Diff for /imach/src/imach.c between versions 1.116 and 1.125

version 1.116, 2006/03/06 10:29:27 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): Variance-covariance wrong links and    Errors in calculation of health expectancies. Age was not initialized.
   varian-covariance of ej. is needed (Saito).    Forecasting file added.
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.124  2006/03/22 17:13:53  lievre
   (Module): One freematrix added in mlikeli! 0.98c    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   Revision 1.114  2006/02/26 12:57:58  brouard  
   (Module): Some improvements in processing parameter    Revision 1.123  2006/03/20 10:52:43  brouard
   filename with strsep.    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
   Revision 1.113  2006/02/24 14:20:24  brouard  
   (Module): Memory leaks checks with valgrind and:    * imach.c (Module): Weights can have a decimal point as for
   datafile was not closed, some imatrix were not freed and on matrix    English (a comma might work with a correct LC_NUMERIC environment,
   allocation too.    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.112  2006/01/30 09:55:26  brouard    1.
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    Version 0.98g
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Weights can have a decimal point as for
   (Module): Comments can be added in data file. Missing date values    English (a comma might work with a correct LC_NUMERIC environment,
   can be a simple dot '.'.    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.110  2006/01/25 00:51:50  brouard    1.
   (Module): Lots of cleaning and bugs added (Gompertz)    Version 0.98g
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.121  2006/03/16 17:45:01  lievre
   (Module): Comments (lines starting with a #) are allowed in data.    * imach.c (Module): Comments concerning covariates added
   
   Revision 1.108  2006/01/19 18:05:42  lievre    * imach.c (Module): refinements in the computation of lli if
   Gnuplot problem appeared...    status=-2 in order to have more reliable computation if stepm is
   To be fixed    not 1 month. Version 0.98f
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.120  2006/03/16 15:10:38  lievre
   Test existence of gnuplot in imach path    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Revision 1.106  2006/01/19 13:24:36  brouard    not 1 month. Version 0.98f
   Some cleaning and links added in html output  
     Revision 1.119  2006/03/15 17:42:26  brouard
   Revision 1.105  2006/01/05 20:23:19  lievre    (Module): Bug if status = -2, the loglikelihood was
   *** empty log message ***    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): varevsij Comments added explaining the second
   (Module): If the status is missing at the last wave but we know    table of variances if popbased=1 .
   that the person is alive, then we can code his/her status as -2    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (instead of missing=-1 in earlier versions) and his/her    (Module): Function pstamp added
   contributions to the likelihood is 1 - Prob of dying from last    (Module): Version 0.98d
   health status (= 1-p13= p11+p12 in the easiest case of somebody in  
   the healthy state at last known wave). Version is 0.98    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
   Revision 1.103  2005/09/30 15:54:49  lievre    table of variances if popbased=1 .
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Revision 1.102  2004/09/15 17:31:30  brouard    (Module): Version 0.98d
   Add the possibility to read data file including tab characters.  
     Revision 1.116  2006/03/06 10:29:27  brouard
   Revision 1.101  2004/09/15 10:38:38  brouard    (Module): Variance-covariance wrong links and
   Fix on curr_time    varian-covariance of ej. is needed (Saito).
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   *** empty log message ***    (Module): Some improvements in processing parameter
     filename with strsep.
   Revision 1.98  2004/05/16 15:05:56  brouard  
   New version 0.97 . First attempt to estimate force of mortality    Revision 1.113  2006/02/24 14:20:24  brouard
   directly from the data i.e. without the need of knowing the health    (Module): Memory leaks checks with valgrind and:
   state at each age, but using a Gompertz model: log u =a + b*age .    datafile was not closed, some imatrix were not freed and on matrix
   This is the basic analysis of mortality and should be done before any    allocation too.
   other analysis, in order to test if the mortality estimated from the  
   cross-longitudinal survey is different from the mortality estimated    Revision 1.112  2006/01/30 09:55:26  brouard
   from other sources like vital statistic data.    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   The same imach parameter file can be used but the option for mle should be -3.    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   Agnès, who wrote this part of the code, tried to keep most of the    (Module): Comments can be added in data file. Missing date values
   former routines in order to include the new code within the former code.    can be a simple dot '.'.
   
   The output is very simple: only an estimate of the intercept and of    Revision 1.110  2006/01/25 00:51:50  brouard
   the slope with 95% confident intervals.    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Current limitations:    Revision 1.109  2006/01/24 19:37:15  brouard
   A) Even if you enter covariates, i.e. with the    (Module): Comments (lines starting with a #) are allowed in data.
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.  
   B) There is no computation of Life Expectancy nor Life Table.    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
   Revision 1.97  2004/02/20 13:25:42  lievre    To be fixed
   Version 0.96d. Population forecasting command line is (temporarily)  
   suppressed.    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
   Revision 1.96  2003/07/15 15:38:55  brouard  
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    Revision 1.106  2006/01/19 13:24:36  brouard
   rewritten within the same printf. Workaround: many printfs.    Some cleaning and links added in html output
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.105  2006/01/05 20:23:19  lievre
   * imach.c (Repository):    *** empty log message ***
   (Repository): Using imachwizard code to output a more meaningful covariance  
   matrix (cov(a12,c31) instead of numbers.    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   Revision 1.94  2003/06/27 13:00:02  brouard    (Module): If the status is missing at the last wave but we know
   Just cleaning    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
   Revision 1.93  2003/06/25 16:33:55  brouard    contributions to the likelihood is 1 - Prob of dying from last
   (Module): On windows (cygwin) function asctime_r doesn't    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   exist so I changed back to asctime which exists.    the healthy state at last known wave). Version is 0.98
   (Module): Version 0.96b  
     Revision 1.103  2005/09/30 15:54:49  lievre
   Revision 1.92  2003/06/25 16:30:45  brouard    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): On windows (cygwin) function asctime_r doesn't  
   exist so I changed back to asctime which exists.    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
   Revision 1.91  2003/06/25 15:30:29  brouard  
   * imach.c (Repository): Duplicated warning errors corrected.    Revision 1.101  2004/09/15 10:38:38  brouard
   (Repository): Elapsed time after each iteration is now output. It    Fix on curr_time
   helps to forecast when convergence will be reached. Elapsed time  
   is stamped in powell.  We created a new html file for the graphs    Revision 1.100  2004/07/12 18:29:06  brouard
   concerning matrix of covariance. It has extension -cov.htm.    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   (Module): Some bugs corrected for windows. Also, when    *** empty log message ***
   mle=-1 a template is output in file "or"mypar.txt with the design  
   of the covariance matrix to be input.    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
   Revision 1.89  2003/06/24 12:30:52  brouard    directly from the data i.e. without the need of knowing the health
   (Module): Some bugs corrected for windows. Also, when    state at each age, but using a Gompertz model: log u =a + b*age .
   mle=-1 a template is output in file "or"mypar.txt with the design    This is the basic analysis of mortality and should be done before any
   of the covariance matrix to be input.    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
   Revision 1.88  2003/06/23 17:54:56  brouard    from other sources like vital statistic data.
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.  
     The same imach parameter file can be used but the option for mle should be -3.
   Revision 1.87  2003/06/18 12:26:01  brouard  
   Version 0.96    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
   Revision 1.86  2003/06/17 20:04:08  brouard  
   (Module): Change position of html and gnuplot routines and added    The output is very simple: only an estimate of the intercept and of
   routine fileappend.    the slope with 95% confident intervals.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Current limitations:
   * imach.c (Repository): Check when date of death was earlier that    A) Even if you enter covariates, i.e. with the
   current date of interview. It may happen when the death was just    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   prior to the death. In this case, dh was negative and likelihood    B) There is no computation of Life Expectancy nor Life Table.
   was wrong (infinity). We still send an "Error" but patch by  
   assuming that the date of death was just one stepm after the    Revision 1.97  2004/02/20 13:25:42  lievre
   interview.    Version 0.96d. Population forecasting command line is (temporarily)
   (Repository): Because some people have very long ID (first column)    suppressed.
   we changed int to long in num[] and we added a new lvector for  
   memory allocation. But we also truncated to 8 characters (left    Revision 1.96  2003/07/15 15:38:55  brouard
   truncation)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   (Repository): No more line truncation errors.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository):
   place. It differs from routine "prevalence" which may be called    (Repository): Using imachwizard code to output a more meaningful covariance
   many times. Probs is memory consuming and must be used with    matrix (cov(a12,c31) instead of numbers.
   parcimony.  
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   Revision 1.83  2003/06/10 13:39:11  lievre  
   *** empty log message ***    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
   Revision 1.82  2003/06/05 15:57:20  brouard    exist so I changed back to asctime which exists.
   Add log in  imach.c and  fullversion number is now printed.    (Module): Version 0.96b
   
 */    Revision 1.92  2003/06/25 16:30:45  brouard
 /*    (Module): On windows (cygwin) function asctime_r doesn't
    Interpolated Markov Chain    exist so I changed back to asctime which exists.
   
   Short summary of the programme:    Revision 1.91  2003/06/25 15:30:29  brouard
       * imach.c (Repository): Duplicated warning errors corrected.
   This program computes Healthy Life Expectancies from    (Repository): Elapsed time after each iteration is now output. It
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    helps to forecast when convergence will be reached. Elapsed time
   first survey ("cross") where individuals from different ages are    is stamped in powell.  We created a new html file for the graphs
   interviewed on their health status or degree of disability (in the    concerning matrix of covariance. It has extension -cov.htm.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.90  2003/06/24 12:34:15  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Some bugs corrected for windows. Also, when
   computed from the time spent in each health state according to a    mle=-1 a template is output in file "or"mypar.txt with the design
   model. More health states you consider, more time is necessary to reach the    of the covariance matrix to be input.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.89  2003/06/24 12:30:52  brouard
   probability to be observed in state j at the second wave    (Module): Some bugs corrected for windows. Also, when
   conditional to be observed in state i at the first wave. Therefore    mle=-1 a template is output in file "or"mypar.txt with the design
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    of the covariance matrix to be input.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.88  2003/06/23 17:54:56  brouard
   where the markup *Covariates have to be included here again* invites    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.86  2003/06/17 20:04:08  brouard
   identical for each individual. Also, if a individual missed an    (Module): Change position of html and gnuplot routines and added
   intermediate interview, the information is lost, but taken into    routine fileappend.
   account using an interpolation or extrapolation.    
     Revision 1.85  2003/06/17 13:12:43  brouard
   hPijx is the probability to be observed in state i at age x+h    * imach.c (Repository): Check when date of death was earlier that
   conditional to the observed state i at age x. The delay 'h' can be    current date of interview. It may happen when the death was just
   split into an exact number (nh*stepm) of unobserved intermediate    prior to the death. In this case, dh was negative and likelihood
   states. This elementary transition (by month, quarter,    was wrong (infinity). We still send an "Error" but patch by
   semester or year) is modelled as a multinomial logistic.  The hPx    assuming that the date of death was just one stepm after the
   matrix is simply the matrix product of nh*stepm elementary matrices    interview.
   and the contribution of each individual to the likelihood is simply    (Repository): Because some people have very long ID (first column)
   hPijx.    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
   Also this programme outputs the covariance matrix of the parameters but also    truncation)
   of the life expectancies. It also computes the stable prevalence.     (Repository): No more line truncation errors.
     
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.84  2003/06/13 21:44:43  brouard
            Institut national d'études démographiques, Paris.    * imach.c (Repository): Replace "freqsummary" at a correct
   This software have been partly granted by Euro-REVES, a concerted action    place. It differs from routine "prevalence" which may be called
   from the European Union.    many times. Probs is memory consuming and must be used with
   It is copyrighted identically to a GNU software product, ie programme and    parcimony.
   software can be distributed freely for non commercial use. Latest version    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   can be accessed at http://euroreves.ined.fr/imach .  
     Revision 1.83  2003/06/10 13:39:11  lievre
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    *** empty log message ***
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so  
       Revision 1.82  2003/06/05 15:57:20  brouard
   **********************************************************************/    Add log in  imach.c and  fullversion number is now printed.
 /*  
   main  */
   read parameterfile  /*
   read datafile     Interpolated Markov Chain
   concatwav  
   freqsummary    Short summary of the programme:
   if (mle >= 1)   
     mlikeli    This program computes Healthy Life Expectancies from
   print results files    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   if mle==1     first survey ("cross") where individuals from different ages are
      computes hessian    interviewed on their health status or degree of disability (in the
   read end of parameter file: agemin, agemax, bage, fage, estepm    case of a health survey which is our main interest) -2- at least a
       begin-prev-date,...    second wave of interviews ("longitudinal") which measure each change
   open gnuplot file    (if any) in individual health status.  Health expectancies are
   open html file    computed from the time spent in each health state according to a
   stable prevalence    model. More health states you consider, more time is necessary to reach the
    for age prevalim()    Maximum Likelihood of the parameters involved in the model.  The
   h Pij x    simplest model is the multinomial logistic model where pij is the
   variance of p varprob    probability to be observed in state j at the second wave
   forecasting if prevfcast==1 prevforecast call prevalence()    conditional to be observed in state i at the first wave. Therefore
   health expectancies    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   Variance-covariance of DFLE    'age' is age and 'sex' is a covariate. If you want to have a more
   prevalence()    complex model than "constant and age", you should modify the program
    movingaverage()    where the markup *Covariates have to be included here again* invites
   varevsij()     you to do it.  More covariates you add, slower the
   if popbased==1 varevsij(,popbased)    convergence.
   total life expectancies  
   Variance of stable prevalence    The advantage of this computer programme, compared to a simple
  end    multinomial logistic model, is clear when the delay between waves is not
 */    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
   
      hPijx is the probability to be observed in state i at age x+h
 #include <math.h>    conditional to the observed state i at age x. The delay 'h' can be
 #include <stdio.h>    split into an exact number (nh*stepm) of unobserved intermediate
 #include <stdlib.h>    states. This elementary transition (by month, quarter,
 #include <string.h>    semester or year) is modelled as a multinomial logistic.  The hPx
 #include <unistd.h>    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 #include <limits.h>    hPijx.
 #include <sys/types.h>  
 #include <sys/stat.h>    Also this programme outputs the covariance matrix of the parameters but also
 #include <errno.h>    of the life expectancies. It also computes the period (stable) prevalence.
 extern int errno;   
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /* #include <sys/time.h> */             Institut national d'études démographiques, Paris.
 #include <time.h>    This software have been partly granted by Euro-REVES, a concerted action
 #include "timeval.h"    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 /* #include <libintl.h> */    software can be distributed freely for non commercial use. Latest version
 /* #define _(String) gettext (String) */    can be accessed at http://euroreves.ined.fr/imach .
   
 #define MAXLINE 256    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define GNUPLOTPROGRAM "gnuplot"   
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    **********************************************************************/
 #define FILENAMELENGTH 132  /*
     main
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    read parameterfile
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    read datafile
     concatwav
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    freqsummary
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    if (mle >= 1)
       mlikeli
 #define NINTERVMAX 8    print results files
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    if mle==1
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */       computes hessian
 #define NCOVMAX 8 /* Maximum number of covariates */    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define MAXN 20000        begin-prev-date,...
 #define YEARM 12. /* Number of months per year */    open gnuplot file
 #define AGESUP 130    open html file
 #define AGEBASE 40    period (stable) prevalence
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */     for age prevalim()
 #ifdef UNIX    h Pij x
 #define DIRSEPARATOR '/'    variance of p varprob
 #define CHARSEPARATOR "/"    forecasting if prevfcast==1 prevforecast call prevalence()
 #define ODIRSEPARATOR '\\'    health expectancies
 #else    Variance-covariance of DFLE
 #define DIRSEPARATOR '\\'    prevalence()
 #define CHARSEPARATOR "\\"     movingaverage()
 #define ODIRSEPARATOR '/'    varevsij()
 #endif    if popbased==1 varevsij(,popbased)
     total life expectancies
 /* $Id$ */    Variance of period (stable) prevalence
 /* $State$ */   end
   */
 char version[]="Imach version 0.98c, February 2006, INED-EUROREVES ";  
 char fullversion[]="$Revision$ $Date$";   
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  
 int nvar;   
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  #include <math.h>
 int npar=NPARMAX;  #include <stdio.h>
 int nlstate=2; /* Number of live states */  #include <stdlib.h>
 int ndeath=1; /* Number of dead states */  #include <string.h>
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  #include <unistd.h>
 int popbased=0;  
   #include <limits.h>
 int *wav; /* Number of waves for this individuual 0 is possible */  #include <sys/types.h>
 int maxwav; /* Maxim number of waves */  #include <sys/stat.h>
 int jmin, jmax; /* min, max spacing between 2 waves */  #include <errno.h>
 int ijmin, ijmax; /* Individuals having jmin and jmax */   extern int errno;
 int gipmx, gsw; /* Global variables on the number of contributions   
                    to the likelihood and the sum of weights (done by funcone)*/  /* #include <sys/time.h> */
 int mle, weightopt;  #include <time.h>
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #include "timeval.h"
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  /* #include <libintl.h> */
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  /* #define _(String) gettext (String) */
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define MAXLINE 256
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #define GNUPLOTPROGRAM "gnuplot"
 FILE *ficlog, *ficrespow;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int globpr; /* Global variable for printing or not */  #define FILENAMELENGTH 132
 double fretone; /* Only one call to likelihood */  
 long ipmx; /* Number of contributions */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double sw; /* Sum of weights */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 char filerespow[FILENAMELENGTH];  
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 FILE *ficresilk;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficresprobmorprev;  #define NINTERVMAX 8
 FILE *fichtm, *fichtmcov; /* Html File */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 FILE *ficreseij;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 char filerese[FILENAMELENGTH];  #define NCOVMAX 8 /* Maximum number of covariates */
 FILE  *ficresvij;  #define MAXN 20000
 char fileresv[FILENAMELENGTH];  #define YEARM 12. /* Number of months per year */
 FILE  *ficresvpl;  #define AGESUP 130
 char fileresvpl[FILENAMELENGTH];  #define AGEBASE 40
 char title[MAXLINE];  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #ifdef UNIX
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  #define DIRSEPARATOR '/'
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   #define CHARSEPARATOR "/"
 char command[FILENAMELENGTH];  #define ODIRSEPARATOR '\\'
 int  outcmd=0;  #else
   #define DIRSEPARATOR '\\'
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 char filelog[FILENAMELENGTH]; /* Log file */  #endif
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];  /* $Id$ */
 char popfile[FILENAMELENGTH];  /* $State$ */
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   char fullversion[]="$Revision$ $Date$";
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  char strstart[80];
 struct timezone tzp;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 extern int gettimeofday();  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  int nvar;
 long time_value;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 extern long time();  int npar=NPARMAX;
 char strcurr[80], strfor[80];  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 char *endptr;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 long lval;  int popbased=0;
   
 #define NR_END 1  int *wav; /* Number of waves for this individuual 0 is possible */
 #define FREE_ARG char*  int maxwav; /* Maxim number of waves */
 #define FTOL 1.0e-10  int jmin, jmax; /* min, max spacing between 2 waves */
   int ijmin, ijmax; /* Individuals having jmin and jmax */
 #define NRANSI   int gipmx, gsw; /* Global variables on the number of contributions
 #define ITMAX 200                      to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 #define TOL 2.0e-4   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #define CGOLD 0.3819660   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #define ZEPS 1.0e-10              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 #define GOLD 1.618034   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #define GLIMIT 100.0   FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #define TINY 1.0e-20   FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 static double maxarg1,maxarg2;  double fretone; /* Only one call to likelihood */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  long ipmx; /* Number of contributions */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  double sw; /* Sum of weights */
     char filerespow[FILENAMELENGTH];
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #define rint(a) floor(a+0.5)  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 static double sqrarg;  FILE *ficresprobmorprev;
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  FILE *fichtm, *fichtmcov; /* Html File */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   FILE *ficreseij;
 int agegomp= AGEGOMP;  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
 int imx;   char fileresstde[FILENAMELENGTH];
 int stepm=1;  FILE *ficrescveij;
 /* Stepm, step in month: minimum step interpolation*/  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 int estepm;  char fileresv[FILENAMELENGTH];
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 int m,nb;  char title[MAXLINE];
 long *num;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
 double **pmmij, ***probs;  char command[FILENAMELENGTH];
 double *ageexmed,*agecens;  int  outcmd=0;
 double dateintmean=0;  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 double *weight;  
 int **s; /* Status */  char filelog[FILENAMELENGTH]; /* Log file */
 double *agedc, **covar, idx;  char filerest[FILENAMELENGTH];
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  char fileregp[FILENAMELENGTH];
 double *lsurv, *lpop, *tpop;  char popfile[FILENAMELENGTH];
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 double ftolhess; /* Tolerance for computing hessian */  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 /**************** split *************************/  struct timezone tzp;
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  extern int gettimeofday();
 {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  long time_value;
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  extern long time();
   */   char strcurr[80], strfor[80];
   char  *ss;                            /* pointer */  
   int   l1, l2;                         /* length counters */  char *endptr;
   long lval;
   l1 = strlen(path );                   /* length of path */  double dval;
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  #define NR_END 1
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  #define FREE_ARG char*
     strcpy( name, path );               /* we got the fullname name because no directory */  #define FTOL 1.0e-10
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  #define NRANSI
     /* get current working directory */  #define ITMAX 200
     /*    extern  char* getcwd ( char *buf , int len);*/  
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define TOL 2.0e-4
       return( GLOCK_ERROR_GETCWD );  
     }  #define CGOLD 0.3819660
     /* got dirc from getcwd*/  #define ZEPS 1.0e-10
     printf(" DIRC = %s \n",dirc);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   } else {                              /* strip direcotry from path */  
     ss++;                               /* after this, the filename */  #define GOLD 1.618034
     l2 = strlen( ss );                  /* length of filename */  #define GLIMIT 100.0
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define TINY 1.0e-20
     strcpy( name, ss );         /* save file name */  
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  static double maxarg1,maxarg2;
     dirc[l1-l2] = 0;                    /* add zero */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     printf(" DIRC2 = %s \n",dirc);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   }   
   /* We add a separator at the end of dirc if not exists */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   l1 = strlen( dirc );                  /* length of directory */  #define rint(a) floor(a+0.5)
   if( dirc[l1-1] != DIRSEPARATOR ){  
     dirc[l1] =  DIRSEPARATOR;  static double sqrarg;
     dirc[l1+1] = 0;   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     printf(" DIRC3 = %s \n",dirc);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   }  int agegomp= AGEGOMP;
   ss = strrchr( name, '.' );            /* find last / */  
   if (ss >0){  int imx;
     ss++;  int stepm=1;
     strcpy(ext,ss);                     /* save extension */  /* Stepm, step in month: minimum step interpolation*/
     l1= strlen( name);  
     l2= strlen(ss)+1;  int estepm;
     strncpy( finame, name, l1-l2);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     finame[l1-l2]= 0;  
   }  int m,nb;
   long *num;
   return( 0 );                          /* we're done */  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
   double *ageexmed,*agecens;
 /******************************************/  double dateintmean=0;
   
 void replace_back_to_slash(char *s, char*t)  double *weight;
 {  int **s; /* Status */
   int i;  double *agedc, **covar, idx;
   int lg=0;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   i=0;  double *lsurv, *lpop, *tpop;
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     (s[i] = t[i]);  double ftolhess; /* Tolerance for computing hessian */
     if (t[i]== '\\') s[i]='/';  
   }  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 int nbocc(char *s, char occ)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   int i,j=0;    */
   int lg=20;    char  *ss;                            /* pointer */
   i=0;    int   l1, l2;                         /* length counters */
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    l1 = strlen(path );                   /* length of path */
   if  (s[i] == occ ) j++;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   return j;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 }      strcpy( name, path );               /* we got the fullname name because no directory */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 void cutv(char *u,char *v, char*t, char occ)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   /* cuts string t into u and v where u ends before first occurence of char 'occ'       /*    extern  char* getcwd ( char *buf , int len);*/
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
      gives u="abcedf" and v="ghi2j" */        return( GLOCK_ERROR_GETCWD );
   int i,lg,j,p=0;      }
   i=0;      /* got dirc from getcwd*/
   for(j=0; j<=strlen(t)-1; j++) {      printf(" DIRC = %s \n",dirc);
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    } else {                              /* strip direcotry from path */
   }      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
   lg=strlen(t);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for(j=0; j<p; j++) {      strcpy( name, ss );         /* save file name */
     (u[j] = t[j]);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   }      dirc[l1-l2] = 0;                    /* add zero */
      u[p]='\0';      printf(" DIRC2 = %s \n",dirc);
     }
    for(j=0; j<= lg; j++) {    /* We add a separator at the end of dirc if not exists */
     if (j>=(p+1))(v[j-p-1] = t[j]);    l1 = strlen( dirc );                  /* length of directory */
   }    if( dirc[l1-1] != DIRSEPARATOR ){
 }      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0;
 /********************** nrerror ********************/      printf(" DIRC3 = %s \n",dirc);
     }
 void nrerror(char error_text[])    ss = strrchr( name, '.' );            /* find last / */
 {    if (ss >0){
   fprintf(stderr,"ERREUR ...\n");      ss++;
   fprintf(stderr,"%s\n",error_text);      strcpy(ext,ss);                     /* save extension */
   exit(EXIT_FAILURE);      l1= strlen( name);
 }      l2= strlen(ss)+1;
 /*********************** vector *******************/      strncpy( finame, name, l1-l2);
 double *vector(int nl, int nh)      finame[l1-l2]= 0;
 {    }
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    return( 0 );                          /* we're done */
   if (!v) nrerror("allocation failure in vector");  }
   return v-nl+NR_END;  
 }  
   /******************************************/
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  void replace_back_to_slash(char *s, char*t)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    int i;
 }    int lg=0;
     i=0;
 /************************ivector *******************************/    lg=strlen(t);
 int *ivector(long nl,long nh)    for(i=0; i<= lg; i++) {
 {      (s[i] = t[i]);
   int *v;      if (t[i]== '\\') s[i]='/';
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    }
   if (!v) nrerror("allocation failure in ivector");  }
   return v-nl+NR_END;  
 }  int nbocc(char *s, char occ)
   {
 /******************free ivector **************************/    int i,j=0;
 void free_ivector(int *v, long nl, long nh)    int lg=20;
 {    i=0;
   free((FREE_ARG)(v+nl-NR_END));    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /************************lvector *******************************/    }
 long *lvector(long nl,long nh)    return j;
 {  }
   long *v;  
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  void cutv(char *u,char *v, char*t, char occ)
   if (!v) nrerror("allocation failure in ivector");  {
   return v-nl+NR_END;    /* cuts string t into u and v where u ends before first occurence of char 'occ'
 }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
        gives u="abcedf" and v="ghi2j" */
 /******************free lvector **************************/    int i,lg,j,p=0;
 void free_lvector(long *v, long nl, long nh)    i=0;
 {    for(j=0; j<=strlen(t)-1; j++) {
   free((FREE_ARG)(v+nl-NR_END));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 }    }
   
 /******************* imatrix *******************************/    lg=strlen(t);
 int **imatrix(long nrl, long nrh, long ncl, long nch)     for(j=0; j<p; j++) {
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */       (u[j] = t[j]);
 {     }
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;        u[p]='\0';
   int **m;   
        for(j=0; j<= lg; j++) {
   /* allocate pointers to rows */       if (j>=(p+1))(v[j-p-1] = t[j]);
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));     }
   if (!m) nrerror("allocation failure 1 in matrix()");   }
   m += NR_END;   
   m -= nrl;   /********************** nrerror ********************/
     
     void nrerror(char error_text[])
   /* allocate rows and set pointers to them */   {
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));     fprintf(stderr,"ERREUR ...\n");
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");     fprintf(stderr,"%s\n",error_text);
   m[nrl] += NR_END;     exit(EXIT_FAILURE);
   m[nrl] -= ncl;   }
     /*********************** vector *******************/
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   double *vector(int nl, int nh)
     {
   /* return pointer to array of pointers to rows */     double *v;
   return m;     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 }     if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
 /****************** free_imatrix *************************/  }
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  /************************ free vector ******************/
       long nch,ncl,nrh,nrl;   void free_vector(double*v, int nl, int nh)
      /* free an int matrix allocated by imatrix() */   {
 {     free((FREE_ARG)(v+nl-NR_END));
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   }
   free((FREE_ARG) (m+nrl-NR_END));   
 }   /************************ivector *******************************/
   int *ivector(long nl,long nh)
 /******************* matrix *******************************/  {
 double **matrix(long nrl, long nrh, long ncl, long nch)    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    if (!v) nrerror("allocation failure in ivector");
   double **m;    return v-nl+NR_END;
   }
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /******************free ivector **************************/
   m += NR_END;  void free_ivector(int *v, long nl, long nh)
   m -= nrl;  {
     free((FREE_ARG)(v+nl-NR_END));
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /************************lvector *******************************/
   m[nrl] -= ncl;  long *lvector(long nl,long nh)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    long *v;
   return m;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])     if (!v) nrerror("allocation failure in ivector");
    */    return v-nl+NR_END;
 }  }
   
 /*************************free matrix ************************/  /******************free lvector **************************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  void free_lvector(long *v, long nl, long nh)
 {  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  
   /******************* imatrix *******************************/
 /******************* ma3x *******************************/  int **imatrix(long nrl, long nrh, long ncl, long nch)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
   double ***m;    int **m;
    
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    /* allocate pointers to rows */
   if (!m) nrerror("allocation failure 1 in matrix()");    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
   m += NR_END;    if (!m) nrerror("allocation failure 1 in matrix()");
   m -= nrl;    m += NR_END;
     m -= nrl;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));   
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   
   m[nrl] += NR_END;    /* allocate rows and set pointers to them */
   m[nrl] -= ncl;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    m[nrl] += NR_END;
     m[nrl] -= ncl;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));   
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
   m[nrl][ncl] += NR_END;   
   m[nrl][ncl] -= nll;    /* return pointer to array of pointers to rows */
   for (j=ncl+1; j<=nch; j++)     return m;
     m[nrl][j]=m[nrl][j-1]+nlay;  }
     
   for (i=nrl+1; i<=nrh; i++) {  /****************** free_imatrix *************************/
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  void free_imatrix(m,nrl,nrh,ncl,nch)
     for (j=ncl+1; j<=nch; j++)         int **m;
       m[i][j]=m[i][j-1]+nlay;        long nch,ncl,nrh,nrl;
   }       /* free an int matrix allocated by imatrix() */
   return m;   {
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    free((FREE_ARG) (m[nrl]+ncl-NR_END));
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    free((FREE_ARG) (m+nrl-NR_END));
   */  }
 }  
   /******************* matrix *******************************/
 /*************************free ma3x ************************/  double **matrix(long nrl, long nrh, long ncl, long nch)
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  {
 {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    double **m;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 }    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 /*************** function subdirf ***********/    m -= nrl;
 char *subdirf(char fileres[])  
 {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   /* Caution optionfilefiname is hidden */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   strcpy(tmpout,optionfilefiname);    m[nrl] += NR_END;
   strcat(tmpout,"/"); /* Add to the right */    m[nrl] -= ncl;
   strcat(tmpout,fileres);  
   return tmpout;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
 /*************** function subdirf2 ***********/     */
 char *subdirf2(char fileres[], char *preop)  }
 {  
     /*************************free matrix ************************/
   /* Caution optionfilefiname is hidden */  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   strcpy(tmpout,optionfilefiname);  {
   strcat(tmpout,"/");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   strcat(tmpout,preop);    free((FREE_ARG)(m+nrl-NR_END));
   strcat(tmpout,fileres);  }
   return tmpout;  
 }  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 /*************** function subdirf3 ***********/  {
 char *subdirf3(char fileres[], char *preop, char *preop2)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 {    double ***m;
     
