);
     } /* end of loop + */  /*   (void) gettimeofday(&curr_time,&tzp); */
   } /* end model */  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
     
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    /* */
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/    strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    strcat(fileres,".txt");    /* Other files have txt extension */
   printf("cptcovprod=%d ", cptcovprod);  
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    /*---------arguments file --------*/
   
   scanf("%d ",i);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   fclose(fic);*/      printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
     /*  if(mle==1){*/      fflush(ficlog);
   if (weightopt != 1) { /* Maximisation without weights*/      goto end;
     for(i=1;i<=n;i++) weight[i]=1.0;    }
   }  
     /*-calculation of age at interview from date of interview and age at death -*/  
   agev=matrix(1,maxwav,1,imx);  
     strcpy(filereso,"o");
   for (i=1; i<=imx; i++) {    strcat(filereso,fileres);
     for(m=2; (m<= maxwav); m++) {    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){      printf("Problem with Output resultfile: %s\n", filereso);
         anint[m][i]=9999;      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
         s[m][i]=-1;      fflush(ficlog);
       }      goto end;
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){    }
         nberr++;  
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    /* Reads comments: lines beginning with '#' */
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    numlinepar=0;
         s[m][i]=-1;    while((c=getc(ficpar))=='#' && c!= EOF){
       }      ungetc(c,ficpar);
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){      fgets(line, MAXLINE, ficpar);
         nberr++;      numlinepar++;
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);       puts(line);
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);       fputs(line,ficparo);
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */      fputs(line,ficlog);
       }    }
     }    ungetc(c,ficpar);
   }  
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   for (i=1; i<=imx; i++)  {    numlinepar++;
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     for(m=firstpass; (m<= lastpass); m++){    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       if(s[m][i] >0){    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
         if (s[m][i] >= nlstate+1) {    fflush(ficlog);
           if(agedc[i]>0)    while((c=getc(ficpar))=='#' && c!= EOF){
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)      ungetc(c,ficpar);
               agev[m][i]=agedc[i];      fgets(line, MAXLINE, ficpar);
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      numlinepar++;
             else {      puts(line);
               if ((int)andc[i]!=9999){      fputs(line,ficparo);
                 nbwarn++;      fputs(line,ficlog);
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);    }
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);    ungetc(c,ficpar);
                 agev[m][i]=-1;  
               }     
             }    covar=matrix(0,NCOVMAX,1,n);
         }    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
         else if(s[m][i] !=9){ /* Standard case, age in fractional    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
                                  years but with the precision of a  
                                  month */    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
             agev[m][i]=1;  
           else if(agev[m][i] <agemin){     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
             agemin=agev[m][i];    delti=delti3[1][1];
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
           }    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
           else if(agev[m][i] >agemax){      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
             agemax=agev[m][i];      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
           }      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
           /*agev[m][i]=anint[m][i]-annais[i];*/      fclose (ficparo);
           /*     agev[m][i] = age[i]+2*m;*/      fclose (ficlog);
         }      goto end;
         else { /* =9 */      exit(0);
           agev[m][i]=1;    }
           s[m][i]=-1;    else if(mle==-3) {
         }      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       }      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       else /*= 0 Unknown */      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
         agev[m][i]=1;      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     }      matcov=matrix(1,npar,1,npar);
         }
   }    else{
   for (i=1; i<=imx; i++)  {      /* Read guess parameters */
     for(m=firstpass; (m<=lastpass); m++){      /* Reads comments: lines beginning with '#' */
       if (s[m][i] > (nlstate+ndeath)) {      while((c=getc(ficpar))=='#' && c!= EOF){
         nberr++;        ungetc(c,ficpar);
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             fgets(line, MAXLINE, ficpar);
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             numlinepar++;
         goto end;        puts(line);
       }        fputs(line,ficparo);
     }        fputs(line,ficlog);
   }      }
       ungetc(c,ficpar);
   /*for (i=1; i<=imx; i++){     
   for (m=firstpass; (m<lastpass); m++){      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);      for(i=1; i <=nlstate; i++){
 }        j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
 }*/          if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          if ((i1 != i) && (j1 != j)){
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   agegomp=(int)agemin;  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
   free_vector(severity,1,maxwav);            exit(1);
   free_imatrix(outcome,1,maxwav+1,1,n);          }
   free_vector(moisnais,1,n);          fprintf(ficparo,"%1d%1d",i1,j1);
   free_vector(annais,1,n);          if(mle==1)
   /* free_matrix(mint,1,maxwav,1,n);            printf("%1d%1d",i,j);
      free_matrix(anint,1,maxwav,1,n);*/          fprintf(ficlog,"%1d%1d",i,j);
   free_vector(moisdc,1,n);          for(k=1; k<=ncovmodel;k++){
   free_vector(andc,1,n);            fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
                  printf(" %lf",param[i][j][k]);
   wav=ivector(1,imx);              fprintf(ficlog," %lf",param[i][j][k]);
   dh=imatrix(1,lastpass-firstpass+1,1,imx);            }
   bh=imatrix(1,lastpass-firstpass+1,1,imx);            else
