Diff for /imach/src/imach.c between versions 1.102 and 1.125

version 1.102, 2004/09/15 17:31:30 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   Add the possibility to read data file including tab characters.    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   Revision 1.101  2004/09/15 10:38:38  brouard  
   Fix on curr_time    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
   Revision 1.100  2004/07/12 18:29:06  brouard    The log-likelihood is printed in the log file
   Add version for Mac OS X. Just define UNIX in Makefile  
     Revision 1.123  2006/03/20 10:52:43  brouard
   Revision 1.99  2004/06/05 08:57:40  brouard    * imach.c (Module): <title> changed, corresponds to .htm file
   *** empty log message ***    name. <head> headers where missing.
   
   Revision 1.98  2004/05/16 15:05:56  brouard    * imach.c (Module): Weights can have a decimal point as for
   New version 0.97 . First attempt to estimate force of mortality    English (a comma might work with a correct LC_NUMERIC environment,
   directly from the data i.e. without the need of knowing the health    otherwise the weight is truncated).
   state at each age, but using a Gompertz model: log u =a + b*age .    Modification of warning when the covariates values are not 0 or
   This is the basic analysis of mortality and should be done before any    1.
   other analysis, in order to test if the mortality estimated from the    Version 0.98g
   cross-longitudinal survey is different from the mortality estimated  
   from other sources like vital statistic data.    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
   The same imach parameter file can be used but the option for mle should be -3.    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Agnès, who wrote this part of the code, tried to keep most of the    Modification of warning when the covariates values are not 0 or
   former routines in order to include the new code within the former code.    1.
     Version 0.98g
   The output is very simple: only an estimate of the intercept and of  
   the slope with 95% confident intervals.    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
   Current limitations:  
   A) Even if you enter covariates, i.e. with the    * imach.c (Module): refinements in the computation of lli if
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    status=-2 in order to have more reliable computation if stepm is
   B) There is no computation of Life Expectancy nor Life Table.    not 1 month. Version 0.98f
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    (Module): refinements in the computation of lli if
   suppressed.    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   Revision 1.96  2003/07/15 15:38:55  brouard  
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    Revision 1.119  2006/03/15 17:42:26  brouard
   rewritten within the same printf. Workaround: many printfs.    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
   Revision 1.95  2003/07/08 07:54:34  brouard  
   * imach.c (Repository):    Revision 1.118  2006/03/14 18:20:07  brouard
   (Repository): Using imachwizard code to output a more meaningful covariance    (Module): varevsij Comments added explaining the second
   matrix (cov(a12,c31) instead of numbers.    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Revision 1.94  2003/06/27 13:00:02  brouard    (Module): Function pstamp added
   Just cleaning    (Module): Version 0.98d
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): varevsij Comments added explaining the second
   exist so I changed back to asctime which exists.    table of variances if popbased=1 .
   (Module): Version 0.96b    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Revision 1.92  2003/06/25 16:30:45  brouard    (Module): Version 0.98d
   (Module): On windows (cygwin) function asctime_r doesn't  
   exist so I changed back to asctime which exists.    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
   Revision 1.91  2003/06/25 15:30:29  brouard    varian-covariance of ej. is needed (Saito).
   * imach.c (Repository): Duplicated warning errors corrected.  
   (Repository): Elapsed time after each iteration is now output. It    Revision 1.115  2006/02/27 12:17:45  brouard
   helps to forecast when convergence will be reached. Elapsed time    (Module): One freematrix added in mlikeli! 0.98c
   is stamped in powell.  We created a new html file for the graphs  
   concerning matrix of covariance. It has extension -cov.htm.    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
   Revision 1.90  2003/06/24 12:34:15  brouard    filename with strsep.
   (Module): Some bugs corrected for windows. Also, when  
   mle=-1 a template is output in file "or"mypar.txt with the design    Revision 1.113  2006/02/24 14:20:24  brouard
   of the covariance matrix to be input.    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
   Revision 1.89  2003/06/24 12:30:52  brouard    allocation too.
   (Module): Some bugs corrected for windows. Also, when  
   mle=-1 a template is output in file "or"mypar.txt with the design    Revision 1.112  2006/01/30 09:55:26  brouard
   of the covariance matrix to be input.    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
   Revision 1.87  2003/06/18 12:26:01  brouard    can be a simple dot '.'.
   Version 0.96  
     Revision 1.110  2006/01/25 00:51:50  brouard
   Revision 1.86  2003/06/17 20:04:08  brouard    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Change position of html and gnuplot routines and added  
   routine fileappend.    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
   Revision 1.85  2003/06/17 13:12:43  brouard  
   * imach.c (Repository): Check when date of death was earlier that    Revision 1.108  2006/01/19 18:05:42  lievre
   current date of interview. It may happen when the death was just    Gnuplot problem appeared...
   prior to the death. In this case, dh was negative and likelihood    To be fixed
   was wrong (infinity). We still send an "Error" but patch by  
   assuming that the date of death was just one stepm after the    Revision 1.107  2006/01/19 16:20:37  brouard
   interview.    Test existence of gnuplot in imach path
   (Repository): Because some people have very long ID (first column)  
   we changed int to long in num[] and we added a new lvector for    Revision 1.106  2006/01/19 13:24:36  brouard
   memory allocation. But we also truncated to 8 characters (left    Some cleaning and links added in html output
   truncation)  
   (Repository): No more line truncation errors.    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
   Revision 1.84  2003/06/13 21:44:43  brouard  
   * imach.c (Repository): Replace "freqsummary" at a correct    Revision 1.104  2005/09/30 16:11:43  lievre
   place. It differs from routine "prevalence" which may be called    (Module): sump fixed, loop imx fixed, and simplifications.
   many times. Probs is memory consuming and must be used with    (Module): If the status is missing at the last wave but we know
   parcimony.    that the person is alive, then we can code his/her status as -2
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
   Revision 1.83  2003/06/10 13:39:11  lievre    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   *** empty log message ***    the healthy state at last known wave). Version is 0.98
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.103  2005/09/30 15:54:49  lievre
   Add log in  imach.c and  fullversion number is now printed.    (Module): sump fixed, loop imx fixed, and simplifications.
   
 */    Revision 1.102  2004/09/15 17:31:30  brouard
 /*    Add the possibility to read data file including tab characters.
    Interpolated Markov Chain  
     Revision 1.101  2004/09/15 10:38:38  brouard
   Short summary of the programme:    Fix on curr_time
     
   This program computes Healthy Life Expectancies from    Revision 1.100  2004/07/12 18:29:06  brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Add version for Mac OS X. Just define UNIX in Makefile
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.99  2004/06/05 08:57:40  brouard
   case of a health survey which is our main interest) -2- at least a    *** empty log message ***
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.98  2004/05/16 15:05:56  brouard
   computed from the time spent in each health state according to a    New version 0.97 . First attempt to estimate force of mortality
   model. More health states you consider, more time is necessary to reach the    directly from the data i.e. without the need of knowing the health
   Maximum Likelihood of the parameters involved in the model.  The    state at each age, but using a Gompertz model: log u =a + b*age .
   simplest model is the multinomial logistic model where pij is the    This is the basic analysis of mortality and should be done before any
   probability to be observed in state j at the second wave    other analysis, in order to test if the mortality estimated from the
   conditional to be observed in state i at the first wave. Therefore    cross-longitudinal survey is different from the mortality estimated
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    from other sources like vital statistic data.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    The same imach parameter file can be used but the option for mle should be -3.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Agnès, who wrote this part of the code, tried to keep most of the
   convergence.    former routines in order to include the new code within the former code.
   
   The advantage of this computer programme, compared to a simple    The output is very simple: only an estimate of the intercept and of
   multinomial logistic model, is clear when the delay between waves is not    the slope with 95% confident intervals.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Current limitations:
   account using an interpolation or extrapolation.      A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   hPijx is the probability to be observed in state i at age x+h    B) There is no computation of Life Expectancy nor Life Table.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.97  2004/02/20 13:25:42  lievre
   states. This elementary transition (by month, quarter,    Version 0.96d. Population forecasting command line is (temporarily)
   semester or year) is modelled as a multinomial logistic.  The hPx    suppressed.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.96  2003/07/15 15:38:55  brouard
   hPijx.    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the stable prevalence.     Revision 1.95  2003/07/08 07:54:34  brouard
       * imach.c (Repository):
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Repository): Using imachwizard code to output a more meaningful covariance
            Institut national d'études démographiques, Paris.    matrix (cov(a12,c31) instead of numbers.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.94  2003/06/27 13:00:02  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Just cleaning
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    exist so I changed back to asctime which exists.
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    (Module): Version 0.96b
     
   **********************************************************************/    Revision 1.92  2003/06/25 16:30:45  brouard
 /*    (Module): On windows (cygwin) function asctime_r doesn't
   main    exist so I changed back to asctime which exists.
   read parameterfile  
   read datafile    Revision 1.91  2003/06/25 15:30:29  brouard
   concatwav    * imach.c (Repository): Duplicated warning errors corrected.
   freqsummary    (Repository): Elapsed time after each iteration is now output. It
   if (mle >= 1)    helps to forecast when convergence will be reached. Elapsed time
     mlikeli    is stamped in powell.  We created a new html file for the graphs
   print results files    concerning matrix of covariance. It has extension -cov.htm.
   if mle==1   
      computes hessian    Revision 1.90  2003/06/24 12:34:15  brouard
   read end of parameter file: agemin, agemax, bage, fage, estepm    (Module): Some bugs corrected for windows. Also, when
       begin-prev-date,...    mle=-1 a template is output in file "or"mypar.txt with the design
   open gnuplot file    of the covariance matrix to be input.
   open html file  
   stable prevalence    Revision 1.89  2003/06/24 12:30:52  brouard
    for age prevalim()    (Module): Some bugs corrected for windows. Also, when
   h Pij x    mle=-1 a template is output in file "or"mypar.txt with the design
   variance of p varprob    of the covariance matrix to be input.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    Revision 1.88  2003/06/23 17:54:56  brouard
   Variance-covariance of DFLE    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   prevalence()  
    movingaverage()    Revision 1.87  2003/06/18 12:26:01  brouard
   varevsij()     Version 0.96
   if popbased==1 varevsij(,popbased)  
   total life expectancies    Revision 1.86  2003/06/17 20:04:08  brouard
   Variance of stable prevalence    (Module): Change position of html and gnuplot routines and added
  end    routine fileappend.
 */  
     Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
      prior to the death. In this case, dh was negative and likelihood
 #include <math.h>    was wrong (infinity). We still send an "Error" but patch by
 #include <stdio.h>    assuming that the date of death was just one stepm after the
 #include <stdlib.h>    interview.
 #include <unistd.h>    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 /* #include <sys/time.h> */    memory allocation. But we also truncated to 8 characters (left
 #include <time.h>    truncation)
 #include "timeval.h"    (Repository): No more line truncation errors.
   
 /* #include <libintl.h> */    Revision 1.84  2003/06/13 21:44:43  brouard
 /* #define _(String) gettext (String) */    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 #define MAXLINE 256    many times. Probs is memory consuming and must be used with
 #define GNUPLOTPROGRAM "gnuplot"    parcimony.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define FILENAMELENGTH 132  
 /*#define DEBUG*/    Revision 1.83  2003/06/10 13:39:11  lievre
 /*#define windows*/    *** empty log message ***
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  */
   /*
 #define NINTERVMAX 8     Interpolated Markov Chain
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Short summary of the programme:
 #define NCOVMAX 8 /* Maximum number of covariates */   
 #define MAXN 20000    This program computes Healthy Life Expectancies from
 #define YEARM 12. /* Number of months per year */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define AGESUP 130    first survey ("cross") where individuals from different ages are
 #define AGEBASE 40    interviewed on their health status or degree of disability (in the
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */    case of a health survey which is our main interest) -2- at least a
 #ifdef UNIX    second wave of interviews ("longitudinal") which measure each change
 #define DIRSEPARATOR '/'    (if any) in individual health status.  Health expectancies are
 #define ODIRSEPARATOR '\\'    computed from the time spent in each health state according to a
 #else    model. More health states you consider, more time is necessary to reach the
 #define DIRSEPARATOR '\\'    Maximum Likelihood of the parameters involved in the model.  The
 #define ODIRSEPARATOR '/'    simplest model is the multinomial logistic model where pij is the
 #endif    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /* $Id$ */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /* $State$ */    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 char version[]="Imach version 0.97c, September 2004, INED-EUROREVES ";    where the markup *Covariates have to be included here again* invites
 char fullversion[]="$Revision$ $Date$";     you to do it.  More covariates you add, slower the
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    convergence.
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    The advantage of this computer programme, compared to a simple
 int npar=NPARMAX;    multinomial logistic model, is clear when the delay between waves is not
 int nlstate=2; /* Number of live states */    identical for each individual. Also, if a individual missed an
 int ndeath=1; /* Number of dead states */    intermediate interview, the information is lost, but taken into
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    account using an interpolation or extrapolation.  
 int popbased=0;  
     hPijx is the probability to be observed in state i at age x+h
 int *wav; /* Number of waves for this individuual 0 is possible */    conditional to the observed state i at age x. The delay 'h' can be
 int maxwav; /* Maxim number of waves */    split into an exact number (nh*stepm) of unobserved intermediate
 int jmin, jmax; /* min, max spacing between 2 waves */    states. This elementary transition (by month, quarter,
 int gipmx, gsw; /* Global variables on the number of contributions     semester or year) is modelled as a multinomial logistic.  The hPx
                    to the likelihood and the sum of weights (done by funcone)*/    matrix is simply the matrix product of nh*stepm elementary matrices
 int mle, weightopt;    and the contribution of each individual to the likelihood is simply
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    hPijx.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    Also this programme outputs the covariance matrix of the parameters but also
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    of the life expectancies. It also computes the period (stable) prevalence.
 double jmean; /* Mean space between 2 waves */   
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */             Institut national d'études démographiques, Paris.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    This software have been partly granted by Euro-REVES, a concerted action
 FILE *ficlog, *ficrespow;    from the European Union.
 int globpr; /* Global variable for printing or not */    It is copyrighted identically to a GNU software product, ie programme and
 double fretone; /* Only one call to likelihood */    software can be distributed freely for non commercial use. Latest version
 long ipmx; /* Number of contributions */    can be accessed at http://euroreves.ined.fr/imach .
 double sw; /* Sum of weights */  
 char filerespow[FILENAMELENGTH];    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 FILE *ficresilk;   
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    **********************************************************************/
 FILE *ficresprobmorprev;  /*
 FILE *fichtm, *fichtmcov; /* Html File */    main
 FILE *ficreseij;    read parameterfile
 char filerese[FILENAMELENGTH];    read datafile
 FILE  *ficresvij;    concatwav
 char fileresv[FILENAMELENGTH];    freqsummary
 FILE  *ficresvpl;    if (mle >= 1)
 char fileresvpl[FILENAMELENGTH];      mlikeli
 char title[MAXLINE];    print results files
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    if mle==1
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];       computes hessian
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];     read end of parameter file: agemin, agemax, bage, fage, estepm
 char command[FILENAMELENGTH];        begin-prev-date,...
 int  outcmd=0;    open gnuplot file
     open html file
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    period (stable) prevalence
      for age prevalim()
 char filelog[FILENAMELENGTH]; /* Log file */    h Pij x
 char filerest[FILENAMELENGTH];    variance of p varprob
 char fileregp[FILENAMELENGTH];    forecasting if prevfcast==1 prevforecast call prevalence()
 char popfile[FILENAMELENGTH];    health expectancies
     Variance-covariance of DFLE
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;    prevalence()
      movingaverage()
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;    varevsij()
 struct timezone tzp;    if popbased==1 varevsij(,popbased)
 extern int gettimeofday();    total life expectancies
 struct tm tmg, tm, tmf, *gmtime(), *localtime();    Variance of period (stable) prevalence
 long time_value;   end
 extern long time();  */
 char strcurr[80], strfor[80];  
   
 #define NR_END 1  
 #define FREE_ARG char*   
 #define FTOL 1.0e-10  #include <math.h>
   #include <stdio.h>
 #define NRANSI   #include <stdlib.h>
 #define ITMAX 200   #include <string.h>
   #include <unistd.h>
 #define TOL 2.0e-4   
   #include <limits.h>
 #define CGOLD 0.3819660   #include <sys/types.h>
 #define ZEPS 1.0e-10   #include <sys/stat.h>
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   #include <errno.h>
   extern int errno;
 #define GOLD 1.618034   
 #define GLIMIT 100.0   /* #include <sys/time.h> */
 #define TINY 1.0e-20   #include <time.h>
   #include "timeval.h"
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  /* #include <libintl.h> */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  /* #define _(String) gettext (String) */
     
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define MAXLINE 256
 #define rint(a) floor(a+0.5)  
   #define GNUPLOTPROGRAM "gnuplot"
 static double sqrarg;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define FILENAMELENGTH 132
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   
 int agegomp= AGEGOMP;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int imx;   
 int stepm=1;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /* Stepm, step in month: minimum step interpolation*/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 int estepm;  #define NINTERVMAX 8
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int m,nb;  #define NCOVMAX 8 /* Maximum number of covariates */
 long *num;  #define MAXN 20000
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  #define YEARM 12. /* Number of months per year */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define AGESUP 130
 double **pmmij, ***probs;  #define AGEBASE 40
 double *ageexmed,*agecens;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 double dateintmean=0;  #ifdef UNIX
   #define DIRSEPARATOR '/'
 double *weight;  #define CHARSEPARATOR "/"
 int **s; /* Status */  #define ODIRSEPARATOR '\\'
 double *agedc, **covar, idx;  #else
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define ODIRSEPARATOR '/'
 double ftolhess; /* Tolerance for computing hessian */  #endif
   
 /**************** split *************************/  /* $Id$ */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  /* $State$ */
 {  
   /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  char fullversion[]="$Revision$ $Date$";
   */   char strstart[80];
   char  *ss;                            /* pointer */  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int   l1, l2;                         /* length counters */  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
   l1 = strlen(path );                   /* length of path */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int npar=NPARMAX;
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  int nlstate=2; /* Number of live states */
   if ( ss == NULL ) {                   /* no directory, so use current */  int ndeath=1; /* Number of dead states */
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  int popbased=0;
     /* get current working directory */  
     /*    extern  char* getcwd ( char *buf , int len);*/  int *wav; /* Number of waves for this individuual 0 is possible */
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int maxwav; /* Maxim number of waves */
       return( GLOCK_ERROR_GETCWD );  int jmin, jmax; /* min, max spacing between 2 waves */
     }  int ijmin, ijmax; /* Individuals having jmin and jmax */
     strcpy( name, path );               /* we've got it */  int gipmx, gsw; /* Global variables on the number of contributions
   } else {                              /* strip direcotry from path */                     to the likelihood and the sum of weights (done by funcone)*/
     ss++;                               /* after this, the filename */  int mle, weightopt;
     l2 = strlen( ss );                  /* length of filename */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     strcpy( name, ss );         /* save file name */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     strncpy( dirc, path, l1 - l2 );     /* now the directory */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     dirc[l1-l2] = 0;                    /* add zero */  double jmean; /* Mean space between 2 waves */
   }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   l1 = strlen( dirc );                  /* length of directory */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   /*#ifdef windows  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  FILE *ficlog, *ficrespow;
 #else  int globpr; /* Global variable for printing or not */
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  double fretone; /* Only one call to likelihood */
 #endif  long ipmx; /* Number of contributions */
   */  double sw; /* Sum of weights */
   ss = strrchr( name, '.' );            /* find last / */  char filerespow[FILENAMELENGTH];
   if (ss >0){  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     ss++;  FILE *ficresilk;
     strcpy(ext,ss);                     /* save extension */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     l1= strlen( name);  FILE *ficresprobmorprev;
     l2= strlen(ss)+1;  FILE *fichtm, *fichtmcov; /* Html File */
     strncpy( finame, name, l1-l2);  FILE *ficreseij;
     finame[l1-l2]= 0;  char filerese[FILENAMELENGTH];
   }  FILE *ficresstdeij;
   return( 0 );                          /* we're done */  char fileresstde[FILENAMELENGTH];
 }  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 /******************************************/  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 void replace_back_to_slash(char *s, char*t)  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   int i;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   int lg=0;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   i=0;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   lg=strlen(t);  char command[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  int  outcmd=0;
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   }  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 int nbocc(char *s, char occ)  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   int i,j=0;  
   int lg=20;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   i=0;  
   lg=strlen(s);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   for(i=0; i<= lg; i++) {  struct timezone tzp;
   if  (s[i] == occ ) j++;  extern int gettimeofday();
   }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   return j;  long time_value;
 }  extern long time();
   char strcurr[80], strfor[80];
 void cutv(char *u,char *v, char*t, char occ)  
 {  char *endptr;
   /* cuts string t into u and v where u ends before first occurence of char 'occ'   long lval;
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  double dval;
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;  #define NR_END 1
   i=0;  #define FREE_ARG char*
   for(j=0; j<=strlen(t)-1; j++) {  #define FTOL 1.0e-10
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  #define NRANSI
   #define ITMAX 200
   lg=strlen(t);  
   for(j=0; j<p; j++) {  #define TOL 2.0e-4
     (u[j] = t[j]);  
   }  #define CGOLD 0.3819660
      u[p]='\0';  #define ZEPS 1.0e-10
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define GOLD 1.618034
   }  #define GLIMIT 100.0
 }  #define TINY 1.0e-20
   
 /********************** nrerror ********************/  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 void nrerror(char error_text[])  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {   
   fprintf(stderr,"ERREUR ...\n");  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   fprintf(stderr,"%s\n",error_text);  #define rint(a) floor(a+0.5)
   exit(EXIT_FAILURE);  
 }  static double sqrarg;
 /*********************** vector *******************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 double *vector(int nl, int nh)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
 {  int agegomp= AGEGOMP;
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int imx;
   if (!v) nrerror("allocation failure in vector");  int stepm=1;
   return v-nl+NR_END;  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /************************ free vector ******************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void free_vector(double*v, int nl, int nh)  
 {  int m,nb;
   free((FREE_ARG)(v+nl-NR_END));  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /************************ivector *******************************/  double **pmmij, ***probs;
 int *ivector(long nl,long nh)  double *ageexmed,*agecens;
 {  double dateintmean=0;
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double *weight;
   if (!v) nrerror("allocation failure in ivector");  int **s; /* Status */
   return v-nl+NR_END;  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 {  double ftolhess; /* Tolerance for computing hessian */
   free((FREE_ARG)(v+nl-NR_END));  
 }  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /************************lvector *******************************/  {
 long *lvector(long nl,long nh)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   long *v;    */
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));    char  *ss;                            /* pointer */
   if (!v) nrerror("allocation failure in ivector");    int   l1, l2;                         /* length counters */
   return v-nl+NR_END;  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /******************free lvector **************************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 void free_lvector(long *v, long nl, long nh)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 {      strcpy( name, path );               /* we got the fullname name because no directory */
   free((FREE_ARG)(v+nl-NR_END));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 /******************* imatrix *******************************/      /*    extern  char* getcwd ( char *buf , int len);*/
 int **imatrix(long nrl, long nrh, long ncl, long nch)       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */         return( GLOCK_ERROR_GETCWD );
 {       }
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;       /* got dirc from getcwd*/
   int **m;       printf(" DIRC = %s \n",dirc);
       } else {                              /* strip direcotry from path */
   /* allocate pointers to rows */       ss++;                               /* after this, the filename */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));       l2 = strlen( ss );                  /* length of filename */
   if (!m) nrerror("allocation failure 1 in matrix()");       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   m += NR_END;       strcpy( name, ss );         /* save file name */
   m -= nrl;       strncpy( dirc, path, l1 - l2 );     /* now the directory */
         dirc[l1-l2] = 0;                    /* add zero */
         printf(" DIRC2 = %s \n",dirc);
   /* allocate rows and set pointers to them */     }
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));     /* We add a separator at the end of dirc if not exists */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");     l1 = strlen( dirc );                  /* length of directory */
   m[nrl] += NR_END;     if( dirc[l1-1] != DIRSEPARATOR ){
   m[nrl] -= ncl;       dirc[l1] =  DIRSEPARATOR;
         dirc[l1+1] = 0;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;       printf(" DIRC3 = %s \n",dirc);
       }
   /* return pointer to array of pointers to rows */     ss = strrchr( name, '.' );            /* find last / */
   return m;     if (ss >0){
 }       ss++;
       strcpy(ext,ss);                     /* save extension */
 /****************** free_imatrix *************************/      l1= strlen( name);
 void free_imatrix(m,nrl,nrh,ncl,nch)      l2= strlen(ss)+1;
       int **m;      strncpy( finame, name, l1-l2);
       long nch,ncl,nrh,nrl;       finame[l1-l2]= 0;
      /* free an int matrix allocated by imatrix() */     }
 {   
   free((FREE_ARG) (m[nrl]+ncl-NR_END));     return( 0 );                          /* we're done */
   free((FREE_ARG) (m+nrl-NR_END));   }
 }   
   
 /******************* matrix *******************************/  /******************************************/
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  void replace_back_to_slash(char *s, char*t)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  {
   double **m;    int i;
     int lg=0;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    i=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    lg=strlen(t);
   m += NR_END;    for(i=0; i<= lg; i++) {
   m -= nrl;      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int nbocc(char *s, char occ)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    int i,j=0;
   return m;    int lg=20;
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])     i=0;
    */    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /*************************free matrix ************************/    }
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    return j;
 {  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  void cutv(char *u,char *v, char*t, char occ)
 }  {
     /* cuts string t into u and v where u ends before first occurence of char 'occ'
 /******************* ma3x *******************************/       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)       gives u="abcedf" and v="ghi2j" */
 {    int i,lg,j,p=0;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    i=0;
   double ***m;    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    lg=strlen(t);
   m -= nrl;    for(j=0; j<p; j++) {
       (u[j] = t[j]);
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       u[p]='\0';
   m[nrl] += NR_END;  
   m[nrl] -= ncl;     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    }
   }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  /********************** nrerror ********************/
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  void nrerror(char error_text[])
   for (j=ncl+1; j<=nch; j++)   {
     m[nrl][j]=m[nrl][j-1]+nlay;    fprintf(stderr,"ERREUR ...\n");
       fprintf(stderr,"%s\n",error_text);
   for (i=nrl+1; i<=nrh; i++) {    exit(EXIT_FAILURE);
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  }
     for (j=ncl+1; j<=nch; j++)   /*********************** vector *******************/
       m[i][j]=m[i][j-1]+nlay;  double *vector(int nl, int nh)
   }  {
   return m;     double *v;
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    if (!v) nrerror("allocation failure in vector");
   */    return v-nl+NR_END;
 }  }
   
 /*************************free ma3x ************************/  /************************ free vector ******************/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  void free_vector(double*v, int nl, int nh)
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    free((FREE_ARG)(v+nl-NR_END));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /************************ivector *******************************/
   int *ivector(long nl,long nh)
 /*************** function subdirf ***********/  {
 char *subdirf(char fileres[])    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   /* Caution optionfilefiname is hidden */    if (!v) nrerror("allocation failure in ivector");
   strcpy(tmpout,optionfilefiname);    return v-nl+NR_END;
   strcat(tmpout,"/"); /* Add to the right */  }
   strcat(tmpout,fileres);  
   return tmpout;  /******************free ivector **************************/
 }  void free_ivector(int *v, long nl, long nh)
   {
 /*************** function subdirf2 ***********/    free((FREE_ARG)(v+nl-NR_END));
 char *subdirf2(char fileres[], char *preop)  }
 {  
     /************************lvector *******************************/
   /* Caution optionfilefiname is hidden */  long *lvector(long nl,long nh)
   strcpy(tmpout,optionfilefiname);  {
   strcat(tmpout,"/");    long *v;
   strcat(tmpout,preop);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   strcat(tmpout,fileres);    if (!v) nrerror("allocation failure in ivector");
   return tmpout;    return v-nl+NR_END;
 }  }
   
 /*************** function subdirf3 ***********/  /******************free lvector **************************/
 char *subdirf3(char fileres[], char *preop, char *preop2)  void free_lvector(long *v, long nl, long nh)
 {  {
       free((FREE_ARG)(v+nl-NR_END));
   /* Caution optionfilefiname is hidden */  }
   strcpy(tmpout,optionfilefiname);  
   strcat(tmpout,"/");  /******************* imatrix *******************************/
   strcat(tmpout,preop);  int **imatrix(long nrl, long nrh, long ncl, long nch)
   strcat(tmpout,preop2);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   strcat(tmpout,fileres);  {
   return tmpout;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
 }    int **m;
    