   /* Caution optionfilefiname is hidden */    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   strcpy(tmpout,optionfilefiname);    if (!m) nrerror("allocation failure 1 in matrix()");
   strcat(tmpout,"/");    m += NR_END;
   strcat(tmpout,preop);    m -= nrl;
   strcat(tmpout,preop2);  
   strcat(tmpout,fileres);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   return tmpout;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 }    m[nrl] += NR_END;
     m[nrl] -= ncl;
 /***************** f1dim *************************/  
 extern int ncom;     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 double f1dim(double x)     m[nrl][ncl] += NR_END;
 {     m[nrl][ncl] -= nll;
   int j;     for (j=ncl+1; j<=nch; j++)
   double f;      m[nrl][j]=m[nrl][j-1]+nlay;
   double *xt;    
      for (i=nrl+1; i<=nrh; i++) {
   xt=vector(1,ncom);       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];       for (j=ncl+1; j<=nch; j++)
   f=(*nrfunc)(xt);         m[i][j]=m[i][j-1]+nlay;
   free_vector(xt,1,ncom);     }
   return f;     return m;
 }     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 /*****************brent *************************/    */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   }
 {   
   int iter;   /*************************free ma3x ************************/
   double a,b,d,etemp;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double fu,fv,fw,fx;  {
   double ftemp;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   double p,q,r,tol1,tol2,u,v,w,x,xm;     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double e=0.0;     free((FREE_ARG)(m+nrl-NR_END));
    }
   a=(ax < cx ? ax : cx);   
   b=(ax > cx ? ax : cx);   /*************** function subdirf ***********/
   x=w=v=bx;   char *subdirf(char fileres[])
   fw=fv=fx=(*f)(x);   {
   for (iter=1;iter<=ITMAX;iter++) {     /* Caution optionfilefiname is hidden */
     xm=0.5*(a+b);     strcpy(tmpout,optionfilefiname);
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     strcat(tmpout,"/"); /* Add to the right */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    strcat(tmpout,fileres);
     printf(".");fflush(stdout);    return tmpout;
     fprintf(ficlog,".");fflush(ficlog);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /*************** function subdirf2 ***********/
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char *subdirf2(char fileres[], char *preop)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  {
 #endif   
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     /* Caution optionfilefiname is hidden */
       *xmin=x;     strcpy(tmpout,optionfilefiname);
       return fx;     strcat(tmpout,"/");
     }     strcat(tmpout,preop);
     ftemp=fu;    strcat(tmpout,fileres);
     if (fabs(e) > tol1) {     return tmpout;
       r=(x-w)*(fx-fv);   }
       q=(x-v)*(fx-fw);   
       p=(x-v)*q-(x-w)*r;   /*************** function subdirf3 ***********/
       q=2.0*(q-r);   char *subdirf3(char fileres[], char *preop, char *preop2)
       if (q > 0.0) p = -p;   {
       q=fabs(q);    
       etemp=e;     /* Caution optionfilefiname is hidden */
       e=d;     strcpy(tmpout,optionfilefiname);
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     strcat(tmpout,"/");
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     strcat(tmpout,preop);
       else {     strcat(tmpout,preop2);
         d=p/q;     strcat(tmpout,fileres);
         u=x+d;     return tmpout;
         if (u-a < tol2 || b-u < tol2)   }
           d=SIGN(tol1,xm-x);   
       }   /***************** f1dim *************************/
     } else {   extern int ncom;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));   extern double *pcom,*xicom;
     }   extern double (*nrfunc)(double []);
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    
     fu=(*f)(u);   double f1dim(double x)
     if (fu <= fx) {   {
       if (u >= x) a=x; else b=x;     int j;
       SHFT(v,w,x,u)     double f;
         SHFT(fv,fw,fx,fu)     double *xt;
         } else {    
           if (u < x) a=u; else b=u;     xt=vector(1,ncom);
           if (fu <= fw || w == x) {     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
             v=w;     f=(*nrfunc)(xt);
             w=u;     free_vector(xt,1,ncom);
             fv=fw;     return f;
             fw=fu;   }
           } else if (fu <= fv || v == x || v == w) {   
             v=u;   /*****************brent *************************/
             fv=fu;   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
           }   {
         }     int iter;
   }     double a,b,d,etemp;
   nrerror("Too many iterations in brent");     double fu,fv,fw,fx;
   *xmin=x;     double ftemp;
   return fx;     double p,q,r,tol1,tol2,u,v,w,x,xm;
 }     double e=0.0;
    
 /****************** mnbrak ***********************/    a=(ax < cx ? ax : cx);
     b=(ax > cx ? ax : cx);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     x=w=v=bx;
             double (*func)(double))     fw=fv=fx=(*f)(x);
 {     for (iter=1;iter<=ITMAX;iter++) {
   double ulim,u,r,q, dum;      xm=0.5*(a+b);
   double fu;       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
        /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   *fa=(*func)(*ax);       printf(".");fflush(stdout);
   *fb=(*func)(*bx);       fprintf(ficlog,".");fflush(ficlog);
   if (*fb > *fa) {   #ifdef DEBUG
     SHFT(dum,*ax,*bx,dum)       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       SHFT(dum,*fb,*fa,dum)       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   *cx=(*bx)+GOLD*(*bx-*ax);   #endif
   *fc=(*func)(*cx);       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
   while (*fb > *fc) {         *xmin=x;
     r=(*bx-*ax)*(*fb-*fc);         return fx;
     q=(*bx-*cx)*(*fb-*fa);       }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       ftemp=fu;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));       if (fabs(e) > tol1) {
     ulim=(*bx)+GLIMIT*(*cx-*bx);         r=(x-w)*(fx-fv);
     if ((*bx-u)*(u-*cx) > 0.0) {         q=(x-v)*(fx-fw);
       fu=(*func)(u);         p=(x-v)*q-(x-w)*r;
     } else if ((*cx-u)*(u-ulim) > 0.0) {         q=2.0*(q-r);
       fu=(*func)(u);         if (q > 0.0) p = -p;
       if (fu < *fc) {         q=fabs(q);
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))         etemp=e;
           SHFT(*fb,*fc,fu,(*func)(u))         e=d;
           }         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {           d=CGOLD*(e=(x >= xm ? a-x : b-x));
       u=ulim;         else {
       fu=(*func)(u);           d=p/q;
     } else {           u=x+d;
       u=(*cx)+GOLD*(*cx-*bx);           if (u-a < tol2 || b-u < tol2)
       fu=(*func)(u);             d=SIGN(tol1,xm-x);
     }         }
     SHFT(*ax,*bx,*cx,u)       } else {
       SHFT(*fa,*fb,*fc,fu)         d=CGOLD*(e=(x >= xm ? a-x : b-x));
       }       }
 }       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
       fu=(*f)(u);
 /*************** linmin ************************/      if (fu <= fx) {
         if (u >= x) a=x; else b=x;
 int ncom;         SHFT(v,w,x,u)
 double *pcom,*xicom;          SHFT(fv,fw,fx,fu)
 double (*nrfunc)(double []);           } else {
              if (u < x) a=u; else b=u;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))             if (fu <= fw || w == x) {
 {               v=w;
   double brent(double ax, double bx, double cx,               w=u;
                double (*f)(double), double tol, double *xmin);               fv=fw;
   double f1dim(double x);               fw=fu;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,             } else if (fu <= fv || v == x || v == w) {
               double *fc, double (*func)(double));               v=u;
   int j;               fv=fu;
   double xx,xmin,bx,ax;             }
   double fx,fb,fa;          }
      }
   ncom=n;     nrerror("Too many iterations in brent");
   pcom=vector(1,n);     *xmin=x;
   xicom=vector(1,n);     return fx;
   nrfunc=func;   }
   for (j=1;j<=n;j++) {   
     pcom[j]=p[j];   /****************** mnbrak ***********************/
     xicom[j]=xi[j];   
   }   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
   ax=0.0;               double (*func)(double))
   xx=1.0;   {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     double ulim,u,r,q, dum;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     double fu;
 #ifdef DEBUG   
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    *fa=(*func)(*ax);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    *fb=(*func)(*bx);
 #endif    if (*fb > *fa) {
   for (j=1;j<=n;j++) {       SHFT(dum,*ax,*bx,dum)
     xi[j] *= xmin;         SHFT(dum,*fb,*fa,dum)
     p[j] += xi[j];         }
   }     *cx=(*bx)+GOLD*(*bx-*ax);
   free_vector(xicom,1,n);     *fc=(*func)(*cx);
   free_vector(pcom,1,n);     while (*fb > *fc) {
 }       r=(*bx-*ax)*(*fb-*fc);
       q=(*bx-*cx)*(*fb-*fa);
 char *asc_diff_time(long time_sec, char ascdiff[])      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
 {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
   long sec_left, days, hours, minutes;      ulim=(*bx)+GLIMIT*(*cx-*bx);
   days = (time_sec) / (60*60*24);      if ((*bx-u)*(u-*cx) > 0.0) {
   sec_left = (time_sec) % (60*60*24);        fu=(*func)(u);
   hours = (sec_left) / (60*60) ;      } else if ((*cx-u)*(u-ulim) > 0.0) {
   sec_left = (sec_left) %(60*60);        fu=(*func)(u);
   minutes = (sec_left) /60;        if (fu < *fc) {
   sec_left = (sec_left) % (60);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);              SHFT(*fb,*fc,fu,(*func)(u))
   return ascdiff;            }
 }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
         u=ulim;
 /*************** powell ************************/        fu=(*func)(u);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,       } else {
             double (*func)(double []))         u=(*cx)+GOLD*(*cx-*bx);
 {         fu=(*func)(u);
   void linmin(double p[], double xi[], int n, double *fret,       }
               double (*func)(double []));       SHFT(*ax,*bx,*cx,u)
   int i,ibig,j;         SHFT(*fa,*fb,*fc,fu)
   double del,t,*pt,*ptt,*xit;        }
   double fp,fptt;  }
   double *xits;  
   int niterf, itmp;  /*************** linmin ************************/
   
   pt=vector(1,n);   int ncom;
   ptt=vector(1,n);   double *pcom,*xicom;
   xit=vector(1,n);   double (*nrfunc)(double []);
   xits=vector(1,n);    
   *fret=(*func)(p);   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
   for (j=1;j<=n;j++) pt[j]=p[j];   {
   for (*iter=1;;++(*iter)) {     double brent(double ax, double bx, double cx,
     fp=(*fret);                  double (*f)(double), double tol, double *xmin);
     ibig=0;     double f1dim(double x);
     del=0.0;     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
     last_time=curr_time;                double *fc, double (*func)(double));
     (void) gettimeofday(&curr_time,&tzp);    int j;
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);    double xx,xmin,bx,ax;
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);    double fx,fb,fa;
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);   
     */    ncom=n;
    for (i=1;i<=n;i++) {    pcom=vector(1,n);
       printf(" %d %.12f",i, p[i]);    xicom=vector(1,n);
       fprintf(ficlog," %d %.12lf",i, p[i]);    nrfunc=func;
       fprintf(ficrespow," %.12lf", p[i]);    for (j=1;j<=n;j++) {
     }      pcom[j]=p[j];
     printf("\n");      xicom[j]=xi[j];
     fprintf(ficlog,"\n");    }
     fprintf(ficrespow,"\n");fflush(ficrespow);    ax=0.0;
     if(*iter <=3){    xx=1.0;
       tm = *localtime(&curr_time.tv_sec);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
       strcpy(strcurr,asctime(&tm));    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
 /*       asctime_r(&tm,strcurr); */  #ifdef DEBUG
       forecast_time=curr_time;     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       itmp = strlen(strcurr);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */  #endif
         strcurr[itmp-1]='\0';    for (j=1;j<=n;j++) {
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);      xi[j] *= xmin;
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);      p[j] += xi[j];
       for(niterf=10;niterf<=30;niterf+=10){    }
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);    free_vector(xicom,1,n);
         tmf = *localtime(&forecast_time.tv_sec);    free_vector(pcom,1,n);
 /*      asctime_r(&tmf,strfor); */  }
         strcpy(strfor,asctime(&tmf));  
         itmp = strlen(strfor);  char *asc_diff_time(long time_sec, char ascdiff[])
         if(strfor[itmp-1]=='\n')  {
         strfor[itmp-1]='\0';    long sec_left, days, hours, minutes;
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    days = (time_sec) / (60*60*24);
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    sec_left = (time_sec) % (60*60*24);
       }    hours = (sec_left) / (60*60) ;
     }    sec_left = (sec_left) %(60*60);
     for (i=1;i<=n;i++) {     minutes = (sec_left) /60;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     sec_left = (sec_left) % (60);
       fptt=(*fret);     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 #ifdef DEBUG    return ascdiff;
       printf("fret=%lf \n",*fret);  }
       fprintf(ficlog,"fret=%lf \n",*fret);  
 #endif  /*************** powell ************************/
       printf("%d",i);fflush(stdout);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
       fprintf(ficlog,"%d",i);fflush(ficlog);              double (*func)(double []))
       linmin(p,xit,n,fret,func);   {
       if (fabs(fptt-(*fret)) > del) {     void linmin(double p[], double xi[], int n, double *fret,
         del=fabs(fptt-(*fret));                 double (*func)(double []));
         ibig=i;     int i,ibig,j;
       }     double del,t,*pt,*ptt,*xit;
 #ifdef DEBUG    double fp,fptt;
       printf("%d %.12e",i,(*fret));    double *xits;
       fprintf(ficlog,"%d %.12e",i,(*fret));    int niterf, itmp;
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    pt=vector(1,n);
         printf(" x(%d)=%.12e",j,xit[j]);    ptt=vector(1,n);
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    xit=vector(1,n);
       }    xits=vector(1,n);
       for(j=1;j<=n;j++) {    *fret=(*func)(p);
         printf(" p=%.12e",p[j]);    for (j=1;j<=n;j++) pt[j]=p[j];
         fprintf(ficlog," p=%.12e",p[j]);    for (*iter=1;;++(*iter)) {
       }      fp=(*fret);
       printf("\n");      ibig=0;
       fprintf(ficlog,"\n");      del=0.0;
 #endif      last_time=curr_time;
     }       (void) gettimeofday(&curr_time,&tzp);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 #ifdef DEBUG      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       int k[2],l;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       k[0]=1;     for (i=1;i<=n;i++) {
       k[1]=-1;        printf(" %d %.12f",i, p[i]);
       printf("Max: %.12e",(*func)(p));        fprintf(ficlog," %d %.12lf",i, p[i]);
       fprintf(ficlog,"Max: %.12e",(*func)(p));        fprintf(ficrespow," %.12lf", p[i]);
       for (j=1;j<=n;j++) {      }
         printf(" %.12e",p[j]);      printf("\n");
         fprintf(ficlog," %.12e",p[j]);      fprintf(ficlog,"\n");
       }      fprintf(ficrespow,"\n");fflush(ficrespow);
       printf("\n");      if(*iter <=3){
       fprintf(ficlog,"\n");        tm = *localtime(&curr_time.tv_sec);
       for(l=0;l<=1;l++) {        strcpy(strcurr,asctime(&tm));
         for (j=1;j<=n;j++) {  /*       asctime_r(&tm,strcurr); */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        forecast_time=curr_time;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        itmp = strlen(strcurr);
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         }          strcurr[itmp-1]='\0';
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       }        for(niterf=10;niterf<=30;niterf+=10){
 #endif          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
       free_vector(xit,1,n);           strcpy(strfor,asctime(&tmf));
       free_vector(xits,1,n);           itmp = strlen(strfor);
       free_vector(ptt,1,n);           if(strfor[itmp-1]=='\n')
       free_vector(pt,1,n);           strfor[itmp-1]='\0';
       return;           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     }           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");         }
     for (j=1;j<=n;j++) {       }
       ptt[j]=2.0*p[j]-pt[j];       for (i=1;i<=n;i++) {
       xit[j]=p[j]-pt[j];         for (j=1;j<=n;j++) xit[j]=xi[j][i];
       pt[j]=p[j];         fptt=(*fret);
     }   #ifdef DEBUG
     fptt=(*func)(ptt);         printf("fret=%lf \n",*fret);
     if (fptt < fp) {         fprintf(ficlog,"fret=%lf \n",*fret);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);   #endif
       if (t < 0.0) {         printf("%d",i);fflush(stdout);
         linmin(p,xit,n,fret,func);         fprintf(ficlog,"%d",i);fflush(ficlog);
         for (j=1;j<=n;j++) {         linmin(p,xit,n,fret,func);
           xi[j][ibig]=xi[j][n];         if (fabs(fptt-(*fret)) > del) {
           xi[j][n]=xit[j];           del=fabs(fptt-(*fret));
         }          ibig=i;
 #ifdef DEBUG        }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #ifdef DEBUG
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        printf("%d %.12e",i,(*fret));
         for(j=1;j<=n;j++){        fprintf(ficlog,"%d %.12e",i,(*fret));
           printf(" %.12e",xit[j]);        for (j=1;j<=n;j++) {
           fprintf(ficlog," %.12e",xit[j]);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         }          printf(" x(%d)=%.12e",j,xit[j]);
         printf("\n");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         fprintf(ficlog,"\n");        }
 #endif        for(j=1;j<=n;j++) {
       }          printf(" p=%.12e",p[j]);
     }           fprintf(ficlog," p=%.12e",p[j]);
   }         }
 }         printf("\n");
         fprintf(ficlog,"\n");
 /**** Prevalence limit (stable prevalence)  ****************/  #endif
       }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 {  #ifdef DEBUG
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        int k[2],l;
      matrix by transitions matrix until convergence is reached */        k[0]=1;
         k[1]=-1;
   int i, ii,j,k;        printf("Max: %.12e",(*func)(p));
   double min, max, maxmin, maxmax,sumnew=0.;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double **matprod2();        for (j=1;j<=n;j++) {
   double **out, cov[NCOVMAX], **pmij();          printf(" %.12e",p[j]);
   double **newm;          fprintf(ficlog," %.12e",p[j]);
   double agefin, delaymax=50 ; /* Max number of years to converge */        }
         printf("\n");
   for (ii=1;ii<=nlstate+ndeath;ii++)        fprintf(ficlog,"\n");
     for (j=1;j<=nlstate+ndeath;j++){        for(l=0;l<=1;l++) {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);          for (j=1;j<=n;j++) {
     }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
    cov[1]=1.;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
            }
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     newm=savm;        }
     /* Covariates have to be included here again */  #endif
      cov[2]=agefin;  
     
       for (k=1; k<=cptcovn;k++) {        free_vector(xit,1,n);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        free_vector(xits,1,n);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        free_vector(ptt,1,n);
       }        free_vector(pt,1,n);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        return;
       for (k=1; k<=cptcovprod;k++)      }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
       for (j=1;j<=n;j++) {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        ptt[j]=2.0*p[j]-pt[j];
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        xit[j]=p[j]-pt[j];
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        pt[j]=p[j];
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      }
       fptt=(*func)(ptt);
     savm=oldm;      if (fptt < fp) {
     oldm=newm;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
     maxmax=0.;        if (t < 0.0) {
     for(j=1;j<=nlstate;j++){          linmin(p,xit,n,fret,func);
       min=1.;          for (j=1;j<=n;j++) {
       max=0.;            xi[j][ibig]=xi[j][n];
       for(i=1; i<=nlstate; i++) {            xi[j][n]=xit[j];
         sumnew=0;          }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #ifdef DEBUG
         prlim[i][j]= newm[i][j]/(1-sumnew);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         max=FMAX(max,prlim[i][j]);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         min=FMIN(min,prlim[i][j]);          for(j=1;j<=n;j++){
       }            printf(" %.12e",xit[j]);
       maxmin=max-min;            fprintf(ficlog," %.12e",xit[j]);
       maxmax=FMAX(maxmax,maxmin);          }
     }          printf("\n");
     if(maxmax < ftolpl){          fprintf(ficlog,"\n");
       return prlim;  #endif
     }        }
   }      }
 }    }
   }
 /*************** transition probabilities ***************/   
   /**** Prevalence limit (stable or period prevalence)  ****************/
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double s1, s2;  {
   /*double t34;*/    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   int i,j,j1, nc, ii, jj;       matrix by transitions matrix until convergence is reached */
   
     for(i=1; i<= nlstate; i++){    int i, ii,j,k;
       for(j=1; j<i;j++){    double min, max, maxmin, maxmax,sumnew=0.;
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double **matprod2();
           /*s2 += param[i][j][nc]*cov[nc];*/    double **out, cov[NCOVMAX], **pmij();
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double **newm;
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */    double agefin, delaymax=50 ; /* Max number of years to converge */
         }  
         ps[i][j]=s2;    for (ii=1;ii<=nlstate+ndeath;ii++)
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=i+1; j<=nlstate+ndeath;j++){      }
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];     cov[1]=1.;
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */   
         }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         ps[i][j]=s2;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       }      newm=savm;
     }      /* Covariates have to be included here again */
     /*ps[3][2]=1;*/       cov[2]=agefin;
        
     for(i=1; i<= nlstate; i++){        for (k=1; k<=cptcovn;k++) {
       s1=0;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for(j=1; j<i; j++)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         s1+=exp(ps[i][j]);        }
       for(j=i+1; j<=nlstate+ndeath; j++)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         s1+=exp(ps[i][j]);        for (k=1; k<=cptcovprod;k++)
       ps[i][i]=1./(s1+1.);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for(j=1; j<i; j++)  
         ps[i][j]= exp(ps[i][j])*ps[i][i];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       for(j=i+1; j<=nlstate+ndeath; j++)        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         ps[i][j]= exp(ps[i][j])*ps[i][i];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     } /* end i */  
           savm=oldm;
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      oldm=newm;
       for(jj=1; jj<= nlstate+ndeath; jj++){      maxmax=0.;
         ps[ii][jj]=0;      for(j=1;j<=nlstate;j++){
         ps[ii][ii]=1;        min=1.;
       }        max=0.;
     }        for(i=1; i<=nlstate; i++) {
               sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */          prlim[i][j]= newm[i][j]/(1-sumnew);
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */          max=FMAX(max,prlim[i][j]);
 /*         printf("ddd %lf ",ps[ii][jj]); */          min=FMIN(min,prlim[i][j]);
 /*       } */        }
 /*       printf("\n "); */        maxmin=max-min;
 /*        } */        maxmax=FMAX(maxmax,maxmin);
 /*        printf("\n ");printf("%lf ",cov[2]); */      }
        /*      if(maxmax < ftolpl){
       for(i=1; i<= npar; i++) printf("%f ",x[i]);        return prlim;
       goto end;*/      }
     return ps;    }
 }  }
   
 /**************** Product of 2 matrices ******************/  /*************** transition probabilities ***************/
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 {  {
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double s1, s2;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    /*double t34;*/
   /* in, b, out are matrice of pointers which should have been initialized     int i,j,j1, nc, ii, jj;
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */      for(i=1; i<= nlstate; i++){
   long i, j, k;        for(j=1; j<i;j++){
   for(i=nrl; i<= nrh; i++)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for(k=ncolol; k<=ncoloh; k++)            /*s2 += param[i][j][nc]*cov[nc];*/
       for(j=ncl,out[i][k]=0.; j<=nch; j++)            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         out[i][k] +=in[i][j]*b[j][k];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           }
   return out;          ps[i][j]=s2;
 }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         }
         for(j=i+1; j<=nlstate+ndeath;j++){
 /************* Higher Matrix Product ***************/          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 {          }
   /* Computes the transition matrix starting at age 'age' over           ps[i][j]=s2;
      'nhstepm*hstepm*stepm' months (i.e. until        }
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying       }
      nhstepm*hstepm matrices.       /*ps[3][2]=1;*/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      
      (typically every 2 years instead of every month which is too big       for(i=1; i<= nlstate; i++){
      for the memory).        s1=0;
      Model is determined by parameters x and covariates have to be         for(j=1; j<i; j++)
      included manually here.           s1+=exp(ps[i][j]);
         for(j=i+1; j<=nlstate+ndeath; j++)
      */          s1+=exp(ps[i][j]);
         ps[i][i]=1./(s1+1.);
   int i, j, d, h, k;        for(j=1; j<i; j++)
   double **out, cov[NCOVMAX];          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double **newm;        for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
   /* Hstepm could be zero and should return the unit matrix */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for (i=1;i<=nlstate+ndeath;i++)      } /* end i */
     for (j=1;j<=nlstate+ndeath;j++){     
       oldm[i][j]=(i==j ? 1.0 : 0.0);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       po[i][j][0]=(i==j ? 1.0 : 0.0);        for(jj=1; jj<= nlstate+ndeath; jj++){
     }          ps[ii][jj]=0;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          ps[ii][ii]=1;
   for(h=1; h <=nhstepm; h++){        }
     for(d=1; d <=hstepm; d++){      }
       newm=savm;     
       /* Covariates have to be included here again */  
       cov[1]=1.;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*         printf("ddd %lf ",ps[ii][jj]); */
       for (k=1; k<=cptcovage;k++)  /*       } */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*       printf("\n "); */
       for (k=1; k<=cptcovprod;k++)  /*        } */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*        printf("\n ");printf("%lf ",cov[2]); */
          /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        goto end;*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      return ps;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /**************** Product of 2 matrices ******************/
       oldm=newm;  
     }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for(i=1; i<=nlstate+ndeath; i++)  {
       for(j=1;j<=nlstate+ndeath;j++) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         po[i][j][h]=newm[i][j];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    /* in, b, out are matrice of pointers which should have been initialized
          */       before: only the contents of out is modified. The function returns
       }       a pointer to pointers identical to out */
   } /* end h */    long i, j, k;
   return po;    for(i=nrl; i<= nrh; i++)
 }      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
 /*************** log-likelihood *************/  
 double func( double *x)    return out;
 {  }
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  /************* Higher Matrix Product ***************/
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   int s1, s2;  {
   double bbh, survp;    /* Computes the transition matrix starting at age 'age' over
   long ipmx;       'nhstepm*hstepm*stepm' months (i.e. until
   /*extern weight */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
   /* We are differentiating ll according to initial status */       nhstepm*hstepm matrices.
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
   /*for(i=1;i<imx;i++)        (typically every 2 years instead of every month which is too big
     printf(" %d\n",s[4][i]);       for the memory).
   */       Model is determined by parameters x and covariates have to be
   cov[1]=1.;       included manually here.
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;       */
   
   if(mle==1){    int i, j, d, h, k;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double **out, cov[NCOVMAX];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    double **newm;
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)    /* Hstepm could be zero and should return the unit matrix */
           for (j=1;j<=nlstate+ndeath;j++){    for (i=1;i<=nlstate+ndeath;i++)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (j=1;j<=nlstate+ndeath;j++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        oldm[i][j]=(i==j ? 1.0 : 0.0);
           }        po[i][j][0]=(i==j ? 1.0 : 0.0);
         for(d=0; d<dh[mi][i]; d++){      }
           newm=savm;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    for(h=1; h <=nhstepm; h++){
           for (kk=1; kk<=cptcovage;kk++) {      for(d=1; d <=hstepm; d++){
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        newm=savm;
           }        /* Covariates have to be included here again */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        cov[1]=1.;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           savm=oldm;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           oldm=newm;        for (k=1; k<=cptcovage;k++)
         } /* end mult */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
               for (k=1; k<=cptcovprod;k++)
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         /* But now since version 0.9 we anticipate for bias at large stepm.  
          * If stepm is larger than one month (smallest stepm) and if the exact delay   
          * (in months) between two waves is not a multiple of stepm, we rounded to         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          * the nearest (and in case of equal distance, to the lowest) interval but now        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the                     pmij(pmmij,cov,ncovmodel,x,nlstate));
          * probability in order to take into account the bias as a fraction of the way        savm=oldm;
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies        oldm=newm;
          * -stepm/2 to stepm/2 .      }
          * For stepm=1 the results are the same as for previous versions of Imach.      for(i=1; i<=nlstate+ndeath; i++)
          * For stepm > 1 the results are less biased than in previous versions.         for(j=1;j<=nlstate+ndeath;j++) {
          */          po[i][j][h]=newm[i][j];
         s1=s[mw[mi][i]][i];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         s2=s[mw[mi+1][i]][i];           */
         bbh=(double)bh[mi][i]/(double)stepm;         }
         /* bias bh is positive if real duration    } /* end h */
          * is higher than the multiple of stepm and negative otherwise.    return po;
          */  }
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  
         if( s2 > nlstate){   
           /* i.e. if s2 is a death state and if the date of death is known   /*************** log-likelihood *************/
              then the contribution to the likelihood is the probability to   double func( double *x)
              die between last step unit time and current  step unit time,   {
              which is also equal to probability to die before dh     int i, ii, j, k, mi, d, kk;
              minus probability to die before dh-stepm .     double l, ll[NLSTATEMAX], cov[NCOVMAX];
              In version up to 0.92 likelihood was computed    double **out;
         as if date of death was unknown. Death was treated as any other    double sw; /* Sum of weights */
         health state: the date of the interview describes the actual state    double lli; /* Individual log likelihood */
         and not the date of a change in health state. The former idea was    int s1, s2;
         to consider that at each interview the state was recorded    double bbh, survp;
         (healthy, disable or death) and IMaCh was corrected; but when we    long ipmx;
         introduced the exact date of death then we should have modified    /*extern weight */
         the contribution of an exact death to the likelihood. This new    /* We are differentiating ll according to initial status */
         contribution is smaller and very dependent of the step unit    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         stepm. It is no more the probability to die between last interview    /*for(i=1;i<imx;i++)
         and month of death but the probability to survive from last      printf(" %d\n",s[4][i]);
         interview up to one month before death multiplied by the    */
         probability to die within a month. Thanks to Chris    cov[1]=1.;
         Jackson for correcting this bug.  Former versions increased  
         mortality artificially. The bad side is that we add another loop    for(k=1; k<=nlstate; k++) ll[k]=0.;
         which slows down the processing. The difference can be up to 10%  
         lower mortality.    if(mle==1){
           */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           lli=log(out[s1][s2] - savm[s1][s2]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
         } else if  (s2==-2) {            for (j=1;j<=nlstate+ndeath;j++){
           for (j=1,survp=0. ; j<=nlstate; j++)               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             survp += out[s1][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           lli= survp;            }
         }          for(d=0; d<dh[mi][i]; d++){
                     newm=savm;
         else if  (s2==-4) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (j=3,survp=0. ; j<=nlstate; j++)             for (kk=1; kk<=cptcovage;kk++) {
             survp += out[s1][j];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           lli= survp;            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                  1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         else if  (s2==-5) {            savm=oldm;
           for (j=1,survp=0. ; j<=2; j++)             oldm=newm;
             survp += out[s1][j];          } /* end mult */
           lli= survp;       
         }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay
         else{           * (in months) between two waves is not a multiple of stepm, we rounded to
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */           * the nearest (and in case of equal distance, to the lowest) interval but now
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         }            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/           * probability in order to take into account the bias as a fraction of the way
         /*if(lli ==000.0)*/           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */           * -stepm/2 to stepm/2 .
         ipmx +=1;           * For stepm=1 the results are the same as for previous versions of Imach.
         sw += weight[i];           * For stepm > 1 the results are less biased than in previous versions.
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;           */
       } /* end of wave */          s1=s[mw[mi][i]][i];
     } /* end of individual */          s2=s[mw[mi+1][i]][i];
   }  else if(mle==2){          bbh=(double)bh[mi][i]/(double)stepm;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          /* bias bh is positive if real duration
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];           * is higher than the multiple of stepm and negative otherwise.
       for(mi=1; mi<= wav[i]-1; mi++){           */
         for (ii=1;ii<=nlstate+ndeath;ii++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           for (j=1;j<=nlstate+ndeath;j++){          if( s2 > nlstate){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            /* i.e. if s2 is a death state and if the date of death is known
             savm[ii][j]=(ii==j ? 1.0 : 0.0);               then the contribution to the likelihood is the probability to
           }               die between last step unit time and current  step unit time,
         for(d=0; d<=dh[mi][i]; d++){               which is also equal to probability to die before dh
           newm=savm;               minus probability to die before dh-stepm .
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;               In version up to 0.92 likelihood was computed
           for (kk=1; kk<=cptcovage;kk++) {          as if date of death was unknown. Death was treated as any other
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          health state: the date of the interview describes the actual state
           }          and not the date of a change in health state. The former idea was
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          to consider that at each interview the state was recorded
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          (healthy, disable or death) and IMaCh was corrected; but when we
           savm=oldm;          introduced the exact date of death then we should have modified
           oldm=newm;          the contribution of an exact death to the likelihood. This new
         } /* end mult */          contribution is smaller and very dependent of the step unit
                 stepm. It is no more the probability to die between last interview
         s1=s[mw[mi][i]][i];          and month of death but the probability to survive from last
         s2=s[mw[mi+1][i]][i];          interview up to one month before death multiplied by the
         bbh=(double)bh[mi][i]/(double)stepm;           probability to die within a month. Thanks to Chris
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          Jackson for correcting this bug.  Former versions increased
         ipmx +=1;          mortality artificially. The bad side is that we add another loop
         sw += weight[i];          which slows down the processing. The difference can be up to 10%
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          lower mortality.
       } /* end of wave */            */
     } /* end of individual */            lli=log(out[s1][s2] - savm[s1][s2]);
   }  else if(mle==3){  /* exponential inter-extrapolation */  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          } else if  (s2==-2) {
       for(mi=1; mi<= wav[i]-1; mi++){            for (j=1,survp=0. ; j<=nlstate; j++)
         for (ii=1;ii<=nlstate+ndeath;ii++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for (j=1;j<=nlstate+ndeath;j++){            /*survp += out[s1][j]; */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            lli= log(survp);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          }
           }         
         for(d=0; d<dh[mi][i]; d++){          else if  (s2==-4) {
           newm=savm;            for (j=3,survp=0. ; j<=nlstate; j++)  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for (kk=1; kk<=cptcovage;kk++) {            lli= log(survp);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          }
           }  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          else if  (s2==-5) {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            for (j=1,survp=0. ; j<=2; j++)  
           savm=oldm;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           oldm=newm;            lli= log(survp);
         } /* end mult */          }
                
