Diff for /imach/src/imach.c between versions 1.112 and 1.125

version 1.112, 2006/01/30 09:55:26 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   Revision 1.111  2006/01/25 20:38:18  brouard  
   (Module): Lots of cleaning and bugs added (Gompertz)    Revision 1.124  2006/03/22 17:13:53  lievre
   (Module): Comments can be added in data file. Missing date values    Parameters are printed with %lf instead of %f (more numbers after the comma).
   can be a simple dot '.'.    The log-likelihood is printed in the log file
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
   Revision 1.109  2006/01/24 19:37:15  brouard  
   (Module): Comments (lines starting with a #) are allowed in data.    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
   Revision 1.108  2006/01/19 18:05:42  lievre    otherwise the weight is truncated).
   Gnuplot problem appeared...    Modification of warning when the covariates values are not 0 or
   To be fixed    1.
     Version 0.98g
   Revision 1.107  2006/01/19 16:20:37  brouard  
   Test existence of gnuplot in imach path    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
   Revision 1.106  2006/01/19 13:24:36  brouard    English (a comma might work with a correct LC_NUMERIC environment,
   Some cleaning and links added in html output    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.105  2006/01/05 20:23:19  lievre    1.
   *** empty log message ***    Version 0.98g
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    * imach.c (Module): Comments concerning covariates added
   (Module): If the status is missing at the last wave but we know  
   that the person is alive, then we can code his/her status as -2    * imach.c (Module): refinements in the computation of lli if
   (instead of missing=-1 in earlier versions) and his/her    status=-2 in order to have more reliable computation if stepm is
   contributions to the likelihood is 1 - Prob of dying from last    not 1 month. Version 0.98f
   health status (= 1-p13= p11+p12 in the easiest case of somebody in  
   the healthy state at last known wave). Version is 0.98    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
   Revision 1.103  2005/09/30 15:54:49  lievre    status=-2 in order to have more reliable computation if stepm is
   (Module): sump fixed, loop imx fixed, and simplifications.    not 1 month. Version 0.98f
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   Add the possibility to read data file including tab characters.    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
   Revision 1.101  2004/09/15 10:38:38  brouard  
   Fix on curr_time    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
   Revision 1.100  2004/07/12 18:29:06  brouard    table of variances if popbased=1 .
   Add version for Mac OS X. Just define UNIX in Makefile    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Revision 1.99  2004/06/05 08:57:40  brouard    (Module): Version 0.98d
   *** empty log message ***  
     Revision 1.117  2006/03/14 17:16:22  brouard
   Revision 1.98  2004/05/16 15:05:56  brouard    (Module): varevsij Comments added explaining the second
   New version 0.97 . First attempt to estimate force of mortality    table of variances if popbased=1 .
   directly from the data i.e. without the need of knowing the health    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   state at each age, but using a Gompertz model: log u =a + b*age .    (Module): Function pstamp added
   This is the basic analysis of mortality and should be done before any    (Module): Version 0.98d
   other analysis, in order to test if the mortality estimated from the  
   cross-longitudinal survey is different from the mortality estimated    Revision 1.116  2006/03/06 10:29:27  brouard
   from other sources like vital statistic data.    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
   The same imach parameter file can be used but the option for mle should be -3.  
     Revision 1.115  2006/02/27 12:17:45  brouard
   Agnès, who wrote this part of the code, tried to keep most of the    (Module): One freematrix added in mlikeli! 0.98c
   former routines in order to include the new code within the former code.  
     Revision 1.114  2006/02/26 12:57:58  brouard
   The output is very simple: only an estimate of the intercept and of    (Module): Some improvements in processing parameter
   the slope with 95% confident intervals.    filename with strsep.
   
   Current limitations:    Revision 1.113  2006/02/24 14:20:24  brouard
   A) Even if you enter covariates, i.e. with the    (Module): Memory leaks checks with valgrind and:
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    datafile was not closed, some imatrix were not freed and on matrix
   B) There is no computation of Life Expectancy nor Life Table.    allocation too.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.112  2006/01/30 09:55:26  brouard
   Version 0.96d. Population forecasting command line is (temporarily)    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   suppressed.  
     Revision 1.111  2006/01/25 20:38:18  brouard
   Revision 1.96  2003/07/15 15:38:55  brouard    (Module): Lots of cleaning and bugs added (Gompertz)
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    (Module): Comments can be added in data file. Missing date values
   rewritten within the same printf. Workaround: many printfs.    can be a simple dot '.'.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   * imach.c (Repository):    (Module): Lots of cleaning and bugs added (Gompertz)
   (Repository): Using imachwizard code to output a more meaningful covariance  
   matrix (cov(a12,c31) instead of numbers.    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
   Revision 1.94  2003/06/27 13:00:02  brouard  
   Just cleaning    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
   Revision 1.93  2003/06/25 16:33:55  brouard    To be fixed
   (Module): On windows (cygwin) function asctime_r doesn't  
   exist so I changed back to asctime which exists.    Revision 1.107  2006/01/19 16:20:37  brouard
   (Module): Version 0.96b    Test existence of gnuplot in imach path
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    Some cleaning and links added in html output
   exist so I changed back to asctime which exists.  
     Revision 1.105  2006/01/05 20:23:19  lievre
   Revision 1.91  2003/06/25 15:30:29  brouard    *** empty log message ***
   * imach.c (Repository): Duplicated warning errors corrected.  
   (Repository): Elapsed time after each iteration is now output. It    Revision 1.104  2005/09/30 16:11:43  lievre
   helps to forecast when convergence will be reached. Elapsed time    (Module): sump fixed, loop imx fixed, and simplifications.
   is stamped in powell.  We created a new html file for the graphs    (Module): If the status is missing at the last wave but we know
   concerning matrix of covariance. It has extension -cov.htm.    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
   Revision 1.90  2003/06/24 12:34:15  brouard    contributions to the likelihood is 1 - Prob of dying from last
   (Module): Some bugs corrected for windows. Also, when    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   mle=-1 a template is output in file "or"mypar.txt with the design    the healthy state at last known wave). Version is 0.98
   of the covariance matrix to be input.  
     Revision 1.103  2005/09/30 15:54:49  lievre
   Revision 1.89  2003/06/24 12:30:52  brouard    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): Some bugs corrected for windows. Also, when  
   mle=-1 a template is output in file "or"mypar.txt with the design    Revision 1.102  2004/09/15 17:31:30  brouard
   of the covariance matrix to be input.    Add the possibility to read data file including tab characters.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    Fix on curr_time
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Version 0.96    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   (Module): Change position of html and gnuplot routines and added    *** empty log message ***
   routine fileappend.  
     Revision 1.98  2004/05/16 15:05:56  brouard
   Revision 1.85  2003/06/17 13:12:43  brouard    New version 0.97 . First attempt to estimate force of mortality
   * imach.c (Repository): Check when date of death was earlier that    directly from the data i.e. without the need of knowing the health
   current date of interview. It may happen when the death was just    state at each age, but using a Gompertz model: log u =a + b*age .
   prior to the death. In this case, dh was negative and likelihood    This is the basic analysis of mortality and should be done before any
   was wrong (infinity). We still send an "Error" but patch by    other analysis, in order to test if the mortality estimated from the
   assuming that the date of death was just one stepm after the    cross-longitudinal survey is different from the mortality estimated
   interview.    from other sources like vital statistic data.
   (Repository): Because some people have very long ID (first column)  
   we changed int to long in num[] and we added a new lvector for    The same imach parameter file can be used but the option for mle should be -3.
   memory allocation. But we also truncated to 8 characters (left  
   truncation)    Agnès, who wrote this part of the code, tried to keep most of the
   (Repository): No more line truncation errors.    former routines in order to include the new code within the former code.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    The output is very simple: only an estimate of the intercept and of
   * imach.c (Repository): Replace "freqsummary" at a correct    the slope with 95% confident intervals.
   place. It differs from routine "prevalence" which may be called  
   many times. Probs is memory consuming and must be used with    Current limitations:
   parcimony.    A) Even if you enter covariates, i.e. with the
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
   Revision 1.83  2003/06/10 13:39:11  lievre  
   *** empty log message ***    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
   Revision 1.82  2003/06/05 15:57:20  brouard    suppressed.
   Add log in  imach.c and  fullversion number is now printed.  
     Revision 1.96  2003/07/15 15:38:55  brouard
 */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 /*    rewritten within the same printf. Workaround: many printfs.
    Interpolated Markov Chain  
     Revision 1.95  2003/07/08 07:54:34  brouard
   Short summary of the programme:    * imach.c (Repository):
       (Repository): Using imachwizard code to output a more meaningful covariance
   This program computes Healthy Life Expectancies from    matrix (cov(a12,c31) instead of numbers.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.94  2003/06/27 13:00:02  brouard
   interviewed on their health status or degree of disability (in the    Just cleaning
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.93  2003/06/25 16:33:55  brouard
   (if any) in individual health status.  Health expectancies are    (Module): On windows (cygwin) function asctime_r doesn't
   computed from the time spent in each health state according to a    exist so I changed back to asctime which exists.
   model. More health states you consider, more time is necessary to reach the    (Module): Version 0.96b
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.92  2003/06/25 16:30:45  brouard
   probability to be observed in state j at the second wave    (Module): On windows (cygwin) function asctime_r doesn't
   conditional to be observed in state i at the first wave. Therefore    exist so I changed back to asctime which exists.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.91  2003/06/25 15:30:29  brouard
   complex model than "constant and age", you should modify the program    * imach.c (Repository): Duplicated warning errors corrected.
   where the markup *Covariates have to be included here again* invites    (Repository): Elapsed time after each iteration is now output. It
   you to do it.  More covariates you add, slower the    helps to forecast when convergence will be reached. Elapsed time
   convergence.    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.90  2003/06/24 12:34:15  brouard
   identical for each individual. Also, if a individual missed an    (Module): Some bugs corrected for windows. Also, when
   intermediate interview, the information is lost, but taken into    mle=-1 a template is output in file "or"mypar.txt with the design
   account using an interpolation or extrapolation.      of the covariance matrix to be input.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.89  2003/06/24 12:30:52  brouard
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Some bugs corrected for windows. Also, when
   split into an exact number (nh*stepm) of unobserved intermediate    mle=-1 a template is output in file "or"mypar.txt with the design
   states. This elementary transition (by month, quarter,    of the covariance matrix to be input.
   semester or year) is modelled as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.88  2003/06/23 17:54:56  brouard
   and the contribution of each individual to the likelihood is simply    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   hPijx.  
     Revision 1.87  2003/06/18 12:26:01  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Version 0.96
   of the life expectancies. It also computes the stable prevalence.   
       Revision 1.86  2003/06/17 20:04:08  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Change position of html and gnuplot routines and added
            Institut national d'études démographiques, Paris.    routine fileappend.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.85  2003/06/17 13:12:43  brouard
   It is copyrighted identically to a GNU software product, ie programme and    * imach.c (Repository): Check when date of death was earlier that
   software can be distributed freely for non commercial use. Latest version    current date of interview. It may happen when the death was just
   can be accessed at http://euroreves.ined.fr/imach .    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    assuming that the date of death was just one stepm after the
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    interview.
       (Repository): Because some people have very long ID (first column)
   **********************************************************************/    we changed int to long in num[] and we added a new lvector for
 /*    memory allocation. But we also truncated to 8 characters (left
   main    truncation)
   read parameterfile    (Repository): No more line truncation errors.
   read datafile  
   concatwav    Revision 1.84  2003/06/13 21:44:43  brouard
   freqsummary    * imach.c (Repository): Replace "freqsummary" at a correct
   if (mle >= 1)    place. It differs from routine "prevalence" which may be called
     mlikeli    many times. Probs is memory consuming and must be used with
   print results files    parcimony.
   if mle==1     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
      computes hessian  
   read end of parameter file: agemin, agemax, bage, fage, estepm    Revision 1.83  2003/06/10 13:39:11  lievre
       begin-prev-date,...    *** empty log message ***
   open gnuplot file  
   open html file    Revision 1.82  2003/06/05 15:57:20  brouard
   stable prevalence    Add log in  imach.c and  fullversion number is now printed.
    for age prevalim()  
   h Pij x  */
   variance of p varprob  /*
   forecasting if prevfcast==1 prevforecast call prevalence()     Interpolated Markov Chain
   health expectancies  
   Variance-covariance of DFLE    Short summary of the programme:
   prevalence()   
    movingaverage()    This program computes Healthy Life Expectancies from
   varevsij()     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   if popbased==1 varevsij(,popbased)    first survey ("cross") where individuals from different ages are
   total life expectancies    interviewed on their health status or degree of disability (in the
   Variance of stable prevalence    case of a health survey which is our main interest) -2- at least a
  end    second wave of interviews ("longitudinal") which measure each change
 */    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
      simplest model is the multinomial logistic model where pij is the
 #include <math.h>    probability to be observed in state j at the second wave
 #include <stdio.h>    conditional to be observed in state i at the first wave. Therefore
 #include <stdlib.h>    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #include <string.h>    'age' is age and 'sex' is a covariate. If you want to have a more
 #include <unistd.h>    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 #include <limits.h>    you to do it.  More covariates you add, slower the
 #include <sys/types.h>    convergence.
 #include <sys/stat.h>  
 #include <errno.h>    The advantage of this computer programme, compared to a simple
 extern int errno;    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 /* #include <sys/time.h> */    intermediate interview, the information is lost, but taken into
 #include <time.h>    account using an interpolation or extrapolation.  
 #include "timeval.h"  
     hPijx is the probability to be observed in state i at age x+h
 /* #include <libintl.h> */    conditional to the observed state i at age x. The delay 'h' can be
 /* #define _(String) gettext (String) */    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 #define MAXLINE 256    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 #define GNUPLOTPROGRAM "gnuplot"    and the contribution of each individual to the likelihood is simply
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    hPijx.
 #define FILENAMELENGTH 132  
     Also this programme outputs the covariance matrix of the parameters but also
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    of the life expectancies. It also computes the period (stable) prevalence.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */   
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */             Institut national d'études démographiques, Paris.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 #define NINTERVMAX 8    It is copyrighted identically to a GNU software product, ie programme and
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    software can be distributed freely for non commercial use. Latest version
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    can be accessed at http://euroreves.ined.fr/imach .
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define YEARM 12. /* Number of months per year */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define AGESUP 130   
 #define AGEBASE 40    **********************************************************************/
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  /*
 #ifdef UNIX    main
 #define DIRSEPARATOR '/'    read parameterfile
 #define CHARSEPARATOR "/"    read datafile
 #define ODIRSEPARATOR '\\'    concatwav
 #else    freqsummary
 #define DIRSEPARATOR '\\'    if (mle >= 1)
 #define CHARSEPARATOR "\\"      mlikeli
 #define ODIRSEPARATOR '/'    print results files
 #endif    if mle==1
        computes hessian
 /* $Id$ */    read end of parameter file: agemin, agemax, bage, fage, estepm
 /* $State$ */        begin-prev-date,...
     open gnuplot file
 char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";    open html file
 char fullversion[]="$Revision$ $Date$";     period (stable) prevalence
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */     for age prevalim()
 int nvar;    h Pij x
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    variance of p varprob
 int npar=NPARMAX;    forecasting if prevfcast==1 prevforecast call prevalence()
 int nlstate=2; /* Number of live states */    health expectancies
 int ndeath=1; /* Number of dead states */    Variance-covariance of DFLE
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    prevalence()
 int popbased=0;     movingaverage()
     varevsij()
 int *wav; /* Number of waves for this individuual 0 is possible */    if popbased==1 varevsij(,popbased)
 int maxwav; /* Maxim number of waves */    total life expectancies
 int jmin, jmax; /* min, max spacing between 2 waves */    Variance of period (stable) prevalence
 int ijmin, ijmax; /* Individuals having jmin and jmax */    end
 int gipmx, gsw; /* Global variables on the number of contributions   */
                    to the likelihood and the sum of weights (done by funcone)*/  
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */   
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  #include <math.h>
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  #include <stdio.h>
 double jmean; /* Mean space between 2 waves */  #include <stdlib.h>
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #include <string.h>
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #include <unistd.h>
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog, *ficrespow;  #include <limits.h>
 int globpr; /* Global variable for printing or not */  #include <sys/types.h>
 double fretone; /* Only one call to likelihood */  #include <sys/stat.h>
 long ipmx; /* Number of contributions */  #include <errno.h>
 double sw; /* Sum of weights */  extern int errno;
 char filerespow[FILENAMELENGTH];  
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  /* #include <sys/time.h> */
 FILE *ficresilk;  #include <time.h>
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #include "timeval.h"
 FILE *ficresprobmorprev;  
 FILE *fichtm, *fichtmcov; /* Html File */  /* #include <libintl.h> */
 FILE *ficreseij;  /* #define _(String) gettext (String) */
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;  #define MAXLINE 256
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;  #define GNUPLOTPROGRAM "gnuplot"
 char fileresvpl[FILENAMELENGTH];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 char title[MAXLINE];  #define FILENAMELENGTH 132
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 char command[FILENAMELENGTH];  
 int  outcmd=0;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
   #define NINTERVMAX 8
 char filelog[FILENAMELENGTH]; /* Log file */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 char filerest[FILENAMELENGTH];  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 char fileregp[FILENAMELENGTH];  #define NCOVMAX 8 /* Maximum number of covariates */
 char popfile[FILENAMELENGTH];  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  #define AGESUP 130
   #define AGEBASE 40
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 struct timezone tzp;  #ifdef UNIX
 extern int gettimeofday();  #define DIRSEPARATOR '/'
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  #define CHARSEPARATOR "/"
 long time_value;  #define ODIRSEPARATOR '\\'
 extern long time();  #else
 char strcurr[80], strfor[80];  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
 char *endptr;  #define ODIRSEPARATOR '/'
 long lval;  #endif
   
 #define NR_END 1  /* $Id$ */
 #define FREE_ARG char*  /* $State$ */
 #define FTOL 1.0e-10  
   char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 #define NRANSI   char fullversion[]="$Revision$ $Date$";
 #define ITMAX 200   char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 #define TOL 2.0e-4   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 #define CGOLD 0.3819660   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 #define ZEPS 1.0e-10   int npar=NPARMAX;
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 #define GOLD 1.618034   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 #define GLIMIT 100.0   int popbased=0;
 #define TINY 1.0e-20   
   int *wav; /* Number of waves for this individuual 0 is possible */
 static double maxarg1,maxarg2;  int maxwav; /* Maxim number of waves */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  int jmin, jmax; /* min, max spacing between 2 waves */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  int ijmin, ijmax; /* Individuals having jmin and jmax */
     int gipmx, gsw; /* Global variables on the number of contributions
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))                     to the likelihood and the sum of weights (done by funcone)*/
 #define rint(a) floor(a+0.5)  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 static double sqrarg;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 int agegomp= AGEGOMP;  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 int imx;   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 int stepm=1;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /* Stepm, step in month: minimum step interpolation*/  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 int estepm;  double fretone; /* Only one call to likelihood */
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 int m,nb;  char filerespow[FILENAMELENGTH];
 long *num;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  FILE *ficresilk;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 double **pmmij, ***probs;  FILE *ficresprobmorprev;
 double *ageexmed,*agecens;  FILE *fichtm, *fichtmcov; /* Html File */
 double dateintmean=0;  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 double *weight;  FILE *ficresstdeij;
 int **s; /* Status */  char fileresstde[FILENAMELENGTH];
 double *agedc, **covar, idx;  FILE *ficrescveij;
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  char filerescve[FILENAMELENGTH];
 double *lsurv, *lpop, *tpop;  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  FILE  *ficresvpl;
 double ftolhess; /* Tolerance for computing hessian */  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /**************** split *************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  char command[FILENAMELENGTH];
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  int  outcmd=0;
   */   
   char  *ss;                            /* pointer */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   int   l1, l2;                         /* length counters */  
   char filelog[FILENAMELENGTH]; /* Log file */
   l1 = strlen(path );                   /* length of path */  char filerest[FILENAMELENGTH];
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  char fileregp[FILENAMELENGTH];
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  char popfile[FILENAMELENGTH];
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  
     strcpy( name, path );               /* we got the fullname name because no directory */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     /* get current working directory */  struct timezone tzp;
     /*    extern  char* getcwd ( char *buf , int len);*/  extern int gettimeofday();
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       return( GLOCK_ERROR_GETCWD );  long time_value;
     }  extern long time();
     /* got dirc from getcwd*/  char strcurr[80], strfor[80];
     printf(" DIRC = %s \n",dirc);  
   } else {                              /* strip direcotry from path */  char *endptr;
     ss++;                               /* after this, the filename */  long lval;
     l2 = strlen( ss );                  /* length of filename */  double dval;
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
     strcpy( name, ss );         /* save file name */  #define NR_END 1
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  #define FREE_ARG char*
     dirc[l1-l2] = 0;                    /* add zero */  #define FTOL 1.0e-10
     printf(" DIRC2 = %s \n",dirc);  
   }  #define NRANSI
   /* We add a separator at the end of dirc if not exists */  #define ITMAX 200
   l1 = strlen( dirc );                  /* length of directory */  
   if( dirc[l1-1] != DIRSEPARATOR ){  #define TOL 2.0e-4
     dirc[l1] =  DIRSEPARATOR;  
     dirc[l1+1] = 0;   #define CGOLD 0.3819660
     printf(" DIRC3 = %s \n",dirc);  #define ZEPS 1.0e-10
   }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   ss = strrchr( name, '.' );            /* find last / */  
   if (ss >0){  #define GOLD 1.618034
     ss++;  #define GLIMIT 100.0
     strcpy(ext,ss);                     /* save extension */  #define TINY 1.0e-20
     l1= strlen( name);  
     l2= strlen(ss)+1;  static double maxarg1,maxarg2;
     strncpy( finame, name, l1-l2);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     finame[l1-l2]= 0;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   }   
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   return( 0 );                          /* we're done */  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 /******************************************/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   int agegomp= AGEGOMP;
 void replace_back_to_slash(char *s, char*t)  
 {  int imx;
   int i;  int stepm=1;
   int lg=0;  /* Stepm, step in month: minimum step interpolation*/
   i=0;  
   lg=strlen(t);  int estepm;
   for(i=0; i<= lg; i++) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  int m,nb;
   }  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 int nbocc(char *s, char occ)  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   int i,j=0;  double dateintmean=0;
   int lg=20;  
   i=0;  double *weight;
   lg=strlen(s);  int **s; /* Status */
   for(i=0; i<= lg; i++) {  double *agedc, **covar, idx;
   if  (s[i] == occ ) j++;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   }  double *lsurv, *lpop, *tpop;
   return j;  
 }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 void cutv(char *u,char *v, char*t, char occ)  
 {  /**************** split *************************/
   /* cuts string t into u and v where u ends before first occurence of char 'occ'   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  {
      gives u="abcedf" and v="ghi2j" */    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   int i,lg,j,p=0;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   i=0;    */
   for(j=0; j<=strlen(t)-1; j++) {    char  *ss;                            /* pointer */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    int   l1, l2;                         /* length counters */
   }  
     l1 = strlen(path );                   /* length of path */
   lg=strlen(t);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for(j=0; j<p; j++) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     (u[j] = t[j]);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   }      strcpy( name, path );               /* we got the fullname name because no directory */
      u[p]='\0';      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
    for(j=0; j<= lg; j++) {      /* get current working directory */
     if (j>=(p+1))(v[j-p-1] = t[j]);      /*    extern  char* getcwd ( char *buf , int len);*/
   }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 /********************** nrerror ********************/      /* got dirc from getcwd*/
       printf(" DIRC = %s \n",dirc);
 void nrerror(char error_text[])    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   fprintf(stderr,"ERREUR ...\n");      l2 = strlen( ss );                  /* length of filename */
   fprintf(stderr,"%s\n",error_text);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   exit(EXIT_FAILURE);      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /*********************** vector *******************/      dirc[l1-l2] = 0;                    /* add zero */
 double *vector(int nl, int nh)      printf(" DIRC2 = %s \n",dirc);
 {    }
   double *v;    /* We add a separator at the end of dirc if not exists */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    l1 = strlen( dirc );                  /* length of directory */
   if (!v) nrerror("allocation failure in vector");    if( dirc[l1-1] != DIRSEPARATOR ){
   return v-nl+NR_END;      dirc[l1] =  DIRSEPARATOR;
 }      dirc[l1+1] = 0;
       printf(" DIRC3 = %s \n",dirc);
 /************************ free vector ******************/    }
 void free_vector(double*v, int nl, int nh)    ss = strrchr( name, '.' );            /* find last / */
 {    if (ss >0){
   free((FREE_ARG)(v+nl-NR_END));      ss++;
 }      strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
 /************************ivector *******************************/      l2= strlen(ss)+1;
 int *ivector(long nl,long nh)      strncpy( finame, name, l1-l2);
 {      finame[l1-l2]= 0;
   int *v;    }
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    return( 0 );                          /* we're done */
   return v-nl+NR_END;  }
 }  
   
 /******************free ivector **************************/  /******************************************/
 void free_ivector(int *v, long nl, long nh)  
 {  void replace_back_to_slash(char *s, char*t)
   free((FREE_ARG)(v+nl-NR_END));  {
 }    int i;
     int lg=0;
 /************************lvector *******************************/    i=0;
 long *lvector(long nl,long nh)    lg=strlen(t);
 {    for(i=0; i<= lg; i++) {
   long *v;      (s[i] = t[i]);
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));      if (t[i]== '\\') s[i]='/';
   if (!v) nrerror("allocation failure in ivector");    }
   return v-nl+NR_END;  }
 }  
   int nbocc(char *s, char occ)
 /******************free lvector **************************/  {
 void free_lvector(long *v, long nl, long nh)    int i,j=0;
 {    int lg=20;
   free((FREE_ARG)(v+nl-NR_END));    i=0;
 }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
 /******************* imatrix *******************************/    if  (s[i] == occ ) j++;
 int **imatrix(long nrl, long nrh, long ncl, long nch)     }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */     return j;
 {   }
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   
   int **m;   void cutv(char *u,char *v, char*t, char occ)
     {
   /* allocate pointers to rows */     /* cuts string t into u and v where u ends before first occurence of char 'occ'
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   if (!m) nrerror("allocation failure 1 in matrix()");        gives u="abcedf" and v="ghi2j" */
   m += NR_END;     int i,lg,j,p=0;
   m -= nrl;     i=0;
       for(j=0; j<=strlen(t)-1; j++) {
         if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   /* allocate rows and set pointers to them */     }
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");     lg=strlen(t);
   m[nrl] += NR_END;     for(j=0; j<p; j++) {
   m[nrl] -= ncl;       (u[j] = t[j]);
       }
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;        u[p]='\0';
     