 /***************** f1dim *************************/    /* allocate pointers to rows */
 extern int ncom;     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
 extern double *pcom,*xicom;    if (!m) nrerror("allocation failure 1 in matrix()");
 extern double (*nrfunc)(double []);     m += NR_END;
      m -= nrl;
 double f1dim(double x)    
 {    
   int j;     /* allocate rows and set pointers to them */
   double f;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   double *xt;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
   xt=vector(1,ncom);     m[nrl] -= ncl;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    
   f=(*nrfunc)(xt);     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
   free_vector(xt,1,ncom);    
   return f;     /* return pointer to array of pointers to rows */
 }     return m;
   }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   /****************** free_imatrix *************************/
 {   void free_imatrix(m,nrl,nrh,ncl,nch)
   int iter;         int **m;
   double a,b,d,etemp;        long nch,ncl,nrh,nrl;
   double fu,fv,fw,fx;       /* free an int matrix allocated by imatrix() */
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;     free((FREE_ARG) (m[nrl]+ncl-NR_END));
   double e=0.0;     free((FREE_ARG) (m+nrl-NR_END));
    }
   a=(ax < cx ? ax : cx);   
   b=(ax > cx ? ax : cx);   /******************* matrix *******************************/
   x=w=v=bx;   double **matrix(long nrl, long nrh, long ncl, long nch)
   fw=fv=fx=(*f)(x);   {
   for (iter=1;iter<=ITMAX;iter++) {     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     xm=0.5*(a+b);     double **m;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);   
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     printf(".");fflush(stdout);    if (!m) nrerror("allocation failure 1 in matrix()");
     fprintf(ficlog,".");fflush(ficlog);    m += NR_END;
 #ifdef DEBUG    m -= nrl;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     m[nrl] -= ncl;
       *xmin=x;   
       return fx;     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }     return m;
     ftemp=fu;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
     if (fabs(e) > tol1) {      */
       r=(x-w)*(fx-fv);   }
       q=(x-v)*(fx-fw);   
       p=(x-v)*q-(x-w)*r;   /*************************free matrix ************************/
       q=2.0*(q-r);   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       if (q > 0.0) p = -p;   {
       q=fabs(q);     free((FREE_ARG)(m[nrl]+ncl-NR_END));
       etemp=e;     free((FREE_ARG)(m+nrl-NR_END));
       e=d;   }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))   
         d=CGOLD*(e=(x >= xm ? a-x : b-x));   /******************* ma3x *******************************/
       else {   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         d=p/q;   {
         u=x+d;     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         if (u-a < tol2 || b-u < tol2)     double ***m;
           d=SIGN(tol1,xm-x);   
       }     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     } else {     if (!m) nrerror("allocation failure 1 in matrix()");
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     m += NR_END;
     }     m -= nrl;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   
     fu=(*f)(u);     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (fu <= fx) {     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       if (u >= x) a=x; else b=x;     m[nrl] += NR_END;
       SHFT(v,w,x,u)     m[nrl] -= ncl;
         SHFT(fv,fw,fx,fu)   
         } else {     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           if (u < x) a=u; else b=u;   
           if (fu <= fw || w == x) {     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
             v=w;     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
             w=u;     m[nrl][ncl] += NR_END;
             fv=fw;     m[nrl][ncl] -= nll;
             fw=fu;     for (j=ncl+1; j<=nch; j++)
           } else if (fu <= fv || v == x || v == w) {       m[nrl][j]=m[nrl][j-1]+nlay;
             v=u;    
             fv=fu;     for (i=nrl+1; i<=nrh; i++) {
           }       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         }       for (j=ncl+1; j<=nch; j++)
   }         m[i][j]=m[i][j-1]+nlay;
   nrerror("Too many iterations in brent");     }
   *xmin=x;     return m;
   return fx;     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 }              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
 /****************** mnbrak ***********************/  }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,   /*************************free ma3x ************************/
             double (*func)(double))   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 {   {
   double ulim,u,r,q, dum;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   double fu;     free((FREE_ARG)(m[nrl]+ncl-NR_END));
      free((FREE_ARG)(m+nrl-NR_END));
   *fa=(*func)(*ax);   }
   *fb=(*func)(*bx);   
   if (*fb > *fa) {   /*************** function subdirf ***********/
     SHFT(dum,*ax,*bx,dum)   char *subdirf(char fileres[])
       SHFT(dum,*fb,*fa,dum)   {
       }     /* Caution optionfilefiname is hidden */
   *cx=(*bx)+GOLD*(*bx-*ax);     strcpy(tmpout,optionfilefiname);
   *fc=(*func)(*cx);     strcat(tmpout,"/"); /* Add to the right */
   while (*fb > *fc) {     strcat(tmpout,fileres);
     r=(*bx-*ax)*(*fb-*fc);     return tmpout;
     q=(*bx-*cx)*(*fb-*fa);   }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/   
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   /*************** function subdirf2 ***********/
     ulim=(*bx)+GLIMIT*(*cx-*bx);   char *subdirf2(char fileres[], char *preop)
     if ((*bx-u)*(u-*cx) > 0.0) {   {
       fu=(*func)(u);    
     } else if ((*cx-u)*(u-ulim) > 0.0) {     /* Caution optionfilefiname is hidden */
       fu=(*func)(u);     strcpy(tmpout,optionfilefiname);
       if (fu < *fc) {     strcat(tmpout,"/");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))     strcat(tmpout,preop);
           SHFT(*fb,*fc,fu,(*func)(u))     strcat(tmpout,fileres);
           }     return tmpout;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   }
       u=ulim;   
       fu=(*func)(u);   /*************** function subdirf3 ***********/
     } else {   char *subdirf3(char fileres[], char *preop, char *preop2)
       u=(*cx)+GOLD*(*cx-*bx);   {
       fu=(*func)(u);    
     }     /* Caution optionfilefiname is hidden */
     SHFT(*ax,*bx,*cx,u)     strcpy(tmpout,optionfilefiname);
       SHFT(*fa,*fb,*fc,fu)     strcat(tmpout,"/");
       }     strcat(tmpout,preop);
 }     strcat(tmpout,preop2);
     strcat(tmpout,fileres);
 /*************** linmin ************************/    return tmpout;
   }
 int ncom;   
 double *pcom,*xicom;  /***************** f1dim *************************/
 double (*nrfunc)(double []);   extern int ncom;
    extern double *pcom,*xicom;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   extern double (*nrfunc)(double []);
 {    
   double brent(double ax, double bx, double cx,   double f1dim(double x)
                double (*f)(double), double tol, double *xmin);   {
   double f1dim(double x);     int j;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,     double f;
               double *fc, double (*func)(double));     double *xt;
   int j;    
   double xx,xmin,bx,ax;     xt=vector(1,ncom);
   double fx,fb,fa;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
      f=(*nrfunc)(xt);
   ncom=n;     free_vector(xt,1,ncom);
   pcom=vector(1,n);     return f;
   xicom=vector(1,n);   }
   nrfunc=func;   
   for (j=1;j<=n;j++) {   /*****************brent *************************/
     pcom[j]=p[j];   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
     xicom[j]=xi[j];   {
   }     int iter;
   ax=0.0;     double a,b,d,etemp;
   xx=1.0;     double fu,fv,fw,fx;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     double ftemp;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     double p,q,r,tol1,tol2,u,v,w,x,xm;
 #ifdef DEBUG    double e=0.0;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);   
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    a=(ax < cx ? ax : cx);
 #endif    b=(ax > cx ? ax : cx);
   for (j=1;j<=n;j++) {     x=w=v=bx;
     xi[j] *= xmin;     fw=fv=fx=(*f)(x);
     p[j] += xi[j];     for (iter=1;iter<=ITMAX;iter++) {
   }       xm=0.5*(a+b);
   free_vector(xicom,1,n);       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
   free_vector(pcom,1,n);       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 }       printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
 char *asc_diff_time(long time_sec, char ascdiff[])  #ifdef DEBUG
 {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   long sec_left, days, hours, minutes;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   days = (time_sec) / (60*60*24);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   sec_left = (time_sec) % (60*60*24);  #endif
   hours = (sec_left) / (60*60) ;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
   sec_left = (sec_left) %(60*60);        *xmin=x;
   minutes = (sec_left) /60;        return fx;
   sec_left = (sec_left) % (60);      }
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);        ftemp=fu;
   return ascdiff;      if (fabs(e) > tol1) {
 }        r=(x-w)*(fx-fv);
         q=(x-v)*(fx-fw);
 /*************** powell ************************/        p=(x-v)*q-(x-w)*r;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,         q=2.0*(q-r);
             double (*func)(double []))         if (q > 0.0) p = -p;
 {         q=fabs(q);
   void linmin(double p[], double xi[], int n, double *fret,         etemp=e;
               double (*func)(double []));         e=d;
   int i,ibig,j;         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
   double del,t,*pt,*ptt,*xit;          d=CGOLD*(e=(x >= xm ? a-x : b-x));
   double fp,fptt;        else {
   double *xits;          d=p/q;
   int niterf, itmp;          u=x+d;
           if (u-a < tol2 || b-u < tol2)
   pt=vector(1,n);             d=SIGN(tol1,xm-x);
   ptt=vector(1,n);         }
   xit=vector(1,n);       } else {
   xits=vector(1,n);         d=CGOLD*(e=(x >= xm ? a-x : b-x));
   *fret=(*func)(p);       }
   for (j=1;j<=n;j++) pt[j]=p[j];       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
   for (*iter=1;;++(*iter)) {       fu=(*f)(u);
     fp=(*fret);       if (fu <= fx) {
     ibig=0;         if (u >= x) a=x; else b=x;
     del=0.0;         SHFT(v,w,x,u)
     last_time=curr_time;          SHFT(fv,fw,fx,fu)
     (void) gettimeofday(&curr_time,&tzp);          } else {
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);            if (u < x) a=u; else b=u;
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);            if (fu <= fw || w == x) {
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);              v=w;
     */              w=u;
    for (i=1;i<=n;i++) {              fv=fw;
       printf(" %d %.12f",i, p[i]);              fw=fu;
       fprintf(ficlog," %d %.12lf",i, p[i]);            } else if (fu <= fv || v == x || v == w) {
       fprintf(ficrespow," %.12lf", p[i]);              v=u;
     }              fv=fu;
     printf("\n");            }
     fprintf(ficlog,"\n");          }
     fprintf(ficrespow,"\n");fflush(ficrespow);    }
     if(*iter <=3){    nrerror("Too many iterations in brent");
       tm = *localtime(&curr_time.tv_sec);    *xmin=x;
       strcpy(strcurr,asctime(&tm));    return fx;
 /*       asctime_r(&tm,strcurr); */  }
       forecast_time=curr_time;   
       itmp = strlen(strcurr);  /****************** mnbrak ***********************/
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */  
         strcurr[itmp-1]='\0';  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);              double (*func)(double))
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  {
       for(niterf=10;niterf<=30;niterf+=10){    double ulim,u,r,q, dum;
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);    double fu;
         tmf = *localtime(&forecast_time.tv_sec);   
 /*      asctime_r(&tmf,strfor); */    *fa=(*func)(*ax);
         strcpy(strfor,asctime(&tmf));    *fb=(*func)(*bx);
         itmp = strlen(strfor);    if (*fb > *fa) {
         if(strfor[itmp-1]=='\n')      SHFT(dum,*ax,*bx,dum)
         strfor[itmp-1]='\0';        SHFT(dum,*fb,*fa,dum)
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);        }
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    *cx=(*bx)+GOLD*(*bx-*ax);
       }    *fc=(*func)(*cx);
     }    while (*fb > *fc) {
     for (i=1;i<=n;i++) {       r=(*bx-*ax)*(*fb-*fc);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];       q=(*bx-*cx)*(*fb-*fa);
       fptt=(*fret);       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
 #ifdef DEBUG        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
       printf("fret=%lf \n",*fret);      ulim=(*bx)+GLIMIT*(*cx-*bx);
       fprintf(ficlog,"fret=%lf \n",*fret);      if ((*bx-u)*(u-*cx) > 0.0) {
 #endif        fu=(*func)(u);
       printf("%d",i);fflush(stdout);      } else if ((*cx-u)*(u-ulim) > 0.0) {
       fprintf(ficlog,"%d",i);fflush(ficlog);        fu=(*func)(u);
       linmin(p,xit,n,fret,func);         if (fu < *fc) {
       if (fabs(fptt-(*fret)) > del) {           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
         del=fabs(fptt-(*fret));             SHFT(*fb,*fc,fu,(*func)(u))
         ibig=i;             }
       }       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
 #ifdef DEBUG        u=ulim;
       printf("%d %.12e",i,(*fret));        fu=(*func)(u);
       fprintf(ficlog,"%d %.12e",i,(*fret));      } else {
       for (j=1;j<=n;j++) {        u=(*cx)+GOLD*(*cx-*bx);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        fu=(*func)(u);
         printf(" x(%d)=%.12e",j,xit[j]);      }
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);      SHFT(*ax,*bx,*cx,u)
       }        SHFT(*fa,*fb,*fc,fu)
       for(j=1;j<=n;j++) {        }
         printf(" p=%.12e",p[j]);  }
         fprintf(ficlog," p=%.12e",p[j]);  
       }  /*************** linmin ************************/
       printf("\n");  
       fprintf(ficlog,"\n");  int ncom;
 #endif  double *pcom,*xicom;
     }   double (*nrfunc)(double []);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {   
 #ifdef DEBUG  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
       int k[2],l;  {
       k[0]=1;    double brent(double ax, double bx, double cx,
       k[1]=-1;                 double (*f)(double), double tol, double *xmin);
       printf("Max: %.12e",(*func)(p));    double f1dim(double x);
       fprintf(ficlog,"Max: %.12e",(*func)(p));    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       for (j=1;j<=n;j++) {                double *fc, double (*func)(double));
         printf(" %.12e",p[j]);    int j;
         fprintf(ficlog," %.12e",p[j]);    double xx,xmin,bx,ax;
       }    double fx,fb,fa;
       printf("\n");   
       fprintf(ficlog,"\n");    ncom=n;
       for(l=0;l<=1;l++) {    pcom=vector(1,n);
         for (j=1;j<=n;j++) {    xicom=vector(1,n);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    nrfunc=func;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    for (j=1;j<=n;j++) {
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      pcom[j]=p[j];
         }      xicom[j]=xi[j];
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    }
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    ax=0.0;
       }    xx=1.0;
 #endif    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
   #ifdef DEBUG
       free_vector(xit,1,n);     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       free_vector(xits,1,n);     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       free_vector(ptt,1,n);   #endif
       free_vector(pt,1,n);     for (j=1;j<=n;j++) {
       return;       xi[j] *= xmin;
     }       p[j] += xi[j];
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");     }
     for (j=1;j<=n;j++) {     free_vector(xicom,1,n);
       ptt[j]=2.0*p[j]-pt[j];     free_vector(pcom,1,n);
       xit[j]=p[j]-pt[j];   }
       pt[j]=p[j];   
     }   char *asc_diff_time(long time_sec, char ascdiff[])
     fptt=(*func)(ptt);   {
     if (fptt < fp) {     long sec_left, days, hours, minutes;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);     days = (time_sec) / (60*60*24);
       if (t < 0.0) {     sec_left = (time_sec) % (60*60*24);
         linmin(p,xit,n,fret,func);     hours = (sec_left) / (60*60) ;
         for (j=1;j<=n;j++) {     sec_left = (sec_left) %(60*60);
           xi[j][ibig]=xi[j][n];     minutes = (sec_left) /60;
           xi[j][n]=xit[j];     sec_left = (sec_left) % (60);
         }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 #ifdef DEBUG    return ascdiff;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++){  /*************** powell ************************/
           printf(" %.12e",xit[j]);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
           fprintf(ficlog," %.12e",xit[j]);              double (*func)(double []))
         }  {
         printf("\n");    void linmin(double p[], double xi[], int n, double *fret,
         fprintf(ficlog,"\n");                double (*func)(double []));
 #endif    int i,ibig,j;
       }    double del,t,*pt,*ptt,*xit;
     }     double fp,fptt;
   }     double *xits;
 }     int niterf, itmp;
   
 /**** Prevalence limit (stable prevalence)  ****************/    pt=vector(1,n);
     ptt=vector(1,n);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    xit=vector(1,n);
 {    xits=vector(1,n);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    *fret=(*func)(p);
      matrix by transitions matrix until convergence is reached */    for (j=1;j<=n;j++) pt[j]=p[j];
     for (*iter=1;;++(*iter)) {
   int i, ii,j,k;      fp=(*fret);
   double min, max, maxmin, maxmax,sumnew=0.;      ibig=0;
   double **matprod2();      del=0.0;
   double **out, cov[NCOVMAX], **pmij();      last_time=curr_time;
   double **newm;      (void) gettimeofday(&curr_time,&tzp);
   double agefin, delaymax=50 ; /* Max number of years to converge */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   for (ii=1;ii<=nlstate+ndeath;ii++)  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     for (j=1;j<=nlstate+ndeath;j++){     for (i=1;i<=n;i++) {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        printf(" %d %.12f",i, p[i]);
     }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
    cov[1]=1.;      }
        printf("\n");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      fprintf(ficlog,"\n");
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      fprintf(ficrespow,"\n");fflush(ficrespow);
     newm=savm;      if(*iter <=3){
     /* Covariates have to be included here again */        tm = *localtime(&curr_time.tv_sec);
      cov[2]=agefin;        strcpy(strcurr,asctime(&tm));
     /*       asctime_r(&tm,strcurr); */
       for (k=1; k<=cptcovn;k++) {        forecast_time=curr_time;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        itmp = strlen(strcurr);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       }          strcurr[itmp-1]='\0';
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for (k=1; k<=cptcovprod;k++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          tmf = *localtime(&forecast_time.tv_sec);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /*      asctime_r(&tmf,strfor); */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/          strcpy(strfor,asctime(&tmf));
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
     savm=oldm;          strfor[itmp-1]='\0';
     oldm=newm;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     maxmax=0.;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for(j=1;j<=nlstate;j++){        }
       min=1.;      }
       max=0.;      for (i=1;i<=n;i++) {
       for(i=1; i<=nlstate; i++) {        for (j=1;j<=n;j++) xit[j]=xi[j][i];
         sumnew=0;        fptt=(*fret);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #ifdef DEBUG
         prlim[i][j]= newm[i][j]/(1-sumnew);        printf("fret=%lf \n",*fret);
         max=FMAX(max,prlim[i][j]);        fprintf(ficlog,"fret=%lf \n",*fret);
         min=FMIN(min,prlim[i][j]);  #endif
       }        printf("%d",i);fflush(stdout);
       maxmin=max-min;        fprintf(ficlog,"%d",i);fflush(ficlog);
       maxmax=FMAX(maxmax,maxmin);        linmin(p,xit,n,fret,func);
     }        if (fabs(fptt-(*fret)) > del) {
     if(maxmax < ftolpl){          del=fabs(fptt-(*fret));
       return prlim;          ibig=i;
     }        }
   }  #ifdef DEBUG
 }        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
 /*************** transition probabilities ***************/         for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          printf(" x(%d)=%.12e",j,xit[j]);
 {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double s1, s2;        }
   /*double t34;*/        for(j=1;j<=n;j++) {
   int i,j,j1, nc, ii, jj;          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
     for(i=1; i<= nlstate; i++){        }
       for(j=1; j<i;j++){        printf("\n");
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fprintf(ficlog,"\n");
           /*s2 += param[i][j][nc]*cov[nc];*/  #endif
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      }
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         }  #ifdef DEBUG
         ps[i][j]=s2;        int k[2],l;
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */        k[0]=1;
       }        k[1]=-1;
       for(j=i+1; j<=nlstate+ndeath;j++){        printf("Max: %.12e",(*func)(p));
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        for (j=1;j<=n;j++) {
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */          printf(" %.12e",p[j]);
         }          fprintf(ficlog," %.12e",p[j]);
         ps[i][j]=s2;        }
       }        printf("\n");
     }        fprintf(ficlog,"\n");
     /*ps[3][2]=1;*/        for(l=0;l<=1;l++) {
               for (j=1;j<=n;j++) {
     for(i=1; i<= nlstate; i++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       s1=0;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for(j=1; j<i; j++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         s1+=exp(ps[i][j]);          }
       for(j=i+1; j<=nlstate+ndeath; j++)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         s1+=exp(ps[i][j]);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       ps[i][i]=1./(s1+1.);        }
       for(j=1; j<i; j++)  #endif
         ps[i][j]= exp(ps[i][j])*ps[i][i];  
       for(j=i+1; j<=nlstate+ndeath; j++)  
         ps[i][j]= exp(ps[i][j])*ps[i][i];        free_vector(xit,1,n);
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        free_vector(xits,1,n);
     } /* end i */        free_vector(ptt,1,n);
             free_vector(pt,1,n);
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        return;
       for(jj=1; jj<= nlstate+ndeath; jj++){      }
         ps[ii][jj]=0;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
         ps[ii][ii]=1;      for (j=1;j<=n;j++) {
       }        ptt[j]=2.0*p[j]-pt[j];
     }        xit[j]=p[j]-pt[j];
             pt[j]=p[j];
       }
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */      fptt=(*func)(ptt);
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */      if (fptt < fp) {
 /*         printf("ddd %lf ",ps[ii][jj]); */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
 /*       } */        if (t < 0.0) {
 /*       printf("\n "); */          linmin(p,xit,n,fret,func);
 /*        } */          for (j=1;j<=n;j++) {
 /*        printf("\n ");printf("%lf ",cov[2]); */            xi[j][ibig]=xi[j][n];
        /*            xi[j][n]=xit[j];
       for(i=1; i<= npar; i++) printf("%f ",x[i]);          }
       goto end;*/  #ifdef DEBUG
     return ps;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
 /**************** Product of 2 matrices ******************/            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          }
 {          printf("\n");
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          fprintf(ficlog,"\n");
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  #endif
   /* in, b, out are matrice of pointers which should have been initialized         }
      before: only the contents of out is modified. The function returns      }
      a pointer to pointers identical to out */    }
   long i, j, k;  }
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  /**** Prevalence limit (stable or period prevalence)  ****************/
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   return out;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 }       matrix by transitions matrix until convergence is reached */
   