         s1=s[mw[mi][i]][i];          else{
         s2=s[mw[mi+1][i]][i];            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         bbh=(double)bh[mi][i]/(double)stepm;             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          }
         ipmx +=1;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         sw += weight[i];          /*if(lli ==000.0)*/
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       } /* end of wave */          ipmx +=1;
     } /* end of individual */          sw += weight[i];
   }else if (mle==4){  /* ml=4 no inter-extrapolation */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        } /* end of wave */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      } /* end of individual */
       for(mi=1; mi<= wav[i]-1; mi++){    }  else if(mle==2){
         for (ii=1;ii<=nlstate+ndeath;ii++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for (j=1;j<=nlstate+ndeath;j++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for(mi=1; mi<= wav[i]-1; mi++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          for (ii=1;ii<=nlstate+ndeath;ii++)
           }            for (j=1;j<=nlstate+ndeath;j++){
         for(d=0; d<dh[mi][i]; d++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           newm=savm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            }
           for (kk=1; kk<=cptcovage;kk++) {          for(d=0; d<=dh[mi][i]; d++){
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            newm=savm;
           }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                     for (kk=1; kk<=cptcovage;kk++) {
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            }
           savm=oldm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           oldm=newm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         } /* end mult */            savm=oldm;
                   oldm=newm;
         s1=s[mw[mi][i]][i];          } /* end mult */
         s2=s[mw[mi+1][i]][i];       
         if( s2 > nlstate){           s1=s[mw[mi][i]][i];
           lli=log(out[s1][s2] - savm[s1][s2]);          s2=s[mw[mi+1][i]][i];
         }else{          bbh=(double)bh[mi][i]/(double)stepm;
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         }          ipmx +=1;
         ipmx +=1;          sw += weight[i];
         sw += weight[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        } /* end of wave */
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */      } /* end of individual */
       } /* end of wave */    }  else if(mle==3){  /* exponential inter-extrapolation */
     } /* end of individual */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for(mi=1; mi<= wav[i]-1; mi++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(mi=1; mi<= wav[i]-1; mi++){            for (j=1;j<=nlstate+ndeath;j++){
         for (ii=1;ii<=nlstate+ndeath;ii++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (j=1;j<=nlstate+ndeath;j++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
         for(d=0; d<dh[mi][i]; d++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           newm=savm;            for (kk=1; kk<=cptcovage;kk++) {
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for (kk=1; kk<=cptcovage;kk++) {            }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                     savm=oldm;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            oldm=newm;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          } /* end mult */
           savm=oldm;       
           oldm=newm;          s1=s[mw[mi][i]][i];
         } /* end mult */          s2=s[mw[mi+1][i]][i];
                 bbh=(double)bh[mi][i]/(double)stepm;
         s1=s[mw[mi][i]][i];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         s2=s[mw[mi+1][i]][i];          ipmx +=1;
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          sw += weight[i];
         ipmx +=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         sw += weight[i];        } /* end of wave */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      } /* end of individual */
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       } /* end of wave */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     } /* end of individual */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   } /* End of if */        for(mi=1; mi<= wav[i]-1; mi++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            for (j=1;j<=nlstate+ndeath;j++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   return -l;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            }
           for(d=0; d<dh[mi][i]; d++){
 /*************** log-likelihood *************/            newm=savm;
 double funcone( double *x)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   /* Same as likeli but slower because of a lot of printf and if */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, ii, j, k, mi, d, kk;            }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];         
   double **out;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double lli; /* Individual log likelihood */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double llt;            savm=oldm;
   int s1, s2;            oldm=newm;
   double bbh, survp;          } /* end mult */
   /*extern weight */       
   /* We are differentiating ll according to initial status */          s1=s[mw[mi][i]][i];
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          s2=s[mw[mi+1][i]][i];
   /*for(i=1;i<imx;i++)           if( s2 > nlstate){
     printf(" %d\n",s[4][i]);            lli=log(out[s1][s2] - savm[s1][s2]);
   */          }else{
   cov[1]=1.;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
   for(k=1; k<=nlstate; k++) ll[k]=0.;          ipmx +=1;
           sw += weight[i];
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(mi=1; mi<= wav[i]-1; mi++){        } /* end of wave */
       for (ii=1;ii<=nlstate+ndeath;ii++)      } /* end of individual */
         for (j=1;j<=nlstate+ndeath;j++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           savm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
       for(d=0; d<dh[mi][i]; d++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         newm=savm;            for (j=1;j<=nlstate+ndeath;j++){
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (kk=1; kk<=cptcovage;kk++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            }
         }          for(d=0; d<dh[mi][i]; d++){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            newm=savm;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         savm=oldm;            for (kk=1; kk<=cptcovage;kk++) {
         oldm=newm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       } /* end mult */            }
                
       s1=s[mw[mi][i]][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       s2=s[mw[mi+1][i]][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       bbh=(double)bh[mi][i]/(double)stepm;             savm=oldm;
       /* bias is positive if real duration            oldm=newm;
        * is higher than the multiple of stepm and negative otherwise.          } /* end mult */
        */       
       if( s2 > nlstate && (mle <5) ){  /* Jackson */          s1=s[mw[mi][i]][i];
         lli=log(out[s1][s2] - savm[s1][s2]);          s2=s[mw[mi+1][i]][i];
       } else if (mle==1){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          ipmx +=1;
       } else if(mle==2){          sw += weight[i];
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       } else if(mle==3){  /* exponential inter-extrapolation */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */        } /* end of wave */
       } else if (mle==4){  /* mle=4 no inter-extrapolation */      } /* end of individual */
         lli=log(out[s1][s2]); /* Original formula */    } /* End of if */
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         lli=log(out[s1][s2]); /* Original formula */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       } /* End of if */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       ipmx +=1;    return -l;
       sw += weight[i];  }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */  /*************** log-likelihood *************/
       if(globpr){  double funcone( double *x)
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\  {
  %10.6f %10.6f %10.6f ", \    /* Same as likeli but slower because of a lot of printf and if */
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],    int i, ii, j, k, mi, d, kk;
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){    double **out;
           llt +=ll[k]*gipmx/gsw;    double lli; /* Individual log likelihood */
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);    double llt;
         }    int s1, s2;
         fprintf(ficresilk," %10.6f\n", -llt);    double bbh, survp;
       }    /*extern weight */
     } /* end of wave */    /* We are differentiating ll according to initial status */
   } /* end of individual */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    /*for(i=1;i<imx;i++)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      printf(" %d\n",s[4][i]);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    */
   if(globpr==0){ /* First time we count the contributions and weights */    cov[1]=1.;
     gipmx=ipmx;  
     gsw=sw;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
   return -l;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
 /*************** function likelione ***********/          for (j=1;j<=nlstate+ndeath;j++){
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* This routine should help understanding what is done with           }
      the selection of individuals/waves and        for(d=0; d<dh[mi][i]; d++){
      to check the exact contribution to the likelihood.          newm=savm;
      Plotting could be done.          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    */          for (kk=1; kk<=cptcovage;kk++) {
   int k;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
   if(*globpri !=0){ /* Just counts and sums, no printings */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     strcpy(fileresilk,"ilk");                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     strcat(fileresilk,fileres);          savm=oldm;
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {          oldm=newm;
       printf("Problem with resultfile: %s\n", fileresilk);        } /* end mult */
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);       
     }        s1=s[mw[mi][i]][i];
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");        s2=s[mw[mi+1][i]][i];
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");        bbh=(double)bh[mi][i]/(double)stepm;
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */        /* bias is positive if real duration
     for(k=1; k<=nlstate; k++)          * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);         */
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   }          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
   *fretone=(*funcone)(p);          for (j=1,survp=0. ; j<=nlstate; j++)
   if(*globpri !=0){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     fclose(ficresilk);          lli= log(survp);
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));        }else if (mle==1){
     fflush(fichtm);           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }         } else if(mle==2){
   return;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 }        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
 /*********** Maximum Likelihood Estimation ***************/          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          lli=log(out[s1][s2]); /* Original formula */
 {        } /* End of if */
   int i,j, iter;        ipmx +=1;
   double **xi;        sw += weight[i];
   double fret;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double fretone; /* Only one call to likelihood */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   /*  char filerespow[FILENAMELENGTH];*/        if(globpr){
   xi=matrix(1,npar,1,npar);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   for (i=1;i<=npar;i++)   %11.6f %11.6f %11.6f ", \
     for (j=1;j<=npar;j++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       xi[i][j]=(i==j ? 1.0 : 0.0);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   strcpy(filerespow,"pow");             llt +=ll[k]*gipmx/gsw;
   strcat(filerespow,fileres);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   if((ficrespow=fopen(filerespow,"w"))==NULL) {          }
     printf("Problem with resultfile: %s\n", filerespow);          fprintf(ficresilk," %10.6f\n", -llt);
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        }
   }      } /* end of wave */
   fprintf(ficrespow,"# Powell\n# iter -2*LL");    } /* end of individual */
   for (i=1;i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for(j=1;j<=nlstate+ndeath;j++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   fprintf(ficrespow,"\n");    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
   powell(p,xi,npar,ftol,&iter,&fret,func);      gsw=sw;
     }
   free_matrix(xi,1,npar,1,npar);    return -l;
   fclose(ficrespow);  }
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 }  {
     /* This routine should help understanding what is done with
 /**** Computes Hessian and covariance matrix ***/       the selection of individuals/waves and
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))       to check the exact contribution to the likelihood.
 {       Plotting could be done.
   double  **a,**y,*x,pd;     */
   double **hess;    int k;
   int i, j,jk;  
   int *indx;    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk");
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);      strcat(fileresilk,fileres);
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   void lubksb(double **a, int npar, int *indx, double b[]) ;        printf("Problem with resultfile: %s\n", fileresilk);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double gompertz(double p[]);      }
   hess=matrix(1,npar,1,npar);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   printf("\nCalculation of the hessian matrix. Wait...\n");      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");      for(k=1; k<=nlstate; k++)
   for (i=1;i<=npar;i++){        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     printf("%d",i);fflush(stdout);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     fprintf(ficlog,"%d",i);fflush(ficlog);    }
      
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);    *fretone=(*funcone)(p);
         if(*globpri !=0){
     /*  printf(" %f ",p[i]);      fclose(ficresilk);
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   }      fflush(fichtm);
       }
   for (i=1;i<=npar;i++) {    return;
     for (j=1;j<=npar;j++)  {  }
       if (j>i) {   
         printf(".%d%d",i,j);fflush(stdout);  
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  /*********** Maximum Likelihood Estimation ***************/
         hess[i][j]=hessij(p,delti,i,j,func,npar);  
           void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         hess[j][i]=hess[i][j];      {
         /*printf(" %lf ",hess[i][j]);*/    int i,j, iter;
       }    double **xi;
     }    double fret;
   }    double fretone; /* Only one call to likelihood */
   printf("\n");    /*  char filerespow[FILENAMELENGTH];*/
   fprintf(ficlog,"\n");    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      for (j=1;j<=npar;j++)
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        xi[i][j]=(i==j ? 1.0 : 0.0);
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   a=matrix(1,npar,1,npar);    strcpy(filerespow,"pow");
   y=matrix(1,npar,1,npar);    strcat(filerespow,fileres);
   x=vector(1,npar);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   indx=ivector(1,npar);      printf("Problem with resultfile: %s\n", filerespow);
   for (i=1;i<=npar;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    }
   ludcmp(a,npar,indx,&pd);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
   for (j=1;j<=npar;j++) {      for(j=1;j<=nlstate+ndeath;j++)
     for (i=1;i<=npar;i++) x[i]=0;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     x[j]=1;    fprintf(ficrespow,"\n");
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){     powell(p,xi,npar,ftol,&iter,&fret,func);
       matcov[i][j]=x[i];  
     }    free_matrix(xi,1,npar,1,npar);
   }    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   printf("\n#Hessian matrix#\n");    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(ficlog,"\n#Hessian matrix#\n");    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for (i=1;i<=npar;i++) {   
     for (j=1;j<=npar;j++) {   }
       printf("%.3e ",hess[i][j]);  
       fprintf(ficlog,"%.3e ",hess[i][j]);  /**** Computes Hessian and covariance matrix ***/
     }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     printf("\n");  {
     fprintf(ficlog,"\n");    double  **a,**y,*x,pd;
   }    double **hess;
     int i, j,jk;
   /* Recompute Inverse */    int *indx;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   ludcmp(a,npar,indx,&pd);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
   /*  printf("\n#Hessian matrix recomputed#\n");    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
   for (j=1;j<=npar;j++) {    hess=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    printf("\nCalculation of the hessian matrix. Wait...\n");
     lubksb(a,npar,indx,x);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){     for (i=1;i<=npar;i++){
       y[i][j]=x[i];      printf("%d",i);fflush(stdout);
       printf("%.3e ",y[i][j]);      fprintf(ficlog,"%d",i);fflush(ficlog);
       fprintf(ficlog,"%.3e ",y[i][j]);     
     }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     printf("\n");     
     fprintf(ficlog,"\n");      /*  printf(" %f ",p[i]);
   }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   */    }
    
   free_matrix(a,1,npar,1,npar);    for (i=1;i<=npar;i++) {
   free_matrix(y,1,npar,1,npar);      for (j=1;j<=npar;j++)  {
   free_vector(x,1,npar);        if (j>i) {
   free_ivector(indx,1,npar);          printf(".%d%d",i,j);fflush(stdout);
   free_matrix(hess,1,npar,1,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
          
 }          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
 /*************** hessian matrix ****************/        }
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)      }
 {    }
   int i;    printf("\n");
   int l=1, lmax=20;    fprintf(ficlog,"\n");
   double k1,k2;  
   double p2[NPARMAX+1];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   double res;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;   
   double fx;    a=matrix(1,npar,1,npar);
   int k=0,kmax=10;    y=matrix(1,npar,1,npar);
   double l1;    x=vector(1,npar);
     indx=ivector(1,npar);
   fx=func(x);    for (i=1;i<=npar;i++)
   for (i=1;i<=npar;i++) p2[i]=x[i];      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   for(l=0 ; l <=lmax; l++){    ludcmp(a,npar,indx,&pd);
     l1=pow(10,l);  
     delts=delt;    for (j=1;j<=npar;j++) {
     for(k=1 ; k <kmax; k=k+1){      for (i=1;i<=npar;i++) x[i]=0;
       delt = delta*(l1*k);      x[j]=1;
       p2[theta]=x[theta] +delt;      lubksb(a,npar,indx,x);
       k1=func(p2)-fx;      for (i=1;i<=npar;i++){
       p2[theta]=x[theta]-delt;        matcov[i][j]=x[i];
       k2=func(p2)-fx;      }
       /*res= (k1-2.0*fx+k2)/delt/delt; */    }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
           printf("\n#Hessian matrix#\n");
 #ifdef DEBUG    fprintf(ficlog,"\n#Hessian matrix#\n");
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for (i=1;i<=npar;i++) {
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for (j=1;j<=npar;j++) {
 #endif        printf("%.3e ",hess[i][j]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        fprintf(ficlog,"%.3e ",hess[i][j]);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      }
         k=kmax;      printf("\n");
       }      fprintf(ficlog,"\n");
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    }
         k=kmax; l=lmax*10.;  
       }    /* Recompute Inverse */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){     for (i=1;i<=npar;i++)
         delts=delt;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       }    ludcmp(a,npar,indx,&pd);
     }  
   }    /*  printf("\n#Hessian matrix recomputed#\n");
   delti[theta]=delts;  
   return res;     for (j=1;j<=npar;j++) {
         for (i=1;i<=npar;i++) x[i]=0;
 }      x[j]=1;
       lubksb(a,npar,indx,x);
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)      for (i=1;i<=npar;i++){
 {        y[i][j]=x[i];
   int i;        printf("%.3e ",y[i][j]);
   int l=1, l1, lmax=20;        fprintf(ficlog,"%.3e ",y[i][j]);
   double k1,k2,k3,k4,res,fx;      }
   double p2[NPARMAX+1];      printf("\n");
   int k;      fprintf(ficlog,"\n");
     }
   fx=func(x);    */
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];    free_matrix(a,1,npar,1,npar);
     p2[thetai]=x[thetai]+delti[thetai]/k;    free_matrix(y,1,npar,1,npar);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    free_vector(x,1,npar);
     k1=func(p2)-fx;    free_ivector(indx,1,npar);
       free_matrix(hess,1,npar,1,npar);
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  }
     
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*************** hessian matrix ****************/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     k3=func(p2)-fx;  {
       int i;
     p2[thetai]=x[thetai]-delti[thetai]/k;    int l=1, lmax=20;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double k1,k2;
     k4=func(p2)-fx;    double p2[NPARMAX+1];
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double res;
 #ifdef DEBUG    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double fx;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    int k=0,kmax=10;
 #endif    double l1;
   }  
   return res;    fx=func(x);
 }    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
 /************** Inverse of matrix **************/      l1=pow(10,l);
 void ludcmp(double **a, int n, int *indx, double *d)       delts=delt;
 {       for(k=1 ; k <kmax; k=k+1){
   int i,imax,j,k;         delt = delta*(l1*k);
   double big,dum,sum,temp;         p2[theta]=x[theta] +delt;
   double *vv;         k1=func(p2)-fx;
          p2[theta]=x[theta]-delt;
   vv=vector(1,n);         k2=func(p2)-fx;
   *d=1.0;         /*res= (k1-2.0*fx+k2)/delt/delt; */
   for (i=1;i<=n;i++) {         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     big=0.0;        
     for (j=1;j<=n;j++)   #ifdef DEBUG
       if ((temp=fabs(a[i][j])) > big) big=temp;         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     vv[i]=1.0/big;   #endif
   }         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   for (j=1;j<=n;j++) {         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for (i=1;i<j;i++) {           k=kmax;
       sum=a[i][j];         }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       a[i][j]=sum;           k=kmax; l=lmax*10.;
     }         }
     big=0.0;         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
     for (i=j;i<=n;i++) {           delts=delt;
       sum=a[i][j];         }
       for (k=1;k<j;k++)       }
         sum -= a[i][k]*a[k][j];     }
       a[i][j]=sum;     delti[theta]=delts;
       if ( (dum=vv[i]*fabs(sum)) >= big) {     return res;
         big=dum;    
         imax=i;   }
       }   
     }   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     if (j != imax) {   {
       for (k=1;k<=n;k++) {     int i;
         dum=a[imax][k];     int l=1, l1, lmax=20;
         a[imax][k]=a[j][k];     double k1,k2,k3,k4,res,fx;
         a[j][k]=dum;     double p2[NPARMAX+1];
       }     int k;
       *d = -(*d);   
       vv[imax]=vv[j];     fx=func(x);
     }     for (k=1; k<=2; k++) {
     indx[j]=imax;       for (i=1;i<=npar;i++) p2[i]=x[i];
     if (a[j][j] == 0.0) a[j][j]=TINY;       p2[thetai]=x[thetai]+delti[thetai]/k;
     if (j != n) {       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       dum=1.0/(a[j][j]);       k1=func(p2)-fx;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    
     }       p2[thetai]=x[thetai]+delti[thetai]/k;
   }       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   free_vector(vv,1,n);  /* Doesn't work */      k2=func(p2)-fx;
 ;   
 }       p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 void lubksb(double **a, int n, int *indx, double b[])       k3=func(p2)-fx;
 {    
   int i,ii=0,ip,j;       p2[thetai]=x[thetai]-delti[thetai]/k;
   double sum;       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k4=func(p2)-fx;
   for (i=1;i<=n;i++) {       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     ip=indx[i];   #ifdef DEBUG
     sum=b[ip];       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     b[ip]=b[i];       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     if (ii)   #endif
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];     }
     else if (sum) ii=i;     return res;
     b[i]=sum;   }
   }   
   for (i=n;i>=1;i--) {   /************** Inverse of matrix **************/
     sum=b[i];   void ludcmp(double **a, int n, int *indx, double *d)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];   {
     b[i]=sum/a[i][i];     int i,imax,j,k;
   }     double big,dum,sum,temp;
 }     double *vv;
    
