Diff for /imach/src/imach.c between versions 1.125 and 1.126

version 1.125, 2006/04/04 15:20:31 version 1.126, 2006/04/28 17:23:28
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month, quarter,    states. This elementary transition (by month, quarter,
   semester or year) is modelled as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the period (stable) prevalence.    of the life expectancies. It also computes the period (stable) prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   **********************************************************************/    **********************************************************************/
 /*  /*
   main    main
   read parameterfile    read parameterfile
   read datafile    read datafile
   concatwav    concatwav
   freqsummary    freqsummary
   if (mle >= 1)    if (mle >= 1)
     mlikeli      mlikeli
   print results files    print results files
   if mle==1    if mle==1 
      computes hessian       computes hessian
   read end of parameter file: agemin, agemax, bage, fage, estepm    read end of parameter file: agemin, agemax, bage, fage, estepm
       begin-prev-date,...        begin-prev-date,...
   open gnuplot file    open gnuplot file
   open html file    open html file
   period (stable) prevalence    period (stable) prevalence
    for age prevalim()     for age prevalim()
   h Pij x    h Pij x
   variance of p varprob    variance of p varprob
   forecasting if prevfcast==1 prevforecast call prevalence()    forecasting if prevfcast==1 prevforecast call prevalence()
   health expectancies    health expectancies
   Variance-covariance of DFLE    Variance-covariance of DFLE
   prevalence()    prevalence()
    movingaverage()     movingaverage()
   varevsij()    varevsij() 
   if popbased==1 varevsij(,popbased)    if popbased==1 varevsij(,popbased)
   total life expectancies    total life expectancies
   Variance of period (stable) prevalence    Variance of period (stable) prevalence
  end   end
 */  */
   
   
   
     
 #include <math.h>  #include <math.h>
 #include <stdio.h>  #include <stdio.h>
 #include <stdlib.h>  #include <stdlib.h>
 #include <string.h>  #include <string.h>
 #include <unistd.h>  #include <unistd.h>
   
 #include <limits.h>  #include <limits.h>
 #include <sys/types.h>  #include <sys/types.h>
 #include <sys/stat.h>  #include <sys/stat.h>
 #include <errno.h>  #include <errno.h>
 extern int errno;  extern int errno;
   
 /* #include <sys/time.h> */  /* #include <sys/time.h> */
 #include <time.h>  #include <time.h>
 #include "timeval.h"  #include "timeval.h"
   
 /* #include <libintl.h> */  /* #include <libintl.h> */
 /* #define _(String) gettext (String) */  /* #define _(String) gettext (String) */
   
 #define MAXLINE 256  #define MAXLINE 256
   
 #define GNUPLOTPROGRAM "gnuplot"  #define GNUPLOTPROGRAM "gnuplot"
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define FILENAMELENGTH 132  #define FILENAMELENGTH 132
   
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 #define NINTERVMAX 8  #define NINTERVMAX 8
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define NCOVMAX 8 /* Maximum number of covariates */  #define NCOVMAX 8 /* Maximum number of covariates */
 #define MAXN 20000  #define MAXN 20000
 #define YEARM 12. /* Number of months per year */  #define YEARM 12. /* Number of months per year */
 #define AGESUP 130  #define AGESUP 130
 #define AGEBASE 40  #define AGEBASE 40
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 #ifdef UNIX  #ifdef UNIX
 #define DIRSEPARATOR '/'  #define DIRSEPARATOR '/'
 #define CHARSEPARATOR "/"  #define CHARSEPARATOR "/"
 #define ODIRSEPARATOR '\\'  #define ODIRSEPARATOR '\\'
 #else  #else
 #define DIRSEPARATOR '\\'  #define DIRSEPARATOR '\\'
 #define CHARSEPARATOR "\\"  #define CHARSEPARATOR "\\"
 #define ODIRSEPARATOR '/'  #define ODIRSEPARATOR '/'
 #endif  #endif
   
 /* $Id$ */  /* $Id$ */
 /* $State$ */  /* $State$ */
   
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";  char version[]="Imach version 0.98h, April 2006, INED-EUROREVES-Institut de longevite ";
 char fullversion[]="$Revision$ $Date$";  char fullversion[]="$Revision$ $Date$"; 
 char strstart[80];  char strstart[80];
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 int nvar;  int nvar;
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int npar=NPARMAX;  int npar=NPARMAX;
 int nlstate=2; /* Number of live states */  int nlstate=2; /* Number of live states */
 int ndeath=1; /* Number of dead states */  int ndeath=1; /* Number of dead states */
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int popbased=0;  int popbased=0;
   
 int *wav; /* Number of waves for this individuual 0 is possible */  int *wav; /* Number of waves for this individuual 0 is possible */
 int maxwav; /* Maxim number of waves */  int maxwav; /* Maxim number of waves */
 int jmin, jmax; /* min, max spacing between 2 waves */  int jmin, jmax; /* min, max spacing between 2 waves */
 int ijmin, ijmax; /* Individuals having jmin and jmax */  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 int gipmx, gsw; /* Global variables on the number of contributions  int gipmx, gsw; /* Global variables on the number of contributions 
                    to the likelihood and the sum of weights (done by funcone)*/                     to the likelihood and the sum of weights (done by funcone)*/
 int mle, weightopt;  int mle, weightopt;
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
            * wave mi and wave mi+1 is not an exact multiple of stepm. */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double jmean; /* Mean space between 2 waves */  double jmean; /* Mean space between 2 waves */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  double **oldm, **newm, **savm; /* Working pointers to matrices */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 FILE *ficlog, *ficrespow;  FILE *ficlog, *ficrespow;
 int globpr; /* Global variable for printing or not */  int globpr; /* Global variable for printing or not */
 double fretone; /* Only one call to likelihood */  double fretone; /* Only one call to likelihood */
 long ipmx; /* Number of contributions */  long ipmx; /* Number of contributions */
 double sw; /* Sum of weights */  double sw; /* Sum of weights */
 char filerespow[FILENAMELENGTH];  char filerespow[FILENAMELENGTH];
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 FILE *ficresilk;  FILE *ficresilk;
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 FILE *ficresprobmorprev;  FILE *ficresprobmorprev;
 FILE *fichtm, *fichtmcov; /* Html File */  FILE *fichtm, *fichtmcov; /* Html File */
 FILE *ficreseij;  FILE *ficreseij;
 char filerese[FILENAMELENGTH];  char filerese[FILENAMELENGTH];
 FILE *ficresstdeij;  FILE *ficresstdeij;
 char fileresstde[FILENAMELENGTH];  char fileresstde[FILENAMELENGTH];
 FILE *ficrescveij;  FILE *ficrescveij;
 char filerescve[FILENAMELENGTH];  char filerescve[FILENAMELENGTH];
 FILE  *ficresvij;  FILE  *ficresvij;
 char fileresv[FILENAMELENGTH];  char fileresv[FILENAMELENGTH];
 FILE  *ficresvpl;  FILE  *ficresvpl;
 char fileresvpl[FILENAMELENGTH];  char fileresvpl[FILENAMELENGTH];
 char title[MAXLINE];  char title[MAXLINE];
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 char command[FILENAMELENGTH];  char command[FILENAMELENGTH];
 int  outcmd=0;  int  outcmd=0;
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 char filelog[FILENAMELENGTH]; /* Log file */  char filelog[FILENAMELENGTH]; /* Log file */
 char filerest[FILENAMELENGTH];  char filerest[FILENAMELENGTH];
 char fileregp[FILENAMELENGTH];  char fileregp[FILENAMELENGTH];
 char popfile[FILENAMELENGTH];  char popfile[FILENAMELENGTH];
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 struct timezone tzp;  struct timezone tzp;
 extern int gettimeofday();  extern int gettimeofday();
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 long time_value;  long time_value;
 extern long time();  extern long time();
 char strcurr[80], strfor[80];  char strcurr[80], strfor[80];
   
 char *endptr;  char *endptr;
 long lval;  long lval;
 double dval;  double dval;
   
 #define NR_END 1  #define NR_END 1
 #define FREE_ARG char*  #define FREE_ARG char*
 #define FTOL 1.0e-10  #define FTOL 1.0e-10
   
 #define NRANSI  #define NRANSI 
 #define ITMAX 200  #define ITMAX 200 
   
 #define TOL 2.0e-4  #define TOL 2.0e-4 
   
 #define CGOLD 0.3819660  #define CGOLD 0.3819660 
 #define ZEPS 1.0e-10  #define ZEPS 1.0e-10 
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 #define GOLD 1.618034  #define GOLD 1.618034 
 #define GLIMIT 100.0  #define GLIMIT 100.0 
 #define TINY 1.0e-20  #define TINY 1.0e-20 
   
 static double maxarg1,maxarg2;  static double maxarg1,maxarg2;
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 #define rint(a) floor(a+0.5)  #define rint(a) floor(a+0.5)
   
 static double sqrarg;  static double sqrarg;
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 int agegomp= AGEGOMP;  int agegomp= AGEGOMP;
   
 int imx;  int imx; 
 int stepm=1;  int stepm=1;
 /* Stepm, step in month: minimum step interpolation*/  /* Stepm, step in month: minimum step interpolation*/
   
 int estepm;  int estepm;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 int m,nb;  int m,nb;
 long *num;  long *num;
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double **pmmij, ***probs;  double **pmmij, ***probs;
 double *ageexmed,*agecens;  double *ageexmed,*agecens;
 double dateintmean=0;  double dateintmean=0;
   
 double *weight;  double *weight;
 int **s; /* Status */  int **s; /* Status */
 double *agedc, **covar, idx;  double *agedc, **covar, idx;
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 double *lsurv, *lpop, *tpop;  double *lsurv, *lpop, *tpop;
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 double ftolhess; /* Tolerance for computing hessian */  double ftolhess; /* Tolerance for computing hessian */
   
 /**************** split *************************/  /**************** split *************************/
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
      the name of the file (name), its extension only (ext) and its first part of the name (finame)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   */    */ 
   char  *ss;                            /* pointer */    char  *ss;                            /* pointer */
   int   l1, l2;                         /* length counters */    int   l1, l2;                         /* length counters */
   
   l1 = strlen(path );                   /* length of path */    l1 = strlen(path );                   /* length of path */
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   if ( ss == NULL ) {                   /* no directory, so determine current directory */    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     strcpy( name, path );               /* we got the fullname name because no directory */      strcpy( name, path );               /* we got the fullname name because no directory */
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     /* get current working directory */      /* get current working directory */
     /*    extern  char* getcwd ( char *buf , int len);*/      /*    extern  char* getcwd ( char *buf , int len);*/
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       return( GLOCK_ERROR_GETCWD );        return( GLOCK_ERROR_GETCWD );
     }      }
     /* got dirc from getcwd*/      /* got dirc from getcwd*/
     printf(" DIRC = %s \n",dirc);      printf(" DIRC = %s \n",dirc);
   } else {                              /* strip direcotry from path */    } else {                              /* strip direcotry from path */
     ss++;                               /* after this, the filename */      ss++;                               /* after this, the filename */
     l2 = strlen( ss );                  /* length of filename */      l2 = strlen( ss );                  /* length of filename */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     strcpy( name, ss );         /* save file name */      strcpy( name, ss );         /* save file name */
     strncpy( dirc, path, l1 - l2 );     /* now the directory */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     dirc[l1-l2] = 0;                    /* add zero */      dirc[l1-l2] = 0;                    /* add zero */
     printf(" DIRC2 = %s \n",dirc);      printf(" DIRC2 = %s \n",dirc);
   }    }
   /* We add a separator at the end of dirc if not exists */    /* We add a separator at the end of dirc if not exists */
   l1 = strlen( dirc );                  /* length of directory */    l1 = strlen( dirc );                  /* length of directory */
   if( dirc[l1-1] != DIRSEPARATOR ){    if( dirc[l1-1] != DIRSEPARATOR ){
     dirc[l1] =  DIRSEPARATOR;      dirc[l1] =  DIRSEPARATOR;
     dirc[l1+1] = 0;      dirc[l1+1] = 0; 
     printf(" DIRC3 = %s \n",dirc);      printf(" DIRC3 = %s \n",dirc);
   }    }
   ss = strrchr( name, '.' );            /* find last / */    ss = strrchr( name, '.' );            /* find last / */
   if (ss >0){    if (ss >0){
     ss++;      ss++;
     strcpy(ext,ss);                     /* save extension */      strcpy(ext,ss);                     /* save extension */
     l1= strlen( name);      l1= strlen( name);
     l2= strlen(ss)+1;      l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);      strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;      finame[l1-l2]= 0;
   }    }
   
   return( 0 );                          /* we're done */    return( 0 );                          /* we're done */
 }  }
   
   
 /******************************************/  /******************************************/
   
 void replace_back_to_slash(char *s, char*t)  void replace_back_to_slash(char *s, char*t)
 {  {
   int i;    int i;
   int lg=0;    int lg=0;
   i=0;    i=0;
   lg=strlen(t);    lg=strlen(t);
   for(i=0; i<= lg; i++) {    for(i=0; i<= lg; i++) {
     (s[i] = t[i]);      (s[i] = t[i]);
     if (t[i]== '\\') s[i]='/';      if (t[i]== '\\') s[i]='/';
   }    }
 }  }
   
 int nbocc(char *s, char occ)  int nbocc(char *s, char occ)
 {  {
   int i,j=0;    int i,j=0;
   int lg=20;    int lg=20;
   i=0;    i=0;
   lg=strlen(s);    lg=strlen(s);
   for(i=0; i<= lg; i++) {    for(i=0; i<= lg; i++) {
   if  (s[i] == occ ) j++;    if  (s[i] == occ ) j++;
   }    }
   return j;    return j;
 }  }
   
 void cutv(char *u,char *v, char*t, char occ)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   /* cuts string t into u and v where u ends before first occurence of char 'occ'    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
      gives u="abcedf" and v="ghi2j" */       gives u="abcedf" and v="ghi2j" */
   int i,lg,j,p=0;    int i,lg,j,p=0;
   i=0;    i=0;
   for(j=0; j<=strlen(t)-1; j++) {    for(j=0; j<=strlen(t)-1; j++) {
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   }    }
   
   lg=strlen(t);    lg=strlen(t);
   for(j=0; j<p; j++) {    for(j=0; j<p; j++) {
     (u[j] = t[j]);      (u[j] = t[j]);
   }    }
      u[p]='\0';       u[p]='\0';
   
    for(j=0; j<= lg; j++) {     for(j=0; j<= lg; j++) {
     if (j>=(p+1))(v[j-p-1] = t[j]);      if (j>=(p+1))(v[j-p-1] = t[j]);
   }    }
 }  }
   
 /********************** nrerror ********************/  /********************** nrerror ********************/
   
 void nrerror(char error_text[])  void nrerror(char error_text[])
 {  {
   fprintf(stderr,"ERREUR ...\n");    fprintf(stderr,"ERREUR ...\n");
   fprintf(stderr,"%s\n",error_text);    fprintf(stderr,"%s\n",error_text);
   exit(EXIT_FAILURE);    exit(EXIT_FAILURE);
 }  }
 /*********************** vector *******************/  /*********************** vector *******************/
 double *vector(int nl, int nh)  double *vector(int nl, int nh)
 {  {
   double *v;    double *v;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (!v) nrerror("allocation failure in vector");    if (!v) nrerror("allocation failure in vector");
   return v-nl+NR_END;    return v-nl+NR_END;
 }  }
   
 /************************ free vector ******************/  /************************ free vector ******************/
 void free_vector(double*v, int nl, int nh)  void free_vector(double*v, int nl, int nh)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /************************ivector *******************************/  /************************ivector *******************************/
 int *ivector(long nl,long nh)  int *ivector(long nl,long nh)
 {  {
   int *v;    int *v;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   if (!v) nrerror("allocation failure in ivector");    if (!v) nrerror("allocation failure in ivector");
   return v-nl+NR_END;    return v-nl+NR_END;
 }  }
   
 /******************free ivector **************************/  /******************free ivector **************************/
 void free_ivector(int *v, long nl, long nh)  void free_ivector(int *v, long nl, long nh)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /************************lvector *******************************/  /************************lvector *******************************/
 long *lvector(long nl,long nh)  long *lvector(long nl,long nh)
 {  {
   long *v;    long *v;
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   if (!v) nrerror("allocation failure in ivector");    if (!v) nrerror("allocation failure in ivector");
   return v-nl+NR_END;    return v-nl+NR_END;
 }  }
   
 /******************free lvector **************************/  /******************free lvector **************************/
 void free_lvector(long *v, long nl, long nh)  void free_lvector(long *v, long nl, long nh)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /******************* imatrix *******************************/  /******************* imatrix *******************************/
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 {  { 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   int **m;    int **m; 
      
   /* allocate pointers to rows */    /* allocate pointers to rows */ 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()"); 
   m += NR_END;    m += NR_END; 
   m -= nrl;    m -= nrl; 
      
      
   /* allocate rows and set pointers to them */    /* allocate rows and set pointers to them */ 
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   m[nrl] += NR_END;    m[nrl] += NR_END; 
   m[nrl] -= ncl;    m[nrl] -= ncl; 
      
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      
   /* return pointer to array of pointers to rows */    /* return pointer to array of pointers to rows */ 
   return m;    return m; 
 }  } 
   
 /****************** free_imatrix *************************/  /****************** free_imatrix *************************/
 void free_imatrix(m,nrl,nrh,ncl,nch)  void free_imatrix(m,nrl,nrh,ncl,nch)
       int **m;        int **m;
       long nch,ncl,nrh,nrl;        long nch,ncl,nrh,nrl; 
      /* free an int matrix allocated by imatrix() */       /* free an int matrix allocated by imatrix() */ 
 {  { 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   free((FREE_ARG) (m+nrl-NR_END));    free((FREE_ARG) (m+nrl-NR_END)); 
 }  } 
   
 /******************* matrix *******************************/  /******************* matrix *******************************/
 double **matrix(long nrl, long nrh, long ncl, long nch)  double **matrix(long nrl, long nrh, long ncl, long nch)
 {  {
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double **m;    double **m;
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()");
   m += NR_END;    m += NR_END;
   m -= nrl;    m -= nrl;
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   m[nrl] += NR_END;    m[nrl] += NR_END;
   m[nrl] -= ncl;    m[nrl] -= ncl;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   return m;    return m;
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
    */     */
 }  }
   
 /*************************free matrix ************************/  /*************************free matrix ************************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 {  {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   free((FREE_ARG)(m+nrl-NR_END));    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /******************* ma3x *******************************/  /******************* ma3x *******************************/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double ***m;    double ***m;
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!m) nrerror("allocation failure 1 in matrix()");
   m += NR_END;    m += NR_END;
   m -= nrl;    m -= nrl;
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   m[nrl] += NR_END;    m[nrl] += NR_END;
   m[nrl] -= ncl;    m[nrl] -= ncl;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   m[nrl][ncl] += NR_END;    m[nrl][ncl] += NR_END;
   m[nrl][ncl] -= nll;    m[nrl][ncl] -= nll;
   for (j=ncl+1; j<=nch; j++)    for (j=ncl+1; j<=nch; j++) 
     m[nrl][j]=m[nrl][j-1]+nlay;      m[nrl][j]=m[nrl][j-1]+nlay;
      
   for (i=nrl+1; i<=nrh; i++) {    for (i=nrl+1; i<=nrh; i++) {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for (j=ncl+1; j<=nch; j++)      for (j=ncl+1; j<=nch; j++) 
       m[i][j]=m[i][j-1]+nlay;        m[i][j]=m[i][j-1]+nlay;
   }    }
   return m;    return m; 
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   */    */
 }  }
   
 /*************************free ma3x ************************/  /*************************free ma3x ************************/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   free((FREE_ARG)(m+nrl-NR_END));    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /*************** function subdirf ***********/  /*************** function subdirf ***********/
 char *subdirf(char fileres[])  char *subdirf(char fileres[])
 {  {
   /* Caution optionfilefiname is hidden */    /* Caution optionfilefiname is hidden */
   strcpy(tmpout,optionfilefiname);    strcpy(tmpout,optionfilefiname);
   strcat(tmpout,"/"); /* Add to the right */    strcat(tmpout,"/"); /* Add to the right */
   strcat(tmpout,fileres);    strcat(tmpout,fileres);
   return tmpout;    return tmpout;
 }  }
   
 /*************** function subdirf2 ***********/  /*************** function subdirf2 ***********/
 char *subdirf2(char fileres[], char *preop)  char *subdirf2(char fileres[], char *preop)
 {  {
      
   /* Caution optionfilefiname is hidden */    /* Caution optionfilefiname is hidden */
   strcpy(tmpout,optionfilefiname);    strcpy(tmpout,optionfilefiname);
   strcat(tmpout,"/");    strcat(tmpout,"/");
   strcat(tmpout,preop);    strcat(tmpout,preop);
   strcat(tmpout,fileres);    strcat(tmpout,fileres);
   return tmpout;    return tmpout;
 }  }
   
 /*************** function subdirf3 ***********/  /*************** function subdirf3 ***********/
 char *subdirf3(char fileres[], char *preop, char *preop2)  char *subdirf3(char fileres[], char *preop, char *preop2)
 {  {
      
   /* Caution optionfilefiname is hidden */    /* Caution optionfilefiname is hidden */
   strcpy(tmpout,optionfilefiname);    strcpy(tmpout,optionfilefiname);
   strcat(tmpout,"/");    strcat(tmpout,"/");
   strcat(tmpout,preop);    strcat(tmpout,preop);
   strcat(tmpout,preop2);    strcat(tmpout,preop2);
   strcat(tmpout,fileres);    strcat(tmpout,fileres);
   return tmpout;    return tmpout;
 }  }
   
 /***************** f1dim *************************/  /***************** f1dim *************************/
 extern int ncom;  extern int ncom; 
 extern double *pcom,*xicom;  extern double *pcom,*xicom;
 extern double (*nrfunc)(double []);  extern double (*nrfunc)(double []); 
     
 double f1dim(double x)  double f1dim(double x) 
 {  { 
   int j;    int j; 
   double f;    double f;
   double *xt;    double *xt; 
     
   xt=vector(1,ncom);    xt=vector(1,ncom); 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   f=(*nrfunc)(xt);    f=(*nrfunc)(xt); 
   free_vector(xt,1,ncom);    free_vector(xt,1,ncom); 
   return f;    return f; 
 }  } 
   
 /*****************brent *************************/  /*****************brent *************************/
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 {  { 
   int iter;    int iter; 
   double a,b,d,etemp;    double a,b,d,etemp;
   double fu,fv,fw,fx;    double fu,fv,fw,fx;
   double ftemp;    double ftemp;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double e=0.0;    double e=0.0; 
     
   a=(ax < cx ? ax : cx);    a=(ax < cx ? ax : cx); 
   b=(ax > cx ? ax : cx);    b=(ax > cx ? ax : cx); 
   x=w=v=bx;    x=w=v=bx; 
   fw=fv=fx=(*f)(x);    fw=fv=fx=(*f)(x); 
   for (iter=1;iter<=ITMAX;iter++) {    for (iter=1;iter<=ITMAX;iter++) { 
     xm=0.5*(a+b);      xm=0.5*(a+b); 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     printf(".");fflush(stdout);      printf(".");fflush(stdout);
     fprintf(ficlog,".");fflush(ficlog);      fprintf(ficlog,".");fflush(ficlog);
 #ifdef DEBUG  #ifdef DEBUG
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 #endif  #endif
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       *xmin=x;        *xmin=x; 
       return fx;        return fx; 
     }      } 
     ftemp=fu;      ftemp=fu;
     if (fabs(e) > tol1) {      if (fabs(e) > tol1) { 
       r=(x-w)*(fx-fv);        r=(x-w)*(fx-fv); 
       q=(x-v)*(fx-fw);        q=(x-v)*(fx-fw); 
       p=(x-v)*q-(x-w)*r;        p=(x-v)*q-(x-w)*r; 
       q=2.0*(q-r);        q=2.0*(q-r); 
       if (q > 0.0) p = -p;        if (q > 0.0) p = -p; 
       q=fabs(q);        q=fabs(q); 
       etemp=e;        etemp=e; 
       e=d;        e=d; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       else {        else { 
         d=p/q;          d=p/q; 
         u=x+d;          u=x+d; 
         if (u-a < tol2 || b-u < tol2)          if (u-a < tol2 || b-u < tol2) 
           d=SIGN(tol1,xm-x);            d=SIGN(tol1,xm-x); 
       }        } 
     } else {      } else { 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     fu=(*f)(u);      fu=(*f)(u); 
     if (fu <= fx) {      if (fu <= fx) { 
       if (u >= x) a=x; else b=x;        if (u >= x) a=x; else b=x; 
       SHFT(v,w,x,u)        SHFT(v,w,x,u) 
         SHFT(fv,fw,fx,fu)          SHFT(fv,fw,fx,fu) 
         } else {          } else { 
           if (u < x) a=u; else b=u;            if (u < x) a=u; else b=u; 
           if (fu <= fw || w == x) {            if (fu <= fw || w == x) { 
             v=w;              v=w; 
             w=u;              w=u; 
             fv=fw;              fv=fw; 
             fw=fu;              fw=fu; 
           } else if (fu <= fv || v == x || v == w) {            } else if (fu <= fv || v == x || v == w) { 
             v=u;              v=u; 
             fv=fu;              fv=fu; 
           }            } 
         }          } 
   }    } 
   nrerror("Too many iterations in brent");    nrerror("Too many iterations in brent"); 
   *xmin=x;    *xmin=x; 
   return fx;    return fx; 
 }  } 
   