     int i, ii,j,k;
 /************* Higher Matrix Product ***************/    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    double **out, cov[NCOVMAX], **pmij();
 {    double **newm;
   /* Computes the transition matrix starting at age 'age' over     double agefin, delaymax=50 ; /* Max number of years to converge */
      'nhstepm*hstepm*stepm' months (i.e. until  
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying     for (ii=1;ii<=nlstate+ndeath;ii++)
      nhstepm*hstepm matrices.       for (j=1;j<=nlstate+ndeath;j++){
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      (typically every 2 years instead of every month which is too big       }
      for the memory).  
      Model is determined by parameters x and covariates have to be      cov[1]=1.;
      included manually here.    
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
   int i, j, d, h, k;      /* Covariates have to be included here again */
   double **out, cov[NCOVMAX];       cov[2]=agefin;
   double **newm;   
         for (k=1; k<=cptcovn;k++) {
   /* Hstepm could be zero and should return the unit matrix */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (i=1;i<=nlstate+ndeath;i++)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     for (j=1;j<=nlstate+ndeath;j++){        }
       oldm[i][j]=(i==j ? 1.0 : 0.0);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       po[i][j][0]=(i==j ? 1.0 : 0.0);        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for(d=1; d <=hstepm; d++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       newm=savm;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /* Covariates have to be included here again */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      savm=oldm;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      oldm=newm;
       for (k=1; k<=cptcovage;k++)      maxmax=0.;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      for(j=1;j<=nlstate;j++){
       for (k=1; k<=cptcovprod;k++)        min=1.;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        max=0.;
         for(i=1; i<=nlstate; i++) {
           sumnew=0;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          prlim[i][j]= newm[i][j]/(1-sumnew);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,           max=FMAX(max,prlim[i][j]);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          min=FMIN(min,prlim[i][j]);
       savm=oldm;        }
       oldm=newm;        maxmin=max-min;
     }        maxmax=FMAX(maxmax,maxmin);
     for(i=1; i<=nlstate+ndeath; i++)      }
       for(j=1;j<=nlstate+ndeath;j++) {      if(maxmax < ftolpl){
         po[i][j][h]=newm[i][j];        return prlim;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      }
          */    }
       }  }
   } /* end h */  
   return po;  /*************** transition probabilities ***************/
 }  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
 /*************** log-likelihood *************/    double s1, s2;
 double func( double *x)    /*double t34;*/
 {    int i,j,j1, nc, ii, jj;
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      for(i=1; i<= nlstate; i++){
   double **out;        for(j=1; j<i;j++){
   double sw; /* Sum of weights */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double lli; /* Individual log likelihood */            /*s2 += param[i][j][nc]*cov[nc];*/
   int s1, s2;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double bbh, survp;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   long ipmx;          }
   /*extern weight */          ps[i][j]=s2;
   /* We are differentiating ll according to initial status */  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        }
   /*for(i=1;i<imx;i++)         for(j=i+1; j<=nlstate+ndeath;j++){
     printf(" %d\n",s[4][i]);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   */            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   cov[1]=1.;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           }
   for(k=1; k<=nlstate; k++) ll[k]=0.;          ps[i][j]=s2;
         }
   if(mle==1){      }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      /*ps[3][2]=1;*/
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];     
       for(mi=1; mi<= wav[i]-1; mi++){      for(i=1; i<= nlstate; i++){
         for (ii=1;ii<=nlstate+ndeath;ii++)        s1=0;
           for (j=1;j<=nlstate+ndeath;j++){        for(j=1; j<i; j++)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          s1+=exp(ps[i][j]);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for(j=i+1; j<=nlstate+ndeath; j++)
           }          s1+=exp(ps[i][j]);
         for(d=0; d<dh[mi][i]; d++){        ps[i][i]=1./(s1+1.);
           newm=savm;        for(j=1; j<i; j++)
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          ps[i][j]= exp(ps[i][j])*ps[i][i];
           for (kk=1; kk<=cptcovage;kk++) {        for(j=i+1; j<=nlstate+ndeath; j++)
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          ps[i][j]= exp(ps[i][j])*ps[i][i];
           }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      } /* end i */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));     
           savm=oldm;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           oldm=newm;        for(jj=1; jj<= nlstate+ndeath; jj++){
         } /* end mult */          ps[ii][jj]=0;
                 ps[ii][ii]=1;
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        }
         /* But now since version 0.9 we anticipate for bias at large stepm.      }
          * If stepm is larger than one month (smallest stepm) and if the exact delay      
          * (in months) between two waves is not a multiple of stepm, we rounded to   
          * the nearest (and in case of equal distance, to the lowest) interval but now  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the  /*         printf("ddd %lf ",ps[ii][jj]); */
          * probability in order to take into account the bias as a fraction of the way  /*       } */
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies  /*       printf("\n "); */
          * -stepm/2 to stepm/2 .  /*        } */
          * For stepm=1 the results are the same as for previous versions of Imach.  /*        printf("\n ");printf("%lf ",cov[2]); */
          * For stepm > 1 the results are less biased than in previous versions.          /*
          */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         s1=s[mw[mi][i]][i];        goto end;*/
         s2=s[mw[mi+1][i]][i];      return ps;
         bbh=(double)bh[mi][i]/(double)stepm;   }
         /* bias bh is positive if real duration  
          * is higher than the multiple of stepm and negative otherwise.  /**************** Product of 2 matrices ******************/
          */  
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         if( s2 > nlstate){   {
           /* i.e. if s2 is a death state and if the date of death is known then the contribution    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
              to the likelihood is the probability to die between last step unit time and current        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
              step unit time, which is also equal to probability to die before dh     /* in, b, out are matrice of pointers which should have been initialized
              minus probability to die before dh-stepm .        before: only the contents of out is modified. The function returns
              In version up to 0.92 likelihood was computed       a pointer to pointers identical to out */
         as if date of death was unknown. Death was treated as any other    long i, j, k;
         health state: the date of the interview describes the actual state    for(i=nrl; i<= nrh; i++)
         and not the date of a change in health state. The former idea was      for(k=ncolol; k<=ncoloh; k++)
         to consider that at each interview the state was recorded        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         (healthy, disable or death) and IMaCh was corrected; but when we          out[i][k] +=in[i][j]*b[j][k];
         introduced the exact date of death then we should have modified  
         the contribution of an exact death to the likelihood. This new    return out;
         contribution is smaller and very dependent of the step unit  }
         stepm. It is no more the probability to die between last interview  
         and month of death but the probability to survive from last  
         interview up to one month before death multiplied by the  /************* Higher Matrix Product ***************/
         probability to die within a month. Thanks to Chris  
         Jackson for correcting this bug.  Former versions increased  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         mortality artificially. The bad side is that we add another loop  {
         which slows down the processing. The difference can be up to 10%    /* Computes the transition matrix starting at age 'age' over
         lower mortality.       'nhstepm*hstepm*stepm' months (i.e. until
           */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
           lli=log(out[s1][s2] - savm[s1][s2]);       nhstepm*hstepm matrices.
         }else{       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */       (typically every 2 years instead of every month which is too big
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */       for the memory).
         }        Model is determined by parameters x and covariates have to be
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/       included manually here.
         /*if(lli ==000.0)*/  
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */       */
         ipmx +=1;  
         sw += weight[i];    int i, j, d, h, k;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double **out, cov[NCOVMAX];
       } /* end of wave */    double **newm;
     } /* end of individual */  
   }  else if(mle==2){    /* Hstepm could be zero and should return the unit matrix */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for (i=1;i<=nlstate+ndeath;i++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for (j=1;j<=nlstate+ndeath;j++){
       for(mi=1; mi<= wav[i]-1; mi++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
         for (ii=1;ii<=nlstate+ndeath;ii++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
           for (j=1;j<=nlstate+ndeath;j++){      }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    for(h=1; h <=nhstepm; h++){
           }      for(d=1; d <=hstepm; d++){
         for(d=0; d<=dh[mi][i]; d++){        newm=savm;
           newm=savm;        /* Covariates have to be included here again */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        cov[1]=1.;
           for (kk=1; kk<=cptcovage;kk++) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           }        for (k=1; k<=cptcovage;k++)
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for (k=1; k<=cptcovprod;k++)
           savm=oldm;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           oldm=newm;  
         } /* end mult */  
               /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         s1=s[mw[mi][i]][i];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         s2=s[mw[mi+1][i]][i];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
         bbh=(double)bh[mi][i]/(double)stepm;                      pmij(pmmij,cov,ncovmodel,x,nlstate));
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */        savm=oldm;
         ipmx +=1;        oldm=newm;
         sw += weight[i];      }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for(i=1; i<=nlstate+ndeath; i++)
       } /* end of wave */        for(j=1;j<=nlstate+ndeath;j++) {
     } /* end of individual */          po[i][j][h]=newm[i][j];
   }  else if(mle==3){  /* exponential inter-extrapolation */          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){           */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        }
       for(mi=1; mi<= wav[i]-1; mi++){    } /* end h */
         for (ii=1;ii<=nlstate+ndeath;ii++)    return po;
           for (j=1;j<=nlstate+ndeath;j++){  }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }  /*************** log-likelihood *************/
         for(d=0; d<dh[mi][i]; d++){  double func( double *x)
           newm=savm;  {
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    int i, ii, j, k, mi, d, kk;
           for (kk=1; kk<=cptcovage;kk++) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double **out;
           }    double sw; /* Sum of weights */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double lli; /* Individual log likelihood */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    int s1, s2;
           savm=oldm;    double bbh, survp;
           oldm=newm;    long ipmx;
         } /* end mult */    /*extern weight */
           /* We are differentiating ll according to initial status */
         s1=s[mw[mi][i]][i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         s2=s[mw[mi+1][i]][i];    /*for(i=1;i<imx;i++)
         bbh=(double)bh[mi][i]/(double)stepm;       printf(" %d\n",s[4][i]);
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    */
         ipmx +=1;    cov[1]=1.;
         sw += weight[i];  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       } /* end of wave */  
     } /* end of individual */    if(mle==1){
   }else if (mle==4){  /* ml=4 no inter-extrapolation */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for(mi=1; mi<= wav[i]-1; mi++){
       for(mi=1; mi<= wav[i]-1; mi++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         for (ii=1;ii<=nlstate+ndeath;ii++)            for (j=1;j<=nlstate+ndeath;j++){
           for (j=1;j<=nlstate+ndeath;j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            }
           }          for(d=0; d<dh[mi][i]; d++){
         for(d=0; d<dh[mi][i]; d++){            newm=savm;
           newm=savm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            for (kk=1; kk<=cptcovage;kk++) {
           for (kk=1; kk<=cptcovage;kk++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            }
           }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                  1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            savm=oldm;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            oldm=newm;
           savm=oldm;          } /* end mult */
           oldm=newm;       
         } /* end mult */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                 /* But now since version 0.9 we anticipate for bias at large stepm.
         s1=s[mw[mi][i]][i];           * If stepm is larger than one month (smallest stepm) and if the exact delay
         s2=s[mw[mi+1][i]][i];           * (in months) between two waves is not a multiple of stepm, we rounded to
         if( s2 > nlstate){            * the nearest (and in case of equal distance, to the lowest) interval but now
           lli=log(out[s1][s2] - savm[s1][s2]);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         }else{           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */           * probability in order to take into account the bias as a fraction of the way
         }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         ipmx +=1;           * -stepm/2 to stepm/2 .
         sw += weight[i];           * For stepm=1 the results are the same as for previous versions of Imach.
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;           * For stepm > 1 the results are less biased than in previous versions.
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */           */
       } /* end of wave */          s1=s[mw[mi][i]][i];
     } /* end of individual */          s2=s[mw[mi+1][i]][i];
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */          bbh=(double)bh[mi][i]/(double)stepm;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          /* bias bh is positive if real duration
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];           * is higher than the multiple of stepm and negative otherwise.
       for(mi=1; mi<= wav[i]-1; mi++){           */
         for (ii=1;ii<=nlstate+ndeath;ii++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           for (j=1;j<=nlstate+ndeath;j++){          if( s2 > nlstate){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            /* i.e. if s2 is a death state and if the date of death is known
             savm[ii][j]=(ii==j ? 1.0 : 0.0);               then the contribution to the likelihood is the probability to
           }               die between last step unit time and current  step unit time,
         for(d=0; d<dh[mi][i]; d++){               which is also equal to probability to die before dh
           newm=savm;               minus probability to die before dh-stepm .
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;               In version up to 0.92 likelihood was computed
           for (kk=1; kk<=cptcovage;kk++) {          as if date of death was unknown. Death was treated as any other
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          health state: the date of the interview describes the actual state
           }          and not the date of a change in health state. The former idea was
                   to consider that at each interview the state was recorded
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          (healthy, disable or death) and IMaCh was corrected; but when we
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          introduced the exact date of death then we should have modified
           savm=oldm;          the contribution of an exact death to the likelihood. This new
           oldm=newm;          contribution is smaller and very dependent of the step unit
         } /* end mult */          stepm. It is no more the probability to die between last interview
                 and month of death but the probability to survive from last
         s1=s[mw[mi][i]][i];          interview up to one month before death multiplied by the
         s2=s[mw[mi+1][i]][i];          probability to die within a month. Thanks to Chris
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          Jackson for correcting this bug.  Former versions increased
         ipmx +=1;          mortality artificially. The bad side is that we add another loop
         sw += weight[i];          which slows down the processing. The difference can be up to 10%
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          lower mortality.
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/            */
       } /* end of wave */            lli=log(out[s1][s2] - savm[s1][s2]);
     } /* end of individual */  
   } /* End of if */  
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          } else if  (s2==-2) {
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            for (j=1,survp=0. ; j<=nlstate; j++)
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   return -l;            /*survp += out[s1][j]; */
 }            lli= log(survp);
           }
 /*************** log-likelihood *************/         
 double funcone( double *x)          else if  (s2==-4) {
 {            for (j=3,survp=0. ; j<=nlstate; j++)  
   /* Same as likeli but slower because of a lot of printf and if */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int i, ii, j, k, mi, d, kk;            lli= log(survp);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          }
   double **out;  
   double lli; /* Individual log likelihood */          else if  (s2==-5) {
   double llt;            for (j=1,survp=0. ; j<=2; j++)  
   int s1, s2;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double bbh, survp;            lli= log(survp);
   /*extern weight */          }
   /* We are differentiating ll according to initial status */         
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          else{
   /*for(i=1;i<imx;i++)             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     printf(" %d\n",s[4][i]);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   */          }
   cov[1]=1.;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   for(k=1; k<=nlstate; k++) ll[k]=0.;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          sw += weight[i];
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(mi=1; mi<= wav[i]-1; mi++){        } /* end of wave */
       for (ii=1;ii<=nlstate+ndeath;ii++)      } /* end of individual */
         for (j=1;j<=nlstate+ndeath;j++){    }  else if(mle==2){
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           savm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
       for(d=0; d<dh[mi][i]; d++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         newm=savm;            for (j=1;j<=nlstate+ndeath;j++){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (kk=1; kk<=cptcovage;kk++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            }
         }          for(d=0; d<=dh[mi][i]; d++){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            newm=savm;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         savm=oldm;            for (kk=1; kk<=cptcovage;kk++) {
         oldm=newm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       } /* end mult */            }
                   out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       s1=s[mw[mi][i]][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       s2=s[mw[mi+1][i]][i];            savm=oldm;
       bbh=(double)bh[mi][i]/(double)stepm;             oldm=newm;
       /* bias is positive if real duration          } /* end mult */
        * is higher than the multiple of stepm and negative otherwise.       
        */          s1=s[mw[mi][i]][i];
       if( s2 > nlstate && (mle <5) ){  /* Jackson */          s2=s[mw[mi+1][i]][i];
         lli=log(out[s1][s2] - savm[s1][s2]);          bbh=(double)bh[mi][i]/(double)stepm;
       } else if (mle==1){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          ipmx +=1;
       } else if(mle==2){          sw += weight[i];
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       } else if(mle==3){  /* exponential inter-extrapolation */        } /* end of wave */
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */      } /* end of individual */
       } else if (mle==4){  /* mle=4 no inter-extrapolation */    }  else if(mle==3){  /* exponential inter-extrapolation */
         lli=log(out[s1][s2]); /* Original formula */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         lli=log(out[s1][s2]); /* Original formula */        for(mi=1; mi<= wav[i]-1; mi++){
       } /* End of if */          for (ii=1;ii<=nlstate+ndeath;ii++)
       ipmx +=1;            for (j=1;j<=nlstate+ndeath;j++){
       sw += weight[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            }
       if(globpr){          for(d=0; d<dh[mi][i]; d++){
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\            newm=savm;
  %10.6f %10.6f %10.6f ", \            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],            for (kk=1; kk<=cptcovage;kk++) {
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){            }
           llt +=ll[k]*gipmx/gsw;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         fprintf(ficresilk," %10.6f\n", -llt);            oldm=newm;
       }          } /* end mult */
     } /* end of wave */       
   } /* end of individual */          s1=s[mw[mi][i]][i];
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          s2=s[mw[mi+1][i]][i];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          bbh=(double)bh[mi][i]/(double)stepm;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   if(globpr==0){ /* First time we count the contributions and weights */          ipmx +=1;
     gipmx=ipmx;          sw += weight[i];
     gsw=sw;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   return -l;      } /* end of individual */
 }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*************** function likelione ***********/        for(mi=1; mi<= wav[i]-1; mi++){
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* This routine should help understanding what is done with               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      the selection of individuals/waves and              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      to check the exact contribution to the likelihood.            }
      Plotting could be done.          for(d=0; d<dh[mi][i]; d++){
    */            newm=savm;
   int k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   if(*globpri !=0){ /* Just counts and sums, no printings */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     strcpy(fileresilk,"ilk");             }
     strcat(fileresilk,fileres);         
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       printf("Problem with resultfile: %s\n", fileresilk);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);            savm=oldm;
     }            oldm=newm;
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");          } /* end mult */
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");       
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */          s1=s[mw[mi][i]][i];
     for(k=1; k<=nlstate; k++)           s2=s[mw[mi+1][i]][i];
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);          if( s2 > nlstate){
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");            lli=log(out[s1][s2] - savm[s1][s2]);
   }          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   *fretone=(*funcone)(p);          }
   if(*globpri !=0){          ipmx +=1;
     fclose(ficresilk);          sw += weight[i];
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fflush(fichtm);   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   }         } /* end of wave */
   return;      } /* end of individual */
 }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*********** Maximum Likelihood Estimation ***************/        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i,j, iter;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **xi;            }
   double fret;          for(d=0; d<dh[mi][i]; d++){
   double fretone; /* Only one call to likelihood */            newm=savm;
   /*  char filerespow[FILENAMELENGTH];*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   xi=matrix(1,npar,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   for (i=1;i<=npar;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (j=1;j<=npar;j++)            }
       xi[i][j]=(i==j ? 1.0 : 0.0);         
   printf("Powell\n");  fprintf(ficlog,"Powell\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   strcpy(filerespow,"pow");                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcat(filerespow,fileres);            savm=oldm;
   if((ficrespow=fopen(filerespow,"w"))==NULL) {            oldm=newm;
     printf("Problem with resultfile: %s\n", filerespow);          } /* end mult */
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);       
   }          s1=s[mw[mi][i]][i];
   fprintf(ficrespow,"# Powell\n# iter -2*LL");          s2=s[mw[mi+1][i]][i];
   for (i=1;i<=nlstate;i++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(j=1;j<=nlstate+ndeath;j++)          ipmx +=1;
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          sw += weight[i];
   fprintf(ficrespow,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   powell(p,xi,npar,ftol,&iter,&fret,func);        } /* end of wave */
       } /* end of individual */
   fclose(ficrespow);    } /* End of if */
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
 }  }
   
 /**** Computes Hessian and covariance matrix ***/  /*************** log-likelihood *************/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  double funcone( double *x)
 {  {
   double  **a,**y,*x,pd;    /* Same as likeli but slower because of a lot of printf and if */
   double **hess;    int i, ii, j, k, mi, d, kk;
   int i, j,jk;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   int *indx;    double **out;
     double lli; /* Individual log likelihood */
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    double llt;
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    int s1, s2;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double bbh, survp;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    /*extern weight */
   double gompertz(double p[]);    /* We are differentiating ll according to initial status */
   hess=matrix(1,npar,1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++)
   printf("\nCalculation of the hessian matrix. Wait...\n");      printf(" %d\n",s[4][i]);
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    */
   for (i=1;i<=npar;i++){    cov[1]=1.;
     printf("%d",i);fflush(stdout);  
     fprintf(ficlog,"%d",i);fflush(ficlog);    for(k=1; k<=nlstate; k++) ll[k]=0.;
      
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     /*  printf(" %f ",p[i]);      for(mi=1; mi<= wav[i]-1; mi++){
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/        for (ii=1;ii<=nlstate+ndeath;ii++)
   }          for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++) {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=npar;j++)  {          }
       if (j>i) {         for(d=0; d<dh[mi][i]; d++){
         printf(".%d%d",i,j);fflush(stdout);          newm=savm;
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         hess[i][j]=hessij(p,delti,i,j,func,npar);          for (kk=1; kk<=cptcovage;kk++) {
                     cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         hess[j][i]=hess[i][j];              }
         /*printf(" %lf ",hess[i][j]);*/          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }          savm=oldm;
   }          oldm=newm;
   printf("\n");        } /* end mult */
   fprintf(ficlog,"\n");       
         s1=s[mw[mi][i]][i];
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        s2=s[mw[mi+1][i]][i];
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        bbh=(double)bh[mi][i]/(double)stepm;
           /* bias is positive if real duration
   a=matrix(1,npar,1,npar);         * is higher than the multiple of stepm and negative otherwise.
   y=matrix(1,npar,1,npar);         */
   x=vector(1,npar);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   indx=ivector(1,npar);          lli=log(out[s1][s2] - savm[s1][s2]);
   for (i=1;i<=npar;i++)        } else if  (s2==-2) {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          for (j=1,survp=0. ; j<=nlstate; j++)
   ludcmp(a,npar,indx,&pd);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
   for (j=1;j<=npar;j++) {        }else if (mle==1){
     for (i=1;i<=npar;i++) x[i]=0;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     x[j]=1;        } else if(mle==2){
     lubksb(a,npar,indx,x);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for (i=1;i<=npar;i++){         } else if(mle==3){  /* exponential inter-extrapolation */
       matcov[i][j]=x[i];          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   }          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   printf("\n#Hessian matrix#\n");          lli=log(out[s1][s2]); /* Original formula */
   fprintf(ficlog,"\n#Hessian matrix#\n");        } /* End of if */
   for (i=1;i<=npar;i++) {         ipmx +=1;
     for (j=1;j<=npar;j++) {         sw += weight[i];
       printf("%.3e ",hess[i][j]);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficlog,"%.3e ",hess[i][j]);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     }        if(globpr){
     printf("\n");          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     fprintf(ficlog,"\n");   %11.6f %11.6f %11.6f ", \
   }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   /* Recompute Inverse */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   for (i=1;i<=npar;i++)            llt +=ll[k]*gipmx/gsw;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   ludcmp(a,npar,indx,&pd);          }
           fprintf(ficresilk," %10.6f\n", -llt);
   /*  printf("\n#Hessian matrix recomputed#\n");        }
       } /* end of wave */
   for (j=1;j<=npar;j++) {    } /* end of individual */
     for (i=1;i<=npar;i++) x[i]=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     x[j]=1;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     lubksb(a,npar,indx,x);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for (i=1;i<=npar;i++){     if(globpr==0){ /* First time we count the contributions and weights */
       y[i][j]=x[i];      gipmx=ipmx;
       printf("%.3e ",y[i][j]);      gsw=sw;
       fprintf(ficlog,"%.3e ",y[i][j]);    }
     }    return -l;
     printf("\n");  }
     fprintf(ficlog,"\n");  
   }  
   */  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   free_matrix(a,1,npar,1,npar);  {
   free_matrix(y,1,npar,1,npar);    /* This routine should help understanding what is done with
   free_vector(x,1,npar);       the selection of individuals/waves and
   free_ivector(indx,1,npar);       to check the exact contribution to the likelihood.
   free_matrix(hess,1,npar,1,npar);       Plotting could be done.
      */
     int k;
 }  
     if(*globpri !=0){ /* Just counts and sums, no printings */
 /*************** hessian matrix ****************/      strcpy(fileresilk,"ilk");
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)      strcat(fileresilk,fileres);
 {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   int i;        printf("Problem with resultfile: %s\n", fileresilk);
   int l=1, lmax=20;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double k1,k2;      }
   double p2[NPARMAX+1];      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double res;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double fx;      for(k=1; k<=nlstate; k++)
   int k=0,kmax=10;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double l1;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];    *fretone=(*funcone)(p);
   for(l=0 ; l <=lmax; l++){    if(*globpri !=0){
     l1=pow(10,l);      fclose(ficresilk);
     delts=delt;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     for(k=1 ; k <kmax; k=k+1){      fflush(fichtm);
       delt = delta*(l1*k);    }
       p2[theta]=x[theta] +delt;    return;
       k1=func(p2)-fx;  }
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*********** Maximum Likelihood Estimation ***************/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
         void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 #ifdef DEBUG  {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    int i,j, iter;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double **xi;
 #endif    double fret;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double fretone; /* Only one call to likelihood */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    /*  char filerespow[FILENAMELENGTH];*/
         k=kmax;    xi=matrix(1,npar,1,npar);
       }    for (i=1;i<=npar;i++)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for (j=1;j<=npar;j++)
         k=kmax; l=lmax*10.;        xi[i][j]=(i==j ? 1.0 : 0.0);
       }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){     strcpy(filerespow,"pow");
         delts=delt;    strcat(filerespow,fileres);
       }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", filerespow);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   delti[theta]=delts;    }
   return res;     fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for (i=1;i<=nlstate;i++)
 }      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)    fprintf(ficrespow,"\n");
 {  
   int i;    powell(p,xi,npar,ftol,&iter,&fret,func);
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;    free_matrix(xi,1,npar,1,npar);
   double p2[NPARMAX+1];    fclose(ficrespow);
   int k;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fx=func(x);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  }
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /**** Computes Hessian and covariance matrix ***/
     k1=func(p2)-fx;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     {
     p2[thetai]=x[thetai]+delti[thetai]/k;    double  **a,**y,*x,pd;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double **hess;
     k2=func(p2)-fx;    int i, j,jk;
       int *indx;
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     k3=func(p2)-fx;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       void lubksb(double **a, int npar, int *indx, double b[]) ;
     p2[thetai]=x[thetai]-delti[thetai]/k;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double gompertz(double p[]);
     k4=func(p2)-fx;    hess=matrix(1,npar,1,npar);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG    printf("\nCalculation of the hessian matrix. Wait...\n");
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    for (i=1;i<=npar;i++){
 #endif      printf("%d",i);fflush(stdout);
   }      fprintf(ficlog,"%d",i);fflush(ficlog);
   return res;     
 }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
      
 /************** Inverse of matrix **************/      /*  printf(" %f ",p[i]);
 void ludcmp(double **a, int n, int *indx, double *d)           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 {     }
   int i,imax,j,k;    
   double big,dum,sum,temp;     for (i=1;i<=npar;i++) {
   double *vv;       for (j=1;j<=npar;j++)  {
          if (j>i) {
   vv=vector(1,n);           printf(".%d%d",i,j);fflush(stdout);
   *d=1.0;           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   for (i=1;i<=n;i++) {           hess[i][j]=hessij(p,delti,i,j,func,npar);
     big=0.0;          
     for (j=1;j<=n;j++)           hess[j][i]=hess[i][j];    
       if ((temp=fabs(a[i][j])) > big) big=temp;           /*printf(" %lf ",hess[i][j]);*/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");         }
     vv[i]=1.0/big;       }
   }     }
   for (j=1;j<=n;j++) {     printf("\n");
     for (i=1;i<j;i++) {     fprintf(ficlog,"\n");
       sum=a[i][j];   
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       a[i][j]=sum;     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     }    
     big=0.0;     a=matrix(1,npar,1,npar);
     for (i=j;i<=n;i++) {     y=matrix(1,npar,1,npar);
       sum=a[i][j];     x=vector(1,npar);
       for (k=1;k<j;k++)     indx=ivector(1,npar);
         sum -= a[i][k]*a[k][j];     for (i=1;i<=npar;i++)
       a[i][j]=sum;       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       if ( (dum=vv[i]*fabs(sum)) >= big) {     ludcmp(a,npar,indx,&pd);
         big=dum;   
         imax=i;     for (j=1;j<=npar;j++) {
       }       for (i=1;i<=npar;i++) x[i]=0;
     }       x[j]=1;
     if (j != imax) {       lubksb(a,npar,indx,x);
       for (k=1;k<=n;k++) {       for (i=1;i<=npar;i++){
         dum=a[imax][k];         matcov[i][j]=x[i];
         a[imax][k]=a[j][k];       }
         a[j][k]=dum;     }
       }   
       *d = -(*d);     printf("\n#Hessian matrix#\n");
       vv[imax]=vv[j];     fprintf(ficlog,"\n#Hessian matrix#\n");
     }     for (i=1;i<=npar;i++) {
     indx[j]=imax;       for (j=1;j<=npar;j++) {
     if (a[j][j] == 0.0) a[j][j]=TINY;         printf("%.3e ",hess[i][j]);
     if (j != n) {         fprintf(ficlog,"%.3e ",hess[i][j]);
       dum=1.0/(a[j][j]);       }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;       printf("\n");
     }       fprintf(ficlog,"\n");
   }     }
   free_vector(vv,1,n);  /* Doesn't work */  
 ;    /* Recompute Inverse */
 }     for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 void lubksb(double **a, int n, int *indx, double b[])     ludcmp(a,npar,indx,&pd);
 {   
   int i,ii=0,ip,j;     /*  printf("\n#Hessian matrix recomputed#\n");
   double sum;   
      for (j=1;j<=npar;j++) {
   for (i=1;i<=n;i++) {       for (i=1;i<=npar;i++) x[i]=0;
     ip=indx[i];       x[j]=1;
     sum=b[ip];       lubksb(a,npar,indx,x);
     b[ip]=b[i];       for (i=1;i<=npar;i++){
     if (ii)         y[i][j]=x[i];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];         printf("%.3e ",y[i][j]);
     else if (sum) ii=i;         fprintf(ficlog,"%.3e ",y[i][j]);
     b[i]=sum;       }
   }       printf("\n");
   for (i=n;i>=1;i--) {       fprintf(ficlog,"\n");
     sum=b[i];     }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];     */
     b[i]=sum/a[i][i];   
   }     free_matrix(a,1,npar,1,npar);
 }     free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
 /************ Frequencies ********************/    free_ivector(indx,1,npar);
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)    free_matrix(hess,1,npar,1,npar);
 {  /* Some frequencies */  
     
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  }
   int first;  
   double ***freq; /* Frequencies */  /*************** hessian matrix ****************/
   double *pp, **prop;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   double pos,posprop, k2, dateintsum=0,k2cpt=0;  {
   FILE *ficresp;    int i;
   char fileresp[FILENAMELENGTH];    int l=1, lmax=20;
       double k1,k2;
   pp=vector(1,nlstate);    double p2[NPARMAX+1];
   prop=matrix(1,nlstate,iagemin,iagemax+3);    double res;
   strcpy(fileresp,"p");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   strcat(fileresp,fileres);    double fx;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    int k=0,kmax=10;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double l1;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);    fx=func(x);
   }    for (i=1;i<=npar;i++) p2[i]=x[i];
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);    for(l=0 ; l <=lmax; l++){
   j1=0;      l1=pow(10,l);
         delts=delt;
   j=cptcoveff;      for(k=1 ; k <kmax; k=k+1){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
   first=1;        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
   for(k1=1; k1<=j;k1++){        k2=func(p2)-fx;
     for(i1=1; i1<=ncodemax[k1];i1++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
       j1++;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);       
         scanf("%d", i);*/  #ifdef DEBUG
       for (i=-1; i<=nlstate+ndeath; i++)          printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for (jk=-1; jk<=nlstate+ndeath; jk++)          fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           for(m=iagemin; m <= iagemax+3; m++)  #endif
             freq[i][jk][m]=0;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for (i=1; i<=nlstate; i++)            k=kmax;
       for(m=iagemin; m <= iagemax+3; m++)        }
         prop[i][m]=0;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                 k=kmax; l=lmax*10.;
       dateintsum=0;        }
       k2cpt=0;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
       for (i=1; i<=imx; i++) {          delts=delt;
         bool=1;        }
         if  (cptcovn>0) {      }
           for (z1=1; z1<=cptcoveff; z1++)     }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     delti[theta]=delts;
               bool=0;    return res;
         }   
         if (bool==1){  }
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/  {
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    int i;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    int l=1, l1, lmax=20;
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];    double k1,k2,k3,k4,res,fx;
               if (m<lastpass) {    double p2[NPARMAX+1];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    int k;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];  
               }    fx=func(x);
                   for (k=1; k<=2; k++) {
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {      for (i=1;i<=npar;i++) p2[i]=x[i];
                 dateintsum=dateintsum+k2;      p2[thetai]=x[thetai]+delti[thetai]/k;
                 k2cpt++;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
               }      k1=func(p2)-fx;
               /*}*/   
           }      p2[thetai]=x[thetai]+delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k2=func(p2)-fx;
           