   /* return pointer to array of pointers to rows */      for(j=0; j<= lg; j++) {
   return m;       if (j>=(p+1))(v[j-p-1] = t[j]);
 }     }
   }
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  /********************** nrerror ********************/
       int **m;  
       long nch,ncl,nrh,nrl;   void nrerror(char error_text[])
      /* free an int matrix allocated by imatrix() */   {
 {     fprintf(stderr,"ERREUR ...\n");
   free((FREE_ARG) (m[nrl]+ncl-NR_END));     fprintf(stderr,"%s\n",error_text);
   free((FREE_ARG) (m+nrl-NR_END));     exit(EXIT_FAILURE);
 }   }
   /*********************** vector *******************/
 /******************* matrix *******************************/  double *vector(int nl, int nh)
 double **matrix(long nrl, long nrh, long ncl, long nch)  {
 {    double *v;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double **m;    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  }
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /************************ free vector ******************/
   m -= nrl;  void free_vector(double*v, int nl, int nh)
   {
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    free((FREE_ARG)(v+nl-NR_END));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
   return m;    int *v;
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
    */    if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /******************free ivector **************************/
 {  void free_ivector(int *v, long nl, long nh)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /******************* ma3x *******************************/  /************************lvector *******************************/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  long *lvector(long nl,long nh)
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    long *v;
   double ***m;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    return v-nl+NR_END;
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    free((FREE_ARG)(v+nl-NR_END));
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  
   /******************* imatrix *******************************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int **imatrix(long nrl, long nrh, long ncl, long nch)
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  {
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
   m[nrl][ncl] += NR_END;    int **m;
   m[nrl][ncl] -= nll;   
   for (j=ncl+1; j<=nch; j++)     /* allocate pointers to rows */
     m[nrl][j]=m[nrl][j-1]+nlay;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
       if (!m) nrerror("allocation failure 1 in matrix()");
   for (i=nrl+1; i<=nrh; i++) {    m += NR_END;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    m -= nrl;
     for (j=ncl+1; j<=nch; j++)    
       m[i][j]=m[i][j-1]+nlay;   
   }    /* allocate rows and set pointers to them */
   return m;     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    m[nrl] += NR_END;
   */    m[nrl] -= ncl;
 }   
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
 /*************************free ma3x ************************/   
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    /* return pointer to array of pointers to rows */
 {    return m;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /****************** free_imatrix *************************/
 }  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
 /*************** function subdirf ***********/        long nch,ncl,nrh,nrl;
 char *subdirf(char fileres[])       /* free an int matrix allocated by imatrix() */
 {  {
   /* Caution optionfilefiname is hidden */    free((FREE_ARG) (m[nrl]+ncl-NR_END));
   strcpy(tmpout,optionfilefiname);    free((FREE_ARG) (m+nrl-NR_END));
   strcat(tmpout,"/"); /* Add to the right */  }
   strcat(tmpout,fileres);  
   return tmpout;  /******************* matrix *******************************/
 }  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
 /*************** function subdirf2 ***********/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 char *subdirf2(char fileres[], char *preop)    double **m;
 {  
       m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   /* Caution optionfilefiname is hidden */    if (!m) nrerror("allocation failure 1 in matrix()");
   strcpy(tmpout,optionfilefiname);    m += NR_END;
   strcat(tmpout,"/");    m -= nrl;
   strcat(tmpout,preop);  
   strcat(tmpout,fileres);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   return tmpout;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 }    m[nrl] += NR_END;
     m[nrl] -= ncl;
 /*************** function subdirf3 ***********/  
 char *subdirf3(char fileres[], char *preop, char *preop2)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {    return m;
       /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
   /* Caution optionfilefiname is hidden */     */
   strcpy(tmpout,optionfilefiname);  }
   strcat(tmpout,"/");  
   strcat(tmpout,preop);  /*************************free matrix ************************/
   strcat(tmpout,preop2);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   strcat(tmpout,fileres);  {
   return tmpout;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 }    free((FREE_ARG)(m+nrl-NR_END));
   }
 /***************** f1dim *************************/  
 extern int ncom;   /******************* ma3x *******************************/
 extern double *pcom,*xicom;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 extern double (*nrfunc)(double []);   {
      long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 double f1dim(double x)     double ***m;
 {   
   int j;     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double f;    if (!m) nrerror("allocation failure 1 in matrix()");
   double *xt;     m += NR_END;
      m -= nrl;
   xt=vector(1,ncom);   
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   f=(*nrfunc)(xt);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   free_vector(xt,1,ncom);     m[nrl] += NR_END;
   return f;     m[nrl] -= ncl;
 }   
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 {     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   int iter;     m[nrl][ncl] += NR_END;
   double a,b,d,etemp;    m[nrl][ncl] -= nll;
   double fu,fv,fw,fx;    for (j=ncl+1; j<=nch; j++)
   double ftemp;      m[nrl][j]=m[nrl][j-1]+nlay;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    
   double e=0.0;     for (i=nrl+1; i<=nrh; i++) {
        m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   a=(ax < cx ? ax : cx);       for (j=ncl+1; j<=nch; j++)
   b=(ax > cx ? ax : cx);         m[i][j]=m[i][j-1]+nlay;
   x=w=v=bx;     }
   fw=fv=fx=(*f)(x);     return m;
   for (iter=1;iter<=ITMAX;iter++) {     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     xm=0.5*(a+b);              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);  /*************************free ma3x ************************/
 #ifdef DEBUG  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #endif    free((FREE_ARG)(m+nrl-NR_END));
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){   }
       *xmin=x;   
       return fx;   /*************** function subdirf ***********/
     }   char *subdirf(char fileres[])
     ftemp=fu;  {
     if (fabs(e) > tol1) {     /* Caution optionfilefiname is hidden */
       r=(x-w)*(fx-fv);     strcpy(tmpout,optionfilefiname);
       q=(x-v)*(fx-fw);     strcat(tmpout,"/"); /* Add to the right */
       p=(x-v)*q-(x-w)*r;     strcat(tmpout,fileres);
       q=2.0*(q-r);     return tmpout;
       if (q > 0.0) p = -p;   }
       q=fabs(q);   
       etemp=e;   /*************** function subdirf2 ***********/
       e=d;   char *subdirf2(char fileres[], char *preop)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))   {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    
       else {     /* Caution optionfilefiname is hidden */
         d=p/q;     strcpy(tmpout,optionfilefiname);
         u=x+d;     strcat(tmpout,"/");
         if (u-a < tol2 || b-u < tol2)     strcat(tmpout,preop);
           d=SIGN(tol1,xm-x);     strcat(tmpout,fileres);
       }     return tmpout;
     } else {   }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));   
     }   /*************** function subdirf3 ***********/
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   char *subdirf3(char fileres[], char *preop, char *preop2)
     fu=(*f)(u);   {
     if (fu <= fx) {    
       if (u >= x) a=x; else b=x;     /* Caution optionfilefiname is hidden */
       SHFT(v,w,x,u)     strcpy(tmpout,optionfilefiname);
         SHFT(fv,fw,fx,fu)     strcat(tmpout,"/");
         } else {     strcat(tmpout,preop);
           if (u < x) a=u; else b=u;     strcat(tmpout,preop2);
           if (fu <= fw || w == x) {     strcat(tmpout,fileres);
             v=w;     return tmpout;
             w=u;   }
             fv=fw;   
             fw=fu;   /***************** f1dim *************************/
           } else if (fu <= fv || v == x || v == w) {   extern int ncom;
             v=u;   extern double *pcom,*xicom;
             fv=fu;   extern double (*nrfunc)(double []);
           }    
         }   double f1dim(double x)
   }   {
   nrerror("Too many iterations in brent");     int j;
   *xmin=x;     double f;
   return fx;     double *xt;
 }    
     xt=vector(1,ncom);
 /****************** mnbrak ***********************/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
     f=(*nrfunc)(xt);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     free_vector(xt,1,ncom);
             double (*func)(double))     return f;
 {   }
   double ulim,u,r,q, dum;  
   double fu;   /*****************brent *************************/
    double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
   *fa=(*func)(*ax);   {
   *fb=(*func)(*bx);     int iter;
   if (*fb > *fa) {     double a,b,d,etemp;
     SHFT(dum,*ax,*bx,dum)     double fu,fv,fw,fx;
       SHFT(dum,*fb,*fa,dum)     double ftemp;
       }     double p,q,r,tol1,tol2,u,v,w,x,xm;
   *cx=(*bx)+GOLD*(*bx-*ax);     double e=0.0;
   *fc=(*func)(*cx);    
   while (*fb > *fc) {     a=(ax < cx ? ax : cx);
     r=(*bx-*ax)*(*fb-*fc);     b=(ax > cx ? ax : cx);
     q=(*bx-*cx)*(*fb-*fa);     x=w=v=bx;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     fw=fv=fx=(*f)(x);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     for (iter=1;iter<=ITMAX;iter++) {
     ulim=(*bx)+GLIMIT*(*cx-*bx);       xm=0.5*(a+b);
     if ((*bx-u)*(u-*cx) > 0.0) {       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
       fu=(*func)(u);       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     } else if ((*cx-u)*(u-ulim) > 0.0) {       printf(".");fflush(stdout);
       fu=(*func)(u);       fprintf(ficlog,".");fflush(ficlog);
       if (fu < *fc) {   #ifdef DEBUG
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           SHFT(*fb,*fc,fu,(*func)(u))       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           }       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {   #endif
       u=ulim;       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
       fu=(*func)(u);         *xmin=x;
     } else {         return fx;
       u=(*cx)+GOLD*(*cx-*bx);       }
       fu=(*func)(u);       ftemp=fu;
     }       if (fabs(e) > tol1) {
     SHFT(*ax,*bx,*cx,u)         r=(x-w)*(fx-fv);
       SHFT(*fa,*fb,*fc,fu)         q=(x-v)*(fx-fw);
       }         p=(x-v)*q-(x-w)*r;
 }         q=2.0*(q-r);
         if (q > 0.0) p = -p;
 /*************** linmin ************************/        q=fabs(q);
         etemp=e;
 int ncom;         e=d;
 double *pcom,*xicom;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
 double (*nrfunc)(double []);           d=CGOLD*(e=(x >= xm ? a-x : b-x));
          else {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))           d=p/q;
 {           u=x+d;
   double brent(double ax, double bx, double cx,           if (u-a < tol2 || b-u < tol2)
                double (*f)(double), double tol, double *xmin);             d=SIGN(tol1,xm-x);
   double f1dim(double x);         }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,       } else {
               double *fc, double (*func)(double));         d=CGOLD*(e=(x >= xm ? a-x : b-x));
   int j;       }
   double xx,xmin,bx,ax;       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
   double fx,fb,fa;      fu=(*f)(u);
        if (fu <= fx) {
   ncom=n;         if (u >= x) a=x; else b=x;
   pcom=vector(1,n);         SHFT(v,w,x,u)
   xicom=vector(1,n);           SHFT(fv,fw,fx,fu)
   nrfunc=func;           } else {
   for (j=1;j<=n;j++) {             if (u < x) a=u; else b=u;
     pcom[j]=p[j];             if (fu <= fw || w == x) {
     xicom[j]=xi[j];               v=w;
   }               w=u;
   ax=0.0;               fv=fw;
   xx=1.0;               fw=fu;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);             } else if (fu <= fv || v == x || v == w) {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);               v=u;
 #ifdef DEBUG              fv=fu;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);            }
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);          }
 #endif    }
   for (j=1;j<=n;j++) {     nrerror("Too many iterations in brent");
     xi[j] *= xmin;     *xmin=x;
     p[j] += xi[j];     return fx;
   }   }
   free_vector(xicom,1,n);   
   free_vector(pcom,1,n);   /****************** mnbrak ***********************/
 }   
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
 char *asc_diff_time(long time_sec, char ascdiff[])              double (*func)(double))
 {  {
   long sec_left, days, hours, minutes;    double ulim,u,r,q, dum;
   days = (time_sec) / (60*60*24);    double fu;
   sec_left = (time_sec) % (60*60*24);   
   hours = (sec_left) / (60*60) ;    *fa=(*func)(*ax);
   sec_left = (sec_left) %(60*60);    *fb=(*func)(*bx);
   minutes = (sec_left) /60;    if (*fb > *fa) {
   sec_left = (sec_left) % (60);      SHFT(dum,*ax,*bx,dum)
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);          SHFT(dum,*fb,*fa,dum)
   return ascdiff;        }
 }    *cx=(*bx)+GOLD*(*bx-*ax);
     *fc=(*func)(*cx);
 /*************** powell ************************/    while (*fb > *fc) {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,       r=(*bx-*ax)*(*fb-*fc);
             double (*func)(double []))       q=(*bx-*cx)*(*fb-*fa);
 {       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
   void linmin(double p[], double xi[], int n, double *fret,         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
               double (*func)(double []));       ulim=(*bx)+GLIMIT*(*cx-*bx);
   int i,ibig,j;       if ((*bx-u)*(u-*cx) > 0.0) {
   double del,t,*pt,*ptt,*xit;        fu=(*func)(u);
   double fp,fptt;      } else if ((*cx-u)*(u-ulim) > 0.0) {
   double *xits;        fu=(*func)(u);
   int niterf, itmp;        if (fu < *fc) {
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
   pt=vector(1,n);             SHFT(*fb,*fc,fu,(*func)(u))
   ptt=vector(1,n);             }
   xit=vector(1,n);       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
   xits=vector(1,n);         u=ulim;
   *fret=(*func)(p);         fu=(*func)(u);
   for (j=1;j<=n;j++) pt[j]=p[j];       } else {
   for (*iter=1;;++(*iter)) {         u=(*cx)+GOLD*(*cx-*bx);
     fp=(*fret);         fu=(*func)(u);
     ibig=0;       }
     del=0.0;       SHFT(*ax,*bx,*cx,u)
     last_time=curr_time;        SHFT(*fa,*fb,*fc,fu)
     (void) gettimeofday(&curr_time,&tzp);        }
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);  }
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);  
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);  /*************** linmin ************************/
     */  
    for (i=1;i<=n;i++) {  int ncom;
       printf(" %d %.12f",i, p[i]);  double *pcom,*xicom;
       fprintf(ficlog," %d %.12lf",i, p[i]);  double (*nrfunc)(double []);
       fprintf(ficrespow," %.12lf", p[i]);   
     }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
     printf("\n");  {
     fprintf(ficlog,"\n");    double brent(double ax, double bx, double cx,
     fprintf(ficrespow,"\n");fflush(ficrespow);                 double (*f)(double), double tol, double *xmin);
     if(*iter <=3){    double f1dim(double x);
       tm = *localtime(&curr_time.tv_sec);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       strcpy(strcurr,asctime(&tm));                double *fc, double (*func)(double));
 /*       asctime_r(&tm,strcurr); */    int j;
       forecast_time=curr_time;     double xx,xmin,bx,ax;
       itmp = strlen(strcurr);    double fx,fb,fa;
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */   
         strcurr[itmp-1]='\0';    ncom=n;
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    pcom=vector(1,n);
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    xicom=vector(1,n);
       for(niterf=10;niterf<=30;niterf+=10){    nrfunc=func;
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);    for (j=1;j<=n;j++) {
         tmf = *localtime(&forecast_time.tv_sec);      pcom[j]=p[j];
 /*      asctime_r(&tmf,strfor); */      xicom[j]=xi[j];
         strcpy(strfor,asctime(&tmf));    }
         itmp = strlen(strfor);    ax=0.0;
         if(strfor[itmp-1]=='\n')    xx=1.0;
         strfor[itmp-1]='\0';    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  #ifdef DEBUG
       }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (i=1;i<=n;i++) {   #endif
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     for (j=1;j<=n;j++) {
       fptt=(*fret);       xi[j] *= xmin;
 #ifdef DEBUG      p[j] += xi[j];
       printf("fret=%lf \n",*fret);    }
       fprintf(ficlog,"fret=%lf \n",*fret);    free_vector(xicom,1,n);
 #endif    free_vector(pcom,1,n);
       printf("%d",i);fflush(stdout);  }
       fprintf(ficlog,"%d",i);fflush(ficlog);  
       linmin(p,xit,n,fret,func);   char *asc_diff_time(long time_sec, char ascdiff[])
       if (fabs(fptt-(*fret)) > del) {   {
         del=fabs(fptt-(*fret));     long sec_left, days, hours, minutes;
         ibig=i;     days = (time_sec) / (60*60*24);
       }     sec_left = (time_sec) % (60*60*24);
 #ifdef DEBUG    hours = (sec_left) / (60*60) ;
       printf("%d %.12e",i,(*fret));    sec_left = (sec_left) %(60*60);
       fprintf(ficlog,"%d %.12e",i,(*fret));    minutes = (sec_left) /60;
       for (j=1;j<=n;j++) {    sec_left = (sec_left) % (60);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         printf(" x(%d)=%.12e",j,xit[j]);    return ascdiff;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  }
       }  
       for(j=1;j<=n;j++) {  /*************** powell ************************/
         printf(" p=%.12e",p[j]);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
         fprintf(ficlog," p=%.12e",p[j]);              double (*func)(double []))
       }  {
       printf("\n");    void linmin(double p[], double xi[], int n, double *fret,
       fprintf(ficlog,"\n");                double (*func)(double []));
 #endif    int i,ibig,j;
     }     double del,t,*pt,*ptt,*xit;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    double fp,fptt;
 #ifdef DEBUG    double *xits;
       int k[2],l;    int niterf, itmp;
       k[0]=1;  
       k[1]=-1;    pt=vector(1,n);
       printf("Max: %.12e",(*func)(p));    ptt=vector(1,n);
       fprintf(ficlog,"Max: %.12e",(*func)(p));    xit=vector(1,n);
       for (j=1;j<=n;j++) {    xits=vector(1,n);
         printf(" %.12e",p[j]);    *fret=(*func)(p);
         fprintf(ficlog," %.12e",p[j]);    for (j=1;j<=n;j++) pt[j]=p[j];
       }    for (*iter=1;;++(*iter)) {
       printf("\n");      fp=(*fret);
       fprintf(ficlog,"\n");      ibig=0;
       for(l=0;l<=1;l++) {      del=0.0;
         for (j=1;j<=n;j++) {      last_time=curr_time;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      (void) gettimeofday(&curr_time,&tzp);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
         }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));     for (i=1;i<=n;i++) {
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        printf(" %d %.12f",i, p[i]);
       }        fprintf(ficlog," %d %.12lf",i, p[i]);
 #endif        fprintf(ficrespow," %.12lf", p[i]);
       }
       printf("\n");
       free_vector(xit,1,n);       fprintf(ficlog,"\n");
       free_vector(xits,1,n);       fprintf(ficrespow,"\n");fflush(ficrespow);
       free_vector(ptt,1,n);       if(*iter <=3){
       free_vector(pt,1,n);         tm = *localtime(&curr_time.tv_sec);
       return;         strcpy(strcurr,asctime(&tm));
     }   /*       asctime_r(&tm,strcurr); */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");         forecast_time=curr_time;
     for (j=1;j<=n;j++) {         itmp = strlen(strcurr);
       ptt[j]=2.0*p[j]-pt[j];         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       xit[j]=p[j]-pt[j];           strcurr[itmp-1]='\0';
       pt[j]=p[j];         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     }         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     fptt=(*func)(ptt);         for(niterf=10;niterf<=30;niterf+=10){
     if (fptt < fp) {           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);           tmf = *localtime(&forecast_time.tv_sec);
       if (t < 0.0) {   /*      asctime_r(&tmf,strfor); */
         linmin(p,xit,n,fret,func);           strcpy(strfor,asctime(&tmf));
         for (j=1;j<=n;j++) {           itmp = strlen(strfor);
           xi[j][ibig]=xi[j][n];           if(strfor[itmp-1]=='\n')
           xi[j][n]=xit[j];           strfor[itmp-1]='\0';
         }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 #ifdef DEBUG          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        }
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      }
         for(j=1;j<=n;j++){      for (i=1;i<=n;i++) {
           printf(" %.12e",xit[j]);        for (j=1;j<=n;j++) xit[j]=xi[j][i];
           fprintf(ficlog," %.12e",xit[j]);        fptt=(*fret);
         }  #ifdef DEBUG
         printf("\n");        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"\n");        fprintf(ficlog,"fret=%lf \n",*fret);
 #endif  #endif
       }        printf("%d",i);fflush(stdout);
     }         fprintf(ficlog,"%d",i);fflush(ficlog);
   }         linmin(p,xit,n,fret,func);
 }         if (fabs(fptt-(*fret)) > del) {
           del=fabs(fptt-(*fret));
 /**** Prevalence limit (stable prevalence)  ****************/          ibig=i;
         }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #ifdef DEBUG
 {        printf("%d %.12e",i,(*fret));
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        fprintf(ficlog,"%d %.12e",i,(*fret));
      matrix by transitions matrix until convergence is reached */        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   int i, ii,j,k;          printf(" x(%d)=%.12e",j,xit[j]);
   double min, max, maxmin, maxmax,sumnew=0.;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double **matprod2();        }
   double **out, cov[NCOVMAX], **pmij();        for(j=1;j<=n;j++) {
   double **newm;          printf(" p=%.12e",p[j]);
   double agefin, delaymax=50 ; /* Max number of years to converge */          fprintf(ficlog," p=%.12e",p[j]);
         }
   for (ii=1;ii<=nlstate+ndeath;ii++)        printf("\n");
     for (j=1;j<=nlstate+ndeath;j++){        fprintf(ficlog,"\n");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
     }      }
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
    cov[1]=1.;  #ifdef DEBUG
          int k[2],l;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        k[0]=1;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        k[1]=-1;
     newm=savm;        printf("Max: %.12e",(*func)(p));
     /* Covariates have to be included here again */        fprintf(ficlog,"Max: %.12e",(*func)(p));
      cov[2]=agefin;        for (j=1;j<=n;j++) {
             printf(" %.12e",p[j]);
       for (k=1; k<=cptcovn;k++) {          fprintf(ficlog," %.12e",p[j]);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        printf("\n");
       }        fprintf(ficlog,"\n");
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for(l=0;l<=1;l++) {
       for (k=1; k<=cptcovprod;k++)          for (j=1;j<=n;j++) {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
     savm=oldm;  #endif
     oldm=newm;  
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){        free_vector(xit,1,n);
       min=1.;        free_vector(xits,1,n);
       max=0.;        free_vector(ptt,1,n);
       for(i=1; i<=nlstate; i++) {        free_vector(pt,1,n);
         sumnew=0;        return;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      }
         prlim[i][j]= newm[i][j]/(1-sumnew);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
         max=FMAX(max,prlim[i][j]);      for (j=1;j<=n;j++) {
         min=FMIN(min,prlim[i][j]);        ptt[j]=2.0*p[j]-pt[j];
       }        xit[j]=p[j]-pt[j];
       maxmin=max-min;        pt[j]=p[j];
       maxmax=FMAX(maxmax,maxmin);      }
     }      fptt=(*func)(ptt);
     if(maxmax < ftolpl){      if (fptt < fp) {
       return prlim;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
     }        if (t < 0.0) {
   }          linmin(p,xit,n,fret,func);
 }          for (j=1;j<=n;j++) {
             xi[j][ibig]=xi[j][n];
 /*************** transition probabilities ***************/             xi[j][n]=xit[j];
           }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #ifdef DEBUG
 {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double s1, s2;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   /*double t34;*/          for(j=1;j<=n;j++){
   int i,j,j1, nc, ii, jj;            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
     for(i=1; i<= nlstate; i++){          }
       for(j=1; j<i;j++){          printf("\n");
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          fprintf(ficlog,"\n");
           /*s2 += param[i][j][nc]*cov[nc];*/  #endif
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        }
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */      }
         }    }
         ps[i][j]=s2;  }
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */  
       }  /**** Prevalence limit (stable or period prevalence)  ****************/
       for(j=i+1; j<=nlstate+ndeath;j++){  
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         }       matrix by transitions matrix until convergence is reached */
         ps[i][j]=s2;  
       }    int i, ii,j,k;
     }    double min, max, maxmin, maxmax,sumnew=0.;
     /*ps[3][2]=1;*/    double **matprod2();
         double **out, cov[NCOVMAX], **pmij();
     for(i=1; i<= nlstate; i++){    double **newm;
       s1=0;    double agefin, delaymax=50 ; /* Max number of years to converge */
       for(j=1; j<i; j++)  
         s1+=exp(ps[i][j]);    for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=i+1; j<=nlstate+ndeath; j++)      for (j=1;j<=nlstate+ndeath;j++){
         s1+=exp(ps[i][j]);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       ps[i][i]=1./(s1+1.);      }
       for(j=1; j<i; j++)  
         ps[i][j]= exp(ps[i][j])*ps[i][i];     cov[1]=1.;
       for(j=i+1; j<=nlstate+ndeath; j++)   
         ps[i][j]= exp(ps[i][j])*ps[i][i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     } /* end i */      newm=savm;
           /* Covariates have to be included here again */
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){       cov[2]=agefin;
       for(jj=1; jj<= nlstate+ndeath; jj++){   
         ps[ii][jj]=0;        for (k=1; k<=cptcovn;k++) {
         ps[ii][ii]=1;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     }        }
             for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */  
 /*         printf("ddd %lf ",ps[ii][jj]); */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 /*       } */        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 /*       printf("\n "); */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 /*        } */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 /*        printf("\n ");printf("%lf ",cov[2]); */  
        /*      savm=oldm;
       for(i=1; i<= npar; i++) printf("%f ",x[i]);      oldm=newm;
       goto end;*/      maxmax=0.;
     return ps;      for(j=1;j<=nlstate;j++){
 }        min=1.;
         max=0.;
 /**************** Product of 2 matrices ******************/        for(i=1; i<=nlstate; i++) {
           sumnew=0;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 {          prlim[i][j]= newm[i][j]/(1-sumnew);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          max=FMAX(max,prlim[i][j]);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          min=FMIN(min,prlim[i][j]);
   /* in, b, out are matrice of pointers which should have been initialized         }
      before: only the contents of out is modified. The function returns        maxmin=max-min;
      a pointer to pointers identical to out */        maxmax=FMAX(maxmax,maxmin);
   long i, j, k;      }
   for(i=nrl; i<= nrh; i++)      if(maxmax < ftolpl){
     for(k=ncolol; k<=ncoloh; k++)        return prlim;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      }
         out[i][k] +=in[i][j]*b[j][k];    }
   }
   return out;  
 }  /*************** transition probabilities ***************/
   