 /****************** mnbrak ***********************/  /****************** mnbrak ***********************/
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
             double (*func)(double))              double (*func)(double)) 
 {  { 
   double ulim,u,r,q, dum;    double ulim,u,r,q, dum;
   double fu;    double fu; 
     
   *fa=(*func)(*ax);    *fa=(*func)(*ax); 
   *fb=(*func)(*bx);    *fb=(*func)(*bx); 
   if (*fb > *fa) {    if (*fb > *fa) { 
     SHFT(dum,*ax,*bx,dum)      SHFT(dum,*ax,*bx,dum) 
       SHFT(dum,*fb,*fa,dum)        SHFT(dum,*fb,*fa,dum) 
       }        } 
   *cx=(*bx)+GOLD*(*bx-*ax);    *cx=(*bx)+GOLD*(*bx-*ax); 
   *fc=(*func)(*cx);    *fc=(*func)(*cx); 
   while (*fb > *fc) {    while (*fb > *fc) { 
     r=(*bx-*ax)*(*fb-*fc);      r=(*bx-*ax)*(*fb-*fc); 
     q=(*bx-*cx)*(*fb-*fa);      q=(*bx-*cx)*(*fb-*fa); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     if ((*bx-u)*(u-*cx) > 0.0) {      if ((*bx-u)*(u-*cx) > 0.0) { 
       fu=(*func)(u);        fu=(*func)(u); 
     } else if ((*cx-u)*(u-ulim) > 0.0) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       fu=(*func)(u);        fu=(*func)(u); 
       if (fu < *fc) {        if (fu < *fc) { 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           SHFT(*fb,*fc,fu,(*func)(u))            SHFT(*fb,*fc,fu,(*func)(u)) 
           }            } 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       u=ulim;        u=ulim; 
       fu=(*func)(u);        fu=(*func)(u); 
     } else {      } else { 
       u=(*cx)+GOLD*(*cx-*bx);        u=(*cx)+GOLD*(*cx-*bx); 
       fu=(*func)(u);        fu=(*func)(u); 
     }      } 
     SHFT(*ax,*bx,*cx,u)      SHFT(*ax,*bx,*cx,u) 
       SHFT(*fa,*fb,*fc,fu)        SHFT(*fa,*fb,*fc,fu) 
       }        } 
 }  } 
   
 /*************** linmin ************************/  /*************** linmin ************************/
   
 int ncom;  int ncom; 
 double *pcom,*xicom;  double *pcom,*xicom;
 double (*nrfunc)(double []);  double (*nrfunc)(double []); 
     
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 {  { 
   double brent(double ax, double bx, double cx,    double brent(double ax, double bx, double cx, 
                double (*f)(double), double tol, double *xmin);                 double (*f)(double), double tol, double *xmin); 
   double f1dim(double x);    double f1dim(double x); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
               double *fc, double (*func)(double));                double *fc, double (*func)(double)); 
   int j;    int j; 
   double xx,xmin,bx,ax;    double xx,xmin,bx,ax; 
   double fx,fb,fa;    double fx,fb,fa;
     
   ncom=n;    ncom=n; 
   pcom=vector(1,n);    pcom=vector(1,n); 
   xicom=vector(1,n);    xicom=vector(1,n); 
   nrfunc=func;    nrfunc=func; 
   for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
     pcom[j]=p[j];      pcom[j]=p[j]; 
     xicom[j]=xi[j];      xicom[j]=xi[j]; 
   }    } 
   ax=0.0;    ax=0.0; 
   xx=1.0;    xx=1.0; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 #ifdef DEBUG  #ifdef DEBUG
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 #endif  #endif
   for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
     xi[j] *= xmin;      xi[j] *= xmin; 
     p[j] += xi[j];      p[j] += xi[j]; 
   }    } 
   free_vector(xicom,1,n);    free_vector(xicom,1,n); 
   free_vector(pcom,1,n);    free_vector(pcom,1,n); 
 }  } 
   
 char *asc_diff_time(long time_sec, char ascdiff[])  char *asc_diff_time(long time_sec, char ascdiff[])
 {  {
   long sec_left, days, hours, minutes;    long sec_left, days, hours, minutes;
   days = (time_sec) / (60*60*24);    days = (time_sec) / (60*60*24);
   sec_left = (time_sec) % (60*60*24);    sec_left = (time_sec) % (60*60*24);
   hours = (sec_left) / (60*60) ;    hours = (sec_left) / (60*60) ;
   sec_left = (sec_left) %(60*60);    sec_left = (sec_left) %(60*60);
   minutes = (sec_left) /60;    minutes = (sec_left) /60;
   sec_left = (sec_left) % (60);    sec_left = (sec_left) % (60);
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);      sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   return ascdiff;    return ascdiff;
 }  }
   
 /*************** powell ************************/  /*************** powell ************************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
             double (*func)(double []))              double (*func)(double [])) 
 {  { 
   void linmin(double p[], double xi[], int n, double *fret,    void linmin(double p[], double xi[], int n, double *fret, 
               double (*func)(double []));                double (*func)(double [])); 
   int i,ibig,j;    int i,ibig,j; 
   double del,t,*pt,*ptt,*xit;    double del,t,*pt,*ptt,*xit;
   double fp,fptt;    double fp,fptt;
   double *xits;    double *xits;
   int niterf, itmp;    int niterf, itmp;
   
   pt=vector(1,n);    pt=vector(1,n); 
   ptt=vector(1,n);    ptt=vector(1,n); 
   xit=vector(1,n);    xit=vector(1,n); 
   xits=vector(1,n);    xits=vector(1,n); 
   *fret=(*func)(p);    *fret=(*func)(p); 
   for (j=1;j<=n;j++) pt[j]=p[j];    for (j=1;j<=n;j++) pt[j]=p[j]; 
   for (*iter=1;;++(*iter)) {    for (*iter=1;;++(*iter)) { 
     fp=(*fret);      fp=(*fret); 
     ibig=0;      ibig=0; 
     del=0.0;      del=0.0; 
     last_time=curr_time;      last_time=curr_time;
     (void) gettimeofday(&curr_time,&tzp);      (void) gettimeofday(&curr_time,&tzp);
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
    for (i=1;i<=n;i++) {     for (i=1;i<=n;i++) {
       printf(" %d %.12f",i, p[i]);        printf(" %d %.12f",i, p[i]);
       fprintf(ficlog," %d %.12lf",i, p[i]);        fprintf(ficlog," %d %.12lf",i, p[i]);
       fprintf(ficrespow," %.12lf", p[i]);        fprintf(ficrespow," %.12lf", p[i]);
     }      }
     printf("\n");      printf("\n");
     fprintf(ficlog,"\n");      fprintf(ficlog,"\n");
     fprintf(ficrespow,"\n");fflush(ficrespow);      fprintf(ficrespow,"\n");fflush(ficrespow);
     if(*iter <=3){      if(*iter <=3){
       tm = *localtime(&curr_time.tv_sec);        tm = *localtime(&curr_time.tv_sec);
       strcpy(strcurr,asctime(&tm));        strcpy(strcurr,asctime(&tm));
 /*       asctime_r(&tm,strcurr); */  /*       asctime_r(&tm,strcurr); */
       forecast_time=curr_time;        forecast_time=curr_time; 
       itmp = strlen(strcurr);        itmp = strlen(strcurr);
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         strcurr[itmp-1]='\0';          strcurr[itmp-1]='\0';
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for(niterf=10;niterf<=30;niterf+=10){        for(niterf=10;niterf<=30;niterf+=10){
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         tmf = *localtime(&forecast_time.tv_sec);          tmf = *localtime(&forecast_time.tv_sec);
 /*      asctime_r(&tmf,strfor); */  /*      asctime_r(&tmf,strfor); */
         strcpy(strfor,asctime(&tmf));          strcpy(strfor,asctime(&tmf));
         itmp = strlen(strfor);          itmp = strlen(strfor);
         if(strfor[itmp-1]=='\n')          if(strfor[itmp-1]=='\n')
         strfor[itmp-1]='\0';          strfor[itmp-1]='\0';
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }        }
     }      }
     for (i=1;i<=n;i++) {      for (i=1;i<=n;i++) { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       fptt=(*fret);        fptt=(*fret); 
 #ifdef DEBUG  #ifdef DEBUG
       printf("fret=%lf \n",*fret);        printf("fret=%lf \n",*fret);
       fprintf(ficlog,"fret=%lf \n",*fret);        fprintf(ficlog,"fret=%lf \n",*fret);
 #endif  #endif
       printf("%d",i);fflush(stdout);        printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);        fprintf(ficlog,"%d",i);fflush(ficlog);
       linmin(p,xit,n,fret,func);        linmin(p,xit,n,fret,func); 
       if (fabs(fptt-(*fret)) > del) {        if (fabs(fptt-(*fret)) > del) { 
         del=fabs(fptt-(*fret));          del=fabs(fptt-(*fret)); 
         ibig=i;          ibig=i; 
       }        } 
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %.12e",i,(*fret));        printf("%d %.12e",i,(*fret));
       fprintf(ficlog,"%d %.12e",i,(*fret));        fprintf(ficlog,"%d %.12e",i,(*fret));
       for (j=1;j<=n;j++) {        for (j=1;j<=n;j++) {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         printf(" x(%d)=%.12e",j,xit[j]);          printf(" x(%d)=%.12e",j,xit[j]);
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       for(j=1;j<=n;j++) {        for(j=1;j<=n;j++) {
         printf(" p=%.12e",p[j]);          printf(" p=%.12e",p[j]);
         fprintf(ficlog," p=%.12e",p[j]);          fprintf(ficlog," p=%.12e",p[j]);
       }        }
       printf("\n");        printf("\n");
       fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
 #endif  #endif
     }      } 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 #ifdef DEBUG  #ifdef DEBUG
       int k[2],l;        int k[2],l;
       k[0]=1;        k[0]=1;
       k[1]=-1;        k[1]=-1;
       printf("Max: %.12e",(*func)(p));        printf("Max: %.12e",(*func)(p));
       fprintf(ficlog,"Max: %.12e",(*func)(p));        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (j=1;j<=n;j++) {        for (j=1;j<=n;j++) {
         printf(" %.12e",p[j]);          printf(" %.12e",p[j]);
         fprintf(ficlog," %.12e",p[j]);          fprintf(ficlog," %.12e",p[j]);
       }        }
       printf("\n");        printf("\n");
       fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
       for(l=0;l<=1;l++) {        for(l=0;l<=1;l++) {
         for (j=1;j<=n;j++) {          for (j=1;j<=n;j++) {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         }          }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }        }
 #endif  #endif
   
   
       free_vector(xit,1,n);        free_vector(xit,1,n); 
       free_vector(xits,1,n);        free_vector(xits,1,n); 
       free_vector(ptt,1,n);        free_vector(ptt,1,n); 
       free_vector(pt,1,n);        free_vector(pt,1,n); 
       return;        return; 
     }      } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for (j=1;j<=n;j++) {      for (j=1;j<=n;j++) { 
       ptt[j]=2.0*p[j]-pt[j];        ptt[j]=2.0*p[j]-pt[j]; 
       xit[j]=p[j]-pt[j];        xit[j]=p[j]-pt[j]; 
       pt[j]=p[j];        pt[j]=p[j]; 
     }      } 
     fptt=(*func)(ptt);      fptt=(*func)(ptt); 
     if (fptt < fp) {      if (fptt < fp) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       if (t < 0.0) {        if (t < 0.0) { 
         linmin(p,xit,n,fret,func);          linmin(p,xit,n,fret,func); 
         for (j=1;j<=n;j++) {          for (j=1;j<=n;j++) { 
           xi[j][ibig]=xi[j][n];            xi[j][ibig]=xi[j][n]; 
           xi[j][n]=xit[j];            xi[j][n]=xit[j]; 
         }          }
 #ifdef DEBUG  #ifdef DEBUG
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for(j=1;j<=n;j++){          for(j=1;j<=n;j++){
           printf(" %.12e",xit[j]);            printf(" %.12e",xit[j]);
           fprintf(ficlog," %.12e",xit[j]);            fprintf(ficlog," %.12e",xit[j]);
         }          }
         printf("\n");          printf("\n");
         fprintf(ficlog,"\n");          fprintf(ficlog,"\n");
 #endif  #endif
       }        }
     }      } 
   }    } 
 }  } 
   
 /**** Prevalence limit (stable or period prevalence)  ****************/  /**** Prevalence limit (stable or period prevalence)  ****************/
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
      matrix by transitions matrix until convergence is reached */       matrix by transitions matrix until convergence is reached */
   
   int i, ii,j,k;    int i, ii,j,k;
   double min, max, maxmin, maxmax,sumnew=0.;    double min, max, maxmin, maxmax,sumnew=0.;
   double **matprod2();    double **matprod2();
   double **out, cov[NCOVMAX], **pmij();    double **out, cov[NCOVMAX], **pmij();
   double **newm;    double **newm;
   double agefin, delaymax=50 ; /* Max number of years to converge */    double agefin, delaymax=50 ; /* Max number of years to converge */
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=nlstate+ndeath;j++){      for (j=1;j<=nlstate+ndeath;j++){
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }      }
   
    cov[1]=1.;     cov[1]=1.;
     
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     newm=savm;      newm=savm;
     /* Covariates have to be included here again */      /* Covariates have to be included here again */
      cov[2]=agefin;       cov[2]=agefin;
      
       for (k=1; k<=cptcovn;k++) {        for (k=1; k<=cptcovn;k++) {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       }        }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (k=1; k<=cptcovprod;k++)        for (k=1; k<=cptcovprod;k++)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
     savm=oldm;      savm=oldm;
     oldm=newm;      oldm=newm;
     maxmax=0.;      maxmax=0.;
     for(j=1;j<=nlstate;j++){      for(j=1;j<=nlstate;j++){
       min=1.;        min=1.;
       max=0.;        max=0.;
       for(i=1; i<=nlstate; i++) {        for(i=1; i<=nlstate; i++) {
         sumnew=0;          sumnew=0;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         prlim[i][j]= newm[i][j]/(1-sumnew);          prlim[i][j]= newm[i][j]/(1-sumnew);
         max=FMAX(max,prlim[i][j]);          max=FMAX(max,prlim[i][j]);
         min=FMIN(min,prlim[i][j]);          min=FMIN(min,prlim[i][j]);
       }        }
       maxmin=max-min;        maxmin=max-min;
       maxmax=FMAX(maxmax,maxmin);        maxmax=FMAX(maxmax,maxmin);
     }      }
     if(maxmax < ftolpl){      if(maxmax < ftolpl){
       return prlim;        return prlim;
     }      }
   }    }
 }  }
   
 /*************** transition probabilities ***************/  /*************** transition probabilities ***************/ 
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 {  {
   double s1, s2;    double s1, s2;
   /*double t34;*/    /*double t34;*/
   int i,j,j1, nc, ii, jj;    int i,j,j1, nc, ii, jj;
   
     for(i=1; i<= nlstate; i++){      for(i=1; i<= nlstate; i++){
       for(j=1; j<i;j++){        for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*s2 += param[i][j][nc]*cov[nc];*/            /*s2 += param[i][j][nc]*cov[nc];*/
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         }          }
         ps[i][j]=s2;          ps[i][j]=s2;
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       }        }
       for(j=i+1; j<=nlstate+ndeath;j++){        for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         }          }
         ps[i][j]=s2;          ps[i][j]=s2;
       }        }
     }      }
     /*ps[3][2]=1;*/      /*ps[3][2]=1;*/
          
     for(i=1; i<= nlstate; i++){      for(i=1; i<= nlstate; i++){
       s1=0;        s1=0;
       for(j=1; j<i; j++)        for(j=1; j<i; j++)
         s1+=exp(ps[i][j]);          s1+=exp(ps[i][j]);
       for(j=i+1; j<=nlstate+ndeath; j++)        for(j=i+1; j<=nlstate+ndeath; j++)
         s1+=exp(ps[i][j]);          s1+=exp(ps[i][j]);
       ps[i][i]=1./(s1+1.);        ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)        for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)        for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */      } /* end i */
          
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){        for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;          ps[ii][jj]=0;
         ps[ii][ii]=1;          ps[ii][ii]=1;
       }        }
     }      }
          
   
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 /*         printf("ddd %lf ",ps[ii][jj]); */  /*         printf("ddd %lf ",ps[ii][jj]); */
 /*       } */  /*       } */
 /*       printf("\n "); */  /*       printf("\n "); */
 /*        } */  /*        } */
 /*        printf("\n ");printf("%lf ",cov[2]); */  /*        printf("\n ");printf("%lf ",cov[2]); */
        /*         /*
       for(i=1; i<= npar; i++) printf("%f ",x[i]);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       goto end;*/        goto end;*/
     return ps;      return ps;
 }  }
   
 /**************** Product of 2 matrices ******************/  /**************** Product of 2 matrices ******************/
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 {  {
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   /* in, b, out are matrice of pointers which should have been initialized    /* in, b, out are matrice of pointers which should have been initialized 
      before: only the contents of out is modified. The function returns       before: only the contents of out is modified. The function returns
      a pointer to pointers identical to out */       a pointer to pointers identical to out */
   long i, j, k;    long i, j, k;
   for(i=nrl; i<= nrh; i++)    for(i=nrl; i<= nrh; i++)
     for(k=ncolol; k<=ncoloh; k++)      for(k=ncolol; k<=ncoloh; k++)
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         out[i][k] +=in[i][j]*b[j][k];          out[i][k] +=in[i][j]*b[j][k];
   
   return out;    return out;
 }  }
   
   
 /************* Higher Matrix Product ***************/  /************* Higher Matrix Product ***************/
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 {  {
   /* Computes the transition matrix starting at age 'age' over    /* Computes the transition matrix starting at age 'age' over 
      'nhstepm*hstepm*stepm' months (i.e. until       'nhstepm*hstepm*stepm' months (i.e. until
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
      nhstepm*hstepm matrices.       nhstepm*hstepm matrices. 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
      (typically every 2 years instead of every month which is too big       (typically every 2 years instead of every month which is too big 
      for the memory).       for the memory).
      Model is determined by parameters x and covariates have to be       Model is determined by parameters x and covariates have to be 
      included manually here.       included manually here. 
   
      */       */
   
   int i, j, d, h, k;    int i, j, d, h, k;
   double **out, cov[NCOVMAX];    double **out, cov[NCOVMAX];
   double **newm;    double **newm;
   
   /* Hstepm could be zero and should return the unit matrix */    /* Hstepm could be zero and should return the unit matrix */
   for (i=1;i<=nlstate+ndeath;i++)    for (i=1;i<=nlstate+ndeath;i++)
     for (j=1;j<=nlstate+ndeath;j++){      for (j=1;j<=nlstate+ndeath;j++){
       oldm[i][j]=(i==j ? 1.0 : 0.0);        oldm[i][j]=(i==j ? 1.0 : 0.0);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        po[i][j][0]=(i==j ? 1.0 : 0.0);
     }      }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(h=1; h <=nhstepm; h++){    for(h=1; h <=nhstepm; h++){
     for(d=1; d <=hstepm; d++){      for(d=1; d <=hstepm; d++){
       newm=savm;        newm=savm;
       /* Covariates have to be included here again */        /* Covariates have to be included here again */
       cov[1]=1.;        cov[1]=1.;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (k=1; k<=cptcovage;k++)        for (k=1; k<=cptcovage;k++)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for (k=1; k<=cptcovprod;k++)        for (k=1; k<=cptcovprod;k++)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       savm=oldm;        savm=oldm;
       oldm=newm;        oldm=newm;
     }      }
     for(i=1; i<=nlstate+ndeath; i++)      for(i=1; i<=nlstate+ndeath; i++)
       for(j=1;j<=nlstate+ndeath;j++) {        for(j=1;j<=nlstate+ndeath;j++) {
         po[i][j][h]=newm[i][j];          po[i][j][h]=newm[i][j];
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
          */           */
       }        }
   } /* end h */    } /* end h */
   return po;    return po;
 }  }
   
   
 /*************** log-likelihood *************/  /*************** log-likelihood *************/
 double func( double *x)  double func( double *x)
 {  {
   int i, ii, j, k, mi, d, kk;    int i, ii, j, k, mi, d, kk;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double **out;    double **out;
   double sw; /* Sum of weights */    double sw; /* Sum of weights */
   double lli; /* Individual log likelihood */    double lli; /* Individual log likelihood */
   int s1, s2;    int s1, s2;
   double bbh, survp;    double bbh, survp;
   long ipmx;    long ipmx;
   /*extern weight */    /*extern weight */
   /* We are differentiating ll according to initial status */    /* We are differentiating ll according to initial status */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /*for(i=1;i<imx;i++)    /*for(i=1;i<imx;i++) 
     printf(" %d\n",s[4][i]);      printf(" %d\n",s[4][i]);
   */    */
   cov[1]=1.;    cov[1]=1.;
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
   if(mle==1){    if(mle==1){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){        for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){            for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         for(d=0; d<dh[mi][i]; d++){          for(d=0; d<dh[mi][i]; d++){
           newm=savm;            newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {            for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;            savm=oldm;
           oldm=newm;            oldm=newm;
         } /* end mult */          } /* end mult */
              
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         /* But now since version 0.9 we anticipate for bias at large stepm.          /* But now since version 0.9 we anticipate for bias at large stepm.
          * If stepm is larger than one month (smallest stepm) and if the exact delay           * If stepm is larger than one month (smallest stepm) and if the exact delay 
          * (in months) between two waves is not a multiple of stepm, we rounded to           * (in months) between two waves is not a multiple of stepm, we rounded to 
          * the nearest (and in case of equal distance, to the lowest) interval but now           * the nearest (and in case of equal distance, to the lowest) interval but now
          * we keep into memory the bias bh[mi][i] and also the previous matrix product           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
          * probability in order to take into account the bias as a fraction of the way           * probability in order to take into account the bias as a fraction of the way
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
          * -stepm/2 to stepm/2 .           * -stepm/2 to stepm/2 .
          * For stepm=1 the results are the same as for previous versions of Imach.           * For stepm=1 the results are the same as for previous versions of Imach.
          * For stepm > 1 the results are less biased than in previous versions.           * For stepm > 1 the results are less biased than in previous versions. 
          */           */
         s1=s[mw[mi][i]][i];          s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];          s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;          bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias bh is positive if real duration          /* bias bh is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.           * is higher than the multiple of stepm and negative otherwise.
          */           */
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         if( s2 > nlstate){          if( s2 > nlstate){ 
           /* i.e. if s2 is a death state and if the date of death is known            /* i.e. if s2 is a death state and if the date of death is known 
              then the contribution to the likelihood is the probability to               then the contribution to the likelihood is the probability to 
              die between last step unit time and current  step unit time,               die between last step unit time and current  step unit time, 
              which is also equal to probability to die before dh               which is also equal to probability to die before dh 
              minus probability to die before dh-stepm .               minus probability to die before dh-stepm . 
              In version up to 0.92 likelihood was computed               In version up to 0.92 likelihood was computed
         as if date of death was unknown. Death was treated as any other          as if date of death was unknown. Death was treated as any other
         health state: the date of the interview describes the actual state          health state: the date of the interview describes the actual state
         and not the date of a change in health state. The former idea was          and not the date of a change in health state. The former idea was
         to consider that at each interview the state was recorded          to consider that at each interview the state was recorded
         (healthy, disable or death) and IMaCh was corrected; but when we          (healthy, disable or death) and IMaCh was corrected; but when we
         introduced the exact date of death then we should have modified          introduced the exact date of death then we should have modified
         the contribution of an exact death to the likelihood. This new          the contribution of an exact death to the likelihood. This new
         contribution is smaller and very dependent of the step unit          contribution is smaller and very dependent of the step unit
         stepm. It is no more the probability to die between last interview          stepm. It is no more the probability to die between last interview
         and month of death but the probability to survive from last          and month of death but the probability to survive from last
         interview up to one month before death multiplied by the          interview up to one month before death multiplied by the
         probability to die within a month. Thanks to Chris          probability to die within a month. Thanks to Chris
         Jackson for correcting this bug.  Former versions increased          Jackson for correcting this bug.  Former versions increased
         mortality artificially. The bad side is that we add another loop          mortality artificially. The bad side is that we add another loop
         which slows down the processing. The difference can be up to 10%          which slows down the processing. The difference can be up to 10%
         lower mortality.          lower mortality.
           */            */
           lli=log(out[s1][s2] - savm[s1][s2]);            lli=log(out[s1][s2] - savm[s1][s2]);
   