 /************ Frequencies ********************/    vv=vector(1,n);
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])    *d=1.0;
 {  /* Some frequencies */    for (i=1;i<=n;i++) {
         big=0.0;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      for (j=1;j<=n;j++)
   int first;        if ((temp=fabs(a[i][j])) > big) big=temp;
   double ***freq; /* Frequencies */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
   double *pp, **prop;      vv[i]=1.0/big;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    }
   FILE *ficresp;    for (j=1;j<=n;j++) {
   char fileresp[FILENAMELENGTH];      for (i=1;i<j;i++) {
           sum=a[i][j];
   pp=vector(1,nlstate);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
   prop=matrix(1,nlstate,iagemin,iagemax+3);        a[i][j]=sum;
   strcpy(fileresp,"p");      }
   strcat(fileresp,fileres);      big=0.0;
   if((ficresp=fopen(fileresp,"w"))==NULL) {      for (i=j;i<=n;i++) {
     printf("Problem with prevalence resultfile: %s\n", fileresp);        sum=a[i][j];
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);        for (k=1;k<j;k++)
     exit(0);          sum -= a[i][k]*a[k][j];
   }        a[i][j]=sum;
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);        if ( (dum=vv[i]*fabs(sum)) >= big) {
   j1=0;          big=dum;
             imax=i;
   j=cptcoveff;        }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
       if (j != imax) {
   first=1;        for (k=1;k<=n;k++) {
           dum=a[imax][k];
   for(k1=1; k1<=j;k1++){          a[imax][k]=a[j][k];
     for(i1=1; i1<=ncodemax[k1];i1++){          a[j][k]=dum;
       j1++;        }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        *d = -(*d);
         scanf("%d", i);*/        vv[imax]=vv[j];
       for (i=-5; i<=nlstate+ndeath; i++)        }
         for (jk=-5; jk<=nlstate+ndeath; jk++)        indx[j]=imax;
           for(m=iagemin; m <= iagemax+3; m++)      if (a[j][j] == 0.0) a[j][j]=TINY;
             freq[i][jk][m]=0;      if (j != n) {
         dum=1.0/(a[j][j]);
     for (i=1; i<=nlstate; i++)          for (i=j+1;i<=n;i++) a[i][j] *= dum;
       for(m=iagemin; m <= iagemax+3; m++)      }
         prop[i][m]=0;    }
           free_vector(vv,1,n);  /* Doesn't work */
       dateintsum=0;  ;
       k2cpt=0;  }
       for (i=1; i<=imx; i++) {  
         bool=1;  void lubksb(double **a, int n, int *indx, double b[])
         if  (cptcovn>0) {  {
           for (z1=1; z1<=cptcoveff; z1++)     int i,ii=0,ip,j;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     double sum;
               bool=0;   
         }    for (i=1;i<=n;i++) {
         if (bool==1){      ip=indx[i];
           for(m=firstpass; m<=lastpass; m++){      sum=b[ip];
             k2=anint[m][i]+(mint[m][i]/12.);      b[ip]=b[i];
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/      if (ii)
               if(agev[m][i]==0) agev[m][i]=iagemax+1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      else if (sum) ii=i;
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];      b[i]=sum;
               if (m<lastpass) {    }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    for (i=n;i>=1;i--) {
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];      sum=b[i];
               }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
                     b[i]=sum/a[i][i];
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    }
                 dateintsum=dateintsum+k2;  }
                 k2cpt++;  
               }  void pstamp(FILE *fichier)
               /*}*/  {
           }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         }  }
       }  
          /************ Frequencies ********************/
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 fprintf(ficresp, "#Local time at start: %s", strstart);  {  /* Some frequencies */
       if  (cptcovn>0) {   
         fprintf(ficresp, "\n#********** Variable ");     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int first;
         fprintf(ficresp, "**********\n#");    double ***freq; /* Frequencies */
       }    double *pp, **prop;
       for(i=1; i<=nlstate;i++)     double pos,posprop, k2, dateintsum=0,k2cpt=0;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    char fileresp[FILENAMELENGTH];
       fprintf(ficresp, "\n");   
           pp=vector(1,nlstate);
       for(i=iagemin; i <= iagemax+3; i++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
         if(i==iagemax+3){    strcpy(fileresp,"p");
           fprintf(ficlog,"Total");    strcat(fileresp,fileres);
         }else{    if((ficresp=fopen(fileresp,"w"))==NULL) {
           if(first==1){      printf("Problem with prevalence resultfile: %s\n", fileresp);
             first=0;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
             printf("See log file for details...\n");      exit(0);
           }    }
           fprintf(ficlog,"Age %d", i);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         }    j1=0;
         for(jk=1; jk <=nlstate ; jk++){   
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    j=cptcoveff;
             pp[jk] += freq[jk][m][i];     if (cptcovn<1) {j=1;ncodemax[1]=1;}
         }  
         for(jk=1; jk <=nlstate ; jk++){    first=1;
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];    for(k1=1; k1<=j;k1++){
           if(pp[jk]>=1.e-10){      for(i1=1; i1<=ncodemax[k1];i1++){
             if(first==1){        j1++;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             }          scanf("%d", i);*/
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for (i=-5; i<=nlstate+ndeath; i++)  
           }else{          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             if(first==1)            for(m=iagemin; m <= iagemax+3; m++)
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              freq[i][jk][m]=0;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
           }      for (i=1; i<=nlstate; i++)  
         }        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
         for(jk=1; jk <=nlstate ; jk++){       
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        dateintsum=0;
             pp[jk] += freq[jk][m][i];        k2cpt=0;
         }               for (i=1; i<=imx; i++) {
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){          bool=1;
           pos += pp[jk];          if  (cptcovn>0) {
           posprop += prop[jk][i];            for (z1=1; z1<=cptcoveff; z1++)
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
         for(jk=1; jk <=nlstate ; jk++){                bool=0;
           if(pos>=1.e-5){          }
             if(first==1)          if (bool==1){
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            for(m=firstpass; m<=lastpass; m++){
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              k2=anint[m][i]+(mint[m][i]/12.);
           }else{              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             if(first==1)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           }                if (m<lastpass) {
           if( i <= iagemax){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             if(pos>=1.e-5){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);                }
               /*probs[i][jk][j1]= pp[jk]/pos;*/               
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             }                  dateintsum=dateintsum+k2;
             else                  k2cpt++;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);                }
           }                /*}*/
         }            }
                   }
         for(jk=-1; jk <=nlstate+ndeath; jk++)        }
           for(m=-1; m <=nlstate+ndeath; m++)         
             if(freq[jk][m][i] !=0 ) {        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             if(first==1)        pstamp(ficresp);
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        if  (cptcovn>0) {
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          fprintf(ficresp, "\n#********** Variable ");
             }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         if(i <= iagemax)          fprintf(ficresp, "**********\n#");
           fprintf(ficresp,"\n");        }
         if(first==1)        for(i=1; i<=nlstate;i++)
           printf("Others in log...\n");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficlog,"\n");        fprintf(ficresp, "\n");
       }       
     }        for(i=iagemin; i <= iagemax+3; i++){
   }          if(i==iagemax+3){
   dateintmean=dateintsum/k2cpt;             fprintf(ficlog,"Total");
            }else{
   fclose(ficresp);            if(first==1){
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);              first=0;
   free_vector(pp,1,nlstate);              printf("See log file for details...\n");
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);            }
   /* End of Freq */            fprintf(ficlog,"Age %d", i);
 }          }
           for(jk=1; jk <=nlstate ; jk++){
 /************ Prevalence ********************/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)              pp[jk] += freq[jk][m][i];
 {            }
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people          for(jk=1; jk <=nlstate ; jk++){
      in each health status at the date of interview (if between dateprev1 and dateprev2).            for(m=-1, pos=0; m <=0 ; m++)
      We still use firstpass and lastpass as another selection.              pos += freq[jk][m][i];
   */            if(pp[jk]>=1.e-10){
                if(first==1){
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double ***freq; /* Frequencies */              }
   double *pp, **prop;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double pos,posprop;             }else{
   double  y2; /* in fractional years */              if(first==1)
   int iagemin, iagemax;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   iagemin= (int) agemin;            }
   iagemax= (int) agemax;          }
   /*pp=vector(1,nlstate);*/  
   prop=matrix(1,nlstate,iagemin,iagemax+3);           for(jk=1; jk <=nlstate ; jk++){
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   j1=0;              pp[jk] += freq[jk][m][i];
             }      
   j=cptcoveff;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            pos += pp[jk];
               posprop += prop[jk][i];
   for(k1=1; k1<=j;k1++){          }
     for(i1=1; i1<=ncodemax[k1];i1++){          for(jk=1; jk <=nlstate ; jk++){
       j1++;            if(pos>=1.e-5){
                     if(first==1)
       for (i=1; i<=nlstate; i++)                  printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         for(m=iagemin; m <= iagemax+3; m++)              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           prop[i][m]=0.0;            }else{
                    if(first==1)
       for (i=1; i<=imx; i++) { /* Each individual */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         bool=1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         if  (cptcovn>0) {            }
           for (z1=1; z1<=cptcoveff; z1++)             if( i <= iagemax){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])               if(pos>=1.e-5){
               bool=0;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         }                 /*probs[i][jk][j1]= pp[jk]/pos;*/
         if (bool==1) {                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/              }
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */              else
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;            }
               if(agev[m][i]==1) agev[m][i]=iagemax+2;          }
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);          
               if (s[m][i]>0 && s[m][i]<=nlstate) {           for(jk=-1; jk <=nlstate+ndeath; jk++)
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/            for(m=-1; m <=nlstate+ndeath; m++)
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];              if(freq[jk][m][i] !=0 ) {
                 prop[s[m][i]][iagemax+3] += weight[i];               if(first==1)
               }                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           } /* end selection of waves */              }
         }          if(i <= iagemax)
       }            fprintf(ficresp,"\n");
       for(i=iagemin; i <= iagemax+3; i++){            if(first==1)
                     printf("Others in log...\n");
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {           fprintf(ficlog,"\n");
           posprop += prop[jk][i];         }
         }       }
     }
         for(jk=1; jk <=nlstate ; jk++){         dateintmean=dateintsum/k2cpt;
           if( i <=  iagemax){    
             if(posprop>=1.e-5){     fclose(ficresp);
               probs[i][jk][j1]= prop[jk][i]/posprop;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
             }     free_vector(pp,1,nlstate);
           }     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         }/* end jk */     /* End of Freq */
       }/* end i */   }
     } /* end i1 */  
   } /* end k1 */  /************ Prevalence ********************/
     void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/  {  
   /*free_vector(pp,1,nlstate);*/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);       in each health status at the date of interview (if between dateprev1 and dateprev2).
 }  /* End of prevalence */       We still use firstpass and lastpass as another selection.
     */
 /************* Waves Concatenation ***************/   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    double ***freq; /* Frequencies */
 {    double *pp, **prop;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double pos,posprop;
      Death is a valid wave (if date is known).    double  y2; /* in fractional years */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    int iagemin, iagemax;
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.    iagemin= (int) agemin;
      */    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
   int i, mi, m;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      double sum=0., jmean=0.;*/    j1=0;
   int first;   
   int j, k=0,jk, ju, jl;    j=cptcoveff;
   double sum=0.;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   first=0;   
   jmin=1e+5;    for(k1=1; k1<=j;k1++){
   jmax=-1;      for(i1=1; i1<=ncodemax[k1];i1++){
   jmean=0.;        j1++;
   for(i=1; i<=imx; i++){       
     mi=0;        for (i=1; i<=nlstate; i++)  
     m=firstpass;          for(m=iagemin; m <= iagemax+3; m++)
     while(s[m][i] <= nlstate){            prop[i][m]=0.0;
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)       
         mw[++mi][i]=m;        for (i=1; i<=imx; i++) { /* Each individual */
       if(m >=lastpass)          bool=1;
         break;          if  (cptcovn>0) {
       else            for (z1=1; z1<=cptcoveff; z1++)
         m++;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
     }/* end while */                bool=0;
     if (s[m][i] > nlstate){          }
       mi++;     /* Death is another wave */          if (bool==1) {
       /* if(mi==0)  never been interviewed correctly before death */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
          /* Only death is a correct wave */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       mw[mi][i]=m;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
     wav[i]=mi;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
     if(mi==0){                if (s[m][i]>0 && s[m][i]<=nlstate) {
       nbwarn++;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       if(first==0){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);                  prop[s[m][i]][iagemax+3] += weight[i];
         first=1;                }
       }              }
       if(first==1){            } /* end selection of waves */
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);          }
       }        }
     } /* end mi==0 */        for(i=iagemin; i <= iagemax+3; i++){  
   } /* End individuals */         
           for(jk=1,posprop=0; jk <=nlstate ; jk++) {
   for(i=1; i<=imx; i++){            posprop += prop[jk][i];
     for(mi=1; mi<wav[i];mi++){          }
       if (stepm <=0)  
         dh[mi][i]=1;          for(jk=1; jk <=nlstate ; jk++){    
       else{            if( i <=  iagemax){
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */              if(posprop>=1.e-5){
           if (agedc[i] < 2*AGESUP) {                probs[i][jk][j1]= prop[jk][i]/posprop;
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);               }
             if(j==0) j=1;  /* Survives at least one month after exam */            }
             else if(j<0){          }/* end jk */
               nberr++;        }/* end i */
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);      } /* end i1 */
               j=1; /* Temporary Dangerous patch */    } /* end k1 */
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);   
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);    /*free_vector(pp,1,nlstate);*/
             }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             k=k+1;  }  /* End of prevalence */
             if (j >= jmax){  
               jmax=j;  /************* Waves Concatenation ***************/
               ijmax=i;  
             }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             if (j <= jmin){  {
               jmin=j;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
               ijmin=i;       Death is a valid wave (if date is known).
             }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             sum=sum+j;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/       and mw[mi+1][i]. dh depends on stepm.
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/       */
           }  
         }    int i, mi, m;
         else{    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));       double sum=0., jmean=0.;*/
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */    int first;
     int j, k=0,jk, ju, jl;
           k=k+1;    double sum=0.;
           if (j >= jmax) {    first=0;
             jmax=j;    jmin=1e+5;
             ijmax=i;    jmax=-1;
           }    jmean=0.;
           else if (j <= jmin){    for(i=1; i<=imx; i++){
             jmin=j;      mi=0;
             ijmin=i;      m=firstpass;
           }      while(s[m][i] <= nlstate){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/          mw[++mi][i]=m;
           if(j<0){        if(m >=lastpass)
             nberr++;          break;
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        else
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          m++;
           }      }/* end while */
           sum=sum+j;      if (s[m][i] > nlstate){
         }        mi++;     /* Death is another wave */
         jk= j/stepm;        /* if(mi==0)  never been interviewed correctly before death */
         jl= j -jk*stepm;           /* Only death is a correct wave */
         ju= j -(jk+1)*stepm;        mw[mi][i]=m;
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */      }
           if(jl==0){  
             dh[mi][i]=jk;      wav[i]=mi;
             bh[mi][i]=0;      if(mi==0){
           }else{ /* We want a negative bias in order to only have interpolation ie        nbwarn++;
                   * at the price of an extra matrix product in likelihood */        if(first==0){
             dh[mi][i]=jk+1;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
             bh[mi][i]=ju;          first=1;
           }        }
         }else{        if(first==1){
           if(jl <= -ju){          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
             dh[mi][i]=jk;        }
             bh[mi][i]=jl;       /* bias is positive if real duration      } /* end mi==0 */
                                  * is higher than the multiple of stepm and negative otherwise.    } /* End individuals */
                                  */  
           }    for(i=1; i<=imx; i++){
           else{      for(mi=1; mi<wav[i];mi++){
             dh[mi][i]=jk+1;        if (stepm <=0)
             bh[mi][i]=ju;          dh[mi][i]=1;
           }        else{
           if(dh[mi][i]==0){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             dh[mi][i]=1; /* At least one step */            if (agedc[i] < 2*AGESUP) {
             bh[mi][i]=ju; /* At least one step */              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/              if(j==0) j=1;  /* Survives at least one month after exam */
           }              else if(j<0){
         } /* end if mle */                nberr++;
       }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     } /* end wave */                j=1; /* Temporary Dangerous patch */
   }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   jmean=sum/k;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);              }
  }              k=k+1;
               if (j >= jmax){
 /*********** Tricode ****************************/                jmax=j;
 void tricode(int *Tvar, int **nbcode, int imx)                ijmax=i;
 {              }
                 if (j <= jmin){
   int Ndum[20],ij=1, k, j, i, maxncov=19;                jmin=j;
   int cptcode=0;                ijmin=i;
   cptcoveff=0;               }
                sum=sum+j;
   for (k=0; k<maxncov; k++) Ndum[k]=0;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   for (k=1; k<=7; k++) ncodemax[k]=0;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          }
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum           else{
                                modality*/             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       Ndum[ij]++; /*store the modality */  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            k=k+1;
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable             if (j >= jmax) {
                                        Tvar[j]. If V=sex and male is 0 and               jmax=j;
                                        female is 1, then  cptcode=1.*/              ijmax=i;
     }            }
             else if (j <= jmin){
     for (i=0; i<=cptcode; i++) {              jmin=j;
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */              ijmin=i;
     }            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     ij=1;             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for (i=1; i<=ncodemax[j]; i++) {            if(j<0){
       for (k=0; k<= maxncov; k++) {              nberr++;
         if (Ndum[k] != 0) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           nbcode[Tvar[j]][ij]=k;               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */            }
                       sum=sum+j;
           ij++;          }
         }          jk= j/stepm;
         if (ij > ncodemax[j]) break;           jl= j -jk*stepm;
       }            ju= j -(jk+1)*stepm;
     }           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   }              if(jl==0){
               dh[mi][i]=jk;
  for (k=0; k< maxncov; k++) Ndum[k]=0;              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
  for (i=1; i<=ncovmodel-2; i++) {                     * at the price of an extra matrix product in likelihood */
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/              dh[mi][i]=jk+1;
    ij=Tvar[i];              bh[mi][i]=ju;
    Ndum[ij]++;            }
  }          }else{
             if(jl <= -ju){
  ij=1;              dh[mi][i]=jk;
  for (i=1; i<= maxncov; i++) {              bh[mi][i]=jl;       /* bias is positive if real duration
    if((Ndum[i]!=0) && (i<=ncovcol)){                                   * is higher than the multiple of stepm and negative otherwise.
      Tvaraff[ij]=i; /*For printing */                                   */
      ij++;            }
    }            else{
  }              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
  cptcoveff=ij-1; /*Number of simple covariates*/            }
 }            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
 /*********** Health Expectancies ****************/              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )            }
           } /* end if mle */
 {        }
   /* Health expectancies */      } /* end wave */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    }
   double age, agelim, hf;    jmean=sum/k;
   double ***p3mat,***varhe;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   double **dnewm,**doldm;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   double *xp;   }
   double **gp, **gm;  
   double ***gradg, ***trgradg;  /*********** Tricode ****************************/
   int theta;  void tricode(int *Tvar, int **nbcode, int imx)
   {
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);   
   xp=vector(1,npar);    int Ndum[20],ij=1, k, j, i, maxncov=19;
   dnewm=matrix(1,nlstate*nlstate,1,npar);    int cptcode=0;
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);    cptcoveff=0;
      
   fprintf(ficreseij,"# Local time at start: %s", strstart);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   fprintf(ficreseij,"# Health expectancies\n");    for (k=1; k<=7; k++) ncodemax[k]=0;
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     for(j=1; j<=nlstate;j++)      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
       fprintf(ficreseij," %1d-%1d (SE)",i,j);                                 modality*/
   fprintf(ficreseij,"\n");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
   if(estepm < stepm){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     printf ("Problem %d lower than %d\n",estepm, stepm);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
   }                                         Tvar[j]. If V=sex and male is 0 and
   else  hstepm=estepm;                                            female is 1, then  cptcode=1.*/
   /* We compute the life expectancy from trapezoids spaced every estepm months      }
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them      for (i=0; i<=cptcode; i++) {
    * we are calculating an estimate of the Life Expectancy assuming a linear         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
    * progression in between and thus overestimating or underestimating according      }
    * to the curvature of the survival function. If, for the same date, we   
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      ij=1;
    * to compare the new estimate of Life expectancy with the same linear       for (i=1; i<=ncodemax[j]; i++) {
    * hypothesis. A more precise result, taking into account a more precise        for (k=0; k<= maxncov; k++) {
    * curvature will be obtained if estepm is as small as stepm. */          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k;
   /* For example we decided to compute the life expectancy with the smallest unit */            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            
      nhstepm is the number of hstepm from age to agelim             ij++;
      nstepm is the number of stepm from age to agelin.           }
      Look at hpijx to understand the reason of that which relies in memory size          if (ij > ncodemax[j]) break;
      and note for a fixed period like estepm months */        }  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      }
      survival function given by stepm (the optimization length). Unfortunately it    }  
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (k=0; k< maxncov; k++) Ndum[k]=0;
      results. So we changed our mind and took the option of the best precision.  
   */   for (i=1; i<=ncovmodel-2; i++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
   agelim=AGESUP;     Ndum[ij]++;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */   }
     /* nhstepm age range expressed in number of stepm */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    ij=1;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    for (i=1; i<= maxncov; i++) {
     /* if (stepm >= YEARM) hstepm=1;*/     if((Ndum[i]!=0) && (i<=ncovcol)){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       Tvaraff[ij]=i; /*For printing */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       ij++;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);     }
     gp=matrix(0,nhstepm,1,nlstate*nlstate);   }
     gm=matrix(0,nhstepm,1,nlstate*nlstate);   
    cptcoveff=ij-1; /*Number of simple covariates*/
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    /*********** Health Expectancies ****************/
    
   void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
   {
     /* Computing  Variances of health expectancies */    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
      for(theta=1; theta <=npar; theta++){    double age, agelim, hf;
       for(i=1; i<=npar; i++){     double ***p3mat;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double eip;
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      pstamp(ficreseij);
       fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       cptj=0;    fprintf(ficreseij,"# Age");
       for(j=1; j<= nlstate; j++){    for(i=1; i<=nlstate;i++){
         for(i=1; i<=nlstate; i++){      for(j=1; j<=nlstate;j++){
           cptj=cptj+1;        fprintf(ficreseij," e%1d%1d ",i,j);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      fprintf(ficreseij," e%1d. ",i);
           }    }
         }    fprintf(ficreseij,"\n");
       }  
         
          if(estepm < stepm){
       for(i=1; i<=npar; i++)       printf ("Problem %d lower than %d\n",estepm, stepm);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      else  hstepm=estepm;  
           /* We compute the life expectancy from trapezoids spaced every estepm months
       cptj=0;     * This is mainly to measure the difference between two models: for example
       for(j=1; j<= nlstate; j++){     * if stepm=24 months pijx are given only every 2 years and by summing them
         for(i=1;i<=nlstate;i++){     * we are calculating an estimate of the Life Expectancy assuming a linear
           cptj=cptj+1;     * progression in between and thus overestimating or underestimating according
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){     * to the curvature of the survival function. If, for the same date, we
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;     * to compare the new estimate of Life expectancy with the same linear
           }     * hypothesis. A more precise result, taking into account a more precise
         }     * curvature will be obtained if estepm is as small as stepm. */
       }  
       for(j=1; j<= nlstate*nlstate; j++)    /* For example we decided to compute the life expectancy with the smallest unit */
         for(h=0; h<=nhstepm-1; h++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];       nhstepm is the number of hstepm from age to agelim
         }       nstepm is the number of stepm from age to agelin.
      }        Look at hpijx to understand the reason of that which relies in memory size
           and note for a fixed period like estepm months */
 /* End theta */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same
      for(h=0; h<=nhstepm-1; h++)       results. So we changed our mind and took the option of the best precision.
       for(j=1; j<=nlstate*nlstate;j++)    */
         for(theta=1; theta <=npar; theta++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
           trgradg[h][j][theta]=gradg[h][theta][j];  
          agelim=AGESUP;
     /* If stepm=6 months */
      for(i=1;i<=nlstate*nlstate;i++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for(j=1;j<=nlstate*nlstate;j++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         varhe[i][j][(int)age] =0.;     
   /* nhstepm age range expressed in number of stepm */
      printf("%d|",(int)age);fflush(stdout);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
      for(h=0;h<=nhstepm-1;h++){    /* if (stepm >= YEARM) hstepm=1;*/
       for(k=0;k<=nhstepm-1;k++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);  
         for(i=1;i<=nlstate*nlstate;i++)    for (age=bage; age<=fage; age ++){
           for(j=1;j<=nlstate*nlstate;j++)  
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     }     
     /* Computing expectancies */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(i=1; i<=nlstate;i++)     
       for(j=1; j<=nlstate;j++)      printf("%d|",(int)age);fflush(stdout);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;     
             
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     fprintf(ficreseij,"%3.0f",age );            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     cptj=0;           
     for(i=1; i<=nlstate;i++)            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       for(j=1; j<=nlstate;j++){  
         cptj++;          }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );     
       }      fprintf(ficreseij,"%3.0f",age );
     fprintf(ficreseij,"\n");      for(i=1; i<=nlstate;i++){
            eip=0;
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);        for(j=1; j<=nlstate;j++){
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);          eip +=eij[i][j][(int)age];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);        }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficreseij,"%9.4f", eip );
   }      }
   printf("\n");      fprintf(ficreseij,"\n");
   fprintf(ficlog,"\n");     
     }
   free_vector(xp,1,npar);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);    printf("\n");
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);    fprintf(ficlog,"\n");
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);   
 }  }
   
 /************ Variance ******************/  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])  
 {  {
   /* Variance of health expectancies */    /* Covariances of health expectancies eij and of total life expectancies according
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/     to initial status i, ei. .
   /* double **newm;*/    */
   double **dnewm,**doldm;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   double **dnewmp,**doldmp;    double age, agelim, hf;
   int i, j, nhstepm, hstepm, h, nstepm ;    double ***p3matp, ***p3matm, ***varhe;
   int k, cptcode;    double **dnewm,**doldm;
   double *xp;    double *xp, *xm;
   double **gp, **gm;  /* for var eij */    double **gp, **gm;
   double ***gradg, ***trgradg; /*for var eij */    double ***gradg, ***trgradg;
   double **gradgp, **trgradgp; /* for var p point j */    int theta;
   double *gpp, *gmp; /* for var p point j */  
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    double eip, vip;
   double ***p3mat;  
   double age,agelim, hf;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   double ***mobaverage;    xp=vector(1,npar);
   int theta;    xm=vector(1,npar);
   char digit[4];    dnewm=matrix(1,nlstate*nlstate,1,npar);
   char digitp[25];    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
    
   char fileresprobmorprev[FILENAMELENGTH];    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   if(popbased==1){    fprintf(ficresstdeij,"# Age");
     if(mobilav!=0)    for(i=1; i<=nlstate;i++){
       strcpy(digitp,"-populbased-mobilav-");      for(j=1; j<=nlstate;j++)
     else strcpy(digitp,"-populbased-nomobil-");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   }      fprintf(ficresstdeij," e%1d. ",i);
   else     }
     strcpy(digitp,"-stablbased-");    fprintf(ficresstdeij,"\n");
   
   if (mobilav!=0) {    pstamp(ficrescveij);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    fprintf(ficrescveij,"# Age");
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    for(i=1; i<=nlstate;i++)
       printf(" Error in movingaverage mobilav=%d\n",mobilav);      for(j=1; j<=nlstate;j++){
     }        cptj= (j-1)*nlstate+i;
   }        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
   strcpy(fileresprobmorprev,"prmorprev");             cptj2= (j2-1)*nlstate+i2;
   sprintf(digit,"%-d",ij);            if(cptj2 <= cptj)
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */          }
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */      }
   strcat(fileresprobmorprev,fileres);    fprintf(ficrescveij,"\n");
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {   
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    if(estepm < stepm){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    else  hstepm=estepm;  
      /* We compute the life expectancy from trapezoids spaced every estepm months
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);     * This is mainly to measure the difference between two models: for example
   fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);     * if stepm=24 months pijx are given only every 2 years and by summing them
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);     * we are calculating an estimate of the Life Expectancy assuming a linear
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);     * progression in between and thus overestimating or underestimating according
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){     * to the curvature of the survival function. If, for the same date, we
     fprintf(ficresprobmorprev," p.%-d SE",j);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     for(i=1; i<=nlstate;i++)     * to compare the new estimate of Life expectancy with the same linear
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);     * hypothesis. A more precise result, taking into account a more precise
   }       * curvature will be obtained if estepm is as small as stepm. */
   fprintf(ficresprobmorprev,"\n");  
   fprintf(ficgp,"\n# Routine varevsij");    /* For example we decided to compute the life expectancy with the smallest unit */
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");       nhstepm is the number of hstepm from age to agelim
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);       nstepm is the number of stepm from age to agelin.
 /*   } */       Look at hpijx to understand the reason of that which relies in memory size
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       and note for a fixed period like estepm months */
  fprintf(ficresvij, "#Local time at start: %s", strstart);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficresvij,"# Age");       means that if the survival funtion is printed only each two years of age and if
   for(i=1; i<=nlstate;i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same
     for(j=1; j<=nlstate;j++)       results. So we changed our mind and took the option of the best precision.
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    */
   fprintf(ficresvij,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   
   xp=vector(1,npar);    /* If stepm=6 months */
   dnewm=matrix(1,nlstate,1,npar);    /* nhstepm age range expressed in number of stepm */
   doldm=matrix(1,nlstate,1,nlstate);    agelim=AGESUP;
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     /* if (stepm >= YEARM) hstepm=1;*/
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   gpp=vector(nlstate+1,nlstate+ndeath);   
   gmp=vector(nlstate+1,nlstate+ndeath);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   if(estepm < stepm){    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     printf ("Problem %d lower than %d\n",estepm, stepm);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   else  hstepm=estepm;     
   /* For example we decided to compute the life expectancy with the smallest unit */    for (age=bage; age<=fage; age ++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.   
      nhstepm is the number of hstepm from age to agelim       /* Computed by stepm unit matrices, product of hstepm matrices, stored
      nstepm is the number of stepm from age to agelin.          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      Look at hpijx to understand the reason of that which relies in memory size   
      and note for a fixed period like k years */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it      /* Computing  Variances of health expectancies */
      means that if the survival funtion is printed every two years of age and if      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          decrease memory allocation */
      results. So we changed our mind and took the option of the best precision.      for(theta=1; theta <=npar; theta++){
   */        for(i=1; i<=npar; i++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   agelim = AGESUP;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        for(j=1; j<= nlstate; j++){
     gp=matrix(0,nhstepm,1,nlstate);          for(i=1; i<=nlstate; i++){
     gm=matrix(0,nhstepm,1,nlstate);            for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
       }       
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(ij=1; ij<= nlstate*nlstate; ij++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       if (popbased==1) {          }
         if(mobilav ==0){      }/* End theta */
           for(i=1; i<=nlstate;i++)     
             prlim[i][i]=probs[(int)age][i][ij];     
         }else{ /* mobilav */       for(h=0; h<=nhstepm-1; h++)
           for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate*nlstate;j++)
             prlim[i][i]=mobaverage[(int)age][i][ij];          for(theta=1; theta <=npar; theta++)
         }            trgradg[h][j][theta]=gradg[h][theta][j];
       }     
     
       for(j=1; j<= nlstate; j++){       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(h=0; h<=nhstepm; h++){        for(ji=1;ji<=nlstate*nlstate;ji++)
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          varhe[ij][ji][(int)age] =0.;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }       printf("%d|",(int)age);fflush(stdout);
       }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       /* This for computing probability of death (h=1 means       for(h=0;h<=nhstepm-1;h++){
          computed over hstepm matrices product = hstepm*stepm months)         for(k=0;k<=nhstepm-1;k++){
          as a weighted average of prlim.          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       for(j=nlstate+1;j<=nlstate+ndeath;j++){          for(ij=1;ij<=nlstate*nlstate;ij++)
         for(i=1,gpp[j]=0.; i<= nlstate; i++)            for(ji=1;ji<=nlstate*nlstate;ji++)
           gpp[j] += prlim[i][i]*p3mat[i][j][1];              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       }            }
       /* end probability of death */      }
   
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */      /* Computing expectancies */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(i=1; i<=nlstate;i++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       if (popbased==1) {            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         if(mobilav ==0){           
           for(i=1; i<=nlstate;i++)            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             prlim[i][i]=probs[(int)age][i][ij];  
         }else{ /* mobilav */           }
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=mobaverage[(int)age][i][ij];      fprintf(ficresstdeij,"%3.0f",age );
         }      for(i=1; i<=nlstate;i++){
       }        eip=0.;
         vip=0.;
       for(j=1; j<= nlstate; j++){        for(j=1; j<=nlstate;j++){
         for(h=0; h<=nhstepm; h++){          eip += eij[i][j][(int)age];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
         }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       }        }
       /* This for computing probability of death (h=1 means        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
          computed over hstepm matrices product = hstepm*stepm months)       }
          as a weighted average of prlim.      fprintf(ficresstdeij,"\n");
       */  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){      fprintf(ficrescveij,"%3.0f",age );
         for(i=1,gmp[j]=0.; i<= nlstate; i++)      for(i=1; i<=nlstate;i++)
          gmp[j] += prlim[i][i]*p3mat[i][j][1];        for(j=1; j<=nlstate;j++){
       }              cptj= (j-1)*nlstate+i;
       /* end probability of death */          for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
       for(j=1; j<= nlstate; j++) /* vareij */              cptj2= (j2-1)*nlstate+i2;
         for(h=0; h<=nhstepm; h++){              if(cptj2 <= cptj)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
         }            }
         }
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      fprintf(ficrescveij,"\n");
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];     
       }    }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     } /* End theta */    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(h=0; h<=nhstepm; h++) /* veij */    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1; j<=nlstate;j++)    printf("\n");
         for(theta=1; theta <=npar; theta++)    fprintf(ficlog,"\n");
           trgradg[h][j][theta]=gradg[h][theta][j];  
     free_vector(xm,1,npar);
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    free_vector(xp,1,npar);
       for(theta=1; theta <=npar; theta++)    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         trgradgp[j][theta]=gradgp[theta][j];    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)  /************ Variance ******************/
       for(j=1;j<=nlstate;j++)  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         vareij[i][j][(int)age] =0.;  {
     /* Variance of health expectancies */
     for(h=0;h<=nhstepm;h++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       for(k=0;k<=nhstepm;k++){    /* double **newm;*/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double **dnewm,**doldm;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    double **dnewmp,**doldmp;
         for(i=1;i<=nlstate;i++)    int i, j, nhstepm, hstepm, h, nstepm ;
           for(j=1;j<=nlstate;j++)    int k, cptcode;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    double *xp;
       }    double **gp, **gm;  /* for var eij */
     }    double ***gradg, ***trgradg; /*for var eij */
       double **gradgp, **trgradgp; /* for var p point j */
     /* pptj */    double *gpp, *gmp; /* for var p point j */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    double ***p3mat;
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    double age,agelim, hf;
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    double ***mobaverage;
         varppt[j][i]=doldmp[j][i];    int theta;
     /* end ppptj */    char digit[4];
     /*  x centered again */    char digitp[25];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);    
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    char fileresprobmorprev[FILENAMELENGTH];
    
     if (popbased==1) {    if(popbased==1){
       if(mobilav ==0){      if(mobilav!=0)
         for(i=1; i<=nlstate;i++)        strcpy(digitp,"-populbased-mobilav-");
           prlim[i][i]=probs[(int)age][i][ij];      else strcpy(digitp,"-populbased-nomobil-");
       }else{ /* mobilav */     }
         for(i=1; i<=nlstate;i++)    else
           prlim[i][i]=mobaverage[(int)age][i][ij];      strcpy(digitp,"-stablbased-");
       }  
     }    if (mobilav!=0) {
                    mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     /* This for computing probability of death (h=1 means      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
        computed over hstepm (estepm) matrices product = hstepm*stepm months)         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
        as a weighted average of prlim.        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     */      }
     for(j=nlstate+1;j<=nlstate+ndeath;j++){    }
       for(i=1,gmp[j]=0.;i<= nlstate; i++)   
         gmp[j] += prlim[i][i]*p3mat[i][j][1];     strcpy(fileresprobmorprev,"prmorprev");
     }        sprintf(digit,"%-d",ij);
     /* end probability of death */    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    strcat(fileresprobmorprev,fileres);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       for(i=1; i<=nlstate;i++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       }    }
     }     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresprobmorprev,"\n");   
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresvij,"%.0f ",age );    pstamp(ficresprobmorprev);
     for(i=1; i<=nlstate;i++)    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       for(j=1; j<=nlstate;j++){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       }      fprintf(ficresprobmorprev," p.%-d SE",j);
     fprintf(ficresvij,"\n");      for(i=1; i<=nlstate;i++)
     free_matrix(gp,0,nhstepm,1,nlstate);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     free_matrix(gm,0,nhstepm,1,nlstate);    }  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    fprintf(ficresprobmorprev,"\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    fprintf(ficgp,"\n# Routine varevsij");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   } /* End age */    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   free_vector(gpp,nlstate+1,nlstate+ndeath);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   free_vector(gmp,nlstate+1,nlstate+ndeath);  /*   } */
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    pstamp(ficresvij);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    if(popbased==1)
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    else
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */    fprintf(ficresvij,"# Age");
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));    for(i=1; i<=nlstate;i++)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));      for(j=1; j<=nlstate;j++)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));    fprintf(ficresvij,"\n");
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);  
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    xp=vector(1,npar);
 */    dnewm=matrix(1,nlstate,1,npar);
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    doldm=matrix(1,nlstate,1,nlstate);
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,nlstate);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   free_matrix(dnewm,1,nlstate,1,npar);    gpp=vector(nlstate+1,nlstate+ndeath);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    gmp=vector(nlstate+1,nlstate+ndeath);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);   
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if(estepm < stepm){
   fclose(ficresprobmorprev);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fflush(ficgp);    }
   fflush(fichtm);     else  hstepm=estepm;  
 }  /* end varevsij */    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
 /************ Variance of prevlim ******************/       nhstepm is the number of hstepm from age to agelim
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])       nstepm is the number of stepm from age to agelin.
 {       Look at hpijx to understand the reason of that which relies in memory size
   /* Variance of prevalence limit */       and note for a fixed period like k years */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double **newm;       survival function given by stepm (the optimization length). Unfortunately it
   double **dnewm,**doldm;       means that if the survival funtion is printed every two years of age and if
   int i, j, nhstepm, hstepm;       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   int k, cptcode;       results. So we changed our mind and took the option of the best precision.
   double *xp;    */
   double *gp, *gm;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   double **gradg, **trgradg;    agelim = AGESUP;
   double age,agelim;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   int theta;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   fprintf(ficresvpl, "#Local time at start: %s", strstart);       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficresvpl,"# Age");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   for(i=1; i<=nlstate;i++)      gp=matrix(0,nhstepm,1,nlstate);
       fprintf(ficresvpl," %1d-%1d",i,i);      gm=matrix(0,nhstepm,1,nlstate);
   fprintf(ficresvpl,"\n");  
   