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 /************* Higher Matrix Product ***************/  {
     double s1, s2;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    /*double t34;*/
 {    int i,j,j1, nc, ii, jj;
   /* Computes the transition matrix starting at age 'age' over   
      'nhstepm*hstepm*stepm' months (i.e. until      for(i=1; i<= nlstate; i++){
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying         for(j=1; j<i;j++){
      nhstepm*hstepm matrices.           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step             /*s2 += param[i][j][nc]*cov[nc];*/
      (typically every 2 years instead of every month which is too big             s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
      for the memory).  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
      Model is determined by parameters x and covariates have to be           }
      included manually here.           ps[i][j]=s2;
   /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
      */        }
         for(j=i+1; j<=nlstate+ndeath;j++){
   int i, j, d, h, k;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double **out, cov[NCOVMAX];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double **newm;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           }
   /* Hstepm could be zero and should return the unit matrix */          ps[i][j]=s2;
   for (i=1;i<=nlstate+ndeath;i++)        }
     for (j=1;j<=nlstate+ndeath;j++){      }
       oldm[i][j]=(i==j ? 1.0 : 0.0);      /*ps[3][2]=1;*/
       po[i][j][0]=(i==j ? 1.0 : 0.0);     
     }      for(i=1; i<= nlstate; i++){
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        s1=0;
   for(h=1; h <=nhstepm; h++){        for(j=1; j<i; j++)
     for(d=1; d <=hstepm; d++){          s1+=exp(ps[i][j]);
       newm=savm;        for(j=i+1; j<=nlstate+ndeath; j++)
       /* Covariates have to be included here again */          s1+=exp(ps[i][j]);
       cov[1]=1.;        ps[i][i]=1./(s1+1.);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        for(j=1; j<i; j++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1; k<=cptcovage;k++)        for(j=i+1; j<=nlstate+ndeath; j++)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1; k<=cptcovprod;k++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } /* end i */
      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        for(jj=1; jj<= nlstate+ndeath; jj++){
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          ps[ii][jj]=0;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,           ps[ii][ii]=1;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        }
       savm=oldm;      }
       oldm=newm;     
     }  
     for(i=1; i<=nlstate+ndeath; i++)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for(j=1;j<=nlstate+ndeath;j++) {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         po[i][j][h]=newm[i][j];  /*         printf("ddd %lf ",ps[ii][jj]); */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /*       } */
          */  /*       printf("\n "); */
       }  /*        } */
   } /* end h */  /*        printf("\n ");printf("%lf ",cov[2]); */
   return po;         /*
 }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
       return ps;
 /*************** log-likelihood *************/  }
 double func( double *x)  
 {  /**************** Product of 2 matrices ******************/
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   double **out;  {
   double sw; /* Sum of weights */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double lli; /* Individual log likelihood */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   int s1, s2;    /* in, b, out are matrice of pointers which should have been initialized
   double bbh, survp;       before: only the contents of out is modified. The function returns
   long ipmx;       a pointer to pointers identical to out */
   /*extern weight */    long i, j, k;
   /* We are differentiating ll according to initial status */    for(i=nrl; i<= nrh; i++)
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      for(k=ncolol; k<=ncoloh; k++)
   /*for(i=1;i<imx;i++)         for(j=ncl,out[i][k]=0.; j<=nch; j++)
     printf(" %d\n",s[4][i]);          out[i][k] +=in[i][j]*b[j][k];
   */  
   cov[1]=1.;    return out;
   }
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   
   if(mle==1){  /************* Higher Matrix Product ***************/
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       for(mi=1; mi<= wav[i]-1; mi++){  {
         for (ii=1;ii<=nlstate+ndeath;ii++)    /* Computes the transition matrix starting at age 'age' over
           for (j=1;j<=nlstate+ndeath;j++){       'nhstepm*hstepm*stepm' months (i.e. until
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
             savm[ii][j]=(ii==j ? 1.0 : 0.0);       nhstepm*hstepm matrices.
           }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
         for(d=0; d<dh[mi][i]; d++){       (typically every 2 years instead of every month which is too big
           newm=savm;       for the memory).
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;       Model is determined by parameters x and covariates have to be
           for (kk=1; kk<=cptcovage;kk++) {       included manually here.
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
           }       */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    int i, j, d, h, k;
           savm=oldm;    double **out, cov[NCOVMAX];
           oldm=newm;    double **newm;
         } /* end mult */  
           /* Hstepm could be zero and should return the unit matrix */
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */    for (i=1;i<=nlstate+ndeath;i++)
         /* But now since version 0.9 we anticipate for bias at large stepm.      for (j=1;j<=nlstate+ndeath;j++){
          * If stepm is larger than one month (smallest stepm) and if the exact delay         oldm[i][j]=(i==j ? 1.0 : 0.0);
          * (in months) between two waves is not a multiple of stepm, we rounded to         po[i][j][0]=(i==j ? 1.0 : 0.0);
          * the nearest (and in case of equal distance, to the lowest) interval but now      }
          * we keep into memory the bias bh[mi][i] and also the previous matrix product    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the    for(h=1; h <=nhstepm; h++){
          * probability in order to take into account the bias as a fraction of the way      for(d=1; d <=hstepm; d++){
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies        newm=savm;
          * -stepm/2 to stepm/2 .        /* Covariates have to be included here again */
          * For stepm=1 the results are the same as for previous versions of Imach.        cov[1]=1.;
          * For stepm > 1 the results are less biased than in previous versions.         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         s1=s[mw[mi][i]][i];        for (k=1; k<=cptcovage;k++)
         s2=s[mw[mi+1][i]][i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         bbh=(double)bh[mi][i]/(double)stepm;         for (k=1; k<=cptcovprod;k++)
         /* bias bh is positive if real duration          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          * is higher than the multiple of stepm and negative otherwise.  
          */  
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         if( s2 > nlstate){         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           /* i.e. if s2 is a death state and if the date of death is known         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
              then the contribution to the likelihood is the probability to                      pmij(pmmij,cov,ncovmodel,x,nlstate));
              die between last step unit time and current  step unit time,         savm=oldm;
              which is also equal to probability to die before dh         oldm=newm;
              minus probability to die before dh-stepm .       }
              In version up to 0.92 likelihood was computed      for(i=1; i<=nlstate+ndeath; i++)
         as if date of death was unknown. Death was treated as any other        for(j=1;j<=nlstate+ndeath;j++) {
         health state: the date of the interview describes the actual state          po[i][j][h]=newm[i][j];
         and not the date of a change in health state. The former idea was          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         to consider that at each interview the state was recorded           */
         (healthy, disable or death) and IMaCh was corrected; but when we        }
         introduced the exact date of death then we should have modified    } /* end h */
         the contribution of an exact death to the likelihood. This new    return po;
         contribution is smaller and very dependent of the step unit  }
         stepm. It is no more the probability to die between last interview  
         and month of death but the probability to survive from last  
         interview up to one month before death multiplied by the  /*************** log-likelihood *************/
         probability to die within a month. Thanks to Chris  double func( double *x)
         Jackson for correcting this bug.  Former versions increased  {
         mortality artificially. The bad side is that we add another loop    int i, ii, j, k, mi, d, kk;
         which slows down the processing. The difference can be up to 10%    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         lower mortality.    double **out;
           */    double sw; /* Sum of weights */
           lli=log(out[s1][s2] - savm[s1][s2]);    double lli; /* Individual log likelihood */
     int s1, s2;
     double bbh, survp;
         } else if  (s2==-2) {    long ipmx;
           for (j=1,survp=0. ; j<=nlstate; j++)     /*extern weight */
             survp += out[s1][j];    /* We are differentiating ll according to initial status */
           lli= survp;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++)
               printf(" %d\n",s[4][i]);
         else if  (s2==-4) {    */
           for (j=3,survp=0. ; j<=nlstate; j++)     cov[1]=1.;
             survp += out[s1][j];  
           lli= survp;    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
             if(mle==1){
         else if  (s2==-5) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for (j=1,survp=0. ; j<=2; j++)         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             survp += out[s1][j];        for(mi=1; mi<= wav[i]-1; mi++){
           lli= survp;          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
         else{            }
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          for(d=0; d<dh[mi][i]; d++){
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */            newm=savm;
         }             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/            for (kk=1; kk<=cptcovage;kk++) {
         /*if(lli ==000.0)*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */            }
         ipmx +=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         sw += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            savm=oldm;
       } /* end of wave */            oldm=newm;
     } /* end of individual */          } /* end mult */
   }  else if(mle==2){       
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          /* But now since version 0.9 we anticipate for bias at large stepm.
       for(mi=1; mi<= wav[i]-1; mi++){           * If stepm is larger than one month (smallest stepm) and if the exact delay
         for (ii=1;ii<=nlstate+ndeath;ii++)           * (in months) between two waves is not a multiple of stepm, we rounded to
           for (j=1;j<=nlstate+ndeath;j++){           * the nearest (and in case of equal distance, to the lowest) interval but now
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             savm[ii][j]=(ii==j ? 1.0 : 0.0);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           }           * probability in order to take into account the bias as a fraction of the way
         for(d=0; d<=dh[mi][i]; d++){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           newm=savm;           * -stepm/2 to stepm/2 .
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;           * For stepm=1 the results are the same as for previous versions of Imach.
           for (kk=1; kk<=cptcovage;kk++) {           * For stepm > 1 the results are less biased than in previous versions.
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];           */
           }          s1=s[mw[mi][i]][i];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          s2=s[mw[mi+1][i]][i];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          bbh=(double)bh[mi][i]/(double)stepm;
           savm=oldm;          /* bias bh is positive if real duration
           oldm=newm;           * is higher than the multiple of stepm and negative otherwise.
         } /* end mult */           */
                 /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         s1=s[mw[mi][i]][i];          if( s2 > nlstate){
         s2=s[mw[mi+1][i]][i];            /* i.e. if s2 is a death state and if the date of death is known
         bbh=(double)bh[mi][i]/(double)stepm;                then the contribution to the likelihood is the probability to
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */               die between last step unit time and current  step unit time,
         ipmx +=1;               which is also equal to probability to die before dh
         sw += weight[i];               minus probability to die before dh-stepm .
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;               In version up to 0.92 likelihood was computed
       } /* end of wave */          as if date of death was unknown. Death was treated as any other
     } /* end of individual */          health state: the date of the interview describes the actual state
   }  else if(mle==3){  /* exponential inter-extrapolation */          and not the date of a change in health state. The former idea was
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          to consider that at each interview the state was recorded
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          (healthy, disable or death) and IMaCh was corrected; but when we
       for(mi=1; mi<= wav[i]-1; mi++){          introduced the exact date of death then we should have modified
         for (ii=1;ii<=nlstate+ndeath;ii++)          the contribution of an exact death to the likelihood. This new
           for (j=1;j<=nlstate+ndeath;j++){          contribution is smaller and very dependent of the step unit
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          stepm. It is no more the probability to die between last interview
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          and month of death but the probability to survive from last
           }          interview up to one month before death multiplied by the
         for(d=0; d<dh[mi][i]; d++){          probability to die within a month. Thanks to Chris
           newm=savm;          Jackson for correcting this bug.  Former versions increased
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          mortality artificially. The bad side is that we add another loop
           for (kk=1; kk<=cptcovage;kk++) {          which slows down the processing. The difference can be up to 10%
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          lower mortality.
           }            */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            lli=log(out[s1][s2] - savm[s1][s2]);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
           savm=oldm;  
           oldm=newm;          } else if  (s2==-2) {
         } /* end mult */            for (j=1,survp=0. ; j<=nlstate; j++)
                     survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         s1=s[mw[mi][i]][i];            /*survp += out[s1][j]; */
         s2=s[mw[mi+1][i]][i];            lli= log(survp);
         bbh=(double)bh[mi][i]/(double)stepm;           }
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */         
         ipmx +=1;          else if  (s2==-4) {
         sw += weight[i];            for (j=3,survp=0. ; j<=nlstate; j++)  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       } /* end of wave */            lli= log(survp);
     } /* end of individual */          }
   }else if (mle==4){  /* ml=4 no inter-extrapolation */  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          else if  (s2==-5) {
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            for (j=1,survp=0. ; j<=2; j++)  
       for(mi=1; mi<= wav[i]-1; mi++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for (ii=1;ii<=nlstate+ndeath;ii++)            lli= log(survp);
           for (j=1;j<=nlstate+ndeath;j++){          }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);         
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          else{
           }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(d=0; d<dh[mi][i]; d++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           newm=savm;          }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for (kk=1; kk<=cptcovage;kk++) {          /*if(lli ==000.0)*/
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           }          ipmx +=1;
                   sw += weight[i];
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        } /* end of wave */
           savm=oldm;      } /* end of individual */
           oldm=newm;    }  else if(mle==2){
         } /* end mult */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         s1=s[mw[mi][i]][i];        for(mi=1; mi<= wav[i]-1; mi++){
         s2=s[mw[mi+1][i]][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
         if( s2 > nlstate){             for (j=1;j<=nlstate+ndeath;j++){
           lli=log(out[s1][s2] - savm[s1][s2]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }else{              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            }
         }          for(d=0; d<=dh[mi][i]; d++){
         ipmx +=1;            newm=savm;
         sw += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            for (kk=1; kk<=cptcovage;kk++) {
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       } /* end of wave */            }
     } /* end of individual */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            savm=oldm;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            oldm=newm;
       for(mi=1; mi<= wav[i]-1; mi++){          } /* end mult */
         for (ii=1;ii<=nlstate+ndeath;ii++)       
           for (j=1;j<=nlstate+ndeath;j++){          s1=s[mw[mi][i]][i];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          s2=s[mw[mi+1][i]][i];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          bbh=(double)bh[mi][i]/(double)stepm;
           }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for(d=0; d<dh[mi][i]; d++){          ipmx +=1;
           newm=savm;          sw += weight[i];
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for (kk=1; kk<=cptcovage;kk++) {        } /* end of wave */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      } /* end of individual */
           }    }  else if(mle==3){  /* exponential inter-extrapolation */
               for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for(mi=1; mi<= wav[i]-1; mi++){
           savm=oldm;          for (ii=1;ii<=nlstate+ndeath;ii++)
           oldm=newm;            for (j=1;j<=nlstate+ndeath;j++){
         } /* end mult */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                     savm[ii][j]=(ii==j ? 1.0 : 0.0);
         s1=s[mw[mi][i]][i];            }
         s2=s[mw[mi+1][i]][i];          for(d=0; d<dh[mi][i]; d++){
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            newm=savm;
         ipmx +=1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         sw += weight[i];            for (kk=1; kk<=cptcovage;kk++) {
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/            }
       } /* end of wave */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     } /* end of individual */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   } /* End of if */            savm=oldm;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            oldm=newm;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          } /* end mult */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */       
   return -l;          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm;
 /*************** log-likelihood *************/          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 double funcone( double *x)          ipmx +=1;
 {          sw += weight[i];
   /* Same as likeli but slower because of a lot of printf and if */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, ii, j, k, mi, d, kk;        } /* end of wave */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      } /* end of individual */
   double **out;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   double lli; /* Individual log likelihood */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double llt;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int s1, s2;        for(mi=1; mi<= wav[i]-1; mi++){
   double bbh, survp;          for (ii=1;ii<=nlstate+ndeath;ii++)
   /*extern weight */            for (j=1;j<=nlstate+ndeath;j++){
   /* We are differentiating ll according to initial status */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*for(i=1;i<imx;i++)             }
     printf(" %d\n",s[4][i]);          for(d=0; d<dh[mi][i]; d++){
   */            newm=savm;
   cov[1]=1.;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   for(k=1; k<=nlstate; k++) ll[k]=0.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){         
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(mi=1; mi<= wav[i]-1; mi++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (ii=1;ii<=nlstate+ndeath;ii++)            savm=oldm;
         for (j=1;j<=nlstate+ndeath;j++){            oldm=newm;
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          } /* end mult */
           savm[ii][j]=(ii==j ? 1.0 : 0.0);       
         }          s1=s[mw[mi][i]][i];
       for(d=0; d<dh[mi][i]; d++){          s2=s[mw[mi+1][i]][i];
         newm=savm;          if( s2 > nlstate){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            lli=log(out[s1][s2] - savm[s1][s2]);
         for (kk=1; kk<=cptcovage;kk++) {          }else{
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          ipmx +=1;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          sw += weight[i];
         savm=oldm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         oldm=newm;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       } /* end mult */        } /* end of wave */
             } /* end of individual */
       s1=s[mw[mi][i]][i];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       s2=s[mw[mi+1][i]][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       bbh=(double)bh[mi][i]/(double)stepm;         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       /* bias is positive if real duration        for(mi=1; mi<= wav[i]-1; mi++){
        * is higher than the multiple of stepm and negative otherwise.          for (ii=1;ii<=nlstate+ndeath;ii++)
        */            for (j=1;j<=nlstate+ndeath;j++){
       if( s2 > nlstate && (mle <5) ){  /* Jackson */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         lli=log(out[s1][s2] - savm[s1][s2]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       } else if (mle==1){            }
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          for(d=0; d<dh[mi][i]; d++){
       } else if(mle==2){            newm=savm;
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       } else if(mle==3){  /* exponential inter-extrapolation */            for (kk=1; kk<=cptcovage;kk++) {
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       } else if (mle==4){  /* mle=4 no inter-extrapolation */            }
         lli=log(out[s1][s2]); /* Original formula */         
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         lli=log(out[s1][s2]); /* Original formula */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       } /* End of if */            savm=oldm;
       ipmx +=1;            oldm=newm;
       sw += weight[i];          } /* end mult */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          s1=s[mw[mi][i]][i];
       if(globpr){          s2=s[mw[mi+1][i]][i];
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
  %10.6f %10.6f %10.6f ", \          ipmx +=1;
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],          sw += weight[i];
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           llt +=ll[k]*gipmx/gsw;        } /* end of wave */
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);      } /* end of individual */
         }    } /* End of if */
         fprintf(ficresilk," %10.6f\n", -llt);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     } /* end of wave */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   } /* end of individual */    return -l;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*************** log-likelihood *************/
   if(globpr==0){ /* First time we count the contributions and weights */  double funcone( double *x)
     gipmx=ipmx;  {
     gsw=sw;    /* Same as likeli but slower because of a lot of printf and if */
   }    int i, ii, j, k, mi, d, kk;
   return -l;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
 }    double **out;
     double lli; /* Individual log likelihood */
     double llt;
 /*************** function likelione ***********/    int s1, s2;
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))    double bbh, survp;
 {    /*extern weight */
   /* This routine should help understanding what is done with     /* We are differentiating ll according to initial status */
      the selection of individuals/waves and    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      to check the exact contribution to the likelihood.    /*for(i=1;i<imx;i++)
      Plotting could be done.      printf(" %d\n",s[4][i]);
    */    */
   int k;    cov[1]=1.;
   
   if(*globpri !=0){ /* Just counts and sums, no printings */    for(k=1; k<=nlstate; k++) ll[k]=0.;
     strcpy(fileresilk,"ilk");   
     strcat(fileresilk,fileres);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       printf("Problem with resultfile: %s\n", fileresilk);      for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);        for (ii=1;ii<=nlstate+ndeath;ii++)
     }          for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */          }
     for(k=1; k<=nlstate; k++)         for(d=0; d<dh[mi][i]; d++){
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);          newm=savm;
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   *fretone=(*funcone)(p);          }
   if(*globpri !=0){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fclose(ficresilk);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));          savm=oldm;
     fflush(fichtm);           oldm=newm;
   }         } /* end mult */
   return;       
 }        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;
 /*********** Maximum Likelihood Estimation ***************/        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))         */
 {        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   int i,j, iter;          lli=log(out[s1][s2] - savm[s1][s2]);
   double **xi;        } else if  (s2==-2) {
   double fret;          for (j=1,survp=0. ; j<=nlstate; j++)
   double fretone; /* Only one call to likelihood */            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   /*  char filerespow[FILENAMELENGTH];*/          lli= log(survp);
   xi=matrix(1,npar,1,npar);        }else if (mle==1){
   for (i=1;i<=npar;i++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for (j=1;j<=npar;j++)        } else if(mle==2){
       xi[i][j]=(i==j ? 1.0 : 0.0);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        } else if(mle==3){  /* exponential inter-extrapolation */
   strcpy(filerespow,"pow");           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   strcat(filerespow,fileres);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   if((ficrespow=fopen(filerespow,"w"))==NULL) {          lli=log(out[s1][s2]); /* Original formula */
     printf("Problem with resultfile: %s\n", filerespow);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          lli=log(out[s1][s2]); /* Original formula */
   }        } /* End of if */
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        ipmx +=1;
   for (i=1;i<=nlstate;i++)        sw += weight[i];
     for(j=1;j<=nlstate+ndeath;j++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   fprintf(ficrespow,"\n");        if(globpr){
           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   powell(p,xi,npar,ftol,&iter,&fret,func);   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   fclose(ficrespow);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            llt +=ll[k]*gipmx/gsw;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
 }          fprintf(ficresilk," %10.6f\n", -llt);
         }
 /**** Computes Hessian and covariance matrix ***/      } /* end of wave */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    } /* end of individual */
 {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double  **a,**y,*x,pd;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double **hess;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i, j,jk;    if(globpr==0){ /* First time we count the contributions and weights */
   int *indx;      gipmx=ipmx;
       gsw=sw;
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    }
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    return -l;
   void lubksb(double **a, int npar, int *indx, double b[]) ;  }
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   double gompertz(double p[]);  
   hess=matrix(1,npar,1,npar);  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   printf("\nCalculation of the hessian matrix. Wait...\n");  {
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    /* This routine should help understanding what is done with
   for (i=1;i<=npar;i++){       the selection of individuals/waves and
     printf("%d",i);fflush(stdout);       to check the exact contribution to the likelihood.
     fprintf(ficlog,"%d",i);fflush(ficlog);       Plotting could be done.
         */
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);    int k;
       
     /*  printf(" %f ",p[i]);    if(*globpri !=0){ /* Just counts and sums, no printings */
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/      strcpy(fileresilk,"ilk");
   }      strcat(fileresilk,fileres);
         if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   for (i=1;i<=npar;i++) {        printf("Problem with resultfile: %s\n", fileresilk);
     for (j=1;j<=npar;j++)  {        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       if (j>i) {       }
         printf(".%d%d",i,j);fflush(stdout);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         hess[i][j]=hessij(p,delti,i,j,func,npar);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
               for(k=1; k<=nlstate; k++)
         hess[j][i]=hess[i][j];            fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         /*printf(" %lf ",hess[i][j]);*/      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       }    }
     }  
   }    *fretone=(*funcone)(p);
   printf("\n");    if(*globpri !=0){
   fprintf(ficlog,"\n");      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      fflush(fichtm);
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    }
       return;
   a=matrix(1,npar,1,npar);  }
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  
   indx=ivector(1,npar);  /*********** Maximum Likelihood Estimation ***************/
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   ludcmp(a,npar,indx,&pd);  {
     int i,j, iter;
   for (j=1;j<=npar;j++) {    double **xi;
     for (i=1;i<=npar;i++) x[i]=0;    double fret;
     x[j]=1;    double fretone; /* Only one call to likelihood */
     lubksb(a,npar,indx,x);    /*  char filerespow[FILENAMELENGTH];*/
     for (i=1;i<=npar;i++){     xi=matrix(1,npar,1,npar);
       matcov[i][j]=x[i];    for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++)
   }        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
   printf("\n#Hessian matrix#\n");    strcpy(filerespow,"pow");
   fprintf(ficlog,"\n#Hessian matrix#\n");    strcat(filerespow,fileres);
   for (i=1;i<=npar;i++) {     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     for (j=1;j<=npar;j++) {       printf("Problem with resultfile: %s\n", filerespow);
       printf("%.3e ",hess[i][j]);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"%.3e ",hess[i][j]);    }
     }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     printf("\n");    for (i=1;i<=nlstate;i++)
     fprintf(ficlog,"\n");      for(j=1;j<=nlstate+ndeath;j++)
   }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
   /*  printf("\n#Hessian matrix recomputed#\n");    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for (j=1;j<=npar;j++) {    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){   /**** Computes Hessian and covariance matrix ***/
       y[i][j]=x[i];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       printf("%.3e ",y[i][j]);  {
       fprintf(ficlog,"%.3e ",y[i][j]);    double  **a,**y,*x,pd;
     }    double **hess;
     printf("\n");    int i, j,jk;
     fprintf(ficlog,"\n");    int *indx;
   }  
   */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   free_matrix(a,1,npar,1,npar);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   free_matrix(y,1,npar,1,npar);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   free_vector(x,1,npar);    double gompertz(double p[]);
   free_ivector(indx,1,npar);    hess=matrix(1,npar,1,npar);
   free_matrix(hess,1,npar,1,npar);  
     printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 }    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
 /*************** hessian matrix ****************/      fprintf(ficlog,"%d",i);fflush(ficlog);
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)     
 {       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   int i;     
   int l=1, lmax=20;      /*  printf(" %f ",p[i]);
   double k1,k2;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double p2[NPARMAX+1];    }
   double res;   
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;    for (i=1;i<=npar;i++) {
   double fx;      for (j=1;j<=npar;j++)  {
   int k=0,kmax=10;        if (j>i) {
   double l1;          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   fx=func(x);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   for (i=1;i<=npar;i++) p2[i]=x[i];         
   for(l=0 ; l <=lmax; l++){          hess[j][i]=hess[i][j];    
     l1=pow(10,l);          /*printf(" %lf ",hess[i][j]);*/
     delts=delt;        }
     for(k=1 ; k <kmax; k=k+1){      }
       delt = delta*(l1*k);    }
       p2[theta]=x[theta] +delt;    printf("\n");
       k1=func(p2)-fx;    fprintf(ficlog,"\n");
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       /*res= (k1-2.0*fx+k2)/delt/delt; */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */   
           a=matrix(1,npar,1,npar);
 #ifdef DEBUG    y=matrix(1,npar,1,npar);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    x=vector(1,npar);
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    indx=ivector(1,npar);
 #endif    for (i=1;i<=npar;i++)
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    ludcmp(a,npar,indx,&pd);
         k=kmax;  
       }    for (j=1;j<=npar;j++) {
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for (i=1;i<=npar;i++) x[i]=0;
         k=kmax; l=lmax*10.;      x[j]=1;
       }      lubksb(a,npar,indx,x);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){       for (i=1;i<=npar;i++){
         delts=delt;        matcov[i][j]=x[i];
       }      }
     }    }
   }  
   delti[theta]=delts;    printf("\n#Hessian matrix#\n");
   return res;     fprintf(ficlog,"\n#Hessian matrix#\n");
       for (i=1;i<=npar;i++) {
 }      for (j=1;j<=npar;j++) {
         printf("%.3e ",hess[i][j]);
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)        fprintf(ficlog,"%.3e ",hess[i][j]);
 {      }
   int i;      printf("\n");
   int l=1, l1, lmax=20;      fprintf(ficlog,"\n");
   double k1,k2,k3,k4,res,fx;    }
   double p2[NPARMAX+1];  
   int k;    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
   fx=func(x);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   for (k=1; k<=2; k++) {    ludcmp(a,npar,indx,&pd);
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;    /*  printf("\n#Hessian matrix recomputed#\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;    for (j=1;j<=npar;j++) {
         for (i=1;i<=npar;i++) x[i]=0;
     p2[thetai]=x[thetai]+delti[thetai]/k;      x[j]=1;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      lubksb(a,npar,indx,x);
     k2=func(p2)-fx;      for (i=1;i<=npar;i++){
           y[i][j]=x[i];
     p2[thetai]=x[thetai]-delti[thetai]/k;        printf("%.3e ",y[i][j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fprintf(ficlog,"%.3e ",y[i][j]);
     k3=func(p2)-fx;      }
         printf("\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;      fprintf(ficlog,"\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    }
     k4=func(p2)-fx;    */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG    free_matrix(a,1,npar,1,npar);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    free_matrix(y,1,npar,1,npar);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    free_vector(x,1,npar);
 #endif    free_ivector(indx,1,npar);
   }    free_matrix(hess,1,npar,1,npar);
   return res;  
 }  
   }
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)   /*************** hessian matrix ****************/
 {   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   int i,imax,j,k;   {
   double big,dum,sum,temp;     int i;
   double *vv;     int l=1, lmax=20;
      double k1,k2;
   vv=vector(1,n);     double p2[NPARMAX+1];
   *d=1.0;     double res;
   for (i=1;i<=n;i++) {     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     big=0.0;     double fx;
     for (j=1;j<=n;j++)     int k=0,kmax=10;
       if ((temp=fabs(a[i][j])) > big) big=temp;     double l1;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");   
     vv[i]=1.0/big;     fx=func(x);
   }     for (i=1;i<=npar;i++) p2[i]=x[i];
   for (j=1;j<=n;j++) {     for(l=0 ; l <=lmax; l++){
     for (i=1;i<j;i++) {       l1=pow(10,l);
       sum=a[i][j];       delts=delt;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];       for(k=1 ; k <kmax; k=k+1){
       a[i][j]=sum;         delt = delta*(l1*k);
     }         p2[theta]=x[theta] +delt;
     big=0.0;         k1=func(p2)-fx;
     for (i=j;i<=n;i++) {         p2[theta]=x[theta]-delt;
       sum=a[i][j];         k2=func(p2)-fx;
       for (k=1;k<j;k++)         /*res= (k1-2.0*fx+k2)/delt/delt; */
         sum -= a[i][k]*a[k][j];         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       a[i][j]=sum;        
       if ( (dum=vv[i]*fabs(sum)) >= big) {   #ifdef DEBUG
         big=dum;         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         imax=i;         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }   #endif
     }         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     if (j != imax) {         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for (k=1;k<=n;k++) {           k=kmax;
         dum=a[imax][k];         }
         a[imax][k]=a[j][k];         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         a[j][k]=dum;           k=kmax; l=lmax*10.;
       }         }
       *d = -(*d);         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
       vv[imax]=vv[j];           delts=delt;
     }         }
     indx[j]=imax;       }
     if (a[j][j] == 0.0) a[j][j]=TINY;     }
     if (j != n) {     delti[theta]=delts;
       dum=1.0/(a[j][j]);     return res;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    
     }   }
   }   
   free_vector(vv,1,n);  /* Doesn't work */  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 ;  {
 }     int i;
     int l=1, l1, lmax=20;
 void lubksb(double **a, int n, int *indx, double b[])     double k1,k2,k3,k4,res,fx;
 {     double p2[NPARMAX+1];
   int i,ii=0,ip,j;     int k;
   double sum;   
      fx=func(x);
   for (i=1;i<=n;i++) {     for (k=1; k<=2; k++) {
     ip=indx[i];       for (i=1;i<=npar;i++) p2[i]=x[i];
     sum=b[ip];       p2[thetai]=x[thetai]+delti[thetai]/k;
     b[ip]=b[i];       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     if (ii)       k1=func(p2)-fx;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    
     else if (sum) ii=i;       p2[thetai]=x[thetai]+delti[thetai]/k;
     b[i]=sum;       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }       k2=func(p2)-fx;
   for (i=n;i>=1;i--) {    
     sum=b[i];       p2[thetai]=x[thetai]-delti[thetai]/k;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     b[i]=sum/a[i][i];       k3=func(p2)-fx;
   }    
 }       p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 /************ Frequencies ********************/      k4=func(p2)-fx;
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 {  /* Some frequencies */  #ifdef DEBUG
         printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int first;  #endif
   double ***freq; /* Frequencies */    }
   double *pp, **prop;    return res;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;  }
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];  /************** Inverse of matrix **************/
     void ludcmp(double **a, int n, int *indx, double *d)
   pp=vector(1,nlstate);  {
   prop=matrix(1,nlstate,iagemin,iagemax+3);    int i,imax,j,k;
   strcpy(fileresp,"p");    double big,dum,sum,temp;
   strcat(fileresp,fileres);    double *vv;
   if((ficresp=fopen(fileresp,"w"))==NULL) {   
     printf("Problem with prevalence resultfile: %s\n", fileresp);    vv=vector(1,n);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    *d=1.0;
     exit(0);    for (i=1;i<=n;i++) {
   }      big=0.0;
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);      for (j=1;j<=n;j++)
   j1=0;        if ((temp=fabs(a[i][j])) > big) big=temp;
         if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
   j=cptcoveff;      vv[i]=1.0/big;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    }
     for (j=1;j<=n;j++) {
   first=1;      for (i=1;i<j;i++) {
         sum=a[i][j];
   for(k1=1; k1<=j;k1++){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
     for(i1=1; i1<=ncodemax[k1];i1++){        a[i][j]=sum;
       j1++;      }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      big=0.0;
         scanf("%d", i);*/      for (i=j;i<=n;i++) {
       for (i=-5; i<=nlstate+ndeath; i++)          sum=a[i][j];
         for (jk=-5; jk<=nlstate+ndeath; jk++)          for (k=1;k<j;k++)
           for(m=iagemin; m <= iagemax+3; m++)          sum -= a[i][k]*a[k][j];
             freq[i][jk][m]=0;        a[i][j]=sum;
         if ( (dum=vv[i]*fabs(sum)) >= big) {
     for (i=1; i<=nlstate; i++)            big=dum;
       for(m=iagemin; m <= iagemax+3; m++)          imax=i;
         prop[i][m]=0;        }
             }
       dateintsum=0;      if (j != imax) {
       k2cpt=0;        for (k=1;k<=n;k++) {
       for (i=1; i<=imx; i++) {          dum=a[imax][k];
         bool=1;          a[imax][k]=a[j][k];
         if  (cptcovn>0) {          a[j][k]=dum;
           for (z1=1; z1<=cptcoveff; z1++)         }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])         *d = -(*d);
               bool=0;        vv[imax]=vv[j];
         }      }
         if (bool==1){      indx[j]=imax;
           for(m=firstpass; m<=lastpass; m++){      if (a[j][j] == 0.0) a[j][j]=TINY;
             k2=anint[m][i]+(mint[m][i]/12.);      if (j != n) {
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/        dum=1.0/(a[j][j]);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        for (i=j+1;i<=n;i++) a[i][j] *= dum;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      }
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];    }
               if (m<lastpass) {    free_vector(vv,1,n);  /* Doesn't work */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  ;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];  }
               }  
                 void lubksb(double **a, int n, int *indx, double b[])
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {  {
                 dateintsum=dateintsum+k2;    int i,ii=0,ip,j;
                 k2cpt++;    double sum;
               }   
               /*}*/    for (i=1;i<=n;i++) {
           }      ip=indx[i];
         }      sum=b[ip];
       }      b[ip]=b[i];
              if (ii)
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
 fprintf(ficresp, "#Local time at start: %s", strstart);      else if (sum) ii=i;
       if  (cptcovn>0) {      b[i]=sum;
         fprintf(ficresp, "\n#********** Variable ");     }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (i=n;i>=1;i--) {
         fprintf(ficresp, "**********\n#");      sum=b[i];
       }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
       for(i=1; i<=nlstate;i++)       b[i]=sum/a[i][i];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    }
       fprintf(ficresp, "\n");  }
         
       for(i=iagemin; i <= iagemax+3; i++){  void pstamp(FILE *fichier)
         if(i==iagemax+3){  {
           fprintf(ficlog,"Total");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         }else{  }
           if(first==1){  
             first=0;  /************ Frequencies ********************/
             printf("See log file for details...\n");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           }  {  /* Some frequencies */
           fprintf(ficlog,"Age %d", i);   
         }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for(jk=1; jk <=nlstate ; jk++){    int first;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double ***freq; /* Frequencies */
             pp[jk] += freq[jk][m][i];     double *pp, **prop;
         }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for(jk=1; jk <=nlstate ; jk++){    char fileresp[FILENAMELENGTH];
           for(m=-1, pos=0; m <=0 ; m++)   
             pos += freq[jk][m][i];    pp=vector(1,nlstate);
           if(pp[jk]>=1.e-10){    prop=matrix(1,nlstate,iagemin,iagemax+3);
             if(first==1){    strcpy(fileresp,"p");
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    strcat(fileresp,fileres);
             }    if((ficresp=fopen(fileresp,"w"))==NULL) {
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      printf("Problem with prevalence resultfile: %s\n", fileresp);
           }else{      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
             if(first==1)      exit(0);
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    }
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           }    j1=0;
         }   
     j=cptcoveff;
         for(jk=1; jk <=nlstate ; jk++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    first=1;
         }         
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){    for(k1=1; k1<=j;k1++){
           pos += pp[jk];      for(i1=1; i1<=ncodemax[k1];i1++){
           posprop += prop[jk][i];        j1++;
         }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         for(jk=1; jk <=nlstate ; jk++){          scanf("%d", i);*/
           if(pos>=1.e-5){        for (i=-5; i<=nlstate+ndeath; i++)  
             if(first==1)          for (jk=-5; jk<=nlstate+ndeath; jk++)  
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            for(m=iagemin; m <= iagemax+3; m++)
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              freq[i][jk][m]=0;
           }else{  
             if(first==1)      for (i=1; i<=nlstate; i++)  
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for(m=iagemin; m <= iagemax+3; m++)
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          prop[i][m]=0;
           }       
           if( i <= iagemax){        dateintsum=0;
             if(pos>=1.e-5){        k2cpt=0;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);        for (i=1; i<=imx; i++) {
               /*probs[i][jk][j1]= pp[jk]/pos;*/          bool=1;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          if  (cptcovn>0) {
             }            for (z1=1; z1<=cptcoveff; z1++)
             else              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);                bool=0;
           }          }
         }          if (bool==1){
                     for(m=firstpass; m<=lastpass; m++){
         for(jk=-1; jk <=nlstate+ndeath; jk++)              k2=anint[m][i]+(mint[m][i]/12.);
           for(m=-1; m <=nlstate+ndeath; m++)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             if(freq[jk][m][i] !=0 ) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             if(first==1)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);                if (m<lastpass) {
             }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         if(i <= iagemax)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           fprintf(ficresp,"\n");                }
         if(first==1)               
           printf("Others in log...\n");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         fprintf(ficlog,"\n");                  dateintsum=dateintsum+k2;
       }                  k2cpt++;
     }                }
   }                /*}*/
   dateintmean=dateintsum/k2cpt;             }
            }
   fclose(ficresp);        }
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);         
   free_vector(pp,1,nlstate);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);        pstamp(ficresp);
   /* End of Freq */        if  (cptcovn>0) {
 }          fprintf(ficresp, "\n#********** Variable ");
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /************ Prevalence ********************/          fprintf(ficresp, "**********\n#");
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)        }
 {          for(i=1; i<=nlstate;i++)
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      in each health status at the date of interview (if between dateprev1 and dateprev2).        fprintf(ficresp, "\n");
      We still use firstpass and lastpass as another selection.       
   */        for(i=iagemin; i <= iagemax+3; i++){
            if(i==iagemax+3){
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            fprintf(ficlog,"Total");
   double ***freq; /* Frequencies */          }else{
   double *pp, **prop;            if(first==1){
   double pos,posprop;               first=0;
   double  y2; /* in fractional years */              printf("See log file for details...\n");
   int iagemin, iagemax;            }
             fprintf(ficlog,"Age %d", i);
   iagemin= (int) agemin;          }
   iagemax= (int) agemax;          for(jk=1; jk <=nlstate ; jk++){
   /*pp=vector(1,nlstate);*/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   prop=matrix(1,nlstate,iagemin,iagemax+3);               pp[jk] += freq[jk][m][i];
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/          }
   j1=0;          for(jk=1; jk <=nlstate ; jk++){
               for(m=-1, pos=0; m <=0 ; m++)
   j=cptcoveff;              pos += freq[jk][m][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            if(pp[jk]>=1.e-10){
                 if(first==1){
   for(k1=1; k1<=j;k1++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for(i1=1; i1<=ncodemax[k1];i1++){              }
       j1++;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   }else{
       for (i=1; i<=nlstate; i++)                if(first==1)
         for(m=iagemin; m <= iagemax+3; m++)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           prop[i][m]=0.0;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                  }
       for (i=1; i<=imx; i++) { /* Each individual */          }
         bool=1;  
         if  (cptcovn>0) {          for(jk=1; jk <=nlstate ; jk++){
           for (z1=1; z1<=cptcoveff; z1++)             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])               pp[jk] += freq[jk][m][i];
               bool=0;          }      
         }           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         if (bool==1) {             pos += pp[jk];
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/            posprop += prop[jk][i];
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */          }
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */          for(jk=1; jk <=nlstate ; jk++){
               if(agev[m][i]==0) agev[m][i]=iagemax+1;            if(pos>=1.e-5){
               if(agev[m][i]==1) agev[m][i]=iagemax+2;              if(first==1)
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               if (s[m][i]>0 && s[m][i]<=nlstate) {               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/            }else{
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];              if(first==1)
                 prop[s[m][i]][iagemax+3] += weight[i];                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               }               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }            }
           } /* end selection of waves */            if( i <= iagemax){
         }              if(pos>=1.e-5){
       }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for(i=iagemin; i <= iagemax+3; i++){                  /*probs[i][jk][j1]= pp[jk]/pos;*/
                         /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {               }
           posprop += prop[jk][i];               else
         }                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
         for(jk=1; jk <=nlstate ; jk++){               }
           if( i <=  iagemax){          
             if(posprop>=1.e-5){           for(jk=-1; jk <=nlstate+ndeath; jk++)
               probs[i][jk][j1]= prop[jk][i]/posprop;            for(m=-1; m <=nlstate+ndeath; m++)
             }               if(freq[jk][m][i] !=0 ) {
           }               if(first==1)
         }/* end jk */                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       }/* end i */                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     } /* end i1 */              }
   } /* end k1 */          if(i <= iagemax)
               fprintf(ficresp,"\n");
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/          if(first==1)
   /*free_vector(pp,1,nlstate);*/            printf("Others in log...\n");
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);          fprintf(ficlog,"\n");
 }  /* End of prevalence */        }
       }
 /************* Waves Concatenation ***************/    }
     dateintmean=dateintsum/k2cpt;
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)   
 {    fclose(ficresp);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
      Death is a valid wave (if date is known).    free_vector(pp,1,nlstate);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]    /* End of Freq */
      and mw[mi+1][i]. dh depends on stepm.  }
      */  
   /************ Prevalence ********************/
   int i, mi, m;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  {  
      double sum=0., jmean=0.;*/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   int first;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   int j, k=0,jk, ju, jl;       We still use firstpass and lastpass as another selection.
   double sum=0.;    */
   first=0;   
   jmin=1e+5;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   jmax=-1;    double ***freq; /* Frequencies */
   jmean=0.;    double *pp, **prop;
   for(i=1; i<=imx; i++){    double pos,posprop;
     mi=0;    double  y2; /* in fractional years */
     m=firstpass;    int iagemin, iagemax;
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)    iagemin= (int) agemin;
         mw[++mi][i]=m;    iagemax= (int) agemax;
       if(m >=lastpass)    /*pp=vector(1,nlstate);*/
         break;    prop=matrix(1,nlstate,iagemin,iagemax+3);
       else    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         m++;    j1=0;
     }/* end while */   
     if (s[m][i] > nlstate){    j=cptcoveff;
       mi++;     /* Death is another wave */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       /* if(mi==0)  never been interviewed correctly before death */   
          /* Only death is a correct wave */    for(k1=1; k1<=j;k1++){
       mw[mi][i]=m;      for(i1=1; i1<=ncodemax[k1];i1++){
     }        j1++;
        