   
         } else if  (s2==-2) {          } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++)            for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           /*survp += out[s1][j]; */            /*survp += out[s1][j]; */
           lli= log(survp);            lli= log(survp);
         }          }
                  
         else if  (s2==-4) {          else if  (s2==-4) { 
           for (j=3,survp=0. ; j<=nlstate; j++)              for (j=3,survp=0. ; j<=nlstate; j++)  
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);            lli= log(survp); 
         }          } 
   
         else if  (s2==-5) {          else if  (s2==-5) { 
           for (j=1,survp=0. ; j<=2; j++)              for (j=1,survp=0. ; j<=2; j++)  
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);            lli= log(survp); 
         }          } 
                  
         else{          else{
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         }          } 
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         /*if(lli ==000.0)*/          /*if(lli ==000.0)*/
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         ipmx +=1;          ipmx +=1;
         sw += weight[i];          sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       } /* end of wave */        } /* end of wave */
     } /* end of individual */      } /* end of individual */
   }  else if(mle==2){    }  else if(mle==2){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){        for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){            for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         for(d=0; d<=dh[mi][i]; d++){          for(d=0; d<=dh[mi][i]; d++){
           newm=savm;            newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {            for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;            savm=oldm;
           oldm=newm;            oldm=newm;
         } /* end mult */          } /* end mult */
              
         s1=s[mw[mi][i]][i];          s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];          s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;          bbh=(double)bh[mi][i]/(double)stepm; 
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         ipmx +=1;          ipmx +=1;
         sw += weight[i];          sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       } /* end of wave */        } /* end of wave */
     } /* end of individual */      } /* end of individual */
   }  else if(mle==3){  /* exponential inter-extrapolation */    }  else if(mle==3){  /* exponential inter-extrapolation */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){        for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){            for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         for(d=0; d<dh[mi][i]; d++){          for(d=0; d<dh[mi][i]; d++){
           newm=savm;            newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {            for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;            savm=oldm;
           oldm=newm;            oldm=newm;
         } /* end mult */          } /* end mult */
              
         s1=s[mw[mi][i]][i];          s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];          s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;          bbh=(double)bh[mi][i]/(double)stepm; 
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         ipmx +=1;          ipmx +=1;
         sw += weight[i];          sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       } /* end of wave */        } /* end of wave */
     } /* end of individual */      } /* end of individual */
   }else if (mle==4){  /* ml=4 no inter-extrapolation */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){        for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){            for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         for(d=0; d<dh[mi][i]; d++){          for(d=0; d<dh[mi][i]; d++){
           newm=savm;            newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {            for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
                  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;            savm=oldm;
           oldm=newm;            oldm=newm;
         } /* end mult */          } /* end mult */
              
         s1=s[mw[mi][i]][i];          s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];          s2=s[mw[mi+1][i]][i];
         if( s2 > nlstate){          if( s2 > nlstate){ 
           lli=log(out[s1][s2] - savm[s1][s2]);            lli=log(out[s1][s2] - savm[s1][s2]);
         }else{          }else{
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          }
         ipmx +=1;          ipmx +=1;
         sw += weight[i];          sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       } /* end of wave */        } /* end of wave */
     } /* end of individual */      } /* end of individual */
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){        for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){            for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         for(d=0; d<dh[mi][i]; d++){          for(d=0; d<dh[mi][i]; d++){
           newm=savm;            newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {            for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
                  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;            savm=oldm;
           oldm=newm;            oldm=newm;
         } /* end mult */          } /* end mult */
              
         s1=s[mw[mi][i]][i];          s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];          s2=s[mw[mi+1][i]][i];
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         ipmx +=1;          ipmx +=1;
         sw += weight[i];          sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       } /* end of wave */        } /* end of wave */
     } /* end of individual */      } /* end of individual */
   } /* End of if */    } /* End of if */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   return -l;    return -l;
 }  }
   
 /*************** log-likelihood *************/  /*************** log-likelihood *************/
 double funcone( double *x)  double funcone( double *x)
 {  {
   /* Same as likeli but slower because of a lot of printf and if */    /* Same as likeli but slower because of a lot of printf and if */
   int i, ii, j, k, mi, d, kk;    int i, ii, j, k, mi, d, kk;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double **out;    double **out;
   double lli; /* Individual log likelihood */    double lli; /* Individual log likelihood */
   double llt;    double llt;
   int s1, s2;    int s1, s2;
   double bbh, survp;    double bbh, survp;
   /*extern weight */    /*extern weight */
   /* We are differentiating ll according to initial status */    /* We are differentiating ll according to initial status */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /*for(i=1;i<imx;i++)    /*for(i=1;i<imx;i++) 
     printf(" %d\n",s[4][i]);      printf(" %d\n",s[4][i]);
   */    */
   cov[1]=1.;    cov[1]=1.;
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(mi=1; mi<= wav[i]-1; mi++){      for(mi=1; mi<= wav[i]-1; mi++){
       for (ii=1;ii<=nlstate+ndeath;ii++)        for (ii=1;ii<=nlstate+ndeath;ii++)
         for (j=1;j<=nlstate+ndeath;j++){          for (j=1;j<=nlstate+ndeath;j++){
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           savm[ii][j]=(ii==j ? 1.0 : 0.0);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }          }
       for(d=0; d<dh[mi][i]; d++){        for(d=0; d<dh[mi][i]; d++){
         newm=savm;          newm=savm;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (kk=1; kk<=cptcovage;kk++) {          for (kk=1; kk<=cptcovage;kk++) {
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }          }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;          savm=oldm;
         oldm=newm;          oldm=newm;
       } /* end mult */        } /* end mult */
              
       s1=s[mw[mi][i]][i];        s1=s[mw[mi][i]][i];
       s2=s[mw[mi+1][i]][i];        s2=s[mw[mi+1][i]][i];
       bbh=(double)bh[mi][i]/(double)stepm;        bbh=(double)bh[mi][i]/(double)stepm; 
       /* bias is positive if real duration        /* bias is positive if real duration
        * is higher than the multiple of stepm and negative otherwise.         * is higher than the multiple of stepm and negative otherwise.
        */         */
       if( s2 > nlstate && (mle <5) ){  /* Jackson */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         lli=log(out[s1][s2] - savm[s1][s2]);          lli=log(out[s1][s2] - savm[s1][s2]);
       } else if  (s2==-2) {        } else if  (s2==-2) {
         for (j=1,survp=0. ; j<=nlstate; j++)          for (j=1,survp=0. ; j<=nlstate; j++) 
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         lli= log(survp);          lli= log(survp);
       }else if (mle==1){        }else if (mle==1){
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       } else if(mle==2){        } else if(mle==2){
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       } else if(mle==3){  /* exponential inter-extrapolation */        } else if(mle==3){  /* exponential inter-extrapolation */
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       } else if (mle==4){  /* mle=4 no inter-extrapolation */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         lli=log(out[s1][s2]); /* Original formula */          lli=log(out[s1][s2]); /* Original formula */
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         lli=log(out[s1][s2]); /* Original formula */          lli=log(out[s1][s2]); /* Original formula */
       } /* End of if */        } /* End of if */
       ipmx +=1;        ipmx +=1;
       sw += weight[i];        sw += weight[i];
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if(globpr){        if(globpr){
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
  %11.6f %11.6f %11.6f ", \   %11.6f %11.6f %11.6f ", \
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           llt +=ll[k]*gipmx/gsw;            llt +=ll[k]*gipmx/gsw;
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         }          }
         fprintf(ficresilk," %10.6f\n", -llt);          fprintf(ficresilk," %10.6f\n", -llt);
       }        }
     } /* end of wave */      } /* end of wave */
   } /* end of individual */    } /* end of individual */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   if(globpr==0){ /* First time we count the contributions and weights */    if(globpr==0){ /* First time we count the contributions and weights */
     gipmx=ipmx;      gipmx=ipmx;
     gsw=sw;      gsw=sw;
   }    }
   return -l;    return -l;
 }  }
   
   
 /*************** function likelione ***********/  /*************** function likelione ***********/
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 {  {
   /* This routine should help understanding what is done with    /* This routine should help understanding what is done with 
      the selection of individuals/waves and       the selection of individuals/waves and
      to check the exact contribution to the likelihood.       to check the exact contribution to the likelihood.
      Plotting could be done.       Plotting could be done.
    */     */
   int k;    int k;
   
   if(*globpri !=0){ /* Just counts and sums, no printings */    if(*globpri !=0){ /* Just counts and sums, no printings */
     strcpy(fileresilk,"ilk");      strcpy(fileresilk,"ilk"); 
     strcat(fileresilk,fileres);      strcat(fileresilk,fileres);
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresilk);        printf("Problem with resultfile: %s\n", fileresilk);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     }      }
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     for(k=1; k<=nlstate; k++)      for(k=1; k<=nlstate; k++) 
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   }    }
   
   *fretone=(*funcone)(p);    *fretone=(*funcone)(p);
   if(*globpri !=0){    if(*globpri !=0){
     fclose(ficresilk);      fclose(ficresilk);
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     fflush(fichtm);      fflush(fichtm); 
   }    } 
   return;    return;
 }  }
   
   
 /*********** Maximum Likelihood Estimation ***************/  /*********** Maximum Likelihood Estimation ***************/
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 {  {
   int i,j, iter;    int i,j, iter;
   double **xi;    double **xi;
   double fret;    double fret;
   double fretone; /* Only one call to likelihood */    double fretone; /* Only one call to likelihood */
   /*  char filerespow[FILENAMELENGTH];*/    /*  char filerespow[FILENAMELENGTH];*/
   xi=matrix(1,npar,1,npar);    xi=matrix(1,npar,1,npar);
   for (i=1;i<=npar;i++)    for (i=1;i<=npar;i++)
     for (j=1;j<=npar;j++)      for (j=1;j<=npar;j++)
       xi[i][j]=(i==j ? 1.0 : 0.0);        xi[i][j]=(i==j ? 1.0 : 0.0);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   strcpy(filerespow,"pow");    strcpy(filerespow,"pow"); 
   strcat(filerespow,fileres);    strcat(filerespow,fileres);
   if((ficrespow=fopen(filerespow,"w"))==NULL) {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     printf("Problem with resultfile: %s\n", filerespow);      printf("Problem with resultfile: %s\n", filerespow);
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   }    }
   fprintf(ficrespow,"# Powell\n# iter -2*LL");    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   for (i=1;i<=nlstate;i++)    for (i=1;i<=nlstate;i++)
     for(j=1;j<=nlstate+ndeath;j++)      for(j=1;j<=nlstate+ndeath;j++)
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficrespow,"\n");    fprintf(ficrespow,"\n");
   
   powell(p,xi,npar,ftol,&iter,&fret,func);    powell(p,xi,npar,ftol,&iter,&fret,func);
   
   free_matrix(xi,1,npar,1,npar);    free_matrix(xi,1,npar,1,npar);
   fclose(ficrespow);    fclose(ficrespow);
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
 }  }
   
 /**** Computes Hessian and covariance matrix ***/  /**** Computes Hessian and covariance matrix ***/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 {  {
   double  **a,**y,*x,pd;    double  **a,**y,*x,pd;
   double **hess;    double **hess;
   int i, j,jk;    int i, j,jk;
   int *indx;    int *indx;
   
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   void lubksb(double **a, int npar, int *indx, double b[]) ;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   double gompertz(double p[]);    double gompertz(double p[]);
   hess=matrix(1,npar,1,npar);    hess=matrix(1,npar,1,npar);
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   for (i=1;i<=npar;i++){    for (i=1;i<=npar;i++){
     printf("%d",i);fflush(stdout);      printf("%d",i);fflush(stdout);
     fprintf(ficlog,"%d",i);fflush(ficlog);      fprintf(ficlog,"%d",i);fflush(ficlog);
         
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
          
     /*  printf(" %f ",p[i]);      /*  printf(" %f ",p[i]);
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   }    }
      
   for (i=1;i<=npar;i++) {    for (i=1;i<=npar;i++) {
     for (j=1;j<=npar;j++)  {      for (j=1;j<=npar;j++)  {
       if (j>i) {        if (j>i) { 
         printf(".%d%d",i,j);fflush(stdout);          printf(".%d%d",i,j);fflush(stdout);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         hess[i][j]=hessij(p,delti,i,j,func,npar);          hess[i][j]=hessij(p,delti,i,j,func,npar);
                  
         hess[j][i]=hess[i][j];              hess[j][i]=hess[i][j];    
         /*printf(" %lf ",hess[i][j]);*/          /*printf(" %lf ",hess[i][j]);*/
       }        }
     }      }
   }    }
   printf("\n");    printf("\n");
   fprintf(ficlog,"\n");    fprintf(ficlog,"\n");
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      
   a=matrix(1,npar,1,npar);    a=matrix(1,npar,1,npar);
   y=matrix(1,npar,1,npar);    y=matrix(1,npar,1,npar);
   x=vector(1,npar);    x=vector(1,npar);
   indx=ivector(1,npar);    indx=ivector(1,npar);
   for (i=1;i<=npar;i++)    for (i=1;i<=npar;i++)
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   ludcmp(a,npar,indx,&pd);    ludcmp(a,npar,indx,&pd);
   
   for (j=1;j<=npar;j++) {    for (j=1;j<=npar;j++) {
     for (i=1;i<=npar;i++) x[i]=0;      for (i=1;i<=npar;i++) x[i]=0;
     x[j]=1;      x[j]=1;
     lubksb(a,npar,indx,x);      lubksb(a,npar,indx,x);
     for (i=1;i<=npar;i++){      for (i=1;i<=npar;i++){ 
       matcov[i][j]=x[i];        matcov[i][j]=x[i];
     }      }
   }    }
   
   printf("\n#Hessian matrix#\n");    printf("\n#Hessian matrix#\n");
   fprintf(ficlog,"\n#Hessian matrix#\n");    fprintf(ficlog,"\n#Hessian matrix#\n");
   for (i=1;i<=npar;i++) {    for (i=1;i<=npar;i++) { 
     for (j=1;j<=npar;j++) {      for (j=1;j<=npar;j++) { 
       printf("%.3e ",hess[i][j]);        printf("%.3e ",hess[i][j]);
       fprintf(ficlog,"%.3e ",hess[i][j]);        fprintf(ficlog,"%.3e ",hess[i][j]);
     }      }
     printf("\n");      printf("\n");
     fprintf(ficlog,"\n");      fprintf(ficlog,"\n");
   }    }
   
   /* Recompute Inverse */    /* Recompute Inverse */
   for (i=1;i<=npar;i++)    for (i=1;i<=npar;i++)
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   ludcmp(a,npar,indx,&pd);    ludcmp(a,npar,indx,&pd);
   
   /*  printf("\n#Hessian matrix recomputed#\n");    /*  printf("\n#Hessian matrix recomputed#\n");
   
   for (j=1;j<=npar;j++) {    for (j=1;j<=npar;j++) {
     for (i=1;i<=npar;i++) x[i]=0;      for (i=1;i<=npar;i++) x[i]=0;
     x[j]=1;      x[j]=1;
     lubksb(a,npar,indx,x);      lubksb(a,npar,indx,x);
     for (i=1;i<=npar;i++){      for (i=1;i<=npar;i++){ 
       y[i][j]=x[i];        y[i][j]=x[i];
       printf("%.3e ",y[i][j]);        printf("%.3e ",y[i][j]);
       fprintf(ficlog,"%.3e ",y[i][j]);        fprintf(ficlog,"%.3e ",y[i][j]);
     }      }
     printf("\n");      printf("\n");
     fprintf(ficlog,"\n");      fprintf(ficlog,"\n");
   }    }
   */    */
   
   free_matrix(a,1,npar,1,npar);    free_matrix(a,1,npar,1,npar);
   free_matrix(y,1,npar,1,npar);    free_matrix(y,1,npar,1,npar);
   free_vector(x,1,npar);    free_vector(x,1,npar);
   free_ivector(indx,1,npar);    free_ivector(indx,1,npar);
   free_matrix(hess,1,npar,1,npar);    free_matrix(hess,1,npar,1,npar);
   
   
 }  }
   
 /*************** hessian matrix ****************/  /*************** hessian matrix ****************/
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 {  {
   int i;    int i;
   int l=1, lmax=20;    int l=1, lmax=20;
   double k1,k2;    double k1,k2;
   double p2[NPARMAX+1];    double p2[NPARMAX+1];
   double res;    double res;
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double fx;    double fx;
   int k=0,kmax=10;    int k=0,kmax=10;
   double l1;    double l1;
   
   fx=func(x);    fx=func(x);
   for (i=1;i<=npar;i++) p2[i]=x[i];    for (i=1;i<=npar;i++) p2[i]=x[i];
   for(l=0 ; l <=lmax; l++){    for(l=0 ; l <=lmax; l++){
     l1=pow(10,l);      l1=pow(10,l);
     delts=delt;      delts=delt;
     for(k=1 ; k <kmax; k=k+1){      for(k=1 ; k <kmax; k=k+1){
       delt = delta*(l1*k);        delt = delta*(l1*k);
       p2[theta]=x[theta] +delt;        p2[theta]=x[theta] +delt;
       k1=func(p2)-fx;        k1=func(p2)-fx;
       p2[theta]=x[theta]-delt;        p2[theta]=x[theta]-delt;
       k2=func(p2)-fx;        k2=func(p2)-fx;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        /*res= (k1-2.0*fx+k2)/delt/delt; */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
              
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 #endif  #endif
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         k=kmax;          k=kmax;
       }        }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         k=kmax; l=lmax*10.;          k=kmax; l=lmax*10.;
       }        }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         delts=delt;          delts=delt;
       }        }
     }      }
   }    }
   delti[theta]=delts;    delti[theta]=delts;
   return res;    return res; 
      
 }  }
   
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 {  {
   int i;    int i;
   int l=1, l1, lmax=20;    int l=1, l1, lmax=20;
   double k1,k2,k3,k4,res,fx;    double k1,k2,k3,k4,res,fx;
   double p2[NPARMAX+1];    double p2[NPARMAX+1];
   int k;    int k;
   
   fx=func(x);    fx=func(x);
   for (k=1; k<=2; k++) {    for (k=1; k<=2; k++) {
     for (i=1;i<=npar;i++) p2[i]=x[i];      for (i=1;i<=npar;i++) p2[i]=x[i];
     p2[thetai]=x[thetai]+delti[thetai]/k;      p2[thetai]=x[thetai]+delti[thetai]/k;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     k1=func(p2)-fx;      k1=func(p2)-fx;
      
     p2[thetai]=x[thetai]+delti[thetai]/k;      p2[thetai]=x[thetai]+delti[thetai]/k;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     k2=func(p2)-fx;      k2=func(p2)-fx;
      
     p2[thetai]=x[thetai]-delti[thetai]/k;      p2[thetai]=x[thetai]-delti[thetai]/k;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     k3=func(p2)-fx;      k3=func(p2)-fx;
      
     p2[thetai]=x[thetai]-delti[thetai]/k;      p2[thetai]=x[thetai]-delti[thetai]/k;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     k4=func(p2)-fx;      k4=func(p2)-fx;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 #ifdef DEBUG  #ifdef DEBUG
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 #endif  #endif
   }    }
   return res;    return res;
 }  }
   
 /************** Inverse of matrix **************/  /************** Inverse of matrix **************/
 void ludcmp(double **a, int n, int *indx, double *d)  void ludcmp(double **a, int n, int *indx, double *d) 
 {  { 
   int i,imax,j,k;    int i,imax,j,k; 
   double big,dum,sum,temp;    double big,dum,sum,temp; 
   double *vv;    double *vv; 
     
   vv=vector(1,n);    vv=vector(1,n); 
   *d=1.0;    *d=1.0; 
   for (i=1;i<=n;i++) {    for (i=1;i<=n;i++) { 
     big=0.0;      big=0.0; 
     for (j=1;j<=n;j++)      for (j=1;j<=n;j++) 
       if ((temp=fabs(a[i][j])) > big) big=temp;        if ((temp=fabs(a[i][j])) > big) big=temp; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     vv[i]=1.0/big;      vv[i]=1.0/big; 
   }    } 
   for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
     for (i=1;i<j;i++) {      for (i=1;i<j;i++) { 
       sum=a[i][j];        sum=a[i][j]; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       a[i][j]=sum;        a[i][j]=sum; 
     }      } 
     big=0.0;      big=0.0; 
     for (i=j;i<=n;i++) {      for (i=j;i<=n;i++) { 
       sum=a[i][j];        sum=a[i][j]; 
       for (k=1;k<j;k++)        for (k=1;k<j;k++) 
         sum -= a[i][k]*a[k][j];          sum -= a[i][k]*a[k][j]; 
       a[i][j]=sum;        a[i][j]=sum; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         big=dum;          big=dum; 
         imax=i;          imax=i; 
       }        } 
     }      } 
     if (j != imax) {      if (j != imax) { 
       for (k=1;k<=n;k++) {        for (k=1;k<=n;k++) { 
         dum=a[imax][k];          dum=a[imax][k]; 
         a[imax][k]=a[j][k];          a[imax][k]=a[j][k]; 
         a[j][k]=dum;          a[j][k]=dum; 
       }        } 
       *d = -(*d);        *d = -(*d); 
       vv[imax]=vv[j];        vv[imax]=vv[j]; 
     }      } 
     indx[j]=imax;      indx[j]=imax; 
     if (a[j][j] == 0.0) a[j][j]=TINY;      if (a[j][j] == 0.0) a[j][j]=TINY; 
     if (j != n) {      if (j != n) { 
       dum=1.0/(a[j][j]);        dum=1.0/(a[j][j]); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     }      } 
   }    } 
   free_vector(vv,1,n);  /* Doesn't work */    free_vector(vv,1,n);  /* Doesn't work */
 ;  ;
 }  } 
   
 void lubksb(double **a, int n, int *indx, double b[])  void lubksb(double **a, int n, int *indx, double b[]) 
 {  { 
   int i,ii=0,ip,j;    int i,ii=0,ip,j; 
   double sum;    double sum; 
     
   for (i=1;i<=n;i++) {    for (i=1;i<=n;i++) { 
     ip=indx[i];      ip=indx[i]; 
     sum=b[ip];      sum=b[ip]; 
     b[ip]=b[i];      b[ip]=b[i]; 
     if (ii)      if (ii) 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     else if (sum) ii=i;      else if (sum) ii=i; 
     b[i]=sum;      b[i]=sum; 
   }    } 
   for (i=n;i>=1;i--) {    for (i=n;i>=1;i--) { 
     sum=b[i];      sum=b[i]; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     b[i]=sum/a[i][i];      b[i]=sum/a[i][i]; 
   }    } 
 }  } 
   
 void pstamp(FILE *fichier)  void pstamp(FILE *fichier)
 {  {
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 }  }
   
 /************ Frequencies ********************/  /************ Frequencies ********************/
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 {  /* Some frequencies */  {  /* Some frequencies */
      