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       if  (cptcovn>0) {      k3=func(p2)-fx;
         fprintf(ficresp, "\n#********** Variable ");    
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      p2[thetai]=x[thetai]-delti[thetai]/k;
         fprintf(ficresp, "**********\n#");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k4=func(p2)-fx;
       for(i=1; i<=nlstate;i++)       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  #ifdef DEBUG
       fprintf(ficresp, "\n");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(i=iagemin; i <= iagemax+3; i++){  #endif
         if(i==iagemax+3){    }
           fprintf(ficlog,"Total");    return res;
         }else{  }
           if(first==1){  
             first=0;  /************** Inverse of matrix **************/
             printf("See log file for details...\n");  void ludcmp(double **a, int n, int *indx, double *d)
           }  {
           fprintf(ficlog,"Age %d", i);    int i,imax,j,k;
         }    double big,dum,sum,temp;
         for(jk=1; jk <=nlstate ; jk++){    double *vv;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)   
             pp[jk] += freq[jk][m][i];     vv=vector(1,n);
         }    *d=1.0;
         for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=n;i++) {
           for(m=-1, pos=0; m <=0 ; m++)      big=0.0;
             pos += freq[jk][m][i];      for (j=1;j<=n;j++)
           if(pp[jk]>=1.e-10){        if ((temp=fabs(a[i][j])) > big) big=temp;
             if(first==1){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      vv[i]=1.0/big;
             }    }
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    for (j=1;j<=n;j++) {
           }else{      for (i=1;i<j;i++) {
             if(first==1)        sum=a[i][j];
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        a[i][j]=sum;
           }      }
         }      big=0.0;
       for (i=j;i<=n;i++) {
         for(jk=1; jk <=nlstate ; jk++){        sum=a[i][j];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for (k=1;k<j;k++)
             pp[jk] += freq[jk][m][i];          sum -= a[i][k]*a[k][j];
         }               a[i][j]=sum;
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){        if ( (dum=vv[i]*fabs(sum)) >= big) {
           pos += pp[jk];          big=dum;
           posprop += prop[jk][i];          imax=i;
         }        }
         for(jk=1; jk <=nlstate ; jk++){      }
           if(pos>=1.e-5){      if (j != imax) {
             if(first==1)        for (k=1;k<=n;k++) {
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          dum=a[imax][k];
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          a[imax][k]=a[j][k];
           }else{          a[j][k]=dum;
             if(first==1)        }
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        *d = -(*d);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        vv[imax]=vv[j];
           }      }
           if( i <= iagemax){      indx[j]=imax;
             if(pos>=1.e-5){      if (a[j][j] == 0.0) a[j][j]=TINY;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);      if (j != n) {
               /*probs[i][jk][j1]= pp[jk]/pos;*/        dum=1.0/(a[j][j]);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        for (i=j+1;i<=n;i++) a[i][j] *= dum;
             }      }
             else    }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);    free_vector(vv,1,n);  /* Doesn't work */
           }  ;
         }  }
           
         for(jk=-1; jk <=nlstate+ndeath; jk++)  void lubksb(double **a, int n, int *indx, double b[])
           for(m=-1; m <=nlstate+ndeath; m++)  {
             if(freq[jk][m][i] !=0 ) {    int i,ii=0,ip,j;
             if(first==1)    double sum;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);   
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    for (i=1;i<=n;i++) {
             }      ip=indx[i];
         if(i <= iagemax)      sum=b[ip];
           fprintf(ficresp,"\n");      b[ip]=b[i];
         if(first==1)      if (ii)
           printf("Others in log...\n");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
         fprintf(ficlog,"\n");      else if (sum) ii=i;
       }      b[i]=sum;
     }    }
   }    for (i=n;i>=1;i--) {
   dateintmean=dateintsum/k2cpt;       sum=b[i];
        for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
   fclose(ficresp);      b[i]=sum/a[i][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);    }
   free_vector(pp,1,nlstate);  }
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);  
   /* End of Freq */  void pstamp(FILE *fichier)
 }  {
     fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 /************ Prevalence ********************/  }
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)  
 {    /************ Frequencies ********************/
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
      in each health status at the date of interview (if between dateprev1 and dateprev2).  {  /* Some frequencies */
      We still use firstpass and lastpass as another selection.   
   */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      int first;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    double ***freq; /* Frequencies */
   double ***freq; /* Frequencies */    double *pp, **prop;
   double *pp, **prop;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double pos,posprop;     char fileresp[FILENAMELENGTH];
   double  y2; /* in fractional years */   
   int iagemin, iagemax;    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
   iagemin= (int) agemin;    strcpy(fileresp,"p");
   iagemax= (int) agemax;    strcat(fileresp,fileres);
   /*pp=vector(1,nlstate);*/    if((ficresp=fopen(fileresp,"w"))==NULL) {
   prop=matrix(1,nlstate,iagemin,iagemax+3);       printf("Problem with prevalence resultfile: %s\n", fileresp);
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   j1=0;      exit(0);
       }
   j=cptcoveff;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    j1=0;
      
   for(k1=1; k1<=j;k1++){    j=cptcoveff;
     for(i1=1; i1<=ncodemax[k1];i1++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       j1++;  
           first=1;
       for (i=1; i<=nlstate; i++)    
         for(m=iagemin; m <= iagemax+3; m++)    for(k1=1; k1<=j;k1++){
           prop[i][m]=0.0;      for(i1=1; i1<=ncodemax[k1];i1++){
              j1++;
       for (i=1; i<=imx; i++) { /* Each individual */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         bool=1;          scanf("%d", i);*/
         if  (cptcovn>0) {        for (i=-5; i<=nlstate+ndeath; i++)  
           for (z1=1; z1<=cptcoveff; z1++)           for (jk=-5; jk<=nlstate+ndeath; jk++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])             for(m=iagemin; m <= iagemax+3; m++)
               bool=0;              freq[i][jk][m]=0;
         }   
         if (bool==1) {       for (i=1; i<=nlstate; i++)  
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/        for(m=iagemin; m <= iagemax+3; m++)
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */          prop[i][m]=0;
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */       
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        dateintsum=0;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;        k2cpt=0;
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);         for (i=1; i<=imx; i++) {
               if (s[m][i]>0 && s[m][i]<=nlstate) {           bool=1;
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/          if  (cptcovn>0) {
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];            for (z1=1; z1<=cptcoveff; z1++)
                 prop[s[m][i]][iagemax+3] += weight[i];               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
               }                 bool=0;
             }          }
           } /* end selection of waves */          if (bool==1){
         }            for(m=firstpass; m<=lastpass; m++){
       }              k2=anint[m][i]+(mint[m][i]/12.);
       for(i=iagemin; i <= iagemax+3; i++){                /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                         if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
           posprop += prop[jk][i];                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         }                 if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         for(jk=1; jk <=nlstate ; jk++){                       freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           if( i <=  iagemax){                 }
             if(posprop>=1.e-5){                
               probs[i][jk][j1]= prop[jk][i]/posprop;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             }                   dateintsum=dateintsum+k2;
           }                   k2cpt++;
         }/* end jk */                 }
       }/* end i */                 /*}*/
     } /* end i1 */            }
   } /* end k1 */          }
           }
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/         
   /*free_vector(pp,1,nlstate);*/        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);        pstamp(ficresp);
 }  /* End of prevalence */        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable ");
 /************* Waves Concatenation ***************/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        }
 {        for(i=1; i<=nlstate;i++)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      Death is a valid wave (if date is known).        fprintf(ficresp, "\n");
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]        for(i=iagemin; i <= iagemax+3; i++){
      and mw[mi+1][i]. dh depends on stepm.          if(i==iagemax+3){
      */            fprintf(ficlog,"Total");
           }else{
   int i, mi, m;            if(first==1){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              first=0;
      double sum=0., jmean=0.;*/              printf("See log file for details...\n");
   int first;            }
   int j, k=0,jk, ju, jl;            fprintf(ficlog,"Age %d", i);
   double sum=0.;          }
   first=0;          for(jk=1; jk <=nlstate ; jk++){
   jmin=1e+5;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   jmax=-1;              pp[jk] += freq[jk][m][i];
   jmean=0.;          }
   for(i=1; i<=imx; i++){          for(jk=1; jk <=nlstate ; jk++){
     mi=0;            for(m=-1, pos=0; m <=0 ; m++)
     m=firstpass;              pos += freq[jk][m][i];
     while(s[m][i] <= nlstate){            if(pp[jk]>=1.e-10){
       if(s[m][i]>=1)              if(first==1){
         mw[++mi][i]=m;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       if(m >=lastpass)              }
         break;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       else            }else{
         m++;              if(first==1)
     }/* end while */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     if (s[m][i] > nlstate){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       mi++;     /* Death is another wave */            }
       /* if(mi==0)  never been interviewed correctly before death */          }
          /* Only death is a correct wave */  
       mw[mi][i]=m;          for(jk=1; jk <=nlstate ; jk++){
     }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
     wav[i]=mi;          }      
     if(mi==0){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       nbwarn++;            pos += pp[jk];
       if(first==0){            posprop += prop[jk][i];
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);          }
         first=1;          for(jk=1; jk <=nlstate ; jk++){
       }            if(pos>=1.e-5){
       if(first==1){              if(first==1)
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     } /* end mi==0 */            }else{
   } /* End individuals */              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   for(i=1; i<=imx; i++){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for(mi=1; mi<wav[i];mi++){            }
       if (stepm <=0)            if( i <= iagemax){
         dh[mi][i]=1;              if(pos>=1.e-5){
       else{                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */                /*probs[i][jk][j1]= pp[jk]/pos;*/
           if (agedc[i] < 2*AGESUP) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);               }
             if(j==0) j=1;  /* Survives at least one month after exam */              else
             else if(j<0){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
               nberr++;            }
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          }
               j=1; /* Temporary Dangerous patch */         
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);          for(jk=-1; jk <=nlstate+ndeath; jk++)
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            for(m=-1; m <=nlstate+ndeath; m++)
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);              if(freq[jk][m][i] !=0 ) {
             }              if(first==1)
             k=k+1;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             if (j >= jmax) jmax=j;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             if (j <= jmin) jmin=j;              }
             sum=sum+j;          if(i <= iagemax)
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/            fprintf(ficresp,"\n");
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/          if(first==1)
           }            printf("Others in log...\n");
         }          fprintf(ficlog,"\n");
         else{        }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      }
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/    }
           k=k+1;    dateintmean=dateintsum/k2cpt;
           if (j >= jmax) jmax=j;   
           else if (j <= jmin)jmin=j;    fclose(ficresp);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/    free_vector(pp,1,nlstate);
           if(j<0){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             nberr++;    /* End of Freq */
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  }
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  
           }  /************ Prevalence ********************/
           sum=sum+j;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         }  {  
         jk= j/stepm;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         jl= j -jk*stepm;       in each health status at the date of interview (if between dateprev1 and dateprev2).
         ju= j -(jk+1)*stepm;       We still use firstpass and lastpass as another selection.
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */    */
           if(jl==0){   
             dh[mi][i]=jk;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
             bh[mi][i]=0;    double ***freq; /* Frequencies */
           }else{ /* We want a negative bias in order to only have interpolation ie    double *pp, **prop;
                   * at the price of an extra matrix product in likelihood */    double pos,posprop;
             dh[mi][i]=jk+1;    double  y2; /* in fractional years */
             bh[mi][i]=ju;    int iagemin, iagemax;
           }  
         }else{    iagemin= (int) agemin;
           if(jl <= -ju){    iagemax= (int) agemax;
             dh[mi][i]=jk;    /*pp=vector(1,nlstate);*/
             bh[mi][i]=jl;       /* bias is positive if real duration    prop=matrix(1,nlstate,iagemin,iagemax+3);
                                  * is higher than the multiple of stepm and negative otherwise.    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                                  */    j1=0;
           }   
           else{    j=cptcoveff;
             dh[mi][i]=jk+1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             bh[mi][i]=ju;   
           }    for(k1=1; k1<=j;k1++){
           if(dh[mi][i]==0){      for(i1=1; i1<=ncodemax[k1];i1++){
             dh[mi][i]=1; /* At least one step */        j1++;
             bh[mi][i]=ju; /* At least one step */       
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/        for (i=1; i<=nlstate; i++)  
           }          for(m=iagemin; m <= iagemax+3; m++)
         } /* end if mle */            prop[i][m]=0.0;
       }       
     } /* end wave */        for (i=1; i<=imx; i++) { /* Each individual */
   }          bool=1;
   jmean=sum/k;          if  (cptcovn>0) {
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            for (z1=1; z1<=cptcoveff; z1++)
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
  }                bool=0;
           }
 /*********** Tricode ****************************/          if (bool==1) {
 void tricode(int *Tvar, int **nbcode, int imx)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                 if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   int Ndum[20],ij=1, k, j, i, maxncov=19;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int cptcode=0;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   cptcoveff=0;                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
                  if (s[m][i]>0 && s[m][i]<=nlstate) {
   for (k=0; k<maxncov; k++) Ndum[k]=0;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   for (k=1; k<=7; k++) ncodemax[k]=0;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {                }
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum               }
                                modality*/             } /* end selection of waves */
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/          }
       Ndum[ij]++; /*store the modality */        }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        for(i=iagemin; i <= iagemax+3; i++){  
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable          
                                        Tvar[j]. If V=sex and male is 0 and           for(jk=1,posprop=0; jk <=nlstate ; jk++) {
                                        female is 1, then  cptcode=1.*/            posprop += prop[jk][i];
     }          }
   
     for (i=0; i<=cptcode; i++) {          for(jk=1; jk <=nlstate ; jk++){    
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */            if( i <=  iagemax){
     }              if(posprop>=1.e-5){
                 probs[i][jk][j1]= prop[jk][i]/posprop;
     ij=1;               }
     for (i=1; i<=ncodemax[j]; i++) {            }
       for (k=0; k<= maxncov; k++) {          }/* end jk */
         if (Ndum[k] != 0) {        }/* end i */
           nbcode[Tvar[j]][ij]=k;       } /* end i1 */
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */    } /* end k1 */
              
           ij++;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         }    /*free_vector(pp,1,nlstate);*/
         if (ij > ncodemax[j]) break;     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       }    }  /* End of prevalence */
     }   
   }    /************* Waves Concatenation ***************/
   
  for (k=0; k< maxncov; k++) Ndum[k]=0;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
  for (i=1; i<=ncovmodel-2; i++) {     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/       Death is a valid wave (if date is known).
    ij=Tvar[i];       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
    Ndum[ij]++;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  }       and mw[mi+1][i]. dh depends on stepm.
        */
  ij=1;  
  for (i=1; i<= maxncov; i++) {    int i, mi, m;
    if((Ndum[i]!=0) && (i<=ncovcol)){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
      Tvaraff[ij]=i; /*For printing */       double sum=0., jmean=0.;*/
      ij++;    int first;
    }    int j, k=0,jk, ju, jl;
  }    double sum=0.;
      first=0;
  cptcoveff=ij-1; /*Number of simple covariates*/    jmin=1e+5;
 }    jmax=-1;
     jmean=0.;
 /*********** Health Expectancies ****************/    for(i=1; i<=imx; i++){
       mi=0;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      m=firstpass;
       while(s[m][i] <= nlstate){
 {        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   /* Health expectancies */          mw[++mi][i]=m;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        if(m >=lastpass)
   double age, agelim, hf;          break;
   double ***p3mat,***varhe;        else
   double **dnewm,**doldm;          m++;
   double *xp;      }/* end while */
   double **gp, **gm;      if (s[m][i] > nlstate){
   double ***gradg, ***trgradg;        mi++;     /* Death is another wave */
   int theta;        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);        mw[mi][i]=m;
   xp=vector(1,npar);      }
   dnewm=matrix(1,nlstate*nlstate,1,npar);  
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);      wav[i]=mi;
         if(mi==0){
   fprintf(ficreseij,"# Health expectancies\n");        nbwarn++;
   fprintf(ficreseij,"# Age");        if(first==0){
   for(i=1; i<=nlstate;i++)          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     for(j=1; j<=nlstate;j++)          first=1;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        }
   fprintf(ficreseij,"\n");        if(first==1){
           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   if(estepm < stepm){        }
     printf ("Problem %d lower than %d\n",estepm, stepm);      } /* end mi==0 */
   }    } /* End individuals */
   else  hstepm=estepm;     
   /* We compute the life expectancy from trapezoids spaced every estepm months    for(i=1; i<=imx; i++){
    * This is mainly to measure the difference between two models: for example      for(mi=1; mi<wav[i];mi++){
    * if stepm=24 months pijx are given only every 2 years and by summing them        if (stepm <=0)
    * we are calculating an estimate of the Life Expectancy assuming a linear           dh[mi][i]=1;
    * progression in between and thus overestimating or underestimating according        else{
    * to the curvature of the survival function. If, for the same date, we           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            if (agedc[i] < 2*AGESUP) {
    * to compare the new estimate of Life expectancy with the same linear               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
    * hypothesis. A more precise result, taking into account a more precise              if(j==0) j=1;  /* Survives at least one month after exam */
    * curvature will be obtained if estepm is as small as stepm. */              else if(j<0){
                 nberr++;
   /* For example we decided to compute the life expectancy with the smallest unit */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                 j=1; /* Temporary Dangerous patch */
      nhstepm is the number of hstepm from age to agelim                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
      nstepm is the number of stepm from age to agelin.                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      Look at hpijx to understand the reason of that which relies in memory size                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
      and note for a fixed period like estepm months */              }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the              k=k+1;
      survival function given by stepm (the optimization length). Unfortunately it              if (j >= jmax){
      means that if the survival funtion is printed only each two years of age and if                jmax=j;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                 ijmax=i;
      results. So we changed our mind and took the option of the best precision.              }
   */              if (j <= jmin){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                 jmin=j;
                 ijmin=i;
   agelim=AGESUP;              }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              sum=sum+j;
     /* nhstepm age range expressed in number of stepm */              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm);               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */             }
     /* if (stepm >= YEARM) hstepm=1;*/          }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          else{
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     gp=matrix(0,nhstepm,1,nlstate*nlstate);  
     gm=matrix(0,nhstepm,1,nlstate*nlstate);            k=k+1;
             if (j >= jmax) {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored              jmax=j;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */              ijmax=i;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              }
              else if (j <= jmin){
               jmin=j;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              ijmin=i;
             }
     /* Computing  Variances of health expectancies */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      for(theta=1; theta <=npar; theta++){            if(j<0){
       for(i=1; i<=npar; i++){               nberr++;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }
               sum=sum+j;
       cptj=0;          }
       for(j=1; j<= nlstate; j++){          jk= j/stepm;
         for(i=1; i<=nlstate; i++){          jl= j -jk*stepm;
           cptj=cptj+1;          ju= j -(jk+1)*stepm;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            if(jl==0){
           }              dh[mi][i]=jk;
         }              bh[mi][i]=0;
       }            }else{ /* We want a negative bias in order to only have interpolation ie
                          * at the price of an extra matrix product in likelihood */
                    dh[mi][i]=jk+1;
       for(i=1; i<=npar; i++)               bh[mi][i]=ju;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }else{
                   if(jl <= -ju){
       cptj=0;              dh[mi][i]=jk;
       for(j=1; j<= nlstate; j++){              bh[mi][i]=jl;       /* bias is positive if real duration
         for(i=1;i<=nlstate;i++){                                   * is higher than the multiple of stepm and negative otherwise.
           cptj=cptj+1;                                   */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){            }
             else{
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;              dh[mi][i]=jk+1;
           }              bh[mi][i]=ju;
         }            }
       }            if(dh[mi][i]==0){
       for(j=1; j<= nlstate*nlstate; j++)              dh[mi][i]=1; /* At least one step */
         for(h=0; h<=nhstepm-1; h++){              bh[mi][i]=ju; /* At least one step */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         }            }
      }           } /* end if mle */
            }
 /* End theta */      } /* end wave */
     }
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
      for(h=0; h<=nhstepm-1; h++)    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       for(j=1; j<=nlstate*nlstate;j++)   }
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  /*********** Tricode ****************************/
        void tricode(int *Tvar, int **nbcode, int imx)
   {
      for(i=1;i<=nlstate*nlstate;i++)   
       for(j=1;j<=nlstate*nlstate;j++)    int Ndum[20],ij=1, k, j, i, maxncov=19;
         varhe[i][j][(int)age] =0.;    int cptcode=0;
     cptcoveff=0;
      printf("%d|",(int)age);fflush(stdout);   
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    for (k=0; k<maxncov; k++) Ndum[k]=0;
      for(h=0;h<=nhstepm-1;h++){    for (k=1; k<=7; k++) ncodemax[k]=0;
       for(k=0;k<=nhstepm-1;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
         for(i=1;i<=nlstate*nlstate;i++)                                 modality*/
           for(j=1;j<=nlstate*nlstate;j++)        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        Ndum[ij]++; /*store the modality */
       }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
     /* Computing expectancies */                                         Tvar[j]. If V=sex and male is 0 and
     for(i=1; i<=nlstate;i++)                                         female is 1, then  cptcode=1.*/
       for(j=1; j<=nlstate;j++)      }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      for (i=0; i<=cptcode; i++) {
                   if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      }
   
         }      ij=1;
       for (i=1; i<=ncodemax[j]; i++) {
     fprintf(ficreseij,"%3.0f",age );        for (k=0; k<= maxncov; k++) {
     cptj=0;          if (Ndum[k] != 0) {
     for(i=1; i<=nlstate;i++)            nbcode[Tvar[j]][ij]=k;
       for(j=1; j<=nlstate;j++){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         cptj++;           
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );            ij++;
       }          }
     fprintf(ficreseij,"\n");          if (ij > ncodemax[j]) break;
            }  
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);      }
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);    }  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);   for (k=0; k< maxncov; k++) Ndum[k]=0;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }   for (i=1; i<=ncovmodel-2; i++) {
   printf("\n");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   fprintf(ficlog,"\n");     ij=Tvar[i];
      Ndum[ij]++;
   free_vector(xp,1,npar);   }
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);  
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);   ij=1;
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);   for (i=1; i<= maxncov; i++) {
 }     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
 /************ Variance ******************/       ij++;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)     }
 {   }
   /* Variance of health expectancies */   
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/   cptcoveff=ij-1; /*Number of simple covariates*/
   /* double **newm;*/  }
   double **dnewm,**doldm;  
   double **dnewmp,**doldmp;  /*********** Health Expectancies ****************/
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   double *xp;  
   double **gp, **gm;  /* for var eij */  {
   double ***gradg, ***trgradg; /*for var eij */    /* Health expectancies, no variances */
   double **gradgp, **trgradgp; /* for var p point j */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   double *gpp, *gmp; /* for var p point j */    double age, agelim, hf;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    double ***p3mat;
   double ***p3mat;    double eip;
   double age,agelim, hf;  
   double ***mobaverage;    pstamp(ficreseij);
   int theta;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   char digit[4];    fprintf(ficreseij,"# Age");
   char digitp[25];    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
   char fileresprobmorprev[FILENAMELENGTH];        fprintf(ficreseij," e%1d%1d ",i,j);
       }
   if(popbased==1){      fprintf(ficreseij," e%1d. ",i);
     if(mobilav!=0)    }
       strcpy(digitp,"-populbased-mobilav-");    fprintf(ficreseij,"\n");
     else strcpy(digitp,"-populbased-nomobil-");  
   }   
   else     if(estepm < stepm){
     strcpy(digitp,"-stablbased-");      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   if (mobilav!=0) {    else  hstepm=estepm;  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* We compute the life expectancy from trapezoids spaced every estepm months
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){     * This is mainly to measure the difference between two models: for example
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);     * if stepm=24 months pijx are given only every 2 years and by summing them
       printf(" Error in movingaverage mobilav=%d\n",mobilav);     * we are calculating an estimate of the Life Expectancy assuming a linear
     }     * progression in between and thus overestimating or underestimating according
   }     * to the curvature of the survival function. If, for the same date, we
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   strcpy(fileresprobmorprev,"prmorprev");      * to compare the new estimate of Life expectancy with the same linear
   sprintf(digit,"%-d",ij);     * hypothesis. A more precise result, taking into account a more precise
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/     * curvature will be obtained if estepm is as small as stepm. */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */  
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    /* For example we decided to compute the life expectancy with the smallest unit */
   strcat(fileresprobmorprev,fileres);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {       nhstepm is the number of hstepm from age to agelim
     printf("Problem with resultfile: %s\n", fileresprobmorprev);       nstepm is the number of stepm from age to agelin.
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like estepm months */
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);       means that if the survival funtion is printed only each two years of age and if
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){       results. So we changed our mind and took the option of the best precision.
     fprintf(ficresprobmorprev," p.%-d SE",j);    */
     for(i=1; i<=nlstate;i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  
   }      agelim=AGESUP;
   fprintf(ficresprobmorprev,"\n");    /* If stepm=6 months */
   fprintf(ficgp,"\n# Routine varevsij");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);     
 /*   } */  /* nhstepm age range expressed in number of stepm */
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    /* if (stepm >= YEARM) hstepm=1;*/
   fprintf(ficresvij,"# Age");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   for(i=1; i<=nlstate;i++)    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    for (age=bage; age<=fage; age ++){
   fprintf(ficresvij,"\n");  
   
   xp=vector(1,npar);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   dnewm=matrix(1,nlstate,1,npar);     
   doldm=matrix(1,nlstate,1,nlstate);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);     
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);     
   gpp=vector(nlstate+1,nlstate+ndeath);  
   gmp=vector(nlstate+1,nlstate+ndeath);      /* Computing expectancies */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate;j++)
   if(estepm < stepm){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     printf ("Problem %d lower than %d\n",estepm, stepm);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   }           
   else  hstepm=estepm;               /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.           }
      nhstepm is the number of hstepm from age to agelim      
      nstepm is the number of stepm from age to agelin.       fprintf(ficreseij,"%3.0f",age );
      Look at hpijx to understand the reason of that which relies in memory size      for(i=1; i<=nlstate;i++){
      and note for a fixed period like k years */        eip=0;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        for(j=1; j<=nlstate;j++){
      survival function given by stepm (the optimization length). Unfortunately it          eip +=eij[i][j][(int)age];
      means that if the survival funtion is printed every two years of age and if          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
      you sum them up and add 1 year (area under the trapezoids) you won't get the same         }
      results. So we changed our mind and took the option of the best precision.        fprintf(ficreseij,"%9.4f", eip );
   */      }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       fprintf(ficreseij,"\n");
   agelim = AGESUP;     
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    printf("\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);   
     gp=matrix(0,nhstepm,1,nlstate);  }
     gm=matrix(0,nhstepm,1,nlstate);  
   void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
     for(theta=1; theta <=npar; theta++){  {
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    /* Covariances of health expectancies eij and of total life expectancies according
         xp[i] = x[i] + (i==theta ?delti[theta]:0);     to initial status i, ei. .
       }    */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
       if (popbased==1) {    double **dnewm,**doldm;
         if(mobilav ==0){    double *xp, *xm;
           for(i=1; i<=nlstate;i++)    double **gp, **gm;
             prlim[i][i]=probs[(int)age][i][ij];    double ***gradg, ***trgradg;
         }else{ /* mobilav */     int theta;
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=mobaverage[(int)age][i][ij];    double eip, vip;
         }  
       }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       xp=vector(1,npar);
       for(j=1; j<= nlstate; j++){    xm=vector(1,npar);
         for(h=0; h<=nhstepm; h++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];   
         }    pstamp(ficresstdeij);
       }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       /* This for computing probability of death (h=1 means    fprintf(ficresstdeij,"# Age");
          computed over hstepm matrices product = hstepm*stepm months)     for(i=1; i<=nlstate;i++){
          as a weighted average of prlim.      for(j=1; j<=nlstate;j++)
       */        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       for(j=nlstate+1;j<=nlstate+ndeath;j++){      fprintf(ficresstdeij," e%1d. ",i);
         for(i=1,gpp[j]=0.; i<= nlstate; i++)    }
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    fprintf(ficresstdeij,"\n");
       }      
       /* end probability of death */    pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */    fprintf(ficrescveij,"# Age");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for(i=1; i<=nlstate;i++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(j=1; j<=nlstate;j++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        cptj= (j-1)*nlstate+i;
          for(i2=1; i2<=nlstate;i2++)
       if (popbased==1) {          for(j2=1; j2<=nlstate;j2++){
         if(mobilav ==0){            cptj2= (j2-1)*nlstate+i2;
           for(i=1; i<=nlstate;i++)            if(cptj2 <= cptj)
             prlim[i][i]=probs[(int)age][i][ij];              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         }else{ /* mobilav */           }
           for(i=1; i<=nlstate;i++)      }
             prlim[i][i]=mobaverage[(int)age][i][ij];    fprintf(ficrescveij,"\n");
         }   
       }    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
       for(j=1; j<= nlstate; j++){    }
         for(h=0; h<=nhstepm; h++){    else  hstepm=estepm;  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    /* We compute the life expectancy from trapezoids spaced every estepm months
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];     * This is mainly to measure the difference between two models: for example
         }     * if stepm=24 months pijx are given only every 2 years and by summing them
       }     * we are calculating an estimate of the Life Expectancy assuming a linear
       /* This for computing probability of death (h=1 means     * progression in between and thus overestimating or underestimating according
          computed over hstepm matrices product = hstepm*stepm months)      * to the curvature of the survival function. If, for the same date, we
          as a weighted average of prlim.     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       */     * to compare the new estimate of Life expectancy with the same linear
       for(j=nlstate+1;j<=nlstate+ndeath;j++){     * hypothesis. A more precise result, taking into account a more precise
         for(i=1,gmp[j]=0.; i<= nlstate; i++)     * curvature will be obtained if estepm is as small as stepm. */
          gmp[j] += prlim[i][i]*p3mat[i][j][1];  
       }        /* For example we decided to compute the life expectancy with the smallest unit */
       /* end probability of death */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
        nhstepm is the number of hstepm from age to agelim
       for(j=1; j<= nlstate; j++) /* vareij */       nstepm is the number of stepm from age to agelin.
         for(h=0; h<=nhstepm; h++){       Look at hpijx to understand the reason of that which relies in memory size
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];       and note for a fixed period like estepm months */
         }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */       means that if the survival funtion is printed only each two years of age and if
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];       you sum them up and add 1 year (area under the trapezoids) you won't get the same
       }       results. So we changed our mind and took the option of the best precision.
     */
     } /* End theta */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     for(h=0; h<=nhstepm; h++) /* veij */    agelim=AGESUP;
       for(j=1; j<=nlstate;j++)    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
         for(theta=1; theta <=npar; theta++)    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
           trgradg[h][j][theta]=gradg[h][theta][j];    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */   
       for(theta=1; theta <=npar; theta++)    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         trgradgp[j][theta]=gradgp[theta][j];    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     for(i=1;i<=nlstate;i++)    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;    for (age=bage; age<=fage; age ++){
   
     for(h=0;h<=nhstepm;h++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for(k=0;k<=nhstepm;k++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)      /* Computing  Variances of health expectancies */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       }         decrease memory allocation */
     }      for(theta=1; theta <=npar; theta++){
           for(i=1; i<=npar; i++){
     /* pptj */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        }
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       for(i=nlstate+1;i<=nlstate+ndeath;i++)        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         varppt[j][i]=doldmp[j][i];   
     /* end ppptj */        for(j=1; j<= nlstate; j++){
     /*  x centered again */          for(i=1; i<=nlstate; i++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);              for(h=0; h<=nhstepm-1; h++){
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     if (popbased==1) {            }
       if(mobilav ==0){          }
         for(i=1; i<=nlstate;i++)        }
           prlim[i][i]=probs[(int)age][i][ij];       
       }else{ /* mobilav */         for(ij=1; ij<= nlstate*nlstate; ij++)
         for(i=1; i<=nlstate;i++)          for(h=0; h<=nhstepm-1; h++){
           prlim[i][i]=mobaverage[(int)age][i][ij];            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       }          }
     }      }/* End theta */
                   