   mw=imatrix(1,lastpass-firstpass+1,1,imx);              fprintf(ficlog," %lf",param[i][j][k]);
                fprintf(ficparo," %lf",param[i][j][k]);
   /* Concatenates waves */          }
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          fscanf(ficpar,"\n");
           numlinepar++;
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */          if(mle==1)
             printf("\n");
   Tcode=ivector(1,100);          fprintf(ficlog,"\n");
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);           fprintf(ficparo,"\n");
   ncodemax[1]=1;        }
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);      }  
             fflush(ficlog);
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of   
                                  the estimations*/      p=param[1][1];
   h=0;     
   m=pow(2,cptcoveff);      /* Reads comments: lines beginning with '#' */
        while((c=getc(ficpar))=='#' && c!= EOF){
   for(k=1;k<=cptcoveff; k++){        ungetc(c,ficpar);
     for(i=1; i <=(m/pow(2,k));i++){        fgets(line, MAXLINE, ficpar);
       for(j=1; j <= ncodemax[k]; j++){        numlinepar++;
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        puts(line);
           h++;        fputs(line,ficparo);
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        fputs(line,ficlog);
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      }
         }       ungetc(c,ficpar);
       }  
     }      for(i=1; i <=nlstate; i++){
   }         for(j=1; j <=nlstate+ndeath-1; j++){
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);           fscanf(ficpar,"%1d%1d",&i1,&j1);
      codtab[1][2]=1;codtab[2][2]=2; */          if ((i1-i)*(j1-j)!=0){
   /* for(i=1; i <=m ;i++){             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
      for(k=1; k <=cptcovn; k++){            exit(1);
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          }
      }          printf("%1d%1d",i,j);
      printf("\n");          fprintf(ficparo,"%1d%1d",i1,j1);
      }          fprintf(ficlog,"%1d%1d",i1,j1);
      scanf("%d",i);*/          for(k=1; k<=ncovmodel;k++){
                 fscanf(ficpar,"%le",&delti3[i][j][k]);
   /*------------ gnuplot -------------*/            printf(" %le",delti3[i][j][k]);
   strcpy(optionfilegnuplot,optionfilefiname);            fprintf(ficparo," %le",delti3[i][j][k]);
   if(mle==-3)            fprintf(ficlog," %le",delti3[i][j][k]);
     strcat(optionfilegnuplot,"-mort");          }
   strcat(optionfilegnuplot,".gp");          fscanf(ficpar,"\n");
           numlinepar++;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          printf("\n");
     printf("Problem with file %s",optionfilegnuplot);          fprintf(ficparo,"\n");
   }          fprintf(ficlog,"\n");
   else{        }
     fprintf(ficgp,"\n# %s\n", version);       }
     fprintf(ficgp,"# %s\n", optionfilegnuplot);       fflush(ficlog);
     fprintf(ficgp,"set missing 'NaNq'\n");  
   }      delti=delti3[1][1];
   /*  fclose(ficgp);*/  
   /*--------- index.htm --------*/  
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */   
   if(mle==-3)      /* Reads comments: lines beginning with '#' */
     strcat(optionfilehtm,"-mort");      while((c=getc(ficpar))=='#' && c!= EOF){
   strcat(optionfilehtm,".htm");        ungetc(c,ficpar);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        fgets(line, MAXLINE, ficpar);
     printf("Problem with %s \n",optionfilehtm), exit(0);        numlinepar++;
   }        puts(line);
         fputs(line,ficparo);
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */        fputs(line,ficlog);
   strcat(optionfilehtmcov,"-cov.htm");      }
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {      ungetc(c,ficpar);
     printf("Problem with %s \n",optionfilehtmcov), exit(0);   
   }      matcov=matrix(1,npar,1,npar);
   else{      for(i=1; i <=npar; i++){
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \        fscanf(ficpar,"%s",&str);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\        if(mle==1)
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\          printf("%s",str);
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);        fprintf(ficlog,"%s",str);
   }        fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \          fscanf(ficpar," %le",&matcov[i][j]);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\          if(mle==1){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\            printf(" %.5le",matcov[i][j]);
 \n\          }
 <hr  size=\"2\" color=\"#EC5E5E\">\          fprintf(ficlog," %.5le",matcov[i][j]);
  <ul><li><h4>Parameter files</h4>\n\          fprintf(ficparo," %.5le",matcov[i][j]);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\        }
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\        fscanf(ficpar,"\n");
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\        numlinepar++;
  - Date and time at start: %s</ul>\n",\        if(mle==1)
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\          printf("\n");
           fileres,fileres,\        fprintf(ficlog,"\n");
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);        fprintf(ficparo,"\n");
   fflush(fichtm);      }
       for(i=1; i <=npar; i++)
   strcpy(pathr,path);        for(j=i+1;j<=npar;j++)
   strcat(pathr,optionfilefiname);          matcov[i][j]=matcov[j][i];
   chdir(optionfilefiname); /* Move to directory named optionfile */     
         if(mle==1)
   /* Calculates basic frequencies. Computes observed prevalence at single age        printf("\n");
      and prints on file fileres'p'. */      fprintf(ficlog,"\n");
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);     
       fflush(ficlog);
   fprintf(fichtm,"\n");     
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\      /*-------- Rewriting parameter file ----------*/
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\      strcpy(rfileres,"r");    /* "Rparameterfile */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
           imx,agemin,agemax,jmin,jmax,jmean);      strcat(rfileres,".");    /* */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      strcat(rfileres,optionfilext);    /* Other files have txt extension */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if((ficres =fopen(rfileres,"w"))==NULL) {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        printf("Problem writing new parameter file: %s\n", fileres);goto end;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      }
           fprintf(ficres,"#%s\n",version);
        }    /* End of mle != -3 */
   /* For Powell, parameters are in a vector p[] starting at p[1]  