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   int first;    int first;
   double ***freq; /* Frequencies */    double ***freq; /* Frequencies */
   double *pp, **prop;    double *pp, **prop;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   char fileresp[FILENAMELENGTH];    char fileresp[FILENAMELENGTH];
      
   pp=vector(1,nlstate);    pp=vector(1,nlstate);
   prop=matrix(1,nlstate,iagemin,iagemax+3);    prop=matrix(1,nlstate,iagemin,iagemax+3);
   strcpy(fileresp,"p");    strcpy(fileresp,"p");
   strcat(fileresp,fileres);    strcat(fileresp,fileres);
   if((ficresp=fopen(fileresp,"w"))==NULL) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
     printf("Problem with prevalence resultfile: %s\n", fileresp);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     exit(0);      exit(0);
   }    }
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   j1=0;    j1=0;
      
   j=cptcoveff;    j=cptcoveff;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
   first=1;    first=1;
   
   for(k1=1; k1<=j;k1++){    for(k1=1; k1<=j;k1++){
     for(i1=1; i1<=ncodemax[k1];i1++){      for(i1=1; i1<=ncodemax[k1];i1++){
       j1++;        j1++;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         scanf("%d", i);*/          scanf("%d", i);*/
       for (i=-5; i<=nlstate+ndeath; i++)          for (i=-5; i<=nlstate+ndeath; i++)  
         for (jk=-5; jk<=nlstate+ndeath; jk++)            for (jk=-5; jk<=nlstate+ndeath; jk++)  
           for(m=iagemin; m <= iagemax+3; m++)            for(m=iagemin; m <= iagemax+3; m++)
             freq[i][jk][m]=0;              freq[i][jk][m]=0;
   
     for (i=1; i<=nlstate; i++)        for (i=1; i<=nlstate; i++)  
       for(m=iagemin; m <= iagemax+3; m++)        for(m=iagemin; m <= iagemax+3; m++)
         prop[i][m]=0;          prop[i][m]=0;
              
       dateintsum=0;        dateintsum=0;
       k2cpt=0;        k2cpt=0;
       for (i=1; i<=imx; i++) {        for (i=1; i<=imx; i++) {
         bool=1;          bool=1;
         if  (cptcovn>0) {          if  (cptcovn>0) {
           for (z1=1; z1<=cptcoveff; z1++)            for (z1=1; z1<=cptcoveff; z1++) 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
               bool=0;                bool=0;
         }          }
         if (bool==1){          if (bool==1){
           for(m=firstpass; m<=lastpass; m++){            for(m=firstpass; m<=lastpass; m++){
             k2=anint[m][i]+(mint[m][i]/12.);              k2=anint[m][i]+(mint[m][i]/12.);
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
               if(agev[m][i]==0) agev[m][i]=iagemax+1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               if (m<lastpass) {                if (m<lastpass) {
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
               }                }
                              
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                 dateintsum=dateintsum+k2;                  dateintsum=dateintsum+k2;
                 k2cpt++;                  k2cpt++;
               }                }
               /*}*/                /*}*/
           }            }
         }          }
       }        }
                 
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       pstamp(ficresp);        pstamp(ficresp);
       if  (cptcovn>0) {        if  (cptcovn>0) {
         fprintf(ficresp, "\n#********** Variable ");          fprintf(ficresp, "\n#********** Variable "); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficresp, "**********\n#");          fprintf(ficresp, "**********\n#");
       }        }
       for(i=1; i<=nlstate;i++)        for(i=1; i<=nlstate;i++) 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fprintf(ficresp, "\n");        fprintf(ficresp, "\n");
              
       for(i=iagemin; i <= iagemax+3; i++){        for(i=iagemin; i <= iagemax+3; i++){
         if(i==iagemax+3){          if(i==iagemax+3){
           fprintf(ficlog,"Total");            fprintf(ficlog,"Total");
         }else{          }else{
           if(first==1){            if(first==1){
             first=0;              first=0;
             printf("See log file for details...\n");              printf("See log file for details...\n");
           }            }
           fprintf(ficlog,"Age %d", i);            fprintf(ficlog,"Age %d", i);
         }          }
         for(jk=1; jk <=nlstate ; jk++){          for(jk=1; jk <=nlstate ; jk++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             pp[jk] += freq[jk][m][i];              pp[jk] += freq[jk][m][i]; 
         }          }
         for(jk=1; jk <=nlstate ; jk++){          for(jk=1; jk <=nlstate ; jk++){
           for(m=-1, pos=0; m <=0 ; m++)            for(m=-1, pos=0; m <=0 ; m++)
             pos += freq[jk][m][i];              pos += freq[jk][m][i];
           if(pp[jk]>=1.e-10){            if(pp[jk]>=1.e-10){
             if(first==1){              if(first==1){
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }              }
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           }else{            }else{
             if(first==1)              if(first==1)
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           }            }
         }          }
   
         for(jk=1; jk <=nlstate ; jk++){          for(jk=1; jk <=nlstate ; jk++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             pp[jk] += freq[jk][m][i];              pp[jk] += freq[jk][m][i];
         }                }       
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           pos += pp[jk];            pos += pp[jk];
           posprop += prop[jk][i];            posprop += prop[jk][i];
         }          }
         for(jk=1; jk <=nlstate ; jk++){          for(jk=1; jk <=nlstate ; jk++){
           if(pos>=1.e-5){            if(pos>=1.e-5){
             if(first==1)              if(first==1)
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }else{            }else{
             if(first==1)              if(first==1)
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           }            }
           if( i <= iagemax){            if( i <= iagemax){
             if(pos>=1.e-5){              if(pos>=1.e-5){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
               /*probs[i][jk][j1]= pp[jk]/pos;*/                /*probs[i][jk][j1]= pp[jk]/pos;*/
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             }              }
             else              else
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           }            }
         }          }
                  
         for(jk=-1; jk <=nlstate+ndeath; jk++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
           for(m=-1; m <=nlstate+ndeath; m++)            for(m=-1; m <=nlstate+ndeath; m++)
             if(freq[jk][m][i] !=0 ) {              if(freq[jk][m][i] !=0 ) {
             if(first==1)              if(first==1)
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             }              }
         if(i <= iagemax)          if(i <= iagemax)
           fprintf(ficresp,"\n");            fprintf(ficresp,"\n");
         if(first==1)          if(first==1)
           printf("Others in log...\n");            printf("Others in log...\n");
         fprintf(ficlog,"\n");          fprintf(ficlog,"\n");
       }        }
     }      }
   }    }
   dateintmean=dateintsum/k2cpt;    dateintmean=dateintsum/k2cpt; 
     
   fclose(ficresp);    fclose(ficresp);
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   free_vector(pp,1,nlstate);    free_vector(pp,1,nlstate);
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   /* End of Freq */    /* End of Freq */
 }  }
   
 /************ Prevalence ********************/  /************ Prevalence ********************/
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 {    {  
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
      in each health status at the date of interview (if between dateprev1 and dateprev2).       in each health status at the date of interview (if between dateprev1 and dateprev2).
      We still use firstpass and lastpass as another selection.       We still use firstpass and lastpass as another selection.
   */    */
     
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   double ***freq; /* Frequencies */    double ***freq; /* Frequencies */
   double *pp, **prop;    double *pp, **prop;
   double pos,posprop;    double pos,posprop; 
   double  y2; /* in fractional years */    double  y2; /* in fractional years */
   int iagemin, iagemax;    int iagemin, iagemax;
   
   iagemin= (int) agemin;    iagemin= (int) agemin;
   iagemax= (int) agemax;    iagemax= (int) agemax;
   /*pp=vector(1,nlstate);*/    /*pp=vector(1,nlstate);*/
   prop=matrix(1,nlstate,iagemin,iagemax+3);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   j1=0;    j1=0;
      
   j=cptcoveff;    j=cptcoveff;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      
   for(k1=1; k1<=j;k1++){    for(k1=1; k1<=j;k1++){
     for(i1=1; i1<=ncodemax[k1];i1++){      for(i1=1; i1<=ncodemax[k1];i1++){
       j1++;        j1++;
              
       for (i=1; i<=nlstate; i++)          for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)          for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0.0;            prop[i][m]=0.0;
             
       for (i=1; i<=imx; i++) { /* Each individual */        for (i=1; i<=imx; i++) { /* Each individual */
         bool=1;          bool=1;
         if  (cptcovn>0) {          if  (cptcovn>0) {
           for (z1=1; z1<=cptcoveff; z1++)            for (z1=1; z1<=cptcoveff; z1++) 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
               bool=0;                bool=0;
         }          } 
         if (bool==1) {          if (bool==1) { 
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
               if(agev[m][i]==0) agev[m][i]=iagemax+1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
               if (s[m][i]>0 && s[m][i]<=nlstate) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 prop[s[m][i]][iagemax+3] += weight[i];                  prop[s[m][i]][iagemax+3] += weight[i]; 
               }                } 
             }              }
           } /* end selection of waves */            } /* end selection of waves */
         }          }
       }        }
       for(i=iagemin; i <= iagemax+3; i++){          for(i=iagemin; i <= iagemax+3; i++){  
                  
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           posprop += prop[jk][i];            posprop += prop[jk][i]; 
         }          } 
   
         for(jk=1; jk <=nlstate ; jk++){              for(jk=1; jk <=nlstate ; jk++){     
           if( i <=  iagemax){            if( i <=  iagemax){ 
             if(posprop>=1.e-5){              if(posprop>=1.e-5){ 
               probs[i][jk][j1]= prop[jk][i]/posprop;                probs[i][jk][j1]= prop[jk][i]/posprop;
             }              } 
           }            } 
         }/* end jk */          }/* end jk */ 
       }/* end i */        }/* end i */ 
     } /* end i1 */      } /* end i1 */
   } /* end k1 */    } /* end k1 */
      
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   /*free_vector(pp,1,nlstate);*/    /*free_vector(pp,1,nlstate);*/
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 }  /* End of prevalence */  }  /* End of prevalence */
   
 /************* Waves Concatenation ***************/  /************* Waves Concatenation ***************/
   
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 {  {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
      Death is a valid wave (if date is known).       Death is a valid wave (if date is known).
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      and mw[mi+1][i]. dh depends on stepm.       and mw[mi+1][i]. dh depends on stepm.
      */       */
   
   int i, mi, m;    int i, mi, m;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
      double sum=0., jmean=0.;*/       double sum=0., jmean=0.;*/
   int first;    int first;
   int j, k=0,jk, ju, jl;    int j, k=0,jk, ju, jl;
   double sum=0.;    double sum=0.;
   first=0;    first=0;
   jmin=1e+5;    jmin=1e+5;
   jmax=-1;    jmax=-1;
   jmean=0.;    jmean=0.;
   for(i=1; i<=imx; i++){    for(i=1; i<=imx; i++){
     mi=0;      mi=0;
     m=firstpass;      m=firstpass;
     while(s[m][i] <= nlstate){      while(s[m][i] <= nlstate){
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         mw[++mi][i]=m;          mw[++mi][i]=m;
       if(m >=lastpass)        if(m >=lastpass)
         break;          break;
       else        else
         m++;          m++;
     }/* end while */      }/* end while */
     if (s[m][i] > nlstate){      if (s[m][i] > nlstate){
       mi++;     /* Death is another wave */        mi++;     /* Death is another wave */
       /* if(mi==0)  never been interviewed correctly before death */        /* if(mi==0)  never been interviewed correctly before death */
          /* Only death is a correct wave */           /* Only death is a correct wave */
       mw[mi][i]=m;        mw[mi][i]=m;
     }      }
   
     wav[i]=mi;      wav[i]=mi;
     if(mi==0){      if(mi==0){
       nbwarn++;        nbwarn++;
       if(first==0){        if(first==0){
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         first=1;          first=1;
       }        }
       if(first==1){        if(first==1){
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       }        }
     } /* end mi==0 */      } /* end mi==0 */
   } /* End individuals */    } /* End individuals */
   
   for(i=1; i<=imx; i++){    for(i=1; i<=imx; i++){
     for(mi=1; mi<wav[i];mi++){      for(mi=1; mi<wav[i];mi++){
       if (stepm <=0)        if (stepm <=0)
         dh[mi][i]=1;          dh[mi][i]=1;
       else{        else{
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           if (agedc[i] < 2*AGESUP) {            if (agedc[i] < 2*AGESUP) {
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             if(j==0) j=1;  /* Survives at least one month after exam */              if(j==0) j=1;  /* Survives at least one month after exam */
             else if(j<0){              else if(j<0){
               nberr++;                nberr++;
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               j=1; /* Temporary Dangerous patch */                j=1; /* Temporary Dangerous patch */
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             }              }
             k=k+1;              k=k+1;
             if (j >= jmax){              if (j >= jmax){
               jmax=j;                jmax=j;
               ijmax=i;                ijmax=i;
             }              }
             if (j <= jmin){              if (j <= jmin){
               jmin=j;                jmin=j;
               ijmin=i;                ijmin=i;
             }              }
             sum=sum+j;              sum=sum+j;
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           }            }
         }          }
         else{          else{
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
           k=k+1;            k=k+1;
           if (j >= jmax) {            if (j >= jmax) {
             jmax=j;              jmax=j;
             ijmax=i;              ijmax=i;
           }            }
           else if (j <= jmin){            else if (j <= jmin){
             jmin=j;              jmin=j;
             ijmin=i;              ijmin=i;
           }            }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           if(j<0){            if(j<0){
             nberr++;              nberr++;
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }            }
           sum=sum+j;            sum=sum+j;
         }          }
         jk= j/stepm;          jk= j/stepm;
         jl= j -jk*stepm;          jl= j -jk*stepm;
         ju= j -(jk+1)*stepm;          ju= j -(jk+1)*stepm;
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           if(jl==0){            if(jl==0){
             dh[mi][i]=jk;              dh[mi][i]=jk;
             bh[mi][i]=0;              bh[mi][i]=0;
           }else{ /* We want a negative bias in order to only have interpolation ie            }else{ /* We want a negative bias in order to only have interpolation ie
                   * at the price of an extra matrix product in likelihood */                    * at the price of an extra matrix product in likelihood */
             dh[mi][i]=jk+1;              dh[mi][i]=jk+1;
             bh[mi][i]=ju;              bh[mi][i]=ju;
           }            }
         }else{          }else{
           if(jl <= -ju){            if(jl <= -ju){
             dh[mi][i]=jk;              dh[mi][i]=jk;
             bh[mi][i]=jl;       /* bias is positive if real duration              bh[mi][i]=jl;       /* bias is positive if real duration
                                  * is higher than the multiple of stepm and negative otherwise.                                   * is higher than the multiple of stepm and negative otherwise.
                                  */                                   */
           }            }
           else{            else{
             dh[mi][i]=jk+1;              dh[mi][i]=jk+1;
             bh[mi][i]=ju;              bh[mi][i]=ju;
           }            }
           if(dh[mi][i]==0){            if(dh[mi][i]==0){
             dh[mi][i]=1; /* At least one step */              dh[mi][i]=1; /* At least one step */
             bh[mi][i]=ju; /* At least one step */              bh[mi][i]=ju; /* At least one step */
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           }            }
         } /* end if mle */          } /* end if mle */
       }        }
     } /* end wave */      } /* end wave */
   }    }
   jmean=sum/k;    jmean=sum/k;
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
  }   }
   
 /*********** Tricode ****************************/  /*********** Tricode ****************************/
 void tricode(int *Tvar, int **nbcode, int imx)  void tricode(int *Tvar, int **nbcode, int imx)
 {  {
      
   int Ndum[20],ij=1, k, j, i, maxncov=19;    int Ndum[20],ij=1, k, j, i, maxncov=19;
   int cptcode=0;    int cptcode=0;
   cptcoveff=0;    cptcoveff=0; 
     
   for (k=0; k<maxncov; k++) Ndum[k]=0;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   for (k=1; k<=7; k++) ncodemax[k]=0;    for (k=1; k<=7; k++) ncodemax[k]=0;
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                modality*/                                 modality*/ 
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       Ndum[ij]++; /*store the modality */        Ndum[ij]++; /*store the modality */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                        Tvar[j]. If V=sex and male is 0 and                                         Tvar[j]. If V=sex and male is 0 and 
                                        female is 1, then  cptcode=1.*/                                         female is 1, then  cptcode=1.*/
     }      }
   
     for (i=0; i<=cptcode; i++) {      for (i=0; i<=cptcode; i++) {
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     }      }
   
     ij=1;      ij=1; 
     for (i=1; i<=ncodemax[j]; i++) {      for (i=1; i<=ncodemax[j]; i++) {
       for (k=0; k<= maxncov; k++) {        for (k=0; k<= maxncov; k++) {
         if (Ndum[k] != 0) {          if (Ndum[k] != 0) {
           nbcode[Tvar[j]][ij]=k;            nbcode[Tvar[j]][ij]=k; 
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                      
           ij++;            ij++;
         }          }
         if (ij > ncodemax[j]) break;          if (ij > ncodemax[j]) break; 
       }          }  
     }      } 
   }      }  
   
  for (k=0; k< maxncov; k++) Ndum[k]=0;   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
  for (i=1; i<=ncovmodel-2; i++) {   for (i=1; i<=ncovmodel-2; i++) { 
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
    ij=Tvar[i];     ij=Tvar[i];
    Ndum[ij]++;     Ndum[ij]++;
  }   }
   
  ij=1;   ij=1;
  for (i=1; i<= maxncov; i++) {   for (i=1; i<= maxncov; i++) {
    if((Ndum[i]!=0) && (i<=ncovcol)){     if((Ndum[i]!=0) && (i<=ncovcol)){
      Tvaraff[ij]=i; /*For printing */       Tvaraff[ij]=i; /*For printing */
      ij++;       ij++;
    }     }
  }   }
     
  cptcoveff=ij-1; /*Number of simple covariates*/   cptcoveff=ij-1; /*Number of simple covariates*/
 }  }
   
 /*********** Health Expectancies ****************/  /*********** Health Expectancies ****************/
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
 {  {
   /* Health expectancies, no variances */    /* Health expectancies, no variances */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   double age, agelim, hf;    int nhstepma, nstepma; /* Decreasing with age */
   double ***p3mat;    double age, agelim, hf;
   double eip;    double ***p3mat;
     double eip;
   pstamp(ficreseij);  
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");    pstamp(ficreseij);
   fprintf(ficreseij,"# Age");    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   for(i=1; i<=nlstate;i++){    fprintf(ficreseij,"# Age");
     for(j=1; j<=nlstate;j++){    for(i=1; i<=nlstate;i++){
       fprintf(ficreseij," e%1d%1d ",i,j);      for(j=1; j<=nlstate;j++){
     }        fprintf(ficreseij," e%1d%1d ",i,j);
     fprintf(ficreseij," e%1d. ",i);      }
   }      fprintf(ficreseij," e%1d. ",i);
   fprintf(ficreseij,"\n");    }
     fprintf(ficreseij,"\n");
    
   if(estepm < stepm){    
     printf ("Problem %d lower than %d\n",estepm, stepm);    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
   else  hstepm=estepm;      }
   /* We compute the life expectancy from trapezoids spaced every estepm months    else  hstepm=estepm;   
    * This is mainly to measure the difference between two models: for example    /* We compute the life expectancy from trapezoids spaced every estepm months
    * if stepm=24 months pijx are given only every 2 years and by summing them     * This is mainly to measure the difference between two models: for example
    * we are calculating an estimate of the Life Expectancy assuming a linear     * if stepm=24 months pijx are given only every 2 years and by summing them
    * progression in between and thus overestimating or underestimating according     * we are calculating an estimate of the Life Expectancy assuming a linear 
    * to the curvature of the survival function. If, for the same date, we     * progression in between and thus overestimating or underestimating according
    * estimate the model with stepm=1 month, we can keep estepm to 24 months     * to the curvature of the survival function. If, for the same date, we 
    * to compare the new estimate of Life expectancy with the same linear     * estimate the model with stepm=1 month, we can keep estepm to 24 months
    * hypothesis. A more precise result, taking into account a more precise     * to compare the new estimate of Life expectancy with the same linear 
    * curvature will be obtained if estepm is as small as stepm. */     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    /* For example we decided to compute the life expectancy with the smallest unit */
      nhstepm is the number of hstepm from age to agelim    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      nstepm is the number of stepm from age to agelin.       nhstepm is the number of hstepm from age to agelim 
      Look at hpijx to understand the reason of that which relies in memory size       nstepm is the number of stepm from age to agelin. 
      and note for a fixed period like estepm months */       Look at hpijx to understand the reason of that which relies in memory size
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the       and note for a fixed period like estepm months */
      survival function given by stepm (the optimization length). Unfortunately it    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      means that if the survival funtion is printed only each two years of age and if       survival function given by stepm (the optimization length). Unfortunately it
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       means that if the survival funtion is printed only each two years of age and if
      results. So we changed our mind and took the option of the best precision.       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   */       results. So we changed our mind and took the option of the best precision.
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   agelim=AGESUP;  
   /* If stepm=6 months */    agelim=AGESUP;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* If stepm=6 months */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 /* nhstepm age range expressed in number of stepm */      
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);  /* nhstepm age range expressed in number of stepm */
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /* if (stepm >= YEARM) hstepm=1;*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    /* if (stepm >= YEARM) hstepm=1;*/
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for (age=bage; age<=fage; age ++){  
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          /* if (stepm >= YEARM) hstepm=1;*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
      
     printf("%d|",(int)age);fflush(stdout);      /* If stepm=6 months */
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
     /* Computing expectancies */      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     for(i=1; i<=nlstate;i++)      
       for(j=1; j<=nlstate;j++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      printf("%d|",(int)age);fflush(stdout);
                fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      
       /* Computing expectancies */
         }      for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++)
     fprintf(ficreseij,"%3.0f",age );          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     for(i=1; i<=nlstate;i++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       eip=0;            
       for(j=1; j<=nlstate;j++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         eip +=eij[i][j][(int)age];  
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );          }
       }  
       fprintf(ficreseij,"%9.4f", eip );      fprintf(ficreseij,"%3.0f",age );
     }      for(i=1; i<=nlstate;i++){
     fprintf(ficreseij,"\n");        eip=0;
            for(j=1; j<=nlstate;j++){
   }          eip +=eij[i][j][(int)age];
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   printf("\n");        }
   fprintf(ficlog,"\n");        fprintf(ficreseij,"%9.4f", eip );
        }
 }      fprintf(ficreseij,"\n");
       