     /* This for computing probability of death (h=1 means     
        computed over hstepm (estepm) matrices product = hstepm*stepm months)       for(h=0; h<=nhstepm-1; h++)
        as a weighted average of prlim.        for(j=1; j<=nlstate*nlstate;j++)
     */          for(theta=1; theta <=npar; theta++)
     for(j=nlstate+1;j<=nlstate+ndeath;j++){            trgradg[h][j][theta]=gradg[h][theta][j];
       for(i=1,gmp[j]=0.;i<= nlstate; i++)      
         gmp[j] += prlim[i][i]*p3mat[i][j][1];   
     }           for(ij=1;ij<=nlstate*nlstate;ij++)
     /* end probability of death */        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);  
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(i=1; i<=nlstate;i++){       for(h=0;h<=nhstepm-1;h++){
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        for(k=0;k<=nhstepm-1;k++){
       }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     }           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     fprintf(ficresprobmorprev,"\n");          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
     fprintf(ficresvij,"%.0f ",age );              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++){      }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }      /* Computing expectancies */
     fprintf(ficresvij,"\n");      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     free_matrix(gp,0,nhstepm,1,nlstate);      for(i=1; i<=nlstate;i++)
     free_matrix(gm,0,nhstepm,1,nlstate);        for(j=1; j<=nlstate;j++)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           
   } /* End age */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   free_vector(gpp,nlstate+1,nlstate+ndeath);  
   free_vector(gmp,nlstate+1,nlstate+ndeath);          }
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);  
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      fprintf(ficresstdeij,"%3.0f",age );
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      for(i=1; i<=nlstate;i++){
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */        eip=0.;
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");        vip=0.;
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */        for(j=1; j<=nlstate;j++){
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */          eip += eij[i][j][(int)age];
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));        }
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      }
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      fprintf(ficresstdeij,"\n");
 */  
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */      fprintf(ficrescveij,"%3.0f",age );
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   free_vector(xp,1,npar);          cptj= (j-1)*nlstate+i;
   free_matrix(doldm,1,nlstate,1,nlstate);          for(i2=1; i2<=nlstate;i2++)
   free_matrix(dnewm,1,nlstate,1,npar);            for(j2=1; j2<=nlstate;j2++){
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              cptj2= (j2-1)*nlstate+i2;
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);              if(cptj2 <= cptj)
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   fclose(ficresprobmorprev);        }
   fflush(ficgp);      fprintf(ficrescveij,"\n");
   fflush(fichtm);      
 }  /* end varevsij */    }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 /************ Variance of prevlim ******************/    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 {    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   /* Variance of prevalence limit */    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **newm;    printf("\n");
   double **dnewm,**doldm;    fprintf(ficlog,"\n");
   int i, j, nhstepm, hstepm;  
   int k, cptcode;    free_vector(xm,1,npar);
   double *xp;    free_vector(xp,1,npar);
   double *gp, *gm;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   double **gradg, **trgradg;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   double age,agelim;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   int theta;  }
      
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");  /************ Variance ******************/
   fprintf(ficresvpl,"# Age");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   for(i=1; i<=nlstate;i++)  {
       fprintf(ficresvpl," %1d-%1d",i,i);    /* Variance of health expectancies */
   fprintf(ficresvpl,"\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
   xp=vector(1,npar);    double **dnewm,**doldm;
   dnewm=matrix(1,nlstate,1,npar);    double **dnewmp,**doldmp;
   doldm=matrix(1,nlstate,1,nlstate);    int i, j, nhstepm, hstepm, h, nstepm ;
       int k, cptcode;
   hstepm=1*YEARM; /* Every year of age */    double *xp;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */     double **gp, **gm;  /* for var eij */
   agelim = AGESUP;    double ***gradg, ***trgradg; /*for var eij */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double **gradgp, **trgradgp; /* for var p point j */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     double *gpp, *gmp; /* for var p point j */
     if (stepm >= YEARM) hstepm=1;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double ***p3mat;
     gradg=matrix(1,npar,1,nlstate);    double age,agelim, hf;
     gp=vector(1,nlstate);    double ***mobaverage;
     gm=vector(1,nlstate);    int theta;
     char digit[4];
     for(theta=1; theta <=npar; theta++){    char digitp[25];
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    char fileresprobmorprev[FILENAMELENGTH];
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if(popbased==1){
       for(i=1;i<=nlstate;i++)      if(mobilav!=0)
         gp[i] = prlim[i][i];        strcpy(digitp,"-populbased-mobilav-");
           else strcpy(digitp,"-populbased-nomobil-");
       for(i=1; i<=npar; i++) /* Computes gradient */    }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    else
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      strcpy(digitp,"-stablbased-");
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=nlstate;i++)      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     } /* End theta */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     trgradg =matrix(1,nlstate,1,npar);    }
   
     for(j=1; j<=nlstate;j++)    strcpy(fileresprobmorprev,"prmorprev");
       for(theta=1; theta <=npar; theta++)    sprintf(digit,"%-d",ij);
         trgradg[j][theta]=gradg[theta][j];    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     for(i=1;i<=nlstate;i++)    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       varpl[i][(int)age] =0.;    strcat(fileresprobmorprev,fileres);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     for(i=1;i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresvpl,"%.0f ",age );   
     for(i=1; i<=nlstate;i++)    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    pstamp(ficresprobmorprev);
     fprintf(ficresvpl,"\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     free_vector(gp,1,nlstate);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     free_vector(gm,1,nlstate);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     free_matrix(gradg,1,npar,1,nlstate);      fprintf(ficresprobmorprev," p.%-d SE",j);
     free_matrix(trgradg,1,nlstate,1,npar);      for(i=1; i<=nlstate;i++)
   } /* End age */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
   free_vector(xp,1,npar);    fprintf(ficresprobmorprev,"\n");
   free_matrix(doldm,1,nlstate,1,npar);    fprintf(ficgp,"\n# Routine varevsij");
   free_matrix(dnewm,1,nlstate,1,nlstate);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
 /************ Variance of one-step probabilities  ******************/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    pstamp(ficresvij);
 {    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   int i, j=0,  i1, k1, l1, t, tj;    if(popbased==1)
   int k2, l2, j1,  z1;      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   int k=0,l, cptcode;    else
   int first=1, first1;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    fprintf(ficresvij,"# Age");
   double **dnewm,**doldm;    for(i=1; i<=nlstate;i++)
   double *xp;      for(j=1; j<=nlstate;j++)
   double *gp, *gm;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   double **gradg, **trgradg;    fprintf(ficresvij,"\n");
   double **mu;  
   double age,agelim, cov[NCOVMAX];    xp=vector(1,npar);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    dnewm=matrix(1,nlstate,1,npar);
   int theta;    doldm=matrix(1,nlstate,1,nlstate);
   char fileresprob[FILENAMELENGTH];    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   char fileresprobcov[FILENAMELENGTH];    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   char fileresprobcor[FILENAMELENGTH];  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   double ***varpij;    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   strcpy(fileresprob,"prob");     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   strcat(fileresprob,fileres);   
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    if(estepm < stepm){
     printf("Problem with resultfile: %s\n", fileresprob);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    }
   }    else  hstepm=estepm;  
   strcpy(fileresprobcov,"probcov");     /* For example we decided to compute the life expectancy with the smallest unit */
   strcat(fileresprobcov,fileres);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {       nhstepm is the number of hstepm from age to agelim
     printf("Problem with resultfile: %s\n", fileresprobcov);       nstepm is the number of stepm from age to agelin.
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like k years */
   strcpy(fileresprobcor,"probcor");     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   strcat(fileresprobcor,fileres);       survival function given by stepm (the optimization length). Unfortunately it
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {       means that if the survival funtion is printed every two years of age and if
     printf("Problem with resultfile: %s\n", fileresprobcor);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);       results. So we changed our mind and took the option of the best precision.
   }    */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    agelim = AGESUP;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      gp=matrix(0,nhstepm,1,nlstate);
   fprintf(ficresprob,"# Age");      gm=matrix(0,nhstepm,1,nlstate);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  
   fprintf(ficresprobcov,"# Age");  
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      for(theta=1; theta <=npar; theta++){
   fprintf(ficresprobcov,"# Age");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   for(i=1; i<=nlstate;i++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     for(j=1; j<=(nlstate+ndeath);j++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        if (popbased==1) {
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          if(mobilav ==0){
     }              for(i=1; i<=nlstate;i++)
  /* fprintf(ficresprob,"\n");              prlim[i][i]=probs[(int)age][i][ij];
   fprintf(ficresprobcov,"\n");          }else{ /* mobilav */
   fprintf(ficresprobcor,"\n");            for(i=1; i<=nlstate;i++)
  */              prlim[i][i]=mobaverage[(int)age][i][ij];
  xp=vector(1,npar);          }
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));   
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        for(j=1; j<= nlstate; j++){
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          for(h=0; h<=nhstepm; h++){
   first=1;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   fprintf(ficgp,"\n# Routine varprob");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");          }
   fprintf(fichtm,"\n");        }
         /* This for computing probability of death (h=1 means
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);           computed over hstepm matrices product = hstepm*stepm months)
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\           as a weighted average of prlim.
   file %s<br>\n",optionfilehtmcov);        */
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 and drawn. It helps understanding how is the covariance between two incidences.\          for(i=1,gpp[j]=0.; i<= nlstate; i++)
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \        }    
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \        /* end probability of death */
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \  
 standard deviations wide on each axis. <br>\        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
   cov[1]=1;        if (popbased==1) {
   tj=cptcoveff;          if(mobilav ==0){
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}            for(i=1; i<=nlstate;i++)
   j1=0;              prlim[i][i]=probs[(int)age][i][ij];
   for(t=1; t<=tj;t++){          }else{ /* mobilav */
     for(i1=1; i1<=ncodemax[t];i1++){             for(i=1; i<=nlstate;i++)
       j1++;              prlim[i][i]=mobaverage[(int)age][i][ij];
       if  (cptcovn>0) {          }
         fprintf(ficresprob, "\n#********** Variable ");         }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprob, "**********\n#\n");        for(j=1; j<= nlstate; j++){
         fprintf(ficresprobcov, "\n#********** Variable ");           for(h=0; h<=nhstepm; h++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         fprintf(ficresprobcov, "**********\n#\n");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                   }
         fprintf(ficgp, "\n#********** Variable ");         }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        /* This for computing probability of death (h=1 means
         fprintf(ficgp, "**********\n#\n");           computed over hstepm matrices product = hstepm*stepm months)
                    as a weighted average of prlim.
                 */
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");         for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                 }    
         fprintf(ficresprobcor, "\n#********** Variable ");            /* end probability of death */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprobcor, "**********\n#");            for(j=1; j<= nlstate; j++) /* vareij */
       }          for(h=0; h<=nhstepm; h++){
                   gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       for (age=bage; age<=fage; age ++){           }
         cov[2]=age;  
         for (k=1; k<=cptcovn;k++) {        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)      } /* End theta */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
               trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      for(h=0; h<=nhstepm; h++) /* veij */
         gp=vector(1,(nlstate)*(nlstate+ndeath));        for(j=1; j<=nlstate;j++)
         gm=vector(1,(nlstate)*(nlstate+ndeath));          for(theta=1; theta <=npar; theta++)
                 trgradg[h][j][theta]=gradg[h][theta][j];
         for(theta=1; theta <=npar; theta++){  
           for(i=1; i<=npar; i++)      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);        for(theta=1; theta <=npar; theta++)
                     trgradgp[j][theta]=gradgp[theta][j];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);   
             
           k=0;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           for(i=1; i<= (nlstate); i++){      for(i=1;i<=nlstate;i++)
             for(j=1; j<=(nlstate+ndeath);j++){        for(j=1;j<=nlstate;j++)
               k=k+1;          vareij[i][j][(int)age] =0.;
               gp[k]=pmmij[i][j];  
             }      for(h=0;h<=nhstepm;h++){
           }        for(k=0;k<=nhstepm;k++){
                     matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           for(i=1; i<=npar; i++)          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);          for(i=1;i<=nlstate;i++)
                 for(j=1;j<=nlstate;j++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           k=0;        }
           for(i=1; i<=(nlstate); i++){      }
             for(j=1; j<=(nlstate+ndeath);j++){   
               k=k+1;      /* pptj */
               gm[k]=pmmij[i][j];      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
             }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
              for(i=nlstate+1;i<=nlstate+ndeath;i++)
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)           varppt[j][i]=doldmp[j][i];
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];        /* end ppptj */
         }      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           for(theta=1; theta <=npar; theta++)   
             trgradg[j][theta]=gradg[theta][j];      if (popbased==1) {
                 if(mobilav ==0){
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);           for(i=1; i<=nlstate;i++)
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            prlim[i][i]=probs[(int)age][i][ij];
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        }else{ /* mobilav */
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          for(i=1; i<=nlstate;i++)
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            prlim[i][i]=mobaverage[(int)age][i][ij];
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }
       }
         pmij(pmmij,cov,ncovmodel,x,nlstate);               
               /* This for computing probability of death (h=1 means
         k=0;         computed over hstepm (estepm) matrices product = hstepm*stepm months)
         for(i=1; i<=(nlstate); i++){         as a weighted average of prlim.
           for(j=1; j<=(nlstate+ndeath);j++){      */
             k=k+1;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
             mu[k][(int) age]=pmmij[i][j];        for(i=1,gmp[j]=0.;i<= nlstate; i++)
           }          gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }      }    
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      /* end probability of death */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  
             varpij[i][j][(int)age] = doldm[i][j];      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         /*printf("\n%d ",(int)age);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(i=1; i<=nlstate;i++){
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        }
           }*/      }
       fprintf(ficresprobmorprev,"\n");
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);      fprintf(ficresvij,"%.0f ",age );
         fprintf(ficresprobcor,"\n%d ",(int)age);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      fprintf(ficresvij,"\n");
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      free_matrix(gp,0,nhstepm,1,nlstate);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      free_matrix(gm,0,nhstepm,1,nlstate);
         }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         i=0;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         for (k=1; k<=(nlstate);k++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for (l=1; l<=(nlstate+ndeath);l++){     } /* End age */
             i=i++;    free_vector(gpp,nlstate+1,nlstate+ndeath);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    free_vector(gmp,nlstate+1,nlstate+ndeath);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
             for (j=1; j<=i;j++){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
             }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         }/* end of loop for state */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       } /* end of loop for age */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       /* Confidence intervalle of pij  */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       /*    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         fprintf(ficgp,"\nset noparametric;unset label");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  */
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  
       */    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    free_matrix(dnewm,1,nlstate,1,npar);
       first1=1;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (k2=1; k2<=(nlstate);k2++){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         for (l2=1; l2<=(nlstate+ndeath);l2++){     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           if(l2==k2) continue;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           j=(k2-1)*(nlstate+ndeath)+l2;    fclose(ficresprobmorprev);
           for (k1=1; k1<=(nlstate);k1++){    fflush(ficgp);
             for (l1=1; l1<=(nlstate+ndeath);l1++){     fflush(fichtm);
               if(l1==k1) continue;  }  /* end varevsij */
               i=(k1-1)*(nlstate+ndeath)+l1;  
               if(i<=j) continue;  /************ Variance of prevlim ******************/
               for (age=bage; age<=fage; age ++){   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
                 if ((int)age %5==0){  {
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    /* Variance of prevalence limit */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    double **newm;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    double **dnewm,**doldm;
                   mu2=mu[j][(int) age]/stepm*YEARM;    int i, j, nhstepm, hstepm;
                   c12=cv12/sqrt(v1*v2);    int k, cptcode;
                   /* Computing eigen value of matrix of covariance */    double *xp;
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    double *gp, *gm;
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    double **gradg, **trgradg;
                   /* Eigen vectors */    double age,agelim;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    int theta;
                   /*v21=sqrt(1.-v11*v11); *//* error */   
                   v21=(lc1-v1)/cv12*v11;    pstamp(ficresvpl);
                   v12=-v21;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
                   v22=v11;    fprintf(ficresvpl,"# Age");
                   tnalp=v21/v11;    for(i=1; i<=nlstate;i++)
                   if(first1==1){        fprintf(ficresvpl," %1d-%1d",i,i);
                     first1=0;    fprintf(ficresvpl,"\n");
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  
                   }    xp=vector(1,npar);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    dnewm=matrix(1,nlstate,1,npar);
                   /*printf(fignu*/    doldm=matrix(1,nlstate,1,nlstate);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */   
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    hstepm=1*YEARM; /* Every year of age */
                   if(first==1){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
                     first=0;    agelim = AGESUP;
                     fprintf(ficgp,"\nset parametric;unset label");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      if (stepm >= YEARM) hstepm=1;
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\      gradg=matrix(1,npar,1,nlstate);
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\      gp=vector(1,nlstate);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\      gm=vector(1,nlstate);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      for(theta=1; theta <=npar; theta++){
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);        for(i=1; i<=npar; i++){ /* Computes gradient */
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        for(i=1;i<=nlstate;i++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\          gp[i] = prlim[i][i];
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));     
                   }else{        for(i=1; i<=npar; i++) /* Computes gradient */
                     first=0;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        for(i=1;i<=nlstate;i++)
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          gm[i] = prlim[i][i];
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        for(i=1;i<=nlstate;i++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                   }/* if first */      } /* End theta */
                 } /* age mod 5 */  
               } /* end loop age */      trgradg =matrix(1,nlstate,1,npar);
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  
               first=1;      for(j=1; j<=nlstate;j++)
             } /*l12 */        for(theta=1; theta <=npar; theta++)
           } /* k12 */          trgradg[j][theta]=gradg[theta][j];
         } /*l1 */  
       }/* k1 */      for(i=1;i<=nlstate;i++)
     } /* loop covariates */        varpl[i][(int)age] =0.;
   }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      for(i=1;i<=nlstate;i++)
   free_vector(xp,1,npar);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   fclose(ficresprob);  
   fclose(ficresprobcov);      fprintf(ficresvpl,"%.0f ",age );
   fclose(ficresprobcor);      for(i=1; i<=nlstate;i++)
   fflush(ficgp);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   fflush(fichtmcov);      fprintf(ficresvpl,"\n");
 }      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
 /******************* Printing html file ***********/      free_matrix(trgradg,1,nlstate,1,npar);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    } /* End age */
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    free_vector(xp,1,npar);
                   int popforecast, int estepm ,\    free_matrix(doldm,1,nlstate,1,npar);
                   double jprev1, double mprev1,double anprev1, \    free_matrix(dnewm,1,nlstate,1,nlstate);
                   double jprev2, double mprev2,double anprev2){  
   int jj1, k1, i1, cpt;  }
   
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \  /************ Variance of one-step probabilities  ******************/
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));  {
    fprintf(fichtm,"\    int i, j=0,  i1, k1, l1, t, tj;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",    int k2, l2, j1,  z1;
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));    int k=0,l, cptcode;
    fprintf(fichtm,"\    int first=1, first1;
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));    double **dnewm,**doldm;
    fprintf(fichtm,"\    double *xp;
  - Life expectancies by age and initial health status (estepm=%2d months): \    double *gp, *gm;
    <a href=\"%s\">%s</a> <br>\n</li>",    double **gradg, **trgradg;
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));    double **mu;
     double age,agelim, cov[NCOVMAX];
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
  m=cptcoveff;    char fileresprob[FILENAMELENGTH];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
  jj1=0;  
  for(k1=1; k1<=m;k1++){    double ***varpij;
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;    strcpy(fileresprob,"prob");
      if (cptcovn > 0) {    strcat(fileresprob,fileres);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        for (cpt=1; cpt<=cptcoveff;cpt++)       printf("Problem with resultfile: %s\n", fileresprob);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    }
      }    strcpy(fileresprobcov,"probcov");
      /* Pij */    strcat(fileresprobcov,fileres);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);           printf("Problem with resultfile: %s\n", fileresprobcov);
      /* Quasi-incidences */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\    }
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \    strcpy(fileresprobcor,"probcor");
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     strcat(fileresprobcor,fileres);
        /* Stable prevalence in each health state */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        for(cpt=1; cpt<nlstate;cpt++){      printf("Problem with resultfile: %s\n", fileresprobcor);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);    }
        }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
    } /* end i1 */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  }/* End k1 */    pstamp(ficresprob);
  fprintf(fichtm,"</ul>");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
  fprintf(fichtm,"\    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 \n<br><li><h4> Result files (second order: variances)</h4>\n\    fprintf(ficresprobcov,"# Age");
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);    pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    fprintf(ficresprobcor,"# Age");
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));  
  fprintf(fichtm,"\  
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    for(i=1; i<=nlstate;i++)
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
  fprintf(fichtm,"\        fprintf(ficresprobcov," p%1d-%1d ",i,j);
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",        fprintf(ficresprobcor," p%1d-%1d ",i,j);
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));      }  
  fprintf(fichtm,"\   /* fprintf(ficresprob,"\n");
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",    fprintf(ficresprobcov,"\n");
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));    fprintf(ficresprobcor,"\n");
  fprintf(fichtm,"\   */
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",   xp=vector(1,npar);
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  fprintf(fichtm,"\    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
 /*  if(popforecast==1) fprintf(fichtm,"\n */    fprintf(ficgp,"\n# Routine varprob");
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    fprintf(fichtm,"\n");
 /*      <br>",fileres,fileres,fileres,fileres); */  
 /*  else  */    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
  fflush(fichtm);    file %s<br>\n",optionfilehtmcov);
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
  m=cptcoveff;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
  jj1=0;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
  for(k1=1; k1<=m;k1++){  standard deviations wide on each axis. <br>\
    for(i1=1; i1<=ncodemax[k1];i1++){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
      jj1++;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      if (cptcovn > 0) {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)     cov[1]=1;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    tj=cptcoveff;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      }    j1=0;
      for(cpt=1; cpt<=nlstate;cpt++) {    for(t=1; t<=tj;t++){
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \      for(i1=1; i1<=ncodemax[t];i1++){
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\        j1++;
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);          if  (cptcovn>0) {
      }          fprintf(ficresprob, "\n#********** Variable ");
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 health expectancies in states (1) and (2): %s%d.png<br>\          fprintf(ficresprob, "**********\n#\n");
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);          fprintf(ficresprobcov, "\n#********** Variable ");
    } /* end i1 */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  }/* End k1 */          fprintf(ficresprobcov, "**********\n#\n");
  fprintf(fichtm,"</ul>");         
  fflush(fichtm);          fprintf(ficgp, "\n#********** Variable ");
 }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
 /******************* Gnuplot file **************/         
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){         
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
   char dirfileres[132],optfileres[132];          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   int ng;         
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */          fprintf(ficresprobcor, "\n#********** Variable ");    
 /*     printf("Problem with file %s",optionfilegnuplot); */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */          fprintf(ficresprobcor, "**********\n#");    
 /*   } */        }
        
   /*#ifdef windows */        for (age=bage; age<=fage; age ++){
   fprintf(ficgp,"cd \"%s\" \n",pathc);          cov[2]=age;
     /*#endif */          for (k=1; k<=cptcovn;k++) {
   m=pow(2,cptcoveff);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
   strcpy(dirfileres,optionfilefiname);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   strcpy(optfileres,"vpl");          for (k=1; k<=cptcovprod;k++)
  /* 1eme*/            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (cpt=1; cpt<= nlstate ; cpt ++) {         
    for (k1=1; k1<= m ; k1 ++) {          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);          gp=vector(1,(nlstate)*(nlstate+ndeath));
      fprintf(ficgp,"set xlabel \"Age\" \n\          gm=vector(1,(nlstate)*(nlstate+ndeath));
 set ylabel \"Probability\" \n\     
 set ter png small\n\          for(theta=1; theta <=npar; theta++){
 set size 0.65,0.65\n\            for(i=1; i<=npar; i++)
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
            
      for (i=1; i<= nlstate ; i ++) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");           
        else fprintf(ficgp," \%%*lf (\%%*lf)");            k=0;
      }            for(i=1; i<= (nlstate); i++){
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);              for(j=1; j<=(nlstate+ndeath);j++){
      for (i=1; i<= nlstate ; i ++) {                k=k+1;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                gp[k]=pmmij[i][j];
        else fprintf(ficgp," \%%*lf (\%%*lf)");              }
      }             }
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);            
      for (i=1; i<= nlstate ; i ++) {            for(i=1; i<=npar; i++)
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
        else fprintf(ficgp," \%%*lf (\%%*lf)");     
      }              pmij(pmmij,cov,ncovmodel,xp,nlstate);
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));            k=0;
    }            for(i=1; i<=(nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
   /*2 eme*/                k=k+1;
                   gm[k]=pmmij[i][j];
   for (k1=1; k1<= m ; k1 ++) {               }
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);            }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);       
                 for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
     for (i=1; i<= nlstate+1 ; i ++) {              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       k=2*i;          }
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(theta=1; theta <=npar; theta++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");              trgradg[j][theta]=gradg[theta][j];
       }            
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       for (j=1; j<= nlstate+1 ; j ++) {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       }     
       fprintf(ficgp,"\" t\"\" w l 0,");          pmij(pmmij,cov,ncovmodel,x,nlstate);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);         
       for (j=1; j<= nlstate+1 ; j ++) {          k=0;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for(i=1; i<=(nlstate); i++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");            for(j=1; j<=(nlstate+ndeath);j++){
       }                 k=k+1;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              mu[k][(int) age]=pmmij[i][j];
       else fprintf(ficgp,"\" t\"\" w l 0,");            }
     }          }
   }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
               for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   /*3eme*/              varpij[i][j][(int)age] = doldm[i][j];
     