     wav[i]=mi;        for (i=1; i<=nlstate; i++)  
     if(mi==0){          for(m=iagemin; m <= iagemax+3; m++)
       nbwarn++;            prop[i][m]=0.0;
       if(first==0){       
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);        for (i=1; i<=imx; i++) { /* Each individual */
         first=1;          bool=1;
       }          if  (cptcovn>0) {
       if(first==1){            for (z1=1; z1<=cptcoveff; z1++)
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
       }                bool=0;
     } /* end mi==0 */          }
   } /* End individuals */          if (bool==1) {
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   for(i=1; i<=imx; i++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     for(mi=1; mi<wav[i];mi++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       if (stepm <=0)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         dh[mi][i]=1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       else{                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */                if (s[m][i]>0 && s[m][i]<=nlstate) {
           if (agedc[i] < 2*AGESUP) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
             if(j==0) j=1;  /* Survives at least one month after exam */                  prop[s[m][i]][iagemax+3] += weight[i];
             else if(j<0){                }
               nberr++;              }
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            } /* end selection of waves */
               j=1; /* Temporary Dangerous patch */          }
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);        }
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        for(i=iagemin; i <= iagemax+3; i++){  
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);         
             }          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
             k=k+1;            posprop += prop[jk][i];
             if (j >= jmax){          }
               jmax=j;  
               ijmax=i;          for(jk=1; jk <=nlstate ; jk++){    
             }            if( i <=  iagemax){
             if (j <= jmin){              if(posprop>=1.e-5){
               jmin=j;                probs[i][jk][j1]= prop[jk][i]/posprop;
               ijmin=i;              }
             }            }
             sum=sum+j;          }/* end jk */
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/        }/* end i */
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/      } /* end i1 */
           }    } /* end k1 */
         }   
         else{    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    /*free_vector(pp,1,nlstate);*/
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
           k=k+1;  
           if (j >= jmax) {  /************* Waves Concatenation ***************/
             jmax=j;  
             ijmax=i;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           }  {
           else if (j <= jmin){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             jmin=j;       Death is a valid wave (if date is known).
             ijmin=i;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */       and mw[mi+1][i]. dh depends on stepm.
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/       */
           if(j<0){  
             nberr++;    int i, mi, m;
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);       double sum=0., jmean=0.;*/
           }    int first;
           sum=sum+j;    int j, k=0,jk, ju, jl;
         }    double sum=0.;
         jk= j/stepm;    first=0;
         jl= j -jk*stepm;    jmin=1e+5;
         ju= j -(jk+1)*stepm;    jmax=-1;
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */    jmean=0.;
           if(jl==0){    for(i=1; i<=imx; i++){
             dh[mi][i]=jk;      mi=0;
             bh[mi][i]=0;      m=firstpass;
           }else{ /* We want a negative bias in order to only have interpolation ie      while(s[m][i] <= nlstate){
                   * at the price of an extra matrix product in likelihood */        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
             dh[mi][i]=jk+1;          mw[++mi][i]=m;
             bh[mi][i]=ju;        if(m >=lastpass)
           }          break;
         }else{        else
           if(jl <= -ju){          m++;
             dh[mi][i]=jk;      }/* end while */
             bh[mi][i]=jl;       /* bias is positive if real duration      if (s[m][i] > nlstate){
                                  * is higher than the multiple of stepm and negative otherwise.        mi++;     /* Death is another wave */
                                  */        /* if(mi==0)  never been interviewed correctly before death */
           }           /* Only death is a correct wave */
           else{        mw[mi][i]=m;
             dh[mi][i]=jk+1;      }
             bh[mi][i]=ju;  
           }      wav[i]=mi;
           if(dh[mi][i]==0){      if(mi==0){
             dh[mi][i]=1; /* At least one step */        nbwarn++;
             bh[mi][i]=ju; /* At least one step */        if(first==0){
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           }          first=1;
         } /* end if mle */        }
       }        if(first==1){
     } /* end wave */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   }        }
   jmean=sum/k;      } /* end mi==0 */
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);    } /* End individuals */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);  
  }    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
 /*********** Tricode ****************************/        if (stepm <=0)
 void tricode(int *Tvar, int **nbcode, int imx)          dh[mi][i]=1;
 {        else{
             if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   int Ndum[20],ij=1, k, j, i, maxncov=19;            if (agedc[i] < 2*AGESUP) {
   int cptcode=0;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
   cptcoveff=0;               if(j==0) j=1;  /* Survives at least one month after exam */
                else if(j<0){
   for (k=0; k<maxncov; k++) Ndum[k]=0;                nberr++;
   for (k=1; k<=7; k++) ncodemax[k]=0;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                                modality*/                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/              }
       Ndum[ij]++; /*store the modality */              k=k+1;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              if (j >= jmax){
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable                 jmax=j;
                                        Tvar[j]. If V=sex and male is 0 and                 ijmax=i;
                                        female is 1, then  cptcode=1.*/              }
     }              if (j <= jmin){
                 jmin=j;
     for (i=0; i<=cptcode; i++) {                ijmin=i;
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */              }
     }              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     ij=1;               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     for (i=1; i<=ncodemax[j]; i++) {            }
       for (k=0; k<= maxncov; k++) {          }
         if (Ndum[k] != 0) {          else{
           nbcode[Tvar[j]][ij]=k;             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
             
           ij++;            k=k+1;
         }            if (j >= jmax) {
         if (ij > ncodemax[j]) break;               jmax=j;
       }                ijmax=i;
     }             }
   }              else if (j <= jmin){
               jmin=j;
  for (k=0; k< maxncov; k++) Ndum[k]=0;              ijmin=i;
             }
  for (i=1; i<=ncovmodel-2; i++) {             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
    ij=Tvar[i];            if(j<0){
    Ndum[ij]++;              nberr++;
  }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  ij=1;            }
  for (i=1; i<= maxncov; i++) {            sum=sum+j;
    if((Ndum[i]!=0) && (i<=ncovcol)){          }
      Tvaraff[ij]=i; /*For printing */          jk= j/stepm;
      ij++;          jl= j -jk*stepm;
    }          ju= j -(jk+1)*stepm;
  }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              if(jl==0){
  cptcoveff=ij-1; /*Number of simple covariates*/              dh[mi][i]=jk;
 }              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
 /*********** Health Expectancies ****************/                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )              bh[mi][i]=ju;
             }
 {          }else{
   /* Health expectancies */            if(jl <= -ju){
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;              dh[mi][i]=jk;
   double age, agelim, hf;              bh[mi][i]=jl;       /* bias is positive if real duration
   double ***p3mat,***varhe;                                   * is higher than the multiple of stepm and negative otherwise.
   double **dnewm,**doldm;                                   */
   double *xp;            }
   double **gp, **gm;            else{
   double ***gradg, ***trgradg;              dh[mi][i]=jk+1;
   int theta;              bh[mi][i]=ju;
             }
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);            if(dh[mi][i]==0){
   xp=vector(1,npar);              dh[mi][i]=1; /* At least one step */
   dnewm=matrix(1,nlstate*nlstate,1,npar);              bh[mi][i]=ju; /* At least one step */
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
               }
   fprintf(ficreseij,"# Local time at start: %s", strstart);          } /* end if mle */
   fprintf(ficreseij,"# Health expectancies\n");        }
   fprintf(ficreseij,"# Age");      } /* end wave */
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=nlstate;j++)    jmean=sum/k;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   fprintf(ficreseij,"\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);  /*********** Tricode ****************************/
   }  void tricode(int *Tvar, int **nbcode, int imx)
   else  hstepm=estepm;     {
   /* We compute the life expectancy from trapezoids spaced every estepm months   
    * This is mainly to measure the difference between two models: for example    int Ndum[20],ij=1, k, j, i, maxncov=19;
    * if stepm=24 months pijx are given only every 2 years and by summing them    int cptcode=0;
    * we are calculating an estimate of the Life Expectancy assuming a linear     cptcoveff=0;
    * progression in between and thus overestimating or underestimating according   
    * to the curvature of the survival function. If, for the same date, we     for (k=0; k<maxncov; k++) Ndum[k]=0;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    for (k=1; k<=7; k++) ncodemax[k]=0;
    * to compare the new estimate of Life expectancy with the same linear   
    * hypothesis. A more precise result, taking into account a more precise    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
    * curvature will be obtained if estepm is as small as stepm. */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
                                  modality*/
   /* For example we decided to compute the life expectancy with the smallest unit */        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.         Ndum[ij]++; /*store the modality */
      nhstepm is the number of hstepm from age to agelim         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
      nstepm is the number of stepm from age to agelin.         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
      Look at hpijx to understand the reason of that which relies in memory size                                         Tvar[j]. If V=sex and male is 0 and
      and note for a fixed period like estepm months */                                         female is 1, then  cptcode=1.*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      }
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if      for (i=0; i<=cptcode; i++) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
      results. So we changed our mind and took the option of the best precision.      }
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       ij=1;
       for (i=1; i<=ncodemax[j]; i++) {
   agelim=AGESUP;        for (k=0; k<= maxncov; k++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          if (Ndum[k] != 0) {
     /* nhstepm age range expressed in number of stepm */            nbcode[Tvar[j]][ij]=k;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            
     /* if (stepm >= YEARM) hstepm=1;*/            ij++;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (ij > ncodemax[j]) break;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);        }  
     gp=matrix(0,nhstepm,1,nlstate*nlstate);      }
     gm=matrix(0,nhstepm,1,nlstate*nlstate);    }  
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored   for (k=0; k< maxncov; k++) Ndum[k]=0;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);     for (i=1; i<=ncovmodel-2; i++) {
       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */     Ndum[ij]++;
    }
     /* Computing  Variances of health expectancies */  
    ij=1;
      for(theta=1; theta <=npar; theta++){   for (i=1; i<= maxncov; i++) {
       for(i=1; i<=npar; i++){      if((Ndum[i]!=0) && (i<=ncovcol)){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       Tvaraff[ij]=i; /*For printing */
       }       ij++;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       }
      }
       cptj=0;   
       for(j=1; j<= nlstate; j++){   cptcoveff=ij-1; /*Number of simple covariates*/
         for(i=1; i<=nlstate; i++){  }
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  /*********** Health Expectancies ****************/
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
         }  
       }  {
          /* Health expectancies, no variances */
          int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
       for(i=1; i<=npar; i++)     double age, agelim, hf;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double ***p3mat;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double eip;
         
       cptj=0;    pstamp(ficreseij);
       for(j=1; j<= nlstate; j++){    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
         for(i=1;i<=nlstate;i++){    fprintf(ficreseij,"# Age");
           cptj=cptj+1;    for(i=1; i<=nlstate;i++){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      }
           }      fprintf(ficreseij," e%1d. ",i);
         }    }
       }    fprintf(ficreseij,"\n");
       for(j=1; j<= nlstate*nlstate; j++)  
         for(h=0; h<=nhstepm-1; h++){   
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    if(estepm < stepm){
         }      printf ("Problem %d lower than %d\n",estepm, stepm);
      }     }
        else  hstepm=estepm;  
 /* End theta */    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear
      for(h=0; h<=nhstepm-1; h++)     * progression in between and thus overestimating or underestimating according
       for(j=1; j<=nlstate*nlstate;j++)     * to the curvature of the survival function. If, for the same date, we
         for(theta=1; theta <=npar; theta++)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           trgradg[h][j][theta]=gradg[h][theta][j];     * to compare the new estimate of Life expectancy with the same linear
           * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
      for(i=1;i<=nlstate*nlstate;i++)  
       for(j=1;j<=nlstate*nlstate;j++)    /* For example we decided to compute the life expectancy with the smallest unit */
         varhe[i][j][(int)age] =0.;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
        nhstepm is the number of hstepm from age to agelim
      printf("%d|",(int)age);fflush(stdout);       nstepm is the number of stepm from age to agelin.
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);       Look at hpijx to understand the reason of that which relies in memory size
      for(h=0;h<=nhstepm-1;h++){       and note for a fixed period like estepm months */
       for(k=0;k<=nhstepm-1;k++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);       survival function given by stepm (the optimization length). Unfortunately it
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);       means that if the survival funtion is printed only each two years of age and if
         for(i=1;i<=nlstate*nlstate;i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same
           for(j=1;j<=nlstate*nlstate;j++)       results. So we changed our mind and took the option of the best precision.
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     }  
     /* Computing expectancies */    agelim=AGESUP;
     for(i=1; i<=nlstate;i++)    /* If stepm=6 months */
       for(j=1; j<=nlstate;j++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;     
             /* nhstepm age range expressed in number of stepm */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */
         }    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficreseij,"%3.0f",age );    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     cptj=0;  
     for(i=1; i<=nlstate;i++)    for (age=bage; age<=fage; age ++){
       for(j=1; j<=nlstate;j++){  
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       }     
     fprintf(ficreseij,"\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);      printf("%d|",(int)age);fflush(stdout);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);     
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Computing expectancies */
   }      for(i=1; i<=nlstate;i++)
   printf("\n");        for(j=1; j<=nlstate;j++)
   fprintf(ficlog,"\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   free_vector(xp,1,npar);           
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);  
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);          }
 }     
       fprintf(ficreseij,"%3.0f",age );
 /************ Variance ******************/      for(i=1; i<=nlstate;i++){
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])        eip=0;
 {        for(j=1; j<=nlstate;j++){
   /* Variance of health expectancies */          eip +=eij[i][j][(int)age];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   /* double **newm;*/        }
   double **dnewm,**doldm;        fprintf(ficreseij,"%9.4f", eip );
   double **dnewmp,**doldmp;      }
   int i, j, nhstepm, hstepm, h, nstepm ;      fprintf(ficreseij,"\n");
   int k, cptcode;     
   double *xp;    }
   double **gp, **gm;  /* for var eij */    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double ***gradg, ***trgradg; /*for var eij */    printf("\n");
   double **gradgp, **trgradgp; /* for var p point j */    fprintf(ficlog,"\n");
   double *gpp, *gmp; /* for var p point j */   
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */  }
   double ***p3mat;  
   double age,agelim, hf;  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   double ***mobaverage;  
   int theta;  {
   char digit[4];    /* Covariances of health expectancies eij and of total life expectancies according
   char digitp[25];     to initial status i, ei. .
     */
   char fileresprobmorprev[FILENAMELENGTH];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     double age, agelim, hf;
   if(popbased==1){    double ***p3matp, ***p3matm, ***varhe;
     if(mobilav!=0)    double **dnewm,**doldm;
       strcpy(digitp,"-populbased-mobilav-");    double *xp, *xm;
     else strcpy(digitp,"-populbased-nomobil-");    double **gp, **gm;
   }    double ***gradg, ***trgradg;
   else     int theta;
     strcpy(digitp,"-stablbased-");  
     double eip, vip;
   if (mobilav!=0) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    xp=vector(1,npar);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    xm=vector(1,npar);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   }   
     pstamp(ficresstdeij);
   strcpy(fileresprobmorprev,"prmorprev");     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   sprintf(digit,"%-d",ij);    fprintf(ficresstdeij,"# Age");
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    for(i=1; i<=nlstate;i++){
   strcat(fileresprobmorprev,digit); /* Tvar to be done */      for(j=1; j<=nlstate;j++)
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   strcat(fileresprobmorprev,fileres);      fprintf(ficresstdeij," e%1d. ",i);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    fprintf(ficresstdeij,"\n");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  
   }    pstamp(ficrescveij);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      fprintf(ficrescveij,"# Age");
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    for(i=1; i<=nlstate;i++)
   fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);      for(j=1; j<=nlstate;j++){
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);        cptj= (j-1)*nlstate+i;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);        for(i2=1; i2<=nlstate;i2++)
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){          for(j2=1; j2<=nlstate;j2++){
     fprintf(ficresprobmorprev," p.%-d SE",j);            cptj2= (j2-1)*nlstate+i2;
     for(i=1; i<=nlstate;i++)            if(cptj2 <= cptj)
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   }            }
   fprintf(ficresprobmorprev,"\n");      }
   fprintf(ficgp,"\n# Routine varevsij");    fprintf(ficrescveij,"\n");
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/   
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    if(estepm < stepm){
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);      printf ("Problem %d lower than %d\n",estepm, stepm);
 /*   } */    }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    else  hstepm=estepm;  
  fprintf(ficresvij, "#Local time at start: %s", strstart);    /* We compute the life expectancy from trapezoids spaced every estepm months
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");     * This is mainly to measure the difference between two models: for example
   fprintf(ficresvij,"# Age");     * if stepm=24 months pijx are given only every 2 years and by summing them
   for(i=1; i<=nlstate;i++)     * we are calculating an estimate of the Life Expectancy assuming a linear
     for(j=1; j<=nlstate;j++)     * progression in between and thus overestimating or underestimating according
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);     * to the curvature of the survival function. If, for the same date, we
   fprintf(ficresvij,"\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear
   xp=vector(1,npar);     * hypothesis. A more precise result, taking into account a more precise
   dnewm=matrix(1,nlstate,1,npar);     * curvature will be obtained if estepm is as small as stepm. */
   doldm=matrix(1,nlstate,1,nlstate);  
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    /* For example we decided to compute the life expectancy with the smallest unit */
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
        nhstepm is the number of hstepm from age to agelim
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);       nstepm is the number of stepm from age to agelin.
   gpp=vector(nlstate+1,nlstate+ndeath);       Look at hpijx to understand the reason of that which relies in memory size
   gmp=vector(nlstate+1,nlstate+ndeath);       and note for a fixed period like estepm months */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
          survival function given by stepm (the optimization length). Unfortunately it
   if(estepm < stepm){       means that if the survival funtion is printed only each two years of age and if
     printf ("Problem %d lower than %d\n",estepm, stepm);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   }       results. So we changed our mind and took the option of the best precision.
   else  hstepm=estepm;       */
   /* For example we decided to compute the life expectancy with the smallest unit */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.   
      nhstepm is the number of hstepm from age to agelim     /* If stepm=6 months */
      nstepm is the number of stepm from age to agelin.     /* nhstepm age range expressed in number of stepm */
      Look at hpijx to understand the reason of that which relies in memory size    agelim=AGESUP;
      and note for a fixed period like k years */    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
      survival function given by stepm (the optimization length). Unfortunately it    /* if (stepm >= YEARM) hstepm=1;*/
      means that if the survival funtion is printed every two years of age and if    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    
      results. So we changed our mind and took the option of the best precision.    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   */    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   agelim = AGESUP;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     gm=matrix(0,nhstepm,1,nlstate*nlstate);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (age=bage; age<=fage; age ++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     gm=matrix(0,nhstepm,1,nlstate);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/      /* Computing  Variances of health expectancies */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       }         decrease memory allocation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(theta=1; theta <=npar; theta++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for(i=1; i<=npar; i++){
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
       if (popbased==1) {          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         if(mobilav ==0){        }
           for(i=1; i<=nlstate;i++)        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
             prlim[i][i]=probs[(int)age][i][ij];        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         }else{ /* mobilav */    
           for(i=1; i<=nlstate;i++)        for(j=1; j<= nlstate; j++){
             prlim[i][i]=mobaverage[(int)age][i][ij];          for(i=1; i<=nlstate; i++){
         }            for(h=0; h<=nhstepm-1; h++){
       }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                 gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       for(j=1; j<= nlstate; j++){            }
         for(h=0; h<=nhstepm; h++){          }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];       
         }        for(ij=1; ij<= nlstate*nlstate; ij++)
       }          for(h=0; h<=nhstepm-1; h++){
       /* This for computing probability of death (h=1 means            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
          computed over hstepm matrices product = hstepm*stepm months)           }
          as a weighted average of prlim.      }/* End theta */
       */     
       for(j=nlstate+1;j<=nlstate+ndeath;j++){     
         for(i=1,gpp[j]=0.; i<= nlstate; i++)      for(h=0; h<=nhstepm-1; h++)
           gpp[j] += prlim[i][i]*p3mat[i][j][1];        for(j=1; j<=nlstate*nlstate;j++)
       }              for(theta=1; theta <=npar; theta++)
       /* end probability of death */            trgradg[h][j][theta]=gradg[h][theta][j];
      
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       for(ij=1;ij<=nlstate*nlstate;ij++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(ji=1;ji<=nlstate*nlstate;ji++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          varhe[ij][ji][(int)age] =0.;
    
       if (popbased==1) {       printf("%d|",(int)age);fflush(stdout);
         if(mobilav ==0){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           for(i=1; i<=nlstate;i++)       for(h=0;h<=nhstepm-1;h++){
             prlim[i][i]=probs[(int)age][i][ij];        for(k=0;k<=nhstepm-1;k++){
         }else{ /* mobilav */           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           for(i=1; i<=nlstate;i++)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
             prlim[i][i]=mobaverage[(int)age][i][ij];          for(ij=1;ij<=nlstate*nlstate;ij++)
         }            for(ji=1;ji<=nlstate*nlstate;ji++)
       }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       for(j=1; j<= nlstate; j++){      }
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      /* Computing expectancies */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         }      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++)
       /* This for computing probability of death (h=1 means          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
          computed over hstepm matrices product = hstepm*stepm months)             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
          as a weighted average of prlim.           
       */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       for(j=nlstate+1;j<=nlstate+ndeath;j++){  
         for(i=1,gmp[j]=0.; i<= nlstate; i++)          }
          gmp[j] += prlim[i][i]*p3mat[i][j][1];  
       }          fprintf(ficresstdeij,"%3.0f",age );
       /* end probability of death */      for(i=1; i<=nlstate;i++){
         eip=0.;
       for(j=1; j<= nlstate; j++) /* vareij */        vip=0.;
         for(h=0; h<=nhstepm; h++){        for(j=1; j<=nlstate;j++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          eip += eij[i][j][(int)age];
         }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];        }
       }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
     } /* End theta */      fprintf(ficresstdeij,"\n");
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
     for(h=0; h<=nhstepm; h++) /* veij */        for(j=1; j<=nlstate;j++){
       for(j=1; j<=nlstate;j++)          cptj= (j-1)*nlstate+i;
         for(theta=1; theta <=npar; theta++)          for(i2=1; i2<=nlstate;i2++)
           trgradg[h][j][theta]=gradg[h][theta][j];            for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */              if(cptj2 <= cptj)
       for(theta=1; theta <=npar; theta++)                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
         trgradgp[j][theta]=gradgp[theta][j];            }
           }
       fprintf(ficrescveij,"\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */     
     for(i=1;i<=nlstate;i++)    }
       for(j=1;j<=nlstate;j++)    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         vareij[i][j][(int)age] =0.;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     for(h=0;h<=nhstepm;h++){    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       for(k=0;k<=nhstepm;k++){    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    printf("\n");
         for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\n");
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    free_vector(xm,1,npar);
       }    free_vector(xp,1,npar);
     }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     /* pptj */    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  }
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  
     for(j=nlstate+1;j<=nlstate+ndeath;j++)  /************ Variance ******************/
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         varppt[j][i]=doldmp[j][i];  {
     /* end ppptj */    /* Variance of health expectancies */
     /*  x centered again */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      /* double **newm;*/
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    double **dnewm,**doldm;
      double **dnewmp,**doldmp;
     if (popbased==1) {    int i, j, nhstepm, hstepm, h, nstepm ;
       if(mobilav ==0){    int k, cptcode;
         for(i=1; i<=nlstate;i++)    double *xp;
           prlim[i][i]=probs[(int)age][i][ij];    double **gp, **gm;  /* for var eij */
       }else{ /* mobilav */     double ***gradg, ***trgradg; /*for var eij */
         for(i=1; i<=nlstate;i++)    double **gradgp, **trgradgp; /* for var p point j */
           prlim[i][i]=mobaverage[(int)age][i][ij];    double *gpp, *gmp; /* for var p point j */
       }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     }    double ***p3mat;
                  double age,agelim, hf;
     /* This for computing probability of death (h=1 means    double ***mobaverage;
        computed over hstepm (estepm) matrices product = hstepm*stepm months)     int theta;
        as a weighted average of prlim.    char digit[4];
     */    char digitp[25];
     for(j=nlstate+1;j<=nlstate+ndeath;j++){  
       for(i=1,gmp[j]=0.;i<= nlstate; i++)     char fileresprobmorprev[FILENAMELENGTH];
         gmp[j] += prlim[i][i]*p3mat[i][j][1];   
     }        if(popbased==1){
     /* end probability of death */      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      else strcpy(digitp,"-populbased-nomobil-");
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    }
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    else
       for(i=1; i<=nlstate;i++){      strcpy(digitp,"-stablbased-");
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }    if (mobilav!=0) {
     }       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fprintf(ficresprobmorprev,"\n");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficresvij,"%.0f ",age );        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     for(i=1; i<=nlstate;i++)      }
       for(j=1; j<=nlstate;j++){    }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }    strcpy(fileresprobmorprev,"prmorprev");
     fprintf(ficresvij,"\n");    sprintf(digit,"%-d",ij);
     free_matrix(gp,0,nhstepm,1,nlstate);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     free_matrix(gm,0,nhstepm,1,nlstate);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    strcat(fileresprobmorprev,fileres);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   } /* End age */      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   free_vector(gpp,nlstate+1,nlstate+ndeath);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   free_vector(gmp,nlstate+1,nlstate+ndeath);    }
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/   
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    pstamp(ficresprobmorprev);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */      fprintf(ficresprobmorprev," p.%-d SE",j);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));      for(i=1; i<=nlstate;i++)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));    }  
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));    fprintf(ficresprobmorprev,"\n");
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    fprintf(ficgp,"\n# Routine varevsij");
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 */    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   free_vector(xp,1,npar);    pstamp(ficresvij);
   free_matrix(doldm,1,nlstate,1,nlstate);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   free_matrix(dnewm,1,nlstate,1,npar);    if(popbased==1)
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    else
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresvij,"# Age");
   fclose(ficresprobmorprev);    for(i=1; i<=nlstate;i++)
   fflush(ficgp);      for(j=1; j<=nlstate;j++)
   fflush(fichtm);         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 }  /* end varevsij */    fprintf(ficresvij,"\n");
   