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 {    printf("\n");
   /* Covariances of health expectancies eij and of total life expectancies according    fprintf(ficlog,"\n");
    to initial status i, ei. .    
   */  }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;  
   double age, agelim, hf;  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   double ***p3matp, ***p3matm, ***varhe;  
   double **dnewm,**doldm;  {
   double *xp, *xm;    /* Covariances of health expectancies eij and of total life expectancies according
   double **gp, **gm;     to initial status i, ei. .
   double ***gradg, ***trgradg;    */
   int theta;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
   double eip, vip;    double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);    double **dnewm,**doldm;
   xp=vector(1,npar);    double *xp, *xm;
   xm=vector(1,npar);    double **gp, **gm;
   dnewm=matrix(1,nlstate*nlstate,1,npar);    double ***gradg, ***trgradg;
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);    int theta;
    
   pstamp(ficresstdeij);    double eip, vip;
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");  
   fprintf(ficresstdeij,"# Age");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   for(i=1; i<=nlstate;i++){    xp=vector(1,npar);
     for(j=1; j<=nlstate;j++)    xm=vector(1,npar);
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     fprintf(ficresstdeij," e%1d. ",i);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   }    
   fprintf(ficresstdeij,"\n");    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   pstamp(ficrescveij);    fprintf(ficresstdeij,"# Age");
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");    for(i=1; i<=nlstate;i++){
   fprintf(ficrescveij,"# Age");      for(j=1; j<=nlstate;j++)
   for(i=1; i<=nlstate;i++)        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     for(j=1; j<=nlstate;j++){      fprintf(ficresstdeij," e%1d. ",i);
       cptj= (j-1)*nlstate+i;    }
       for(i2=1; i2<=nlstate;i2++)    fprintf(ficresstdeij,"\n");
         for(j2=1; j2<=nlstate;j2++){  
           cptj2= (j2-1)*nlstate+i2;    pstamp(ficrescveij);
           if(cptj2 <= cptj)    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);    fprintf(ficrescveij,"# Age");
         }    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=nlstate;j++){
   fprintf(ficrescveij,"\n");        cptj= (j-1)*nlstate+i;
          for(i2=1; i2<=nlstate;i2++)
   if(estepm < stepm){          for(j2=1; j2<=nlstate;j2++){
     printf ("Problem %d lower than %d\n",estepm, stepm);            cptj2= (j2-1)*nlstate+i2;
   }            if(cptj2 <= cptj)
   else  hstepm=estepm;                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   /* We compute the life expectancy from trapezoids spaced every estepm months          }
    * This is mainly to measure the difference between two models: for example      }
    * if stepm=24 months pijx are given only every 2 years and by summing them    fprintf(ficrescveij,"\n");
    * we are calculating an estimate of the Life Expectancy assuming a linear    
    * progression in between and thus overestimating or underestimating according    if(estepm < stepm){
    * to the curvature of the survival function. If, for the same date, we      printf ("Problem %d lower than %d\n",estepm, stepm);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    }
    * to compare the new estimate of Life expectancy with the same linear    else  hstepm=estepm;   
    * hypothesis. A more precise result, taking into account a more precise    /* We compute the life expectancy from trapezoids spaced every estepm months
    * curvature will be obtained if estepm is as small as stepm. */     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
   /* For example we decided to compute the life expectancy with the smallest unit */     * we are calculating an estimate of the Life Expectancy assuming a linear 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     * progression in between and thus overestimating or underestimating according
      nhstepm is the number of hstepm from age to agelim     * to the curvature of the survival function. If, for the same date, we 
      nstepm is the number of stepm from age to agelin.     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      Look at hpijx to understand the reason of that which relies in memory size     * to compare the new estimate of Life expectancy with the same linear 
      and note for a fixed period like estepm months */     * hypothesis. A more precise result, taking into account a more precise
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the     * curvature will be obtained if estepm is as small as stepm. */
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if    /* For example we decided to compute the life expectancy with the smallest unit */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      results. So we changed our mind and took the option of the best precision.       nhstepm is the number of hstepm from age to agelim 
   */       nstepm is the number of stepm from age to agelin. 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   /* If stepm=6 months */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /* nhstepm age range expressed in number of stepm */       survival function given by stepm (the optimization length). Unfortunately it
   agelim=AGESUP;       means that if the survival funtion is printed only each two years of age and if
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */       results. So we changed our mind and took the option of the best precision.
   /* if (stepm >= YEARM) hstepm=1;*/    */
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* If stepm=6 months */
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* nhstepm age range expressed in number of stepm */
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);    agelim=AGESUP;
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   gp=matrix(0,nhstepm,1,nlstate*nlstate);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   gm=matrix(0,nhstepm,1,nlstate*nlstate);    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   for (age=bage; age<=fage; age ++){    
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
     /* Computing  Variances of health expectancies */  
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to    for (age=bage; age<=fage; age ++){ 
        decrease memory allocation */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     for(theta=1; theta <=npar; theta++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for(i=1; i<=npar; i++){      /* if (stepm >= YEARM) hstepm=1;*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         xm[i] = x[i] - (i==theta ?delti[theta]:0);  
       }      /* If stepm=6 months */
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);        /* Computed by stepm unit matrices, product of hstepma matrices, stored
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);           in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        
       for(j=1; j<= nlstate; j++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for(i=1; i<=nlstate; i++){  
           for(h=0; h<=nhstepm-1; h++){      /* Computing  Variances of health expectancies */
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;         decrease memory allocation */
           }      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ 
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                xm[i] = x[i] - (i==theta ?delti[theta]:0);
       for(ij=1; ij<= nlstate*nlstate; ij++)        }
         for(h=0; h<=nhstepm-1; h++){        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         }    
     }/* End theta */        for(j=1; j<= nlstate; j++){
              for(i=1; i<=nlstate; i++){
                for(h=0; h<=nhstepm-1; h++){
     for(h=0; h<=nhstepm-1; h++)              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       for(j=1; j<=nlstate*nlstate;j++)              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         for(theta=1; theta <=npar; theta++)            }
           trgradg[h][j][theta]=gradg[h][theta][j];          }
            }
        
      for(ij=1;ij<=nlstate*nlstate;ij++)        for(ij=1; ij<= nlstate*nlstate; ij++)
       for(ji=1;ji<=nlstate*nlstate;ji++)          for(h=0; h<=nhstepm-1; h++){
         varhe[ij][ji][(int)age] =0.;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
      printf("%d|",(int)age);fflush(stdout);      }/* End theta */
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      
      for(h=0;h<=nhstepm-1;h++){      
       for(k=0;k<=nhstepm-1;k++){      for(h=0; h<=nhstepm-1; h++)
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);        for(j=1; j<=nlstate*nlstate;j++)
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);          for(theta=1; theta <=npar; theta++)
         for(ij=1;ij<=nlstate*nlstate;ij++)            trgradg[h][j][theta]=gradg[h][theta][j];
           for(ji=1;ji<=nlstate*nlstate;ji++)      
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;  
       }       for(ij=1;ij<=nlstate*nlstate;ij++)
     }        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
     /* Computing expectancies */  
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);         printf("%d|",(int)age);fflush(stdout);
     for(i=1; i<=nlstate;i++)       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(j=1; j<=nlstate;j++)       for(h=0;h<=nhstepm-1;h++){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        for(k=0;k<=nhstepm-1;k++){
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                    matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
         }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
     fprintf(ficresstdeij,"%3.0f",age );      }
     for(i=1; i<=nlstate;i++){  
       eip=0.;      /* Computing expectancies */
       vip=0.;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(j=1; j<=nlstate;j++){      for(i=1; i<=nlstate;i++)
         eip += eij[i][j][(int)age];        for(j=1; j<=nlstate;j++)
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );            
       }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));  
     }          }
     fprintf(ficresstdeij,"\n");  
       fprintf(ficresstdeij,"%3.0f",age );
     fprintf(ficrescveij,"%3.0f",age );      for(i=1; i<=nlstate;i++){
     for(i=1; i<=nlstate;i++)        eip=0.;
       for(j=1; j<=nlstate;j++){        vip=0.;
         cptj= (j-1)*nlstate+i;        for(j=1; j<=nlstate;j++){
         for(i2=1; i2<=nlstate;i2++)          eip += eij[i][j][(int)age];
           for(j2=1; j2<=nlstate;j2++){          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             cptj2= (j2-1)*nlstate+i2;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
             if(cptj2 <= cptj)          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);        }
           }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }      }
     fprintf(ficrescveij,"\n");      fprintf(ficresstdeij,"\n");
      
   }      fprintf(ficrescveij,"%3.0f",age );
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);      for(i=1; i<=nlstate;i++)
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);        for(j=1; j<=nlstate;j++){
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);          cptj= (j-1)*nlstate+i;
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);          for(i2=1; i2<=nlstate;i2++)
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(j2=1; j2<=nlstate;j2++){
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              cptj2= (j2-1)*nlstate+i2;
   printf("\n");              if(cptj2 <= cptj)
   fprintf(ficlog,"\n");                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
   free_vector(xm,1,npar);        }
   free_vector(xp,1,npar);      fprintf(ficrescveij,"\n");
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);     
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);    }
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 }    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 /************ Variance ******************/    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 {    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* Variance of health expectancies */    printf("\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fprintf(ficlog,"\n");
   /* double **newm;*/  
   double **dnewm,**doldm;    free_vector(xm,1,npar);
   double **dnewmp,**doldmp;    free_vector(xp,1,npar);
   int i, j, nhstepm, hstepm, h, nstepm ;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   int k, cptcode;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   double *xp;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   double **gp, **gm;  /* for var eij */  }
   double ***gradg, ***trgradg; /*for var eij */  
   double **gradgp, **trgradgp; /* for var p point j */  /************ Variance ******************/
   double *gpp, *gmp; /* for var p point j */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */  {
   double ***p3mat;    /* Variance of health expectancies */
   double age,agelim, hf;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   double ***mobaverage;    /* double **newm;*/
   int theta;    double **dnewm,**doldm;
   char digit[4];    double **dnewmp,**doldmp;
   char digitp[25];    int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
   char fileresprobmorprev[FILENAMELENGTH];    double *xp;
     double **gp, **gm;  /* for var eij */
   if(popbased==1){    double ***gradg, ***trgradg; /*for var eij */
     if(mobilav!=0)    double **gradgp, **trgradgp; /* for var p point j */
       strcpy(digitp,"-populbased-mobilav-");    double *gpp, *gmp; /* for var p point j */
     else strcpy(digitp,"-populbased-nomobil-");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   }    double ***p3mat;
   else    double age,agelim, hf;
     strcpy(digitp,"-stablbased-");    double ***mobaverage;
     int theta;
   if (mobilav!=0) {    char digit[4];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    char digitp[25];
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){  
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    char fileresprobmorprev[FILENAMELENGTH];
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }    if(popbased==1){
   }      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   strcpy(fileresprobmorprev,"prmorprev");      else strcpy(digitp,"-populbased-nomobil-");
   sprintf(digit,"%-d",ij);    }
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    else 
   strcat(fileresprobmorprev,digit); /* Tvar to be done */      strcpy(digitp,"-stablbased-");
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */  
   strcat(fileresprobmorprev,fileres);    if (mobilav!=0) {
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      }
      }
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
   pstamp(ficresprobmorprev);    strcpy(fileresprobmorprev,"prmorprev"); 
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    sprintf(digit,"%-d",ij);
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     fprintf(ficresprobmorprev," p.%-d SE",j);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     for(i=1; i<=nlstate;i++)    strcat(fileresprobmorprev,fileres);
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }        printf("Problem with resultfile: %s\n", fileresprobmorprev);
   fprintf(ficresprobmorprev,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   fprintf(ficgp,"\n# Routine varevsij");    }
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");   
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 /*   } */    pstamp(ficresprobmorprev);
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   pstamp(ficresvij);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   if(popbased==1)      fprintf(ficresprobmorprev," p.%-d SE",j);
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");      for(i=1; i<=nlstate;i++)
   else        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");    }  
   fprintf(ficresvij,"# Age");    fprintf(ficresprobmorprev,"\n");
   for(i=1; i<=nlstate;i++)    fprintf(ficgp,"\n# Routine varevsij");
     for(j=1; j<=nlstate;j++)    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   fprintf(ficresvij,"\n");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
   xp=vector(1,npar);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   dnewm=matrix(1,nlstate,1,npar);    pstamp(ficresvij);
   doldm=matrix(1,nlstate,1,nlstate);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    if(popbased==1)
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     else
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   gpp=vector(nlstate+1,nlstate+ndeath);    fprintf(ficresvij,"# Age");
   gmp=vector(nlstate+1,nlstate+ndeath);    for(i=1; i<=nlstate;i++)
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   if(estepm < stepm){    fprintf(ficresvij,"\n");
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    xp=vector(1,npar);
   else  hstepm=estepm;      dnewm=matrix(1,nlstate,1,npar);
   /* For example we decided to compute the life expectancy with the smallest unit */    doldm=matrix(1,nlstate,1,nlstate);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      nhstepm is the number of hstepm from age to agelim    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      and note for a fixed period like k years */    gpp=vector(nlstate+1,nlstate+ndeath);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    gmp=vector(nlstate+1,nlstate+ndeath);
      survival function given by stepm (the optimization length). Unfortunately it    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      means that if the survival funtion is printed every two years of age and if    
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    if(estepm < stepm){
      results. So we changed our mind and took the option of the best precision.      printf ("Problem %d lower than %d\n",estepm, stepm);
   */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    else  hstepm=estepm;   
   agelim = AGESUP;    /* For example we decided to compute the life expectancy with the smallest unit */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       nhstepm is the number of hstepm from age to agelim 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       nstepm is the number of stepm from age to agelin. 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       Look at hpijx to understand the reason of that which relies in memory size
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);       and note for a fixed period like k years */
     gp=matrix(0,nhstepm,1,nlstate);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     gm=matrix(0,nhstepm,1,nlstate);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for(theta=1; theta <=npar; theta++){       results. So we changed our mind and took the option of the best precision.
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       }    agelim = AGESUP;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       if (popbased==1) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         if(mobilav ==0){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           for(i=1; i<=nlstate;i++)      gp=matrix(0,nhstepm,1,nlstate);
             prlim[i][i]=probs[(int)age][i][ij];      gm=matrix(0,nhstepm,1,nlstate);
         }else{ /* mobilav */  
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=mobaverage[(int)age][i][ij];      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
       for(j=1; j<= nlstate; j++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for(h=0; h<=nhstepm; h++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        if (popbased==1) {
         }          if(mobilav ==0){
       }            for(i=1; i<=nlstate;i++)
       /* This for computing probability of death (h=1 means              prlim[i][i]=probs[(int)age][i][ij];
          computed over hstepm matrices product = hstepm*stepm months)          }else{ /* mobilav */ 
          as a weighted average of prlim.            for(i=1; i<=nlstate;i++)
       */              prlim[i][i]=mobaverage[(int)age][i][ij];
       for(j=nlstate+1;j<=nlstate+ndeath;j++){          }
         for(i=1,gpp[j]=0.; i<= nlstate; i++)        }
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    
       }            for(j=1; j<= nlstate; j++){
       /* end probability of death */          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
       if (popbased==1) {           as a weighted average of prlim.
         if(mobilav ==0){        */
           for(i=1; i<=nlstate;i++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             prlim[i][i]=probs[(int)age][i][ij];          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         }else{ /* mobilav */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           for(i=1; i<=nlstate;i++)        }    
             prlim[i][i]=mobaverage[(int)age][i][ij];        /* end probability of death */
         }  
       }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
       for(j=1; j<= nlstate; j++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         for(h=0; h<=nhstepm; h++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)   
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        if (popbased==1) {
         }          if(mobilav ==0){
       }            for(i=1; i<=nlstate;i++)
       /* This for computing probability of death (h=1 means              prlim[i][i]=probs[(int)age][i][ij];
          computed over hstepm matrices product = hstepm*stepm months)          }else{ /* mobilav */ 
          as a weighted average of prlim.            for(i=1; i<=nlstate;i++)
       */              prlim[i][i]=mobaverage[(int)age][i][ij];
       for(j=nlstate+1;j<=nlstate+ndeath;j++){          }
         for(i=1,gmp[j]=0.; i<= nlstate; i++)        }
          gmp[j] += prlim[i][i]*p3mat[i][j][1];  
       }            for(j=1; j<= nlstate; j++){
       /* end probability of death */          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       for(j=1; j<= nlstate; j++) /* vareij */              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         for(h=0; h<=nhstepm; h++){          }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        }
         }        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */           as a weighted average of prlim.
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];        */
       }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
     } /* End theta */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */        /* end probability of death */
   
     for(h=0; h<=nhstepm; h++) /* veij */        for(j=1; j<= nlstate; j++) /* vareij */
       for(j=1; j<=nlstate;j++)          for(h=0; h<=nhstepm; h++){
         for(theta=1; theta <=npar; theta++)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           trgradg[h][j][theta]=gradg[h][theta][j];          }
   
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       for(theta=1; theta <=npar; theta++)          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         trgradgp[j][theta]=gradgp[theta][j];        }
    
       } /* End theta */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
     for(h=0;h<=nhstepm;h++){          for(theta=1; theta <=npar; theta++)
       for(k=0;k<=nhstepm;k++){            trgradg[h][j][theta]=gradg[h][theta][j];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(i=1;i<=nlstate;i++)        for(theta=1; theta <=npar; theta++)
           for(j=1;j<=nlstate;j++)          trgradgp[j][theta]=gradgp[theta][j];
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    
       }  
     }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(i=1;i<=nlstate;i++)
     /* pptj */        for(j=1;j<=nlstate;j++)
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          vareij[i][j][(int)age] =0.;
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  
     for(j=nlstate+1;j<=nlstate+ndeath;j++)      for(h=0;h<=nhstepm;h++){
       for(i=nlstate+1;i<=nlstate+ndeath;i++)        for(k=0;k<=nhstepm;k++){
         varppt[j][i]=doldmp[j][i];          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     /* end ppptj */          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     /*  x centered again */          for(i=1;i<=nlstate;i++)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);              for(j=1;j<=nlstate;j++)
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
     if (popbased==1) {      }
       if(mobilav ==0){    
         for(i=1; i<=nlstate;i++)      /* pptj */
           prlim[i][i]=probs[(int)age][i][ij];      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       }else{ /* mobilav */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         for(i=1; i<=nlstate;i++)      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           prlim[i][i]=mobaverage[(int)age][i][ij];        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       }          varppt[j][i]=doldmp[j][i];
     }      /* end ppptj */
                    /*  x centered again */
     /* This for computing probability of death (h=1 means      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        computed over hstepm (estepm) matrices product = hstepm*stepm months)      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
        as a weighted average of prlim.   
     */      if (popbased==1) {
     for(j=nlstate+1;j<=nlstate+ndeath;j++){        if(mobilav ==0){
       for(i=1,gmp[j]=0.;i<= nlstate; i++)          for(i=1; i<=nlstate;i++)
         gmp[j] += prlim[i][i]*p3mat[i][j][1];            prlim[i][i]=probs[(int)age][i][ij];
     }            }else{ /* mobilav */ 
     /* end probability of death */          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);        }
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      }
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));               
       for(i=1; i<=nlstate;i++){      /* This for computing probability of death (h=1 means
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       }         as a weighted average of prlim.
     }      */
     fprintf(ficresprobmorprev,"\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     fprintf(ficresvij,"%.0f ",age );          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     for(i=1; i<=nlstate;i++)      }    
       for(j=1; j<=nlstate;j++){      /* end probability of death */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     fprintf(ficresvij,"\n");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     free_matrix(gp,0,nhstepm,1,nlstate);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     free_matrix(gm,0,nhstepm,1,nlstate);        for(i=1; i<=nlstate;i++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } 
   } /* End age */      fprintf(ficresprobmorprev,"\n");
   free_vector(gpp,nlstate+1,nlstate+ndeath);  
   free_vector(gmp,nlstate+1,nlstate+ndeath);      fprintf(ficresvij,"%.0f ",age );
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      for(i=1; i<=nlstate;i++)
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        for(j=1; j<=nlstate;j++){
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */        }
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      fprintf(ficresvij,"\n");
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */      free_matrix(gp,0,nhstepm,1,nlstate);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */      free_matrix(gm,0,nhstepm,1,nlstate);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));    } /* End age */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));    free_vector(gpp,nlstate+1,nlstate+ndeath);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   free_vector(xp,1,npar);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   free_matrix(doldm,1,nlstate,1,nlstate);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   free_matrix(dnewm,1,nlstate,1,npar);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   fclose(ficresprobmorprev);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   fflush(ficgp);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   fflush(fichtm);  */
 }  /* end varevsij */  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])    free_vector(xp,1,npar);
 {    free_matrix(doldm,1,nlstate,1,nlstate);
   /* Variance of prevalence limit */    free_matrix(dnewm,1,nlstate,1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double **newm;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   double **dnewm,**doldm;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int i, j, nhstepm, hstepm;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int k, cptcode;    fclose(ficresprobmorprev);
   double *xp;    fflush(ficgp);
   double *gp, *gm;    fflush(fichtm); 
   double **gradg, **trgradg;  }  /* end varevsij */
   double age,agelim;  
   int theta;  /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   pstamp(ficresvpl);  {
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");    /* Variance of prevalence limit */
   fprintf(ficresvpl,"# Age");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   for(i=1; i<=nlstate;i++)    double **newm;
       fprintf(ficresvpl," %1d-%1d",i,i);    double **dnewm,**doldm;
   fprintf(ficresvpl,"\n");    int i, j, nhstepm, hstepm;
     int k, cptcode;
   xp=vector(1,npar);    double *xp;
   dnewm=matrix(1,nlstate,1,npar);    double *gp, *gm;
   doldm=matrix(1,nlstate,1,nlstate);    double **gradg, **trgradg;
      double age,agelim;
   hstepm=1*YEARM; /* Every year of age */    int theta;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    
   agelim = AGESUP;    pstamp(ficresvpl);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficresvpl,"# Age");
     if (stepm >= YEARM) hstepm=1;    for(i=1; i<=nlstate;i++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        fprintf(ficresvpl," %1d-%1d",i,i);
     gradg=matrix(1,npar,1,nlstate);    fprintf(ficresvpl,"\n");
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     for(theta=1; theta <=npar; theta++){    doldm=matrix(1,nlstate,1,nlstate);
       for(i=1; i<=npar; i++){ /* Computes gradient */    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    hstepm=1*YEARM; /* Every year of age */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    agelim = AGESUP;
       for(i=1;i<=nlstate;i++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         gp[i] = prlim[i][i];      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
          if (stepm >= YEARM) hstepm=1;
       for(i=1; i<=npar; i++) /* Computes gradient */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      gradg=matrix(1,npar,1,nlstate);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      gp=vector(1,nlstate);
       for(i=1;i<=nlstate;i++)      gm=vector(1,nlstate);
         gm[i] = prlim[i][i];  
       for(theta=1; theta <=npar; theta++){
       for(i=1;i<=nlstate;i++)        for(i=1; i<=npar; i++){ /* Computes gradient */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     } /* End theta */        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     trgradg =matrix(1,nlstate,1,npar);        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
     for(j=1; j<=nlstate;j++)      
       for(theta=1; theta <=npar; theta++)        for(i=1; i<=npar; i++) /* Computes gradient */
         trgradg[j][theta]=gradg[theta][j];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for(i=1;i<=nlstate;i++)        for(i=1;i<=nlstate;i++)
       varpl[i][(int)age] =0.;          gm[i] = prlim[i][i];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        for(i=1;i<=nlstate;i++)
     for(i=1;i<=nlstate;i++)          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      } /* End theta */
   
     fprintf(ficresvpl,"%.0f ",age );      trgradg =matrix(1,nlstate,1,npar);
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      for(j=1; j<=nlstate;j++)
     fprintf(ficresvpl,"\n");        for(theta=1; theta <=npar; theta++)
     free_vector(gp,1,nlstate);          trgradg[j][theta]=gradg[theta][j];
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);      for(i=1;i<=nlstate;i++)
     free_matrix(trgradg,1,nlstate,1,npar);        varpl[i][(int)age] =0.;
   } /* End age */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   free_vector(xp,1,npar);      for(i=1;i<=nlstate;i++)
   free_matrix(doldm,1,nlstate,1,npar);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   free_matrix(dnewm,1,nlstate,1,nlstate);  
       fprintf(ficresvpl,"%.0f ",age );
 }      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 /************ Variance of one-step probabilities  ******************/      fprintf(ficresvpl,"\n");
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])      free_vector(gp,1,nlstate);
 {      free_vector(gm,1,nlstate);
   int i, j=0,  i1, k1, l1, t, tj;      free_matrix(gradg,1,npar,1,nlstate);
   int k2, l2, j1,  z1;      free_matrix(trgradg,1,nlstate,1,npar);
   int k=0,l, cptcode;    } /* End age */
   int first=1, first1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    free_vector(xp,1,npar);
   double **dnewm,**doldm;    free_matrix(doldm,1,nlstate,1,npar);
   double *xp;    free_matrix(dnewm,1,nlstate,1,nlstate);
   double *gp, *gm;  
   double **gradg, **trgradg;  }
   double **mu;  
   double age,agelim, cov[NCOVMAX];  /************ Variance of one-step probabilities  ******************/
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   int theta;  {
   char fileresprob[FILENAMELENGTH];    int i, j=0,  i1, k1, l1, t, tj;
   char fileresprobcov[FILENAMELENGTH];    int k2, l2, j1,  z1;
   char fileresprobcor[FILENAMELENGTH];    int k=0,l, cptcode;
     int first=1, first1;
   double ***varpij;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
   strcpy(fileresprob,"prob");    double *xp;
   strcat(fileresprob,fileres);    double *gp, *gm;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    double **gradg, **trgradg;
     printf("Problem with resultfile: %s\n", fileresprob);    double **mu;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    double age,agelim, cov[NCOVMAX];
   }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   strcpy(fileresprobcov,"probcov");    int theta;
   strcat(fileresprobcov,fileres);    char fileresprob[FILENAMELENGTH];
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    char fileresprobcov[FILENAMELENGTH];
     printf("Problem with resultfile: %s\n", fileresprobcov);    char fileresprobcor[FILENAMELENGTH];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  
   }    double ***varpij;
   strcpy(fileresprobcor,"probcor");  
   strcat(fileresprobcor,fileres);    strcpy(fileresprob,"prob"); 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    strcat(fileresprob,fileres);
     printf("Problem with resultfile: %s\n", fileresprobcor);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      printf("Problem with resultfile: %s\n", fileresprob);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    }
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    strcpy(fileresprobcov,"probcov"); 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    strcat(fileresprobcov,fileres);
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      printf("Problem with resultfile: %s\n", fileresprobcov);
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   pstamp(ficresprob);    }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    strcpy(fileresprobcor,"probcor"); 
   fprintf(ficresprob,"# Age");    strcat(fileresprobcor,fileres);
   pstamp(ficresprobcov);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      printf("Problem with resultfile: %s\n", fileresprobcor);
   fprintf(ficresprobcov,"# Age");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   pstamp(ficresprobcor);    }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fprintf(ficresprobcor,"# Age");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   for(i=1; i<=nlstate;i++)    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     for(j=1; j<=(nlstate+ndeath);j++){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    pstamp(ficresprob);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    fprintf(ficresprob,"# Age");
     }      pstamp(ficresprobcov);
  /* fprintf(ficresprob,"\n");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   fprintf(ficresprobcov,"\n");    fprintf(ficresprobcov,"# Age");
   fprintf(ficresprobcor,"\n");    pstamp(ficresprobcor);
  */    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
  xp=vector(1,npar);    fprintf(ficresprobcor,"# Age");
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    for(i=1; i<=nlstate;i++)
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      for(j=1; j<=(nlstate+ndeath);j++){
   first=1;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   fprintf(ficgp,"\n# Routine varprob");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   fprintf(fichtm,"\n");      }  
    /* fprintf(ficresprob,"\n");
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);    fprintf(ficresprobcov,"\n");
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\    fprintf(ficresprobcor,"\n");
   file %s<br>\n",optionfilehtmcov);   */
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\   xp=vector(1,npar);
 and drawn. It helps understanding how is the covariance between two incidences.\    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \    first=1;
 standard deviations wide on each axis. <br>\    fprintf(ficgp,"\n# Routine varprob");
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\    fprintf(fichtm,"\n");
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   cov[1]=1;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   tj=cptcoveff;    file %s<br>\n",optionfilehtmcov);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   j1=0;  and drawn. It helps understanding how is the covariance between two incidences.\
   for(t=1; t<=tj;t++){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     for(i1=1; i1<=ncodemax[t];i1++){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       j1++;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       if  (cptcovn>0) {  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         fprintf(ficresprob, "\n#********** Variable ");  standard deviations wide on each axis. <br>\
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         fprintf(ficresprob, "**********\n#\n");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
         fprintf(ficresprobcov, "\n#********** Variable ");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprobcov, "**********\n#\n");    cov[1]=1;
            tj=cptcoveff;
         fprintf(ficgp, "\n#********** Variable ");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    j1=0;
         fprintf(ficgp, "**********\n#\n");    for(t=1; t<=tj;t++){
              for(i1=1; i1<=ncodemax[t];i1++){ 
                j1++;
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");        if  (cptcovn>0) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficresprob, "\n#********** Variable "); 
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                  fprintf(ficresprob, "**********\n#\n");
         fprintf(ficresprobcor, "\n#********** Variable ");              fprintf(ficresprobcov, "\n#********** Variable "); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficresprobcor, "**********\n#");              fprintf(ficresprobcov, "**********\n#\n");
       }          
                fprintf(ficgp, "\n#********** Variable "); 
       for (age=bage; age<=fage; age ++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         cov[2]=age;          fprintf(ficgp, "**********\n#\n");
         for (k=1; k<=cptcovn;k++) {          
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          
         }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (k=1; k<=cptcovprod;k++)          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          
                  fprintf(ficresprobcor, "\n#********** Variable ");    
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          fprintf(ficresprobcor, "**********\n#");    
         gp=vector(1,(nlstate)*(nlstate+ndeath));        }
         gm=vector(1,(nlstate)*(nlstate+ndeath));        
            for (age=bage; age<=fage; age ++){ 
         for(theta=1; theta <=npar; theta++){          cov[2]=age;
           for(i=1; i<=npar; i++)          for (k=1; k<=cptcovn;k++) {
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
                    }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                    for (k=1; k<=cptcovprod;k++)
           k=0;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for(i=1; i<= (nlstate); i++){          
             for(j=1; j<=(nlstate+ndeath);j++){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
               k=k+1;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               gp[k]=pmmij[i][j];          gp=vector(1,(nlstate)*(nlstate+ndeath));
             }          gm=vector(1,(nlstate)*(nlstate+ndeath));
           }      
                    for(theta=1; theta <=npar; theta++){
           for(i=1; i<=npar; i++)            for(i=1; i<=npar; i++)
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           k=0;            
           for(i=1; i<=(nlstate); i++){            k=0;
             for(j=1; j<=(nlstate+ndeath);j++){            for(i=1; i<= (nlstate); i++){
               k=k+1;              for(j=1; j<=(nlstate+ndeath);j++){
               gm[k]=pmmij[i][j];                k=k+1;
             }                gp[k]=pmmij[i][j];
           }              }
                  }
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)            
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];              for(i=1; i<=npar; i++)
         }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           for(theta=1; theta <=npar; theta++)            k=0;
             trgradg[j][theta]=gradg[theta][j];            for(i=1; i<=(nlstate); i++){
                      for(j=1; j<=(nlstate+ndeath);j++){
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);                k=k+1;
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);                gm[k]=pmmij[i][j];
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              }
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            }
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);       
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         pmij(pmmij,cov,ncovmodel,x,nlstate);          }
          