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    /*-------- data file ----------*/
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
   if (mle==-3){    }
     ximort=matrix(1,NDIM,1,NDIM);  
     cens=ivector(1,n);    n= lastobs;
     ageexmed=vector(1,n);    severity = vector(1,maxwav);
     agecens=vector(1,n);    outcome=imatrix(1,maxwav+1,1,n);
     dcwave=ivector(1,n);    num=lvector(1,n);
      moisnais=vector(1,n);
     for (i=1; i<=imx; i++){    annais=vector(1,n);
       dcwave[i]=-1;    moisdc=vector(1,n);
       for (j=1; j<=lastpass; j++)    andc=vector(1,n);
         if (s[j][i]>nlstate) {    agedc=vector(1,n);
           dcwave[i]=j;    cod=ivector(1,n);
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/    weight=vector(1,n);
           break;    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
         }    mint=matrix(1,maxwav,1,n);
     }    anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     for (i=1; i<=imx; i++) {    tab=ivector(1,NCOVMAX);
       if (wav[i]>0){    ncodemax=ivector(1,8);
         ageexmed[i]=agev[mw[1][i]][i];  
         j=wav[i];agecens[i]=1.;     i=1;
         if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];    linei=0;
         cens[i]=1;    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
               linei=linei+1;
         if (ageexmed[i]<1) cens[i]=-1;      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;        if(line[j] == '\t')
       }          line[j] = ' ';
       else cens[i]=-1;      }
     }      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
             ;
     for (i=1;i<=NDIM;i++) {      };
       for (j=1;j<=NDIM;j++)      line[j+1]=0;  /* Trims blanks at end of line */
         ximort[i][j]=(i == j ? 1.0 : 0.0);      if(line[0]=='#'){
     }        fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
     p[1]=0.1; p[2]=0.1;        continue;
     /*printf("%lf %lf", p[1], p[2]);*/      }
       
           for (j=maxwav;j>=1;j--){
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        cutv(stra, strb,line,' ');
   strcpy(filerespow,"pow-mort");         errno=0;
   strcat(filerespow,fileres);        lval=strtol(strb,&endptr,10);
   if((ficrespow=fopen(filerespow,"w"))==NULL) {        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
     printf("Problem with resultfile: %s\n", filerespow);        if( strb[0]=='\0' || (*endptr != '\0')){
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
   }          exit(1);
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        }
   /*  for (i=1;i<=nlstate;i++)        s[j][i]=lval;
     for(j=1;j<=nlstate+ndeath;j++)       
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        strcpy(line,stra);
   */        cutv(stra, strb,line,' ');
   fprintf(ficrespow,"\n");        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);        else  if(iout=sscanf(strb,"%s.") != 0){
     fclose(ficrespow);          month=99;
               year=9999;
     hesscov(matcov, p, NDIM,delti, 1e-4, gompertz);         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
     for(i=1; i <=NDIM; i++)          exit(1);
       for(j=i+1;j<=NDIM;j++)        }
         matcov[i][j]=matcov[j][i];        anint[j][i]= (double) year;
             mint[j][i]= (double)month;
     printf("\nCovariance matrix\n ");        strcpy(line,stra);
     for(i=1; i <=NDIM; i++) {      } /* ENd Waves */
       for(j=1;j<=NDIM;j++){      
         printf("%f ",matcov[i][j]);      cutv(stra, strb,line,' ');
       }      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       printf("\n ");      }
     }      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
             month=99;
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);        year=9999;
     for (i=1;i<=NDIM;i++)       }else{
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */        exit(1);
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      }
           andc[i]=(double) year;
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \      moisdc[i]=(double) month;
                      stepm, weightopt,\      strcpy(line,stra);
                      model,imx,p,matcov);     
   } /* Endof if mle==-3 */      cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   else{ /* For mle >=1 */      }
         else  if(iout=sscanf(strb,"%s.") != 0){
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */        month=99;
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);        year=9999;
     for (k=1; k<=npar;k++)      }else{
       printf(" %d %8.5f",k,p[k]);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
     printf("\n");        exit(1);
     globpr=1; /* to print the contributions */      }
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      annais[i]=(double)(year);
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      moisnais[i]=(double)(month);
     for (k=1; k<=npar;k++)      strcpy(line,stra);
       printf(" %d %8.5f",k,p[k]);     
     printf("\n");      cutv(stra, strb,line,' ');
     if(mle>=1){ /* Could be 1 or 2 */      errno=0;
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      dval=strtod(strb,&endptr);
     }      if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
     /*--------- results files --------------*/        exit(1);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      }
           weight[i]=dval;
           strcpy(line,stra);
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for (j=ncovcol;j>=1;j--){
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        cutv(stra, strb,line,' ');
     for(i=1,jk=1; i <=nlstate; i++){        errno=0;
       for(k=1; k <=(nlstate+ndeath); k++){        lval=strtol(strb,&endptr,10);
         if (k != i) {        if( strb[0]=='\0' || (*endptr != '\0')){
           printf("%d%d ",i,k);          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           fprintf(ficlog,"%d%d ",i,k);          exit(1);
           fprintf(ficres,"%1d%1d ",i,k);        }
           for(j=1; j <=ncovmodel; j++){        if(lval <-1 || lval >1){
             printf("%f ",p[jk]);          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
             fprintf(ficlog,"%f ",p[jk]);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
             fprintf(ficres,"%f ",p[jk]);   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
             jk++;    For example, for multinomial values like 1, 2 and 3,\n \
           }   build V1=0 V2=0 for the reference value (1),\n \
           printf("\n");          V1=1 V2=0 for (2) \n \
           fprintf(ficlog,"\n");   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