   xp=vector(1,npar);      for(theta=1; theta <=npar; theta++){
   dnewm=matrix(1,nlstate,1,npar);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   doldm=matrix(1,nlstate,1,nlstate);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           }
   hstepm=1*YEARM; /* Every year of age */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if (popbased==1) {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */           if(mobilav ==0){
     if (stepm >= YEARM) hstepm=1;            for(i=1; i<=nlstate;i++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              prlim[i][i]=probs[(int)age][i][ij];
     gradg=matrix(1,npar,1,nlstate);          }else{ /* mobilav */
     gp=vector(1,nlstate);            for(i=1; i<=nlstate;i++)
     gm=vector(1,nlstate);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
     for(theta=1; theta <=npar; theta++){        }
       for(i=1; i<=npar; i++){ /* Computes gradient */   
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(j=1; j<= nlstate; j++){
       }          for(h=0; h<=nhstepm; h++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       for(i=1;i<=nlstate;i++)              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         gp[i] = prlim[i][i];          }
             }
       for(i=1; i<=npar; i++) /* Computes gradient */        /* This for computing probability of death (h=1 means
         xp[i] = x[i] - (i==theta ?delti[theta]:0);           computed over hstepm matrices product = hstepm*stepm months)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);           as a weighted average of prlim.
       for(i=1;i<=nlstate;i++)        */
         gm[i] = prlim[i][i];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
       for(i=1;i<=nlstate;i++)            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        }    
     } /* End theta */        /* end probability of death */
   
     trgradg =matrix(1,nlstate,1,npar);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
     for(j=1; j<=nlstate;j++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(theta=1; theta <=npar; theta++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         trgradg[j][theta]=gradg[theta][j];   
         if (popbased==1) {
     for(i=1;i<=nlstate;i++)          if(mobilav ==0){
       varpl[i][(int)age] =0.;            for(i=1; i<=nlstate;i++)
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              prlim[i][i]=probs[(int)age][i][ij];
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          }else{ /* mobilav */
     for(i=1;i<=nlstate;i++)            for(i=1; i<=nlstate;i++)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
     fprintf(ficresvpl,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        for(j=1; j<= nlstate; j++){
     fprintf(ficresvpl,"\n");          for(h=0; h<=nhstepm; h++){
     free_vector(gp,1,nlstate);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     free_vector(gm,1,nlstate);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     free_matrix(gradg,1,npar,1,nlstate);          }
     free_matrix(trgradg,1,nlstate,1,npar);        }
   } /* End age */        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months)
   free_vector(xp,1,npar);           as a weighted average of prlim.
   free_matrix(doldm,1,nlstate,1,npar);        */
   free_matrix(dnewm,1,nlstate,1,nlstate);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
 }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
 /************ Variance of one-step probabilities  ******************/        /* end probability of death */
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])  
 {        for(j=1; j<= nlstate; j++) /* vareij */
   int i, j=0,  i1, k1, l1, t, tj;          for(h=0; h<=nhstepm; h++){
   int k2, l2, j1,  z1;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   int k=0,l, cptcode;          }
   int first=1, first1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   double **dnewm,**doldm;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   double *xp;        }
   double *gp, *gm;  
   double **gradg, **trgradg;      } /* End theta */
   double **mu;  
   double age,agelim, cov[NCOVMAX];      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  
   int theta;      for(h=0; h<=nhstepm; h++) /* veij */
   char fileresprob[FILENAMELENGTH];        for(j=1; j<=nlstate;j++)
   char fileresprobcov[FILENAMELENGTH];          for(theta=1; theta <=npar; theta++)
   char fileresprobcor[FILENAMELENGTH];            trgradg[h][j][theta]=gradg[h][theta][j];
   
   double ***varpij;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   strcpy(fileresprob,"prob");           trgradgp[j][theta]=gradgp[theta][j];
   strcat(fileresprob,fileres);   
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      for(i=1;i<=nlstate;i++)
   }        for(j=1;j<=nlstate;j++)
   strcpy(fileresprobcov,"probcov");           vareij[i][j][(int)age] =0.;
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      for(h=0;h<=nhstepm;h++){
     printf("Problem with resultfile: %s\n", fileresprobcov);        for(k=0;k<=nhstepm;k++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   strcpy(fileresprobcor,"probcor");           for(i=1;i<=nlstate;i++)
   strcat(fileresprobcor,fileres);            for(j=1;j<=nlstate;j++)
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     printf("Problem with resultfile: %s\n", fileresprobcor);        }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      }
   }   
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      /* pptj */
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          varppt[j][i]=doldmp[j][i];
   fprintf(ficresprob, "#Local time at start: %s", strstart);      /* end ppptj */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      /*  x centered again */
   fprintf(ficresprob,"# Age");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficresprobcov, "#Local time at start: %s", strstart);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");   
   fprintf(ficresprobcov,"# Age");      if (popbased==1) {
   fprintf(ficresprobcor, "#Local time at start: %s", strstart);        if(mobilav ==0){
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          for(i=1; i<=nlstate;i++)
   fprintf(ficresprobcov,"# Age");            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */
           for(i=1; i<=nlstate;i++)
   for(i=1; i<=nlstate;i++)            prlim[i][i]=mobaverage[(int)age][i][ij];
     for(j=1; j<=(nlstate+ndeath);j++){        }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      }
       fprintf(ficresprobcov," p%1d-%1d ",i,j);               
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      /* This for computing probability of death (h=1 means
     }           computed over hstepm (estepm) matrices product = hstepm*stepm months)
  /* fprintf(ficresprob,"\n");         as a weighted average of prlim.
   fprintf(ficresprobcov,"\n");      */
   fprintf(ficresprobcor,"\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
  */        for(i=1,gmp[j]=0.;i<= nlstate; i++)
  xp=vector(1,npar);          gmp[j] += prlim[i][i]*p3mat[i][j][1];
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      }    
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      /* end probability of death */
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   first=1;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fprintf(ficgp,"\n# Routine varprob");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        for(i=1; i<=nlstate;i++){
   fprintf(fichtm,"\n");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);      }
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\      fprintf(ficresprobmorprev,"\n");
   file %s<br>\n",optionfilehtmcov);  
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\      fprintf(ficresvij,"%.0f ",age );
 and drawn. It helps understanding how is the covariance between two incidences.\      for(i=1; i<=nlstate;i++)
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        for(j=1; j<=nlstate;j++){
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \        }
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \      fprintf(ficresvij,"\n");
 standard deviations wide on each axis. <br>\      free_matrix(gp,0,nhstepm,1,nlstate);
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\      free_matrix(gm,0,nhstepm,1,nlstate);
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   cov[1]=1;    } /* End age */
   tj=cptcoveff;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    free_vector(gmp,nlstate+1,nlstate+ndeath);
   j1=0;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   for(t=1; t<=tj;t++){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     for(i1=1; i1<=ncodemax[t];i1++){     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       j1++;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       if  (cptcovn>0) {    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         fprintf(ficresprob, "\n#********** Variable ");   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficresprob, "**********\n#\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficresprobcov, "\n#********** Variable ");     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         fprintf(ficresprobcov, "**********\n#\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
             fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         fprintf(ficgp, "\n#********** Variable ");     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         fprintf(ficgp, "**********\n#\n");  */
           /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
             fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_vector(xp,1,npar);
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    free_matrix(doldm,1,nlstate,1,nlstate);
             free_matrix(dnewm,1,nlstate,1,npar);
         fprintf(ficresprobcor, "\n#********** Variable ");        free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         fprintf(ficresprobcor, "**********\n#");        free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fclose(ficresprobmorprev);
       for (age=bage; age<=fage; age ++){     fflush(ficgp);
         cov[2]=age;    fflush(fichtm);
         for (k=1; k<=cptcovn;k++) {  }  /* end varevsij */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
         }  /************ Variance of prevlim ******************/
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         for (k=1; k<=cptcovprod;k++)  {
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /* Variance of prevalence limit */
             /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    double **newm;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    double **dnewm,**doldm;
         gp=vector(1,(nlstate)*(nlstate+ndeath));    int i, j, nhstepm, hstepm;
         gm=vector(1,(nlstate)*(nlstate+ndeath));    int k, cptcode;
         double *xp;
         for(theta=1; theta <=npar; theta++){    double *gp, *gm;
           for(i=1; i<=npar; i++)    double **gradg, **trgradg;
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    double age,agelim;
               int theta;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);   
               pstamp(ficresvpl);
           k=0;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
           for(i=1; i<= (nlstate); i++){    fprintf(ficresvpl,"# Age");
             for(j=1; j<=(nlstate+ndeath);j++){    for(i=1; i<=nlstate;i++)
               k=k+1;        fprintf(ficresvpl," %1d-%1d",i,i);
               gp[k]=pmmij[i][j];    fprintf(ficresvpl,"\n");
             }  
           }    xp=vector(1,npar);
               dnewm=matrix(1,nlstate,1,npar);
           for(i=1; i<=npar; i++)    doldm=matrix(1,nlstate,1,nlstate);
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);   
         hstepm=1*YEARM; /* Every year of age */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
           k=0;    agelim = AGESUP;
           for(i=1; i<=(nlstate); i++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             for(j=1; j<=(nlstate+ndeath);j++){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
               k=k+1;      if (stepm >= YEARM) hstepm=1;
               gm[k]=pmmij[i][j];      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
             }      gradg=matrix(1,npar,1,nlstate);
           }      gp=vector(1,nlstate);
            gm=vector(1,nlstate);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)   
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];        for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        }
           for(theta=1; theta <=npar; theta++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             trgradg[j][theta]=gradg[theta][j];        for(i=1;i<=nlstate;i++)
                   gp[i] = prlim[i][i];
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        for(i=1; i<=npar; i++) /* Computes gradient */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(i=1;i<=nlstate;i++)
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          gm[i] = prlim[i][i];
   
         pmij(pmmij,cov,ncovmodel,x,nlstate);        for(i=1;i<=nlstate;i++)
                   gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         k=0;      } /* End theta */
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){      trgradg =matrix(1,nlstate,1,npar);
             k=k+1;  
             mu[k][(int) age]=pmmij[i][j];      for(j=1; j<=nlstate;j++)
           }        for(theta=1; theta <=npar; theta++)
         }          trgradg[j][theta]=gradg[theta][j];
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      for(i=1;i<=nlstate;i++)
             varpij[i][j][(int)age] = doldm[i][j];        varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         /*printf("\n%d ",(int)age);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      for(i=1;i<=nlstate;i++)
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           }*/      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprob,"\n%d ",(int)age);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         fprintf(ficresprobcov,"\n%d ",(int)age);      fprintf(ficresvpl,"\n");
         fprintf(ficresprobcor,"\n%d ",(int)age);      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      free_matrix(gradg,1,npar,1,nlstate);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      free_matrix(trgradg,1,nlstate,1,npar);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    } /* End age */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    free_vector(xp,1,npar);
         }    free_matrix(doldm,1,nlstate,1,npar);
         i=0;    free_matrix(dnewm,1,nlstate,1,nlstate);
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){   }
             i=i++;  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  /************ Variance of one-step probabilities  ******************/
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
             for (j=1; j<=i;j++){  {
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    int i, j=0,  i1, k1, l1, t, tj;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    int k2, l2, j1,  z1;
             }    int k=0,l, cptcode;
           }    int first=1, first1;
         }/* end of loop for state */    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       } /* end of loop for age */    double **dnewm,**doldm;
     double *xp;
       /* Confidence intervalle of pij  */    double *gp, *gm;
       /*    double **gradg, **trgradg;
         fprintf(ficgp,"\nset noparametric;unset label");    double **mu;
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    double age,agelim, cov[NCOVMAX];
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    int theta;
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    char fileresprob[FILENAMELENGTH];
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    char fileresprobcov[FILENAMELENGTH];
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    char fileresprobcor[FILENAMELENGTH];
       */  
     double ***varpij;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  
       first1=1;    strcpy(fileresprob,"prob");
       for (k2=1; k2<=(nlstate);k2++){    strcat(fileresprob,fileres);
         for (l2=1; l2<=(nlstate+ndeath);l2++){     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           if(l2==k2) continue;      printf("Problem with resultfile: %s\n", fileresprob);
           j=(k2-1)*(nlstate+ndeath)+l2;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           for (k1=1; k1<=(nlstate);k1++){    }
             for (l1=1; l1<=(nlstate+ndeath);l1++){     strcpy(fileresprobcov,"probcov");
               if(l1==k1) continue;    strcat(fileresprobcov,fileres);
               i=(k1-1)*(nlstate+ndeath)+l1;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
               if(i<=j) continue;      printf("Problem with resultfile: %s\n", fileresprobcov);
               for (age=bage; age<=fage; age ++){       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                 if ((int)age %5==0){    }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    strcpy(fileresprobcor,"probcor");
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    strcat(fileresprobcor,fileres);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   mu1=mu[i][(int) age]/stepm*YEARM ;      printf("Problem with resultfile: %s\n", fileresprobcor);
                   mu2=mu[j][(int) age]/stepm*YEARM;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                   c12=cv12/sqrt(v1*v2);    }
                   /* Computing eigen value of matrix of covariance */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   /* Eigen vectors */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   /*v21=sqrt(1.-v11*v11); *//* error */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   v21=(lc1-v1)/cv12*v11;    pstamp(ficresprob);
                   v12=-v21;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                   v22=v11;    fprintf(ficresprob,"# Age");
                   tnalp=v21/v11;    pstamp(ficresprobcov);
                   if(first1==1){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                     first1=0;    fprintf(ficresprobcov,"# Age");
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    pstamp(ficresprobcor);
                   }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    fprintf(ficresprobcor,"# Age");
                   /*printf(fignu*/  
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    for(i=1; i<=nlstate;i++)
                   if(first==1){      for(j=1; j<=(nlstate+ndeath);j++){
                     first=0;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                     fprintf(ficgp,"\nset parametric;unset label");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      }  
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\   /* fprintf(ficresprob,"\n");
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    fprintf(ficresprobcov,"\n");
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\    fprintf(ficresprobcor,"\n");
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\   */
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);   xp=vector(1,npar);
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    first=1;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    fprintf(ficgp,"\n# Routine varprob");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    fprintf(fichtm,"\n");
                   }else{  
                     first=0;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    file %s<br>\n",optionfilehtmcov);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  and drawn. It helps understanding how is the covariance between two incidences.\
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
                   }/* if first */  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                 } /* age mod 5 */  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
               } /* end loop age */  standard deviations wide on each axis. <br>\
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
               first=1;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
             } /*l12 */  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
           } /* k12 */  
         } /*l1 */    cov[1]=1;
       }/* k1 */    tj=cptcoveff;
     } /* loop covariates */    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   }    j1=0;
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    for(t=1; t<=tj;t++){
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      for(i1=1; i1<=ncodemax[t];i1++){
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        j1++;
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);        if  (cptcovn>0) {
   free_vector(xp,1,npar);          fprintf(ficresprob, "\n#********** Variable ");
   fclose(ficresprob);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fclose(ficresprobcov);          fprintf(ficresprob, "**********\n#\n");
   fclose(ficresprobcor);          fprintf(ficresprobcov, "\n#********** Variable ");
   fflush(ficgp);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fflush(fichtmcov);          fprintf(ficresprobcov, "**********\n#\n");
 }         
           fprintf(ficgp, "\n#********** Variable ");
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /******************* Printing html file ***********/          fprintf(ficgp, "**********\n#\n");
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \         
                   int lastpass, int stepm, int weightopt, char model[],\         
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
                   int popforecast, int estepm ,\          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   double jprev1, double mprev1,double anprev1, \          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                   double jprev2, double mprev2,double anprev2){         
   int jj1, k1, i1, cpt;          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \          fprintf(ficresprobcor, "**********\n#");    
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \        }
 </ul>");       
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \        for (age=bage; age<=fage; age ++){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",          cov[2]=age;
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));          for (k=1; k<=cptcovn;k++) {
    fprintf(fichtm,"\            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",          }
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    fprintf(fichtm,"\          for (k=1; k<=cptcovprod;k++)
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));         
    fprintf(fichtm,"\          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
  - Life expectancies by age and initial health status (estepm=%2d months) WRONG LINK (to be made): \          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    <a href=\"%s\">%s</a> <br>\n</li>",          gp=vector(1,(nlstate)*(nlstate+ndeath));
            estepm,subdirf2(fileres,"le"),subdirf2(fileres,"le"));          gm=vector(1,(nlstate)*(nlstate+ndeath));
    fprintf(fichtm,"\     
  - Health expectancies by age and initial health status with standard errors (estepm=%2d months): \          for(theta=1; theta <=npar; theta++){
    <a href=\"%s\">%s</a> <br>\n</li>",            for(i=1; i<=npar; i++)
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
    fprintf(fichtm,"\           
  - Variances and covariances of health expectancies by age and initial health status (estepm=%2d months) TO BE MADE: \            pmij(pmmij,cov,ncovmodel,xp,nlstate);
    <a href=\"%s\">%s</a> <br>\n</li>",           
            estepm,subdirf2(fileres,"vch"),subdirf2(fileres,"vch"));            k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");                k=k+1;
                 gp[k]=pmmij[i][j];
  m=cptcoveff;              }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            }
            
  jj1=0;            for(i=1; i<=npar; i++)
  for(k1=1; k1<=m;k1++){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
    for(i1=1; i1<=ncodemax[k1];i1++){     
      jj1++;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      if (cptcovn > 0) {            k=0;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            for(i=1; i<=(nlstate); i++){
        for (cpt=1; cpt<=cptcoveff;cpt++)               for(j=1; j<=(nlstate+ndeath);j++){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                k=k+1;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                gm[k]=pmmij[i][j];
      }              }
      /* Pij */            }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \       
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);                 for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
      /* Quasi-incidences */              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\          }
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \  
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
        /* Stable prevalence in each health state */            for(theta=1; theta <=npar; theta++)
        for(cpt=1; cpt<nlstate;cpt++){              trgradg[j][theta]=gradg[theta][j];
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \         
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
        }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
      for(cpt=1; cpt<=nlstate;cpt++) {          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    } /* end i1 */  
  }/* End k1 */          pmij(pmmij,cov,ncovmodel,x,nlstate);
  fprintf(fichtm,"</ul>");         
           k=0;
           for(i=1; i<=(nlstate); i++){
  fprintf(fichtm,"\            for(j=1; j<=(nlstate+ndeath);j++){
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\              k=k+1;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);              mu[k][(int) age]=pmmij[i][j];
             }
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",          }
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
  fprintf(fichtm,"\            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",              varpij[i][j][(int)age] = doldm[i][j];
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));  
           /*printf("\n%d ",(int)age);
  fprintf(fichtm,"\            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  fprintf(fichtm,"\            }*/
  - Variances and covariances of health expectancies by age (estepm=%d months): <a href=\"%s\">%s</a><br>\n",  
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));          fprintf(ficresprob,"\n%d ",(int)age);
  fprintf(fichtm,"\          fprintf(ficresprobcov,"\n%d ",(int)age);
  - Life and health expectancies with their standard errors: <a href=\"%s\">%s</a> <br>\n",          fprintf(ficresprobcor,"\n%d ",(int)age);
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));  
  fprintf(fichtm,"\          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 /*  if(popforecast==1) fprintf(fichtm,"\n */            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */          }
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */          i=0;
 /*      <br>",fileres,fileres,fileres,fileres); */          for (k=1; k<=(nlstate);k++){
 /*  else  */            for (l=1; l<=(nlstate+ndeath);l++){
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */              i=i++;
  fflush(fichtm);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
  m=cptcoveff;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
  jj1=0;            }
  for(k1=1; k1<=m;k1++){          }/* end of loop for state */
    for(i1=1; i1<=ncodemax[k1];i1++){        } /* end of loop for age */
      jj1++;  
      if (cptcovn > 0) {        /* Confidence intervalle of pij  */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        /*
        for (cpt=1; cpt<=cptcoveff;cpt++)           fprintf(ficgp,"\nset noparametric;unset label");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
      for(cpt=1; cpt<=nlstate;cpt++) {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);          */
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 health expectancies in states (1) and (2): %s%d.png<br>\        first1=1;
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);        for (k2=1; k2<=(nlstate);k2++){
    } /* end i1 */          for (l2=1; l2<=(nlstate+ndeath);l2++){
  }/* End k1 */            if(l2==k2) continue;
  fprintf(fichtm,"</ul>");            j=(k2-1)*(nlstate+ndeath)+l2;
  fflush(fichtm);            for (k1=1; k1<=(nlstate);k1++){
 }              for (l1=1; l1<=(nlstate+ndeath);l1++){
                 if(l1==k1) continue;
 /******************* Gnuplot file **************/                i=(k1-1)*(nlstate+ndeath)+l1;
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){
   char dirfileres[132],optfileres[132];                  if ((int)age %5==0){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   int ng;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 /*     printf("Problem with file %s",optionfilegnuplot); */                    mu1=mu[i][(int) age]/stepm*YEARM ;
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */                    mu2=mu[j][(int) age]/stepm*YEARM;
 /*   } */                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
   /*#ifdef windows */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   fprintf(ficgp,"cd \"%s\" \n",pathc);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     /*#endif */                    /* Eigen vectors */
   m=pow(2,cptcoveff);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
   strcpy(dirfileres,optionfilefiname);                    v21=(lc1-v1)/cv12*v11;
   strcpy(optfileres,"vpl");                    v12=-v21;
  /* 1eme*/                    v22=v11;
   for (cpt=1; cpt<= nlstate ; cpt ++) {                    tnalp=v21/v11;
    for (k1=1; k1<= m ; k1 ++) {                    if(first1==1){
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);                      first1=0;
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
      fprintf(ficgp,"set xlabel \"Age\" \n\                    }
 set ylabel \"Probability\" \n\                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
 set ter png small\n\                    /*printf(fignu*/
 set size 0.65,0.65\n\                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
      for (i=1; i<= nlstate ; i ++) {                      first=0;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                      fprintf(ficgp,"\nset parametric;unset label");
        else fprintf(ficgp," \%%*lf (\%%*lf)");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
      }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
      for (i=1; i<= nlstate ; i ++) {   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
        else fprintf(ficgp," \%%*lf (\%%*lf)");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
      }                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
      for (i=1; i<= nlstate ; i ++) {                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        else fprintf(ficgp," \%%*lf (\%%*lf)");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
      }                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
    }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   /*2 eme*/                    }else{
                         first=0;
   for (k1=1; k1<= m ; k1 ++) {                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                           fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     for (i=1; i<= nlstate+1 ; i ++) {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       k=2*i;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                    }/* if first */
       for (j=1; j<= nlstate+1 ; j ++) {                  } /* age mod 5 */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                } /* end loop age */
         else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                   first=1;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              } /*l12 */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            } /* k12 */
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          } /*l1 */
       for (j=1; j<= nlstate+1 ; j ++) {        }/* k1 */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      } /* loop covariates */
         else fprintf(ficgp," \%%*lf (\%%*lf)");    }
       }       free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       fprintf(ficgp,"\" t\"\" w l 0,");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       for (j=1; j<= nlstate+1 ; j ++) {    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_vector(xp,1,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fclose(ficresprob);
       }       fclose(ficresprobcov);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    fclose(ficresprobcor);
       else fprintf(ficgp,"\" t\"\" w l 0,");    fflush(ficgp);
     }    fflush(fichtmcov);
   }  }
     
   /*3eme*/  
     /******************* Printing html file ***********/
   for (k1=1; k1<= m ; k1 ++) {   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     for (cpt=1; cpt<= nlstate ; cpt ++) {                    int lastpass, int stepm, int weightopt, char model[],\
       k=2+nlstate*(2*cpt-2);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);                    int popforecast, int estepm ,\
       fprintf(ficgp,"set ter png small\n\                    double jprev1, double mprev1,double anprev1, \
 set size 0.65,0.65\n\                    double jprev2, double mprev2,double anprev2){
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);    int jj1, k1, i1, cpt;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  </ul>");
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                      jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       */     fprintf(fichtm,"\
       for (i=1; i< nlstate ; i ++) {   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
              fprintf(fichtm,"\
       }    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   }     fprintf(fichtm,"\
      - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   /* CV preval stable (period) */     <a href=\"%s\">%s</a> <br>\n",
   for (k1=1; k1<= m ; k1 ++) {              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     for (cpt=1; cpt<=nlstate ; cpt ++) {     fprintf(fichtm,"\
       k=3;   - Population projections by age and states: \
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\  
 set ter png small\nset size 0.65,0.65\n\  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 unset log y\n\  
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);   m=cptcoveff;
          if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);   jj1=0;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);   for(k1=1; k1<=m;k1++){
            for(i1=1; i1<=ncodemax[k1];i1++){
       l=3+(nlstate+ndeath)*cpt;       jj1++;
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);       if (cptcovn > 0) {
       for (i=1; i< nlstate ; i ++) {         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         l=3+(nlstate+ndeath)*cpt;         for (cpt=1; cpt<=cptcoveff;cpt++)
         fprintf(ficgp,"+$%d",l+i+1);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          }
     }        /* Pij */
   }         fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
     <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
   /* proba elementaires */       /* Quasi-incidences */
   for(i=1,jk=1; i <=nlstate; i++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     for(k=1; k <=(nlstate+ndeath); k++){   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
       if (k != i) {  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
         for(j=1; j <=ncovmodel; j++){         /* Period (stable) prevalence in each health state */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);         for(cpt=1; cpt<nlstate;cpt++){
           jk++;            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
           fprintf(ficgp,"\n");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
         }         }
       }       for(cpt=1; cpt<=nlstate;cpt++) {
     }          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
    }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/     } /* end i1 */
      for(jk=1; jk <=m; jk++) {   }/* End k1 */
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);    fprintf(fichtm,"</ul>");
        if (ng==2)  
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else   fprintf(fichtm,"\
          fprintf(ficgp,"\nset title \"Probability\"\n");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
        i=1;  
        for(k2=1; k2<=nlstate; k2++) {   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
          k3=i;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
          for(k=1; k<=(nlstate+ndeath); k++) {   fprintf(fichtm,"\
            if (k != k2){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              if(ng==2)           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);  
              else   fprintf(fichtm,"\
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              ij=1;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
              for(j=3; j <=ncovmodel; j++) {   fprintf(fichtm,"\
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     <a href=\"%s\">%s</a> <br>\n</li>",
                  ij++;             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
                }   fprintf(fichtm,"\
                else   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     <a href=\"%s\">%s</a> <br>\n</li>",
              }             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
              fprintf(ficgp,")/(1");   fprintf(fichtm,"\
                 - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
              for(k1=1; k1 <=nlstate; k1++){              estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);   fprintf(fichtm,"\
                ij=1;   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
                for(j=3; j <=ncovmodel; j++){           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   fprintf(fichtm,"\
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
                    ij++;           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
                  }  
                  else  /*  if(popforecast==1) fprintf(fichtm,"\n */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
                }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
                fprintf(ficgp,")");  /*      <br>",fileres,fileres,fileres,fileres); */
              }  /*  else  */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   fflush(fichtm);
              i=i+ncovmodel;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
            }  
          } /* end k */   m=cptcoveff;
        } /* end k2 */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      } /* end jk */  
    } /* end ng */   jj1=0;
    fflush(ficgp);    for(k1=1; k1<=m;k1++){
 }  /* end gnuplot */     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
 /*************** Moving average **************/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){         for (cpt=1; cpt<=cptcoveff;cpt++)
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   int i, cpt, cptcod;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   int modcovmax =1;       }
   int mobilavrange, mob;       for(cpt=1; cpt<=nlstate;cpt++) {
   double age;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
                            a covariate has 2 modalities */       }
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     if(mobilav==1) mobilavrange=5; /* default */     } /* end i1 */
     else mobilavrange=mobilav;   }/* End k1 */
     for (age=bage; age<=fage; age++)   fprintf(fichtm,"</ul>");
       for (i=1; i<=nlstate;i++)   fflush(fichtm);
         for (cptcod=1;cptcod<=modcovmax;cptcod++)  }
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];  
     /* We keep the original values on the extreme ages bage, fage and for   /******************* Gnuplot file **************/
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
        we use a 5 terms etc. until the borders are no more concerned.   
     */     char dirfileres[132],optfileres[132];
     for (mob=3;mob <=mobilavrange;mob=mob+2){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){    int ng;
         for (i=1; i<=nlstate;i++){  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
           for (cptcod=1;cptcod<=modcovmax;cptcod++){  /*     printf("Problem with file %s",optionfilegnuplot); */
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
               for (cpt=1;cpt<=(mob-1)/2;cpt++){  /*   } */
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];  
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];    /*#ifdef windows */
               }    fprintf(ficgp,"cd \"%s\" \n",pathc);
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;      /*#endif */
           }    m=pow(2,cptcoveff);
         }  
       }/* end age */    strcpy(dirfileres,optionfilefiname);
     }/* end mob */    strcpy(optfileres,"vpl");
   }else return -1;   /* 1eme*/
   return 0;    for (cpt=1; cpt<= nlstate ; cpt ++) {
 }/* End movingaverage */     for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
 /************** Forecasting ******************/       fprintf(ficgp,"set xlabel \"Age\" \n\
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  set ylabel \"Probability\" \n\
   /* proj1, year, month, day of starting projection   set ter png small\n\
      agemin, agemax range of age  set size 0.65,0.65\n\
      dateprev1 dateprev2 range of dates during which prevalence is computed  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
      anproj2 year of en of projection (same day and month as proj1).  
   */       for (i=1; i<= nlstate ; i ++) {
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   int *popage;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   double agec; /* generic age */       }
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   double *popeffectif,*popcount;       for (i=1; i<= nlstate ; i ++) {
   double ***p3mat;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   double ***mobaverage;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   char fileresf[FILENAMELENGTH];       }
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   agelim=AGESUP;       for (i=1; i<= nlstate ; i ++) {
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcpy(fileresf,"f");        }  
   strcat(fileresf,fileres);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   if((ficresf=fopen(fileresf,"w"))==NULL) {     }
     printf("Problem with forecast resultfile: %s\n", fileresf);    }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    /*2 eme*/
   }   
   printf("Computing forecasting: result on file '%s' \n", fileresf);    for (k1=1; k1<= m ; k1 ++) {
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     
       for (i=1; i<= nlstate+1 ; i ++) {
   if (mobilav!=0) {        k=2*i;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){        for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       printf(" Error in movingaverage mobilav=%d\n",mobilav);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }        }  
   }        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   stepsize=(int) (stepm+YEARM-1)/YEARM;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   if (stepm<=12) stepsize=1;        for (j=1; j<= nlstate+1 ; j ++) {
   if(estepm < stepm){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     printf ("Problem %d lower than %d\n",estepm, stepm);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }        }  
   else  hstepm=estepm;           fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   hstepm=hstepm/stepm;         for (j=1; j<= nlstate+1 ; j ++) {
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                                fractional in yp1 */          else fprintf(ficgp," \%%*lf (\%%*lf)");
   anprojmean=yp;        }  
   yp2=modf((yp1*12),&yp);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   mprojmean=yp;        else fprintf(ficgp,"\" t\"\" w l 0,");
   yp1=modf((yp2*30.5),&yp);      }
   jprojmean=yp;    }
   if(jprojmean==0) jprojmean=1;   
   if(mprojmean==0) jprojmean=1;    /*3eme*/
    