         k=0;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         for(i=1; i<=(nlstate); i++){            for(theta=1; theta <=npar; theta++)
           for(j=1; j<=(nlstate+ndeath);j++){              trgradg[j][theta]=gradg[theta][j];
             k=k+1;          
             mu[k][(int) age]=pmmij[i][j];          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             varpij[i][j][(int)age] = doldm[i][j];          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
         /*printf("\n%d ",(int)age);          pmij(pmmij,cov,ncovmodel,x,nlstate);
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          k=0;
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(i=1; i<=(nlstate); i++){
           }*/            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
         fprintf(ficresprob,"\n%d ",(int)age);              mu[k][(int) age]=pmmij[i][j];
         fprintf(ficresprobcov,"\n%d ",(int)age);            }
         fprintf(ficresprobcor,"\n%d ",(int)age);          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              varpij[i][j][(int)age] = doldm[i][j];
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          /*printf("\n%d ",(int)age);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         i=0;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         for (k=1; k<=(nlstate);k++){            }*/
           for (l=1; l<=(nlstate+ndeath);l++){  
             i=i++;          fprintf(ficresprob,"\n%d ",(int)age);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          fprintf(ficresprobcov,"\n%d ",(int)age);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          fprintf(ficresprobcor,"\n%d ",(int)age);
             for (j=1; j<=i;j++){  
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
             }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         }/* end of loop for state */            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       } /* end of loop for age */          }
           i=0;
       /* Confidence intervalle of pij  */          for (k=1; k<=(nlstate);k++){
       /*            for (l=1; l<=(nlstate+ndeath);l++){ 
         fprintf(ficgp,"\nset noparametric;unset label");              i=i++;
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);              for (j=1; j<=i;j++){
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);              }
       */            }
           }/* end of loop for state */
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        } /* end of loop for age */
       first1=1;  
       for (k2=1; k2<=(nlstate);k2++){        /* Confidence intervalle of pij  */
         for (l2=1; l2<=(nlstate+ndeath);l2++){        /*
           if(l2==k2) continue;          fprintf(ficgp,"\nset noparametric;unset label");
           j=(k2-1)*(nlstate+ndeath)+l2;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           for (k1=1; k1<=(nlstate);k1++){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             for (l1=1; l1<=(nlstate+ndeath);l1++){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
               if(l1==k1) continue;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
               i=(k1-1)*(nlstate+ndeath)+l1;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
               if(i<=j) continue;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
               for (age=bage; age<=fage; age ++){        */
                 if ((int)age %5==0){  
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;        first1=1;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        for (k2=1; k2<=(nlstate);k2++){
                   mu1=mu[i][(int) age]/stepm*YEARM ;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                   mu2=mu[j][(int) age]/stepm*YEARM;            if(l2==k2) continue;
                   c12=cv12/sqrt(v1*v2);            j=(k2-1)*(nlstate+ndeath)+l2;
                   /* Computing eigen value of matrix of covariance */            for (k1=1; k1<=(nlstate);k1++){
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;                if(l1==k1) continue;
                   /* Eigen vectors */                i=(k1-1)*(nlstate+ndeath)+l1;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));                if(i<=j) continue;
                   /*v21=sqrt(1.-v11*v11); *//* error */                for (age=bage; age<=fage; age ++){ 
                   v21=(lc1-v1)/cv12*v11;                  if ((int)age %5==0){
                   v12=-v21;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                   v22=v11;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   tnalp=v21/v11;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   if(first1==1){                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     first1=0;                    mu2=mu[j][(int) age]/stepm*YEARM;
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);                    c12=cv12/sqrt(v1*v2);
                   }                    /* Computing eigen value of matrix of covariance */
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   /*printf(fignu*/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */                    /* Eigen vectors */
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                   if(first==1){                    /*v21=sqrt(1.-v11*v11); *//* error */
                     first=0;                    v21=(lc1-v1)/cv12*v11;
                     fprintf(ficgp,"\nset parametric;unset label");                    v12=-v21;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);                    v22=v11;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                    tnalp=v21/v11;
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\                    if(first1==1){
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\                      first1=0;
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\                    }
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                    /*printf(fignu*/
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                    if(first==1){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                      first=0;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                      fprintf(ficgp,"\nset parametric;unset label");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   }else{                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
                     first=0;   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   }/* if first */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                 } /* age mod 5 */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
               } /* end loop age */                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
               first=1;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
             } /*l12 */                    }else{
           } /* k12 */                      first=0;
         } /*l1 */                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       }/* k1 */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     } /* loop covariates */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));                    }/* if first */
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);                  } /* age mod 5 */
   free_vector(xp,1,npar);                } /* end loop age */
   fclose(ficresprob);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fclose(ficresprobcov);                first=1;
   fclose(ficresprobcor);              } /*l12 */
   fflush(ficgp);            } /* k12 */
   fflush(fichtmcov);          } /*l1 */
 }        }/* k1 */
       } /* loop covariates */
     }
 /******************* Printing html file ***********/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
                   int lastpass, int stepm, int weightopt, char model[],\    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
                   int popforecast, int estepm ,\    free_vector(xp,1,npar);
                   double jprev1, double mprev1,double anprev1, \    fclose(ficresprob);
                   double jprev2, double mprev2,double anprev2){    fclose(ficresprobcov);
   int jj1, k1, i1, cpt;    fclose(ficresprobcor);
     fflush(ficgp);
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \    fflush(fichtmcov);
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \  }
 </ul>");  
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",  /******************* Printing html file ***********/
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
    fprintf(fichtm,"\                    int lastpass, int stepm, int weightopt, char model[],\
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));                    int popforecast, int estepm ,\
    fprintf(fichtm,"\                    double jprev1, double mprev1,double anprev1, \
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",                    double jprev2, double mprev2,double anprev2){
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));    int jj1, k1, i1, cpt;
    fprintf(fichtm,"\  
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
    <a href=\"%s\">%s</a> <br>\n",     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));  </ul>");
    fprintf(fichtm,"\     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
  - Population projections by age and states: \   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
  m=cptcoveff;     fprintf(fichtm,"\
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
  jj1=0;     fprintf(fichtm,"\
  for(k1=1; k1<=m;k1++){   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
    for(i1=1; i1<=ncodemax[k1];i1++){     <a href=\"%s\">%s</a> <br>\n",
      jj1++;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      if (cptcovn > 0) {     fprintf(fichtm,"\
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");   - Population projections by age and states: \
        for (cpt=1; cpt<=cptcoveff;cpt++)     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      }  
      /* Pij */   m=cptcoveff;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);      
      /* Quasi-incidences */   jj1=0;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\   for(k1=1; k1<=m;k1++){
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \     for(i1=1; i1<=ncodemax[k1];i1++){
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);       jj1++;
        /* Period (stable) prevalence in each health state */       if (cptcovn > 0) {
        for(cpt=1; cpt<nlstate;cpt++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \         for (cpt=1; cpt<=cptcoveff;cpt++) 
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
        }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
      for(cpt=1; cpt<=nlstate;cpt++) {       }
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \       /* Pij */
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
      }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
    } /* end i1 */       /* Quasi-incidences */
  }/* End k1 */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
  fprintf(fichtm,"</ul>");   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
  fprintf(fichtm,"\         for(cpt=1; cpt<nlstate;cpt++){
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",       for(cpt=1; cpt<=nlstate;cpt++) {
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
  fprintf(fichtm,"\  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",       }
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));     } /* end i1 */
    }/* End k1 */
  fprintf(fichtm,"\   fprintf(fichtm,"</ul>");
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",  
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));  
  fprintf(fichtm,"\   fprintf(fichtm,"\
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    <a href=\"%s\">%s</a> <br>\n</li>",   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));  
  fprintf(fichtm,"\   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    <a href=\"%s\">%s</a> <br>\n</li>",   fprintf(fichtm,"\
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  fprintf(fichtm,"\           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",  
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));   fprintf(fichtm,"\
  fprintf(fichtm,"\   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));   fprintf(fichtm,"\
  fprintf(fichtm,"\   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\     <a href=\"%s\">%s</a> <br>\n</li>",
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
 /*  if(popforecast==1) fprintf(fichtm,"\n */   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */     <a href=\"%s\">%s</a> <br>\n</li>",
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 /*      <br>",fileres,fileres,fileres,fileres); */   fprintf(fichtm,"\
 /*  else  */   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
  fflush(fichtm);   fprintf(fichtm,"\
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
  m=cptcoveff;   fprintf(fichtm,"\
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
  jj1=0;  
  for(k1=1; k1<=m;k1++){  /*  if(popforecast==1) fprintf(fichtm,"\n */
    for(i1=1; i1<=ncodemax[k1];i1++){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
      jj1++;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
      if (cptcovn > 0) {  /*      <br>",fileres,fileres,fileres,fileres); */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  /*  else  */
        for (cpt=1; cpt<=cptcoveff;cpt++)  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);   fflush(fichtm);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {   m=cptcoveff;
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\  
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);     jj1=0;
      }   for(k1=1; k1<=m;k1++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \     for(i1=1; i1<=ncodemax[k1];i1++){
 health expectancies in states (1) and (2): %s%d.png<br>\       jj1++;
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);       if (cptcovn > 0) {
    } /* end i1 */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  }/* End k1 */         for (cpt=1; cpt<=cptcoveff;cpt++) 
  fprintf(fichtm,"</ul>");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
  fflush(fichtm);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 }       }
        for(cpt=1; cpt<=nlstate;cpt++) {
 /******************* Gnuplot file **************/         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   char dirfileres[132],optfileres[132];       }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   int ng;  health expectancies in states (1) and (2): %s%d.png<br>\
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
 /*     printf("Problem with file %s",optionfilegnuplot); */     } /* end i1 */
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */   }/* End k1 */
 /*   } */   fprintf(fichtm,"</ul>");
    fflush(fichtm);
   /*#ifdef windows */  }
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
     /*#endif */  /******************* Gnuplot file **************/
   m=pow(2,cptcoveff);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   strcpy(dirfileres,optionfilefiname);    char dirfileres[132],optfileres[132];
   strcpy(optfileres,"vpl");    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
  /* 1eme*/    int ng;
   for (cpt=1; cpt<= nlstate ; cpt ++) {  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
    for (k1=1; k1<= m ; k1 ++) {  /*     printf("Problem with file %s",optionfilegnuplot); */
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);  /*   } */
      fprintf(ficgp,"set xlabel \"Age\" \n\  
 set ylabel \"Probability\" \n\    /*#ifdef windows */
 set ter png small\n\    fprintf(ficgp,"cd \"%s\" \n",pathc);
 set size 0.65,0.65\n\      /*#endif */
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);    m=pow(2,cptcoveff);
   
      for (i=1; i<= nlstate ; i ++) {    strcpy(dirfileres,optionfilefiname);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    strcpy(optfileres,"vpl");
        else fprintf(ficgp," \%%*lf (\%%*lf)");   /* 1eme*/
      }    for (cpt=1; cpt<= nlstate ; cpt ++) {
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);     for (k1=1; k1<= m ; k1 ++) {
      for (i=1; i<= nlstate ; i ++) {       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        else fprintf(ficgp," \%%*lf (\%%*lf)");       fprintf(ficgp,"set xlabel \"Age\" \n\
      }  set ylabel \"Probability\" \n\
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);  set ter png small\n\
      for (i=1; i<= nlstate ; i ++) {  set size 0.65,0.65\n\
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }         for (i=1; i<= nlstate ; i ++) {
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
    }         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }
   /*2 eme*/       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         for (i=1; i<= nlstate ; i ++) {
   for (k1=1; k1<= m ; k1 ++) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);       } 
           fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     for (i=1; i<= nlstate+1 ; i ++) {       for (i=1; i<= nlstate ; i ++) {
       k=2*i;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       for (j=1; j<= nlstate+1 ; j ++) {       }  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
         else fprintf(ficgp," \%%*lf (\%%*lf)");     }
       }      }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    /*2 eme*/
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    for (k1=1; k1<= m ; k1 ++) { 
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         else fprintf(ficgp," \%%*lf (\%%*lf)");      
       }        for (i=1; i<= nlstate+1 ; i ++) {
       fprintf(ficgp,"\" t\"\" w l 0,");        k=2*i;
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for (j=1; j<= nlstate+1 ; j ++) {        for (j=1; j<= nlstate+1 ; j ++) {
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         else fprintf(ficgp," \%%*lf (\%%*lf)");          else fprintf(ficgp," \%%*lf (\%%*lf)");
       }          }   
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       else fprintf(ficgp,"\" t\"\" w l 0,");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   /*3eme*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
   for (k1=1; k1<= m ; k1 ++) {        fprintf(ficgp,"\" t\"\" w l 0,");
     for (cpt=1; cpt<= nlstate ; cpt ++) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       /*       k=2+nlstate*(2*cpt-2); */        for (j=1; j<= nlstate+1 ; j ++) {
       k=2+(nlstate+1)*(cpt-1);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficgp,"set ter png small\n\        }   
 set size 0.65,0.65\n\        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);        else fprintf(ficgp,"\" t\"\" w l 0,");
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      }
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    }
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /*3eme*/
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    for (k1=1; k1<= m ; k1 ++) { 
              for (cpt=1; cpt<= nlstate ; cpt ++) {
       */        /*       k=2+nlstate*(2*cpt-2); */
       for (i=1; i< nlstate ; i ++) {        k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/        fprintf(ficgp,"set ter png small\n\
          set size 0.65,0.65\n\
       }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
            fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   /* CV preval stable (period) */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   for (k1=1; k1<= m ; k1 ++) {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     for (cpt=1; cpt<=nlstate ; cpt ++) {          
       k=3;        */
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);        for (i=1; i< nlstate ; i ++) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 set ter png small\nset size 0.65,0.65\n\          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
 unset log y\n\          
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);        } 
              fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       for (i=1; i< nlstate ; i ++)      }
         fprintf(ficgp,"+$%d",k+i+1);    }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    
          /* CV preval stable (period) */
       l=3+(nlstate+ndeath)*cpt;    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);      for (cpt=1; cpt<=nlstate ; cpt ++) {
       for (i=1; i< nlstate ; i ++) {        k=3;
         l=3+(nlstate+ndeath)*cpt;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"+$%d",l+i+1);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       }  set ter png small\nset size 0.65,0.65\n\
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    unset log y\n\
     }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   }          
          for (i=1; i< nlstate ; i ++)
   /* proba elementaires */          fprintf(ficgp,"+$%d",k+i+1);
   for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     for(k=1; k <=(nlstate+ndeath); k++){        
       if (k != i) {        l=3+(nlstate+ndeath)*cpt;
         for(j=1; j <=ncovmodel; j++){        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        for (i=1; i< nlstate ; i ++) {
           jk++;          l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"\n");          fprintf(ficgp,"+$%d",l+i+1);
         }        }
       }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     }      } 
    }    }  
     
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    /* proba elementaires */
      for(jk=1; jk <=m; jk++) {    for(i=1,jk=1; i <=nlstate; i++){
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);      for(k=1; k <=(nlstate+ndeath); k++){
        if (ng==2)        if (k != i) {
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          for(j=1; j <=ncovmodel; j++){
        else            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
          fprintf(ficgp,"\nset title \"Probability\"\n");            jk++; 
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            fprintf(ficgp,"\n");
        i=1;          }
        for(k2=1; k2<=nlstate; k2++) {        }
          k3=i;      }
          for(k=1; k<=(nlstate+ndeath); k++) {     }
            if (k != k2){  
              if(ng==2)     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);       for(jk=1; jk <=m; jk++) {
              else         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);         if (ng==2)
              ij=1;           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
              for(j=3; j <=ncovmodel; j++) {         else
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {           fprintf(ficgp,"\nset title \"Probability\"\n");
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                  ij++;         i=1;
                }         for(k2=1; k2<=nlstate; k2++) {
                else           k3=i;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);           for(k=1; k<=(nlstate+ndeath); k++) {
              }             if (k != k2){
              fprintf(ficgp,")/(1");               if(ng==2)
                               fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
              for(k1=1; k1 <=nlstate; k1++){                 else
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;               ij=1;
                for(j=3; j <=ncovmodel; j++){               for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;                   ij++;
                  }                 }
                  else                 else
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }               }
                fprintf(ficgp,")");               fprintf(ficgp,")/(1");
              }               
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);               for(k1=1; k1 <=nlstate; k1++){   
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
              i=i+ncovmodel;                 ij=1;
            }                 for(j=3; j <=ncovmodel; j++){
          } /* end k */                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
        } /* end k2 */                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
      } /* end jk */                     ij++;
    } /* end ng */                   }
    fflush(ficgp);                   else
 }  /* end gnuplot */                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
 /*************** Moving average **************/               }
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   int i, cpt, cptcod;               i=i+ncovmodel;
   int modcovmax =1;             }
   int mobilavrange, mob;           } /* end k */
   double age;         } /* end k2 */
        } /* end jk */
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose     } /* end ng */
                            a covariate has 2 modalities */     fflush(ficgp); 
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */  }  /* end gnuplot */
   
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){  
     if(mobilav==1) mobilavrange=5; /* default */  /*************** Moving average **************/
     else mobilavrange=mobilav;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     for (age=bage; age<=fage; age++)  
       for (i=1; i<=nlstate;i++)    int i, cpt, cptcod;
         for (cptcod=1;cptcod<=modcovmax;cptcod++)    int modcovmax =1;
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];    int mobilavrange, mob;
     /* We keep the original values on the extreme ages bage, fage and for    double age;
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2  
        we use a 5 terms etc. until the borders are no more concerned.    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     */                             a covariate has 2 modalities */
     for (mob=3;mob <=mobilavrange;mob=mob+2){    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  
         for (i=1; i<=nlstate;i++){    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
           for (cptcod=1;cptcod<=modcovmax;cptcod++){      if(mobilav==1) mobilavrange=5; /* default */
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];      else mobilavrange=mobilav;
               for (cpt=1;cpt<=(mob-1)/2;cpt++){      for (age=bage; age<=fage; age++)
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];        for (i=1; i<=nlstate;i++)
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];          for (cptcod=1;cptcod<=modcovmax;cptcod++)
               }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;      /* We keep the original values on the extreme ages bage, fage and for 
           }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         }         we use a 5 terms etc. until the borders are no more concerned. 
       }/* end age */      */ 
     }/* end mob */      for (mob=3;mob <=mobilavrange;mob=mob+2){
   }else return -1;        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   return 0;          for (i=1; i<=nlstate;i++){
 }/* End movingaverage */            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
 /************** Forecasting ******************/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   /* proj1, year, month, day of starting projection                }
      agemin, agemax range of age              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
      dateprev1 dateprev2 range of dates during which prevalence is computed            }
      anproj2 year of en of projection (same day and month as proj1).          }
   */        }/* end age */
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;      }/* end mob */
   int *popage;    }else return -1;
   double agec; /* generic age */    return 0;
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  }/* End movingaverage */
   double *popeffectif,*popcount;  
   double ***p3mat;  
   double ***mobaverage;  /************** Forecasting ******************/
   char fileresf[FILENAMELENGTH];  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
   agelim=AGESUP;       agemin, agemax range of age
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);       dateprev1 dateprev2 range of dates during which prevalence is computed
         anproj2 year of en of projection (same day and month as proj1).
   strcpy(fileresf,"f");    */
   strcat(fileresf,fileres);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    int *popage;
     printf("Problem with forecast resultfile: %s\n", fileresf);    double agec; /* generic age */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   }    double *popeffectif,*popcount;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double ***p3mat;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
     agelim=AGESUP;
   if (mobilav!=0) {    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    strcpy(fileresf,"f"); 
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    strcat(fileresf,fileres);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    if((ficresf=fopen(fileresf,"w"))==NULL) {
     }      printf("Problem with forecast resultfile: %s\n", fileresf);
   }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
   stepsize=(int) (stepm+YEARM-1)/YEARM;    printf("Computing forecasting: result on file '%s' \n", fileresf);
   if (stepm<=12) stepsize=1;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   }  
   else  hstepm=estepm;      if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   hstepm=hstepm/stepm;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                                fractional in yp1 */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   anprojmean=yp;      }
   yp2=modf((yp1*12),&yp);    }
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   jprojmean=yp;    if (stepm<=12) stepsize=1;
   if(jprojmean==0) jprojmean=1;    if(estepm < stepm){
   if(mprojmean==0) jprojmean=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   i1=cptcoveff;    else  hstepm=estepm;   
   if (cptcovn < 1){i1=1;}  
      hstepm=hstepm/stepm; 
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                   fractional in yp1 */
   fprintf(ficresf,"#****** Routine prevforecast **\n");    anprojmean=yp;
     yp2=modf((yp1*12),&yp);
 /*            if (h==(int)(YEARM*yearp)){ */    mprojmean=yp;
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){    yp1=modf((yp2*30.5),&yp);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    jprojmean=yp;
       k=k+1;    if(jprojmean==0) jprojmean=1;
       fprintf(ficresf,"\n#******");    if(mprojmean==0) jprojmean=1;
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    i1=cptcoveff;
       }    if (cptcovn < 1){i1=1;}
       fprintf(ficresf,"******\n");    
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       for(j=1; j<=nlstate+ndeath;j++){    
         for(i=1; i<=nlstate;i++)                  fprintf(ficresf,"#****** Routine prevforecast **\n");
           fprintf(ficresf," p%d%d",i,j);  
         fprintf(ficresf," p.%d",j);  /*            if (h==(int)(YEARM*yearp)){ */
       }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         fprintf(ficresf,"\n");        k=k+1;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);          fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
         for (agec=fage; agec>=(ageminpar-1); agec--){          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);        }
           nhstepm = nhstepm/hstepm;        fprintf(ficresf,"******\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
           oldm=oldms;savm=savms;        for(j=1; j<=nlstate+ndeath;j++){ 
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);            for(i=1; i<=nlstate;i++)              
                    fprintf(ficresf," p%d%d",i,j);
           for (h=0; h<=nhstepm; h++){          fprintf(ficresf," p.%d",j);
             if (h*hstepm/YEARM*stepm ==yearp) {        }
               fprintf(ficresf,"\n");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
               for(j=1;j<=cptcoveff;j++)          fprintf(ficresf,"\n");
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);  
             }          for (agec=fage; agec>=(ageminpar-1); agec--){ 
             for(j=1; j<=nlstate+ndeath;j++) {            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
               ppij=0.;            nhstepm = nhstepm/hstepm; 
               for(i=1; i<=nlstate;i++) {            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 if (mobilav==1)            oldm=oldms;savm=savms;
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
                 else {          
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];            for (h=0; h<=nhstepm; h++){
                 }              if (h*hstepm/YEARM*stepm ==yearp) {
                 if (h*hstepm/YEARM*stepm== yearp) {                fprintf(ficresf,"\n");
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);                for(j=1;j<=cptcoveff;j++) 
                 }                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
               } /* end i */                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               if (h*hstepm/YEARM*stepm==yearp) {              } 
                 fprintf(ficresf," %.3f", ppij);              for(j=1; j<=nlstate+ndeath;j++) {
               }                ppij=0.;
             }/* end j */                for(i=1; i<=nlstate;i++) {
           } /* end h */                  if (mobilav==1) 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
         } /* end agec */                  else {
       } /* end yearp */                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
     } /* end cptcod */                  }
   } /* end  cptcov */                  if (h*hstepm/YEARM*stepm== yearp) {
                            fprintf(ficresf," %.3f", p3mat[i][j][h]);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  }
                 } /* end i */
   fclose(ficresf);                if (h*hstepm/YEARM*stepm==yearp) {
 }                  fprintf(ficresf," %.3f", ppij);
                 }
 /************** Forecasting *****not tested NB*************/              }/* end j */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            } /* end h */
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          } /* end agec */
   int *popage;        } /* end yearp */
   double calagedatem, agelim, kk1, kk2;      } /* end cptcod */
   double *popeffectif,*popcount;    } /* end  cptcov */
   double ***p3mat,***tabpop,***tabpopprev;         
   double ***mobaverage;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   char filerespop[FILENAMELENGTH];  
     fclose(ficresf);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;  /************** Forecasting *****not tested NB*************/
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
      