   for (k1=1; k1<= m ; k1 ++) {           /*printf("\n%d ",(int)age);
     for (cpt=1; cpt<= nlstate ; cpt ++) {            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       k=2+nlstate*(2*cpt-2);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       fprintf(ficgp,"set ter png small\n\            }*/
 set size 0.65,0.65\n\  
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);          fprintf(ficresprob,"\n%d ",(int)age);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          fprintf(ficresprobcov,"\n%d ",(int)age);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          fprintf(ficresprobcor,"\n%d ",(int)age);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                     fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       */            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       for (i=1; i< nlstate ; i ++) {          }
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);          i=0;
                   for (k=1; k<=(nlstate);k++){
       }             for (l=1; l<=(nlstate+ndeath);l++){
     }              i=i++;
   }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                 fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   /* CV preval stable (period) */              for (j=1; j<=i;j++){
   for (k1=1; k1<= m ; k1 ++) {                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     for (cpt=1; cpt<=nlstate ; cpt ++) {                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       k=3;              }
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);            }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\          }/* end of loop for state */
 set ter png small\nset size 0.65,0.65\n\        } /* end of loop for age */
 unset log y\n\  
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);        /* Confidence intervalle of pij  */
               /*
       for (i=1; i< nlstate ; i ++)          fprintf(ficgp,"\nset noparametric;unset label");
         fprintf(ficgp,"+$%d",k+i+1);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                 fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       l=3+(nlstate+ndeath)*cpt;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       for (i=1; i< nlstate ; i ++) {          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         l=3+(nlstate+ndeath)*cpt;        */
         fprintf(ficgp,"+$%d",l+i+1);  
       }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);           first1=1;
     }         for (k2=1; k2<=(nlstate);k2++){
   }            for (l2=1; l2<=(nlstate+ndeath);l2++){
               if(l2==k2) continue;
   /* proba elementaires */            j=(k2-1)*(nlstate+ndeath)+l2;
   for(i=1,jk=1; i <=nlstate; i++){            for (k1=1; k1<=(nlstate);k1++){
     for(k=1; k <=(nlstate+ndeath); k++){              for (l1=1; l1<=(nlstate+ndeath);l1++){
       if (k != i) {                if(l1==k1) continue;
         for(j=1; j <=ncovmodel; j++){                i=(k1-1)*(nlstate+ndeath)+l1;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                if(i<=j) continue;
           jk++;                 for (age=bage; age<=fage; age ++){
           fprintf(ficgp,"\n");                  if ((int)age %5==0){
         }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
    }                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/                    c12=cv12/sqrt(v1*v2);
      for(jk=1; jk <=m; jk++) {                    /* Computing eigen value of matrix of covariance */
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
        if (ng==2)                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                    /* Eigen vectors */
        else                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
          fprintf(ficgp,"\nset title \"Probability\"\n");                    /*v21=sqrt(1.-v11*v11); *//* error */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                    v21=(lc1-v1)/cv12*v11;
        i=1;                    v12=-v21;
        for(k2=1; k2<=nlstate; k2++) {                    v22=v11;
          k3=i;                    tnalp=v21/v11;
          for(k=1; k<=(nlstate+ndeath); k++) {                    if(first1==1){
            if (k != k2){                      first1=0;
              if(ng==2)                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);                    }
              else                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                    /*printf(fignu*/
              ij=1;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
              for(j=3; j <=ncovmodel; j++) {                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                    if(first==1){
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                      first=0;
                  ij++;                      fprintf(ficgp,"\nset parametric;unset label");
                }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                else                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
              }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
              fprintf(ficgp,")/(1");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                                            subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
              for(k1=1; k1 <=nlstate; k1++){                                 subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                ij=1;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                for(j=3; j <=ncovmodel; j++){                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                    ij++;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                  }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                  else                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                    }else{
                }                      first=0;
                fprintf(ficgp,")");                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
              }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
              i=i+ncovmodel;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
            }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
          } /* end k */                    }/* if first */
        } /* end k2 */                  } /* age mod 5 */
      } /* end jk */                } /* end loop age */
    } /* end ng */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    fflush(ficgp);                 first=1;
 }  /* end gnuplot */              } /*l12 */
             } /* k12 */
           } /*l1 */
 /*************** Moving average **************/        }/* k1 */
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){      } /* loop covariates */
     }
   int i, cpt, cptcod;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   int modcovmax =1;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   int mobilavrange, mob;    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   double age;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose     fclose(ficresprob);
                            a covariate has 2 modalities */    fclose(ficresprobcov);
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */    fclose(ficresprobcor);
     fflush(ficgp);
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){    fflush(fichtmcov);
     if(mobilav==1) mobilavrange=5; /* default */  }
     else mobilavrange=mobilav;  
     for (age=bage; age<=fage; age++)  
       for (i=1; i<=nlstate;i++)  /******************* Printing html file ***********/
         for (cptcod=1;cptcod<=modcovmax;cptcod++)  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];                    int lastpass, int stepm, int weightopt, char model[],\
     /* We keep the original values on the extreme ages bage, fage and for                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2                    int popforecast, int estepm ,\
        we use a 5 terms etc. until the borders are no more concerned.                     double jprev1, double mprev1,double anprev1, \
     */                     double jprev2, double mprev2,double anprev2){
     for (mob=3;mob <=mobilavrange;mob=mob+2){    int jj1, k1, i1, cpt;
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  
         for (i=1; i<=nlstate;i++){     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
           for (cptcod=1;cptcod<=modcovmax;cptcod++){     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];  </ul>");
               for (cpt=1;cpt<=(mob-1)/2;cpt++){     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
               }     fprintf(fichtm,"\
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
           }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
         }     fprintf(fichtm,"\
       }/* end age */   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     }/* end mob */             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   }else return -1;     fprintf(fichtm,"\
   return 0;   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 }/* End movingaverage */     <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
 /************** Forecasting ******************/   - Population projections by age and states: \
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   /* proj1, year, month, day of starting projection   
      agemin, agemax range of age  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      dateprev1 dateprev2 range of dates during which prevalence is computed  
      anproj2 year of en of projection (same day and month as proj1).   m=cptcoveff;
   */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;  
   int *popage;   jj1=0;
   double agec; /* generic age */   for(k1=1; k1<=m;k1++){
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;     for(i1=1; i1<=ncodemax[k1];i1++){
   double *popeffectif,*popcount;       jj1++;
   double ***p3mat;       if (cptcovn > 0) {
   double ***mobaverage;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   char fileresf[FILENAMELENGTH];         for (cpt=1; cpt<=cptcoveff;cpt++)
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   agelim=AGESUP;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);       }
         /* Pij */
   strcpy(fileresf,"f");        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   strcat(fileresf,fileres);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
   if((ficresf=fopen(fileresf,"w"))==NULL) {       /* Quasi-incidences */
     printf("Problem with forecast resultfile: %s\n", fileresf);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
   printf("Computing forecasting: result on file '%s' \n", fileresf);         /* Period (stable) prevalence in each health state */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
   if (mobilav!=0) {       for(cpt=1; cpt<=nlstate;cpt++) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);       }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);     } /* end i1 */
     }   }/* End k1 */
   }   fprintf(fichtm,"</ul>");
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;   fprintf(fichtm,"\
   if(estepm < stepm){  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     printf ("Problem %d lower than %d\n",estepm, stepm);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   }  
   else  hstepm=estepm;      fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   hstepm=hstepm/stepm;    fprintf(fichtm,"\
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                                fractional in yp1 */           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);   fprintf(fichtm,"\
   mprojmean=yp;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   yp1=modf((yp2*30.5),&yp);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   jprojmean=yp;   fprintf(fichtm,"\
   if(jprojmean==0) jprojmean=1;   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   if(mprojmean==0) jprojmean=1;     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   i1=cptcoveff;   fprintf(fichtm,"\
   if (cptcovn < 1){i1=1;}   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
        <a href=\"%s\">%s</a> <br>\n</li>",
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
      fprintf(fichtm,"\
   fprintf(ficresf,"#****** Routine prevforecast **\n");   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 /*            if (h==(int)(YEARM*yearp)){ */   fprintf(fichtm,"\
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       k=k+1;   fprintf(fichtm,"\
       fprintf(ficresf,"\n#******");   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       for(j=1;j<=cptcoveff;j++) {           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }  /*  if(popforecast==1) fprintf(fichtm,"\n */
       fprintf(ficresf,"******\n");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       for(j=1; j<=nlstate+ndeath;j++){   /*      <br>",fileres,fileres,fileres,fileres); */
         for(i=1; i<=nlstate;i++)                /*  else  */
           fprintf(ficresf," p%d%d",i,j);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
         fprintf(ficresf," p.%d",j);   fflush(fichtm);
       }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {   
         fprintf(ficresf,"\n");   m=cptcoveff;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);      if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
         for (agec=fage; agec>=(ageminpar-1); agec--){    jj1=0;
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);    for(k1=1; k1<=m;k1++){
           nhstepm = nhstepm/hstepm;      for(i1=1; i1<=ncodemax[k1];i1++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       jj1++;
           oldm=oldms;savm=savms;       if (cptcovn > 0) {
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                  for (cpt=1; cpt<=cptcoveff;cpt++)
           for (h=0; h<=nhstepm; h++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             if (h*hstepm/YEARM*stepm ==yearp) {         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
               fprintf(ficresf,"\n");       }
               for(j=1;j<=cptcoveff;j++)        for(cpt=1; cpt<=nlstate;cpt++) {
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
             }   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
             for(j=1; j<=nlstate+ndeath;j++) {       }
               ppij=0.;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
               for(i=1; i<=nlstate;i++) {  health expectancies in states (1) and (2): %s%d.png<br>\
                 if (mobilav==1)   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];     } /* end i1 */
                 else {   }/* End k1 */
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];   fprintf(fichtm,"</ul>");
                 }   fflush(fichtm);
                 if (h*hstepm/YEARM*stepm== yearp) {  }
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);  
                 }  /******************* Gnuplot file **************/
               } /* end i */  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
               if (h*hstepm/YEARM*stepm==yearp) {  
                 fprintf(ficresf," %.3f", ppij);    char dirfileres[132],optfileres[132];
               }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
             }/* end j */    int ng;
           } /* end h */  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*     printf("Problem with file %s",optionfilegnuplot); */
         } /* end agec */  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       } /* end yearp */  /*   } */
     } /* end cptcod */  
   } /* end  cptcov */    /*#ifdef windows */
            fprintf(ficgp,"cd \"%s\" \n",pathc);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /*#endif */
     m=pow(2,cptcoveff);
   fclose(ficresf);  
 }    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
 /************** Forecasting *****not tested NB*************/   /* 1eme*/
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    for (cpt=1; cpt<= nlstate ; cpt ++) {
        for (k1=1; k1<= m ; k1 ++) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   int *popage;       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   double calagedatem, agelim, kk1, kk2;       fprintf(ficgp,"set xlabel \"Age\" \n\
   double *popeffectif,*popcount;  set ylabel \"Probability\" \n\
   double ***p3mat,***tabpop,***tabpopprev;  set ter png small\n\
   double ***mobaverage;  set size 0.65,0.65\n\
   char filerespop[FILENAMELENGTH];  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       for (i=1; i<= nlstate ; i ++) {
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   agelim=AGESUP;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;       }
          fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);       for (i=1; i<= nlstate ; i ++) {
            if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcpy(filerespop,"pop");        }
   strcat(filerespop,fileres);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       for (i=1; i<= nlstate ; i ++) {
     printf("Problem with forecast resultfile: %s\n", filerespop);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);     }
     }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    /*2 eme*/
    
   if (mobilav!=0) {    for (k1=1; k1<= m ; k1 ++) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);     
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      for (i=1; i<= nlstate+1 ; i ++) {
     }        k=2*i;
   }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   if (stepm<=12) stepsize=1;          else fprintf(ficgp," \%%*lf (\%%*lf)");
           }  
   agelim=AGESUP;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
           else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   hstepm=1;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   hstepm=hstepm/stepm;         for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   if (popforecast==1) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
     if((ficpop=fopen(popfile,"r"))==NULL) {        }  
       printf("Problem with population file : %s\n",popfile);exit(0);        fprintf(ficgp,"\" t\"\" w l 0,");
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     }         for (j=1; j<= nlstate+1 ; j ++) {
     popage=ivector(0,AGESUP);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     popeffectif=vector(0,AGESUP);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     popcount=vector(0,AGESUP);        }  
             if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     i=1;           else fprintf(ficgp,"\" t\"\" w l 0,");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      }
        }
     imx=i;   
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    /*3eme*/
   }   
     for (k1=1; k1<= m ; k1 ++) {
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){      for (cpt=1; cpt<= nlstate ; cpt ++) {
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        /*       k=2+nlstate*(2*cpt-2); */
       k=k+1;        k=2+(nlstate+1)*(cpt-1);
       fprintf(ficrespop,"\n#******");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       for(j=1;j<=cptcoveff;j++) {        fprintf(ficgp,"set ter png small\n\
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  set size 0.65,0.65\n\
       }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       fprintf(ficrespop,"******\n");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       fprintf(ficrespop,"# Age");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       if (popforecast==1)  fprintf(ficrespop," [Population]");          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                 for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       for (cpt=0; cpt<=0;cpt++) {           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            
                 */
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){         for (i=1; i< nlstate ; i ++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           nhstepm = nhstepm/hstepm;           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                    
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }
             }
           for (h=0; h<=nhstepm; h++){   
             if (h==(int) (calagedatem+YEARM*cpt)) {    /* CV preval stable (period) */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    for (k1=1; k1<= m ; k1 ++) {
             }       for (cpt=1; cpt<=nlstate ; cpt ++) {
             for(j=1; j<=nlstate+ndeath;j++) {        k=3;
               kk1=0.;kk2=0;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
               for(i=1; i<=nlstate;i++) {                      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
                 if (mobilav==1)   set ter png small\nset size 0.65,0.65\n\
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  unset log y\n\
                 else {  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       
                 }        for (i=1; i< nlstate ; i ++)
               }          fprintf(ficgp,"+$%d",k+i+1);
               if (h==(int)(calagedatem+12*cpt)){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;       
                   /*fprintf(ficrespop," %.3f", kk1);        l=3+(nlstate+ndeath)*cpt;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
               }        for (i=1; i< nlstate ; i ++) {
             }          l=3+(nlstate+ndeath)*cpt;
             for(i=1; i<=nlstate;i++){          fprintf(ficgp,"+$%d",l+i+1);
               kk1=0.;        }
                 for(j=1; j<=nlstate;j++){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];       }
                 }    }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];   
             }    /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)       for(k=1; k <=(nlstate+ndeath); k++){
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        if (k != i) {
           }          for(j=1; j <=ncovmodel; j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
         }            jk++;
       }            fprintf(ficgp,"\n");
            }
   /******/        }
       }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(jk=1; jk <=m; jk++) {
           nhstepm = nhstepm/hstepm;          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
                    if (ng==2)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           oldm=oldms;savm=savms;         else
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             fprintf(ficgp,"\nset title \"Probability\"\n");
           for (h=0; h<=nhstepm; h++){         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
             if (h==(int) (calagedatem+YEARM*cpt)) {         i=1;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);         for(k2=1; k2<=nlstate; k2++) {
             }            k3=i;
             for(j=1; j<=nlstate+ndeath;j++) {           for(k=1; k<=(nlstate+ndeath); k++) {
               kk1=0.;kk2=0;             if (k != k2){
               for(i=1; i<=nlstate;i++) {                             if(ng==2)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                     fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
               }               else
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
             }               ij=1;
           }               for(j=3; j <=ncovmodel; j++) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       }                   ij++;
    }                  }
   }                 else
                     fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);               }
                fprintf(ficgp,")/(1");
   if (popforecast==1) {               
     free_ivector(popage,0,AGESUP);               for(k1=1; k1 <=nlstate; k1++){  
     free_vector(popeffectif,0,AGESUP);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     free_vector(popcount,0,AGESUP);                 ij=1;
   }                 for(j=3; j <=ncovmodel; j++){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   fclose(ficrespop);                     ij++;
 } /* End of popforecast */                   }
                    else
 int fileappend(FILE *fichier, char *optionfich)                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 {                 }
   if((fichier=fopen(optionfich,"a"))==NULL) {                 fprintf(ficgp,")");
     printf("Problem with file: %s\n", optionfich);               }
     fprintf(ficlog,"Problem with file: %s\n", optionfich);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     return (0);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   }               i=i+ncovmodel;
   fflush(fichier);             }
   return (1);           } /* end k */
 }         } /* end k2 */
        } /* end jk */
      } /* end ng */
 /**************** function prwizard **********************/     fflush(ficgp);
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)  }  /* end gnuplot */
 {  
   
   /* Wizard to print covariance matrix template */  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   char ca[32], cb[32], cc[32];  
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;    int i, cpt, cptcod;
   int numlinepar;    int modcovmax =1;
     int mobilavrange, mob;
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double age;
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
   for(i=1; i <=nlstate; i++){    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
     jj=0;                             a covariate has 2 modalities */
     for(j=1; j <=nlstate+ndeath; j++){    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       if(j==i) continue;  
       jj++;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       /*ca[0]= k+'a'-1;ca[1]='\0';*/      if(mobilav==1) mobilavrange=5; /* default */
       printf("%1d%1d",i,j);      else mobilavrange=mobilav;
       fprintf(ficparo,"%1d%1d",i,j);      for (age=bage; age<=fage; age++)
       for(k=1; k<=ncovmodel;k++){        for (i=1; i<=nlstate;i++)
         /*        printf(" %lf",param[i][j][k]); */          for (cptcod=1;cptcod<=modcovmax;cptcod++)
         /*        fprintf(ficparo," %lf",param[i][j][k]); */            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
         printf(" 0.");      /* We keep the original values on the extreme ages bage, fage and for
         fprintf(ficparo," 0.");         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       }         we use a 5 terms etc. until the borders are no more concerned.
       printf("\n");      */
       fprintf(ficparo,"\n");      for (mob=3;mob <=mobilavrange;mob=mob+2){
     }        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   }          for (i=1; i<=nlstate;i++){
   printf("# Scales (for hessian or gradient estimation)\n");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
   for(i=1; i <=nlstate; i++){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     jj=0;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     for(j=1; j <=nlstate+ndeath; j++){                }
       if(j==i) continue;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       jj++;            }
       fprintf(ficparo,"%1d%1d",i,j);          }
       printf("%1d%1d",i,j);        }/* end age */
       fflush(stdout);      }/* end mob */
       for(k=1; k<=ncovmodel;k++){    }else return -1;
         /*      printf(" %le",delti3[i][j][k]); */    return 0;
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */  }/* End movingaverage */
         printf(" 0.");  
         fprintf(ficparo," 0.");  
       }  /************** Forecasting ******************/
       numlinepar++;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       printf("\n");    /* proj1, year, month, day of starting projection
       fprintf(ficparo,"\n");       agemin, agemax range of age
     }       dateprev1 dateprev2 range of dates during which prevalence is computed
   }       anproj2 year of en of projection (same day and month as proj1).
   printf("# Covariance matrix\n");    */
 /* # 121 Var(a12)\n\ */    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
 /* # 122 Cov(b12,a12) Var(b12)\n\ */    int *popage;
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    double agec; /* generic age */
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    double *popeffectif,*popcount;
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */    double ***p3mat;
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    double ***mobaverage;
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    char fileresf[FILENAMELENGTH];
   fflush(stdout);  
   fprintf(ficparo,"# Covariance matrix\n");    agelim=AGESUP;
   /* # 121 Var(a12)\n\ */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   /* # 122 Cov(b12,a12) Var(b12)\n\ */   
   /* #   ...\n\ */    strcpy(fileresf,"f");
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */    strcat(fileresf,fileres);
       if((ficresf=fopen(fileresf,"w"))==NULL) {
   for(itimes=1;itimes<=2;itimes++){      printf("Problem with forecast resultfile: %s\n", fileresf);
     jj=0;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     for(i=1; i <=nlstate; i++){    }
       for(j=1; j <=nlstate+ndeath; j++){    printf("Computing forecasting: result on file '%s' \n", fileresf);
         if(j==i) continue;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         for(k=1; k<=ncovmodel;k++){  
           jj++;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           ca[0]= k+'a'-1;ca[1]='\0';  
           if(itimes==1){    if (mobilav!=0) {
             printf("#%1d%1d%d",i,j,k);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             fprintf(ficparo,"#%1d%1d%d",i,j,k);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           }else{        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             printf("%1d%1d%d",i,j,k);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             fprintf(ficparo,"%1d%1d%d",i,j,k);      }
             /*  printf(" %.5le",matcov[i][j]); */    }
           }  
           ll=0;    stepsize=(int) (stepm+YEARM-1)/YEARM;
           for(li=1;li <=nlstate; li++){    if (stepm<=12) stepsize=1;
             for(lj=1;lj <=nlstate+ndeath; lj++){    if(estepm < stepm){
               if(lj==li) continue;      printf ("Problem %d lower than %d\n",estepm, stepm);
               for(lk=1;lk<=ncovmodel;lk++){    }
                 ll++;    else  hstepm=estepm;  
                 if(ll<=jj){  
                   cb[0]= lk +'a'-1;cb[1]='\0';    hstepm=hstepm/stepm;
                   if(ll<jj){    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                     if(itimes==1){                                 fractional in yp1 */
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    anprojmean=yp;
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    yp2=modf((yp1*12),&yp);
                     }else{    mprojmean=yp;
                       printf(" 0.");    yp1=modf((yp2*30.5),&yp);
                       fprintf(ficparo," 0.");    jprojmean=yp;
                     }    if(jprojmean==0) jprojmean=1;
                   }else{    if(mprojmean==0) jprojmean=1;
                     if(itimes==1){  
                       printf(" Var(%s%1d%1d)",ca,i,j);    i1=cptcoveff;
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);    if (cptcovn < 1){i1=1;}
                     }else{   
                       printf(" 0.");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
                       fprintf(ficparo," 0.");   
                     }    fprintf(ficresf,"#****** Routine prevforecast **\n");
                   }  
                 }  /*            if (h==(int)(YEARM*yearp)){ */
               } /* end lk */    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
             } /* end lj */      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           } /* end li */        k=k+1;
           printf("\n");        fprintf(ficresf,"\n#******");
           fprintf(ficparo,"\n");        for(j=1;j<=cptcoveff;j++) {
           numlinepar++;          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         } /* end k*/        }
       } /*end j */        fprintf(ficresf,"******\n");
     } /* end i */        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   } /* end itimes */        for(j=1; j<=nlstate+ndeath;j++){
           for(i=1; i<=nlstate;i++)              
 } /* end of prwizard */            fprintf(ficresf," p%d%d",i,j);
 /******************* Gompertz Likelihood ******************************/          fprintf(ficresf," p.%d",j);
 double gompertz(double x[])        }
 {         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
   double A,B,L=0.0,sump=0.,num=0.;          fprintf(ficresf,"\n");
   int i,n=0; /* n is the size of the sample */          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   for (i=0;i<=imx-1 ; i++) {  
     sump=sump+weight[i];          for (agec=fage; agec>=(ageminpar-1); agec--){
     sump=sump+1;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
     num=num+1;            nhstepm = nhstepm/hstepm;
   }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              oldm=oldms;savm=savms;
              hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   /* for (i=1; i<=imx; i++)          
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/            for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
   for (i=0;i<=imx-1 ; i++)                fprintf(ficresf,"\n");
     {                for(j=1;j<=cptcoveff;j++)
       if (cens[i]==1 & wav[i]>1)                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         A=-x[1]/(x[2])*                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
           (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));              }
                     for(j=1; j<=nlstate+ndeath;j++) {
       if (cens[i]==0 & wav[i]>1)                ppij=0.;
         A=-x[1]/(x[2])*                for(i=1; i<=nlstate;i++) {
              (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))                  if (mobilav==1)
           +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);                          ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                         else {
       if (wav[i]>1 & agecens[i]>15) {                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
         L=L+A*weight[i];                  }
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/                  if (h*hstepm/YEARM*stepm== yearp) {
       }                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     }                  }
                 } /* end i */
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/                if (h*hstepm/YEARM*stepm==yearp) {
                    fprintf(ficresf," %.3f", ppij);
   return -2*L*num/sump;                }
 }              }/* end j */
             } /* end h */
 /******************* Printing html file ***********/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \          } /* end agec */
                   int lastpass, int stepm, int weightopt, char model[],\        } /* end yearp */
                   int imx,  double p[],double **matcov){      } /* end cptcod */
   int i;    } /* end  cptcov */
          
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);  
   for (i=1;i<=2;i++)     fclose(ficresf);
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));  }
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");  
   fprintf(fichtm,"</ul>");  /************** Forecasting *****not tested NB*************/
   fflush(fichtm);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
 }   
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
 /******************* Gnuplot file **************/    int *popage;
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
   char dirfileres[132],optfileres[132];    double ***p3mat,***tabpop,***tabpopprev;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    double ***mobaverage;
   int ng;    char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*#ifdef windows */    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficgp,"cd \"%s\" \n",pathc);    agelim=AGESUP;
     /*#endif */    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
    
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   strcpy(dirfileres,optionfilefiname);   
   strcpy(optfileres,"vpl");   
   fprintf(ficgp,"set out \"graphmort.png\"\n ");     strcpy(filerespop,"pop");
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");     strcat(filerespop,fileres);
   fprintf(ficgp, "set ter png small\n set log y\n");     if((ficrespop=fopen(filerespop,"w"))==NULL) {
   fprintf(ficgp, "set size 0.65,0.65\n");      printf("Problem with forecast resultfile: %s\n", filerespop);
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
 }     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
 /***********************************************/    if (mobilav!=0) {
 /**************** Main Program *****************/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /***********************************************/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 int main(int argc, char *argv[])        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 {      }
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    }
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;  
   int jj, ll, li, lj, lk, imk;    stepsize=(int) (stepm+YEARM-1)/YEARM;
   int numlinepar=0; /* Current linenumber of parameter file */    if (stepm<=12) stepsize=1;
   int itimes;   
   int NDIM=2;    agelim=AGESUP;
    
   char ca[32], cb[32], cc[32];    hstepm=1;
   /*  FILE *fichtm; *//* Html File */    hstepm=hstepm/stepm;
   /* FILE *ficgp;*/ /*Gnuplot File */   
   double agedeb, agefin,hf;    if (popforecast==1) {
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
   double fret;        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   double **xi,tmp,delta;      }
       popage=ivector(0,AGESUP);
   double dum; /* Dummy variable */      popeffectif=vector(0,AGESUP);
   double ***p3mat;      popcount=vector(0,AGESUP);
   double ***mobaverage;     
   int *indx;      i=1;  
   char line[MAXLINE], linepar[MAXLINE];      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];     
   char pathr[MAXLINE], pathimach[MAXLINE];       imx=i;
   int firstobs=1, lastobs=10;      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   int sdeb, sfin; /* Status at beginning and end */    }
   int c,  h , cpt,l;  
   int ju,jl, mi;    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;         k=k+1;
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */        fprintf(ficrespop,"\n#******");
   int mobilav=0,popforecast=0;        for(j=1;j<=cptcoveff;j++) {
   int hstepm, nhstepm;          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;        }
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;        fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
   double bage, fage, age, agelim, agebase;        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   double ftolpl=FTOL;        if (popforecast==1)  fprintf(ficrespop," [Population]");
   double **prlim;       
   double *severity;        for (cpt=0; cpt<=0;cpt++) {
   double ***param; /* Matrix of parameters */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   double  *p;         
   double **matcov; /* Matrix of covariance */          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   double ***delti3; /* Scale */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   double *delti; /* Scale */            nhstepm = nhstepm/hstepm;
   double ***eij, ***vareij;           
   double **varpl; /* Variances of prevalence limits by age */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double *epj, vepp;            oldm=oldms;savm=savms;
   double kk1, kk2;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;         
   double **ximort;            for (h=0; h<=nhstepm; h++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];              if (h==(int) (calagedatem+YEARM*cpt)) {
   int *dcwave;                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               }
   char z[1]="c", occ;              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                for(i=1; i<=nlstate;i++) {              
   char strstart[80], *strt, strtend[80];                  if (mobilav==1)
   char *stratrunc;                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   int lstra;                  else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   long total_usecs;                  }
                  }
 /*   setlocale (LC_ALL, ""); */                if (h==(int)(calagedatem+12*cpt)){
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
 /*   textdomain (PACKAGE); */                    /*fprintf(ficrespop," %.3f", kk1);
 /*   setlocale (LC_CTYPE, ""); */                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 /*   setlocale (LC_MESSAGES, ""); */                }
               }
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              for(i=1; i<=nlstate;i++){
   (void) gettimeofday(&start_time,&tzp);                kk1=0.;
   curr_time=start_time;                  for(j=1; j<=nlstate;j++){
   tm = *localtime(&start_time.tv_sec);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
   tmg = *gmtime(&start_time.tv_sec);                  }
   strcpy(strstart,asctime(&tm));                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
 /*  printf("Localtime (at start)=%s",strstart); */  
 /*  tp.tv_sec = tp.tv_sec +86400; */              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
 /*  tm = *localtime(&start_time.tv_sec); */                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */            }
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*   tmg.tm_hour=tmg.tm_hour + 1; */          }
 /*   tp.tv_sec = mktime(&tmg); */        }
 /*   strt=asctime(&tmg); */   
 /*   printf("Time(after) =%s",strstart);  */    /******/
 /*  (void) time (&time_value);  
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
 *  tm = *localtime(&time_value);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
 *  strstart=asctime(&tm);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
 */            nhstepm = nhstepm/hstepm;
            
   nberr=0; /* Number of errors and warnings */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   nbwarn=0;            oldm=oldms;savm=savms;
   getcwd(pathcd, size);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
   printf("\n%s\n%s",version,fullversion);              if (h==(int) (calagedatem+YEARM*cpt)) {
   if(argc <=1){                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     printf("\nEnter the parameter file name: ");              }
     scanf("%s",pathtot);              for(j=1; j<=nlstate+ndeath;j++) {
   }                kk1=0.;kk2=0;
   else{                for(i=1; i<=nlstate;i++) {              
     strcpy(pathtot,argv[1]);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   }                }
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   /*cygwin_split_path(pathtot,path,optionfile);              }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            }
   /* cutv(path,optionfile,pathtot,'\\');*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);        }
  /*   strcpy(pathimach,argv[0]); */     }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    }
   printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);   
   chdir(path);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(command,"mkdir ");  
   strcat(command,optionfilefiname);    if (popforecast==1) {
   if((outcmd=system(command)) != 0){      free_ivector(popage,0,AGESUP);
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);      free_vector(popeffectif,0,AGESUP);
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */      free_vector(popcount,0,AGESUP);
     /* fclose(ficlog); */    }
 /*     exit(1); */    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*   if((imk=mkdir(optionfilefiname))<0){ */    fclose(ficrespop);
 /*     perror("mkdir"); */  } /* End of popforecast */
 /*   } */  
   int fileappend(FILE *fichier, char *optionfich)
   /*-------- arguments in the command line --------*/  {
     if((fichier=fopen(optionfich,"a"))==NULL) {
   /* Log file */      printf("Problem with file: %s\n", optionfich);
   strcat(filelog, optionfilefiname);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   strcat(filelog,".log");    /* */      return (0);
   if((ficlog=fopen(filelog,"w"))==NULL)    {    }
     printf("Problem with logfile %s\n",filelog);    fflush(fichier);
     goto end;    return (1);
   }  }
   fprintf(ficlog,"Log filename:%s\n",filelog);  
   fprintf(ficlog,"\n%s\n%s",version,fullversion);  
   fprintf(ficlog,"\nEnter the parameter file name: \n");  /**************** function prwizard **********************/
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
  path=%s \n\  {
  optionfile=%s\n\  
  optionfilext=%s\n\    /* Wizard to print covariance matrix template */
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);  
     char ca[32], cb[32], cc[32];
   printf("Local time (at start):%s",strstart);    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   fprintf(ficlog,"Local time (at start): %s",strstart);    int numlinepar;
   fflush(ficlog);  
 /*   (void) gettimeofday(&curr_time,&tzp); */    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
   /* */      jj=0;
   strcpy(fileres,"r");      for(j=1; j <=nlstate+ndeath; j++){
   strcat(fileres, optionfilefiname);        if(j==i) continue;
   strcat(fileres,".txt");    /* Other files have txt extension */        jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
   /*---------arguments file --------*/        printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for(k=1; k<=ncovmodel;k++){
     printf("Problem with optionfile %s\n",optionfile);          /*        printf(" %lf",param[i][j][k]); */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
     fflush(ficlog);          printf(" 0.");
     goto end;          fprintf(ficparo," 0.");
   }        }
         printf("\n");
         fprintf(ficparo,"\n");
       }
   strcpy(filereso,"o");    }
   strcat(filereso,fileres);    printf("# Scales (for hessian or gradient estimation)\n");
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     printf("Problem with Output resultfile: %s\n", filereso);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    for(i=1; i <=nlstate; i++){
     fflush(ficlog);      jj=0;
     goto end;      for(j=1; j <=nlstate+ndeath; j++){
   }        if(j==i) continue;
         jj++;
   /* Reads comments: lines beginning with '#' */        fprintf(ficparo,"%1d%1d",i,j);
   numlinepar=0;        printf("%1d%1d",i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){        fflush(stdout);
     ungetc(c,ficpar);        for(k=1; k<=ncovmodel;k++){
     fgets(line, MAXLINE, ficpar);          /*      printf(" %le",delti3[i][j][k]); */
     numlinepar++;          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
     puts(line);          printf(" 0.");
     fputs(line,ficparo);          fprintf(ficparo," 0.");
     fputs(line,ficlog);        }
   }        numlinepar++;
   ungetc(c,ficpar);        printf("\n");
         fprintf(ficparo,"\n");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      }
   numlinepar++;    }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    printf("# Covariance matrix\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  /* # 121 Var(a12)\n\ */
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   fflush(ficlog);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   while((c=getc(ficpar))=='#' && c!= EOF){  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     ungetc(c,ficpar);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
     fgets(line, MAXLINE, ficpar);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
     numlinepar++;  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     puts(line);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fputs(line,ficparo);    fflush(stdout);
     fputs(line,ficlog);    fprintf(ficparo,"# Covariance matrix\n");
   }    /* # 121 Var(a12)\n\ */
   ungetc(c,ficpar);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
        /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   covar=matrix(0,NCOVMAX,1,n);    
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    for(itimes=1;itimes<=2;itimes++){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      jj=0;
       for(i=1; i <=nlstate; i++){
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */        for(j=1; j <=nlstate+ndeath; j++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          if(j==i) continue;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/          for(k=1; k<=ncovmodel;k++){
             jj++;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            ca[0]= k+'a'-1;ca[1]='\0';
   delti=delti3[1][1];            if(itimes==1){
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/              printf("#%1d%1d%d",i,j,k);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */              fprintf(ficparo,"#%1d%1d%d",i,j,k);
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);            }else{
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);              printf("%1d%1d%d",i,j,k);
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);              fprintf(ficparo,"%1d%1d%d",i,j,k);
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);               /*  printf(" %.5le",matcov[i][j]); */
     fclose (ficparo);            }
     fclose (ficlog);            ll=0;
     exit(0);            for(li=1;li <=nlstate; li++){
   }              for(lj=1;lj <=nlstate+ndeath; lj++){
   else if(mle==-3) {                if(lj==li) continue;
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);                for(lk=1;lk<=ncovmodel;lk++){
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);                  ll++;
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);                  if(ll<=jj){
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    cb[0]= lk +'a'-1;cb[1]='\0';
     matcov=matrix(1,npar,1,npar);                    if(ll<jj){
   }                      if(itimes==1){
   else{                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     /* Read guess parameters */                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     /* Reads comments: lines beginning with '#' */                      }else{
     while((c=getc(ficpar))=='#' && c!= EOF){                        printf(" 0.");
       ungetc(c,ficpar);                        fprintf(ficparo," 0.");
       fgets(line, MAXLINE, ficpar);                      }
       numlinepar++;                    }else{
       puts(line);                      if(itimes==1){
       fputs(line,ficparo);                        printf(" Var(%s%1d%1d)",ca,i,j);
       fputs(line,ficlog);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
     }                      }else{
     ungetc(c,ficpar);                        printf(" 0.");
                             fprintf(ficparo," 0.");
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                      }
     for(i=1; i <=nlstate; i++){                    }
       j=0;                  }
       for(jj=1; jj <=nlstate+ndeath; jj++){                } /* end lk */
         if(jj==i) continue;              } /* end lj */
         j++;            } /* end li */
         fscanf(ficpar,"%1d%1d",&i1,&j1);            printf("\n");
         if ((i1 != i) && (j1 != j)){            fprintf(ficparo,"\n");
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);            numlinepar++;
           exit(1);          } /* end k*/
         }        } /*end j */
         fprintf(ficparo,"%1d%1d",i1,j1);      } /* end i */
         if(mle==1)    } /* end itimes */
           printf("%1d%1d",i,j);  
         fprintf(ficlog,"%1d%1d",i,j);  } /* end of prwizard */
         for(k=1; k<=ncovmodel;k++){  /******************* Gompertz Likelihood ******************************/
           fscanf(ficpar," %lf",&param[i][j][k]);  double gompertz(double x[])
           if(mle==1){  {
             printf(" %lf",param[i][j][k]);    double A,B,L=0.0,sump=0.,num=0.;
             fprintf(ficlog," %lf",param[i][j][k]);    int i,n=0; /* n is the size of the sample */
           }  
           else    for (i=0;i<=imx-1 ; i++) {
             fprintf(ficlog," %lf",param[i][j][k]);      sump=sump+weight[i];
           fprintf(ficparo," %lf",param[i][j][k]);      /*    sump=sump+1;*/
         }      num=num+1;
         fscanf(ficpar,"\n");    }
         numlinepar++;   
         if(mle==1)   
           printf("\n");    /* for (i=0; i<=imx; i++)
         fprintf(ficlog,"\n");       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
         fprintf(ficparo,"\n");  
       }    for (i=1;i<=imx ; i++)
     }        {
     fflush(ficlog);        if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
        