           fprintf(ficres,"\n");   output of IMaCh is often meaningless.\n \
         }   Exiting.\n",lval,linei, i,line,j);
       }          exit(1);
     }        }
     if(mle!=0){        covar[j][i]=(double)(lval);
       /* Computing hessian and covariance matrix */        strcpy(line,stra);
       ftolhess=ftol; /* Usually correct */      }
       hesscov(matcov, p, npar, delti, ftolhess, func);      lstra=strlen(stra);
     }     
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
     printf("# Scales (for hessian or gradient estimation)\n");        stratrunc = &(stra[lstra-9]);
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        num[i]=atol(stratrunc);
     for(i=1,jk=1; i <=nlstate; i++){      }
       for(j=1; j <=nlstate+ndeath; j++){      else
         if (j!=i) {        num[i]=atol(stra);
           fprintf(ficres,"%1d%1d",i,j);      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%1d%1d",i,j);        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
           fprintf(ficlog,"%1d%1d",i,j);     
           for(k=1; k<=ncovmodel;k++){      i=i+1;
             printf(" %.5e",delti[jk]);    } /* End loop reading  data */
             fprintf(ficlog," %.5e",delti[jk]);    fclose(fic);
             fprintf(ficres," %.5e",delti[jk]);    /* printf("ii=%d", ij);
             jk++;       scanf("%d",i);*/
           }    imx=i-1; /* Number of individuals */
           printf("\n");  
           fprintf(ficlog,"\n");    /* for (i=1; i<=imx; i++){
           fprintf(ficres,"\n");      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
         }      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       }      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
     }      }*/
          /*  for (i=1; i<=imx; i++){
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       if (s[4][i]==9)  s[4][i]=-1;
     if(mle>=1)       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    /* for (i=1; i<=imx; i++) */
     /* # 121 Var(a12)\n\ */   
     /* # 122 Cov(b12,a12) Var(b12)\n\ */     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */       else weight[i]=1;*/
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */  
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    /* Calculation of the number of parameters from char model */
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    Tprod=ivector(1,15);
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    Tvaraff=ivector(1,15);
         Tvard=imatrix(1,15,1,2);
         Tage=ivector(1,15);      
     /* Just to have a covariance matrix which will be more understandable     
        even is we still don't want to manage dictionary of variables    if (strlen(model) >1){ /* If there is at least 1 covariate */
     */      j=0, j1=0, k1=1, k2=1;
     for(itimes=1;itimes<=2;itimes++){      j=nbocc(model,'+'); /* j=Number of '+' */
       jj=0;      j1=nbocc(model,'*'); /* j1=Number of '*' */
       for(i=1; i <=nlstate; i++){      cptcovn=j+1;
         for(j=1; j <=nlstate+ndeath; j++){      cptcovprod=j1; /*Number of products */
           if(j==i) continue;     
           for(k=1; k<=ncovmodel;k++){      strcpy(modelsav,model);
             jj++;      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
             ca[0]= k+'a'-1;ca[1]='\0';        printf("Error. Non available option model=%s ",model);
             if(itimes==1){        fprintf(ficlog,"Error. Non available option model=%s ",model);
               if(mle>=1)        goto end;
                 printf("#%1d%1d%d",i,j,k);      }
               fprintf(ficlog,"#%1d%1d%d",i,j,k);     
               fprintf(ficres,"#%1d%1d%d",i,j,k);      /* This loop fills the array Tvar from the string 'model'.*/
             }else{  
               if(mle>=1)      for(i=(j+1); i>=1;i--){
                 printf("%1d%1d%d",i,j,k);        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
               fprintf(ficlog,"%1d%1d%d",i,j,k);        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
               fprintf(ficres,"%1d%1d%d",i,j,k);        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
             }        /*scanf("%d",i);*/
             ll=0;        if (strchr(strb,'*')) {  /* Model includes a product */
             for(li=1;li <=nlstate; li++){          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
               for(lj=1;lj <=nlstate+ndeath; lj++){          if (strcmp(strc,"age")==0) { /* Vn*age */
                 if(lj==li) continue;            cptcovprod--;
                 for(lk=1;lk<=ncovmodel;lk++){            cutv(strb,stre,strd,'V');
                   ll++;            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
                   if(ll<=jj){            cptcovage++;
                     cb[0]= lk +'a'-1;cb[1]='\0';              Tage[cptcovage]=i;
                     if(ll<jj){              /*printf("stre=%s ", stre);*/
                       if(itimes==1){          }
                         if(mle>=1)          else if (strcmp(strd,"age")==0) { /* or age*Vn */
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            cptcovprod--;
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            cutv(strb,stre,strc,'V');
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            Tvar[i]=atoi(stre);
                       }else{            cptcovage++;
                         if(mle>=1)            Tage[cptcovage]=i;
                           printf(" %.5e",matcov[jj][ll]);           }
                         fprintf(ficlog," %.5e",matcov[jj][ll]);           else {  /* Age is not in the model */
                         fprintf(ficres," %.5e",matcov[jj][ll]);             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
                       }            Tvar[i]=ncovcol+k1;
                     }else{            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
                       if(itimes==1){            Tprod[k1]=i;
                         if(mle>=1)            Tvard[k1][1]=atoi(strc); /* m*/
                           printf(" Var(%s%1d%1d)",ca,i,j);            Tvard[k1][2]=atoi(stre); /* n */
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);            Tvar[cptcovn+k2]=Tvard[k1][1];
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);            Tvar[cptcovn+k2+1]=Tvard[k1][2];
                       }else{            for (k=1; k<=lastobs;k++)
                         if(mle>=1)              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
                           printf(" %.5e",matcov[jj][ll]);             k1++;
                         fprintf(ficlog," %.5e",matcov[jj][ll]);             k2=k2+2;