   i1=cptcoveff;    for (k1=1; k1<= m ; k1 ++) {
   if (cptcovn < 1){i1=1;}      for (cpt=1; cpt<= nlstate ; cpt ++) {
           /*       k=2+nlstate*(2*cpt-2); */
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);         k=2+(nlstate+1)*(cpt-1);
           fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   fprintf(ficresf,"#****** Routine prevforecast **\n");        fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
 /*            if (h==(int)(YEARM*yearp)){ */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       k=k+1;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       fprintf(ficresf,"\n#******");          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       for(j=1;j<=cptcoveff;j++) {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       }         
       fprintf(ficresf,"******\n");        */
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");        for (i=1; i< nlstate ; i ++) {
       for(j=1; j<=nlstate+ndeath;j++){           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
         for(i=1; i<=nlstate;i++)                        /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           fprintf(ficresf," p%d%d",i,j);         
         fprintf(ficresf," p.%d",j);        }
       }        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {       }
         fprintf(ficresf,"\n");    }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);      
     /* CV preval stable (period) */
         for (agec=fage; agec>=(ageminpar-1); agec--){     for (k1=1; k1<= m ; k1 ++) {
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);       for (cpt=1; cpt<=nlstate ; cpt ++) {
           nhstepm = nhstepm/hstepm;         k=3;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
           oldm=oldms;savm=savms;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);    set ter png small\nset size 0.65,0.65\n\
           unset log y\n\
           for (h=0; h<=nhstepm; h++){  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
             if (h*hstepm/YEARM*stepm ==yearp) {       
               fprintf(ficresf,"\n");        for (i=1; i< nlstate ; i ++)
               for(j=1;j<=cptcoveff;j++)           fprintf(ficgp,"+$%d",k+i+1);
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);       
             }         l=3+(nlstate+ndeath)*cpt;
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
               ppij=0.;        for (i=1; i< nlstate ; i ++) {
               for(i=1; i<=nlstate;i++) {          l=3+(nlstate+ndeath)*cpt;
                 if (mobilav==1)           fprintf(ficgp,"+$%d",l+i+1);
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];        }
                 else {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];      }
                 }    }  
                 if (h*hstepm/YEARM*stepm== yearp) {   
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);    /* proba elementaires */
                 }    for(i=1,jk=1; i <=nlstate; i++){
               } /* end i */      for(k=1; k <=(nlstate+ndeath); k++){
               if (h*hstepm/YEARM*stepm==yearp) {        if (k != i) {
                 fprintf(ficresf," %.3f", ppij);          for(j=1; j <=ncovmodel; j++){
               }            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             }/* end j */            jk++;
           } /* end h */            fprintf(ficgp,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
         } /* end agec */        }
       } /* end yearp */      }
     } /* end cptcod */     }
   } /* end  cptcov */  
             for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
   fclose(ficresf);         if (ng==2)
 }           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
 /************** Forecasting *****not tested NB*************/           fprintf(ficgp,"\nset title \"Probability\"\n");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
            i=1;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;         for(k2=1; k2<=nlstate; k2++) {
   int *popage;           k3=i;
   double calagedatem, agelim, kk1, kk2;           for(k=1; k<=(nlstate+ndeath); k++) {
   double *popeffectif,*popcount;             if (k != k2){
   double ***p3mat,***tabpop,***tabpopprev;               if(ng==2)
   double ***mobaverage;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   char filerespop[FILENAMELENGTH];               else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);               ij=1;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);               for(j=3; j <=ncovmodel; j++) {
   agelim=AGESUP;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                 }
                    else
                      fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   strcpy(filerespop,"pop");                }
   strcat(filerespop,fileres);               fprintf(ficgp,")/(1");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {               
     printf("Problem with forecast resultfile: %s\n", filerespop);               for(k1=1; k1 <=nlstate; k1++){  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   }                 ij=1;
   printf("Computing forecasting: result on file '%s' \n", filerespop);                 for(j=3; j <=ncovmodel; j++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                     ij++;
                    }
   if (mobilav!=0) {                   else
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){                 }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                 fprintf(ficgp,")");
       printf(" Error in movingaverage mobilav=%d\n",mobilav);               }
     }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   }               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
   stepsize=(int) (stepm+YEARM-1)/YEARM;             }
   if (stepm<=12) stepsize=1;           } /* end k */
            } /* end k2 */
   agelim=AGESUP;       } /* end jk */
        } /* end ng */
   hstepm=1;     fflush(ficgp);
   hstepm=hstepm/stepm;   }  /* end gnuplot */
     
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {  /*************** Moving average **************/
       printf("Problem with population file : %s\n",popfile);exit(0);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  
     }     int i, cpt, cptcod;
     popage=ivector(0,AGESUP);    int modcovmax =1;
     popeffectif=vector(0,AGESUP);    int mobilavrange, mob;
     popcount=vector(0,AGESUP);    double age;
       
     i=1;       modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                             a covariate has 2 modalities */
        if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   }      if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){      for (age=bage; age<=fage; age++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for (i=1; i<=nlstate;i++)
       k=k+1;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       fprintf(ficrespop,"\n#******");            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       for(j=1;j<=cptcoveff;j++) {      /* We keep the original values on the extreme ages bage, fage and for
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       }         we use a 5 terms etc. until the borders are no more concerned.
       fprintf(ficrespop,"******\n");      */
       fprintf(ficrespop,"# Age");      for (mob=3;mob <=mobilavrange;mob=mob+2){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       if (popforecast==1)  fprintf(ficrespop," [Population]");          for (i=1; i<=nlstate;i++){
                   for (cptcod=1;cptcod<=modcovmax;cptcod++){
       for (cpt=0; cpt<=0;cpt++) {               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                   for (cpt=1;cpt<=(mob-1)/2;cpt++){
                           mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                 }
           nhstepm = nhstepm/hstepm;               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                       }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;        }/* end age */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }/* end mob */
             }else return -1;
           for (h=0; h<=nhstepm; h++){    return 0;
             if (h==(int) (calagedatem+YEARM*cpt)) {  }/* End movingaverage */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }   
             for(j=1; j<=nlstate+ndeath;j++) {  /************** Forecasting ******************/
               kk1=0.;kk2=0;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
               for(i=1; i<=nlstate;i++) {                  /* proj1, year, month, day of starting projection
                 if (mobilav==1)        agemin, agemax range of age
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       dateprev1 dateprev2 range of dates during which prevalence is computed
                 else {       anproj2 year of en of projection (same day and month as proj1).
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    */
                 }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
               }    int *popage;
               if (h==(int)(calagedatem+12*cpt)){    double agec; /* generic age */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
                   /*fprintf(ficrespop," %.3f", kk1);    double *popeffectif,*popcount;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    double ***p3mat;
               }    double ***mobaverage;
             }    char fileresf[FILENAMELENGTH];
             for(i=1; i<=nlstate;i++){  
               kk1=0.;    agelim=AGESUP;
                 for(j=1; j<=nlstate;j++){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    
                 }    strcpy(fileresf,"f");
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];    strcat(fileresf,fileres);
             }    if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    }
           }    printf("Computing forecasting: result on file '%s' \n", fileresf);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         }  
       }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    
   /******/    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){         printf(" Error in movingaverage mobilav=%d\n",mobilav);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       }
           nhstepm = nhstepm/hstepm;     }
             
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    stepsize=(int) (stepm+YEARM-1)/YEARM;
           oldm=oldms;savm=savms;    if (stepm<=12) stepsize=1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if(estepm < stepm){
           for (h=0; h<=nhstepm; h++){      printf ("Problem %d lower than %d\n",estepm, stepm);
             if (h==(int) (calagedatem+YEARM*cpt)) {    }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    else  hstepm=estepm;  
             }   
             for(j=1; j<=nlstate+ndeath;j++) {    hstepm=hstepm/stepm;
               kk1=0.;kk2=0;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
               for(i=1; i<=nlstate;i++) {                                               fractional in yp1 */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        anprojmean=yp;
               }    yp2=modf((yp1*12),&yp);
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);            mprojmean=yp;
             }    yp1=modf((yp2*30.5),&yp);
           }    jprojmean=yp;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(jprojmean==0) jprojmean=1;
         }    if(mprojmean==0) jprojmean=1;
       }  
    }     i1=cptcoveff;
   }    if (cptcovn < 1){i1=1;}
     
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
    
   if (popforecast==1) {    fprintf(ficresf,"#****** Routine prevforecast **\n");
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);  /*            if (h==(int)(YEARM*yearp)){ */
     free_vector(popcount,0,AGESUP);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   }      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        k=k+1;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficresf,"\n#******");
   fclose(ficrespop);        for(j=1;j<=cptcoveff;j++) {
 } /* End of popforecast */          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
 int fileappend(FILE *fichier, char *optionfich)        fprintf(ficresf,"******\n");
 {        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   if((fichier=fopen(optionfich,"a"))==NULL) {        for(j=1; j<=nlstate+ndeath;j++){
     printf("Problem with file: %s\n", optionfich);          for(i=1; i<=nlstate;i++)              
     fprintf(ficlog,"Problem with file: %s\n", optionfich);            fprintf(ficresf," p%d%d",i,j);
     return (0);          fprintf(ficresf," p.%d",j);
   }        }
   fflush(fichier);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
   return (1);          fprintf(ficresf,"\n");
 }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   
           for (agec=fage; agec>=(ageminpar-1); agec--){
 /**************** function prwizard **********************/            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)            nhstepm = nhstepm/hstepm;
 {            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
   /* Wizard to print covariance matrix template */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
          
   char ca[32], cb[32], cc[32];            for (h=0; h<=nhstepm; h++){
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;              if (h*hstepm/YEARM*stepm ==yearp) {
   int numlinepar;                fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++)
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   for(i=1; i <=nlstate; i++){              }
     jj=0;              for(j=1; j<=nlstate+ndeath;j++) {
     for(j=1; j <=nlstate+ndeath; j++){                ppij=0.;
       if(j==i) continue;                for(i=1; i<=nlstate;i++) {
       jj++;                  if (mobilav==1)
       /*ca[0]= k+'a'-1;ca[1]='\0';*/                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       printf("%1d%1d",i,j);                  else {
       fprintf(ficparo,"%1d%1d",i,j);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
       for(k=1; k<=ncovmodel;k++){                  }
         /*        printf(" %lf",param[i][j][k]); */                  if (h*hstepm/YEARM*stepm== yearp) {
         /*        fprintf(ficparo," %lf",param[i][j][k]); */                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
         printf(" 0.");                  }
         fprintf(ficparo," 0.");                } /* end i */
       }                if (h*hstepm/YEARM*stepm==yearp) {
       printf("\n");                  fprintf(ficresf," %.3f", ppij);
       fprintf(ficparo,"\n");                }
     }              }/* end j */
   }            } /* end h */
   printf("# Scales (for hessian or gradient estimation)\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");          } /* end agec */
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/         } /* end yearp */
   for(i=1; i <=nlstate; i++){      } /* end cptcod */
     jj=0;    } /* end  cptcov */
     for(j=1; j <=nlstate+ndeath; j++){         
       if(j==i) continue;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       jj++;  
       fprintf(ficparo,"%1d%1d",i,j);    fclose(ficresf);
       printf("%1d%1d",i,j);  }
       fflush(stdout);  
       for(k=1; k<=ncovmodel;k++){  /************** Forecasting *****not tested NB*************/
         /*      printf(" %le",delti3[i][j][k]); */  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */   
         printf(" 0.");    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
         fprintf(ficparo," 0.");    int *popage;
       }    double calagedatem, agelim, kk1, kk2;
       numlinepar++;    double *popeffectif,*popcount;
       printf("\n");    double ***p3mat,***tabpop,***tabpopprev;
       fprintf(ficparo,"\n");    double ***mobaverage;
     }    char filerespop[FILENAMELENGTH];
   }  
   printf("# Covariance matrix\n");    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /* # 121 Var(a12)\n\ */    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /* # 122 Cov(b12,a12) Var(b12)\n\ */    agelim=AGESUP;
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */   
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */   
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */   
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    strcpy(filerespop,"pop");
   fflush(stdout);    strcat(filerespop,fileres);
   fprintf(ficparo,"# Covariance matrix\n");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   /* # 121 Var(a12)\n\ */      printf("Problem with forecast resultfile: %s\n", filerespop);
   /* # 122 Cov(b12,a12) Var(b12)\n\ */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   /* #   ...\n\ */    }
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */    printf("Computing forecasting: result on file '%s' \n", filerespop);
       fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   for(itimes=1;itimes<=2;itimes++){  
     jj=0;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     for(i=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){    if (mobilav!=0) {
         if(j==i) continue;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for(k=1; k<=ncovmodel;k++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           jj++;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           ca[0]= k+'a'-1;ca[1]='\0';        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           if(itimes==1){      }
             printf("#%1d%1d%d",i,j,k);    }
             fprintf(ficparo,"#%1d%1d%d",i,j,k);  
           }else{    stepsize=(int) (stepm+YEARM-1)/YEARM;
             printf("%1d%1d%d",i,j,k);    if (stepm<=12) stepsize=1;
             fprintf(ficparo,"%1d%1d%d",i,j,k);   
             /*  printf(" %.5le",matcov[i][j]); */    agelim=AGESUP;
           }   
           ll=0;    hstepm=1;
           for(li=1;li <=nlstate; li++){    hstepm=hstepm/stepm;
             for(lj=1;lj <=nlstate+ndeath; lj++){   
               if(lj==li) continue;    if (popforecast==1) {
               for(lk=1;lk<=ncovmodel;lk++){      if((ficpop=fopen(popfile,"r"))==NULL) {
                 ll++;        printf("Problem with population file : %s\n",popfile);exit(0);
                 if(ll<=jj){        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
                   cb[0]= lk +'a'-1;cb[1]='\0';      }
                   if(ll<jj){      popage=ivector(0,AGESUP);
                     if(itimes==1){      popeffectif=vector(0,AGESUP);
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      popcount=vector(0,AGESUP);
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);     
                     }else{      i=1;  
                       printf(" 0.");      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
                       fprintf(ficparo," 0.");     
                     }      imx=i;
                   }else{      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
                     if(itimes==1){    }
                       printf(" Var(%s%1d%1d)",ca,i,j);  
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
                     }else{     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                       printf(" 0.");        k=k+1;
                       fprintf(ficparo," 0.");        fprintf(ficrespop,"\n#******");
                     }        for(j=1;j<=cptcoveff;j++) {
                   }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 }        }
               } /* end lk */        fprintf(ficrespop,"******\n");
             } /* end lj */        fprintf(ficrespop,"# Age");
           } /* end li */        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
           printf("\n");        if (popforecast==1)  fprintf(ficrespop," [Population]");
           fprintf(ficparo,"\n");       
           numlinepar++;        for (cpt=0; cpt<=0;cpt++) {
         } /* end k*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
       } /*end j */         
     } /* end i */          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   } /* end itimes */            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
 } /* end of prwizard */           
 /******************* Gompertz Likelihood ******************************/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 double gompertz(double x[])            oldm=oldms;savm=savms;
 {             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   double A,B,L=0.0,sump=0.,num=0.;         
   int i,n=0; /* n is the size of the sample */            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
   for (i=0;i<=imx-1 ; i++) {                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     sump=sump+weight[i];              }
     /*    sump=sump+1;*/              for(j=1; j<=nlstate+ndeath;j++) {
     num=num+1;                kk1=0.;kk2=0;
   }                for(i=1; i<=nlstate;i++) {              
                    if (mobilav==1)
                      kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   /* for (i=0; i<=imx; i++)                   else {
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
   for (i=1;i<=imx ; i++)                }
     {                if (h==(int)(calagedatem+12*cpt)){
       if (cens[i] == 1 && wav[i]>1)                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));                    /*fprintf(ficrespop," %.3f", kk1);
                             if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
       if (cens[i] == 0 && wav[i]>1)                }
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))              }
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);                for(i=1; i<=nlstate;i++){
                       kk1=0.;
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */                  for(j=1; j<=nlstate;j++){
       if (wav[i] > 1 ) { /* ??? */                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
         L=L+A*weight[i];                  }
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
       }              }
     }  
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
              }
   return -2*L*num/sump;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }          }
         }
 /******************* Printing html file ***********/   
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \    /******/
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,  double p[],double **matcov,double agemortsup){        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
   int i,k;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);            nhstepm = nhstepm/hstepm;
   for (i=1;i<=2;i++)            
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");            oldm=oldms;savm=savms;
   fprintf(fichtm,"</ul>");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");              if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");              }
               for(j=1; j<=nlstate+ndeath;j++) {
  for (k=agegomp;k<(agemortsup-2);k++)                 kk1=0.;kk2=0;
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);                for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                  }
   fflush(fichtm);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
 }              }
             }
 /******************* Gnuplot file **************/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          }
         }
   char dirfileres[132],optfileres[132];     }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    }
   int ng;   
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
   /*#ifdef windows */    if (popforecast==1) {
   fprintf(ficgp,"cd \"%s\" \n",pathc);      free_ivector(popage,0,AGESUP);
     /*#endif */      free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
   strcpy(dirfileres,optionfilefiname);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(optfileres,"vpl");    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficgp,"set out \"graphmort.png\"\n ");     fclose(ficrespop);
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");   } /* End of popforecast */
   fprintf(ficgp, "set ter png small\n set log y\n");   
   fprintf(ficgp, "set size 0.65,0.65\n");  int fileappend(FILE *fichier, char *optionfich)
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);  {
     if((fichier=fopen(optionfich,"a"))==NULL) {
 }       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
 /***********************************************/    return (1);
 /**************** Main Program *****************/  }
 /***********************************************/  
   
 int main(int argc, char *argv[])  /**************** function prwizard **********************/
 {  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  {
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;  
   int linei, month, year,iout;    /* Wizard to print covariance matrix template */
   int jj, ll, li, lj, lk, imk;  
   int numlinepar=0; /* Current linenumber of parameter file */    char ca[32], cb[32], cc[32];
   int itimes;    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   int NDIM=2;    int numlinepar;
   
   char ca[32], cb[32], cc[32];    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   char dummy[]="                         ";    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   /*  FILE *fichtm; *//* Html File */    for(i=1; i <=nlstate; i++){
   /* FILE *ficgp;*/ /*Gnuplot File */      jj=0;
   struct stat info;      for(j=1; j <=nlstate+ndeath; j++){
   double agedeb, agefin,hf;        if(j==i) continue;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
   double fret;        printf("%1d%1d",i,j);
   double **xi,tmp,delta;        fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
   double dum; /* Dummy variable */          /*        printf(" %lf",param[i][j][k]); */
   double ***p3mat;          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   double ***mobaverage;          printf(" 0.");
   int *indx;          fprintf(ficparo," 0.");
   char line[MAXLINE], linepar[MAXLINE];        }
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];        printf("\n");
   char pathr[MAXLINE], pathimach[MAXLINE];         fprintf(ficparo,"\n");
   char **bp, *tok, *val; /* pathtot */      }
   int firstobs=1, lastobs=10;    }
   int sdeb, sfin; /* Status at beginning and end */    printf("# Scales (for hessian or gradient estimation)\n");
   int c,  h , cpt,l;    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   int ju,jl, mi;    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    for(i=1; i <=nlstate; i++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;       jj=0;
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */      for(j=1; j <=nlstate+ndeath; j++){
   int mobilav=0,popforecast=0;        if(j==i) continue;
   int hstepm, nhstepm;        jj++;
   int agemortsup;        fprintf(ficparo,"%1d%1d",i,j);
   float  sumlpop=0.;        printf("%1d%1d",i,j);
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;        fflush(stdout);
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;        for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
   double bage, fage, age, agelim, agebase;          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   double ftolpl=FTOL;          printf(" 0.");
   double **prlim;          fprintf(ficparo," 0.");
   double *severity;        }
   double ***param; /* Matrix of parameters */        numlinepar++;
   double  *p;        printf("\n");
   double **matcov; /* Matrix of covariance */        fprintf(ficparo,"\n");
   double ***delti3; /* Scale */      }
   double *delti; /* Scale */    }
   double ***eij, ***vareij;    printf("# Covariance matrix\n");
   double **varpl; /* Variances of prevalence limits by age */  /* # 121 Var(a12)\n\ */
   double *epj, vepp;  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   double kk1, kk2;  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   double **ximort;  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   char *alph[]={"a","a","b","c","d","e"}, str[4];  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   int *dcwave;  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   char z[1]="c", occ;    fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    /* # 121 Var(a12)\n\ */
   char strstart[80], *strt, strtend[80];    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   char *stratrunc;    /* #   ...\n\ */
   int lstra;    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
    
   long total_usecs;    for(itimes=1;itimes<=2;itimes++){
        jj=0;
 /*   setlocale (LC_ALL, ""); */      for(i=1; i <=nlstate; i++){
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */        for(j=1; j <=nlstate+ndeath; j++){
 /*   textdomain (PACKAGE); */          if(j==i) continue;
 /*   setlocale (LC_CTYPE, ""); */          for(k=1; k<=ncovmodel;k++){
 /*   setlocale (LC_MESSAGES, ""); */            jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            if(itimes==1){
   (void) gettimeofday(&start_time,&tzp);              printf("#%1d%1d%d",i,j,k);
   curr_time=start_time;              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   tm = *localtime(&start_time.tv_sec);            }else{
   tmg = *gmtime(&start_time.tv_sec);              printf("%1d%1d%d",i,j,k);
   strcpy(strstart,asctime(&tm));              fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
 /*  printf("Localtime (at start)=%s",strstart); */            }
 /*  tp.tv_sec = tp.tv_sec +86400; */            ll=0;
 /*  tm = *localtime(&start_time.tv_sec); */            for(li=1;li <=nlstate; li++){
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */              for(lj=1;lj <=nlstate+ndeath; lj++){
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */                if(lj==li) continue;
 /*   tmg.tm_hour=tmg.tm_hour + 1; */                for(lk=1;lk<=ncovmodel;lk++){
 /*   tp.tv_sec = mktime(&tmg); */                  ll++;
 /*   strt=asctime(&tmg); */                  if(ll<=jj){
 /*   printf("Time(after) =%s",strstart);  */                    cb[0]= lk +'a'-1;cb[1]='\0';
 /*  (void) time (&time_value);                    if(ll<jj){
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);                      if(itimes==1){
 *  tm = *localtime(&time_value);                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 *  strstart=asctime(&tm);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);                       }else{
 */                        printf(" 0.");
                         fprintf(ficparo," 0.");
   nberr=0; /* Number of errors and warnings */                      }
   nbwarn=0;                    }else{
   getcwd(pathcd, size);                      if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
   printf("\n%s\n%s",version,fullversion);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   if(argc <=1){                      }else{
     printf("\nEnter the parameter file name: ");                        printf(" 0.");
     fgets(pathr,FILENAMELENGTH,stdin);                        fprintf(ficparo," 0.");
     i=strlen(pathr);                      }
     if(pathr[i-1]=='\n')                    }
       pathr[i-1]='\0';                  }
    for (tok = pathr; tok != NULL; ){                } /* end lk */
       printf("Pathr |%s|\n",pathr);              } /* end lj */
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');            } /* end li */
       printf("val= |%s| pathr=%s\n",val,pathr);            printf("\n");
       strcpy (pathtot, val);            fprintf(ficparo,"\n");
       if(pathr[0] == '\0') break; /* Un peu sale */            numlinepar++;
     }          } /* end k*/
   }        } /*end j */
   else{      } /* end i */
     strcpy(pathtot,argv[1]);    } /* end itimes */
   }  
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/  } /* end of prwizard */
   /*cygwin_split_path(pathtot,path,optionfile);  /******************* Gompertz Likelihood ******************************/
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  double gompertz(double x[])
   /* cutv(path,optionfile,pathtot,'\\');*/  {
     double A,B,L=0.0,sump=0.,num=0.;
   /* Split argv[0], imach program to get pathimach */    int i,n=0; /* n is the size of the sample */
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);  
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    for (i=0;i<=imx-1 ; i++) {
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);      sump=sump+weight[i];
  /*   strcpy(pathimach,argv[0]); */      /*    sump=sump+1;*/
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */      num=num+1;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    }
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);   
   chdir(path);   
   strcpy(command,"mkdir ");    /* for (i=0; i<=imx; i++)
   strcat(command,optionfilefiname);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   if((outcmd=system(command)) != 0){  
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);    for (i=1;i<=imx ; i++)
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */      {
     /* fclose(ficlog); */        if (cens[i] == 1 && wav[i]>1)
 /*     exit(1); */          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
   }       
 /*   if((imk=mkdir(optionfilefiname))<0){ */        if (cens[i] == 0 && wav[i]>1)
 /*     perror("mkdir"); */          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 /*   } */               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
        
   /*-------- arguments in the command line --------*/        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
   /* Log file */          L=L+A*weight[i];
   strcat(filelog, optionfilefiname);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   strcat(filelog,".log");    /* */        }
   if((ficlog=fopen(filelog,"w"))==NULL)    {      }
     printf("Problem with logfile %s\n",filelog);  
     goto end;   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   }   
   fprintf(ficlog,"Log filename:%s\n",filelog);    return -2*L*num/sump;
   fprintf(ficlog,"\n%s\n%s",version,fullversion);  }
   fprintf(ficlog,"\nEnter the parameter file name: \n");  
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\  /******************* Printing html file ***********/
  path=%s \n\  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
  optionfile=%s\n\                    int lastpass, int stepm, int weightopt, char model[],\
  optionfilext=%s\n\                    int imx,  double p[],double **matcov,double agemortsup){
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);    int i,k;
   
   printf("Local time (at start):%s",strstart);    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   fprintf(ficlog,"Local time (at start): %s",strstart);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   fflush(ficlog);    for (i=1;i<=2;i++)
 /*   (void) gettimeofday(&curr_time,&tzp); */      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   /* */  
   strcpy(fileres,"r");  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
   /*---------arguments file --------*/   for (k=agegomp;k<(agemortsup-2);k++)
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);   
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    fflush(fichtm);
     fflush(ficlog);  }
     goto end;  
   }  /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   strcpy(filereso,"o");    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   strcat(filereso,fileres);    int ng;
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */  
     printf("Problem with Output resultfile: %s\n", filereso);  
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    /*#ifdef windows */
     fflush(ficlog);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     goto end;      /*#endif */
   }  
   