 /************ Variance of prevlim ******************/    xp=vector(1,npar);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])    dnewm=matrix(1,nlstate,1,npar);
 {    doldm=matrix(1,nlstate,1,nlstate);
   /* Variance of prevalence limit */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double **newm;  
   double **dnewm,**doldm;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   int i, j, nhstepm, hstepm;    gpp=vector(nlstate+1,nlstate+ndeath);
   int k, cptcode;    gmp=vector(nlstate+1,nlstate+ndeath);
   double *xp;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double *gp, *gm;   
   double **gradg, **trgradg;    if(estepm < stepm){
   double age,agelim;      printf ("Problem %d lower than %d\n",estepm, stepm);
   int theta;    }
   fprintf(ficresvpl, "#Local time at start: %s", strstart);     else  hstepm=estepm;  
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");    /* For example we decided to compute the life expectancy with the smallest unit */
   fprintf(ficresvpl,"# Age");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   for(i=1; i<=nlstate;i++)       nhstepm is the number of hstepm from age to agelim
       fprintf(ficresvpl," %1d-%1d",i,i);       nstepm is the number of stepm from age to agelin.
   fprintf(ficresvpl,"\n");       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
   xp=vector(1,npar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   dnewm=matrix(1,nlstate,1,npar);       survival function given by stepm (the optimization length). Unfortunately it
   doldm=matrix(1,nlstate,1,nlstate);       means that if the survival funtion is printed every two years of age and if
          you sum them up and add 1 year (area under the trapezoids) you won't get the same
   hstepm=1*YEARM; /* Every year of age */       results. So we changed our mind and took the option of the best precision.
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */     */
   agelim = AGESUP;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    agelim = AGESUP;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     if (stepm >= YEARM) hstepm=1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     gradg=matrix(1,npar,1,nlstate);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gp=vector(1,nlstate);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     gm=vector(1,nlstate);      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(i=1;i<=nlstate;i++)        }
         gp[i] = prlim[i][i];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        if (popbased==1) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if(mobilav ==0){
       for(i=1;i<=nlstate;i++)            for(i=1; i<=nlstate;i++)
         gm[i] = prlim[i][i];              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */
       for(i=1;i<=nlstate;i++)            for(i=1; i<=nlstate;i++)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              prlim[i][i]=mobaverage[(int)age][i][ij];
     } /* End theta */          }
         }
     trgradg =matrix(1,nlstate,1,npar);   
         for(j=1; j<= nlstate; j++){
     for(j=1; j<=nlstate;j++)          for(h=0; h<=nhstepm; h++){
       for(theta=1; theta <=npar; theta++)            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         trgradg[j][theta]=gradg[theta][j];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
     for(i=1;i<=nlstate;i++)        }
       varpl[i][(int)age] =0.;        /* This for computing probability of death (h=1 means
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);           computed over hstepm matrices product = hstepm*stepm months)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);           as a weighted average of prlim.
     for(i=1;i<=nlstate;i++)        */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
     fprintf(ficresvpl,"%.0f ",age );            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     for(i=1; i<=nlstate;i++)        }    
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        /* end probability of death */
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     free_vector(gm,1,nlstate);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     free_matrix(gradg,1,npar,1,nlstate);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     free_matrix(trgradg,1,nlstate,1,npar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   } /* End age */   
         if (popbased==1) {
   free_vector(xp,1,npar);          if(mobilav ==0){
   free_matrix(doldm,1,nlstate,1,npar);            for(i=1; i<=nlstate;i++)
   free_matrix(dnewm,1,nlstate,1,nlstate);              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */
 }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
 /************ Variance of one-step probabilities  ******************/          }
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])        }
 {  
   int i, j=0,  i1, k1, l1, t, tj;        for(j=1; j<= nlstate; j++){
   int k2, l2, j1,  z1;          for(h=0; h<=nhstepm; h++){
   int k=0,l, cptcode;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   int first=1, first1;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;          }
   double **dnewm,**doldm;        }
   double *xp;        /* This for computing probability of death (h=1 means
   double *gp, *gm;           computed over hstepm matrices product = hstepm*stepm months)
   double **gradg, **trgradg;           as a weighted average of prlim.
   double **mu;        */
   double age,agelim, cov[NCOVMAX];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   int theta;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   char fileresprob[FILENAMELENGTH];        }    
   char fileresprobcov[FILENAMELENGTH];        /* end probability of death */
   char fileresprobcor[FILENAMELENGTH];  
         for(j=1; j<= nlstate; j++) /* vareij */
   double ***varpij;          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   strcpy(fileresprob,"prob");           }
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     printf("Problem with resultfile: %s\n", fileresprob);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);        }
   }  
   strcpy(fileresprobcov,"probcov");       } /* End theta */
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     printf("Problem with resultfile: %s\n", fileresprobcov);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      for(h=0; h<=nhstepm; h++) /* veij */
   }        for(j=1; j<=nlstate;j++)
   strcpy(fileresprobcor,"probcor");           for(theta=1; theta <=npar; theta++)
   strcat(fileresprobcor,fileres);            trgradg[h][j][theta]=gradg[h][theta][j];
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcor);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);        for(theta=1; theta <=npar; theta++)
   }          trgradgp[j][theta]=gradgp[theta][j];
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);   
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      for(i=1;i<=nlstate;i++)
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        for(j=1;j<=nlstate;j++)
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          vareij[i][j][(int)age] =0.;
   fprintf(ficresprob, "#Local time at start: %s", strstart);  
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      for(h=0;h<=nhstepm;h++){
   fprintf(ficresprob,"# Age");        for(k=0;k<=nhstepm;k++){
   fprintf(ficresprobcov, "#Local time at start: %s", strstart);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   fprintf(ficresprobcov,"# Age");          for(i=1;i<=nlstate;i++)
   fprintf(ficresprobcor, "#Local time at start: %s", strstart);            for(j=1;j<=nlstate;j++)
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   fprintf(ficresprobcov,"# Age");        }
       }
    
   for(i=1; i<=nlstate;i++)      /* pptj */
     for(j=1; j<=(nlstate+ndeath);j++){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     }            varppt[j][i]=doldmp[j][i];
  /* fprintf(ficresprob,"\n");      /* end ppptj */
   fprintf(ficresprobcov,"\n");      /*  x centered again */
   fprintf(ficresprobcor,"\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
  */      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
  xp=vector(1,npar);   
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      if (popbased==1) {
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        if(mobilav ==0){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          for(i=1; i<=nlstate;i++)
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);            prlim[i][i]=probs[(int)age][i][ij];
   first=1;        }else{ /* mobilav */
   fprintf(ficgp,"\n# Routine varprob");          for(i=1; i<=nlstate;i++)
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");            prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(fichtm,"\n");        }
       }
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);               
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\      /* This for computing probability of death (h=1 means
   file %s<br>\n",optionfilehtmcov);         computed over hstepm (estepm) matrices product = hstepm*stepm months)
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\         as a weighted average of prlim.
 and drawn. It helps understanding how is the covariance between two incidences.\      */
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \        for(i=1,gmp[j]=0.;i<= nlstate; i++)
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \      }    
 standard deviations wide on each axis. <br>\      /* end probability of death */
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\  
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   cov[1]=1;        for(i=1; i<=nlstate;i++){
   tj=cptcoveff;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        }
   j1=0;      }
   for(t=1; t<=tj;t++){      fprintf(ficresprobmorprev,"\n");
     for(i1=1; i1<=ncodemax[t];i1++){   
       j1++;      fprintf(ficresvij,"%.0f ",age );
       if  (cptcovn>0) {      for(i=1; i<=nlstate;i++)
         fprintf(ficresprob, "\n#********** Variable ");         for(j=1; j<=nlstate;j++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         fprintf(ficresprob, "**********\n#\n");        }
         fprintf(ficresprobcov, "\n#********** Variable ");       fprintf(ficresvij,"\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      free_matrix(gp,0,nhstepm,1,nlstate);
         fprintf(ficresprobcov, "**********\n#\n");      free_matrix(gm,0,nhstepm,1,nlstate);
               free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         fprintf(ficgp, "\n#********** Variable ");       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficgp, "**********\n#\n");    } /* End age */
             free_vector(gpp,nlstate+1,nlstate+ndeath);
             free_vector(gmp,nlstate+1,nlstate+ndeath);
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
             /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         fprintf(ficresprobcor, "\n#********** Variable ");        fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficresprobcor, "**********\n#");      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
           fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       for (age=bage; age<=fage; age ++){     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         cov[2]=age;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         for (k=1; k<=cptcovn;k++) {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  */
         for (k=1; k<=cptcovprod;k++)  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    free_vector(xp,1,npar);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    free_matrix(doldm,1,nlstate,1,nlstate);
         gp=vector(1,(nlstate)*(nlstate+ndeath));    free_matrix(dnewm,1,nlstate,1,npar);
         gm=vector(1,(nlstate)*(nlstate+ndeath));    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         for(theta=1; theta <=npar; theta++){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for(i=1; i<=npar; i++)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    fclose(ficresprobmorprev);
               fflush(ficgp);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    fflush(fichtm);
             }  /* end varevsij */
           k=0;  
           for(i=1; i<= (nlstate); i++){  /************ Variance of prevlim ******************/
             for(j=1; j<=(nlstate+ndeath);j++){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
               k=k+1;  {
               gp[k]=pmmij[i][j];    /* Variance of prevalence limit */
             }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           }    double **newm;
               double **dnewm,**doldm;
           for(i=1; i<=npar; i++)    int i, j, nhstepm, hstepm;
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    int k, cptcode;
         double *xp;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double *gp, *gm;
           k=0;    double **gradg, **trgradg;
           for(i=1; i<=(nlstate); i++){    double age,agelim;
             for(j=1; j<=(nlstate+ndeath);j++){    int theta;
               k=k+1;   
               gm[k]=pmmij[i][j];    pstamp(ficresvpl);
             }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
           }    fprintf(ficresvpl,"# Age");
          for(i=1; i<=nlstate;i++)
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)         fprintf(ficresvpl," %1d-%1d",i,i);
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      fprintf(ficresvpl,"\n");
         }  
     xp=vector(1,npar);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    dnewm=matrix(1,nlstate,1,npar);
           for(theta=1; theta <=npar; theta++)    doldm=matrix(1,nlstate,1,nlstate);
             trgradg[j][theta]=gradg[theta][j];   
             hstepm=1*YEARM; /* Every year of age */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    agelim = AGESUP;
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      if (stepm >= YEARM) hstepm=1;
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
         pmij(pmmij,cov,ncovmodel,x,nlstate);      gp=vector(1,nlstate);
               gm=vector(1,nlstate);
         k=0;  
         for(i=1; i<=(nlstate); i++){      for(theta=1; theta <=npar; theta++){
           for(j=1; j<=(nlstate+ndeath);j++){        for(i=1; i<=npar; i++){ /* Computes gradient */
             k=k+1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             mu[k][(int) age]=pmmij[i][j];        }
           }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }        for(i=1;i<=nlstate;i++)
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          gp[i] = prlim[i][i];
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)     
             varpij[i][j][(int)age] = doldm[i][j];        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         /*printf("\n%d ",(int)age);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(i=1;i<=nlstate;i++)
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          gm[i] = prlim[i][i];
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           }*/        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         fprintf(ficresprob,"\n%d ",(int)age);      } /* End theta */
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);      trgradg =matrix(1,nlstate,1,npar);
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      for(j=1; j<=nlstate;j++)
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        for(theta=1; theta <=npar; theta++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          trgradg[j][theta]=gradg[theta][j];
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      for(i=1;i<=nlstate;i++)
         }        varpl[i][(int)age] =0.;
         i=0;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         for (k=1; k<=(nlstate);k++){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           for (l=1; l<=(nlstate+ndeath);l++){       for(i=1;i<=nlstate;i++)
             i=i++;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      fprintf(ficresvpl,"%.0f ",age );
             for (j=1; j<=i;j++){      for(i=1; i<=nlstate;i++)
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      fprintf(ficresvpl,"\n");
             }      free_vector(gp,1,nlstate);
           }      free_vector(gm,1,nlstate);
         }/* end of loop for state */      free_matrix(gradg,1,npar,1,nlstate);
       } /* end of loop for age */      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
       /* Confidence intervalle of pij  */  
       /*    free_vector(xp,1,npar);
         fprintf(ficgp,"\nset noparametric;unset label");    free_matrix(doldm,1,nlstate,1,npar);
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    free_matrix(dnewm,1,nlstate,1,nlstate);
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  }
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  /************ Variance of one-step probabilities  ******************/
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       */  {
     int i, j=0,  i1, k1, l1, t, tj;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    int k2, l2, j1,  z1;
       first1=1;    int k=0,l, cptcode;
       for (k2=1; k2<=(nlstate);k2++){    int first=1, first1;
         for (l2=1; l2<=(nlstate+ndeath);l2++){     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           if(l2==k2) continue;    double **dnewm,**doldm;
           j=(k2-1)*(nlstate+ndeath)+l2;    double *xp;
           for (k1=1; k1<=(nlstate);k1++){    double *gp, *gm;
             for (l1=1; l1<=(nlstate+ndeath);l1++){     double **gradg, **trgradg;
               if(l1==k1) continue;    double **mu;
               i=(k1-1)*(nlstate+ndeath)+l1;    double age,agelim, cov[NCOVMAX];
               if(i<=j) continue;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
               for (age=bage; age<=fage; age ++){     int theta;
                 if ((int)age %5==0){    char fileresprob[FILENAMELENGTH];
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    char fileresprobcov[FILENAMELENGTH];
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    char fileresprobcor[FILENAMELENGTH];
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;    double ***varpij;
                   mu2=mu[j][(int) age]/stepm*YEARM;  
                   c12=cv12/sqrt(v1*v2);    strcpy(fileresprob,"prob");
                   /* Computing eigen value of matrix of covariance */    strcat(fileresprob,fileres);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      printf("Problem with resultfile: %s\n", fileresprob);
                   /* Eigen vectors */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    }
                   /*v21=sqrt(1.-v11*v11); *//* error */    strcpy(fileresprobcov,"probcov");
                   v21=(lc1-v1)/cv12*v11;    strcat(fileresprobcov,fileres);
                   v12=-v21;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                   v22=v11;      printf("Problem with resultfile: %s\n", fileresprobcov);
                   tnalp=v21/v11;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   if(first1==1){    }
                     first1=0;    strcpy(fileresprobcor,"probcor");
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    strcat(fileresprobcor,fileres);
                   }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      printf("Problem with resultfile: %s\n", fileresprobcor);
                   /*printf(fignu*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    }
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   if(first==1){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                     first=0;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                     fprintf(ficgp,"\nset parametric;unset label");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    pstamp(ficresprob);
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\    fprintf(ficresprob,"# Age");
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\    pstamp(ficresprobcov);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(ficresprobcov,"# Age");
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    pstamp(ficresprobcor);
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    fprintf(ficresprobcor,"# Age");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    for(i=1; i<=nlstate;i++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      for(j=1; j<=(nlstate+ndeath);j++){
                   }else{        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                     first=0;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      }  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);   /* fprintf(ficresprob,"\n");
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    fprintf(ficresprobcov,"\n");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    fprintf(ficresprobcor,"\n");
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));   */
                   }/* if first */   xp=vector(1,npar);
                 } /* age mod 5 */    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               } /* end loop age */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
               first=1;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
             } /*l12 */    first=1;
           } /* k12 */    fprintf(ficgp,"\n# Routine varprob");
         } /*l1 */    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       }/* k1 */    fprintf(fichtm,"\n");
     } /* loop covariates */  
   }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    file %s<br>\n",optionfilehtmcov);
   free_vector(xp,1,npar);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   fclose(ficresprob);  and drawn. It helps understanding how is the covariance between two incidences.\
   fclose(ficresprobcov);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   fclose(ficresprobcor);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   fflush(ficgp);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   fflush(fichtmcov);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 }  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 /******************* Printing html file ***********/  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
                   int lastpass, int stepm, int weightopt, char model[],\    cov[1]=1;
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    tj=cptcoveff;
                   int popforecast, int estepm ,\    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
                   double jprev1, double mprev1,double anprev1, \    j1=0;
                   double jprev2, double mprev2,double anprev2){    for(t=1; t<=tj;t++){
   int jj1, k1, i1, cpt;      for(i1=1; i1<=ncodemax[t];i1++){
         j1++;
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \        if  (cptcovn>0) {
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \          fprintf(ficresprob, "\n#********** Variable ");
 </ul>");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \          fprintf(ficresprob, "**********\n#\n");
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",          fprintf(ficresprobcov, "\n#********** Variable ");
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    fprintf(fichtm,"\          fprintf(ficresprobcov, "**********\n#\n");
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",         
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));          fprintf(ficgp, "\n#********** Variable ");
    fprintf(fichtm,"\          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",          fprintf(ficgp, "**********\n#\n");
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));         
    fprintf(fichtm,"\         
  - Life expectancies by age and initial health status (estepm=%2d months): \          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
    <a href=\"%s\">%s</a> <br>\n</li>",          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
          
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  m=cptcoveff;          fprintf(ficresprobcor, "**********\n#");    
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        }
        
  jj1=0;        for (age=bage; age<=fage; age ++){
  for(k1=1; k1<=m;k1++){          cov[2]=age;
    for(i1=1; i1<=ncodemax[k1];i1++){          for (k=1; k<=cptcovn;k++) {
      jj1++;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
      if (cptcovn > 0) {          }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
        for (cpt=1; cpt<=cptcoveff;cpt++)           for (k=1; k<=cptcovprod;k++)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");         
      }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
      /* Pij */          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \          gp=vector(1,(nlstate)*(nlstate+ndeath));
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);               gm=vector(1,(nlstate)*(nlstate+ndeath));
      /* Quasi-incidences */     
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\          for(theta=1; theta <=npar; theta++){
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \            for(i=1; i<=npar; i++)
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
        /* Stable prevalence in each health state */           
        for(cpt=1; cpt<nlstate;cpt++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \           
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);            k=0;
        }            for(i=1; i<= (nlstate); i++){
      for(cpt=1; cpt<=nlstate;cpt++) {              for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \                k=k+1;
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);                gp[k]=pmmij[i][j];
      }              }
    } /* end i1 */            }
  }/* End k1 */           
  fprintf(fichtm,"</ul>");            for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
      
  fprintf(fichtm,"\            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\            k=0;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",                k=k+1;
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));                gm[k]=pmmij[i][j];
  fprintf(fichtm,"\              }
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",            }
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
  fprintf(fichtm,"\              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",          }
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));  
  fprintf(fichtm,"\          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",            for(theta=1; theta <=npar; theta++)
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));              trgradg[j][theta]=gradg[theta][j];
  fprintf(fichtm,"\         
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
  fprintf(fichtm,"\          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 /*  if(popforecast==1) fprintf(fichtm,"\n */  
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */          pmij(pmmij,cov,ncovmodel,x,nlstate);
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */         
 /*      <br>",fileres,fileres,fileres,fileres); */          k=0;
 /*  else  */          for(i=1; i<=(nlstate); i++){
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */            for(j=1; j<=(nlstate+ndeath);j++){
  fflush(fichtm);              k=k+1;
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");              mu[k][(int) age]=pmmij[i][j];
             }
  m=cptcoveff;          }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
  jj1=0;              varpij[i][j][(int)age] = doldm[i][j];
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){          /*printf("\n%d ",(int)age);
      jj1++;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
      if (cptcovn > 0) {            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        for (cpt=1; cpt<=cptcoveff;cpt++)             }*/
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          fprintf(ficresprob,"\n%d ",(int)age);
      }          fprintf(ficresprobcov,"\n%d ",(int)age);
      for(cpt=1; cpt<=nlstate;cpt++) {          fprintf(ficresprobcor,"\n%d ",(int)age);
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \  
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);              fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
      }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 health expectancies in states (1) and (2): %s%d.png<br>\            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);          }
    } /* end i1 */          i=0;
  }/* End k1 */          for (k=1; k<=(nlstate);k++){
  fprintf(fichtm,"</ul>");            for (l=1; l<=(nlstate+ndeath);l++){
  fflush(fichtm);              i=i++;
 }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 /******************* Gnuplot file **************/              for (j=1; j<=i;j++){
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   char dirfileres[132],optfileres[132];              }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            }
   int ng;          }/* end of loop for state */
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */        } /* end of loop for age */
 /*     printf("Problem with file %s",optionfilegnuplot); */  
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */        /* Confidence intervalle of pij  */
 /*   } */        /*
           fprintf(ficgp,"\nset noparametric;unset label");
   /*#ifdef windows */          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   fprintf(ficgp,"cd \"%s\" \n",pathc);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     /*#endif */          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   m=pow(2,cptcoveff);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   strcpy(dirfileres,optionfilefiname);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   strcpy(optfileres,"vpl");        */
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
    for (k1=1; k1<= m ; k1 ++) {        first1=1;
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);        for (k2=1; k2<=(nlstate);k2++){
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);          for (l2=1; l2<=(nlstate+ndeath);l2++){
      fprintf(ficgp,"set xlabel \"Age\" \n\            if(l2==k2) continue;
 set ylabel \"Probability\" \n\            j=(k2-1)*(nlstate+ndeath)+l2;
 set ter png small\n\            for (k1=1; k1<=(nlstate);k1++){
 set size 0.65,0.65\n\              for (l1=1; l1<=(nlstate+ndeath);l1++){
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
      for (i=1; i<= nlstate ; i ++) {                if(i<=j) continue;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                for (age=bage; age<=fage; age ++){
        else fprintf(ficgp," \%%*lf (\%%*lf)");                  if ((int)age %5==0){
      }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
      for (i=1; i<= nlstate ; i ++) {                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                    mu1=mu[i][(int) age]/stepm*YEARM ;
        else fprintf(ficgp," \%%*lf (\%%*lf)");                    mu2=mu[j][(int) age]/stepm*YEARM;
      }                     c12=cv12/sqrt(v1*v2);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);                     /* Computing eigen value of matrix of covariance */
      for (i=1; i<= nlstate ; i ++) {                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
        else fprintf(ficgp," \%%*lf (\%%*lf)");                    /* Eigen vectors */
      }                      v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));                    /*v21=sqrt(1.-v11*v11); *//* error */
    }                    v21=(lc1-v1)/cv12*v11;
   }                    v12=-v21;
   /*2 eme*/                    v22=v11;
                       tnalp=v21/v11;
   for (k1=1; k1<= m ; k1 ++) {                     if(first1==1){
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);                      first1=0;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                         }
     for (i=1; i<= nlstate+1 ; i ++) {                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       k=2*i;                    /*printf(fignu*/
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       for (j=1; j<= nlstate+1 ; j ++) {                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    if(first==1){
         else fprintf(ficgp," \%%*lf (\%%*lf)");                      first=0;
       }                         fprintf(ficgp,"\nset parametric;unset label");
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       for (j=1; j<= nlstate+1 ; j ++) {   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
         else fprintf(ficgp," \%%*lf (\%%*lf)");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       }                                 subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficgp,"\" t\"\" w l 0,");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       for (j=1; j<= nlstate+1 ; j ++) {                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         else fprintf(ficgp," \%%*lf (\%%*lf)");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       }                         fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       else fprintf(ficgp,"\" t\"\" w l 0,");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     }                    }else{
   }                      first=0;
                         fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   /*3eme*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                         fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   for (k1=1; k1<= m ; k1 ++) {                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     for (cpt=1; cpt<= nlstate ; cpt ++) {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       k=2+nlstate*(2*cpt-2);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);                    }/* if first */
       fprintf(ficgp,"set ter png small\n\                  } /* age mod 5 */
 set size 0.65,0.65\n\                } /* end loop age */
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                first=1;
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              } /*l12 */
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            } /* k12 */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          } /*l1 */
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        }/* k1 */
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      } /* loop covariates */
             }
       */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       for (i=1; i< nlstate ; i ++) {    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       }     free_vector(xp,1,npar);
     }    fclose(ficresprob);
   }    fclose(ficresprobcov);
       fclose(ficresprobcor);
   /* CV preval stable (period) */    fflush(ficgp);
   for (k1=1; k1<= m ; k1 ++) {     fflush(fichtmcov);
     for (cpt=1; cpt<=nlstate ; cpt ++) {  }
       k=3;  
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\  /******************* Printing html file ***********/
 set ter png small\nset size 0.65,0.65\n\  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
 unset log y\n\                    int lastpass, int stepm, int weightopt, char model[],\
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                           int popforecast, int estepm ,\
       for (i=1; i< nlstate ; i ++)                    double jprev1, double mprev1,double anprev1, \
         fprintf(ficgp,"+$%d",k+i+1);                    double jprev2, double mprev2,double anprev2){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    int jj1, k1, i1, cpt;
         
       l=3+(nlstate+ndeath)*cpt;     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
       for (i=1; i< nlstate ; i ++) {  </ul>");
         l=3+(nlstate+ndeath)*cpt;     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
         fprintf(ficgp,"+$%d",l+i+1);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        fprintf(fichtm,"\
     }    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   }               stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
        fprintf(fichtm,"\
   /* proba elementaires */   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   for(i=1,jk=1; i <=nlstate; i++){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     for(k=1; k <=(nlstate+ndeath); k++){     fprintf(fichtm,"\
       if (k != i) {   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
         for(j=1; j <=ncovmodel; j++){     <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
           jk++;      fprintf(fichtm,"\
           fprintf(ficgp,"\n");   - Population projections by age and states: \
         }     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
       }  
     }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
    }  
    m=cptcoveff;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);    jj1=0;
        if (ng==2)   for(k1=1; k1<=m;k1++){
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");     for(i1=1; i1<=ncodemax[k1];i1++){
        else       jj1++;
          fprintf(ficgp,"\nset title \"Probability\"\n");       if (cptcovn > 0) {
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        i=1;         for (cpt=1; cpt<=cptcoveff;cpt++)
        for(k2=1; k2<=nlstate; k2++) {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          k3=i;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
          for(k=1; k<=(nlstate+ndeath); k++) {       }
            if (k != k2){       /* Pij */
              if(ng==2)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
              else       /* Quasi-incidences */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
              ij=1;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
              for(j=3; j <=ncovmodel; j++) {  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {         /* Period (stable) prevalence in each health state */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);         for(cpt=1; cpt<nlstate;cpt++){
                  ij++;           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
                }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
                else         }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       for(cpt=1; cpt<=nlstate;cpt++) {
              }          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
              fprintf(ficgp,")/(1");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
                     }
              for(k1=1; k1 <=nlstate; k1++){        } /* end i1 */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);   }/* End k1 */
                ij=1;   fprintf(fichtm,"</ul>");
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);   fprintf(fichtm,"\
                    ij++;  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
                  }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
                  else  
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
                fprintf(ficgp,")");   fprintf(fichtm,"\
              }   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;   fprintf(fichtm,"\
            }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
          } /* end k */           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
        } /* end k2 */   fprintf(fichtm,"\
      } /* end jk */   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
    } /* end ng */     <a href=\"%s\">%s</a> <br>\n</li>",
    fflush(ficgp);              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 }  /* end gnuplot */   fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
 /*************** Moving average **************/             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   int i, cpt, cptcod;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   int modcovmax =1;   fprintf(fichtm,"\
   int mobilavrange, mob;   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
   double age;           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
                            a covariate has 2 modalities */           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */  
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     if(mobilav==1) mobilavrange=5; /* default */  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     else mobilavrange=mobilav;  /*      <br>",fileres,fileres,fileres,fileres); */
     for (age=bage; age<=fage; age++)  /*  else  */
       for (i=1; i<=nlstate;i++)  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
         for (cptcod=1;cptcod<=modcovmax;cptcod++)   fflush(fichtm);
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     /* We keep the original values on the extreme ages bage, fage and for   
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2   m=cptcoveff;
        we use a 5 terms etc. until the borders are no more concerned.    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     */   
     for (mob=3;mob <=mobilavrange;mob=mob+2){   jj1=0;
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){   for(k1=1; k1<=m;k1++){
         for (i=1; i<=nlstate;i++){     for(i1=1; i1<=ncodemax[k1];i1++){
           for (cptcod=1;cptcod<=modcovmax;cptcod++){       jj1++;
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];       if (cptcovn > 0) {
               for (cpt=1;cpt<=(mob-1)/2;cpt++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];         for (cpt=1; cpt<=cptcoveff;cpt++)
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
               }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;       }
           }       for(cpt=1; cpt<=nlstate;cpt++) {
         }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       }/* end age */  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     }/* end mob */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   }else return -1;       }
   return 0;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 }/* End movingaverage */  health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
 /************** Forecasting ******************/   }/* End k1 */
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){   fprintf(fichtm,"</ul>");
   /* proj1, year, month, day of starting projection    fflush(fichtm);
      agemin, agemax range of age  }
      dateprev1 dateprev2 range of dates during which prevalence is computed  
      anproj2 year of en of projection (same day and month as proj1).  /******************* Gnuplot file **************/
   */  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;  
   int *popage;    char dirfileres[132],optfileres[132];
   double agec; /* generic age */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    int ng;
   double *popeffectif,*popcount;  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   double ***p3mat;  /*     printf("Problem with file %s",optionfilegnuplot); */
   double ***mobaverage;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   char fileresf[FILENAMELENGTH];  /*   } */
   
   agelim=AGESUP;    /*#ifdef windows */
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    fprintf(ficgp,"cd \"%s\" \n",pathc);
        /*#endif */
   strcpy(fileresf,"f");     m=pow(2,cptcoveff);
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {    strcpy(dirfileres,optionfilefiname);
     printf("Problem with forecast resultfile: %s\n", fileresf);    strcpy(optfileres,"vpl");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);   /* 1eme*/
   }    for (cpt=1; cpt<= nlstate ; cpt ++) {
   printf("Computing forecasting: result on file '%s' \n", fileresf);     for (k1=1; k1<= m ; k1 ++) {
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   if (mobilav!=0) {  set ter png small\n\
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  set size 0.65,0.65\n\
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);       for (i=1; i<= nlstate ; i ++) {
     }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   }         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
   stepsize=(int) (stepm+YEARM-1)/YEARM;       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   if (stepm<=12) stepsize=1;       for (i=1; i<= nlstate ; i ++) {
   if(estepm < stepm){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf ("Problem %d lower than %d\n",estepm, stepm);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }
   else  hstepm=estepm;          fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
   hstepm=hstepm/stepm;          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and         else fprintf(ficgp," \%%*lf (\%%*lf)");
                                fractional in yp1 */       }  
   anprojmean=yp;       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   yp2=modf((yp1*12),&yp);     }
   mprojmean=yp;    }
   yp1=modf((yp2*30.5),&yp);    /*2 eme*/
   jprojmean=yp;   
   if(jprojmean==0) jprojmean=1;    for (k1=1; k1<= m ; k1 ++) {
   if(mprojmean==0) jprojmean=1;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   i1=cptcoveff;     
   if (cptcovn < 1){i1=1;}      for (i=1; i<= nlstate+1 ; i ++) {
           k=2*i;
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(ficresf,"#****** Routine prevforecast **\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
 /*            if (h==(int)(YEARM*yearp)){ */        }  
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       k=k+1;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fprintf(ficresf,"\n#******");        for (j=1; j<= nlstate+1 ; j ++) {
       for(j=1;j<=cptcoveff;j++) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       }        }  
       fprintf(ficresf,"******\n");        fprintf(ficgp,"\" t\"\" w l 0,");
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(j=1; j<=nlstate+ndeath;j++){         for (j=1; j<= nlstate+1 ; j ++) {
         for(i=1; i<=nlstate;i++)                        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficresf," p%d%d",i,j);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficresf," p.%d",j);        }  
       }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {         else fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficresf,"\n");      }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);       }
    
         for (agec=fage; agec>=(ageminpar-1); agec--){     /*3eme*/
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;     for (k1=1; k1<= m ; k1 ++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (cpt=1; cpt<= nlstate ; cpt ++) {
           oldm=oldms;savm=savms;        /*       k=2+nlstate*(2*cpt-2); */
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);          k=2+(nlstate+1)*(cpt-1);
                 fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
           for (h=0; h<=nhstepm; h++){        fprintf(ficgp,"set ter png small\n\
             if (h*hstepm/YEARM*stepm ==yearp) {  set size 0.65,0.65\n\
               fprintf(ficresf,"\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
               for(j=1;j<=cptcoveff;j++)         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             }           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             for(j=1; j<=nlstate+ndeath;j++) {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
               ppij=0.;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
               for(i=1; i<=nlstate;i++) {         
                 if (mobilav==1)         */
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];        for (i=1; i< nlstate ; i ++) {
                 else {          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                 }         
                 if (h*hstepm/YEARM*stepm== yearp) {        }
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
                 }      }
               } /* end i */    }
               if (h*hstepm/YEARM*stepm==yearp) {   
                 fprintf(ficresf," %.3f", ppij);    /* CV preval stable (period) */
               }    for (k1=1; k1<= m ; k1 ++) {
             }/* end j */      for (cpt=1; cpt<=nlstate ; cpt ++) {
           } /* end h */        k=3;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         } /* end agec */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       } /* end yearp */  set ter png small\nset size 0.65,0.65\n\
     } /* end cptcod */  unset log y\n\
   } /* end  cptcov */  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
               