                         fprintf(ficres," %.5e",matcov[jj][ll]);           }
                       }        }
                     }        else { /* no more sum */
                   }          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
                 } /* end lk */         /*  scanf("%d",i);*/
               } /* end lj */        cutv(strd,strc,strb,'V');
             } /* end li */        Tvar[i]=atoi(strc);
             if(mle>=1)        }
               printf("\n");        strcpy(modelsav,stra);  
             fprintf(ficlog,"\n");        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             fprintf(ficres,"\n");          scanf("%d",i);*/
             numlinepar++;      } /* end of loop + */
           } /* end k*/    } /* end model */
         } /*end j */   
       } /* end i */    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
     } /* end itimes */      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
       
     fflush(ficlog);    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     fflush(ficres);    printf("cptcovprod=%d ", cptcovprod);
         fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);    scanf("%d ",i);*/
       fgets(line, MAXLINE, ficpar);  
       puts(line);      /*  if(mle==1){*/
       fputs(line,ficparo);    if (weightopt != 1) { /* Maximisation without weights*/
     }      for(i=1;i<=n;i++) weight[i]=1.0;
     ungetc(c,ficpar);    }
           /*-calculation of age at interview from date of interview and age at death -*/
     estepm=0;    agev=matrix(1,maxwav,1,imx);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
     if (estepm==0 || estepm < stepm) estepm=stepm;    for (i=1; i<=imx; i++) {
     if (fage <= 2) {      for(m=2; (m<= maxwav); m++) {
       bage = ageminpar;        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
       fage = agemaxpar;          anint[m][i]=9999;
     }          s[m][i]=-1;
             }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          nberr++;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
               fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
     while((c=getc(ficpar))=='#' && c!= EOF){          s[m][i]=-1;
       ungetc(c,ficpar);        }
       fgets(line, MAXLINE, ficpar);        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
       puts(line);          nberr++;
       fputs(line,ficparo);          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
     }          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
     ungetc(c,ficpar);          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
             }
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);      }
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    }
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    for (i=1; i<=imx; i++)  {
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
           for(m=firstpass; (m<= lastpass); m++){
     while((c=getc(ficpar))=='#' && c!= EOF){        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
       ungetc(c,ficpar);          if (s[m][i] >= nlstate+1) {
       fgets(line, MAXLINE, ficpar);            if(agedc[i]>0)
       puts(line);              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
       fputs(line,ficparo);                agev[m][i]=agedc[i];
     }            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
     ungetc(c,ficpar);              else {
                     if ((int)andc[i]!=9999){
                       nbwarn++;
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                       agev[m][i]=-1;
     fscanf(ficpar,"pop_based=%d\n",&popbased);                }
     fprintf(ficparo,"pop_based=%d\n",popbased);                 }
     fprintf(ficres,"pop_based=%d\n",popbased);             }
               else if(s[m][i] !=9){ /* Standard case, age in fractional
     while((c=getc(ficpar))=='#' && c!= EOF){                                   years but with the precision of a month */
       ungetc(c,ficpar);            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
       fgets(line, MAXLINE, ficpar);            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
       puts(line);              agev[m][i]=1;
       fputs(line,ficparo);            else if(agev[m][i] <agemin){
     }              agemin=agev[m][i];
     ungetc(c,ficpar);              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
                 }
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);            else if(agev[m][i] >agemax){
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);              agemax=agev[m][i];
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            }
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            /*agev[m][i]=anint[m][i]-annais[i];*/
     /* day and month of proj2 are not used but only year anproj2.*/            /*     agev[m][i] = age[i]+2*m;*/
               }
               else { /* =9 */
                 agev[m][i]=1;
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/            s[m][i]=-1;
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/          }
             }
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */        else /*= 0 Unknown */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);          agev[m][i]=1;
           }
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\     
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\    }
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    for (i=1; i<=imx; i++)  {
             for(m=firstpass; (m<=lastpass); m++){
    /*------------ free_vector  -------------*/        if (s[m][i] > (nlstate+ndeath)) {
    /*  chdir(path); */          nberr++;
            printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     free_ivector(wav,1,imx);          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          goto end;
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);        }
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         }
     free_lvector(num,1,n);    }
     free_vector(agedc,1,n);  
     /*free_matrix(covar,0,NCOVMAX,1,n);*/    /*for (i=1; i<=imx; i++){
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    for (m=firstpass; (m<lastpass); m++){
     fclose(ficparo);       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     fclose(ficres);  }
   
   }*/
     /*--------------- Prevalence limit  (stable prevalence) --------------*/  
     
     strcpy(filerespl,"pl");    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     strcat(filerespl,fileres);    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {  