     p=param[1][1];        if (cens[i] == 0 && wav[i]>1)
               A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
     /* Reads comments: lines beginning with '#' */               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
     while((c=getc(ficpar))=='#' && c!= EOF){       
       ungetc(c,ficpar);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
       fgets(line, MAXLINE, ficpar);        if (wav[i] > 1 ) { /* ??? */
       numlinepar++;          L=L+A*weight[i];
       puts(line);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
       fputs(line,ficparo);        }
       fputs(line,ficlog);      }
     }  
     ungetc(c,ficpar);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     for(i=1; i <=nlstate; i++){    return -2*L*num/sump;
       for(j=1; j <=nlstate+ndeath-1; j++){  }
         fscanf(ficpar,"%1d%1d",&i1,&j1);  
         if ((i1-i)*(j1-j)!=0){  /******************* Printing html file ***********/
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
           exit(1);                    int lastpass, int stepm, int weightopt, char model[],\
         }                    int imx,  double p[],double **matcov,double agemortsup){
         printf("%1d%1d",i,j);    int i,k;
         fprintf(ficparo,"%1d%1d",i1,j1);  
         fprintf(ficlog,"%1d%1d",i1,j1);    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
         for(k=1; k<=ncovmodel;k++){    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
           fscanf(ficpar,"%le",&delti3[i][j][k]);    for (i=1;i<=2;i++)
           printf(" %le",delti3[i][j][k]);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
           fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
           fprintf(ficlog," %le",delti3[i][j][k]);    fprintf(fichtm,"</ul>");
         }  
         fscanf(ficpar,"\n");  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
         numlinepar++;  
         printf("\n");   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
         fprintf(ficparo,"\n");  
         fprintf(ficlog,"\n");   for (k=agegomp;k<(agemortsup-2);k++)
       }     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     }  
     fflush(ficlog);   
     fflush(fichtm);
     delti=delti3[1][1];  }
   
   /******************* Gnuplot file **************/
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     
     /* Reads comments: lines beginning with '#' */    char dirfileres[132],optfileres[132];
     while((c=getc(ficpar))=='#' && c!= EOF){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       ungetc(c,ficpar);    int ng;
       fgets(line, MAXLINE, ficpar);  
       numlinepar++;  
       puts(line);    /*#ifdef windows */
       fputs(line,ficparo);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       fputs(line,ficlog);      /*#endif */
     }  
     ungetc(c,ficpar);  
       strcpy(dirfileres,optionfilefiname);
     matcov=matrix(1,npar,1,npar);    strcpy(optfileres,"vpl");
     for(i=1; i <=npar; i++){    fprintf(ficgp,"set out \"graphmort.png\"\n ");
       fscanf(ficpar,"%s",&str);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
       if(mle==1)    fprintf(ficgp, "set ter png small\n set log y\n");
         printf("%s",str);    fprintf(ficgp, "set size 0.65,0.65\n");
       fprintf(ficlog,"%s",str);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
       fprintf(ficparo,"%s",str);  
       for(j=1; j <=i; j++){  }
         fscanf(ficpar," %le",&matcov[i][j]);  
         if(mle==1){  
           printf(" %.5le",matcov[i][j]);  
         }  
         fprintf(ficlog," %.5le",matcov[i][j]);  
         fprintf(ficparo," %.5le",matcov[i][j]);  /***********************************************/
       }  /**************** Main Program *****************/
       fscanf(ficpar,"\n");  /***********************************************/
       numlinepar++;  
       if(mle==1)  int main(int argc, char *argv[])
         printf("\n");  {
       fprintf(ficlog,"\n");    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
       fprintf(ficparo,"\n");    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     }    int linei, month, year,iout;
     for(i=1; i <=npar; i++)    int jj, ll, li, lj, lk, imk;
       for(j=i+1;j<=npar;j++)    int numlinepar=0; /* Current linenumber of parameter file */
         matcov[i][j]=matcov[j][i];    int itimes;
         int NDIM=2;
     if(mle==1)  
       printf("\n");    char ca[32], cb[32], cc[32];
     fprintf(ficlog,"\n");    char dummy[]="                         ";
         /*  FILE *fichtm; *//* Html File */
     fflush(ficlog);    /* FILE *ficgp;*/ /*Gnuplot File */
         struct stat info;
     /*-------- Rewriting parameter file ----------*/    double agedeb, agefin,hf;
     strcpy(rfileres,"r");    /* "Rparameterfile */    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
     strcat(rfileres,".");    /* */    double fret;
     strcat(rfileres,optionfilext);    /* Other files have txt extension */    double **xi,tmp,delta;
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    double dum; /* Dummy variable */
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    double ***p3mat;
     }    double ***mobaverage;
     fprintf(ficres,"#%s\n",version);    int *indx;
   }    /* End of mle != -3 */    char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   /*-------- data file ----------*/    char pathr[MAXLINE], pathimach[MAXLINE];
   if((fic=fopen(datafile,"r"))==NULL)    {    char **bp, *tok, *val; /* pathtot */
     printf("Problem with datafile: %s\n", datafile);goto end;    int firstobs=1, lastobs=10;
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    int sdeb, sfin; /* Status at beginning and end */
   }    int c,  h , cpt,l;
     int ju,jl, mi;
   n= lastobs;    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   severity = vector(1,maxwav);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
   outcome=imatrix(1,maxwav+1,1,n);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   num=lvector(1,n);    int mobilav=0,popforecast=0;
   moisnais=vector(1,n);    int hstepm, nhstepm;
   annais=vector(1,n);    int agemortsup;
   moisdc=vector(1,n);    float  sumlpop=0.;
   andc=vector(1,n);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   agedc=vector(1,n);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   cod=ivector(1,n);  
   weight=vector(1,n);    double bage, fage, age, agelim, agebase;
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    double ftolpl=FTOL;
   mint=matrix(1,maxwav,1,n);    double **prlim;
   anint=matrix(1,maxwav,1,n);    double *severity;
   s=imatrix(1,maxwav+1,1,n);    double ***param; /* Matrix of parameters */
   tab=ivector(1,NCOVMAX);    double  *p;
   ncodemax=ivector(1,8);    double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
   i=1;    double *delti; /* Scale */
   while (fgets(line, MAXLINE, fic) != NULL)    {    double ***eij, ***vareij;
     if ((i >= firstobs) && (i <=lastobs)) {    double **varpl; /* Variances of prevalence limits by age */
       for(j=0; line[j] != '\n';j++){  /* Untabifies line */    double *epj, vepp;
         if(line[j] == '\t')    double kk1, kk2;
           line[j] = ' ';    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
       }    double **ximort;
       for (j=maxwav;j>=1;j--){    char *alph[]={"a","a","b","c","d","e"}, str[4];
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);     int *dcwave;
         strcpy(line,stra);  
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    char z[1]="c", occ;
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
       }    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
             char  *strt, strtend[80];
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    char *stratrunc;
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    int lstra;
   
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    long total_usecs;
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);   
   /*   setlocale (LC_ALL, ""); */
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
       for (j=ncovcol;j>=1;j--){  /*   textdomain (PACKAGE); */
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*   setlocale (LC_CTYPE, ""); */
       }   /*   setlocale (LC_MESSAGES, ""); */
       lstra=strlen(stra);  
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
         stratrunc = &(stra[lstra-9]);    (void) gettimeofday(&start_time,&tzp);
         num[i]=atol(stratrunc);    curr_time=start_time;
       }    tm = *localtime(&start_time.tv_sec);
       else    tmg = *gmtime(&start_time.tv_sec);
         num[i]=atol(stra);    strcpy(strstart,asctime(&tm));
           
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  /*  printf("Localtime (at start)=%s",strstart); */
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
       i=i+1;  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
     }  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   }  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /* printf("ii=%d", ij);  /*   tp.tv_sec = mktime(&tmg); */
      scanf("%d",i);*/  /*   strt=asctime(&tmg); */
   imx=i-1; /* Number of individuals */  /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   /* for (i=1; i<=imx; i++){  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  *  tm = *localtime(&time_value);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  *  strstart=asctime(&tm);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
     }*/  */
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;     nberr=0; /* Number of errors and warnings */
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    nbwarn=0;
       getcwd(pathcd, size);
  for (i=1; i<=imx; i++)  
      printf("\n%s\n%s",version,fullversion);
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;    if(argc <=1){
      else weight[i]=1;*/      printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
   /* Calculation of the number of parameter from char model*/      i=strlen(pathr);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */      if(pathr[i-1]=='\n')
   Tprod=ivector(1,15);         pathr[i-1]='\0';
   Tvaraff=ivector(1,15);      for (tok = pathr; tok != NULL; ){
   Tvard=imatrix(1,15,1,2);        printf("Pathr |%s|\n",pathr);
   Tage=ivector(1,15);              while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
            printf("val= |%s| pathr=%s\n",val,pathr);
   if (strlen(model) >1){ /* If there is at least 1 covariate */        strcpy (pathtot, val);
     j=0, j1=0, k1=1, k2=1;        if(pathr[0] == '\0') break; /* Dirty */
     j=nbocc(model,'+'); /* j=Number of '+' */      }
     j1=nbocc(model,'*'); /* j1=Number of '*' */    }
     cptcovn=j+1;     else{
     cptcovprod=j1; /*Number of products */      strcpy(pathtot,argv[1]);
         }
     strcpy(modelsav,model);     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    /*cygwin_split_path(pathtot,path,optionfile);
       printf("Error. Non available option model=%s ",model);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
       fprintf(ficlog,"Error. Non available option model=%s ",model);    /* cutv(path,optionfile,pathtot,'\\');*/
       goto end;  
     }    /* Split argv[0], imach program to get pathimach */
         printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     /* This loop fills the array Tvar from the string 'model'.*/    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     for(i=(j+1); i>=1;i--){   /*   strcpy(pathimach,argv[0]); */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
       /*scanf("%d",i);*/    chdir(path); /* Can be a relative path */
       if (strchr(strb,'*')) {  /* Model includes a product */    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      printf("Current directory %s!\n",pathcd);
         if (strcmp(strc,"age")==0) { /* Vn*age */    strcpy(command,"mkdir ");
           cptcovprod--;    strcat(command,optionfilefiname);
           cutv(strb,stre,strd,'V');    if((outcmd=system(command)) != 0){
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
           cptcovage++;      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
             Tage[cptcovage]=i;      /* fclose(ficlog); */
             /*printf("stre=%s ", stre);*/  /*     exit(1); */
         }    }
         else if (strcmp(strd,"age")==0) { /* or age*Vn */  /*   if((imk=mkdir(optionfilefiname))<0){ */
           cptcovprod--;  /*     perror("mkdir"); */
           cutv(strb,stre,strc,'V');  /*   } */
           Tvar[i]=atoi(stre);  
           cptcovage++;    /*-------- arguments in the command line --------*/
           Tage[cptcovage]=i;  
         }    /* Log file */
         else {  /* Age is not in the model */    strcat(filelog, optionfilefiname);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    strcat(filelog,".log");    /* */
           Tvar[i]=ncovcol+k1;    if((ficlog=fopen(filelog,"w"))==NULL)    {
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */      printf("Problem with logfile %s\n",filelog);
           Tprod[k1]=i;      goto end;
           Tvard[k1][1]=atoi(strc); /* m*/    }
           Tvard[k1][2]=atoi(stre); /* n */    fprintf(ficlog,"Log filename:%s\n",filelog);
           Tvar[cptcovn+k2]=Tvard[k1][1];    fprintf(ficlog,"\n%s\n%s",version,fullversion);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];     fprintf(ficlog,"\nEnter the parameter file name: \n");
           for (k=1; k<=lastobs;k++)     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];   path=%s \n\
           k1++;   optionfile=%s\n\
           k2=k2+2;   optionfilext=%s\n\
         }   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
       }  
       else { /* no more sum */    printf("Local time (at start):%s",strstart);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    fprintf(ficlog,"Local time (at start): %s",strstart);
        /*  scanf("%d",i);*/    fflush(ficlog);
       cutv(strd,strc,strb,'V');  /*   (void) gettimeofday(&curr_time,&tzp); */
       Tvar[i]=atoi(strc);  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
       }  
       strcpy(modelsav,stra);      /* */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    strcpy(fileres,"r");
         scanf("%d",i);*/    strcat(fileres, optionfilefiname);
     } /* end of loop + */    strcat(fileres,".txt");    /* Other files have txt extension */
   } /* end model */  
       /*---------arguments file --------*/
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.  
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/    if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   printf("cptcovprod=%d ", cptcovprod);      fflush(ficlog);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);      goto end;
     }
   scanf("%d ",i);  
   fclose(fic);*/  
   
     /*  if(mle==1){*/    strcpy(filereso,"o");
   if (weightopt != 1) { /* Maximisation without weights*/    strcat(filereso,fileres);
     for(i=1;i<=n;i++) weight[i]=1.0;    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   }      printf("Problem with Output resultfile: %s\n", filereso);
     /*-calculation of age at interview from date of interview and age at death -*/      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   agev=matrix(1,maxwav,1,imx);      fflush(ficlog);
       goto end;
   for (i=1; i<=imx; i++) {    }
     for(m=2; (m<= maxwav); m++) {  
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){    /* Reads comments: lines beginning with '#' */
         anint[m][i]=9999;    numlinepar=0;
         s[m][i]=-1;    while((c=getc(ficpar))=='#' && c!= EOF){
       }      ungetc(c,ficpar);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){      fgets(line, MAXLINE, ficpar);
         nberr++;      numlinepar++;
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      puts(line);
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      fputs(line,ficparo);
         s[m][i]=-1;      fputs(line,ficlog);
       }    }
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    ungetc(c,ficpar);
         nberr++;  
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);     numlinepar++;
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
       }    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     }    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   }    fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
   for (i=1; i<=imx; i++)  {      ungetc(c,ficpar);
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      fgets(line, MAXLINE, ficpar);
     for(m=firstpass; (m<= lastpass); m++){      numlinepar++;
       if(s[m][i] >0){      puts(line);
         if (s[m][i] >= nlstate+1) {      fputs(line,ficparo);
           if(agedc[i]>0)      fputs(line,ficlog);
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    }
               agev[m][i]=agedc[i];    ungetc(c,ficpar);
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
             else {     
               if ((int)andc[i]!=9999){    covar=matrix(0,NCOVMAX,1,n);
                 nbwarn++;    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);  
                 agev[m][i]=-1;    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
               }    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
             }    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
         }  
         else if(s[m][i] !=9){ /* Standard case, age in fractional    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                                  years but with the precision of a    delti=delti3[1][1];
                                  month */    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
             agev[m][i]=1;      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
           else if(agev[m][i] <agemin){       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
             agemin=agev[m][i];      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      fclose (ficparo);
           }      fclose (ficlog);
           else if(agev[m][i] >agemax){      goto end;
             agemax=agev[m][i];      exit(0);
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    }
           }    else if(mle==-3) {
           /*agev[m][i]=anint[m][i]-annais[i];*/      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
           /*     agev[m][i] = age[i]+2*m;*/      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
         }      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
         else { /* =9 */      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
           agev[m][i]=1;      matcov=matrix(1,npar,1,npar);
           s[m][i]=-1;    }
         }    else{
       }      /* Read guess parameters */
       else /*= 0 Unknown */      /* Reads comments: lines beginning with '#' */
         agev[m][i]=1;      while((c=getc(ficpar))=='#' && c!= EOF){
     }        ungetc(c,ficpar);
             fgets(line, MAXLINE, ficpar);
   }        numlinepar++;
   for (i=1; i<=imx; i++)  {        puts(line);
     for(m=firstpass; (m<=lastpass); m++){        fputs(line,ficparo);
       if (s[m][i] > (nlstate+ndeath)) {        fputs(line,ficlog);
         nberr++;      }
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           ungetc(c,ficpar);
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          
         goto end;      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       }      for(i=1; i <=nlstate; i++){
     }        j=0;
   }        for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
   /*for (i=1; i<=imx; i++){          j++;
   for (m=firstpass; (m<lastpass); m++){          fscanf(ficpar,"%1d%1d",&i1,&j1);
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);          if ((i1 != i) && (j1 != j)){
 }            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
 }*/  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          fprintf(ficparo,"%1d%1d",i1,j1);
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);           if(mle==1)
             printf("%1d%1d",i,j);
   agegomp=(int)agemin;          fprintf(ficlog,"%1d%1d",i,j);
   free_vector(severity,1,maxwav);          for(k=1; k<=ncovmodel;k++){
   free_imatrix(outcome,1,maxwav+1,1,n);            fscanf(ficpar," %lf",&param[i][j][k]);
   free_vector(moisnais,1,n);            if(mle==1){
   free_vector(annais,1,n);              printf(" %lf",param[i][j][k]);
   /* free_matrix(mint,1,maxwav,1,n);              fprintf(ficlog," %lf",param[i][j][k]);
      free_matrix(anint,1,maxwav,1,n);*/            }
   free_vector(moisdc,1,n);            else
   free_vector(andc,1,n);              fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
              }
   wav=ivector(1,imx);          fscanf(ficpar,"\n");
   dh=imatrix(1,lastpass-firstpass+1,1,imx);          numlinepar++;
   bh=imatrix(1,lastpass-firstpass+1,1,imx);          if(mle==1)
   mw=imatrix(1,lastpass-firstpass+1,1,imx);            printf("\n");
              fprintf(ficlog,"\n");
   /* Concatenates waves */          fprintf(ficparo,"\n");
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        }
       }  
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */      fflush(ficlog);
   