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
   fclose(ficresf);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 }       
         l=3+(nlstate+ndeath)*cpt;
 /************** Forecasting *****not tested NB*************/        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        for (i=1; i< nlstate ; i ++) {
             l=3+(nlstate+ndeath)*cpt;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          fprintf(ficgp,"+$%d",l+i+1);
   int *popage;        }
   double calagedatem, agelim, kk1, kk2;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   double *popeffectif,*popcount;      }
   double ***p3mat,***tabpop,***tabpopprev;    }  
   double ***mobaverage;   
   char filerespop[FILENAMELENGTH];    /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(k=1; k <=(nlstate+ndeath); k++){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if (k != i) {
   agelim=AGESUP;          for(j=1; j <=ncovmodel; j++){
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
               jk++;
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);            fprintf(ficgp,"\n");
             }
           }
   strcpy(filerespop,"pop");       }
   strcat(filerespop,fileres);     }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);       for(jk=1; jk <=m; jk++) {
   }         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
   printf("Computing forecasting: result on file '%s' \n", filerespop);         if (ng==2)
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
   if (cptcoveff==0) ncodemax[cptcoveff]=1;           fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   if (mobilav!=0) {         i=1;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         for(k2=1; k2<=nlstate; k2++) {
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){           k3=i;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);           for(k=1; k<=(nlstate+ndeath); k++) {
       printf(" Error in movingaverage mobilav=%d\n",mobilav);             if (k != k2){
     }               if(ng==2)
   }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
   stepsize=(int) (stepm+YEARM-1)/YEARM;                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   if (stepm<=12) stepsize=1;               ij=1;
                  for(j=3; j <=ncovmodel; j++) {
   agelim=AGESUP;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   hstepm=1;                   ij++;
   hstepm=hstepm/stepm;                  }
                    else
   if (popforecast==1) {                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     if((ficpop=fopen(popfile,"r"))==NULL) {               }
       printf("Problem with population file : %s\n",popfile);exit(0);               fprintf(ficgp,")/(1");
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);               
     }                for(k1=1; k1 <=nlstate; k1++){  
     popage=ivector(0,AGESUP);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     popeffectif=vector(0,AGESUP);                 ij=1;
     popcount=vector(0,AGESUP);                 for(j=3; j <=ncovmodel; j++){
                        if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     i=1;                        fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                     ij++;
                       }
     imx=i;                   else
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   }                 }
                  fprintf(ficgp,")");
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){               }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       k=k+1;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       fprintf(ficrespop,"\n#******");               i=i+ncovmodel;
       for(j=1;j<=cptcoveff;j++) {             }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           } /* end k */
       }         } /* end k2 */
       fprintf(ficrespop,"******\n");       } /* end jk */
       fprintf(ficrespop,"# Age");     } /* end ng */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);     fflush(ficgp);
       if (popforecast==1)  fprintf(ficrespop," [Population]");  }  /* end gnuplot */
         
       for (cpt=0; cpt<=0;cpt++) {   
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     /*************** Moving average **************/
           int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     int i, cpt, cptcod;
           nhstepm = nhstepm/hstepm;     int modcovmax =1;
               int mobilavrange, mob;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double age;
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
                                      a covariate has 2 modalities */
           for (h=0; h<=nhstepm; h++){    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
             if (h==(int) (calagedatem+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             }       if(mobilav==1) mobilavrange=5; /* default */
             for(j=1; j<=nlstate+ndeath;j++) {      else mobilavrange=mobilav;
               kk1=0.;kk2=0;      for (age=bage; age<=fage; age++)
               for(i=1; i<=nlstate;i++) {                      for (i=1; i<=nlstate;i++)
                 if (mobilav==1)           for (cptcod=1;cptcod<=modcovmax;cptcod++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                 else {      /* We keep the original values on the extreme ages bage, fage and for
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                 }         we use a 5 terms etc. until the borders are no more concerned.
               }      */
               if (h==(int)(calagedatem+12*cpt)){      for (mob=3;mob <=mobilavrange;mob=mob+2){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
                   /*fprintf(ficrespop," %.3f", kk1);          for (i=1; i<=nlstate;i++){
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               }              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
             }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
             for(i=1; i<=nlstate;i++){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
               kk1=0.;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 for(j=1; j<=nlstate;j++){                }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                 }            }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];          }
             }        }/* end age */
       }/* end mob */
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)     }else return -1;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    return 0;
           }  }/* End movingaverage */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }  
       }  /************** Forecasting ******************/
    prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   /******/    /* proj1, year, month, day of starting projection
        agemin, agemax range of age
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        dateprev1 dateprev2 range of dates during which prevalence is computed
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          anproj2 year of en of projection (same day and month as proj1).
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){     */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
           nhstepm = nhstepm/hstepm;     int *popage;
               double agec; /* generic age */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
           oldm=oldms;savm=savms;    double *popeffectif,*popcount;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double ***p3mat;
           for (h=0; h<=nhstepm; h++){    double ***mobaverage;
             if (h==(int) (calagedatem+YEARM*cpt)) {    char fileresf[FILENAMELENGTH];
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }     agelim=AGESUP;
             for(j=1; j<=nlstate+ndeath;j++) {    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
               kk1=0.;kk2=0;   
               for(i=1; i<=nlstate;i++) {                  strcpy(fileresf,"f");
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        strcat(fileresf,fileres);
               }    if((ficresf=fopen(fileresf,"w"))==NULL) {
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);              printf("Problem with forecast resultfile: %s\n", fileresf);
             }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("Computing forecasting: result on file '%s' \n", fileresf);
         }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
       }  
    }     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   }  
      if (mobilav!=0) {
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   if (popforecast==1) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     free_ivector(popage,0,AGESUP);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     free_vector(popeffectif,0,AGESUP);      }
     free_vector(popcount,0,AGESUP);    }
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if (stepm<=12) stepsize=1;
   fclose(ficrespop);    if(estepm < stepm){
 } /* End of popforecast */      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
 int fileappend(FILE *fichier, char *optionfich)    else  hstepm=estepm;  
 {  
   if((fichier=fopen(optionfich,"a"))==NULL) {    hstepm=hstepm/stepm;
     printf("Problem with file: %s\n", optionfich);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     fprintf(ficlog,"Problem with file: %s\n", optionfich);                                 fractional in yp1 */
     return (0);    anprojmean=yp;
   }    yp2=modf((yp1*12),&yp);
   fflush(fichier);    mprojmean=yp;
   return (1);    yp1=modf((yp2*30.5),&yp);
 }    jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
 /**************** function prwizard **********************/  
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)    i1=cptcoveff;
 {    if (cptcovn < 1){i1=1;}
    
   /* Wizard to print covariance matrix template */    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
    
   char ca[32], cb[32], cc[32];    fprintf(ficresf,"#****** Routine prevforecast **\n");
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;  
   int numlinepar;  /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        k=k+1;
   for(i=1; i <=nlstate; i++){        fprintf(ficresf,"\n#******");
     jj=0;        for(j=1;j<=cptcoveff;j++) {
     for(j=1; j <=nlstate+ndeath; j++){          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       if(j==i) continue;        }
       jj++;        fprintf(ficresf,"******\n");
       /*ca[0]= k+'a'-1;ca[1]='\0';*/        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
       printf("%1d%1d",i,j);        for(j=1; j<=nlstate+ndeath;j++){
       fprintf(ficparo,"%1d%1d",i,j);          for(i=1; i<=nlstate;i++)              
       for(k=1; k<=ncovmodel;k++){            fprintf(ficresf," p%d%d",i,j);
         /*        printf(" %lf",param[i][j][k]); */          fprintf(ficresf," p.%d",j);
         /*        fprintf(ficparo," %lf",param[i][j][k]); */        }
         printf(" 0.");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
         fprintf(ficparo," 0.");          fprintf(ficresf,"\n");
       }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
       printf("\n");  
       fprintf(ficparo,"\n");          for (agec=fage; agec>=(ageminpar-1); agec--){
     }            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   }            nhstepm = nhstepm/hstepm;
   printf("# Scales (for hessian or gradient estimation)\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");            oldm=oldms;savm=savms;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   for(i=1; i <=nlstate; i++){         
     jj=0;            for (h=0; h<=nhstepm; h++){
     for(j=1; j <=nlstate+ndeath; j++){              if (h*hstepm/YEARM*stepm ==yearp) {
       if(j==i) continue;                fprintf(ficresf,"\n");
       jj++;                for(j=1;j<=cptcoveff;j++)
       fprintf(ficparo,"%1d%1d",i,j);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       printf("%1d%1d",i,j);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       fflush(stdout);              }
       for(k=1; k<=ncovmodel;k++){              for(j=1; j<=nlstate+ndeath;j++) {
         /*      printf(" %le",delti3[i][j][k]); */                ppij=0.;
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */                for(i=1; i<=nlstate;i++) {
         printf(" 0.");                  if (mobilav==1)
         fprintf(ficparo," 0.");                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       }                  else {
       numlinepar++;                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
       printf("\n");                  }
       fprintf(ficparo,"\n");                  if (h*hstepm/YEARM*stepm== yearp) {
     }                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   }                  }
   printf("# Covariance matrix\n");                } /* end i */
 /* # 121 Var(a12)\n\ */                if (h*hstepm/YEARM*stepm==yearp) {
 /* # 122 Cov(b12,a12) Var(b12)\n\ */                  fprintf(ficresf," %.3f", ppij);
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */                }
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */              }/* end j */
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */            } /* end h */
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */          } /* end agec */
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */        } /* end yearp */
   fflush(stdout);      } /* end cptcod */
   fprintf(ficparo,"# Covariance matrix\n");    } /* end  cptcov */
   /* # 121 Var(a12)\n\ */         
   /* # 122 Cov(b12,a12) Var(b12)\n\ */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* #   ...\n\ */  
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */    fclose(ficresf);
     }
   for(itimes=1;itimes<=2;itimes++){  
     jj=0;  /************** Forecasting *****not tested NB*************/
     for(i=1; i <=nlstate; i++){  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
       for(j=1; j <=nlstate+ndeath; j++){   
         if(j==i) continue;    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
         for(k=1; k<=ncovmodel;k++){    int *popage;
           jj++;    double calagedatem, agelim, kk1, kk2;
           ca[0]= k+'a'-1;ca[1]='\0';    double *popeffectif,*popcount;
           if(itimes==1){    double ***p3mat,***tabpop,***tabpopprev;
             printf("#%1d%1d%d",i,j,k);    double ***mobaverage;
             fprintf(ficparo,"#%1d%1d%d",i,j,k);    char filerespop[FILENAMELENGTH];
           }else{  
             printf("%1d%1d%d",i,j,k);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             fprintf(ficparo,"%1d%1d%d",i,j,k);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             /*  printf(" %.5le",matcov[i][j]); */    agelim=AGESUP;
           }    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
           ll=0;   
           for(li=1;li <=nlstate; li++){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
             for(lj=1;lj <=nlstate+ndeath; lj++){   
               if(lj==li) continue;   
               for(lk=1;lk<=ncovmodel;lk++){    strcpy(filerespop,"pop");
                 ll++;    strcat(filerespop,fileres);
                 if(ll<=jj){    if((ficrespop=fopen(filerespop,"w"))==NULL) {
                   cb[0]= lk +'a'-1;cb[1]='\0';      printf("Problem with forecast resultfile: %s\n", filerespop);
                   if(ll<jj){      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
                     if(itimes==1){    }
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    printf("Computing forecasting: result on file '%s' \n", filerespop);
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
                     }else{  
                       printf(" 0.");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
                       fprintf(ficparo," 0.");  
                     }    if (mobilav!=0) {
                   }else{      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                     if(itimes==1){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                       printf(" Var(%s%1d%1d)",ca,i,j);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                     }else{      }
                       printf(" 0.");    }
                       fprintf(ficparo," 0.");  
                     }    stepsize=(int) (stepm+YEARM-1)/YEARM;
                   }    if (stepm<=12) stepsize=1;
                 }   
               } /* end lk */    agelim=AGESUP;
             } /* end lj */   
           } /* end li */    hstepm=1;
           printf("\n");    hstepm=hstepm/stepm;
           fprintf(ficparo,"\n");   
           numlinepar++;    if (popforecast==1) {
         } /* end k*/      if((ficpop=fopen(popfile,"r"))==NULL) {
       } /*end j */        printf("Problem with population file : %s\n",popfile);exit(0);
     } /* end i */        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   } /* end itimes */      }
       popage=ivector(0,AGESUP);
 } /* end of prwizard */      popeffectif=vector(0,AGESUP);
 /******************* Gompertz Likelihood ******************************/      popcount=vector(0,AGESUP);
 double gompertz(double x[])     
 {       i=1;  
   double A,B,L=0.0,sump=0.,num=0.;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   int i,n=0; /* n is the size of the sample */     
       imx=i;
   for (i=0;i<=imx-1 ; i++) {      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     sump=sump+weight[i];    }
     /*    sump=sump+1;*/  
     num=num+1;    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   }     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
          k=k+1;
          fprintf(ficrespop,"\n#******");
   /* for (i=0; i<=imx; i++)         for(j=1;j<=cptcoveff;j++) {
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
   for (i=1;i<=imx ; i++)        fprintf(ficrespop,"******\n");
     {        fprintf(ficrespop,"# Age");
       if (cens[i] == 1 && wav[i]>1)        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));        if (popforecast==1)  fprintf(ficrespop," [Population]");
              
       if (cens[i] == 0 && wav[i]>1)        for (cpt=0; cpt<=0;cpt++) {
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);           
                 for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
       if (wav[i] > 1 ) { /* ??? */            nhstepm = nhstepm/hstepm;
         L=L+A*weight[i];           
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }            oldm=oldms;savm=savms;
     }            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
          
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/            for (h=0; h<=nhstepm; h++){
                if (h==(int) (calagedatem+YEARM*cpt)) {
   return -2*L*num/sump;                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 }              }
               for(j=1; j<=nlstate+ndeath;j++) {
 /******************* Printing html file ***********/                kk1=0.;kk2=0;
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \                for(i=1; i<=nlstate;i++) {              
                   int lastpass, int stepm, int weightopt, char model[],\                  if (mobilav==1)
                   int imx,  double p[],double **matcov,double agemortsup){                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   int i,k;                  else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");                  }
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);                }
   for (i=1;i<=2;i++)                 if (h==(int)(calagedatem+12*cpt)){
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");                    /*fprintf(ficrespop," %.3f", kk1);
   fprintf(fichtm,"</ul>");                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");              }
               for(i=1; i<=nlstate;i++){
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");                kk1=0.;
                   for(j=1; j<=nlstate;j++){
  for (k=agegomp;k<(agemortsup-2);k++)                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);                  }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
                }
   fflush(fichtm);  
 }              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 /******************* Gnuplot file **************/            }
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
   char dirfileres[132],optfileres[132];        }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;   
   int ng;    /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
   /*#ifdef windows */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   fprintf(ficgp,"cd \"%s\" \n",pathc);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
     /*#endif */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
            
   strcpy(dirfileres,optionfilefiname);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(optfileres,"vpl");            oldm=oldms;savm=savms;
   fprintf(ficgp,"set out \"graphmort.png\"\n ");             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");             for (h=0; h<=nhstepm; h++){
   fprintf(ficgp, "set ter png small\n set log y\n");               if (h==(int) (calagedatem+YEARM*cpt)) {
   fprintf(ficgp, "set size 0.65,0.65\n");                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);              }
               for(j=1; j<=nlstate+ndeath;j++) {
 }                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
 /***********************************************/              }
 /**************** Main Program *****************/            }
 /***********************************************/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
 int main(int argc, char *argv[])        }
 {     }
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    }
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;   
   int linei, month, year,iout;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int jj, ll, li, lj, lk, imk;  
   int numlinepar=0; /* Current linenumber of parameter file */    if (popforecast==1) {
   int itimes;      free_ivector(popage,0,AGESUP);
   int NDIM=2;      free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
   char ca[32], cb[32], cc[32];    }
   char dummy[]="                         ";    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*  FILE *fichtm; *//* Html File */    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* FILE *ficgp;*/ /*Gnuplot File */    fclose(ficrespop);
   struct stat info;  } /* End of popforecast */
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  int fileappend(FILE *fichier, char *optionfich)
   {
   double fret;    if((fichier=fopen(optionfich,"a"))==NULL) {
   double **xi,tmp,delta;      printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
   double dum; /* Dummy variable */      return (0);
   double ***p3mat;    }
   double ***mobaverage;    fflush(fichier);
   int *indx;    return (1);
   char line[MAXLINE], linepar[MAXLINE];  }
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];  
   char pathr[MAXLINE], pathimach[MAXLINE];   
   int firstobs=1, lastobs=10;  /**************** function prwizard **********************/
   int sdeb, sfin; /* Status at beginning and end */  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   int c,  h , cpt,l;  {
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    /* Wizard to print covariance matrix template */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;   
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    char ca[32], cb[32], cc[32];
   int mobilav=0,popforecast=0;    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   int hstepm, nhstepm;    int numlinepar;
   int agemortsup;  
   float  sumlpop=0.;    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;    for(i=1; i <=nlstate; i++){
       jj=0;
   double bage, fage, age, agelim, agebase;      for(j=1; j <=nlstate+ndeath; j++){
   double ftolpl=FTOL;        if(j==i) continue;
   double **prlim;        jj++;
   double *severity;        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   double ***param; /* Matrix of parameters */        printf("%1d%1d",i,j);
   double  *p;        fprintf(ficparo,"%1d%1d",i,j);
   double **matcov; /* Matrix of covariance */        for(k=1; k<=ncovmodel;k++){
   double ***delti3; /* Scale */          /*        printf(" %lf",param[i][j][k]); */
   double *delti; /* Scale */          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   double ***eij, ***vareij;          printf(" 0.");
   double **varpl; /* Variances of prevalence limits by age */          fprintf(ficparo," 0.");
   double *epj, vepp;        }
   double kk1, kk2;        printf("\n");
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;        fprintf(ficparo,"\n");
   double **ximort;      }
   char *alph[]={"a","a","b","c","d","e"}, str[4];    }
   int *dcwave;    printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   char z[1]="c", occ;    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     for(i=1; i <=nlstate; i++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      jj=0;
   char strstart[80], *strt, strtend[80];      for(j=1; j <=nlstate+ndeath; j++){
   char *stratrunc;        if(j==i) continue;
   int lstra;        jj++;
         fprintf(ficparo,"%1d%1d",i,j);
   long total_usecs;        printf("%1d%1d",i,j);
          fflush(stdout);
 /*   setlocale (LC_ALL, ""); */        for(k=1; k<=ncovmodel;k++){
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */          /*      printf(" %le",delti3[i][j][k]); */
 /*   textdomain (PACKAGE); */          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
 /*   setlocale (LC_CTYPE, ""); */          printf(" 0.");
 /*   setlocale (LC_MESSAGES, ""); */          fprintf(ficparo," 0.");
         }
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        numlinepar++;
   (void) gettimeofday(&start_time,&tzp);        printf("\n");
   curr_time=start_time;        fprintf(ficparo,"\n");
   tm = *localtime(&start_time.tv_sec);      }
   tmg = *gmtime(&start_time.tv_sec);    }
   strcpy(strstart,asctime(&tm));    printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
 /*  printf("Localtime (at start)=%s",strstart); */  /* # 122 Cov(b12,a12) Var(b12)\n\ */
 /*  tp.tv_sec = tp.tv_sec +86400; */  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 /*  tm = *localtime(&start_time.tv_sec); */  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 /*   tmg.tm_hour=tmg.tm_hour + 1; */  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 /*   tp.tv_sec = mktime(&tmg); */  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 /*   strt=asctime(&tmg); */    fflush(stdout);
 /*   printf("Time(after) =%s",strstart);  */    fprintf(ficparo,"# Covariance matrix\n");
 /*  (void) time (&time_value);    /* # 121 Var(a12)\n\ */
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
 *  tm = *localtime(&time_value);    /* #   ...\n\ */
 *  strstart=asctime(&tm);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);    
 */    for(itimes=1;itimes<=2;itimes++){
       jj=0;
   nberr=0; /* Number of errors and warnings */      for(i=1; i <=nlstate; i++){
   nbwarn=0;        for(j=1; j <=nlstate+ndeath; j++){
   getcwd(pathcd, size);          if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
   printf("\n%s\n%s",version,fullversion);            jj++;
   if(argc <=1){            ca[0]= k+'a'-1;ca[1]='\0';
     printf("\nEnter the parameter file name: ");            if(itimes==1){
     scanf("%s",pathtot);              printf("#%1d%1d%d",i,j,k);
   }              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   else{            }else{
     strcpy(pathtot,argv[1]);              printf("%1d%1d%d",i,j,k);
   }              fprintf(ficparo,"%1d%1d%d",i,j,k);
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/              /*  printf(" %.5le",matcov[i][j]); */
   /*cygwin_split_path(pathtot,path,optionfile);            }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            ll=0;
   /* cutv(path,optionfile,pathtot,'\\');*/            for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
   /* Split argv[0], imach program to get pathimach */                if(lj==li) continue;
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);                for(lk=1;lk<=ncovmodel;lk++){
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);                  ll++;
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);                  if(ll<=jj){
  /*   strcpy(pathimach,argv[0]); */                    cb[0]= lk +'a'-1;cb[1]='\0';
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */                    if(ll<jj){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);                      if(itimes==1){
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   chdir(path);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   strcpy(command,"mkdir ");                      }else{
   strcat(command,optionfilefiname);                        printf(" 0.");
   if((outcmd=system(command)) != 0){                        fprintf(ficparo," 0.");
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);                      }
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */                    }else{
     /* fclose(ficlog); */                      if(itimes==1){
 /*     exit(1); */                        printf(" Var(%s%1d%1d)",ca,i,j);
   }                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
 /*   if((imk=mkdir(optionfilefiname))<0){ */                      }else{
 /*     perror("mkdir"); */                        printf(" 0.");
 /*   } */                        fprintf(ficparo," 0.");
                       }
   /*-------- arguments in the command line --------*/                    }
                   }
   /* Log file */                } /* end lk */
   strcat(filelog, optionfilefiname);              } /* end lj */
   strcat(filelog,".log");    /* */            } /* end li */
   if((ficlog=fopen(filelog,"w"))==NULL)    {            printf("\n");
     printf("Problem with logfile %s\n",filelog);            fprintf(ficparo,"\n");
     goto end;            numlinepar++;
   }          } /* end k*/
   fprintf(ficlog,"Log filename:%s\n",filelog);        } /*end j */
   fprintf(ficlog,"\n%s\n%s",version,fullversion);      } /* end i */
   fprintf(ficlog,"\nEnter the parameter file name: \n");    } /* end itimes */
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\  
  path=%s \n\  } /* end of prwizard */
  optionfile=%s\n\  /******************* Gompertz Likelihood ******************************/
  optionfilext=%s\n\  double gompertz(double x[])
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);  {
     double A,B,L=0.0,sump=0.,num=0.;
   printf("Local time (at start):%s",strstart);    int i,n=0; /* n is the size of the sample */
   fprintf(ficlog,"Local time (at start): %s",strstart);  
   fflush(ficlog);    for (i=0;i<=imx-1 ; i++) {
 /*   (void) gettimeofday(&curr_time,&tzp); */      sump=sump+weight[i];
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */      /*    sump=sump+1;*/
       num=num+1;
   /* */    }
   strcpy(fileres,"r");   
   strcat(fileres, optionfilefiname);   
   strcat(fileres,".txt");    /* Other files have txt extension */    /* for (i=0; i<=imx; i++)
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   /*---------arguments file --------*/  
     for (i=1;i<=imx ; i++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      {
     printf("Problem with optionfile %s\n",optionfile);        if (cens[i] == 1 && wav[i]>1)
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
     fflush(ficlog);       
     goto end;        if (cens[i] == 0 && wav[i]>1)
   }          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
        
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   strcpy(filereso,"o");        if (wav[i] > 1 ) { /* ??? */
   strcat(filereso,fileres);          L=L+A*weight[i];
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
     printf("Problem with Output resultfile: %s\n", filereso);        }
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);      }
     fflush(ficlog);  
     goto end;   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   }   
     return -2*L*num/sump;
   /* Reads comments: lines beginning with '#' */  }
   numlinepar=0;  
   while((c=getc(ficpar))=='#' && c!= EOF){  /******************* Printing html file ***********/
     ungetc(c,ficpar);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
     fgets(line, MAXLINE, ficpar);                    int lastpass, int stepm, int weightopt, char model[],\
     numlinepar++;                    int imx,  double p[],double **matcov,double agemortsup){
     puts(line);    int i,k;
     fputs(line,ficparo);  
     fputs(line,ficlog);    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   }    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   ungetc(c,ficpar);    for (i=1;i<=2;i++)
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   numlinepar++;    fprintf(fichtm,"</ul>");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
   fflush(ficlog);   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   for (k=agegomp;k<(agemortsup-2);k++)
     fgets(line, MAXLINE, ficpar);     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     numlinepar++;  
     puts(line);   
     fputs(line,ficparo);    fflush(fichtm);
     fputs(line,ficlog);  }
   }  
   ungetc(c,ficpar);  /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
      
   covar=matrix(0,NCOVMAX,1,n);     char dirfileres[132],optfileres[132];
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    int ng;
   