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
      int *popage;
      double calagedatem, agelim, kk1, kk2;
   strcpy(filerespop,"pop");    double *popeffectif,*popcount;
   strcat(filerespop,fileres);    double ***p3mat,***tabpop,***tabpopprev;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    double ***mobaverage;
     printf("Problem with forecast resultfile: %s\n", filerespop);    char filerespop[FILENAMELENGTH];
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  
   }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printf("Computing forecasting: result on file '%s' \n", filerespop);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   if (mobilav!=0) {    
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    strcpy(filerespop,"pop"); 
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    strcat(filerespop,fileres);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
     }      printf("Problem with forecast resultfile: %s\n", filerespop);
   }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
   stepsize=(int) (stepm+YEARM-1)/YEARM;    printf("Computing forecasting: result on file '%s' \n", filerespop);
   if (stepm<=12) stepsize=1;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
    
   agelim=AGESUP;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    
   hstepm=1;    if (mobilav!=0) {
   hstepm=hstepm/stepm;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   if (popforecast==1) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     if((ficpop=fopen(popfile,"r"))==NULL) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       printf("Problem with population file : %s\n",popfile);exit(0);      }
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    }
     }  
     popage=ivector(0,AGESUP);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     popeffectif=vector(0,AGESUP);    if (stepm<=12) stepsize=1;
     popcount=vector(0,AGESUP);    
        agelim=AGESUP;
     i=1;      
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    hstepm=1;
        hstepm=hstepm/stepm; 
     imx=i;    
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    if (popforecast==1) {
   }      if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      } 
       k=k+1;      popage=ivector(0,AGESUP);
       fprintf(ficrespop,"\n#******");      popeffectif=vector(0,AGESUP);
       for(j=1;j<=cptcoveff;j++) {      popcount=vector(0,AGESUP);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
       }      i=1;   
       fprintf(ficrespop,"******\n");      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       fprintf(ficrespop,"# Age");     
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      imx=i;
       if (popforecast==1)  fprintf(ficrespop," [Population]");      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
          }
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      for(cptcov=1,k=0;cptcov<=i2;cptcov++){
             for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){        k=k+1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        fprintf(ficrespop,"\n#******");
           nhstepm = nhstepm/hstepm;        for(j=1;j<=cptcoveff;j++) {
                    fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;        fprintf(ficrespop,"******\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficrespop,"# Age");
                for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
           for (h=0; h<=nhstepm; h++){        if (popforecast==1)  fprintf(ficrespop," [Population]");
             if (h==(int) (calagedatem+YEARM*cpt)) {        
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for (cpt=0; cpt<=0;cpt++) { 
             }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
             for(j=1; j<=nlstate+ndeath;j++) {          
               kk1=0.;kk2=0;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
               for(i=1; i<=nlstate;i++) {                          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
                 if (mobilav==1)            nhstepm = nhstepm/hstepm; 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            
                 else {            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            oldm=oldms;savm=savms;
                 }            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
               }          
               if (h==(int)(calagedatem+12*cpt)){            for (h=0; h<=nhstepm; h++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              if (h==(int) (calagedatem+YEARM*cpt)) {
                   /*fprintf(ficrespop," %.3f", kk1);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              } 
               }              for(j=1; j<=nlstate+ndeath;j++) {
             }                kk1=0.;kk2=0;
             for(i=1; i<=nlstate;i++){                for(i=1; i<=nlstate;i++) {              
               kk1=0.;                  if (mobilav==1) 
                 for(j=1; j<=nlstate;j++){                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                  else {
                 }                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];                  }
             }                }
                 if (h==(int)(calagedatem+12*cpt)){
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                    /*fprintf(ficrespop," %.3f", kk1);
           }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                }
         }              }
       }              for(i=1; i<=nlstate;i++){
                  kk1=0.;
   /******/                  for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                  }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                      tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){              }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                          fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedatem+YEARM*cpt)) {   
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    /******/
             }  
             for(j=1; j<=nlstate+ndeath;j++) {        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
               kk1=0.;kk2=0;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
               for(i=1; i<=nlstate;i++) {                        for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
               }            nhstepm = nhstepm/hstepm; 
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                    
             }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }            oldm=oldms;savm=savms;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         }            for (h=0; h<=nhstepm; h++){
       }              if (h==(int) (calagedatem+YEARM*cpt)) {
    }                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   }              } 
                for(j=1; j<=nlstate+ndeath;j++) {
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   if (popforecast==1) {                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     free_ivector(popage,0,AGESUP);                }
     free_vector(popeffectif,0,AGESUP);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     free_vector(popcount,0,AGESUP);              }
   }            }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   fclose(ficrespop);        }
 } /* End of popforecast */     } 
     }
 int fileappend(FILE *fichier, char *optionfich)   
 {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((fichier=fopen(optionfich,"a"))==NULL) {  
     printf("Problem with file: %s\n", optionfich);    if (popforecast==1) {
     fprintf(ficlog,"Problem with file: %s\n", optionfich);      free_ivector(popage,0,AGESUP);
     return (0);      free_vector(popeffectif,0,AGESUP);
   }      free_vector(popcount,0,AGESUP);
   fflush(fichier);    }
   return (1);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 }    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
 /**************** function prwizard **********************/  
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)  int fileappend(FILE *fichier, char *optionfich)
 {  {
     if((fichier=fopen(optionfich,"a"))==NULL) {
   /* Wizard to print covariance matrix template */      printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
   char ca[32], cb[32], cc[32];      return (0);
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;    }
   int numlinepar;    fflush(fichier);
     return (1);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  }
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
   for(i=1; i <=nlstate; i++){  
     jj=0;  /**************** function prwizard **********************/
     for(j=1; j <=nlstate+ndeath; j++){  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
       if(j==i) continue;  {
       jj++;  
       /*ca[0]= k+'a'-1;ca[1]='\0';*/    /* Wizard to print covariance matrix template */
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i,j);    char ca[32], cb[32], cc[32];
       for(k=1; k<=ncovmodel;k++){    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
         /*        printf(" %lf",param[i][j][k]); */    int numlinepar;
         /*        fprintf(ficparo," %lf",param[i][j][k]); */  
         printf(" 0.");    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         fprintf(ficparo," 0.");    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       }    for(i=1; i <=nlstate; i++){
       printf("\n");      jj=0;
       fprintf(ficparo,"\n");      for(j=1; j <=nlstate+ndeath; j++){
     }        if(j==i) continue;
   }        jj++;
   printf("# Scales (for hessian or gradient estimation)\n");        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");        printf("%1d%1d",i,j);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/        fprintf(ficparo,"%1d%1d",i,j);
   for(i=1; i <=nlstate; i++){        for(k=1; k<=ncovmodel;k++){
     jj=0;          /*        printf(" %lf",param[i][j][k]); */
     for(j=1; j <=nlstate+ndeath; j++){          /*        fprintf(ficparo," %lf",param[i][j][k]); */
       if(j==i) continue;          printf(" 0.");
       jj++;          fprintf(ficparo," 0.");
       fprintf(ficparo,"%1d%1d",i,j);        }
       printf("%1d%1d",i,j);        printf("\n");
       fflush(stdout);        fprintf(ficparo,"\n");
       for(k=1; k<=ncovmodel;k++){      }
         /*      printf(" %le",delti3[i][j][k]); */    }
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */    printf("# Scales (for hessian or gradient estimation)\n");
         printf(" 0.");    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
         fprintf(ficparo," 0.");    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
       }    for(i=1; i <=nlstate; i++){
       numlinepar++;      jj=0;
       printf("\n");      for(j=1; j <=nlstate+ndeath; j++){
       fprintf(ficparo,"\n");        if(j==i) continue;
     }        jj++;
   }        fprintf(ficparo,"%1d%1d",i,j);
   printf("# Covariance matrix\n");        printf("%1d%1d",i,j);
 /* # 121 Var(a12)\n\ */        fflush(stdout);
 /* # 122 Cov(b12,a12) Var(b12)\n\ */        for(k=1; k<=ncovmodel;k++){
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */          /*      printf(" %le",delti3[i][j][k]); */
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */          printf(" 0.");
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */          fprintf(ficparo," 0.");
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */        }
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */        numlinepar++;
   fflush(stdout);        printf("\n");
   fprintf(ficparo,"# Covariance matrix\n");        fprintf(ficparo,"\n");
   /* # 121 Var(a12)\n\ */      }
   /* # 122 Cov(b12,a12) Var(b12)\n\ */    }
   /* #   ...\n\ */    printf("# Covariance matrix\n");
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */  /* # 121 Var(a12)\n\ */
    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   for(itimes=1;itimes<=2;itimes++){  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     jj=0;  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     for(i=1; i <=nlstate; i++){  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       for(j=1; j <=nlstate+ndeath; j++){  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
         if(j==i) continue;  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
         for(k=1; k<=ncovmodel;k++){  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
           jj++;    fflush(stdout);
           ca[0]= k+'a'-1;ca[1]='\0';    fprintf(ficparo,"# Covariance matrix\n");
           if(itimes==1){    /* # 121 Var(a12)\n\ */
             printf("#%1d%1d%d",i,j,k);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
             fprintf(ficparo,"#%1d%1d%d",i,j,k);    /* #   ...\n\ */
           }else{    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
             printf("%1d%1d%d",i,j,k);    
             fprintf(ficparo,"%1d%1d%d",i,j,k);    for(itimes=1;itimes<=2;itimes++){
             /*  printf(" %.5le",matcov[i][j]); */      jj=0;
           }      for(i=1; i <=nlstate; i++){
           ll=0;        for(j=1; j <=nlstate+ndeath; j++){
           for(li=1;li <=nlstate; li++){          if(j==i) continue;
             for(lj=1;lj <=nlstate+ndeath; lj++){          for(k=1; k<=ncovmodel;k++){
               if(lj==li) continue;            jj++;
               for(lk=1;lk<=ncovmodel;lk++){            ca[0]= k+'a'-1;ca[1]='\0';
                 ll++;            if(itimes==1){
                 if(ll<=jj){              printf("#%1d%1d%d",i,j,k);
                   cb[0]= lk +'a'-1;cb[1]='\0';              fprintf(ficparo,"#%1d%1d%d",i,j,k);
                   if(ll<jj){            }else{
                     if(itimes==1){              printf("%1d%1d%d",i,j,k);
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);              fprintf(ficparo,"%1d%1d%d",i,j,k);
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);              /*  printf(" %.5le",matcov[i][j]); */
                     }else{            }
                       printf(" 0.");            ll=0;
                       fprintf(ficparo," 0.");            for(li=1;li <=nlstate; li++){
                     }              for(lj=1;lj <=nlstate+ndeath; lj++){
                   }else{                if(lj==li) continue;
                     if(itimes==1){                for(lk=1;lk<=ncovmodel;lk++){
                       printf(" Var(%s%1d%1d)",ca,i,j);                  ll++;
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);                  if(ll<=jj){
                     }else{                    cb[0]= lk +'a'-1;cb[1]='\0';
                       printf(" 0.");                    if(ll<jj){
                       fprintf(ficparo," 0.");                      if(itimes==1){
                     }                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   }                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                 }                      }else{
               } /* end lk */                        printf(" 0.");
             } /* end lj */                        fprintf(ficparo," 0.");
           } /* end li */                      }
           printf("\n");                    }else{
           fprintf(ficparo,"\n");                      if(itimes==1){
           numlinepar++;                        printf(" Var(%s%1d%1d)",ca,i,j);
         } /* end k*/                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
       } /*end j */                      }else{
     } /* end i */                        printf(" 0.");
   } /* end itimes */                        fprintf(ficparo," 0.");
                       }
 } /* end of prwizard */                    }
 /******************* Gompertz Likelihood ******************************/                  }
 double gompertz(double x[])                } /* end lk */
 {              } /* end lj */
   double A,B,L=0.0,sump=0.,num=0.;            } /* end li */
   int i,n=0; /* n is the size of the sample */            printf("\n");
             fprintf(ficparo,"\n");
   for (i=0;i<=imx-1 ; i++) {            numlinepar++;
     sump=sump+weight[i];          } /* end k*/
     /*    sump=sump+1;*/        } /*end j */
     num=num+1;      } /* end i */
   }    } /* end itimes */
    
    } /* end of prwizard */
   /* for (i=0; i<=imx; i++)  /******************* Gompertz Likelihood ******************************/
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/  double gompertz(double x[])
   { 
   for (i=1;i<=imx ; i++)    double A,B,L=0.0,sump=0.,num=0.;
     {    int i,n=0; /* n is the size of the sample */
       if (cens[i] == 1 && wav[i]>1)  
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));    for (i=0;i<=imx-1 ; i++) {
            sump=sump+weight[i];
       if (cens[i] == 0 && wav[i]>1)      /*    sump=sump+1;*/
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))      num=num+1;
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);      }
         
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */   
       if (wav[i] > 1 ) { /* ??? */    /* for (i=0; i<=imx; i++) 
         L=L+A*weight[i];       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/  
       }    for (i=1;i<=imx ; i++)
     }      {
         if (cens[i] == 1 && wav[i]>1)
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
          
   return -2*L*num/sump;        if (cens[i] == 0 && wav[i]>1)
 }          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
 /******************* Printing html file ***********/        
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
                   int lastpass, int stepm, int weightopt, char model[],\        if (wav[i] > 1 ) { /* ??? */
                   int imx,  double p[],double **matcov,double agemortsup){          L=L+A*weight[i];
   int i,k;          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");      }
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);  
   for (i=1;i<=2;i++)   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));   
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");    return -2*L*num/sump;
   fprintf(fichtm,"</ul>");  }
   
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");  /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
  for (k=agegomp;k<(agemortsup-2);k++)    int i,k;
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);  
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
      fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   fflush(fichtm);    for (i=1;i<=2;i++) 
 }      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 /******************* Gnuplot file **************/    fprintf(fichtm,"</ul>");
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   char dirfileres[132],optfileres[132];  
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   int ng;  
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   /*#ifdef windows */  
   fprintf(ficgp,"cd \"%s\" \n",pathc);   
     /*#endif */    fflush(fichtm);
   }
   
   strcpy(dirfileres,optionfilefiname);  /******************* Gnuplot file **************/
   strcpy(optfileres,"vpl");  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   fprintf(ficgp,"set out \"graphmort.png\"\n ");  
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");    char dirfileres[132],optfileres[132];
   fprintf(ficgp, "set ter png small\n set log y\n");    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   fprintf(ficgp, "set size 0.65,0.65\n");    int ng;
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);  
   
 }    /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
 /***********************************************/    strcpy(optfileres,"vpl");
 /**************** Main Program *****************/    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
 /***********************************************/    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
 int main(int argc, char *argv[])    fprintf(ficgp, "set size 0.65,0.65\n");
 {    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;  } 
   int linei, month, year,iout;  
   int jj, ll, li, lj, lk, imk;  
   int numlinepar=0; /* Current linenumber of parameter file */  
   int itimes;  
   int NDIM=2;  
   /***********************************************/
   char ca[32], cb[32], cc[32];  /**************** Main Program *****************/
   char dummy[]="                         ";  /***********************************************/
   /*  FILE *fichtm; *//* Html File */  
   /* FILE *ficgp;*/ /*Gnuplot File */  int main(int argc, char *argv[])
   struct stat info;  {
   double agedeb, agefin,hf;    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
   double fret;    int jj, ll, li, lj, lk, imk;
   double **xi,tmp,delta;    int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
   double dum; /* Dummy variable */    int NDIM=2;
   double ***p3mat;  
   double ***mobaverage;    char ca[32], cb[32], cc[32];
   int *indx;    char dummy[]="                         ";
   char line[MAXLINE], linepar[MAXLINE];    /*  FILE *fichtm; *//* Html File */
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    /* FILE *ficgp;*/ /*Gnuplot File */
   char pathr[MAXLINE], pathimach[MAXLINE];    struct stat info;
   char **bp, *tok, *val; /* pathtot */    double agedeb, agefin,hf;
   int firstobs=1, lastobs=10;    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;    double fret;
   int ju,jl, mi;    double **xi,tmp,delta;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;    double dum; /* Dummy variable */
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    double ***p3mat;
   int mobilav=0,popforecast=0;    double ***mobaverage;
   int hstepm, nhstepm;    int *indx;
   int agemortsup;    char line[MAXLINE], linepar[MAXLINE];
   float  sumlpop=0.;    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    char pathr[MAXLINE], pathimach[MAXLINE]; 
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;    char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
   double bage, fage, age, agelim, agebase;    int sdeb, sfin; /* Status at beginning and end */
   double ftolpl=FTOL;    int c,  h , cpt,l;
   double **prlim;    int ju,jl, mi;
   double *severity;    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   double ***param; /* Matrix of parameters */    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
   double  *p;    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   double **matcov; /* Matrix of covariance */    int mobilav=0,popforecast=0;
   double ***delti3; /* Scale */    int hstepm, nhstepm;
   double *delti; /* Scale */    int agemortsup;
   double ***eij, ***vareij;    float  sumlpop=0.;
   double **varpl; /* Variances of prevalence limits by age */    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   double *epj, vepp;    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    double bage, fage, age, agelim, agebase;
   double **ximort;    double ftolpl=FTOL;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double **prlim;
   int *dcwave;    double *severity;
     double ***param; /* Matrix of parameters */
   char z[1]="c", occ;    double  *p;
     double **matcov; /* Matrix of covariance */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double ***delti3; /* Scale */
   char  *strt, strtend[80];    double *delti; /* Scale */
   char *stratrunc;    double ***eij, ***vareij;
   int lstra;    double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   long total_usecs;    double kk1, kk2;
      double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
 /*   setlocale (LC_ALL, ""); */    double **ximort;
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */    char *alph[]={"a","a","b","c","d","e"}, str[4];
 /*   textdomain (PACKAGE); */    int *dcwave;
 /*   setlocale (LC_CTYPE, ""); */  
 /*   setlocale (LC_MESSAGES, ""); */    char z[1]="c", occ;
   
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   (void) gettimeofday(&start_time,&tzp);    char  *strt, strtend[80];
   curr_time=start_time;    char *stratrunc;
   tm = *localtime(&start_time.tv_sec);    int lstra;
   tmg = *gmtime(&start_time.tv_sec);  
   strcpy(strstart,asctime(&tm));    long total_usecs;
    