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    agegomp=(int)agemin;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    free_vector(severity,1,maxwav);
     }    free_imatrix(outcome,1,maxwav+1,1,n);
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);    free_vector(moisnais,1,n);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);    free_vector(annais,1,n);
     fprintf(ficrespl,"#Stable prevalence \n");    /* free_matrix(mint,1,maxwav,1,n);
     fprintf(ficrespl,"#Age ");       free_matrix(anint,1,maxwav,1,n);*/
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    free_vector(moisdc,1,n);
     fprintf(ficrespl,"\n");    free_vector(andc,1,n);
     
     prlim=matrix(1,nlstate,1,nlstate);     
     wav=ivector(1,imx);
     agebase=ageminpar;    dh=imatrix(1,lastpass-firstpass+1,1,imx);
     agelim=agemaxpar;    bh=imatrix(1,lastpass-firstpass+1,1,imx);
     ftolpl=1.e-10;    mw=imatrix(1,lastpass-firstpass+1,1,imx);
     i1=cptcoveff;     
     if (cptcovn < 1){i1=1;}    /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){  
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    Tcode=ivector(1,100);
         fprintf(ficrespl,"\n#******");    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
         printf("\n#******");    ncodemax[1]=1;
         fprintf(ficlog,"\n#******");    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         for(j=1;j<=cptcoveff;j++) {       
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                                   the estimations*/
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    h=0;
         }    m=pow(2,cptcoveff);
         fprintf(ficrespl,"******\n");   
         printf("******\n");    for(k=1;k<=cptcoveff; k++){
         fprintf(ficlog,"******\n");      for(i=1; i <=(m/pow(2,k));i++){
                 for(j=1; j <= ncodemax[k]; j++){
         for (age=agebase; age<=agelim; age++){          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            h++;
           fprintf(ficrespl,"%.0f ",age );            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
           for(j=1;j<=cptcoveff;j++)            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
           for(i=1; i<=nlstate;i++)        }
             fprintf(ficrespl," %.5f", prlim[i][i]);      }
           fprintf(ficrespl,"\n");    }
         }    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
       }       codtab[1][2]=1;codtab[2][2]=2; */
     }    /* for(i=1; i <=m ;i++){
     fclose(ficrespl);       for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
     /*------------- h Pij x at various ages ------------*/       }
          printf("\n");
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);       }
     if((ficrespij=fopen(filerespij,"w"))==NULL) {       scanf("%d",i);*/
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;     
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    /*------------ gnuplot -------------*/
     }    strcpy(optionfilegnuplot,optionfilefiname);
     printf("Computing pij: result on file '%s' \n", filerespij);    if(mle==-3)
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      strcat(optionfilegnuplot,"-mort");
       strcat(optionfilegnuplot,".gp");
     stepsize=(int) (stepm+YEARM-1)/YEARM;  
     /*if (stepm<=24) stepsize=2;*/    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     agelim=AGESUP;    }
     hstepm=stepsize*YEARM; /* Every year of age */    else{
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       fprintf(ficgp,"\n# %s\n", version);
       fprintf(ficgp,"# %s\n", optionfilegnuplot);
     /* hstepm=1;   aff par mois*/      fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");    /*  fclose(ficgp);*/
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){    /*--------- index.htm --------*/
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
         fprintf(ficrespij,"\n#****** ");    if(mle==-3)
         for(j=1;j<=cptcoveff;j++)       strcat(optionfilehtm,"-mort");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(optionfilehtm,".htm");
         fprintf(ficrespij,"******\n");    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
               printf("Problem with %s \n",optionfilehtm), exit(0);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;    else{
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");  <hr size=\"2\" color=\"#EC5E5E\"> \n\
           for(i=1; i<=nlstate;i++)  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             for(j=1; j<=nlstate+ndeath;j++)            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
               fprintf(ficrespij," %1d-%1d",i,j);    }
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  <hr size=\"2\" color=\"#EC5E5E\"> \n\
             for(i=1; i<=nlstate;i++)  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
               for(j=1; j<=nlstate+ndeath;j++)  \n\
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  <hr  size=\"2\" color=\"#EC5E5E\">\
             fprintf(ficrespij,"\n");   <ul><li><h4>Parameter files</h4>\n\
           }   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
           fprintf(ficrespij,"\n");   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
         }   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
       }   - Date and time at start: %s</ul>\n",\
     }            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);            fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fclose(ficrespij);    fflush(fichtm);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcpy(pathr,path);
     for(i=1;i<=AGESUP;i++)    strcat(pathr,optionfilefiname);
       for(j=1;j<=NCOVMAX;j++)    chdir(optionfilefiname); /* Move to directory named optionfile */
         for(k=1;k<=NCOVMAX;k++)   
           probs[i][j][k]=0.;    /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     /*---------- Forecasting ------------------*/    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/  
     if(prevfcast==1){    fprintf(fichtm,"\n");
       /*    if(stepm ==1){*/    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
       /*      }  */            imx,agemin,agemax,jmin,jmax,jmean);
       /*      else{ */    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       /*        erreur=108; */      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       /*      } */      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
     }     
        
     /* For Powell, parameters are in a vector p[] starting at p[1]
     /*---------- Health expectancies and variances ------------*/       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
     strcpy(filerest,"t");  