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /*#ifdef windows */
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/    fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=delti3[1][1];  
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    strcpy(dirfileres,optionfilefiname);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    strcpy(optfileres,"vpl");
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    fprintf(ficgp,"set out \"graphmort.png\"\n ");
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    fprintf(ficgp, "set ter png small\n set log y\n");
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     fprintf(ficgp, "set size 0.65,0.65\n");
     fclose (ficparo);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
     fclose (ficlog);  
     exit(0);  }
   }  
   else if(mle==-3) {  
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);  
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);  
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);  
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  /***********************************************/
     matcov=matrix(1,npar,1,npar);  /**************** Main Program *****************/
   }  /***********************************************/
   else{  
     /* Read guess parameters */  int main(int argc, char *argv[])
     /* Reads comments: lines beginning with '#' */  {
     while((c=getc(ficpar))=='#' && c!= EOF){    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
       ungetc(c,ficpar);    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
       fgets(line, MAXLINE, ficpar);    int linei, month, year,iout;
       numlinepar++;    int jj, ll, li, lj, lk, imk;
       puts(line);    int numlinepar=0; /* Current linenumber of parameter file */
       fputs(line,ficparo);    int itimes;
       fputs(line,ficlog);    int NDIM=2;
     }  
     ungetc(c,ficpar);    char ca[32], cb[32], cc[32];
         char dummy[]="                         ";
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /*  FILE *fichtm; *//* Html File */
     for(i=1; i <=nlstate; i++){    /* FILE *ficgp;*/ /*Gnuplot File */
       j=0;    struct stat info;
       for(jj=1; jj <=nlstate+ndeath; jj++){    double agedeb, agefin,hf;
         if(jj==i) continue;    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
         j++;  
         fscanf(ficpar,"%1d%1d",&i1,&j1);    double fret;
         if ((i1 != i) && (j1 != j)){    double **xi,tmp,delta;
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);  
           exit(1);    double dum; /* Dummy variable */
         }    double ***p3mat;
         fprintf(ficparo,"%1d%1d",i1,j1);    double ***mobaverage;
         if(mle==1)    int *indx;
           printf("%1d%1d",i,j);    char line[MAXLINE], linepar[MAXLINE];
         fprintf(ficlog,"%1d%1d",i,j);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
         for(k=1; k<=ncovmodel;k++){    char pathr[MAXLINE], pathimach[MAXLINE];
           fscanf(ficpar," %lf",&param[i][j][k]);    char **bp, *tok, *val; /* pathtot */
           if(mle==1){    int firstobs=1, lastobs=10;
             printf(" %lf",param[i][j][k]);    int sdeb, sfin; /* Status at beginning and end */
             fprintf(ficlog," %lf",param[i][j][k]);    int c,  h , cpt,l;
           }    int ju,jl, mi;
           else    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
             fprintf(ficlog," %lf",param[i][j][k]);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
           fprintf(ficparo," %lf",param[i][j][k]);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
         }    int mobilav=0,popforecast=0;
         fscanf(ficpar,"\n");    int hstepm, nhstepm;
         numlinepar++;    int agemortsup;
         if(mle==1)    float  sumlpop=0.;
           printf("\n");    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
         fprintf(ficlog,"\n");    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
         fprintf(ficparo,"\n");  
       }    double bage, fage, age, agelim, agebase;
     }      double ftolpl=FTOL;
     fflush(ficlog);    double **prlim;
     double *severity;
     p=param[1][1];    double ***param; /* Matrix of parameters */
         double  *p;
     /* Reads comments: lines beginning with '#' */    double **matcov; /* Matrix of covariance */
     while((c=getc(ficpar))=='#' && c!= EOF){    double ***delti3; /* Scale */
       ungetc(c,ficpar);    double *delti; /* Scale */
       fgets(line, MAXLINE, ficpar);    double ***eij, ***vareij;
       numlinepar++;    double **varpl; /* Variances of prevalence limits by age */
       puts(line);    double *epj, vepp;
       fputs(line,ficparo);    double kk1, kk2;
       fputs(line,ficlog);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     }    double **ximort;
     ungetc(c,ficpar);    char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
     for(i=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath-1; j++){    char z[1]="c", occ;
         fscanf(ficpar,"%1d%1d",&i1,&j1);  
         if ((i1-i)*(j1-j)!=0){    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    char  *strt, strtend[80];
           exit(1);    char *stratrunc;
         }    int lstra;
         printf("%1d%1d",i,j);  
         fprintf(ficparo,"%1d%1d",i1,j1);    long total_usecs;
         fprintf(ficlog,"%1d%1d",i1,j1);   
         for(k=1; k<=ncovmodel;k++){  /*   setlocale (LC_ALL, ""); */
           fscanf(ficpar,"%le",&delti3[i][j][k]);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
           printf(" %le",delti3[i][j][k]);  /*   textdomain (PACKAGE); */
           fprintf(ficparo," %le",delti3[i][j][k]);  /*   setlocale (LC_CTYPE, ""); */
           fprintf(ficlog," %le",delti3[i][j][k]);  /*   setlocale (LC_MESSAGES, ""); */
         }  
         fscanf(ficpar,"\n");    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
         numlinepar++;    (void) gettimeofday(&start_time,&tzp);
         printf("\n");    curr_time=start_time;
         fprintf(ficparo,"\n");    tm = *localtime(&start_time.tv_sec);
         fprintf(ficlog,"\n");    tmg = *gmtime(&start_time.tv_sec);
       }    strcpy(strstart,asctime(&tm));
     }  
     fflush(ficlog);  /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
     delti=delti3[1][1];  /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */  /*   tmg.tm_hour=tmg.tm_hour + 1; */
     /*   tp.tv_sec = mktime(&tmg); */
     /* Reads comments: lines beginning with '#' */  /*   strt=asctime(&tmg); */
     while((c=getc(ficpar))=='#' && c!= EOF){  /*   printf("Time(after) =%s",strstart);  */
       ungetc(c,ficpar);  /*  (void) time (&time_value);
       fgets(line, MAXLINE, ficpar);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
       numlinepar++;  *  tm = *localtime(&time_value);
       puts(line);  *  strstart=asctime(&tm);
       fputs(line,ficparo);  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
       fputs(line,ficlog);  */
     }  
     ungetc(c,ficpar);    nberr=0; /* Number of errors and warnings */
       nbwarn=0;
     matcov=matrix(1,npar,1,npar);    getcwd(pathcd, size);
     for(i=1; i <=npar; i++){  
       fscanf(ficpar,"%s",&str);    printf("\n%s\n%s",version,fullversion);
       if(mle==1)    if(argc <=1){
         printf("%s",str);      printf("\nEnter the parameter file name: ");
       fprintf(ficlog,"%s",str);      fgets(pathr,FILENAMELENGTH,stdin);
       fprintf(ficparo,"%s",str);      i=strlen(pathr);
       for(j=1; j <=i; j++){      if(pathr[i-1]=='\n')
         fscanf(ficpar," %le",&matcov[i][j]);        pathr[i-1]='\0';
         if(mle==1){     for (tok = pathr; tok != NULL; ){
           printf(" %.5le",matcov[i][j]);        printf("Pathr |%s|\n",pathr);
         }        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         fprintf(ficlog," %.5le",matcov[i][j]);        printf("val= |%s| pathr=%s\n",val,pathr);
         fprintf(ficparo," %.5le",matcov[i][j]);        strcpy (pathtot, val);
       }        if(pathr[0] == '\0') break; /* Dirty */
       fscanf(ficpar,"\n");      }
       numlinepar++;    }
       if(mle==1)    else{
         printf("\n");      strcpy(pathtot,argv[1]);
       fprintf(ficlog,"\n");    }
       fprintf(ficparo,"\n");    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     }    /*cygwin_split_path(pathtot,path,optionfile);
     for(i=1; i <=npar; i++)      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
       for(j=i+1;j<=npar;j++)    /* cutv(path,optionfile,pathtot,'\\');*/
         matcov[i][j]=matcov[j][i];  
         /* Split argv[0], imach program to get pathimach */
     if(mle==1)    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
       printf("\n");    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     fprintf(ficlog,"\n");    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
        /*   strcpy(pathimach,argv[0]); */
     fflush(ficlog);    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
         split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     /*-------- Rewriting parameter file ----------*/    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     strcpy(rfileres,"r");    /* "Rparameterfile */    chdir(path); /* Can be a relative path */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
     strcat(rfileres,".");    /* */      printf("Current directory %s!\n",pathcd);
     strcat(rfileres,optionfilext);    /* Other files have txt extension */    strcpy(command,"mkdir ");
     if((ficres =fopen(rfileres,"w"))==NULL) {    strcat(command,optionfilefiname);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    if((outcmd=system(command)) != 0){
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
     }      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
     fprintf(ficres,"#%s\n",version);      /* fclose(ficlog); */
   }    /* End of mle != -3 */  /*     exit(1); */
     }
   /*-------- data file ----------*/  /*   if((imk=mkdir(optionfilefiname))<0){ */
   if((fic=fopen(datafile,"r"))==NULL)    {  /*     perror("mkdir"); */
     printf("Problem with datafile: %s\n", datafile);goto end;  /*   } */
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;  
   }    /*-------- arguments in the command line --------*/
   
   n= lastobs;    /* Log file */
   severity = vector(1,maxwav);    strcat(filelog, optionfilefiname);
   outcome=imatrix(1,maxwav+1,1,n);    strcat(filelog,".log");    /* */
   num=lvector(1,n);    if((ficlog=fopen(filelog,"w"))==NULL)    {
   moisnais=vector(1,n);      printf("Problem with logfile %s\n",filelog);
   annais=vector(1,n);      goto end;
   moisdc=vector(1,n);    }
   andc=vector(1,n);    fprintf(ficlog,"Log filename:%s\n",filelog);
   agedc=vector(1,n);    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   cod=ivector(1,n);    fprintf(ficlog,"\nEnter the parameter file name: \n");
   weight=vector(1,n);    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */   path=%s \n\
   mint=matrix(1,maxwav,1,n);   optionfile=%s\n\
   anint=matrix(1,maxwav,1,n);   optionfilext=%s\n\
   s=imatrix(1,maxwav+1,1,n);   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   tab=ivector(1,NCOVMAX);  
   ncodemax=ivector(1,8);    printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
   i=1;    fflush(ficlog);
   linei=0;  /*   (void) gettimeofday(&curr_time,&tzp); */
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
     linei=linei+1;  
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */    /* */
       if(line[j] == '\t')    strcpy(fileres,"r");
         line[j] = ' ';    strcat(fileres, optionfilefiname);
     }    strcat(fileres,".txt");    /* Other files have txt extension */
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){  
       ;    /*---------arguments file --------*/
     };  
     line[j+1]=0;  /* Trims blanks at end of line */    if((ficpar=fopen(optionfile,"r"))==NULL)    {
     if(line[0]=='#'){      printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Comment line\n%s\n",line);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       printf("Comment line\n%s\n",line);      fflush(ficlog);
       continue;      goto end;
     }    }
   
     for (j=maxwav;j>=1;j--){  
       cutv(stra, strb,line,' ');   
       errno=0;    strcpy(filereso,"o");
       lval=strtol(strb,&endptr,10);     strcat(filereso,fileres);
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       if( strb[0]=='\0' || (*endptr != '\0')){      printf("Problem with Output resultfile: %s\n", filereso);
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
         exit(1);      fflush(ficlog);
       }      goto end;
       s[j][i]=lval;    }
         
       strcpy(line,stra);    /* Reads comments: lines beginning with '#' */
       cutv(stra, strb,line,' ');    numlinepar=0;
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    while((c=getc(ficpar))=='#' && c!= EOF){
       }      ungetc(c,ficpar);
       else  if(iout=sscanf(strb,"%s.") != 0){      fgets(line, MAXLINE, ficpar);
         month=99;      numlinepar++;
         year=9999;      puts(line);
       }else{      fputs(line,ficparo);
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);      fputs(line,ficlog);
         exit(1);    }
       }    ungetc(c,ficpar);
       anint[j][i]= (double) year;   
       mint[j][i]= (double)month;     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
       strcpy(line,stra);    numlinepar++;
     } /* ENd Waves */    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
         fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     cutv(stra, strb,line,' ');     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    fflush(ficlog);
     }    while((c=getc(ficpar))=='#' && c!= EOF){
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){      ungetc(c,ficpar);
       month=99;      fgets(line, MAXLINE, ficpar);
       year=9999;      numlinepar++;
     }else{      puts(line);
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);      fputs(line,ficparo);
       exit(1);      fputs(line,ficlog);
     }    }
     andc[i]=(double) year;     ungetc(c,ficpar);
     moisdc[i]=(double) month;   
     strcpy(line,stra);     
         covar=matrix(0,NCOVMAX,1,n);
     cutv(stra, strb,line,' ');     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     }  
     else  if(iout=sscanf(strb,"%s.") != 0){    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
       month=99;    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
       year=9999;    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     }else{  
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       exit(1);    delti=delti3[1][1];
     }    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     annais[i]=(double)(year);    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
     moisnais[i]=(double)(month);       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     strcpy(line,stra);      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
           fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     cutv(stra, strb,line,' ');       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     errno=0;      fclose (ficparo);
     lval=strtol(strb,&endptr,10);       fclose (ficlog);
     if( strb[0]=='\0' || (*endptr != '\0')){      goto end;
       printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);      exit(0);
       exit(1);    }
     }    else if(mle==-3) {
     weight[i]=(double)(lval);       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     strcpy(line,stra);      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
           fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     for (j=ncovcol;j>=1;j--){      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       cutv(stra, strb,line,' ');       matcov=matrix(1,npar,1,npar);
       errno=0;    }
       lval=strtol(strb,&endptr,10);     else{
       if( strb[0]=='\0' || (*endptr != '\0')){      /* Read guess parameters */
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);      /* Reads comments: lines beginning with '#' */
         exit(1);      while((c=getc(ficpar))=='#' && c!= EOF){
       }        ungetc(c,ficpar);
       if(lval <-1 || lval >1){        fgets(line, MAXLINE, ficpar);
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);        numlinepar++;
         exit(1);        puts(line);
       }        fputs(line,ficparo);
       covar[j][i]=(double)(lval);        fputs(line,ficlog);
       strcpy(line,stra);      }
     }       ungetc(c,ficpar);
     lstra=strlen(stra);     
           param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */      for(i=1; i <=nlstate; i++){
       stratrunc = &(stra[lstra-9]);        j=0;
       num[i]=atol(stratrunc);        for(jj=1; jj <=nlstate+ndeath; jj++){
     }          if(jj==i) continue;
     else          j++;
       num[i]=atol(stra);          fscanf(ficpar,"%1d%1d",&i1,&j1);
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          if ((i1 != i) && (j1 != j)){
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
       It might be a problem of design; if ncovcol and the model are correct\n \
     i=i+1;  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
   } /* End loop reading  data */            exit(1);
   /* printf("ii=%d", ij);          }
      scanf("%d",i);*/          fprintf(ficparo,"%1d%1d",i1,j1);
   imx=i-1; /* Number of individuals */          if(mle==1)
             printf("%1d%1d",i,j);
   /* for (i=1; i<=imx; i++){          fprintf(ficlog,"%1d%1d",i,j);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          for(k=1; k<=ncovmodel;k++){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            fscanf(ficpar," %lf",&param[i][j][k]);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            if(mle==1){
     }*/              printf(" %lf",param[i][j][k]);
    /*  for (i=1; i<=imx; i++){              fprintf(ficlog," %lf",param[i][j][k]);
      if (s[4][i]==9)  s[4][i]=-1;             }
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            else
                 fprintf(ficlog," %lf",param[i][j][k]);
   /* for (i=1; i<=imx; i++) */            fprintf(ficparo," %lf",param[i][j][k]);
            }
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;          fscanf(ficpar,"\n");
      else weight[i]=1;*/          numlinepar++;
           if(mle==1)
   /* Calculation of the number of parameters from char model */            printf("\n");
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */          fprintf(ficlog,"\n");
   Tprod=ivector(1,15);           fprintf(ficparo,"\n");
   Tvaraff=ivector(1,15);         }
   Tvard=imatrix(1,15,1,2);      }  
   Tage=ivector(1,15);            fflush(ficlog);
      
   if (strlen(model) >1){ /* If there is at least 1 covariate */      p=param[1][1];
     j=0, j1=0, k1=1, k2=1;     
     j=nbocc(model,'+'); /* j=Number of '+' */      /* Reads comments: lines beginning with '#' */
     j1=nbocc(model,'*'); /* j1=Number of '*' */      while((c=getc(ficpar))=='#' && c!= EOF){
     cptcovn=j+1;         ungetc(c,ficpar);
     cptcovprod=j1; /*Number of products */        fgets(line, MAXLINE, ficpar);
             numlinepar++;
     strcpy(modelsav,model);         puts(line);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        fputs(line,ficparo);
       printf("Error. Non available option model=%s ",model);        fputs(line,ficlog);
       fprintf(ficlog,"Error. Non available option model=%s ",model);      }
       goto end;      ungetc(c,ficpar);
     }  
           for(i=1; i <=nlstate; i++){
     /* This loop fills the array Tvar from the string 'model'.*/        for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
     for(i=(j+1); i>=1;i--){          if ((i1-i)*(j1-j)!=0){
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */            exit(1);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          }
       /*scanf("%d",i);*/          printf("%1d%1d",i,j);
       if (strchr(strb,'*')) {  /* Model includes a product */          fprintf(ficparo,"%1d%1d",i1,j1);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/          fprintf(ficlog,"%1d%1d",i1,j1);
         if (strcmp(strc,"age")==0) { /* Vn*age */          for(k=1; k<=ncovmodel;k++){
           cptcovprod--;            fscanf(ficpar,"%le",&delti3[i][j][k]);
           cutv(strb,stre,strd,'V');            printf(" %le",delti3[i][j][k]);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/            fprintf(ficparo," %le",delti3[i][j][k]);
           cptcovage++;            fprintf(ficlog," %le",delti3[i][j][k]);
             Tage[cptcovage]=i;          }
             /*printf("stre=%s ", stre);*/          fscanf(ficpar,"\n");
         }          numlinepar++;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */          printf("\n");
           cptcovprod--;          fprintf(ficparo,"\n");
           cutv(strb,stre,strc,'V');          fprintf(ficlog,"\n");
           Tvar[i]=atoi(stre);        }
           cptcovage++;      }
           Tage[cptcovage]=i;      fflush(ficlog);
         }  
         else {  /* Age is not in the model */      delti=delti3[1][1];
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/  
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
           Tprod[k1]=i;   
           Tvard[k1][1]=atoi(strc); /* m*/      /* Reads comments: lines beginning with '#' */
           Tvard[k1][2]=atoi(stre); /* n */      while((c=getc(ficpar))=='#' && c!= EOF){
           Tvar[cptcovn+k2]=Tvard[k1][1];        ungetc(c,ficpar);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];         fgets(line, MAXLINE, ficpar);
           for (k=1; k<=lastobs;k++)         numlinepar++;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        puts(line);
           k1++;        fputs(line,ficparo);
           k2=k2+2;        fputs(line,ficlog);
         }      }
       }      ungetc(c,ficpar);
       else { /* no more sum */   
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      matcov=matrix(1,npar,1,npar);
        /*  scanf("%d",i);*/      for(i=1; i <=npar; i++){
       cutv(strd,strc,strb,'V');        fscanf(ficpar,"%s",&str);
       Tvar[i]=atoi(strc);        if(mle==1)
       }          printf("%s",str);
       strcpy(modelsav,stra);          fprintf(ficlog,"%s",str);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        fprintf(ficparo,"%s",str);
         scanf("%d",i);*/        for(j=1; j <=i; j++){
     } /* end of loop + */          fscanf(ficpar," %le",&matcov[i][j]);
   } /* end model */          if(mle==1){
               printf(" %.5le",matcov[i][j]);
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.          }
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/          fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        }
   printf("cptcovprod=%d ", cptcovprod);        fscanf(ficpar,"\n");
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        numlinepar++;
         if(mle==1)
   scanf("%d ",i);          printf("\n");
   fclose(fic);*/        fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
     /*  if(mle==1){*/      }
   if (weightopt != 1) { /* Maximisation without weights*/      for(i=1; i <=npar; i++)
     for(i=1;i<=n;i++) weight[i]=1.0;        for(j=i+1;j<=npar;j++)
   }          matcov[i][j]=matcov[j][i];
     /*-calculation of age at interview from date of interview and age at death -*/     
   agev=matrix(1,maxwav,1,imx);      if(mle==1)
         printf("\n");
   for (i=1; i<=imx; i++) {      fprintf(ficlog,"\n");
     for(m=2; (m<= maxwav); m++) {     
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){      fflush(ficlog);
         anint[m][i]=9999;     
         s[m][i]=-1;      /*-------- Rewriting parameter file ----------*/
       }      strcpy(rfileres,"r");    /* "Rparameterfile */
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
         nberr++;      strcat(rfileres,".");    /* */
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      strcat(rfileres,optionfilext);    /* Other files have txt extension */
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      if((ficres =fopen(rfileres,"w"))==NULL) {
         s[m][i]=-1;        printf("Problem writing new parameter file: %s\n", fileres);goto end;
       }        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){      }
         nberr++;      fprintf(ficres,"#%s\n",version);
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     }    /* End of mle != -3 */
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);   
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */    /*-------- data file ----------*/
       }    if((fic=fopen(datafile,"r"))==NULL)    {
     }      printf("Problem while opening datafile: %s\n", datafile);goto end;
   }      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   for (i=1; i<=imx; i++)  {  
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    n= lastobs;
     for(m=firstpass; (m<= lastpass); m++){    severity = vector(1,maxwav);
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){    outcome=imatrix(1,maxwav+1,1,n);
         if (s[m][i] >= nlstate+1) {    num=lvector(1,n);
           if(agedc[i]>0)    moisnais=vector(1,n);
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    annais=vector(1,n);
               agev[m][i]=agedc[i];    moisdc=vector(1,n);
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    andc=vector(1,n);
             else {    agedc=vector(1,n);
               if ((int)andc[i]!=9999){    cod=ivector(1,n);
                 nbwarn++;    weight=vector(1,n);
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);    mint=matrix(1,maxwav,1,n);
                 agev[m][i]=-1;    anint=matrix(1,maxwav,1,n);
               }    s=imatrix(1,maxwav+1,1,n);
             }    tab=ivector(1,NCOVMAX);
         }    ncodemax=ivector(1,8);
         else if(s[m][i] !=9){ /* Standard case, age in fractional  
                                  years but with the precision of a month */    i=1;
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    linei=0;
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
             agev[m][i]=1;      linei=linei+1;
           else if(agev[m][i] <agemin){       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
             agemin=agev[m][i];        if(line[j] == '\t')
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          line[j] = ' ';
           }      }
           else if(agev[m][i] >agemax){      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
             agemax=agev[m][i];        ;
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      };
           }      line[j+1]=0;  /* Trims blanks at end of line */
           /*agev[m][i]=anint[m][i]-annais[i];*/      if(line[0]=='#'){
           /*     agev[m][i] = age[i]+2*m;*/        fprintf(ficlog,"Comment line\n%s\n",line);
         }        printf("Comment line\n%s\n",line);
         else { /* =9 */        continue;
           agev[m][i]=1;      }
           s[m][i]=-1;  
         }      for (j=maxwav;j>=1;j--){
       }        cutv(stra, strb,line,' ');
       else /*= 0 Unknown */        errno=0;
         agev[m][i]=1;        lval=strtol(strb,&endptr,10);
     }        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
             if( strb[0]=='\0' || (*endptr != '\0')){
   }          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
   for (i=1; i<=imx; i++)  {          exit(1);
     for(m=firstpass; (m<=lastpass); m++){        }
       if (s[m][i] > (nlstate+ndeath)) {        s[j][i]=lval;
         nberr++;       
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             strcpy(line,stra);
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             cutv(stra, strb,line,' ');
         goto end;        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }        }
     }        else  if(iout=sscanf(strb,"%s.") != 0){
   }          month=99;
           year=9999;
   /*for (i=1; i<=imx; i++){        }else{
   for (m=firstpass; (m<lastpass); m++){          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);          exit(1);
 }        }
         anint[j][i]= (double) year;
 }*/        mint[j][i]= (double)month;
         strcpy(line,stra);
       } /* ENd Waves */
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);     
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   agegomp=(int)agemin;      }
   free_vector(severity,1,maxwav);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
   free_imatrix(outcome,1,maxwav+1,1,n);        month=99;
   free_vector(moisnais,1,n);        year=9999;
   free_vector(annais,1,n);      }else{
   /* free_matrix(mint,1,maxwav,1,n);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
      free_matrix(anint,1,maxwav,1,n);*/        exit(1);
   free_vector(moisdc,1,n);      }
   free_vector(andc,1,n);      andc[i]=(double) year;
       moisdc[i]=(double) month;
          strcpy(line,stra);
   wav=ivector(1,imx);     
   dh=imatrix(1,lastpass-firstpass+1,1,imx);      cutv(stra, strb,line,' ');
   bh=imatrix(1,lastpass-firstpass+1,1,imx);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   mw=imatrix(1,lastpass-firstpass+1,1,imx);      }
          else  if(iout=sscanf(strb,"%s.") != 0){
   /* Concatenates waves */        month=99;
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        year=9999;
       }else{
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
   Tcode=ivector(1,100);      }
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);       annais[i]=(double)(year);
   ncodemax[1]=1;      moisnais[i]=(double)(month);
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);      strcpy(line,stra);
            
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of       cutv(stra, strb,line,' ');
                                  the estimations*/      errno=0;
   h=0;      dval=strtod(strb,&endptr);
   m=pow(2,cptcoveff);      if( strb[0]=='\0' || (*endptr != '\0')){
          printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   for(k=1;k<=cptcoveff; k++){        exit(1);
     for(i=1; i <=(m/pow(2,k));i++){      }
       for(j=1; j <= ncodemax[k]; j++){      weight[i]=dval;
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      strcpy(line,stra);
           h++;     
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      for (j=ncovcol;j>=1;j--){
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        cutv(stra, strb,line,' ');
         }         errno=0;
       }        lval=strtol(strb,&endptr,10);
     }        if( strb[0]=='\0' || (*endptr != '\0')){
   }           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);           exit(1);
      codtab[1][2]=1;codtab[2][2]=2; */        }
   /* for(i=1; i <=m ;i++){         if(lval <-1 || lval >1){
      for(k=1; k <=cptcovn; k++){          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
      }   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
      printf("\n");   For example, for multinomial values like 1, 2 and 3,\n \
      }   build V1=0 V2=0 for the reference value (1),\n \
      scanf("%d",i);*/          V1=1 V2=0 for (2) \n \
        and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
   /*------------ gnuplot -------------*/   output of IMaCh is often meaningless.\n \
   strcpy(optionfilegnuplot,optionfilefiname);   Exiting.\n",lval,linei, i,line,j);
   if(mle==-3)          exit(1);
     strcat(optionfilegnuplot,"-mort");        }
   strcat(optionfilegnuplot,".gp");        covar[j][i]=(double)(lval);
         strcpy(line,stra);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      }
     printf("Problem with file %s",optionfilegnuplot);      lstra=strlen(stra);
   }     
   else{      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
     fprintf(ficgp,"\n# %s\n", version);         stratrunc = &(stra[lstra-9]);
     fprintf(ficgp,"# %s\n", optionfilegnuplot);         num[i]=atol(stratrunc);
     fprintf(ficgp,"set missing 'NaNq'\n");      }
   }      else
   /*  fclose(ficgp);*/        num[i]=atol(stra);
   /*--------- index.htm --------*/      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */     
   if(mle==-3)      i=i+1;
     strcat(optionfilehtm,"-mort");    } /* End loop reading  data */
   strcat(optionfilehtm,".htm");    fclose(fic);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    /* printf("ii=%d", ij);
     printf("Problem with %s \n",optionfilehtm), exit(0);       scanf("%d",i);*/
   }    imx=i-1; /* Number of individuals */
   
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    /* for (i=1; i<=imx; i++){
   strcat(optionfilehtmcov,"-cov.htm");      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
     printf("Problem with %s \n",optionfilehtmcov), exit(0);      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
   }      }*/
   else{     /*  for (i=1; i<=imx; i++){
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \       if (s[4][i]==9)  s[4][i]=-1;
 <hr size=\"2\" color=\"#EC5E5E\"> \n\       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\   
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);    /* for (i=1; i<=imx; i++) */
   }   
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \       else weight[i]=1;*/
 <hr size=\"2\" color=\"#EC5E5E\"> \n\  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\    /* Calculation of the number of parameters from char model */
 \n\    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
 <hr  size=\"2\" color=\"#EC5E5E\">\    Tprod=ivector(1,15);
  <ul><li><h4>Parameter files</h4>\n\    Tvaraff=ivector(1,15);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    Tvard=imatrix(1,15,1,2);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\    Tage=ivector(1,15);      
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\     
  - Date and time at start: %s</ul>\n",\    if (strlen(model) >1){ /* If there is at least 1 covariate */
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\      j=0, j1=0, k1=1, k2=1;
           fileres,fileres,\      j=nbocc(model,'+'); /* j=Number of '+' */
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);      j1=nbocc(model,'*'); /* j1=Number of '*' */
   fflush(fichtm);      cptcovn=j+1;
       cptcovprod=j1; /*Number of products */
   strcpy(pathr,path);     
   strcat(pathr,optionfilefiname);      strcpy(modelsav,model);
   chdir(optionfilefiname); /* Move to directory named optionfile */      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
           printf("Error. Non available option model=%s ",model);
   /* Calculates basic frequencies. Computes observed prevalence at single age        fprintf(ficlog,"Error. Non available option model=%s ",model);
      and prints on file fileres'p'. */        goto end;
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);      }
      
   fprintf(fichtm,"\n");      /* This loop fills the array Tvar from the string 'model'.*/
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\  
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\      for(i=(j+1); i>=1;i--){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
           imx,agemin,agemax,jmin,jmax,jmean);        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /*scanf("%d",i);*/
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if (strchr(strb,'*')) {  /* Model includes a product */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          if (strcmp(strc,"age")==0) { /* Vn*age */
                 cptcovprod--;
                cutv(strb,stre,strd,'V');
   /* For Powell, parameters are in a vector p[] starting at p[1]            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            cptcovage++;
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */              Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/          }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
   if (mle==-3){            cptcovprod--;
     ximort=matrix(1,NDIM,1,NDIM);            cutv(strb,stre,strc,'V');
     cens=ivector(1,n);            Tvar[i]=atoi(stre);
     ageexmed=vector(1,n);            cptcovage++;
     agecens=vector(1,n);            Tage[cptcovage]=i;
     dcwave=ivector(1,n);          }
            else {  /* Age is not in the model */
     for (i=1; i<=imx; i++){            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
       dcwave[i]=-1;            Tvar[i]=ncovcol+k1;
       for (m=firstpass; m<=lastpass; m++)            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
         if (s[m][i]>nlstate) {            Tprod[k1]=i;
           dcwave[i]=m;            Tvard[k1][1]=atoi(strc); /* m*/
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/            Tvard[k1][2]=atoi(stre); /* n */
           break;            Tvar[cptcovn+k2]=Tvard[k1][1];
         }            Tvar[cptcovn+k2+1]=Tvard[k1][2];
     }            for (k=1; k<=lastobs;k++)
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
     for (i=1; i<=imx; i++) {            k1++;
       if (wav[i]>0){            k2=k2+2;
         ageexmed[i]=agev[mw[1][i]][i];          }
         j=wav[i];        }
         agecens[i]=1.;         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
         if (ageexmed[i]> 1 && wav[i] > 0){         /*  scanf("%d",i);*/
           agecens[i]=agev[mw[j][i]][i];        cutv(strd,strc,strb,'V');
           cens[i]= 1;        Tvar[i]=atoi(strc);
         }else if (ageexmed[i]< 1)         }
           cens[i]= -1;        strcpy(modelsav,stra);  
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           cens[i]=0 ;          scanf("%d",i);*/
       }      } /* end of loop + */
       else cens[i]=-1;    } /* end model */
     }   
         /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
     for (i=1;i<=NDIM;i++) {      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
       for (j=1;j<=NDIM;j++)  
         ximort[i][j]=(i == j ? 1.0 : 0.0);    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     }    printf("cptcovprod=%d ", cptcovprod);
         fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
     p[1]=0.0268; p[NDIM]=0.083;  
     /*printf("%lf %lf", p[1], p[2]);*/    scanf("%d ",i);*/
       