   Tcode=ivector(1,100);      p=param[1][1];
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      
   ncodemax[1]=1;      /* Reads comments: lines beginning with '#' */
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);      while((c=getc(ficpar))=='#' && c!= EOF){
               ungetc(c,ficpar);
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of         fgets(line, MAXLINE, ficpar);
                                  the estimations*/        numlinepar++;
   h=0;        puts(line);
   m=pow(2,cptcoveff);        fputs(line,ficparo);
          fputs(line,ficlog);
   for(k=1;k<=cptcoveff; k++){      }
     for(i=1; i <=(m/pow(2,k));i++){      ungetc(c,ficpar);
       for(j=1; j <= ncodemax[k]; j++){  
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      for(i=1; i <=nlstate; i++){
           h++;        for(j=1; j <=nlstate+ndeath-1; j++){
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          fscanf(ficpar,"%1d%1d",&i1,&j1);
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          if ((i1-i)*(j1-j)!=0){
         }             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
       }            exit(1);
     }          }
   }           printf("%1d%1d",i,j);
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);           fprintf(ficparo,"%1d%1d",i1,j1);
      codtab[1][2]=1;codtab[2][2]=2; */          fprintf(ficlog,"%1d%1d",i1,j1);
   /* for(i=1; i <=m ;i++){           for(k=1; k<=ncovmodel;k++){
      for(k=1; k <=cptcovn; k++){            fscanf(ficpar,"%le",&delti3[i][j][k]);
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            printf(" %le",delti3[i][j][k]);
      }            fprintf(ficparo," %le",delti3[i][j][k]);
      printf("\n");            fprintf(ficlog," %le",delti3[i][j][k]);
      }          }
      scanf("%d",i);*/          fscanf(ficpar,"\n");
               numlinepar++;
   /*------------ gnuplot -------------*/          printf("\n");
   strcpy(optionfilegnuplot,optionfilefiname);          fprintf(ficparo,"\n");
   if(mle==-3)          fprintf(ficlog,"\n");
     strcat(optionfilegnuplot,"-mort");        }
   strcat(optionfilegnuplot,".gp");      }
       fflush(ficlog);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);      delti=delti3[1][1];
   }  
   else{  
     fprintf(ficgp,"\n# %s\n", version);       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     fprintf(ficgp,"# %s\n", optionfilegnuplot);    
     fprintf(ficgp,"set missing 'NaNq'\n");      /* Reads comments: lines beginning with '#' */
   }      while((c=getc(ficpar))=='#' && c!= EOF){
   /*  fclose(ficgp);*/        ungetc(c,ficpar);
   /*--------- index.htm --------*/        fgets(line, MAXLINE, ficpar);
         numlinepar++;
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */        puts(line);
   if(mle==-3)        fputs(line,ficparo);
     strcat(optionfilehtm,"-mort");        fputs(line,ficlog);
   strcat(optionfilehtm,".htm");      }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      ungetc(c,ficpar);
     printf("Problem with %s \n",optionfilehtm), exit(0);   
   }      matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */        fscanf(ficpar,"%s",&str);
   strcat(optionfilehtmcov,"-cov.htm");        if(mle==1)
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {          printf("%s",str);
     printf("Problem with %s \n",optionfilehtmcov), exit(0);        fprintf(ficlog,"%s",str);
   }        fprintf(ficparo,"%s",str);
   else{        for(j=1; j <=i; j++){
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \          fscanf(ficpar," %le",&matcov[i][j]);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\          if(mle==1){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\            printf(" %.5le",matcov[i][j]);
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);          }
   }          fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \        }
 <hr size=\"2\" color=\"#EC5E5E\"> \n\        fscanf(ficpar,"\n");
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\        numlinepar++;
 \n\        if(mle==1)
 <hr  size=\"2\" color=\"#EC5E5E\">\          printf("\n");
  <ul><li><h4>Parameter files</h4>\n\        fprintf(ficlog,"\n");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\        fprintf(ficparo,"\n");
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\      }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\      for(i=1; i <=npar; i++)
  - Date and time at start: %s</ul>\n",\        for(j=i+1;j<=npar;j++)
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\          matcov[i][j]=matcov[j][i];
           fileres,fileres,\     
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);      if(mle==1)
   fflush(fichtm);        printf("\n");
       fprintf(ficlog,"\n");
   strcpy(pathr,path);     
   strcat(pathr,optionfilefiname);      fflush(ficlog);
   chdir(optionfilefiname); /* Move to directory named optionfile */     
         /*-------- Rewriting parameter file ----------*/
   /* Calculates basic frequencies. Computes observed prevalence at single age      strcpy(rfileres,"r");    /* "Rparameterfile */
      and prints on file fileres'p'. */      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);      strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
   fprintf(fichtm,"\n");      if((ficres =fopen(rfileres,"w"))==NULL) {
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\        printf("Problem writing new parameter file: %s\n", fileres);goto end;
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\      }
           imx,agemin,agemax,jmin,jmax,jmean);      fprintf(ficres,"#%s\n",version);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }    /* End of mle != -3 */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*-------- data file ----------*/
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if((fic=fopen(datafile,"r"))==NULL)    {
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      printf("Problem while opening datafile: %s\n", datafile);goto end;
           fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
        }
   /* For Powell, parameters are in a vector p[] starting at p[1]  
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    n= lastobs;
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/    num=lvector(1,n);
   if (mle==-3){    moisnais=vector(1,n);
     ximort=matrix(1,NDIM,1,NDIM);    annais=vector(1,n);
     cens=ivector(1,n);    moisdc=vector(1,n);
     ageexmed=vector(1,n);    andc=vector(1,n);
     agecens=vector(1,n);    agedc=vector(1,n);
     dcwave=ivector(1,n);    cod=ivector(1,n);
      weight=vector(1,n);
     for (i=1; i<=imx; i++){    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
       dcwave[i]=-1;    mint=matrix(1,maxwav,1,n);
       for (j=1; j<=lastpass; j++)    anint=matrix(1,maxwav,1,n);
         if (s[j][i]>nlstate) {    s=imatrix(1,maxwav+1,1,n);
           dcwave[i]=j;    tab=ivector(1,NCOVMAX);
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/    ncodemax=ivector(1,8);
           break;  
         }    i=1;
     }    linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
     for (i=1; i<=imx; i++) {      linei=linei+1;
       if (wav[i]>0){      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         ageexmed[i]=agev[mw[1][i]][i];        if(line[j] == '\t')
         j=wav[i];agecens[i]=1.;           line[j] = ' ';
         if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];      }
         cens[i]=1;      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
                 ;
         if (ageexmed[i]<1) cens[i]=-1;      };
         if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;      line[j+1]=0;  /* Trims blanks at end of line */
       }      if(line[0]=='#'){
       else cens[i]=-1;        fprintf(ficlog,"Comment line\n%s\n",line);
     }        printf("Comment line\n%s\n",line);
             continue;
     for (i=1;i<=NDIM;i++) {      }
       for (j=1;j<=NDIM;j++)  
         ximort[i][j]=(i == j ? 1.0 : 0.0);      for (j=maxwav;j>=1;j--){
     }        cutv(stra, strb,line,' ');
         errno=0;
     p[1]=0.1; p[2]=0.1;        lval=strtol(strb,&endptr,10);
     /*printf("%lf %lf", p[1], p[2]);*/        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
             if( strb[0]=='\0' || (*endptr != '\0')){
               printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          exit(1);
   strcpy(filerespow,"pow-mort");         }
   strcat(filerespow,fileres);        s[j][i]=lval;
   if((ficrespow=fopen(filerespow,"w"))==NULL) {       
     printf("Problem with resultfile: %s\n", filerespow);        strcpy(line,stra);
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        cutv(stra, strb,line,' ');
   }        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        }
   /*  for (i=1;i<=nlstate;i++)        else  if(iout=sscanf(strb,"%s.") != 0){
     for(j=1;j<=nlstate+ndeath;j++)          month=99;
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          year=9999;
   */        }else{
   fprintf(ficrespow,"\n");          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);        }
     fclose(ficrespow);        anint[j][i]= (double) year;
             mint[j][i]= (double)month;
     hesscov(matcov, p, NDIM,delti, 1e-4, gompertz);         strcpy(line,stra);
       } /* ENd Waves */
     for(i=1; i <=NDIM; i++)     
       for(j=i+1;j<=NDIM;j++)      cutv(stra, strb,line,' ');
         matcov[i][j]=matcov[j][i];      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
           }
     printf("\nCovariance matrix\n ");      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
     for(i=1; i <=NDIM; i++) {        month=99;
       for(j=1;j<=NDIM;j++){         year=9999;
         printf("%f ",matcov[i][j]);      }else{
       }        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       printf("\n ");        exit(1);
     }      }
           andc[i]=(double) year;
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);      moisdc[i]=(double) month;
     for (i=1;i<=NDIM;i++)       strcpy(line,stra);
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));     
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */      cutv(stra, strb,line,' ');
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
           }
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \      else  if(iout=sscanf(strb,"%s.") != 0){
                      stepm, weightopt,\        month=99;
                      model,imx,p,matcov);        year=9999;
   } /* Endof if mle==-3 */      }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
   else{ /* For mle >=1 */        exit(1);
         }
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      annais[i]=(double)(year);
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      moisnais[i]=(double)(month);
     for (k=1; k<=npar;k++)      strcpy(line,stra);
       printf(" %d %8.5f",k,p[k]);     
     printf("\n");      cutv(stra, strb,line,' ');
     globpr=1; /* to print the contributions */      errno=0;
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      dval=strtod(strb,&endptr);
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      if( strb[0]=='\0' || (*endptr != '\0')){
     for (k=1; k<=npar;k++)        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
       printf(" %d %8.5f",k,p[k]);        exit(1);
     printf("\n");      }
     if(mle>=1){ /* Could be 1 or 2 */      weight[i]=dval;
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      strcpy(line,stra);
     }     
           for (j=ncovcol;j>=1;j--){
     /*--------- results files --------------*/        cutv(stra, strb,line,' ');
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        errno=0;
             lval=strtol(strb,&endptr,10);
             if( strb[0]=='\0' || (*endptr != '\0')){
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          exit(1);
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        }
     for(i=1,jk=1; i <=nlstate; i++){        if(lval <-1 || lval >1){
       for(k=1; k <=(nlstate+ndeath); k++){          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
         if (k != i) {   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
           printf("%d%d ",i,k);   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
           fprintf(ficlog,"%d%d ",i,k);   For example, for multinomial values like 1, 2 and 3,\n \
           fprintf(ficres,"%1d%1d ",i,k);   build V1=0 V2=0 for the reference value (1),\n \
           for(j=1; j <=ncovmodel; j++){          V1=1 V2=0 for (2) \n \
             printf("%f ",p[jk]);   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
             fprintf(ficlog,"%f ",p[jk]);   output of IMaCh is often meaningless.\n \
             fprintf(ficres,"%f ",p[jk]);   Exiting.\n",lval,linei, i,line,j);
             jk++;           exit(1);
           }        }
           printf("\n");        covar[j][i]=(double)(lval);
           fprintf(ficlog,"\n");        strcpy(line,stra);
           fprintf(ficres,"\n");      }
         }      lstra=strlen(stra);
       }     
     }      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
     if(mle!=0){        stratrunc = &(stra[lstra-9]);
       /* Computing hessian and covariance matrix */        num[i]=atol(stratrunc);
       ftolhess=ftol; /* Usually correct */      }
       hesscov(matcov, p, npar, delti, ftolhess, func);      else
     }        num[i]=atol(stra);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
     printf("# Scales (for hessian or gradient estimation)\n");        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");     
     for(i=1,jk=1; i <=nlstate; i++){      i=i+1;
       for(j=1; j <=nlstate+ndeath; j++){    } /* End loop reading  data */
         if (j!=i) {    fclose(fic);
           fprintf(ficres,"%1d%1d",i,j);    /* printf("ii=%d", ij);
           printf("%1d%1d",i,j);       scanf("%d",i);*/
           fprintf(ficlog,"%1d%1d",i,j);    imx=i-1; /* Number of individuals */
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);    /* for (i=1; i<=imx; i++){
             fprintf(ficlog," %.5e",delti[jk]);      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
             fprintf(ficres," %.5e",delti[jk]);      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
             jk++;      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
           }      }*/
           printf("\n");     /*  for (i=1; i<=imx; i++){
           fprintf(ficlog,"\n");       if (s[4][i]==9)  s[4][i]=-1;
           fprintf(ficres,"\n");       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
         }   
       }    /* for (i=1; i<=imx; i++) */
     }   
          /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       else weight[i]=1;*/
     if(mle>=1)  
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    /* Calculation of the number of parameters from char model */
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     /* # 121 Var(a12)\n\ */    Tprod=ivector(1,15);
     /* # 122 Cov(b12,a12) Var(b12)\n\ */    Tvaraff=ivector(1,15);
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    Tvard=imatrix(1,15,1,2);
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    Tage=ivector(1,15);      
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */     
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */    if (strlen(model) >1){ /* If there is at least 1 covariate */
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */      j=0, j1=0, k1=1, k2=1;
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */      j=nbocc(model,'+'); /* j=Number of '+' */
           j1=nbocc(model,'*'); /* j1=Number of '*' */
           cptcovn=j+1;
     /* Just to have a covariance matrix which will be more understandable      cptcovprod=j1; /*Number of products */
        even is we still don't want to manage dictionary of variables     
     */      strcpy(modelsav,model);
     for(itimes=1;itimes<=2;itimes++){      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
       jj=0;        printf("Error. Non available option model=%s ",model);
       for(i=1; i <=nlstate; i++){        fprintf(ficlog,"Error. Non available option model=%s ",model);
         for(j=1; j <=nlstate+ndeath; j++){        goto end;
           if(j==i) continue;      }
           for(k=1; k<=ncovmodel;k++){     
             jj++;      /* This loop fills the array Tvar from the string 'model'.*/
             ca[0]= k+'a'-1;ca[1]='\0';  
             if(itimes==1){      for(i=(j+1); i>=1;i--){
               if(mle>=1)        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
                 printf("#%1d%1d%d",i,j,k);        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
               fprintf(ficlog,"#%1d%1d%d",i,j,k);        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
               fprintf(ficres,"#%1d%1d%d",i,j,k);        /*scanf("%d",i);*/
             }else{        if (strchr(strb,'*')) {  /* Model includes a product */
               if(mle>=1)          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
                 printf("%1d%1d%d",i,j,k);          if (strcmp(strc,"age")==0) { /* Vn*age */
               fprintf(ficlog,"%1d%1d%d",i,j,k);            cptcovprod--;
               fprintf(ficres,"%1d%1d%d",i,j,k);            cutv(strb,stre,strd,'V');
             }            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             ll=0;            cptcovage++;
             for(li=1;li <=nlstate; li++){              Tage[cptcovage]=i;
               for(lj=1;lj <=nlstate+ndeath; lj++){              /*printf("stre=%s ", stre);*/
                 if(lj==li) continue;          }
                 for(lk=1;lk<=ncovmodel;lk++){          else if (strcmp(strd,"age")==0) { /* or age*Vn */
                   ll++;            cptcovprod--;
                   if(ll<=jj){            cutv(strb,stre,strc,'V');
                     cb[0]= lk +'a'-1;cb[1]='\0';            Tvar[i]=atoi(stre);
                     if(ll<jj){            cptcovage++;
                       if(itimes==1){            Tage[cptcovage]=i;
                         if(mle>=1)          }
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          else {  /* Age is not in the model */
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            Tvar[i]=ncovcol+k1;
                       }else{            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
                         if(mle>=1)            Tprod[k1]=i;
                           printf(" %.5e",matcov[jj][ll]);             Tvard[k1][1]=atoi(strc); /* m*/
                         fprintf(ficlog," %.5e",matcov[jj][ll]);             Tvard[k1][2]=atoi(stre); /* n */
                         fprintf(ficres," %.5e",matcov[jj][ll]);             Tvar[cptcovn+k2]=Tvard[k1][1];
                       }            Tvar[cptcovn+k2+1]=Tvard[k1][2];
                     }else{            for (k=1; k<=lastobs;k++)
                       if(itimes==1){              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
                         if(mle>=1)            k1++;
                           printf(" Var(%s%1d%1d)",ca,i,j);            k2=k2+2;
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);          }
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);        }
                       }else{        else { /* no more sum */
                         if(mle>=1)          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
                           printf(" %.5e",matcov[jj][ll]);          /*  scanf("%d",i);*/
                         fprintf(ficlog," %.5e",matcov[jj][ll]);         cutv(strd,strc,strb,'V');
                         fprintf(ficres," %.5e",matcov[jj][ll]);         Tvar[i]=atoi(strc);
                       }        }
                     }        strcpy(modelsav,stra);  
                   }        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
                 } /* end lk */          scanf("%d",i);*/
               } /* end lj */      } /* end of loop + */
             } /* end li */    } /* end model */
             if(mle>=1)   
               printf("\n");    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
             fprintf(ficlog,"\n");      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
             fprintf(ficres,"\n");  
             numlinepar++;    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
           } /* end k*/    printf("cptcovprod=%d ", cptcovprod);
         } /*end j */    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
       } /* end i */  
     } /* end itimes */    scanf("%d ",i);*/
       
     fflush(ficlog);      /*  if(mle==1){*/
     fflush(ficres);    if (weightopt != 1) { /* Maximisation without weights*/
           for(i=1;i<=n;i++) weight[i]=1.0;
     while((c=getc(ficpar))=='#' && c!= EOF){    }
       ungetc(c,ficpar);      /*-calculation of age at interview from date of interview and age at death -*/
       fgets(line, MAXLINE, ficpar);    agev=matrix(1,maxwav,1,imx);
       puts(line);  
       fputs(line,ficparo);    for (i=1; i<=imx; i++) {
     }      for(m=2; (m<= maxwav); m++) {
     ungetc(c,ficpar);        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
               anint[m][i]=9999;
     estepm=0;          s[m][i]=-1;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        }
     if (estepm==0 || estepm < stepm) estepm=stepm;        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
     if (fage <= 2) {          nberr++;
       bage = ageminpar;          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
       fage = agemaxpar;          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
     }          s[m][i]=-1;
             }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          nberr++;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
               fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
     while((c=getc(ficpar))=='#' && c!= EOF){          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
       ungetc(c,ficpar);        }
       fgets(line, MAXLINE, ficpar);      }
       puts(line);    }
       fputs(line,ficparo);  
     }    for (i=1; i<=imx; i++)  {
     ungetc(c,ficpar);      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
           for(m=firstpass; (m<= lastpass); m++){
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          if (s[m][i] >= nlstate+1) {
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            if(agedc[i]>0)
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                agev[m][i]=agedc[i];
                 /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
     while((c=getc(ficpar))=='#' && c!= EOF){              else {
       ungetc(c,ficpar);                if ((int)andc[i]!=9999){
       fgets(line, MAXLINE, ficpar);                  nbwarn++;
       puts(line);                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
       fputs(line,ficparo);                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
     }                  agev[m][i]=-1;
     ungetc(c,ficpar);                }
                   }
               }
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;          else if(s[m][i] !=9){ /* Standard case, age in fractional
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;                                   years but with the precision of a month */
                 agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
     fscanf(ficpar,"pop_based=%d\n",&popbased);            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
     fprintf(ficparo,"pop_based=%d\n",popbased);                 agev[m][i]=1;
     fprintf(ficres,"pop_based=%d\n",popbased);               else if(agev[m][i] <agemin){
                   agemin=agev[m][i];
     while((c=getc(ficpar))=='#' && c!= EOF){              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
       ungetc(c,ficpar);            }
       fgets(line, MAXLINE, ficpar);            else if(agev[m][i] >agemax){
       puts(line);              agemax=agev[m][i];
       fputs(line,ficparo);              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
     }            }
     ungetc(c,ficpar);            /*agev[m][i]=anint[m][i]-annais[i];*/
                 /*     agev[m][i] = age[i]+2*m;*/
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);          }
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          else { /* =9 */
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            agev[m][i]=1;
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            s[m][i]=-1;
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          }
     /* day and month of proj2 are not used but only year anproj2.*/        }
             else /*= 0 Unknown */
               agev[m][i]=1;
           }
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/     
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    }
         for (i=1; i<=imx; i++)  {
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */      for(m=firstpass; (m<=lastpass); m++){
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);        if (s[m][i] > (nlstate+ndeath)) {
               nberr++;
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);          goto end;
               }
    /*------------ free_vector  -------------*/      }
    /*  chdir(path); */    }
    
     free_ivector(wav,1,imx);    /*for (i=1; i<=imx; i++){
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    for (m=firstpass; (m<lastpass); m++){
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     }
     free_lvector(num,1,n);  
     free_vector(agedc,1,n);  }*/
     /*free_matrix(covar,0,NCOVMAX,1,n);*/  
     /*free_matrix(covar,1,NCOVMAX,1,n);*/  
     fclose(ficparo);    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fclose(ficres);    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
     agegomp=(int)agemin;
     /*--------------- Prevalence limit  (stable prevalence) --------------*/    free_vector(severity,1,maxwav);
       free_imatrix(outcome,1,maxwav+1,1,n);
     strcpy(filerespl,"pl");    free_vector(moisnais,1,n);
     strcat(filerespl,fileres);    free_vector(annais,1,n);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {    /* free_matrix(mint,1,maxwav,1,n);
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;       free_matrix(anint,1,maxwav,1,n);*/
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    free_vector(moisdc,1,n);
     }    free_vector(andc,1,n);
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);  
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);     
     fprintf(ficrespl,"#Stable prevalence \n");    wav=ivector(1,imx);
     fprintf(ficrespl,"#Age ");    dh=imatrix(1,lastpass-firstpass+1,1,imx);
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    bh=imatrix(1,lastpass-firstpass+1,1,imx);
     fprintf(ficrespl,"\n");    mw=imatrix(1,lastpass-firstpass+1,1,imx);
        
     prlim=matrix(1,nlstate,1,nlstate);    /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     agebase=ageminpar;  
     agelim=agemaxpar;    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
     ftolpl=1.e-10;  
     i1=cptcoveff;    Tcode=ivector(1,100);
     if (cptcovn < 1){i1=1;}    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       
         k=k+1;    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                                   the estimations*/
         fprintf(ficrespl,"\n#******");    h=0;
         printf("\n#******");    m=pow(2,cptcoveff);
         fprintf(ficlog,"\n#******");   
         for(j=1;j<=cptcoveff;j++) {    for(k=1;k<=cptcoveff; k++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(i=1; i <=(m/pow(2,k));i++){
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j <= ncodemax[k]; j++){
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
         }            h++;
         fprintf(ficrespl,"******\n");            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
         printf("******\n");            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
         fprintf(ficlog,"******\n");          }
                 }
         for (age=agebase; age<=agelim; age++){      }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
           fprintf(ficrespl,"%.0f ",age );    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
           for(j=1;j<=cptcoveff;j++)       codtab[1][2]=1;codtab[2][2]=2; */
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* for(i=1; i <=m ;i++){
           for(i=1; i<=nlstate;i++)       for(k=1; k <=cptcovn; k++){
             fprintf(ficrespl," %.5f", prlim[i][i]);       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
           fprintf(ficrespl,"\n");       }
         }       printf("\n");
       }       }
     }       scanf("%d",i);*/
     fclose(ficrespl);     
     /*------------ gnuplot -------------*/
     /*------------- h Pij x at various ages ------------*/    strcpy(optionfilegnuplot,optionfilefiname);
       if(mle==-3)
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);      strcat(optionfilegnuplot,"-mort");
     if((ficrespij=fopen(filerespij,"w"))==NULL) {    strcat(optionfilegnuplot,".gp");
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
     }      printf("Problem with file %s",optionfilegnuplot);
     printf("Computing pij: result on file '%s' \n", filerespij);    }
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    else{
         fprintf(ficgp,"\n# %s\n", version);
     stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficgp,"# %s\n", optionfilegnuplot);
     /*if (stepm<=24) stepsize=2;*/      fprintf(ficgp,"set missing 'NaNq'\n");
     }
     agelim=AGESUP;    /*  fclose(ficgp);*/
     hstepm=stepsize*YEARM; /* Every year of age */    /*--------- index.htm --------*/
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     /* hstepm=1;   aff par mois*/    if(mle==-3)
       strcat(optionfilehtm,"-mort");
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");    strcat(optionfilehtm,".htm");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      printf("Problem with %s \n",optionfilehtm), exit(0);
         k=k+1;    }
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(optionfilehtmcov,"-cov.htm");
         fprintf(ficrespij,"******\n");    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
               printf("Problem with %s \n",optionfilehtmcov), exit(0);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     else{
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
           /*      nhstepm=nhstepm*YEARM; aff par mois*/  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");  <hr size=\"2\" color=\"#EC5E5E\"> \n\
           for(i=1; i<=nlstate;i++)  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
             for(j=1; j<=nlstate+ndeath;j++)  \n\
               fprintf(ficrespij," %1d-%1d",i,j);  <hr  size=\"2\" color=\"#EC5E5E\">\
           fprintf(ficrespij,"\n");   <ul><li><h4>Parameter files</h4>\n\
           for (h=0; h<=nhstepm; h++){   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
             for(i=1; i<=nlstate;i++)   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
               for(j=1; j<=nlstate+ndeath;j++)   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);   - Date and time at start: %s</ul>\n",\
             fprintf(ficrespij,"\n");            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
           }            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fileres,fileres,\
           fprintf(ficrespij,"\n");            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
         }    fflush(fichtm);
       }  
     }    strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);    chdir(optionfilefiname); /* Move to directory named optionfile */
    
     fclose(ficrespij);    /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
     for(i=1;i<=AGESUP;i++)  
       for(j=1;j<=NCOVMAX;j++)    fprintf(fichtm,"\n");
         for(k=1;k<=NCOVMAX;k++)    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
           probs[i][j][k]=0.;  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
     /*---------- Forecasting ------------------*/            imx,agemin,agemax,jmin,jmax,jmean);
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     if(prevfcast==1){      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       /*    if(stepm ==1){*/      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       /*      }  */     
       /*      else{ */     
       /*        erreur=108; */    /* For Powell, parameters are in a vector p[] starting at p[1]
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
       /*      } */  
     }    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     
     if (mle==-3){
     /*---------- Health expectancies and variances ------------*/      ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
     strcpy(filerest,"t");      ageexmed=vector(1,n);
     strcat(filerest,fileres);      agecens=vector(1,n);
     if((ficrest=fopen(filerest,"w"))==NULL) {      dcwave=ivector(1,n);
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;   
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      for (i=1; i<=imx; i++){
     }        dcwave[i]=-1;
     printf("Computing Total LEs with variances: file '%s' \n", filerest);         for (m=firstpass; m<=lastpass; m++)
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
     strcpy(filerese,"e");            break;
     strcat(filerese,fileres);          }
     if((ficreseij=fopen(filerese,"w"))==NULL) {      }
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      for (i=1; i<=imx; i++) {
     }        if (wav[i]>0){
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);          ageexmed[i]=agev[mw[1][i]][i];
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);          j=wav[i];
           agecens[i]=1.;
     strcpy(fileresv,"v");  
     strcat(fileresv,fileres);          if (ageexmed[i]> 1 && wav[i] > 0){
     if((ficresvij=fopen(fileresv,"w"))==NULL) {            agecens[i]=agev[mw[j][i]][i];
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            cens[i]= 1;
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);          }else if (ageexmed[i]< 1)
     }            cens[i]= -1;
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            cens[i]=0 ;
         }
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */        else cens[i]=-1;
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      }
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\     
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);      for (i=1;i<=NDIM;i++) {
     */        for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
     if (mobilav!=0) {      }
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      p[1]=0.0268; p[NDIM]=0.083;
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      /*printf("%lf %lf", p[1], p[2]);*/
         printf(" Error in movingaverage mobilav=%d\n",mobilav);     
       }     
     }      printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      strcat(filerespow,fileres);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      if((ficrespow=fopen(filerespow,"w"))==NULL) {
         k=k+1;         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficrest,"\n#****** ");        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         for(j=1;j<=cptcoveff;j++)       }
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
         fprintf(ficrest,"******\n");      /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
         fprintf(ficreseij,"\n#****** ");          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         for(j=1;j<=cptcoveff;j++)       */
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficrespow,"\n");
         fprintf(ficreseij,"******\n");     
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
         fprintf(ficresvij,"\n#****** ");      fclose(ficrespow);
         for(j=1;j<=cptcoveff;j++)      
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
         fprintf(ficresvij,"******\n");  
       for(i=1; i <=NDIM; i++)
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for(j=i+1;j<=NDIM;j++)
         oldm=oldms;savm=savms;          matcov[i][j]=matcov[j][i];
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);       
        printf("\nCovariance matrix\n ");
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for(i=1; i <=NDIM; i++) {
         oldm=oldms;savm=savms;        for(j=1;j<=NDIM;j++){
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);          printf("%f ",matcov[i][j]);
         if(popbased==1){        }
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);        printf("\n ");
         }      }
      
        printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      for (i=1;i<=NDIM;i++)
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficrest,"\n");  
       lsurv=vector(1,AGESUP);
         epj=vector(1,nlstate+1);      lpop=vector(1,AGESUP);
         for(age=bage; age <=fage ;age++){      tpop=vector(1,AGESUP);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      lsurv[agegomp]=100000;
           if (popbased==1) {     
             if(mobilav ==0){      for (k=agegomp;k<=AGESUP;k++) {
               for(i=1; i<=nlstate;i++)        agemortsup=k;
                 prlim[i][i]=probs[(int)age][i][k];        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
             }else{ /* mobilav */       }
               for(i=1; i<=nlstate;i++)     
                 prlim[i][i]=mobaverage[(int)age][i][k];      for (k=agegomp;k<agemortsup;k++)
             }        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
           }     
               for (k=agegomp;k<agemortsup;k++){
           fprintf(ficrest," %4.0f",age);        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        sumlpop=sumlpop+lpop[k];
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      }
               epj[j] += prlim[i][i]*eij[i][j][(int)age];     
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      tpop[agegomp]=sumlpop;
             }      for (k=agegomp;k<(agemortsup-3);k++){
             epj[nlstate+1] +=epj[j];        /*  tpop[k+1]=2;*/
           }        tpop[k+1]=tpop[k]-lpop[k];
       }
           for(i=1, vepp=0.;i <=nlstate;i++)     
             for(j=1;j <=nlstate;j++)     
               vepp += vareij[i][j][(int)age];      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      for (k=agegomp;k<(agemortsup-2);k++)
           for(j=1;j <=nlstate;j++){        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));     
           }     
           fprintf(ficrest,"\n");      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
         }      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);     
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
         free_vector(epj,1,nlstate+1);                       stepm, weightopt,\
       }                       model,imx,p,matcov,agemortsup);
     }     
     free_vector(weight,1,n);      free_vector(lsurv,1,AGESUP);
     free_imatrix(Tvard,1,15,1,2);      free_vector(lpop,1,AGESUP);
     free_imatrix(s,1,maxwav+1,1,n);      free_vector(tpop,1,AGESUP);
     free_matrix(anint,1,maxwav,1,n);     } /* Endof if mle==-3 */
     free_matrix(mint,1,maxwav,1,n);   
     free_ivector(cod,1,n);    else{ /* For mle >=1 */
     free_ivector(tab,1,NCOVMAX);   
     fclose(ficreseij);      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     fclose(ficresvij);      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     fclose(ficrest);      for (k=1; k<=npar;k++)
     fclose(ficpar);        printf(" %d %8.5f",k,p[k]);
         printf("\n");
     /*------- Variance of stable prevalence------*/         globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     strcpy(fileresvpl,"vpl");      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     strcat(fileresvpl,fileres);      for (k=1; k<=npar;k++)
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        printf(" %d %8.5f",k,p[k]);
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);      printf("\n");
       exit(0);      if(mle>=1){ /* Could be 1 or 2 */
     }        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);      }
      
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      /*--------- results files --------------*/
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
         k=k+1;     
         fprintf(ficresvpl,"\n#****** ");     
         for(j=1;j<=cptcoveff;j++)       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         fprintf(ficresvpl,"******\n");      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
             for(i=1,jk=1; i <=nlstate; i++){
         varpl=matrix(1,nlstate,(int) bage, (int) fage);        for(k=1; k <=(nlstate+ndeath); k++){
         oldm=oldms;savm=savms;          if (k != i) {
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            printf("%d%d ",i,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            fprintf(ficlog,"%d%d ",i,k);
       }            fprintf(ficres,"%1d%1d ",i,k);
     }            for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
     fclose(ficresvpl);              fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
     /*---------- End : free ----------------*/              jk++;
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            printf("\n");
             fprintf(ficlog,"\n");
   }  /* mle==-3 arrives here for freeing */            fprintf(ficres,"\n");
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          }
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      }
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      if(mle!=0){
           /* Computing hessian and covariance matrix */
     free_matrix(covar,0,NCOVMAX,1,n);        ftolhess=ftol; /* Usually correct */
     free_matrix(matcov,1,npar,1,npar);        hesscov(matcov, p, npar, delti, ftolhess, func);
     /*free_vector(delti,1,npar);*/      }
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     free_matrix(agev,1,maxwav,1,imx);      printf("# Scales (for hessian or gradient estimation)\n");
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
     free_ivector(ncodemax,1,8);        for(j=1; j <=nlstate+ndeath; j++){
     free_ivector(Tvar,1,15);          if (j!=i) {
     free_ivector(Tprod,1,15);            fprintf(ficres,"%1d%1d",i,j);
     free_ivector(Tvaraff,1,15);            printf("%1d%1d",i,j);
     free_ivector(Tage,1,15);            fprintf(ficlog,"%1d%1d",i,j);
     free_ivector(Tcode,1,100);            for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
   fflush(fichtm);              fprintf(ficres," %.5e",delti[jk]);
   fflush(ficgp);              jk++;
               }
             printf("\n");
   if((nberr >0) || (nbwarn>0)){            fprintf(ficlog,"\n");
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);            fprintf(ficres,"\n");
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);          }
   }else{        }
     printf("End of Imach\n");      }
     fprintf(ficlog,"End of Imach\n");     
   }      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   printf("See log file on %s\n",filelog);      if(mle>=1)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   (void) gettimeofday(&end_time,&tzp);      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   tm = *localtime(&end_time.tv_sec);      /* # 121 Var(a12)\n\ */
   tmg = *gmtime(&end_time.tv_sec);      /* # 122 Cov(b12,a12) Var(b12)\n\ */
   strcpy(strtend,asctime(&tm));      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend);       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));     
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);     
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      /* Just to have a covariance matrix which will be more understandable
 /*   if(fileappend(fichtm,optionfilehtm)){ */         even is we still don't want to manage dictionary of variables
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);      */
   fclose(fichtm);      for(itimes=1;itimes<=2;itimes++){
   fclose(fichtmcov);        jj=0;
   fclose(ficgp);        for(i=1; i <=nlstate; i++){
   fclose(ficlog);          for(j=1; j <=nlstate+ndeath; j++){
   /*------ End -----------*/            if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
   chdir(path);              jj++;
   strcpy(plotcmd,"\"");              ca[0]= k+'a'-1;ca[1]='\0';
   strcat(plotcmd,pathimach);              if(itimes==1){
   strcat(plotcmd,GNUPLOTPROGRAM);                if(mle>=1)
   strcat(plotcmd,"\"");                  printf("#%1d%1d%d",i,j,k);
   strcat(plotcmd," ");                fprintf(ficlog,"#%1d%1d%d",i,j,k);
   strcat(plotcmd,optionfilegnuplot);                fprintf(ficres,"#%1d%1d%d",i,j,k);
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);              }else{
   if((outcmd=system(plotcmd)) != 0){                if(mle>=1)
     printf(" Problem with gnuplot\n");                  printf("%1d%1d%d",i,j,k);
   }                fprintf(ficlog,"%1d%1d%d",i,j,k);
   printf(" Wait...");                fprintf(ficres,"%1d%1d%d",i,j,k);
   while (z[0] != 'q') {              }
     /* chdir(path); */              ll=0;
     printf("\nType e to edit output files, g to graph again and q for exiting: ");              for(li=1;li <=nlstate; li++){
     scanf("%s",z);                for(lj=1;lj <=nlstate+ndeath; lj++){
 /*     if (z[0] == 'c') system("./imach"); */                  if(lj==li) continue;
     if (z[0] == 'e') {                  for(lk=1;lk<=ncovmodel;lk++){
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);                    ll++;
       system(optionfilehtm);                    if(ll<=jj){
     }                      cb[0]= lk +'a'-1;cb[1]='\0';
     else if (z[0] == 'g') system(plotcmd);                      if(ll<jj){
     else if (z[0] == 'q') exit(0);                        if(itimes==1){
   }                          if(mle>=1)
   end:                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   while (z[0] != 'q') {                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     printf("\nType  q for exiting: ");                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     scanf("%s",z);                        }else{
   }                          if(mle>=1)
 }                            printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.102  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>