     strcat(filerest,fileres);    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if((ficrest=fopen(filerest,"w"))==NULL) {  
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;    if (mle==-3){
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      ximort=matrix(1,NDIM,1,NDIM);
     }      cens=ivector(1,n);
     printf("Computing Total LEs with variances: file '%s' \n", filerest);       ageexmed=vector(1,n);
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
     strcpy(filerese,"e");      for (i=1; i<=imx; i++){
     strcat(filerese,fileres);        dcwave[i]=-1;
     if((ficreseij=fopen(filerese,"w"))==NULL) {        for (m=firstpass; m<=lastpass; m++)
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          if (s[m][i]>nlstate) {
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            dcwave[i]=m;
     }            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);            break;
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);          }
       }
     strcpy(fileresv,"v");  
     strcat(fileresv,fileres);      for (i=1; i<=imx; i++) {
     if((ficresvij=fopen(fileresv,"w"))==NULL) {        if (wav[i]>0){
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          ageexmed[i]=agev[mw[1][i]][i];
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);          j=wav[i];
     }          agecens[i]=1.;
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */            cens[i]= 1;
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          }else if (ageexmed[i]< 1)
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\            cens[i]= -1;
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
     */            cens[i]=0 ;
         }
     if (mobilav!=0) {        else cens[i]=-1;
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){     
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      for (i=1;i<=NDIM;i++) {
         printf(" Error in movingaverage mobilav=%d\n",mobilav);        for (j=1;j<=NDIM;j++)
       }          ximort[i][j]=(i == j ? 1.0 : 0.0);
     }      }
      
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      p[1]=0.0268; p[NDIM]=0.083;
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /*printf("%lf %lf", p[1], p[2]);*/
         k=k+1;      
         fprintf(ficrest,"\n#****** ");     
         for(j=1;j<=cptcoveff;j++)       printf("Powell\n");  fprintf(ficlog,"Powell\n");
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcpy(filerespow,"pow-mort");
         fprintf(ficrest,"******\n");      strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         fprintf(ficreseij,"\n#****** ");        printf("Problem with resultfile: %s\n", filerespow);
         for(j=1;j<=cptcoveff;j++)         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
         fprintf(ficreseij,"******\n");      fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
         fprintf(ficresvij,"\n#****** ");          for(j=1;j<=nlstate+ndeath;j++)
         for(j=1;j<=cptcoveff;j++)           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      */
         fprintf(ficresvij,"******\n");      fprintf(ficrespow,"\n");
      
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
         oldm=oldms;savm=savms;      fclose(ficrespow);
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);       
        hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
         oldm=oldms;savm=savms;      for(i=1; i <=NDIM; i++)
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);        for(j=i+1;j<=NDIM;j++)
         if(popbased==1){          matcov[i][j]=matcov[j][i];
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);     
         }      printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
          for(j=1;j<=NDIM;j++){
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          printf("%f ",matcov[i][j]);
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        }
         fprintf(ficrest,"\n");        printf("\n ");
       }
         epj=vector(1,nlstate+1);     
         for(age=bage; age <=fage ;age++){      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for (i=1;i<=NDIM;i++)
           if (popbased==1) {        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
             if(mobilav ==0){  
               for(i=1; i<=nlstate;i++)      lsurv=vector(1,AGESUP);
                 prlim[i][i]=probs[(int)age][i][k];      lpop=vector(1,AGESUP);
             }else{ /* mobilav */       tpop=vector(1,AGESUP);
               for(i=1; i<=nlstate;i++)      lsurv[agegomp]=100000;
                 prlim[i][i]=mobaverage[(int)age][i][k];     
             }      for (k=agegomp;k<=AGESUP;k++) {
           }        agemortsup=k;
                 if (p[1]*exp(p[2]*(k-agegomp))>1) break;
           fprintf(ficrest," %4.0f",age);      }
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){     
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      for (k=agegomp;k<agemortsup;k++)
               epj[j] += prlim[i][i]*eij[i][j][(int)age];        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/     
             }      for (k=agegomp;k<agemortsup;k++){
             epj[nlstate+1] +=epj[j];        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
           }        sumlpop=sumlpop+lpop[k];
       }
           for(i=1, vepp=0.;i <=nlstate;i++)     
             for(j=1;j <=nlstate;j++)      tpop[agegomp]=sumlpop;
               vepp += vareij[i][j][(int)age];      for (k=agegomp;k<(agemortsup-3);k++){
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        /*  tpop[k+1]=2;*/
           for(j=1;j <=nlstate;j++){        tpop[k+1]=tpop[k]-lpop[k];
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      }
           }     
           fprintf(ficrest,"\n");     
         }      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      for (k=agegomp;k<(agemortsup-2);k++)
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
         free_vector(epj,1,nlstate+1);     
       }     
     }      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     free_vector(weight,1,n);      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     free_imatrix(Tvard,1,15,1,2);     
     free_imatrix(s,1,maxwav+1,1,n);      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
     free_matrix(anint,1,maxwav,1,n);                        stepm, weightopt,\
     free_matrix(mint,1,maxwav,1,n);                       model,imx,p,matcov,agemortsup);
     free_ivector(cod,1,n);     
     free_ivector(tab,1,NCOVMAX);      free_vector(lsurv,1,AGESUP);
     fclose(ficreseij);      free_vector(lpop,1,AGESUP);
     fclose(ficresvij);      free_vector(tpop,1,AGESUP);