           /*  if(mle==1){*/
     printf("Powell\n");  fprintf(ficlog,"Powell\n");    if (weightopt != 1) { /* Maximisation without weights*/
     strcpy(filerespow,"pow-mort");       for(i=1;i<=n;i++) weight[i]=1.0;
     strcat(filerespow,fileres);    }
     if((ficrespow=fopen(filerespow,"w"))==NULL) {      /*-calculation of age at interview from date of interview and age at death -*/
       printf("Problem with resultfile: %s\n", filerespow);    agev=matrix(1,maxwav,1,imx);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);  
     }    for (i=1; i<=imx; i++) {
     fprintf(ficrespow,"# Powell\n# iter -2*LL");      for(m=2; (m<= maxwav); m++) {
     /*  for (i=1;i<=nlstate;i++)        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
         for(j=1;j<=nlstate+ndeath;j++)          anint[m][i]=9999;
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);          s[m][i]=-1;
     */        }
     fprintf(ficrespow,"\n");        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
               nberr++;
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
     fclose(ficrespow);          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
               s[m][i]=-1;
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
     for(i=1; i <=NDIM; i++)          nberr++;
       for(j=i+1;j<=NDIM;j++)          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
         matcov[i][j]=matcov[j][i];          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
               s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
     printf("\nCovariance matrix\n ");        }
     for(i=1; i <=NDIM; i++) {      }
       for(j=1;j<=NDIM;j++){     }
         printf("%f ",matcov[i][j]);  
       }    for (i=1; i<=imx; i++)  {
       printf("\n ");      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
     }      for(m=firstpass; (m<= lastpass); m++){
             if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);          if (s[m][i] >= nlstate+1) {
     for (i=1;i<=NDIM;i++)             if(agedc[i]>0)
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
     lsurv=vector(1,AGESUP);            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
     lpop=vector(1,AGESUP);              else {
     tpop=vector(1,AGESUP);                if ((int)andc[i]!=9999){
     lsurv[agegomp]=100000;                  nbwarn++;
                       printf("Warning negative age at death: %ld line:%d\n",num[i],i);
     for (k=agegomp;k<=AGESUP;k++) {                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
       agemortsup=k;                  agev[m][i]=-1;
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;                }
     }              }
               }
     for (k=agegomp;k<agemortsup;k++)          else if(s[m][i] !=9){ /* Standard case, age in fractional
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));                                   years but with the precision of a month */
                 agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
     for (k=agegomp;k<agemortsup;k++){            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;              agev[m][i]=1;
       sumlpop=sumlpop+lpop[k];            else if(agev[m][i] <agemin){
     }              agemin=agev[m][i];
                   /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
     tpop[agegomp]=sumlpop;            }
     for (k=agegomp;k<(agemortsup-3);k++){            else if(agev[m][i] >agemax){
       /*  tpop[k+1]=2;*/              agemax=agev[m][i];
       tpop[k+1]=tpop[k]-lpop[k];              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
     }            }
                 /*agev[m][i]=anint[m][i]-annais[i];*/
                 /*     agev[m][i] = age[i]+2*m;*/
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");          }
     for (k=agegomp;k<(agemortsup-2);k++)           else { /* =9 */
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);            agev[m][i]=1;
                 s[m][i]=-1;
               }
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */        }
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);        else /*= 0 Unknown */
               agev[m][i]=1;
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \      }
                      stepm, weightopt,\     
                      model,imx,p,matcov,agemortsup);    }
         for (i=1; i<=imx; i++)  {
     free_vector(lsurv,1,AGESUP);      for(m=firstpass; (m<=lastpass); m++){
     free_vector(lpop,1,AGESUP);        if (s[m][i] > (nlstate+ndeath)) {
     free_vector(tpop,1,AGESUP);          nberr++;
   } /* Endof if mle==-3 */          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
             fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
   else{ /* For mle >=1 */          goto end;
           }
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      }
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    }
     for (k=1; k<=npar;k++)  
       printf(" %d %8.5f",k,p[k]);    /*for (i=1; i<=imx; i++){
     printf("\n");    for (m=firstpass; (m<lastpass); m++){
     globpr=1; /* to print the contributions */       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */  }
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);  
     for (k=1; k<=npar;k++)  }*/
       printf(" %d %8.5f",k,p[k]);  
     printf("\n");  
     if(mle>=1){ /* Could be 1 or 2 */    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     }  
         agegomp=(int)agemin;
     /*--------- results files --------------*/    free_vector(severity,1,maxwav);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    free_imatrix(outcome,1,maxwav+1,1,n);
         free_vector(moisnais,1,n);
         free_vector(annais,1,n);
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    /* free_matrix(mint,1,maxwav,1,n);
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       free_matrix(anint,1,maxwav,1,n);*/
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    free_vector(moisdc,1,n);
     for(i=1,jk=1; i <=nlstate; i++){    free_vector(andc,1,n);
       for(k=1; k <=(nlstate+ndeath); k++){  
         if (k != i) {     
           printf("%d%d ",i,k);    wav=ivector(1,imx);
           fprintf(ficlog,"%d%d ",i,k);    dh=imatrix(1,lastpass-firstpass+1,1,imx);
           fprintf(ficres,"%1d%1d ",i,k);    bh=imatrix(1,lastpass-firstpass+1,1,imx);
           for(j=1; j <=ncovmodel; j++){    mw=imatrix(1,lastpass-firstpass+1,1,imx);
             printf("%f ",p[jk]);     
             fprintf(ficlog,"%f ",p[jk]);    /* Concatenates waves */
             fprintf(ficres,"%f ",p[jk]);    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
             jk++;   
           }    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
           printf("\n");  
           fprintf(ficlog,"\n");    Tcode=ivector(1,100);
           fprintf(ficres,"\n");    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
         }    ncodemax[1]=1;
       }    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
     }       
     if(mle!=0){    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
       /* Computing hessian and covariance matrix */                                   the estimations*/
       ftolhess=ftol; /* Usually correct */    h=0;
       hesscov(matcov, p, npar, delti, ftolhess, func);    m=pow(2,cptcoveff);
     }   
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    for(k=1;k<=cptcoveff; k++){
     printf("# Scales (for hessian or gradient estimation)\n");      for(i=1; i <=(m/pow(2,k));i++){
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        for(j=1; j <= ncodemax[k]; j++){
     for(i=1,jk=1; i <=nlstate; i++){          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
       for(j=1; j <=nlstate+ndeath; j++){            h++;
         if (j!=i) {            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
           fprintf(ficres,"%1d%1d",i,j);            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           printf("%1d%1d",i,j);          }
           fprintf(ficlog,"%1d%1d",i,j);        }
           for(k=1; k<=ncovmodel;k++){      }
             printf(" %.5e",delti[jk]);    }
             fprintf(ficlog," %.5e",delti[jk]);    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
             fprintf(ficres," %.5e",delti[jk]);       codtab[1][2]=1;codtab[2][2]=2; */
             jk++;    /* for(i=1; i <=m ;i++){
           }       for(k=1; k <=cptcovn; k++){
           printf("\n");       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
           fprintf(ficlog,"\n");       }
           fprintf(ficres,"\n");       printf("\n");
         }       }
       }       scanf("%d",i);*/
     }     
         /*------------ gnuplot -------------*/
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    strcpy(optionfilegnuplot,optionfilefiname);
     if(mle>=1)    if(mle==-3)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      strcat(optionfilegnuplot,"-mort");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    strcat(optionfilegnuplot,".gp");
     /* # 121 Var(a12)\n\ */  
     /* # 122 Cov(b12,a12) Var(b12)\n\ */    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */      printf("Problem with file %s",optionfilegnuplot);
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    }
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    else{
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */      fprintf(ficgp,"\n# %s\n", version);
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */      fprintf(ficgp,"# %s\n", optionfilegnuplot);
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */      fprintf(ficgp,"set missing 'NaNq'\n");
         }
         /*  fclose(ficgp);*/
     /* Just to have a covariance matrix which will be more understandable    /*--------- index.htm --------*/
        even is we still don't want to manage dictionary of variables  
     */    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     for(itimes=1;itimes<=2;itimes++){    if(mle==-3)
       jj=0;      strcat(optionfilehtm,"-mort");
       for(i=1; i <=nlstate; i++){    strcat(optionfilehtm,".htm");
         for(j=1; j <=nlstate+ndeath; j++){    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
           if(j==i) continue;      printf("Problem with %s \n",optionfilehtm), exit(0);
           for(k=1; k<=ncovmodel;k++){    }
             jj++;  
             ca[0]= k+'a'-1;ca[1]='\0';    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
             if(itimes==1){    strcat(optionfilehtmcov,"-cov.htm");
               if(mle>=1)    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
                 printf("#%1d%1d%d",i,j,k);      printf("Problem with %s \n",optionfilehtmcov), exit(0);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);    }
               fprintf(ficres,"#%1d%1d%d",i,j,k);    else{
             }else{    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
               if(mle>=1)  <hr size=\"2\" color=\"#EC5E5E\"> \n\
                 printf("%1d%1d%d",i,j,k);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
               fprintf(ficlog,"%1d%1d%d",i,j,k);            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
               fprintf(ficres,"%1d%1d%d",i,j,k);    }
             }  
             ll=0;    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
             for(li=1;li <=nlstate; li++){  <hr size=\"2\" color=\"#EC5E5E\"> \n\
               for(lj=1;lj <=nlstate+ndeath; lj++){  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
                 if(lj==li) continue;  \n\
                 for(lk=1;lk<=ncovmodel;lk++){  <hr  size=\"2\" color=\"#EC5E5E\">\
                   ll++;   <ul><li><h4>Parameter files</h4>\n\
                   if(ll<=jj){   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
                     cb[0]= lk +'a'-1;cb[1]='\0';   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
                     if(ll<jj){   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
                       if(itimes==1){   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
                         if(mle>=1)   - Date and time at start: %s</ul>\n",\
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            fileres,fileres,\
                       }else{            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
                         if(mle>=1)    fflush(fichtm);
                           printf(" %.5e",matcov[jj][ll]);   
                         fprintf(ficlog," %.5e",matcov[jj][ll]);     strcpy(pathr,path);
                         fprintf(ficres," %.5e",matcov[jj][ll]);     strcat(pathr,optionfilefiname);
                       }    chdir(optionfilefiname); /* Move to directory named optionfile */
                     }else{   
                       if(itimes==1){    /* Calculates basic frequencies. Computes observed prevalence at single age
                         if(mle>=1)       and prints on file fileres'p'. */
                           printf(" Var(%s%1d%1d)",ca,i,j);    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);  
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);    fprintf(fichtm,"\n");
                       }else{    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
                         if(mle>=1)  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
                           printf(" %.5e",matcov[jj][ll]);   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
                         fprintf(ficlog," %.5e",matcov[jj][ll]);             imx,agemin,agemax,jmin,jmax,jmean);
                         fprintf(ficres," %.5e",matcov[jj][ll]);     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                       }      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                     }      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   }      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                 } /* end lk */      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
               } /* end lj */     
             } /* end li */     
             if(mle>=1)    /* For Powell, parameters are in a vector p[] starting at p[1]
               printf("\n");       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
             fprintf(ficlog,"\n");    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
             fprintf(ficres,"\n");  
             numlinepar++;    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
           } /* end k*/  
         } /*end j */    if (mle==-3){
       } /* end i */      ximort=matrix(1,NDIM,1,NDIM);
     } /* end itimes */      cens=ivector(1,n);
           ageexmed=vector(1,n);
     fflush(ficlog);      agecens=vector(1,n);
     fflush(ficres);      dcwave=ivector(1,n);
        
     while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1; i<=imx; i++){
       ungetc(c,ficpar);        dcwave[i]=-1;
       fgets(line, MAXLINE, ficpar);        for (m=firstpass; m<=lastpass; m++)
       puts(line);          if (s[m][i]>nlstate) {
       fputs(line,ficparo);            dcwave[i]=m;
     }            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
     ungetc(c,ficpar);            break;
               }
     estepm=0;      }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
     if (estepm==0 || estepm < stepm) estepm=stepm;      for (i=1; i<=imx; i++) {
     if (fage <= 2) {        if (wav[i]>0){
       bage = ageminpar;          ageexmed[i]=agev[mw[1][i]][i];
       fage = agemaxpar;          j=wav[i];
     }          agecens[i]=1.;
       
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          if (ageexmed[i]> 1 && wav[i] > 0){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            agecens[i]=agev[mw[j][i]][i];
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            cens[i]= 1;
               }else if (ageexmed[i]< 1)
     while((c=getc(ficpar))=='#' && c!= EOF){            cens[i]= -1;
       ungetc(c,ficpar);          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
       fgets(line, MAXLINE, ficpar);            cens[i]=0 ;
       puts(line);        }
       fputs(line,ficparo);        else cens[i]=-1;
     }      }
     ungetc(c,ficpar);     
           for (i=1;i<=NDIM;i++) {
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        for (j=1;j<=NDIM;j++)
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          ximort[i][j]=(i == j ? 1.0 : 0.0);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      }
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);     
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      p[1]=0.0268; p[NDIM]=0.083;
           /*printf("%lf %lf", p[1], p[2]);*/
     while((c=getc(ficpar))=='#' && c!= EOF){     
       ungetc(c,ficpar);     
       fgets(line, MAXLINE, ficpar);      printf("Powell\n");  fprintf(ficlog,"Powell\n");
       puts(line);      strcpy(filerespow,"pow-mort");
       fputs(line,ficparo);      strcat(filerespow,fileres);
     }      if((ficrespow=fopen(filerespow,"w"))==NULL) {
     ungetc(c,ficpar);        printf("Problem with resultfile: %s\n", filerespow);
             fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           }
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;      fprintf(ficrespow,"# Powell\n# iter -2*LL");
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;      /*  for (i=1;i<=nlstate;i++)
               for(j=1;j<=nlstate+ndeath;j++)
     fscanf(ficpar,"pop_based=%d\n",&popbased);          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficparo,"pop_based=%d\n",popbased);         */
     fprintf(ficres,"pop_based=%d\n",popbased);         fprintf(ficrespow,"\n");
          
     while((c=getc(ficpar))=='#' && c!= EOF){      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       ungetc(c,ficpar);      fclose(ficrespow);
       fgets(line, MAXLINE, ficpar);     
       puts(line);      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
       fputs(line,ficparo);  
     }      for(i=1; i <=NDIM; i++)
     ungetc(c,ficpar);        for(j=i+1;j<=NDIM;j++)
               matcov[i][j]=matcov[j][i];
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);     
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      printf("\nCovariance matrix\n ");
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      for(i=1; i <=NDIM; i++) {
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        for(j=1;j<=NDIM;j++){
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          printf("%f ",matcov[i][j]);
     /* day and month of proj2 are not used but only year anproj2.*/        }
             printf("\n ");
           }
          
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      for (i=1;i<=NDIM;i++)
             printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */  
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      lsurv=vector(1,AGESUP);
           lpop=vector(1,AGESUP);
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\      tpop=vector(1,AGESUP);
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\      lsurv[agegomp]=100000;
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);     
             for (k=agegomp;k<=AGESUP;k++) {
    /*------------ free_vector  -------------*/        agemortsup=k;
    /*  chdir(path); */        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
        }
     free_ivector(wav,1,imx);     
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      for (k=agegomp;k<agemortsup;k++)
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        
     free_lvector(num,1,n);      for (k=agegomp;k<agemortsup;k++){
     free_vector(agedc,1,n);        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
     /*free_matrix(covar,0,NCOVMAX,1,n);*/        sumlpop=sumlpop+lpop[k];
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      }
     fclose(ficparo);     
     fclose(ficres);      tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
     /*--------------- Prevalence limit  (stable prevalence) --------------*/        tpop[k+1]=tpop[k]-lpop[k];
         }
     strcpy(filerespl,"pl");     
     strcat(filerespl,fileres);     
     if((ficrespl=fopen(filerespl,"w"))==NULL) {      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;      for (k=agegomp;k<(agemortsup-2);k++)
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     }     
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);     
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     fprintf(ficrespl, "#Local time at start: %s", strstart);      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     fprintf(ficrespl,"#Stable prevalence \n");     
     fprintf(ficrespl,"#Age ");      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                       stepm, weightopt,\
     fprintf(ficrespl,"\n");                       model,imx,p,matcov,agemortsup);
        
     prlim=matrix(1,nlstate,1,nlstate);      free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
     agebase=ageminpar;      free_vector(tpop,1,AGESUP);
     agelim=agemaxpar;    } /* Endof if mle==-3 */
     ftolpl=1.e-10;   
     i1=cptcoveff;    else{ /* For mle >=1 */
     if (cptcovn < 1){i1=1;}   
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for (k=1; k<=npar;k++)
         k=k+1;        printf(" %d %8.5f",k,p[k]);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      printf("\n");
         fprintf(ficrespl,"\n#******");      globpr=1; /* to print the contributions */
         printf("\n#******");      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
         fprintf(ficlog,"\n#******");      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
         for(j=1;j<=cptcoveff;j++) {      for (k=1; k<=npar;k++)
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf(" %d %8.5f",k,p[k]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("\n");
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if(mle>=1){ /* Could be 1 or 2 */
         }        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
         fprintf(ficrespl,"******\n");      }
         printf("******\n");     
         fprintf(ficlog,"******\n");      /*--------- results files --------------*/
               fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
         for (age=agebase; age<=agelim; age++){     
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     
           fprintf(ficrespl,"%.0f ",age );      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
           for(j=1;j<=cptcoveff;j++)      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
           for(i=1; i<=nlstate;i++)      for(i=1,jk=1; i <=nlstate; i++){
             fprintf(ficrespl," %.5f", prlim[i][i]);        for(k=1; k <=(nlstate+ndeath); k++){
           fprintf(ficrespl,"\n");          if (k != i) {
         }            printf("%d%d ",i,k);
       }            fprintf(ficlog,"%d%d ",i,k);
     }            fprintf(ficres,"%1d%1d ",i,k);
     fclose(ficrespl);            for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
     /*------------- h Pij x at various ages ------------*/              fprintf(ficlog,"%lf ",p[jk]);
                 fprintf(ficres,"%lf ",p[jk]);
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);              jk++;
     if((ficrespij=fopen(filerespij,"w"))==NULL) {            }
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            printf("\n");
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;            fprintf(ficlog,"\n");
     }            fprintf(ficres,"\n");
     printf("Computing pij: result on file '%s' \n", filerespij);          }
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);        }
         }
     stepsize=(int) (stepm+YEARM-1)/YEARM;      if(mle!=0){
     /*if (stepm<=24) stepsize=2;*/        /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
     agelim=AGESUP;        hesscov(matcov, p, npar, delti, ftolhess, func);
     hstepm=stepsize*YEARM; /* Every year of age */      }
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
     /* hstepm=1;   aff par mois*/      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     fprintf(ficrespij, "#Local time at start: %s", strstart);      for(i=1,jk=1; i <=nlstate; i++){
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");        for(j=1; j <=nlstate+ndeath; j++){
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){          if (j!=i) {
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            fprintf(ficres,"%1d%1d",i,j);
         k=k+1;            printf("%1d%1d",i,j);
         fprintf(ficrespij,"\n#****** ");            fprintf(ficlog,"%1d%1d",i,j);
         for(j=1;j<=cptcoveff;j++)             for(k=1; k<=ncovmodel;k++){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              printf(" %.5e",delti[jk]);
         fprintf(ficrespij,"******\n");              fprintf(ficlog," %.5e",delti[jk]);
                       fprintf(ficres," %.5e",delti[jk]);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */              jk++;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */             }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            printf("\n");
             fprintf(ficlog,"\n");
           /*      nhstepm=nhstepm*YEARM; aff par mois*/            fprintf(ficres,"\n");
           }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;      }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
           for(i=1; i<=nlstate;i++)      if(mle>=1)
             for(j=1; j<=nlstate+ndeath;j++)        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
               fprintf(ficrespij," %1d-%1d",i,j);      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
           fprintf(ficrespij,"\n");      /* # 121 Var(a12)\n\ */
           for (h=0; h<=nhstepm; h++){      /* # 122 Cov(b12,a12) Var(b12)\n\ */
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
             for(i=1; i<=nlstate;i++)      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
               for(j=1; j<=nlstate+ndeath;j++)      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
             fprintf(ficrespij,"\n");      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
           }      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     
           fprintf(ficrespij,"\n");     
         }      /* Just to have a covariance matrix which will be more understandable
       }         even is we still don't want to manage dictionary of variables
     }      */
       for(itimes=1;itimes<=2;itimes++){
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);        jj=0;
         for(i=1; i <=nlstate; i++){
     fclose(ficrespij);          for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(k=1; k<=ncovmodel;k++){
     for(i=1;i<=AGESUP;i++)              jj++;
       for(j=1;j<=NCOVMAX;j++)              ca[0]= k+'a'-1;ca[1]='\0';
         for(k=1;k<=NCOVMAX;k++)              if(itimes==1){
           probs[i][j][k]=0.;                if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
     /*---------- Forecasting ------------------*/                fprintf(ficlog,"#%1d%1d%d",i,j,k);
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/                fprintf(ficres,"#%1d%1d%d",i,j,k);
     if(prevfcast==1){              }else{
       /*    if(stepm ==1){*/                if(mle>=1)
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);                  printf("%1d%1d%d",i,j,k);
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/                fprintf(ficlog,"%1d%1d%d",i,j,k);
       /*      }  */                fprintf(ficres,"%1d%1d%d",i,j,k);
       /*      else{ */              }
       /*        erreur=108; */              ll=0;
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */              for(li=1;li <=nlstate; li++){
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */                for(lj=1;lj <=nlstate+ndeath; lj++){
       /*      } */                  if(lj==li) continue;
     }                  for(lk=1;lk<=ncovmodel;lk++){
                       ll++;
                     if(ll<=jj){
     /*---------- Health expectancies and variances ------------*/                      cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
     strcpy(filerest,"t");                        if(itimes==1){
     strcat(filerest,fileres);                          if(mle>=1)
     if((ficrest=fopen(filerest,"w"))==NULL) {                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     }                        }else{
     printf("Computing Total LEs with variances: file '%s' \n", filerest);                           if(mle>=1)
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
     strcpy(filerese,"e");                        }
     strcat(filerese,fileres);                      }else{
     if((ficreseij=fopen(filerese,"w"))==NULL) {                        if(itimes==1){
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                          if(mle>=1)
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                            printf(" Var(%s%1d%1d)",ca,i,j);
     }                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);                        }else{
                           if(mle>=1)
     strcpy(fileresv,"v");                            printf(" %.5e",matcov[jj][ll]);
     strcat(fileresv,fileres);                          fprintf(ficlog," %.5e",matcov[jj][ll]);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {                          fprintf(ficres," %.5e",matcov[jj][ll]);
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                        }
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);                      }
     }                    }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                  } /* end lk */
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                } /* end lj */
               } /* end li */
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */              if(mle>=1)
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                printf("\n");
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\              fprintf(ficlog,"\n");
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);              fprintf(ficres,"\n");
     */              numlinepar++;
             } /* end k*/
     if (mobilav!=0) {          } /*end j */
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        } /* end i */
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      } /* end itimes */
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);     
         printf(" Error in movingaverage mobilav=%d\n",mobilav);      fflush(ficlog);
       }      fflush(ficres);
     }     
       while((c=getc(ficpar))=='#' && c!= EOF){
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){        ungetc(c,ficpar);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fgets(line, MAXLINE, ficpar);
         k=k+1;         puts(line);
         fprintf(ficrest,"\n#****** ");        fputs(line,ficparo);
         for(j=1;j<=cptcoveff;j++)       }
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      ungetc(c,ficpar);
         fprintf(ficrest,"******\n");     
       estepm=0;
         fprintf(ficreseij,"\n#****** ");      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
         for(j=1;j<=cptcoveff;j++)       if (estepm==0 || estepm < stepm) estepm=stepm;
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if (fage <= 2) {
         fprintf(ficreseij,"******\n");        bage = ageminpar;
         fage = agemaxpar;
         fprintf(ficresvij,"\n#****** ");      }
         for(j=1;j<=cptcoveff;j++)      
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
         fprintf(ficresvij,"******\n");      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     
         oldm=oldms;savm=savms;      while((c=getc(ficpar))=='#' && c!= EOF){
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);          ungetc(c,ficpar);
          fgets(line, MAXLINE, ficpar);
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        puts(line);
         oldm=oldms;savm=savms;        fputs(line,ficparo);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);      }
         if(popbased==1){      ungetc(c,ficpar);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);     
         }      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         fprintf(ficrest, "#Local time at start: %s", strstart);      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         fprintf(ficrest,"\n");     
       while((c=getc(ficpar))=='#' && c!= EOF){
         epj=vector(1,nlstate+1);        ungetc(c,ficpar);
         for(age=bage; age <=fage ;age++){        fgets(line, MAXLINE, ficpar);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        puts(line);
           if (popbased==1) {        fputs(line,ficparo);
             if(mobilav ==0){      }
               for(i=1; i<=nlstate;i++)      ungetc(c,ficpar);
                 prlim[i][i]=probs[(int)age][i][k];     
             }else{ /* mobilav */      
               for(i=1; i<=nlstate;i++)      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
                 prlim[i][i]=mobaverage[(int)age][i][k];      dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
             }     
           }      fscanf(ficpar,"pop_based=%d\n",&popbased);
               fprintf(ficparo,"pop_based=%d\n",popbased);  
           fprintf(ficrest," %4.0f",age);      fprintf(ficres,"pop_based=%d\n",popbased);  
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){     
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      while((c=getc(ficpar))=='#' && c!= EOF){
               epj[j] += prlim[i][i]*eij[i][j][(int)age];        ungetc(c,ficpar);
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        fgets(line, MAXLINE, ficpar);
             }        puts(line);
             epj[nlstate+1] +=epj[j];        fputs(line,ficparo);
           }      }
       ungetc(c,ficpar);
           for(i=1, vepp=0.;i <=nlstate;i++)     
             for(j=1;j <=nlstate;j++)      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
               vepp += vareij[i][j][(int)age];      fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           for(j=1;j <=nlstate;j++){      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           }      /* day and month of proj2 are not used but only year anproj2.*/
           fprintf(ficrest,"\n");     
         }     
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);     
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
         free_vector(epj,1,nlstate+1);      /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       }     
     }      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     free_vector(weight,1,n);      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     free_imatrix(Tvard,1,15,1,2);     
     free_imatrix(s,1,maxwav+1,1,n);      printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
     free_matrix(anint,1,maxwav,1,n);                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
     free_matrix(mint,1,maxwav,1,n);                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
     free_ivector(cod,1,n);       
     free_ivector(tab,1,NCOVMAX);     /*------------ free_vector  -------------*/
     fclose(ficreseij);     /*  chdir(path); */
     fclose(ficresvij);   
     fclose(ficrest);      free_ivector(wav,1,imx);
     fclose(ficpar);      free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
         free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     /*------- Variance of stable prevalence------*/         free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
     strcpy(fileresvpl,"vpl");      free_vector(agedc,1,n);
     strcat(fileresvpl,fileres);      /*free_matrix(covar,0,NCOVMAX,1,n);*/
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      /*free_matrix(covar,1,NCOVMAX,1,n);*/
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);      fclose(ficparo);
       exit(0);      fclose(ficres);
     }  
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);  
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){   
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      strcpy(filerespl,"pl");
         k=k+1;      strcat(filerespl,fileres);
         fprintf(ficresvpl,"\n#****** ");      if((ficrespl=fopen(filerespl,"w"))==NULL) {
         for(j=1;j<=cptcoveff;j++)         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficresvpl,"******\n");      }
             printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
         varpl=matrix(1,nlstate,(int) bage, (int) fage);      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
         oldm=oldms;savm=savms;      pstamp(ficrespl);
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);      fprintf(ficrespl,"# Period (stable) prevalence \n");
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      fprintf(ficrespl,"#Age ");
       }      for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     }      fprintf(ficrespl,"\n");
    
     fclose(ficresvpl);      prlim=matrix(1,nlstate,1,nlstate);
   
     /*---------- End : free ----------------*/      agebase=ageminpar;
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      agelim=agemaxpar;
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      ftolpl=1.e-10;
       i1=cptcoveff;
   }  /* mle==-3 arrives here for freeing */      if (cptcovn < 1){i1=1;}
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          k=k+1;
             /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
     free_matrix(covar,0,NCOVMAX,1,n);          fprintf(ficrespl,"\n#******");
     free_matrix(matcov,1,npar,1,npar);          printf("\n#******");
     /*free_vector(delti,1,npar);*/          fprintf(ficlog,"\n#******");
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);           for(j=1;j<=cptcoveff;j++) {
     free_matrix(agev,1,maxwav,1,imx);            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     free_ivector(ncodemax,1,8);          }
     free_ivector(Tvar,1,15);          fprintf(ficrespl,"******\n");
     free_ivector(Tprod,1,15);          printf("******\n");
     free_ivector(Tvaraff,1,15);          fprintf(ficlog,"******\n");
     free_ivector(Tage,1,15);         
     free_ivector(Tcode,1,100);          for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
   fflush(fichtm);            for(j=1;j<=cptcoveff;j++)
   fflush(ficgp);              fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
               for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
   if((nberr >0) || (nbwarn>0)){            fprintf(ficrespl,"\n");
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);          }
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);        }
   }else{      }
     printf("End of Imach\n");      fclose(ficrespl);
     fprintf(ficlog,"End of Imach\n");  
   }      /*------------- h Pij x at various ages ------------*/
   printf("See log file on %s\n",filelog);   
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      strcpy(filerespij,"pij");  strcat(filerespij,fileres);
   (void) gettimeofday(&end_time,&tzp);      if((ficrespij=fopen(filerespij,"w"))==NULL) {
   tm = *localtime(&end_time.tv_sec);        printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
   tmg = *gmtime(&end_time.tv_sec);        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
   strcpy(strtend,asctime(&tm));      }
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);       printf("Computing pij: result on file '%s' \n", filerespij);
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));   
       stepsize=(int) (stepm+YEARM-1)/YEARM;
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      /*if (stepm<=24) stepsize=2;*/
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));  
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      agelim=AGESUP;
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      hstepm=stepsize*YEARM; /* Every year of age */
 /*   if(fileappend(fichtm,optionfilehtm)){ */      hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);  
   fclose(fichtm);      /* hstepm=1;   aff par mois*/
   fclose(fichtmcov);      pstamp(ficrespij);
   fclose(ficgp);      fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
   fclose(ficlog);      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
   /*------ End -----------*/        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
   chdir(path);          fprintf(ficrespij,"\n#****** ");
   /*strcat(plotcmd,CHARSEPARATOR);*/          for(j=1;j<=cptcoveff;j++)
   sprintf(plotcmd,"gnuplot");            fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
 #ifndef UNIX          fprintf(ficrespij,"******\n");
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);         
 #endif          for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
   if(!stat(plotcmd,&info)){            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);            nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     if(!stat(getenv("GNUPLOTBIN"),&info)){  
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);            /*      nhstepm=nhstepm*YEARM; aff par mois*/
     }else  
       strcpy(pplotcmd,plotcmd);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #ifdef UNIX            oldm=oldms;savm=savms;
     strcpy(plotcmd,GNUPLOTPROGRAM);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     if(!stat(plotcmd,&info)){            fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);            for(i=1; i<=nlstate;i++)
     }else              for(j=1; j<=nlstate+ndeath;j++)
       strcpy(pplotcmd,plotcmd);                fprintf(ficrespij," %1d-%1d",i,j);
 #endif            fprintf(ficrespij,"\n");
   }else            for (h=0; h<=nhstepm; h++){
     strcpy(pplotcmd,plotcmd);              fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
                 for(i=1; i<=nlstate;i++)
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);                for(j=1; j<=nlstate+ndeath;j++)
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);                  fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
   if((outcmd=system(plotcmd)) != 0){            }
     printf("\n Problem with gnuplot\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }            fprintf(ficrespij,"\n");
   printf(" Wait...");          }
   while (z[0] != 'q') {        }
     /* chdir(path); */      }
     printf("\nType e to edit output files, g to graph again and q for exiting: ");  
     scanf("%s",z);      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
 /*     if (z[0] == 'c') system("./imach"); */  
     if (z[0] == 'e') {      fclose(ficrespij);
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);  
       system(optionfilehtm);      probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }      for(i=1;i<=AGESUP;i++)
     else if (z[0] == 'g') system(plotcmd);        for(j=1;j<=NCOVMAX;j++)
     else if (z[0] == 'q') exit(0);          for(k=1;k<=NCOVMAX;k++)
   }            probs[i][j][k]=0.;
   end:  
   while (z[0] != 'q') {      /*---------- Forecasting ------------------*/
     printf("\nType  q for exiting: ");      /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     scanf("%s",z);      if(prevfcast==1){
   }        /*    if(stepm ==1){*/
 }        prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.112  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>