   /* Reads comments: lines beginning with '#' */    strcpy(dirfileres,optionfilefiname);
   numlinepar=0;    strcpy(optfileres,"vpl");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficgp,"set out \"graphmort.png\"\n ");
     ungetc(c,ficpar);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
     fgets(line, MAXLINE, ficpar);    fprintf(ficgp, "set ter png small\n set log y\n");
     numlinepar++;    fprintf(ficgp, "set size 0.65,0.65\n");
     puts(line);    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
     fputs(line,ficparo);  
     fputs(line,ficlog);  }
   }  
   ungetc(c,ficpar);  
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   numlinepar++;  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  /***********************************************/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  /**************** Main Program *****************/
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  /***********************************************/
   fflush(ficlog);  
   while((c=getc(ficpar))=='#' && c!= EOF){  int main(int argc, char *argv[])
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     numlinepar++;    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     puts(line);    int linei, month, year,iout;
     fputs(line,ficparo);    int jj, ll, li, lj, lk, imk;
     fputs(line,ficlog);    int numlinepar=0; /* Current linenumber of parameter file */
   }    int itimes;
   ungetc(c,ficpar);    int NDIM=2;
   
        char ca[32], cb[32], cc[32];
   covar=matrix(0,NCOVMAX,1,n);     char dummy[]="                         ";
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    /*  FILE *fichtm; *//* Html File */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */    double agedeb, agefin,hf;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/  
     double fret;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double **xi,tmp,delta;
   delti=delti3[1][1];  
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    double dum; /* Dummy variable */
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    double ***p3mat;
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    double ***mobaverage;
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    int *indx;
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    char line[MAXLINE], linepar[MAXLINE];
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     fclose (ficparo);    char pathr[MAXLINE], pathimach[MAXLINE];
     fclose (ficlog);    char **bp, *tok, *val; /* pathtot */
     exit(0);    int firstobs=1, lastobs=10;
   }    int sdeb, sfin; /* Status at beginning and end */
   else if(mle==-3) {    int c,  h , cpt,l;
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    int ju,jl, mi;
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     matcov=matrix(1,npar,1,npar);    int mobilav=0,popforecast=0;
   }    int hstepm, nhstepm;
   else{    int agemortsup;
     /* Read guess parameters */    float  sumlpop=0.;
     /* Reads comments: lines beginning with '#' */    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     while((c=getc(ficpar))=='#' && c!= EOF){    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);    double bage, fage, age, agelim, agebase;
       numlinepar++;    double ftolpl=FTOL;
       puts(line);    double **prlim;
       fputs(line,ficparo);    double *severity;
       fputs(line,ficlog);    double ***param; /* Matrix of parameters */
     }    double  *p;
     ungetc(c,ficpar);    double **matcov; /* Matrix of covariance */
         double ***delti3; /* Scale */
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double *delti; /* Scale */
     for(i=1; i <=nlstate; i++){    double ***eij, ***vareij;
       j=0;    double **varpl; /* Variances of prevalence limits by age */
       for(jj=1; jj <=nlstate+ndeath; jj++){    double *epj, vepp;
         if(jj==i) continue;    double kk1, kk2;
         j++;    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
         fscanf(ficpar,"%1d%1d",&i1,&j1);    double **ximort;
         if ((i1 != i) && (j1 != j)){    char *alph[]={"a","a","b","c","d","e"}, str[4];
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    int *dcwave;
           exit(1);  
         }    char z[1]="c", occ;
         fprintf(ficparo,"%1d%1d",i1,j1);  
         if(mle==1)    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
           printf("%1d%1d",i,j);    char  *strt, strtend[80];
         fprintf(ficlog,"%1d%1d",i,j);    char *stratrunc;
         for(k=1; k<=ncovmodel;k++){    int lstra;
           fscanf(ficpar," %lf",&param[i][j][k]);  
           if(mle==1){    long total_usecs;
             printf(" %lf",param[i][j][k]);   
             fprintf(ficlog," %lf",param[i][j][k]);  /*   setlocale (LC_ALL, ""); */
           }  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
           else  /*   textdomain (PACKAGE); */
             fprintf(ficlog," %lf",param[i][j][k]);  /*   setlocale (LC_CTYPE, ""); */
           fprintf(ficparo," %lf",param[i][j][k]);  /*   setlocale (LC_MESSAGES, ""); */
         }  
         fscanf(ficpar,"\n");    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
         numlinepar++;    (void) gettimeofday(&start_time,&tzp);
         if(mle==1)    curr_time=start_time;
           printf("\n");    tm = *localtime(&start_time.tv_sec);
         fprintf(ficlog,"\n");    tmg = *gmtime(&start_time.tv_sec);
         fprintf(ficparo,"\n");    strcpy(strstart,asctime(&tm));
       }  
     }    /*  printf("Localtime (at start)=%s",strstart); */
     fflush(ficlog);  /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
     p=param[1][1];  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
       /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
     /* Reads comments: lines beginning with '#' */  /*   tmg.tm_hour=tmg.tm_hour + 1; */
     while((c=getc(ficpar))=='#' && c!= EOF){  /*   tp.tv_sec = mktime(&tmg); */
       ungetc(c,ficpar);  /*   strt=asctime(&tmg); */
       fgets(line, MAXLINE, ficpar);  /*   printf("Time(after) =%s",strstart);  */
       numlinepar++;  /*  (void) time (&time_value);
       puts(line);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
       fputs(line,ficparo);  *  tm = *localtime(&time_value);
       fputs(line,ficlog);  *  strstart=asctime(&tm);
     }  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
     ungetc(c,ficpar);  */
   
     for(i=1; i <=nlstate; i++){    nberr=0; /* Number of errors and warnings */
       for(j=1; j <=nlstate+ndeath-1; j++){    nbwarn=0;
         fscanf(ficpar,"%1d%1d",&i1,&j1);    getcwd(pathcd, size);
         if ((i1-i)*(j1-j)!=0){  
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    printf("\n%s\n%s",version,fullversion);
           exit(1);    if(argc <=1){
         }      printf("\nEnter the parameter file name: ");
         printf("%1d%1d",i,j);      fgets(pathr,FILENAMELENGTH,stdin);
         fprintf(ficparo,"%1d%1d",i1,j1);      i=strlen(pathr);
         fprintf(ficlog,"%1d%1d",i1,j1);      if(pathr[i-1]=='\n')
         for(k=1; k<=ncovmodel;k++){        pathr[i-1]='\0';
           fscanf(ficpar,"%le",&delti3[i][j][k]);     for (tok = pathr; tok != NULL; ){
           printf(" %le",delti3[i][j][k]);        printf("Pathr |%s|\n",pathr);
           fprintf(ficparo," %le",delti3[i][j][k]);        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
           fprintf(ficlog," %le",delti3[i][j][k]);        printf("val= |%s| pathr=%s\n",val,pathr);
         }        strcpy (pathtot, val);
         fscanf(ficpar,"\n");        if(pathr[0] == '\0') break; /* Dirty */
         numlinepar++;      }
         printf("\n");    }
         fprintf(ficparo,"\n");    else{
         fprintf(ficlog,"\n");      strcpy(pathtot,argv[1]);
       }    }
     }    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     fflush(ficlog);    /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     delti=delti3[1][1];    /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
       split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     /* Reads comments: lines beginning with '#' */    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     while((c=getc(ficpar))=='#' && c!= EOF){   /*   strcpy(pathimach,argv[0]); */
       ungetc(c,ficpar);    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
       fgets(line, MAXLINE, ficpar);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
       numlinepar++;    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
       puts(line);    chdir(path); /* Can be a relative path */
       fputs(line,ficparo);    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       fputs(line,ficlog);      printf("Current directory %s!\n",pathcd);
     }    strcpy(command,"mkdir ");
     ungetc(c,ficpar);    strcat(command,optionfilefiname);
       if((outcmd=system(command)) != 0){
     matcov=matrix(1,npar,1,npar);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
     for(i=1; i <=npar; i++){      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       fscanf(ficpar,"%s",&str);      /* fclose(ficlog); */
       if(mle==1)  /*     exit(1); */
         printf("%s",str);    }
       fprintf(ficlog,"%s",str);  /*   if((imk=mkdir(optionfilefiname))<0){ */
       fprintf(ficparo,"%s",str);  /*     perror("mkdir"); */
       for(j=1; j <=i; j++){  /*   } */
         fscanf(ficpar," %le",&matcov[i][j]);  
         if(mle==1){    /*-------- arguments in the command line --------*/
           printf(" %.5le",matcov[i][j]);  
         }    /* Log file */
         fprintf(ficlog," %.5le",matcov[i][j]);    strcat(filelog, optionfilefiname);
         fprintf(ficparo," %.5le",matcov[i][j]);    strcat(filelog,".log");    /* */
       }    if((ficlog=fopen(filelog,"w"))==NULL)    {
       fscanf(ficpar,"\n");      printf("Problem with logfile %s\n",filelog);
       numlinepar++;      goto end;
       if(mle==1)    }
         printf("\n");    fprintf(ficlog,"Log filename:%s\n",filelog);
       fprintf(ficlog,"\n");    fprintf(ficlog,"\n%s\n%s",version,fullversion);
       fprintf(ficparo,"\n");    fprintf(ficlog,"\nEnter the parameter file name: \n");
     }    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
     for(i=1; i <=npar; i++)   path=%s \n\
       for(j=i+1;j<=npar;j++)   optionfile=%s\n\
         matcov[i][j]=matcov[j][i];   optionfilext=%s\n\
        optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     if(mle==1)  
       printf("\n");    printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"\n");    fprintf(ficlog,"Local time (at start): %s",strstart);
         fflush(ficlog);
     fflush(ficlog);  /*   (void) gettimeofday(&curr_time,&tzp); */
       /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
     /*-------- Rewriting parameter file ----------*/  
     strcpy(rfileres,"r");    /* "Rparameterfile */    /* */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    strcpy(fileres,"r");
     strcat(rfileres,".");    /* */    strcat(fileres, optionfilefiname);
     strcat(rfileres,optionfilext);    /* Other files have txt extension */    strcat(fileres,".txt");    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    /*---------arguments file --------*/
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;  
     }    if((ficpar=fopen(optionfile,"r"))==NULL)    {
     fprintf(ficres,"#%s\n",version);      printf("Problem with optionfile %s\n",optionfile);
   }    /* End of mle != -3 */      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
   /*-------- data file ----------*/      goto end;
   if((fic=fopen(datafile,"r"))==NULL)    {    }
     printf("Problem with datafile: %s\n", datafile);goto end;  
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;  
   }  
     strcpy(filereso,"o");
   n= lastobs;    strcat(filereso,fileres);
   severity = vector(1,maxwav);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   outcome=imatrix(1,maxwav+1,1,n);      printf("Problem with Output resultfile: %s\n", filereso);
   num=lvector(1,n);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   moisnais=vector(1,n);      fflush(ficlog);
   annais=vector(1,n);      goto end;
   moisdc=vector(1,n);    }
   andc=vector(1,n);  
   agedc=vector(1,n);    /* Reads comments: lines beginning with '#' */
   cod=ivector(1,n);    numlinepar=0;
   weight=vector(1,n);    while((c=getc(ficpar))=='#' && c!= EOF){
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      ungetc(c,ficpar);
   mint=matrix(1,maxwav,1,n);      fgets(line, MAXLINE, ficpar);
   anint=matrix(1,maxwav,1,n);      numlinepar++;
   s=imatrix(1,maxwav+1,1,n);      puts(line);
   tab=ivector(1,NCOVMAX);      fputs(line,ficparo);
   ncodemax=ivector(1,8);      fputs(line,ficlog);
     }
   i=1;    ungetc(c,ficpar);
   linei=0;  
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     linei=linei+1;    numlinepar++;
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
       if(line[j] == '\t')    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
         line[j] = ' ';    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     }    fflush(ficlog);
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){    while((c=getc(ficpar))=='#' && c!= EOF){
       ;      ungetc(c,ficpar);
     };      fgets(line, MAXLINE, ficpar);
     line[j+1]=0;  /* Trims blanks at end of line */      numlinepar++;
     if(line[0]=='#'){      puts(line);
       fprintf(ficlog,"Comment line\n%s\n",line);      fputs(line,ficparo);
       printf("Comment line\n%s\n",line);      fputs(line,ficlog);
       continue;    }
     }    ungetc(c,ficpar);
   
     for (j=maxwav;j>=1;j--){     
       cutv(stra, strb,line,' ');     covar=matrix(0,NCOVMAX,1,n);
       errno=0;    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
       lval=strtol(strb,&endptr,10);     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/  
       if( strb[0]=='\0' || (*endptr != '\0')){    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
         exit(1);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
       }  
       s[j][i]=lval;    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
           delti=delti3[1][1];
       strcpy(line,stra);    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
       cutv(stra, strb,line,' ');    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       }      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       else  if(iout=sscanf(strb,"%s.") != 0){      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         month=99;      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
         year=9999;      fclose (ficparo);
       }else{      fclose (ficlog);
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);      goto end;
         exit(1);      exit(0);
       }    }
       anint[j][i]= (double) year;     else if(mle==-3) {
       mint[j][i]= (double)month;       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       strcpy(line,stra);      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     } /* ENd Waves */      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
           param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     cutv(stra, strb,line,' ');       matcov=matrix(1,npar,1,npar);
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    }
     }    else{
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){      /* Read guess parameters */
       month=99;      /* Reads comments: lines beginning with '#' */
       year=9999;      while((c=getc(ficpar))=='#' && c!= EOF){
     }else{        ungetc(c,ficpar);
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);        fgets(line, MAXLINE, ficpar);
       exit(1);        numlinepar++;
     }        puts(line);
     andc[i]=(double) year;         fputs(line,ficparo);
     moisdc[i]=(double) month;         fputs(line,ficlog);
     strcpy(line,stra);      }
           ungetc(c,ficpar);
     cutv(stra, strb,line,' ');      
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     }      for(i=1; i <=nlstate; i++){
     else  if(iout=sscanf(strb,"%s.") != 0){        j=0;
       month=99;        for(jj=1; jj <=nlstate+ndeath; jj++){
       year=9999;          if(jj==i) continue;
     }else{          j++;
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);          fscanf(ficpar,"%1d%1d",&i1,&j1);
       exit(1);          if ((i1 != i) && (j1 != j)){
     }            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
     annais[i]=(double)(year);  It might be a problem of design; if ncovcol and the model are correct\n \
     moisnais[i]=(double)(month);   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
     strcpy(line,stra);            exit(1);
               }
     cutv(stra, strb,line,' ');           fprintf(ficparo,"%1d%1d",i1,j1);
     errno=0;          if(mle==1)
     lval=strtol(strb,&endptr,10);             printf("%1d%1d",i,j);
     if( strb[0]=='\0' || (*endptr != '\0')){          fprintf(ficlog,"%1d%1d",i,j);
       printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);          for(k=1; k<=ncovmodel;k++){
       exit(1);            fscanf(ficpar," %lf",&param[i][j][k]);
     }            if(mle==1){
     weight[i]=(double)(lval);               printf(" %lf",param[i][j][k]);
     strcpy(line,stra);              fprintf(ficlog," %lf",param[i][j][k]);
                 }
     for (j=ncovcol;j>=1;j--){            else
       cutv(stra, strb,line,' ');               fprintf(ficlog," %lf",param[i][j][k]);
       errno=0;            fprintf(ficparo," %lf",param[i][j][k]);
       lval=strtol(strb,&endptr,10);           }
       if( strb[0]=='\0' || (*endptr != '\0')){          fscanf(ficpar,"\n");
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);          numlinepar++;
         exit(1);          if(mle==1)
       }            printf("\n");
       if(lval <-1 || lval >1){          fprintf(ficlog,"\n");
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);          fprintf(ficparo,"\n");
         exit(1);        }
       }      }  
       covar[j][i]=(double)(lval);      fflush(ficlog);
       strcpy(line,stra);  
     }       p=param[1][1];
     lstra=strlen(stra);     
           /* Reads comments: lines beginning with '#' */
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */      while((c=getc(ficpar))=='#' && c!= EOF){
       stratrunc = &(stra[lstra-9]);        ungetc(c,ficpar);
       num[i]=atol(stratrunc);        fgets(line, MAXLINE, ficpar);
     }        numlinepar++;
     else        puts(line);
       num[i]=atol(stra);        fputs(line,ficparo);
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        fputs(line,ficlog);
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      }
           ungetc(c,ficpar);
     i=i+1;  
   } /* End loop reading  data */      for(i=1; i <=nlstate; i++){
   fclose(fic);        for(j=1; j <=nlstate+ndeath-1; j++){
   /* printf("ii=%d", ij);          fscanf(ficpar,"%1d%1d",&i1,&j1);
      scanf("%d",i);*/          if ((i1-i)*(j1-j)!=0){
   imx=i-1; /* Number of individuals */            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
   /* for (i=1; i<=imx; i++){          }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          printf("%1d%1d",i,j);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          fprintf(ficparo,"%1d%1d",i1,j1);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          fprintf(ficlog,"%1d%1d",i1,j1);
     }*/          for(k=1; k<=ncovmodel;k++){
    /*  for (i=1; i<=imx; i++){            fscanf(ficpar,"%le",&delti3[i][j][k]);
      if (s[4][i]==9)  s[4][i]=-1;             printf(" %le",delti3[i][j][k]);
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            fprintf(ficparo," %le",delti3[i][j][k]);
               fprintf(ficlog," %le",delti3[i][j][k]);
   /* for (i=1; i<=imx; i++) */          }
            fscanf(ficpar,"\n");
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;          numlinepar++;
      else weight[i]=1;*/          printf("\n");
           fprintf(ficparo,"\n");
   /* Calculation of the number of parameters from char model */          fprintf(ficlog,"\n");
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        }
   Tprod=ivector(1,15);       }
   Tvaraff=ivector(1,15);       fflush(ficlog);
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);            delti=delti3[1][1];
      
   if (strlen(model) >1){ /* If there is at least 1 covariate */  
     j=0, j1=0, k1=1, k2=1;      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     j=nbocc(model,'+'); /* j=Number of '+' */   
     j1=nbocc(model,'*'); /* j1=Number of '*' */      /* Reads comments: lines beginning with '#' */
     cptcovn=j+1;       while((c=getc(ficpar))=='#' && c!= EOF){
     cptcovprod=j1; /*Number of products */        ungetc(c,ficpar);
             fgets(line, MAXLINE, ficpar);
     strcpy(modelsav,model);         numlinepar++;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        puts(line);
       printf("Error. Non available option model=%s ",model);        fputs(line,ficparo);
       fprintf(ficlog,"Error. Non available option model=%s ",model);        fputs(line,ficlog);
       goto end;      }
     }      ungetc(c,ficpar);
        
     /* This loop fills the array Tvar from the string 'model'.*/      matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
     for(i=(j+1); i>=1;i--){        fscanf(ficpar,"%s",&str);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */         if(mle==1)
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */          printf("%s",str);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        fprintf(ficlog,"%s",str);
       /*scanf("%d",i);*/        fprintf(ficparo,"%s",str);
       if (strchr(strb,'*')) {  /* Model includes a product */        for(j=1; j <=i; j++){
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/          fscanf(ficpar," %le",&matcov[i][j]);
         if (strcmp(strc,"age")==0) { /* Vn*age */          if(mle==1){
           cptcovprod--;            printf(" %.5le",matcov[i][j]);
           cutv(strb,stre,strd,'V');          }
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/          fprintf(ficlog," %.5le",matcov[i][j]);
           cptcovage++;          fprintf(ficparo," %.5le",matcov[i][j]);
             Tage[cptcovage]=i;        }
             /*printf("stre=%s ", stre);*/        fscanf(ficpar,"\n");
         }        numlinepar++;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        if(mle==1)
           cptcovprod--;          printf("\n");
           cutv(strb,stre,strc,'V');        fprintf(ficlog,"\n");
           Tvar[i]=atoi(stre);        fprintf(ficparo,"\n");
           cptcovage++;      }
           Tage[cptcovage]=i;      for(i=1; i <=npar; i++)
         }        for(j=i+1;j<=npar;j++)
         else {  /* Age is not in the model */          matcov[i][j]=matcov[j][i];
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/     
           Tvar[i]=ncovcol+k1;      if(mle==1)
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */        printf("\n");
           Tprod[k1]=i;      fprintf(ficlog,"\n");
           Tvard[k1][1]=atoi(strc); /* m*/     
           Tvard[k1][2]=atoi(stre); /* n */      fflush(ficlog);
           Tvar[cptcovn+k2]=Tvard[k1][1];     
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       /*-------- Rewriting parameter file ----------*/
           for (k=1; k<=lastobs;k++)       strcpy(rfileres,"r");    /* "Rparameterfile */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
           k1++;      strcat(rfileres,".");    /* */
           k2=k2+2;      strcat(rfileres,optionfilext);    /* Other files have txt extension */
         }      if((ficres =fopen(rfileres,"w"))==NULL) {
       }        printf("Problem writing new parameter file: %s\n", fileres);goto end;
       else { /* no more sum */        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      }
        /*  scanf("%d",i);*/      fprintf(ficres,"#%s\n",version);
       cutv(strd,strc,strb,'V');    }    /* End of mle != -3 */
       Tvar[i]=atoi(strc);  
       }    /*-------- data file ----------*/
       strcpy(modelsav,stra);      if((fic=fopen(datafile,"r"))==NULL)    {
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      printf("Problem while opening datafile: %s\n", datafile);goto end;
         scanf("%d",i);*/      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     } /* end of loop + */    }
   } /* end model */  
       n= lastobs;
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    severity = vector(1,maxwav);
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/    outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    moisnais=vector(1,n);
   printf("cptcovprod=%d ", cptcovprod);    annais=vector(1,n);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    moisdc=vector(1,n);
     andc=vector(1,n);
   scanf("%d ",i);*/    agedc=vector(1,n);
     cod=ivector(1,n);
     /*  if(mle==1){*/    weight=vector(1,n);
   if (weightopt != 1) { /* Maximisation without weights*/    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     for(i=1;i<=n;i++) weight[i]=1.0;    mint=matrix(1,maxwav,1,n);
   }    anint=matrix(1,maxwav,1,n);
     /*-calculation of age at interview from date of interview and age at death -*/    s=imatrix(1,maxwav+1,1,n);
   agev=matrix(1,maxwav,1,imx);    tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   for (i=1; i<=imx; i++) {  
     for(m=2; (m<= maxwav); m++) {    i=1;
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){    linei=0;
         anint[m][i]=9999;    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
         s[m][i]=-1;      linei=linei+1;
       }      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){        if(line[j] == '\t')
         nberr++;          line[j] = ' ';
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      }
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         s[m][i]=-1;        ;
       }      };
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){      line[j+1]=0;  /* Trims blanks at end of line */
         nberr++;      if(line[0]=='#'){
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);         fprintf(ficlog,"Comment line\n%s\n",line);
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);         printf("Comment line\n%s\n",line);
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */        continue;
       }      }
     }  
   }      for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' ');
   for (i=1; i<=imx; i++)  {        errno=0;
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        lval=strtol(strb,&endptr,10);
     for(m=firstpass; (m<= lastpass); m++){        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){        if( strb[0]=='\0' || (*endptr != '\0')){
         if (s[m][i] >= nlstate+1) {          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           if(agedc[i]>0)          exit(1);
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)        }
               agev[m][i]=agedc[i];        s[j][i]=lval;
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/       
             else {        strcpy(line,stra);
               if ((int)andc[i]!=9999){        cutv(stra, strb,line,' ');
                 nbwarn++;        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);        }
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);        else  if(iout=sscanf(strb,"%s.") != 0){
                 agev[m][i]=-1;          month=99;
               }          year=9999;
             }        }else{
         }          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
         else if(s[m][i] !=9){ /* Standard case, age in fractional          exit(1);
                                  years but with the precision of a month */        }
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        anint[j][i]= (double) year;
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)        mint[j][i]= (double)month;
             agev[m][i]=1;        strcpy(line,stra);
           else if(agev[m][i] <agemin){       } /* ENd Waves */
             agemin=agev[m][i];     
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      cutv(stra, strb,line,' ');
           }      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
           else if(agev[m][i] >agemax){      }
             agemax=agev[m][i];      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        month=99;
           }        year=9999;
           /*agev[m][i]=anint[m][i]-annais[i];*/      }else{
           /*     agev[m][i] = age[i]+2*m;*/        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         }        exit(1);
         else { /* =9 */      }
           agev[m][i]=1;      andc[i]=(double) year;
           s[m][i]=-1;      moisdc[i]=(double) month;
         }      strcpy(line,stra);
       }     
       else /*= 0 Unknown */      cutv(stra, strb,line,' ');
         agev[m][i]=1;      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     }      }
           else  if(iout=sscanf(strb,"%s.") != 0){
   }        month=99;
   for (i=1; i<=imx; i++)  {        year=9999;
     for(m=firstpass; (m<=lastpass); m++){      }else{
       if (s[m][i] > (nlstate+ndeath)) {        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         nberr++;        exit(1);
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           }
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           annais[i]=(double)(year);
         goto end;      moisnais[i]=(double)(month);
       }      strcpy(line,stra);
     }     
   }      cutv(stra, strb,line,' ');
       errno=0;
   /*for (i=1; i<=imx; i++){      dval=strtod(strb,&endptr);
   for (m=firstpass; (m<lastpass); m++){      if( strb[0]=='\0' || (*endptr != '\0')){
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
 }        exit(1);
       }
 }*/      weight[i]=dval;
       strcpy(line,stra);
      
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      for (j=ncovcol;j>=1;j--){
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         cutv(stra, strb,line,' ');
         errno=0;
   agegomp=(int)agemin;        lval=strtol(strb,&endptr,10);
   free_vector(severity,1,maxwav);        if( strb[0]=='\0' || (*endptr != '\0')){
   free_imatrix(outcome,1,maxwav+1,1,n);          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
   free_vector(moisnais,1,n);          exit(1);
   free_vector(annais,1,n);        }
   /* free_matrix(mint,1,maxwav,1,n);        if(lval <-1 || lval >1){
      free_matrix(anint,1,maxwav,1,n);*/          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
   free_vector(moisdc,1,n);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
   free_vector(andc,1,n);   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
       build V1=0 V2=0 for the reference value (1),\n \
   wav=ivector(1,imx);          V1=1 V2=0 for (2) \n \
   dh=imatrix(1,lastpass-firstpass+1,1,imx);   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
   bh=imatrix(1,lastpass-firstpass+1,1,imx);   output of IMaCh is often meaningless.\n \
   mw=imatrix(1,lastpass-firstpass+1,1,imx);   Exiting.\n",lval,linei, i,line,j);
              exit(1);
   /* Concatenates waves */        }
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        covar[j][i]=(double)(lval);
         strcpy(line,stra);
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */      }
       lstra=strlen(stra);
   Tcode=ivector(1,100);     
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
   ncodemax[1]=1;        stratrunc = &(stra[lstra-9]);
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);        num[i]=atol(stratrunc);
             }
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of       else
                                  the estimations*/        num[i]=atol(stra);
   h=0;      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
   m=pow(2,cptcoveff);        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
   for(k=1;k<=cptcoveff; k++){      i=i+1;
     for(i=1; i <=(m/pow(2,k));i++){    } /* End loop reading  data */
       for(j=1; j <= ncodemax[k]; j++){    fclose(fic);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    /* printf("ii=%d", ij);
           h++;       scanf("%d",i);*/
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    imx=i-1; /* Number of individuals */
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
         }     /* for (i=1; i<=imx; i++){
       }      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
     }      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
   }       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       }*/
      codtab[1][2]=1;codtab[2][2]=2; */     /*  for (i=1; i<=imx; i++){
   /* for(i=1; i <=m ;i++){        if (s[4][i]==9)  s[4][i]=-1;
      for(k=1; k <=cptcovn; k++){       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);   
      }    /* for (i=1; i<=imx; i++) */
      printf("\n");   
      }     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
      scanf("%d",i);*/       else weight[i]=1;*/
       
   /*------------ gnuplot -------------*/    /* Calculation of the number of parameters from char model */
   strcpy(optionfilegnuplot,optionfilefiname);    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
   if(mle==-3)    Tprod=ivector(1,15);
     strcat(optionfilegnuplot,"-mort");    Tvaraff=ivector(1,15);
   strcat(optionfilegnuplot,".gp");    Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {     
     printf("Problem with file %s",optionfilegnuplot);    if (strlen(model) >1){ /* If there is at least 1 covariate */
   }      j=0, j1=0, k1=1, k2=1;
   else{      j=nbocc(model,'+'); /* j=Number of '+' */
     fprintf(ficgp,"\n# %s\n", version);       j1=nbocc(model,'*'); /* j1=Number of '*' */
     fprintf(ficgp,"# %s\n", optionfilegnuplot);       cptcovn=j+1;
     fprintf(ficgp,"set missing 'NaNq'\n");      cptcovprod=j1; /*Number of products */
   }     
   /*  fclose(ficgp);*/      strcpy(modelsav,model);
   /*--------- index.htm --------*/      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */        fprintf(ficlog,"Error. Non available option model=%s ",model);
   if(mle==-3)        goto end;
     strcat(optionfilehtm,"-mort");      }
   strcat(optionfilehtm,".htm");     
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      /* This loop fills the array Tvar from the string 'model'.*/
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }      for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
   strcat(optionfilehtmcov,"-cov.htm");        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {        /*scanf("%d",i);*/
     printf("Problem with %s \n",optionfilehtmcov), exit(0);        if (strchr(strb,'*')) {  /* Model includes a product */
   }          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
   else{          if (strcmp(strc,"age")==0) { /* Vn*age */
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \            cptcovprod--;
 <hr size=\"2\" color=\"#EC5E5E\"> \n\            cutv(strb,stre,strd,'V');
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);            cptcovage++;
   }              Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \          }
 <hr size=\"2\" color=\"#EC5E5E\"> \n\          else if (strcmp(strd,"age")==0) { /* or age*Vn */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\            cptcovprod--;
 \n\            cutv(strb,stre,strc,'V');
 <hr  size=\"2\" color=\"#EC5E5E\">\            Tvar[i]=atoi(stre);
  <ul><li><h4>Parameter files</h4>\n\            cptcovage++;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\            Tage[cptcovage]=i;
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\          }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\          else {  /* Age is not in the model */
  - Date and time at start: %s</ul>\n",\            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\            Tvar[i]=ncovcol+k1;
           fileres,fileres,\            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);            Tprod[k1]=i;
   fflush(fichtm);            Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
   strcpy(pathr,path);            Tvar[cptcovn+k2]=Tvard[k1][1];
   strcat(pathr,optionfilefiname);            Tvar[cptcovn+k2+1]=Tvard[k1][2];
   chdir(optionfilefiname); /* Move to directory named optionfile */            for (k=1; k<=lastobs;k++)
                 covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
   /* Calculates basic frequencies. Computes observed prevalence at single age            k1++;
      and prints on file fileres'p'. */            k2=k2+2;
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);          }
         }
   fprintf(fichtm,"\n");        else { /* no more sum */
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\         /*  scanf("%d",i);*/
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\        cutv(strd,strc,strb,'V');
           imx,agemin,agemax,jmin,jmax,jmean);        Tvar[i]=atoi(strc);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        strcpy(modelsav,stra);  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          scanf("%d",i);*/
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      } /* end of loop + */
         } /* end model */
       
   /* For Powell, parameters are in a vector p[] starting at p[1]    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/    printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   if (mle==-3){  
     ximort=matrix(1,NDIM,1,NDIM);    scanf("%d ",i);*/
     cens=ivector(1,n);  
     ageexmed=vector(1,n);      /*  if(mle==1){*/
     agecens=vector(1,n);    if (weightopt != 1) { /* Maximisation without weights*/
     dcwave=ivector(1,n);      for(i=1;i<=n;i++) weight[i]=1.0;
      }
     for (i=1; i<=imx; i++){      /*-calculation of age at interview from date of interview and age at death -*/
       dcwave[i]=-1;    agev=matrix(1,maxwav,1,imx);
       for (m=firstpass; m<=lastpass; m++)  
         if (s[m][i]>nlstate) {    for (i=1; i<=imx; i++) {
           dcwave[i]=m;      for(m=2; (m<= maxwav); m++) {
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           break;          anint[m][i]=9999;
         }          s[m][i]=-1;
     }        }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
     for (i=1; i<=imx; i++) {          nberr++;
       if (wav[i]>0){          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
         ageexmed[i]=agev[mw[1][i]][i];          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
         j=wav[i];          s[m][i]=-1;
         agecens[i]=1.;         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
         if (ageexmed[i]> 1 && wav[i] > 0){          nberr++;
           agecens[i]=agev[mw[j][i]][i];          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
           cens[i]= 1;          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
         }else if (ageexmed[i]< 1)           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
           cens[i]= -1;        }
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)      }
           cens[i]=0 ;    }
       }  
       else cens[i]=-1;    for (i=1; i<=imx; i++)  {
     }      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
           for(m=firstpass; (m<= lastpass); m++){
     for (i=1;i<=NDIM;i++) {        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
       for (j=1;j<=NDIM;j++)          if (s[m][i] >= nlstate+1) {
         ximort[i][j]=(i == j ? 1.0 : 0.0);            if(agedc[i]>0)
     }              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                     agev[m][i]=agedc[i];
     p[1]=0.0268; p[NDIM]=0.083;            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
     /*printf("%lf %lf", p[1], p[2]);*/              else {
                     if ((int)andc[i]!=9999){
                       nbwarn++;
     printf("Powell\n");  fprintf(ficlog,"Powell\n");                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
     strcpy(filerespow,"pow-mort");                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
     strcat(filerespow,fileres);                  agev[m][i]=-1;
     if((ficrespow=fopen(filerespow,"w"))==NULL) {                }
       printf("Problem with resultfile: %s\n", filerespow);              }
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);          }
     }          else if(s[m][i] !=9){ /* Standard case, age in fractional
     fprintf(ficrespow,"# Powell\n# iter -2*LL");                                   years but with the precision of a month */
     /*  for (i=1;i<=nlstate;i++)            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
         for(j=1;j<=nlstate+ndeath;j++)            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);              agev[m][i]=1;
     */            else if(agev[m][i] <agemin){
     fprintf(ficrespow,"\n");              agemin=agev[m][i];
                   /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);            }
     fclose(ficrespow);            else if(agev[m][i] >agemax){
                   agemax=agev[m][i];
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
     for(i=1; i <=NDIM; i++)            /*agev[m][i]=anint[m][i]-annais[i];*/
       for(j=i+1;j<=NDIM;j++)            /*     agev[m][i] = age[i]+2*m;*/
         matcov[i][j]=matcov[j][i];          }
               else { /* =9 */
     printf("\nCovariance matrix\n ");            agev[m][i]=1;
     for(i=1; i <=NDIM; i++) {            s[m][i]=-1;
       for(j=1;j<=NDIM;j++){           }
         printf("%f ",matcov[i][j]);        }
       }        else /*= 0 Unknown */
       printf("\n ");          agev[m][i]=1;
     }      }
          