     fclose(ficrest);    } /* Endof if mle==-3 */
     fclose(ficpar);   
       else{ /* For mle >=1 */
     /*------- Variance of stable prevalence------*/      
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     strcpy(fileresvpl,"vpl");      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     strcat(fileresvpl,fileres);      for (k=1; k<=npar;k++)
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        printf(" %d %8.5f",k,p[k]);
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);      printf("\n");
       exit(0);      globpr=1; /* to print the contributions */
     }      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){        printf(" %d %8.5f",k,p[k]);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      printf("\n");
         k=k+1;      if(mle>=1){ /* Could be 1 or 2 */
         fprintf(ficresvpl,"\n#****** ");        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
         for(j=1;j<=cptcoveff;j++)       }
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
         fprintf(ficresvpl,"******\n");      /*--------- results files --------------*/
             fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
         varpl=matrix(1,nlstate,(int) bage, (int) fage);     
         oldm=oldms;savm=savms;     
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       }      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     }      for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
     fclose(ficresvpl);          if (k != i) {
             printf("%d%d ",i,k);
     /*---------- End : free ----------------*/            fprintf(ficlog,"%d%d ",i,k);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficres,"%1d%1d ",i,k);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
   }  /* mle==-3 arrives here for freeing */              fprintf(ficlog,"%lf ",p[jk]);
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              fprintf(ficres,"%lf ",p[jk]);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);              jk++;
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            }
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            printf("\n");
               fprintf(ficlog,"\n");
     free_matrix(covar,0,NCOVMAX,1,n);            fprintf(ficres,"\n");
     free_matrix(matcov,1,npar,1,npar);          }
     /*free_vector(delti,1,npar);*/        }
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       }
     free_matrix(agev,1,maxwav,1,imx);      if(mle!=0){
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
     free_ivector(ncodemax,1,8);        hesscov(matcov, p, npar, delti, ftolhess, func);
     free_ivector(Tvar,1,15);      }
     free_ivector(Tprod,1,15);      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     free_ivector(Tvaraff,1,15);      printf("# Scales (for hessian or gradient estimation)\n");
     free_ivector(Tage,1,15);      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     free_ivector(Tcode,1,100);      for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
   fflush(fichtm);            fprintf(ficres,"%1d%1d",i,j);
   fflush(ficgp);            printf("%1d%1d",i,j);
               fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
   if((nberr >0) || (nbwarn>0)){              printf(" %.5e",delti[jk]);
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);              fprintf(ficlog," %.5e",delti[jk]);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);              fprintf(ficres," %.5e",delti[jk]);
   }else{              jk++;
     printf("End of Imach\n");            }
     fprintf(ficlog,"End of Imach\n");            printf("\n");
   }            fprintf(ficlog,"\n");
   printf("See log file on %s\n",filelog);            fprintf(ficres,"\n");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          }
   (void) gettimeofday(&end_time,&tzp);        }
   tm = *localtime(&end_time.tv_sec);      }
   tmg = *gmtime(&end_time.tv_sec);     
   strcpy(strtend,asctime(&tm));      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend);       if(mle>=1)
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      /* # 122 Cov(b12,a12) Var(b12)\n\ */
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 /*   if(fileappend(fichtm,optionfilehtm)){ */      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   fclose(fichtm);      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   fclose(fichtmcov);     
   fclose(ficgp);     
   fclose(ficlog);      /* Just to have a covariance matrix which will be more understandable
   /*------ End -----------*/         even is we still don't want to manage dictionary of variables
       */
   chdir(path);      for(itimes=1;itimes<=2;itimes++){
   strcpy(plotcmd,"\"");        jj=0;
   strcat(plotcmd,pathimach);        for(i=1; i <=nlstate; i++){
   strcat(plotcmd,GNUPLOTPROGRAM);          for(j=1; j <=nlstate+ndeath; j++){
   strcat(plotcmd,"\"");            if(j==i) continue;
   strcat(plotcmd," ");            for(k=1; k<=ncovmodel;k++){
   strcat(plotcmd,optionfilegnuplot);              jj++;
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);              ca[0]= k+'a'-1;ca[1]='\0';
   if((outcmd=system(plotcmd)) != 0){              if(itimes==1){
     printf(" Problem with gnuplot\n");                if(mle>=1)
   }                  printf("#%1d%1d%d",i,j,k);
   printf(" Wait...");                fprintf(ficlog,"#%1d%1d%d",i,j,k);
   while (z[0] != 'q') {                fprintf(ficres,"#%1d%1d%d",i,j,k);
     /* chdir(path); */              }else{
     printf("\nType e to edit output files, g to graph again and q for exiting: ");                if(mle>=1)
     scanf("%s",z);                  printf("%1d%1d%d",i,j,k);
 /*     if (z[0] == 'c') system("./imach"); */                fprintf(ficlog,"%1d%1d%d",i,j,k);
     if (z[0] == 'e') {                fprintf(ficres,"%1d%1d%d",i,j,k);
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);              }
       system(optionfilehtm);              ll=0;
     }              for(li=1;li <=nlstate; li++){
     else if (z[0] == 'g') system(plotcmd);                for(lj=1;lj <=nlstate+ndeath; lj++){
     else if (z[0] == 'q') exit(0);                  if(lj==li) continue;
   }                  for(lk=1;lk<=ncovmodel;lk++){
   end:                    ll++;
   while (z[0] != 'q') {                    if(ll<=jj){
     printf("\nType  q for exiting: ");                      cb[0]= lk +'a'-1;cb[1]='\0';
     scanf("%s",z);                      if(ll<jj){
   }                        if(itimes==1){
 }                          if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.101  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>