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);    }
     for (i=1;i<=NDIM;i++)     for (i=1; i<=imx; i++)  {
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));      for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
     lsurv=vector(1,AGESUP);          nberr++;
     lpop=vector(1,AGESUP);          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     tpop=vector(1,AGESUP);          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     lsurv[agegomp]=100000;          goto end;
             }
     for (k=agegomp;k<=AGESUP;k++) {      }
       agemortsup=k;    }
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;  
     }    /*for (i=1; i<=imx; i++){
         for (m=firstpass; (m<lastpass); m++){
     for (k=agegomp;k<agemortsup;k++)       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));  }
       
     for (k=agegomp;k<agemortsup;k++){  }*/
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;  
       sumlpop=sumlpop+lpop[k];  
     }    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
         fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     tpop[agegomp]=sumlpop;  
     for (k=agegomp;k<(agemortsup-3);k++){    agegomp=(int)agemin;
       /*  tpop[k+1]=2;*/    free_vector(severity,1,maxwav);
       tpop[k+1]=tpop[k]-lpop[k];    free_imatrix(outcome,1,maxwav+1,1,n);
     }    free_vector(moisnais,1,n);
         free_vector(annais,1,n);
         /* free_matrix(mint,1,maxwav,1,n);
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");       free_matrix(anint,1,maxwav,1,n);*/
     for (k=agegomp;k<(agemortsup-2);k++)     free_vector(moisdc,1,n);
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);    free_vector(andc,1,n);
       
          
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */    wav=ivector(1,imx);
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);    dh=imatrix(1,lastpass-firstpass+1,1,imx);
         bh=imatrix(1,lastpass-firstpass+1,1,imx);
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \    mw=imatrix(1,lastpass-firstpass+1,1,imx);
                      stepm, weightopt,\     
                      model,imx,p,matcov,agemortsup);    /* Concatenates waves */
         concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     free_vector(lsurv,1,AGESUP);  
     free_vector(lpop,1,AGESUP);    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
     free_vector(tpop,1,AGESUP);  
   } /* Endof if mle==-3 */    Tcode=ivector(1,100);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
   else{ /* For mle >=1 */    ncodemax[1]=1;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */       
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
     for (k=1; k<=npar;k++)                                   the estimations*/
       printf(" %d %8.5f",k,p[k]);    h=0;
     printf("\n");    m=pow(2,cptcoveff);
     globpr=1; /* to print the contributions */   
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    for(k=1;k<=cptcoveff; k++){
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      for(i=1; i <=(m/pow(2,k));i++){
     for (k=1; k<=npar;k++)        for(j=1; j <= ncodemax[k]; j++){
       printf(" %d %8.5f",k,p[k]);          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
     printf("\n");            h++;
     if(mle>=1){ /* Could be 1 or 2 */            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
     }          }
             }
     /*--------- results files --------------*/      }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    }
         /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
            codtab[1][2]=1;codtab[2][2]=2; */
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    /* for(i=1; i <=m ;i++){
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       for(k=1; k <=cptcovn; k++){
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
     for(i=1,jk=1; i <=nlstate; i++){       }
       for(k=1; k <=(nlstate+ndeath); k++){       printf("\n");
         if (k != i) {       }
           printf("%d%d ",i,k);       scanf("%d",i);*/
           fprintf(ficlog,"%d%d ",i,k);     
           fprintf(ficres,"%1d%1d ",i,k);    /*------------ gnuplot -------------*/
           for(j=1; j <=ncovmodel; j++){    strcpy(optionfilegnuplot,optionfilefiname);
             printf("%f ",p[jk]);    if(mle==-3)
             fprintf(ficlog,"%f ",p[jk]);      strcat(optionfilegnuplot,"-mort");
             fprintf(ficres,"%f ",p[jk]);    strcat(optionfilegnuplot,".gp");
             jk++;   
           }    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
           printf("\n");      printf("Problem with file %s",optionfilegnuplot);
           fprintf(ficlog,"\n");    }
           fprintf(ficres,"\n");    else{
         }      fprintf(ficgp,"\n# %s\n", version);
       }      fprintf(ficgp,"# %s\n", optionfilegnuplot);
     }      fprintf(ficgp,"set missing 'NaNq'\n");
     if(mle!=0){    }
       /* Computing hessian and covariance matrix */    /*  fclose(ficgp);*/
       ftolhess=ftol; /* Usually correct */    /*--------- index.htm --------*/
       hesscov(matcov, p, npar, delti, ftolhess, func);  
     }    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    if(mle==-3)
     printf("# Scales (for hessian or gradient estimation)\n");      strcat(optionfilehtm,"-mort");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    strcat(optionfilehtm,".htm");
     for(i=1,jk=1; i <=nlstate; i++){    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       for(j=1; j <=nlstate+ndeath; j++){      printf("Problem with %s \n",optionfilehtm), exit(0);
         if (j!=i) {    }
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
           fprintf(ficlog,"%1d%1d",i,j);    strcat(optionfilehtmcov,"-cov.htm");
           for(k=1; k<=ncovmodel;k++){    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
             printf(" %.5e",delti[jk]);      printf("Problem with %s \n",optionfilehtmcov), exit(0);
             fprintf(ficlog," %.5e",delti[jk]);    }
             fprintf(ficres," %.5e",delti[jk]);    else{
             jk++;    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
           }  <hr size=\"2\" color=\"#EC5E5E\"> \n\
           printf("\n");  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
           fprintf(ficlog,"\n");            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
           fprintf(ficres,"\n");    }
         }  
       }    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     }  <hr size=\"2\" color=\"#EC5E5E\"> \n\
       Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  \n\
     if(mle>=1)  <hr  size=\"2\" color=\"#EC5E5E\">\
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   <ul><li><h4>Parameter files</h4>\n\
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
     /* # 121 Var(a12)\n\ */   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
     /* # 122 Cov(b12,a12) Var(b12)\n\ */   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */   - Date and time at start: %s</ul>\n",\
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */            fileres,fileres,\
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
         fflush(fichtm);
       
     /* Just to have a covariance matrix which will be more understandable    strcpy(pathr,path);
        even is we still don't want to manage dictionary of variables    strcat(pathr,optionfilefiname);
     */    chdir(optionfilefiname); /* Move to directory named optionfile */
     for(itimes=1;itimes<=2;itimes++){   
       jj=0;    /* Calculates basic frequencies. Computes observed prevalence at single age
       for(i=1; i <=nlstate; i++){       and prints on file fileres'p'. */
         for(j=1; j <=nlstate+ndeath; j++){    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
           if(j==i) continue;  
           for(k=1; k<=ncovmodel;k++){    fprintf(fichtm,"\n");
             jj++;    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
             ca[0]= k+'a'-1;ca[1]='\0';  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
             if(itimes==1){  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
               if(mle>=1)            imx,agemin,agemax,jmin,jmax,jmean);
                 printf("#%1d%1d%d",i,j,k);    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
               fprintf(ficlog,"#%1d%1d%d",i,j,k);      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
               fprintf(ficres,"#%1d%1d%d",i,j,k);      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
             }else{      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
               if(mle>=1)      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
                 printf("%1d%1d%d",i,j,k);     
               fprintf(ficlog,"%1d%1d%d",i,j,k);     
               fprintf(ficres,"%1d%1d%d",i,j,k);    /* For Powell, parameters are in a vector p[] starting at p[1]
             }       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
             ll=0;    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
             for(li=1;li <=nlstate; li++){  
               for(lj=1;lj <=nlstate+ndeath; lj++){    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
                 if(lj==li) continue;  
                 for(lk=1;lk<=ncovmodel;lk++){    if (mle==-3){
                   ll++;      ximort=matrix(1,NDIM,1,NDIM);
                   if(ll<=jj){      cens=ivector(1,n);
                     cb[0]= lk +'a'-1;cb[1]='\0';      ageexmed=vector(1,n);
                     if(ll<jj){      agecens=vector(1,n);
                       if(itimes==1){      dcwave=ivector(1,n);
                         if(mle>=1)   
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      for (i=1; i<=imx; i++){
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        dcwave[i]=-1;
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        for (m=firstpass; m<=lastpass; m++)
                       }else{          if (s[m][i]>nlstate) {
                         if(mle>=1)            dcwave[i]=m;
                           printf(" %.5e",matcov[jj][ll]);             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
                         fprintf(ficlog," %.5e",matcov[jj][ll]);             break;
                         fprintf(ficres," %.5e",matcov[jj][ll]);           }
                       }      }
                     }else{  
                       if(itimes==1){      for (i=1; i<=imx; i++) {
                         if(mle>=1)        if (wav[i]>0){
                           printf(" Var(%s%1d%1d)",ca,i,j);          ageexmed[i]=agev[mw[1][i]][i];
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);          j=wav[i];
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);          agecens[i]=1.;
                       }else{  
                         if(mle>=1)          if (ageexmed[i]> 1 && wav[i] > 0){
                           printf(" %.5e",matcov[jj][ll]);             agecens[i]=agev[mw[j][i]][i];
                         fprintf(ficlog," %.5e",matcov[jj][ll]);             cens[i]= 1;
                         fprintf(ficres," %.5e",matcov[jj][ll]);           }else if (ageexmed[i]< 1)
                       }            cens[i]= -1;
                     }          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
                   }            cens[i]=0 ;
                 } /* end lk */        }
               } /* end lj */        else cens[i]=-1;
             } /* end li */      }
             if(mle>=1)     
               printf("\n");      for (i=1;i<=NDIM;i++) {
             fprintf(ficlog,"\n");        for (j=1;j<=NDIM;j++)
             fprintf(ficres,"\n");          ximort[i][j]=(i == j ? 1.0 : 0.0);
             numlinepar++;      }
           } /* end k*/     
         } /*end j */      p[1]=0.0268; p[NDIM]=0.083;
       } /* end i */      /*printf("%lf %lf", p[1], p[2]);*/
     } /* end itimes */     
          
     fflush(ficlog);      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     fflush(ficres);      strcpy(filerespow,"pow-mort");
           strcat(filerespow,fileres);
     while((c=getc(ficpar))=='#' && c!= EOF){      if((ficrespow=fopen(filerespow,"w"))==NULL) {
       ungetc(c,ficpar);        printf("Problem with resultfile: %s\n", filerespow);
       fgets(line, MAXLINE, ficpar);        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       puts(line);      }
       fputs(line,ficparo);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
     }      /*  for (i=1;i<=nlstate;i++)
     ungetc(c,ficpar);          for(j=1;j<=nlstate+ndeath;j++)
               if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     estepm=0;      */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      fprintf(ficrespow,"\n");
     if (estepm==0 || estepm < stepm) estepm=stepm;     
     if (fage <= 2) {      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       bage = ageminpar;      fclose(ficrespow);
       fage = agemaxpar;     
     }      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
       
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      for(i=1; i <=NDIM; i++)
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for(j=i+1;j<=NDIM;j++)
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          matcov[i][j]=matcov[j][i];
          
     while((c=getc(ficpar))=='#' && c!= EOF){      printf("\nCovariance matrix\n ");
       ungetc(c,ficpar);      for(i=1; i <=NDIM; i++) {
       fgets(line, MAXLINE, ficpar);        for(j=1;j<=NDIM;j++){
       puts(line);          printf("%f ",matcov[i][j]);
       fputs(line,ficparo);        }
     }        printf("\n ");
     ungetc(c,ficpar);      }
          
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      for (i=1;i<=NDIM;i++)
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);  
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      lsurv=vector(1,AGESUP);
           lpop=vector(1,AGESUP);
     while((c=getc(ficpar))=='#' && c!= EOF){      tpop=vector(1,AGESUP);
       ungetc(c,ficpar);      lsurv[agegomp]=100000;
       fgets(line, MAXLINE, ficpar);     
       puts(line);      for (k=agegomp;k<=AGESUP;k++) {
       fputs(line,ficparo);        agemortsup=k;
     }        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
     ungetc(c,ficpar);      }
          
           for (k=agegomp;k<agemortsup;k++)
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;     
           for (k=agegomp;k<agemortsup;k++){
     fscanf(ficpar,"pop_based=%d\n",&popbased);        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
     fprintf(ficparo,"pop_based=%d\n",popbased);           sumlpop=sumlpop+lpop[k];
     fprintf(ficres,"pop_based=%d\n",popbased);         }
          
     while((c=getc(ficpar))=='#' && c!= EOF){      tpop[agegomp]=sumlpop;
       ungetc(c,ficpar);      for (k=agegomp;k<(agemortsup-3);k++){
       fgets(line, MAXLINE, ficpar);        /*  tpop[k+1]=2;*/
       puts(line);        tpop[k+1]=tpop[k]-lpop[k];
       fputs(line,ficparo);      }
     }     
     ungetc(c,ficpar);     
           printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      for (k=agegomp;k<(agemortsup-2);k++)
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     /* day and month of proj2 are not used but only year anproj2.*/      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
          
           printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                            stepm, weightopt,\
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/                       model,imx,p,matcov,agemortsup);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/     
           free_vector(lsurv,1,AGESUP);
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */      free_vector(lpop,1,AGESUP);
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      free_vector(tpop,1,AGESUP);
         } /* Endof if mle==-3 */
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\   
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\    else{ /* For mle >=1 */
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);   
             likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
    /*------------ free_vector  -------------*/      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
    /*  chdir(path); */      for (k=1; k<=npar;k++)
          printf(" %d %8.5f",k,p[k]);
     free_ivector(wav,1,imx);      printf("\n");
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      globpr=1; /* to print the contributions */
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     free_lvector(num,1,n);      for (k=1; k<=npar;k++)
     free_vector(agedc,1,n);        printf(" %d %8.5f",k,p[k]);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/      printf("\n");
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      if(mle>=1){ /* Could be 1 or 2 */
     fclose(ficparo);        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     fclose(ficres);      }
      
       /*--------- results files --------------*/
     /*--------------- Prevalence limit  (stable prevalence) --------------*/      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
        
     strcpy(filerespl,"pl");     
     strcat(filerespl,fileres);      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     if((ficrespl=fopen(filerespl,"w"))==NULL) {      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;      for(i=1,jk=1; i <=nlstate; i++){
     }        for(k=1; k <=(nlstate+ndeath); k++){
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);          if (k != i) {
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);            printf("%d%d ",i,k);
     fprintf(ficrespl, "#Local time at start: %s", strstart);            fprintf(ficlog,"%d%d ",i,k);
     fprintf(ficrespl,"#Stable prevalence \n");            fprintf(ficres,"%1d%1d ",i,k);
     fprintf(ficrespl,"#Age ");            for(j=1; j <=ncovmodel; j++){
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              printf("%lf ",p[jk]);
     fprintf(ficrespl,"\n");              fprintf(ficlog,"%lf ",p[jk]);
                 fprintf(ficres,"%lf ",p[jk]);
     prlim=matrix(1,nlstate,1,nlstate);              jk++;
             }
     agebase=ageminpar;            printf("\n");
     agelim=agemaxpar;            fprintf(ficlog,"\n");
     ftolpl=1.e-10;            fprintf(ficres,"\n");
     i1=cptcoveff;          }
     if (cptcovn < 1){i1=1;}        }
       }
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      if(mle!=0){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /* Computing hessian and covariance matrix */
         k=k+1;        ftolhess=ftol; /* Usually correct */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        hesscov(matcov, p, npar, delti, ftolhess, func);
         fprintf(ficrespl,"\n#******");      }
         printf("\n#******");      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
         fprintf(ficlog,"\n#******");      printf("# Scales (for hessian or gradient estimation)\n");
         for(j=1;j<=cptcoveff;j++) {      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(i=1,jk=1; i <=nlstate; i++){
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j <=nlstate+ndeath; j++){
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (j!=i) {
         }            fprintf(ficres,"%1d%1d",i,j);
         fprintf(ficrespl,"******\n");            printf("%1d%1d",i,j);
         printf("******\n");            fprintf(ficlog,"%1d%1d",i,j);
         fprintf(ficlog,"******\n");            for(k=1; k<=ncovmodel;k++){
                       printf(" %.5e",delti[jk]);
         for (age=agebase; age<=agelim; age++){              fprintf(ficlog," %.5e",delti[jk]);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              fprintf(ficres," %.5e",delti[jk]);
           fprintf(ficrespl,"%.0f ",age );              jk++;
           for(j=1;j<=cptcoveff;j++)            }
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            printf("\n");
           for(i=1; i<=nlstate;i++)            fprintf(ficlog,"\n");
             fprintf(ficrespl," %.5f", prlim[i][i]);            fprintf(ficres,"\n");
           fprintf(ficrespl,"\n");          }
         }        }
       }      }
     }     
     fclose(ficrespl);      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
     /*------------- h Pij x at various ages ------------*/        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
         fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);      /* # 121 Var(a12)\n\ */
     if((ficrespij=fopen(filerespij,"w"))==NULL) {      /* # 122 Cov(b12,a12) Var(b12)\n\ */
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     }      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
     printf("Computing pij: result on file '%s' \n", filerespij);      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
         /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     stepsize=(int) (stepm+YEARM-1)/YEARM;     
     /*if (stepm<=24) stepsize=2;*/     
       /* Just to have a covariance matrix which will be more understandable
     agelim=AGESUP;         even is we still don't want to manage dictionary of variables
     hstepm=stepsize*YEARM; /* Every year of age */      */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       for(itimes=1;itimes<=2;itimes++){
         jj=0;
     /* hstepm=1;   aff par mois*/        for(i=1; i <=nlstate; i++){
     fprintf(ficrespij, "#Local time at start: %s", strstart);          for(j=1; j <=nlstate+ndeath; j++){
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");            if(j==i) continue;
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){            for(k=1; k<=ncovmodel;k++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              jj++;
         k=k+1;              ca[0]= k+'a'-1;ca[1]='\0';
         fprintf(ficrespij,"\n#****** ");              if(itimes==1){
         for(j=1;j<=cptcoveff;j++)                 if(mle>=1)
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  printf("#%1d%1d%d",i,j,k);
         fprintf(ficrespij,"******\n");                fprintf(ficlog,"#%1d%1d%d",i,j,k);
                         fprintf(ficres,"#%1d%1d%d",i,j,k);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */              }else{
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                 if(mle>=1)
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                  printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/                fprintf(ficres,"%1d%1d%d",i,j,k);
               }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              ll=0;
           oldm=oldms;savm=savms;              for(li=1;li <=nlstate; li++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  for(lj=1;lj <=nlstate+ndeath; lj++){
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");                  if(lj==li) continue;
           for(i=1; i<=nlstate;i++)                  for(lk=1;lk<=ncovmodel;lk++){
             for(j=1; j<=nlstate+ndeath;j++)                    ll++;
               fprintf(ficrespij," %1d-%1d",i,j);                    if(ll<=jj){
           fprintf(ficrespij,"\n");                      cb[0]= lk +'a'-1;cb[1]='\0';
           for (h=0; h<=nhstepm; h++){                      if(ll<jj){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                        if(itimes==1){
             for(i=1; i<=nlstate;i++)                          if(mle>=1)
               for(j=1; j<=nlstate+ndeath;j++)                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
             fprintf(ficrespij,"\n");                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
           }                        }else{
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                          if(mle>=1)
           fprintf(ficrespij,"\n");                            printf(" %.5e",matcov[jj][ll]);
         }                          fprintf(ficlog," %.5e",matcov[jj][ll]);
       }                          fprintf(ficres," %.5e",matcov[jj][ll]);
     }                        }
                       }else{
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);                        if(itimes==1){
                           if(mle>=1)
     fclose(ficrespij);                            printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
     for(i=1;i<=AGESUP;i++)                        }else{
       for(j=1;j<=NCOVMAX;j++)                          if(mle>=1)
         for(k=1;k<=NCOVMAX;k++)                            printf(" %.5e",matcov[jj][ll]);
           probs[i][j][k]=0.;                          fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
     /*---------- Forecasting ------------------*/                        }
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/                      }
     if(prevfcast==1){                    }
       /*    if(stepm ==1){*/                  } /* end lk */
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);                } /* end lj */
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/              } /* end li */
       /*      }  */              if(mle>=1)
       /*      else{ */                printf("\n");
       /*        erreur=108; */              fprintf(ficlog,"\n");
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */              fprintf(ficres,"\n");
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */              numlinepar++;
       /*      } */            } /* end k*/
     }          } /*end j */
           } /* end i */
       } /* end itimes */
     /*---------- Health expectancies and variances ------------*/     
       fflush(ficlog);
     strcpy(filerest,"t");      fflush(ficres);
     strcat(filerest,fileres);     
     if((ficrest=fopen(filerest,"w"))==NULL) {      while((c=getc(ficpar))=='#' && c!= EOF){
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;        ungetc(c,ficpar);
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        fgets(line, MAXLINE, ficpar);
     }        puts(line);
     printf("Computing Total LEs with variances: file '%s' \n", filerest);         fputs(line,ficparo);
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);       }
       ungetc(c,ficpar);
      
     strcpy(filerese,"e");      estepm=0;
     strcat(filerese,fileres);      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if((ficreseij=fopen(filerese,"w"))==NULL) {      if (estepm==0 || estepm < stepm) estepm=stepm;
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      if (fage <= 2) {
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        bage = ageminpar;
     }        fage = agemaxpar;
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);      }
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);     
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     strcpy(fileresv,"v");      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     strcat(fileresv,fileres);      fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {     
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      while((c=getc(ficpar))=='#' && c!= EOF){
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        ungetc(c,ficpar);
     }        fgets(line, MAXLINE, ficpar);
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        puts(line);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fputs(line,ficparo);
       }
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */      ungetc(c,ficpar);
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);     
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     */      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     if (mobilav!=0) {      fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      while((c=getc(ficpar))=='#' && c!= EOF){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        ungetc(c,ficpar);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);        fgets(line, MAXLINE, ficpar);
       }        puts(line);
     }        fputs(line,ficparo);
       }
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      ungetc(c,ficpar);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     
         k=k+1;      
         fprintf(ficrest,"\n#****** ");      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
         for(j=1;j<=cptcoveff;j++)       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
         fprintf(ficrest,"******\n");      fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
         fprintf(ficreseij,"\n#****** ");      fprintf(ficres,"pop_based=%d\n",popbased);  
         for(j=1;j<=cptcoveff;j++)      
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      while((c=getc(ficpar))=='#' && c!= EOF){
         fprintf(ficreseij,"******\n");        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fprintf(ficresvij,"\n#****** ");        puts(line);
         for(j=1;j<=cptcoveff;j++)         fputs(line,ficparo);
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
         fprintf(ficresvij,"******\n");      ungetc(c,ficpar);
      
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
         oldm=oldms;savm=savms;      fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);        printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
        fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
         oldm=oldms;savm=savms;      /* day and month of proj2 are not used but only year anproj2.*/
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);     
         if(popbased==1){     
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);     
         }      /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         fprintf(ficrest, "#Local time at start: %s", strstart);     
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
         fprintf(ficrest,"\n");     
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
         epj=vector(1,nlstate+1);                   model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
         for(age=bage; age <=fage ;age++){                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       
           if (popbased==1) {     /*------------ free_vector  -------------*/
             if(mobilav ==0){     /*  chdir(path); */
               for(i=1; i<=nlstate;i++)   
                 prlim[i][i]=probs[(int)age][i][k];      free_ivector(wav,1,imx);
             }else{ /* mobilav */       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
               for(i=1; i<=nlstate;i++)      free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
                 prlim[i][i]=mobaverage[(int)age][i][k];      free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
             }      free_lvector(num,1,n);
           }      free_vector(agedc,1,n);
               /*free_matrix(covar,0,NCOVMAX,1,n);*/
           fprintf(ficrest," %4.0f",age);      /*free_matrix(covar,1,NCOVMAX,1,n);*/
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      fclose(ficparo);
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      fclose(ficres);
               epj[j] += prlim[i][i]*eij[i][j][(int)age];  
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
             }      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
             epj[nlstate+1] +=epj[j];   
           }      strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
           for(i=1, vepp=0.;i <=nlstate;i++)      if((ficrespl=fopen(filerespl,"w"))==NULL) {
             for(j=1;j <=nlstate;j++)        printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
               vepp += vareij[i][j][(int)age];        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      }
           for(j=1;j <=nlstate;j++){      printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
           }      pstamp(ficrespl);
           fprintf(ficrest,"\n");      fprintf(ficrespl,"# Period (stable) prevalence \n");
         }      fprintf(ficrespl,"#Age ");
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      fprintf(ficrespl,"\n");
         free_vector(epj,1,nlstate+1);   
       }      prlim=matrix(1,nlstate,1,nlstate);
     }  
     free_vector(weight,1,n);      agebase=ageminpar;
     free_imatrix(Tvard,1,15,1,2);      agelim=agemaxpar;
     free_imatrix(s,1,maxwav+1,1,n);      ftolpl=1.e-10;
     free_matrix(anint,1,maxwav,1,n);       i1=cptcoveff;
     free_matrix(mint,1,maxwav,1,n);      if (cptcovn < 1){i1=1;}
     free_ivector(cod,1,n);  
     free_ivector(tab,1,NCOVMAX);      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
     fclose(ficreseij);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     fclose(ficresvij);          k=k+1;
     fclose(ficrest);          /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
     fclose(ficpar);          fprintf(ficrespl,"\n#******");
             printf("\n#******");
     /*------- Variance of stable prevalence------*/             fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
     strcpy(fileresvpl,"vpl");            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     strcat(fileresvpl,fileres);            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);          }
       exit(0);          fprintf(ficrespl,"******\n");
     }          printf("******\n");
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);          fprintf(ficlog,"******\n");
          
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){          for (age=agebase; age<=agelim; age++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
         k=k+1;            fprintf(ficrespl,"%.0f ",age );
         fprintf(ficresvpl,"\n#****** ");            for(j=1;j<=cptcoveff;j++)
         for(j=1;j<=cptcoveff;j++)               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl,"******\n");              fprintf(ficrespl," %.5f", prlim[i][i]);
                   fprintf(ficrespl,"\n");
         varpl=matrix(1,nlstate,(int) bage, (int) fage);          }
         oldm=oldms;savm=savms;        }
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);      }
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      fclose(ficrespl);
       }  
     }      /*------------- h Pij x at various ages ------------*/
    
     fclose(ficresvpl);      strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
     /*---------- End : free ----------------*/        printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
       printf("Computing pij: result on file '%s' \n", filerespij);
   }  /* mle==-3 arrives here for freeing */      fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
   free_matrix(prlim,1,nlstate,1,nlstate);   
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      stepsize=(int) (stepm+YEARM-1)/YEARM;
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      /*if (stepm<=24) stepsize=2;*/
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      agelim=AGESUP;
     free_matrix(covar,0,NCOVMAX,1,n);      hstepm=stepsize*YEARM; /* Every year of age */
     free_matrix(matcov,1,npar,1,npar);      hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
     /*free_vector(delti,1,npar);*/  
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       /* hstepm=1;   aff par mois*/
     free_matrix(agev,1,maxwav,1,imx);      pstamp(ficrespij);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
     free_ivector(ncodemax,1,8);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     free_ivector(Tvar,1,15);          k=k+1;
     free_ivector(Tprod,1,15);          fprintf(ficrespij,"\n#****** ");
     free_ivector(Tvaraff,1,15);          for(j=1;j<=cptcoveff;j++)
     free_ivector(Tage,1,15);            fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     free_ivector(Tcode,1,100);          fprintf(ficrespij,"******\n");
          
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);          for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
     free_imatrix(codtab,1,100,1,10);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   fflush(fichtm);            nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   fflush(ficgp);  
               /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
   if((nberr >0) || (nbwarn>0)){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);            oldm=oldms;savm=savms;
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   }else{            fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
     printf("End of Imach\n");            for(i=1; i<=nlstate;i++)
     fprintf(ficlog,"End of Imach\n");              for(j=1; j<=nlstate+ndeath;j++)
   }                fprintf(ficrespij," %1d-%1d",i,j);
   printf("See log file on %s\n",filelog);            fprintf(ficrespij,"\n");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            for (h=0; h<=nhstepm; h++){
   (void) gettimeofday(&end_time,&tzp);              fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
   tm = *localtime(&end_time.tv_sec);              for(i=1; i<=nlstate;i++)
   tmg = *gmtime(&end_time.tv_sec);                for(j=1; j<=nlstate+ndeath;j++)
   strcpy(strtend,asctime(&tm));                  fprintf(ficrespij," %.5f", p3mat[i][j][h]);
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);               fprintf(ficrespij,"\n");
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);             }
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);          }
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));        }
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      }
   /*  printf("Total time was %d uSec.\n", total_usecs);*/  
 /*   if(fileappend(fichtm,optionfilehtm)){ */      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);  
   fclose(fichtm);      fclose(ficrespij);
   fclose(fichtmcov);  
   fclose(ficgp);      probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficlog);      for(i=1;i<=AGESUP;i++)
   /*------ End -----------*/        for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
   chdir(path);            probs[i][j][k]=0.;
   /*strcat(plotcmd,CHARSEPARATOR);*/  
   sprintf(plotcmd,"gnuplot");      /*---------- Forecasting ------------------*/
 #ifndef UNIX      /*if((stepm == 1) && (strcmp(model,".")==0)){*/
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);      if(prevfcast==1){
 #endif        /*    if(stepm ==1){*/
   if(!stat(plotcmd,&info)){        prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);        /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
     if(!stat(getenv("GNUPLOTBIN"),&info)){        /*      }  */
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);        /*      else{ */
     }else        /*        erreur=108; */
       strcpy(pplotcmd,plotcmd);        /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
 #ifdef UNIX        /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
     strcpy(plotcmd,GNUPLOTPROGRAM);        /*      } */
     if(!stat(plotcmd,&info)){      }
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);   
     }else  
       strcpy(pplotcmd,plotcmd);      /*---------- Health expectancies and variances ------------*/
 #endif  
   }else      strcpy(filerest,"t");
     strcpy(pplotcmd,plotcmd);      strcat(filerest,fileres);
         if((ficrest=fopen(filerest,"w"))==NULL) {
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);        printf("Problem with total LE resultfile: %s\n", filerest);goto end;
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);        fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
   if((outcmd=system(plotcmd)) != 0){      printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
     printf("\n Problem with gnuplot\n");      fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   }  
   printf(" Wait...");  
   while (z[0] != 'q') {      strcpy(filerese,"e");
     /* chdir(path); */      strcat(filerese,fileres);
     printf("\nType e to edit output files, g to graph again and q for exiting: ");      if((ficreseij=fopen(filerese,"w"))==NULL) {
     scanf("%s",z);        printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
 /*     if (z[0] == 'c') system("./imach"); */        fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     if (z[0] == 'e') {      }
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);      printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       system(optionfilehtm);      fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
     }  
     else if (z[0] == 'g') system(plotcmd);      strcpy(fileresstde,"stde");
     else if (z[0] == 'q') exit(0);      strcat(fileresstde,fileres);
   }      if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
   end:        printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
   while (z[0] != 'q') {        fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
     printf("\nType  q for exiting: ");      }
     scanf("%s",z);      printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   }      fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
 }  
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.116  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>