 /*  printf("Localtime (at start)=%s",strstart); */  /*   setlocale (LC_ALL, ""); */
 /*  tp.tv_sec = tp.tv_sec +86400; */  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
 /*  tm = *localtime(&start_time.tv_sec); */  /*   textdomain (PACKAGE); */
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */  /*   setlocale (LC_CTYPE, ""); */
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */  /*   setlocale (LC_MESSAGES, ""); */
 /*   tmg.tm_hour=tmg.tm_hour + 1; */  
 /*   tp.tv_sec = mktime(&tmg); */    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
 /*   strt=asctime(&tmg); */    (void) gettimeofday(&start_time,&tzp);
 /*   printf("Time(after) =%s",strstart);  */    curr_time=start_time;
 /*  (void) time (&time_value);    tm = *localtime(&start_time.tv_sec);
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);    tmg = *gmtime(&start_time.tv_sec);
 *  tm = *localtime(&time_value);    strcpy(strstart,asctime(&tm));
 *  strstart=asctime(&tm);  
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);  /*  printf("Localtime (at start)=%s",strstart); */
 */  /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   nberr=0; /* Number of errors and warnings */  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   nbwarn=0;  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   getcwd(pathcd, size);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   printf("\n%s\n%s",version,fullversion);  /*   strt=asctime(&tmg); */
   if(argc <=1){  /*   printf("Time(after) =%s",strstart);  */
     printf("\nEnter the parameter file name: ");  /*  (void) time (&time_value);
     fgets(pathr,FILENAMELENGTH,stdin);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
     i=strlen(pathr);  *  tm = *localtime(&time_value);
     if(pathr[i-1]=='\n')  *  strstart=asctime(&tm);
       pathr[i-1]='\0';  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
    for (tok = pathr; tok != NULL; ){  */
       printf("Pathr |%s|\n",pathr);  
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');    nberr=0; /* Number of errors and warnings */
       printf("val= |%s| pathr=%s\n",val,pathr);    nbwarn=0;
       strcpy (pathtot, val);    getcwd(pathcd, size);
       if(pathr[0] == '\0') break; /* Dirty */  
     }    printf("\n%s\n%s",version,fullversion);
   }    if(argc <=1){
   else{      printf("\nEnter the parameter file name: ");
     strcpy(pathtot,argv[1]);      fgets(pathr,FILENAMELENGTH,stdin);
   }      i=strlen(pathr);
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/      if(pathr[i-1]=='\n')
   /*cygwin_split_path(pathtot,path,optionfile);        pathr[i-1]='\0';
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/     for (tok = pathr; tok != NULL; ){
   /* cutv(path,optionfile,pathtot,'\\');*/        printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   /* Split argv[0], imach program to get pathimach */        printf("val= |%s| pathr=%s\n",val,pathr);
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);        strcpy (pathtot, val);
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);        if(pathr[0] == '\0') break; /* Dirty */
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);      }
  /*   strcpy(pathimach,argv[0]); */    }
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */    else{
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      strcpy(pathtot,argv[1]);
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    }
   chdir(path); /* Can be a relative path */    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */    /*cygwin_split_path(pathtot,path,optionfile);
     printf("Current directory %s!\n",pathcd);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   strcpy(command,"mkdir ");    /* cutv(path,optionfile,pathtot,'\\');*/
   strcat(command,optionfilefiname);  
   if((outcmd=system(command)) != 0){    /* Split argv[0], imach program to get pathimach */
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     /* fclose(ficlog); */    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 /*     exit(1); */   /*   strcpy(pathimach,argv[0]); */
   }    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
 /*   if((imk=mkdir(optionfilefiname))<0){ */    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
 /*     perror("mkdir"); */    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 /*   } */    chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   /*-------- arguments in the command line --------*/      printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
   /* Log file */    strcat(command,optionfilefiname);
   strcat(filelog, optionfilefiname);    if((outcmd=system(command)) != 0){
   strcat(filelog,".log");    /* */      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   if((ficlog=fopen(filelog,"w"))==NULL)    {      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
     printf("Problem with logfile %s\n",filelog);      /* fclose(ficlog); */
     goto end;  /*     exit(1); */
   }    }
   fprintf(ficlog,"Log filename:%s\n",filelog);  /*   if((imk=mkdir(optionfilefiname))<0){ */
   fprintf(ficlog,"\n%s\n%s",version,fullversion);  /*     perror("mkdir"); */
   fprintf(ficlog,"\nEnter the parameter file name: \n");  /*   } */
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\  
  path=%s \n\    /*-------- arguments in the command line --------*/
  optionfile=%s\n\  
  optionfilext=%s\n\    /* Log file */
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);    strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
   printf("Local time (at start):%s",strstart);    if((ficlog=fopen(filelog,"w"))==NULL)    {
   fprintf(ficlog,"Local time (at start): %s",strstart);      printf("Problem with logfile %s\n",filelog);
   fflush(ficlog);      goto end;
 /*   (void) gettimeofday(&curr_time,&tzp); */    }
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
   /* */    fprintf(ficlog,"\nEnter the parameter file name: \n");
   strcpy(fileres,"r");    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
   strcat(fileres, optionfilefiname);   path=%s \n\
   strcat(fileres,".txt");    /* Other files have txt extension */   optionfile=%s\n\
    optionfilext=%s\n\
   /*---------arguments file --------*/   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    printf("Local time (at start):%s",strstart);
     printf("Problem with optionfile %s\n",optionfile);    fprintf(ficlog,"Local time (at start): %s",strstart);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    fflush(ficlog);
     fflush(ficlog);  /*   (void) gettimeofday(&curr_time,&tzp); */
     goto end;  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   }  
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
   strcpy(filereso,"o");    strcat(fileres,".txt");    /* Other files have txt extension */
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */    /*---------arguments file --------*/
     printf("Problem with Output resultfile: %s\n", filereso);  
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
     fflush(ficlog);      printf("Problem with optionfile %s\n",optionfile);
     goto end;      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   }      fflush(ficlog);
       goto end;
   /* Reads comments: lines beginning with '#' */    }
   numlinepar=0;  
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    strcpy(filereso,"o");
     numlinepar++;    strcat(filereso,fileres);
     puts(line);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
     fputs(line,ficparo);      printf("Problem with Output resultfile: %s\n", filereso);
     fputs(line,ficlog);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   }      fflush(ficlog);
   ungetc(c,ficpar);      goto end;
     }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   numlinepar++;    /* Reads comments: lines beginning with '#' */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    numlinepar=0;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    while((c=getc(ficpar))=='#' && c!= EOF){
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      ungetc(c,ficpar);
   fflush(ficlog);      fgets(line, MAXLINE, ficpar);
   while((c=getc(ficpar))=='#' && c!= EOF){      numlinepar++;
     ungetc(c,ficpar);      puts(line);
     fgets(line, MAXLINE, ficpar);      fputs(line,ficparo);
     numlinepar++;      fputs(line,ficlog);
     puts(line);    }
     fputs(line,ficparo);    ungetc(c,ficpar);
     fputs(line,ficlog);  
   }    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   ungetc(c,ficpar);    numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
        fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   covar=matrix(0,NCOVMAX,1,n);    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    fflush(ficlog);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */      fgets(line, MAXLINE, ficpar);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      numlinepar++;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/      puts(line);
       fputs(line,ficparo);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fputs(line,ficlog);
   delti=delti3[1][1];    }
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    ungetc(c,ficpar);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */  
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);     
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    covar=matrix(0,NCOVMAX,1,n); 
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     fclose (ficparo);  
     fclose (ficlog);    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     goto end;    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     exit(0);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   }  
   else if(mle==-3) {    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    delti=delti3[1][1];
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     matcov=matrix(1,npar,1,npar);      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   }      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   else{      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     /* Read guess parameters */      fclose (ficparo);
     /* Reads comments: lines beginning with '#' */      fclose (ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){      goto end;
       ungetc(c,ficpar);      exit(0);
       fgets(line, MAXLINE, ficpar);    }
       numlinepar++;    else if(mle==-3) {
       puts(line);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       fputs(line,ficparo);      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fputs(line,ficlog);      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     }      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     ungetc(c,ficpar);      matcov=matrix(1,npar,1,npar);
        }
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    else{
     for(i=1; i <=nlstate; i++){      /* Read guess parameters */
       j=0;      /* Reads comments: lines beginning with '#' */
       for(jj=1; jj <=nlstate+ndeath; jj++){      while((c=getc(ficpar))=='#' && c!= EOF){
         if(jj==i) continue;        ungetc(c,ficpar);
         j++;        fgets(line, MAXLINE, ficpar);
         fscanf(ficpar,"%1d%1d",&i1,&j1);        numlinepar++;
         if ((i1 != i) && (j1 != j)){        puts(line);
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \        fputs(line,ficparo);
 It might be a problem of design; if ncovcol and the model are correct\n \        fputs(line,ficlog);
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);      }
           exit(1);      ungetc(c,ficpar);
         }      
         fprintf(ficparo,"%1d%1d",i1,j1);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         if(mle==1)      for(i=1; i <=nlstate; i++){
           printf("%1d%1d",i,j);        j=0;
         fprintf(ficlog,"%1d%1d",i,j);        for(jj=1; jj <=nlstate+ndeath; jj++){
         for(k=1; k<=ncovmodel;k++){          if(jj==i) continue;
           fscanf(ficpar," %lf",&param[i][j][k]);          j++;
           if(mle==1){          fscanf(ficpar,"%1d%1d",&i1,&j1);
             printf(" %lf",param[i][j][k]);          if ((i1 != i) && (j1 != j)){
             fprintf(ficlog," %lf",param[i][j][k]);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
           }  It might be a problem of design; if ncovcol and the model are correct\n \
           else  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             fprintf(ficlog," %lf",param[i][j][k]);            exit(1);
           fprintf(ficparo," %lf",param[i][j][k]);          }
         }          fprintf(ficparo,"%1d%1d",i1,j1);
         fscanf(ficpar,"\n");          if(mle==1)
         numlinepar++;            printf("%1d%1d",i,j);
         if(mle==1)          fprintf(ficlog,"%1d%1d",i,j);
           printf("\n");          for(k=1; k<=ncovmodel;k++){
         fprintf(ficlog,"\n");            fscanf(ficpar," %lf",&param[i][j][k]);
         fprintf(ficparo,"\n");            if(mle==1){
       }              printf(" %lf",param[i][j][k]);
     }                fprintf(ficlog," %lf",param[i][j][k]);
     fflush(ficlog);            }
             else
     p=param[1][1];              fprintf(ficlog," %lf",param[i][j][k]);
                fprintf(ficparo," %lf",param[i][j][k]);
     /* Reads comments: lines beginning with '#' */          }
     while((c=getc(ficpar))=='#' && c!= EOF){          fscanf(ficpar,"\n");
       ungetc(c,ficpar);          numlinepar++;
       fgets(line, MAXLINE, ficpar);          if(mle==1)
       numlinepar++;            printf("\n");
       puts(line);          fprintf(ficlog,"\n");
       fputs(line,ficparo);          fprintf(ficparo,"\n");
       fputs(line,ficlog);        }
     }      }  
     ungetc(c,ficpar);      fflush(ficlog);
   
     for(i=1; i <=nlstate; i++){      p=param[1][1];
       for(j=1; j <=nlstate+ndeath-1; j++){      
         fscanf(ficpar,"%1d%1d",&i1,&j1);      /* Reads comments: lines beginning with '#' */
         if ((i1-i)*(j1-j)!=0){      while((c=getc(ficpar))=='#' && c!= EOF){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);        ungetc(c,ficpar);
           exit(1);        fgets(line, MAXLINE, ficpar);
         }        numlinepar++;
         printf("%1d%1d",i,j);        puts(line);
         fprintf(ficparo,"%1d%1d",i1,j1);        fputs(line,ficparo);
         fprintf(ficlog,"%1d%1d",i1,j1);        fputs(line,ficlog);
         for(k=1; k<=ncovmodel;k++){      }
           fscanf(ficpar,"%le",&delti3[i][j][k]);      ungetc(c,ficpar);
           printf(" %le",delti3[i][j][k]);  
           fprintf(ficparo," %le",delti3[i][j][k]);      for(i=1; i <=nlstate; i++){
           fprintf(ficlog," %le",delti3[i][j][k]);        for(j=1; j <=nlstate+ndeath-1; j++){
         }          fscanf(ficpar,"%1d%1d",&i1,&j1);
         fscanf(ficpar,"\n");          if ((i1-i)*(j1-j)!=0){
         numlinepar++;            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
         printf("\n");            exit(1);
         fprintf(ficparo,"\n");          }
         fprintf(ficlog,"\n");          printf("%1d%1d",i,j);
       }          fprintf(ficparo,"%1d%1d",i1,j1);
     }          fprintf(ficlog,"%1d%1d",i1,j1);
     fflush(ficlog);          for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
     delti=delti3[1][1];            printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */          }
            fscanf(ficpar,"\n");
     /* Reads comments: lines beginning with '#' */          numlinepar++;
     while((c=getc(ficpar))=='#' && c!= EOF){          printf("\n");
       ungetc(c,ficpar);          fprintf(ficparo,"\n");
       fgets(line, MAXLINE, ficpar);          fprintf(ficlog,"\n");
       numlinepar++;        }
       puts(line);      }
       fputs(line,ficparo);      fflush(ficlog);
       fputs(line,ficlog);  
     }      delti=delti3[1][1];
     ungetc(c,ficpar);  
    
     matcov=matrix(1,npar,1,npar);      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     for(i=1; i <=npar; i++){    
       fscanf(ficpar,"%s",&str);      /* Reads comments: lines beginning with '#' */
       if(mle==1)      while((c=getc(ficpar))=='#' && c!= EOF){
         printf("%s",str);        ungetc(c,ficpar);
       fprintf(ficlog,"%s",str);        fgets(line, MAXLINE, ficpar);
       fprintf(ficparo,"%s",str);        numlinepar++;
       for(j=1; j <=i; j++){        puts(line);
         fscanf(ficpar," %le",&matcov[i][j]);        fputs(line,ficparo);
         if(mle==1){        fputs(line,ficlog);
           printf(" %.5le",matcov[i][j]);      }
         }      ungetc(c,ficpar);
         fprintf(ficlog," %.5le",matcov[i][j]);    
         fprintf(ficparo," %.5le",matcov[i][j]);      matcov=matrix(1,npar,1,npar);
       }      for(i=1; i <=npar; i++){
       fscanf(ficpar,"\n");        fscanf(ficpar,"%s",&str);
       numlinepar++;        if(mle==1)
       if(mle==1)          printf("%s",str);
         printf("\n");        fprintf(ficlog,"%s",str);
       fprintf(ficlog,"\n");        fprintf(ficparo,"%s",str);
       fprintf(ficparo,"\n");        for(j=1; j <=i; j++){
     }          fscanf(ficpar," %le",&matcov[i][j]);
     for(i=1; i <=npar; i++)          if(mle==1){
       for(j=i+1;j<=npar;j++)            printf(" %.5le",matcov[i][j]);
         matcov[i][j]=matcov[j][i];          }
              fprintf(ficlog," %.5le",matcov[i][j]);
     if(mle==1)          fprintf(ficparo," %.5le",matcov[i][j]);
       printf("\n");        }
     fprintf(ficlog,"\n");        fscanf(ficpar,"\n");
            numlinepar++;
     fflush(ficlog);        if(mle==1)
              printf("\n");
     /*-------- Rewriting parameter file ----------*/        fprintf(ficlog,"\n");
     strcpy(rfileres,"r");    /* "Rparameterfile */        fprintf(ficparo,"\n");
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      }
     strcat(rfileres,".");    /* */      for(i=1; i <=npar; i++)
     strcat(rfileres,optionfilext);    /* Other files have txt extension */        for(j=i+1;j<=npar;j++)
     if((ficres =fopen(rfileres,"w"))==NULL) {          matcov[i][j]=matcov[j][i];
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;      if(mle==1)
     }        printf("\n");
     fprintf(ficres,"#%s\n",version);      fprintf(ficlog,"\n");
   }    /* End of mle != -3 */      
       fflush(ficlog);
   /*-------- data file ----------*/      
   if((fic=fopen(datafile,"r"))==NULL)    {      /*-------- Rewriting parameter file ----------*/
     printf("Problem while opening datafile: %s\n", datafile);goto end;      strcpy(rfileres,"r");    /* "Rparameterfile */
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
   }      strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
   n= lastobs;      if((ficres =fopen(rfileres,"w"))==NULL) {
   severity = vector(1,maxwav);        printf("Problem writing new parameter file: %s\n", fileres);goto end;
   outcome=imatrix(1,maxwav+1,1,n);        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
   num=lvector(1,n);      }
   moisnais=vector(1,n);      fprintf(ficres,"#%s\n",version);
   annais=vector(1,n);    }    /* End of mle != -3 */
   moisdc=vector(1,n);  
   andc=vector(1,n);    /*-------- data file ----------*/
   agedc=vector(1,n);    if((fic=fopen(datafile,"r"))==NULL)    {
   cod=ivector(1,n);      printf("Problem while opening datafile: %s\n", datafile);goto end;
   weight=vector(1,n);      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    }
   mint=matrix(1,maxwav,1,n);  
   anint=matrix(1,maxwav,1,n);    n= lastobs;
   s=imatrix(1,maxwav+1,1,n);    severity = vector(1,maxwav);
   tab=ivector(1,NCOVMAX);    outcome=imatrix(1,maxwav+1,1,n);
   ncodemax=ivector(1,8);    num=lvector(1,n);
     moisnais=vector(1,n);
   i=1;    annais=vector(1,n);
   linei=0;    moisdc=vector(1,n);
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {    andc=vector(1,n);
     linei=linei+1;    agedc=vector(1,n);
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */    cod=ivector(1,n);
       if(line[j] == '\t')    weight=vector(1,n);
         line[j] = ' ';    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     }    mint=matrix(1,maxwav,1,n);
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){    anint=matrix(1,maxwav,1,n);
       ;    s=imatrix(1,maxwav+1,1,n);
     };    tab=ivector(1,NCOVMAX);
     line[j+1]=0;  /* Trims blanks at end of line */    ncodemax=ivector(1,8);
     if(line[0]=='#'){  
       fprintf(ficlog,"Comment line\n%s\n",line);    i=1;
       printf("Comment line\n%s\n",line);    linei=0;
       continue;    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
     }      linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
     for (j=maxwav;j>=1;j--){        if(line[j] == '\t')
       cutv(stra, strb,line,' ');          line[j] = ' ';
       errno=0;      }
       lval=strtol(strb,&endptr,10);      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/        ;
       if( strb[0]=='\0' || (*endptr != '\0')){      };
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);      line[j+1]=0;  /* Trims blanks at end of line */
         exit(1);      if(line[0]=='#'){
       }        fprintf(ficlog,"Comment line\n%s\n",line);
       s[j][i]=lval;        printf("Comment line\n%s\n",line);
              continue;
       strcpy(line,stra);      }
       cutv(stra, strb,line,' ');  
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      for (j=maxwav;j>=1;j--){
       }        cutv(stra, strb,line,' '); 
       else  if(iout=sscanf(strb,"%s.") != 0){        errno=0;
         month=99;        lval=strtol(strb,&endptr,10); 
         year=9999;        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
       }else{        if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
         exit(1);          exit(1);
       }        }
       anint[j][i]= (double) year;        s[j][i]=lval;
       mint[j][i]= (double)month;        
       strcpy(line,stra);        strcpy(line,stra);
     } /* ENd Waves */        cutv(stra, strb,line,' ');
            if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     cutv(stra, strb,line,' ');        }
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){        else  if(iout=sscanf(strb,"%s.") != 0){
     }          month=99;
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){          year=9999;
       month=99;        }else{
       year=9999;          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
     }else{          exit(1);
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);        }
       exit(1);        anint[j][i]= (double) year; 
     }        mint[j][i]= (double)month; 
     andc[i]=(double) year;        strcpy(line,stra);
     moisdc[i]=(double) month;      } /* ENd Waves */
     strcpy(line,stra);      
          cutv(stra, strb,line,' '); 
     cutv(stra, strb,line,' ');      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      }
     }      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
     else  if(iout=sscanf(strb,"%s.") != 0){        month=99;
       month=99;        year=9999;
       year=9999;      }else{
     }else{        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);        exit(1);
       exit(1);      }
     }      andc[i]=(double) year; 
     annais[i]=(double)(year);      moisdc[i]=(double) month; 
     moisnais[i]=(double)(month);      strcpy(line,stra);
     strcpy(line,stra);      
          cutv(stra, strb,line,' '); 
     cutv(stra, strb,line,' ');      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     errno=0;      }
     dval=strtod(strb,&endptr);      else  if(iout=sscanf(strb,"%s.") != 0){
     if( strb[0]=='\0' || (*endptr != '\0')){        month=99;
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);        year=9999;
       exit(1);      }else{
     }        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
     weight[i]=dval;        exit(1);
     strcpy(line,stra);      }
          annais[i]=(double)(year);
     for (j=ncovcol;j>=1;j--){      moisnais[i]=(double)(month); 
       cutv(stra, strb,line,' ');      strcpy(line,stra);
       errno=0;      
       lval=strtol(strb,&endptr,10);      cutv(stra, strb,line,' '); 
       if( strb[0]=='\0' || (*endptr != '\0')){      errno=0;
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);      dval=strtod(strb,&endptr); 
         exit(1);      if( strb[0]=='\0' || (*endptr != '\0')){
       }        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
       if(lval <-1 || lval >1){        exit(1);
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \      }
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \      weight[i]=dval; 
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \      strcpy(line,stra);
  For example, for multinomial values like 1, 2 and 3,\n \      
  build V1=0 V2=0 for the reference value (1),\n \      for (j=ncovcol;j>=1;j--){
         V1=1 V2=0 for (2) \n \        cutv(stra, strb,line,' '); 
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \        errno=0;
  output of IMaCh is often meaningless.\n \        lval=strtol(strb,&endptr,10); 
  Exiting.\n",lval,linei, i,line,j);        if( strb[0]=='\0' || (*endptr != '\0')){
         exit(1);          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
       }          exit(1);
       covar[j][i]=(double)(lval);        }
       strcpy(line,stra);        if(lval <-1 || lval >1){
     }          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
     lstra=strlen(stra);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
       for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */   For example, for multinomial values like 1, 2 and 3,\n \
       stratrunc = &(stra[lstra-9]);   build V1=0 V2=0 for the reference value (1),\n \
       num[i]=atol(stratrunc);          V1=1 V2=0 for (2) \n \
     }   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     else   output of IMaCh is often meaningless.\n \
       num[i]=atol(stra);   Exiting.\n",lval,linei, i,line,j);
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          exit(1);
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        }
            covar[j][i]=(double)(lval);
     i=i+1;        strcpy(line,stra);
   } /* End loop reading  data */      } 
   fclose(fic);      lstra=strlen(stra);
   /* printf("ii=%d", ij);      
      scanf("%d",i);*/      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
   imx=i-1; /* Number of individuals */        stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
   /* for (i=1; i<=imx; i++){      }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      else
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        num[i]=atol(stra);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
     }*/        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
    /*  for (i=1; i<=imx; i++){      
      if (s[4][i]==9)  s[4][i]=-1;      i=i+1;
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    } /* End loop reading  data */
      fclose(fic);
   /* for (i=1; i<=imx; i++) */    /* printf("ii=%d", ij);
         scanf("%d",i);*/
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;    imx=i-1; /* Number of individuals */
      else weight[i]=1;*/  
     /* for (i=1; i<=imx; i++){
   /* Calculation of the number of parameters from char model */      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
   Tprod=ivector(1,15);      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
   Tvaraff=ivector(1,15);      }*/
   Tvard=imatrix(1,15,1,2);     /*  for (i=1; i<=imx; i++){
   Tage=ivector(1,15);             if (s[4][i]==9)  s[4][i]=-1; 
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
   if (strlen(model) >1){ /* If there is at least 1 covariate */    
     j=0, j1=0, k1=1, k2=1;    /* for (i=1; i<=imx; i++) */
     j=nbocc(model,'+'); /* j=Number of '+' */   
     j1=nbocc(model,'*'); /* j1=Number of '*' */     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
     cptcovn=j+1;       else weight[i]=1;*/
     cptcovprod=j1; /*Number of products */  
        /* Calculation of the number of parameters from char model */
     strcpy(modelsav,model);    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    Tprod=ivector(1,15); 
       printf("Error. Non available option model=%s ",model);    Tvaraff=ivector(1,15); 
       fprintf(ficlog,"Error. Non available option model=%s ",model);    Tvard=imatrix(1,15,1,2);
       goto end;    Tage=ivector(1,15);      
     }     
        if (strlen(model) >1){ /* If there is at least 1 covariate */
     /* This loop fills the array Tvar from the string 'model'.*/      j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
     for(i=(j+1); i>=1;i--){      j1=nbocc(model,'*'); /* j1=Number of '*' */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */      cptcovn=j+1; 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */      cptcovprod=j1; /*Number of products */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      
       /*scanf("%d",i);*/      strcpy(modelsav,model); 
       if (strchr(strb,'*')) {  /* Model includes a product */      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        printf("Error. Non available option model=%s ",model);
         if (strcmp(strc,"age")==0) { /* Vn*age */        fprintf(ficlog,"Error. Non available option model=%s ",model);
           cptcovprod--;        goto end;
           cutv(strb,stre,strd,'V');      }
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      
           cptcovage++;      /* This loop fills the array Tvar from the string 'model'.*/
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/      for(i=(j+1); i>=1;i--){
         }        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           cptcovprod--;        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           cutv(strb,stre,strc,'V');        /*scanf("%d",i);*/
           Tvar[i]=atoi(stre);        if (strchr(strb,'*')) {  /* Model includes a product */
           cptcovage++;          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           Tage[cptcovage]=i;          if (strcmp(strc,"age")==0) { /* Vn*age */
         }            cptcovprod--;
         else {  /* Age is not in the model */            cutv(strb,stre,strd,'V');
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
           Tvar[i]=ncovcol+k1;            cptcovage++;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */              Tage[cptcovage]=i;
           Tprod[k1]=i;              /*printf("stre=%s ", stre);*/
           Tvard[k1][1]=atoi(strc); /* m*/          }
           Tvard[k1][2]=atoi(stre); /* n */          else if (strcmp(strd,"age")==0) { /* or age*Vn */
           Tvar[cptcovn+k2]=Tvard[k1][1];            cptcovprod--;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            cutv(strb,stre,strc,'V');
           for (k=1; k<=lastobs;k++)            Tvar[i]=atoi(stre);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            cptcovage++;
           k1++;            Tage[cptcovage]=i;
           k2=k2+2;          }
         }          else {  /* Age is not in the model */
       }            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
       else { /* no more sum */            Tvar[i]=ncovcol+k1;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
        /*  scanf("%d",i);*/            Tprod[k1]=i;
       cutv(strd,strc,strb,'V');            Tvard[k1][1]=atoi(strc); /* m*/
       Tvar[i]=atoi(strc);            Tvard[k1][2]=atoi(stre); /* n */
       }            Tvar[cptcovn+k2]=Tvard[k1][1];
       strcpy(modelsav,stra);              Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            for (k=1; k<=lastobs;k++) 
         scanf("%d",i);*/              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
     } /* end of loop + */            k1++;
   } /* end model */            k2=k2+2;
            }
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.        }
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/        else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);         /*  scanf("%d",i);*/
   printf("cptcovprod=%d ", cptcovprod);        cutv(strd,strc,strb,'V');
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        Tvar[i]=atoi(strc);
         }
   scanf("%d ",i);*/        strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
     /*  if(mle==1){*/          scanf("%d",i);*/
   if (weightopt != 1) { /* Maximisation without weights*/      } /* end of loop + */
     for(i=1;i<=n;i++) weight[i]=1.0;    } /* end model */
   }    
     /*-calculation of age at interview from date of interview and age at death -*/    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
   agev=matrix(1,maxwav,1,imx);      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
   for (i=1; i<=imx; i++) {    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     for(m=2; (m<= maxwav); m++) {    printf("cptcovprod=%d ", cptcovprod);
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
         anint[m][i]=9999;  
         s[m][i]=-1;    scanf("%d ",i);*/
       }  
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){      /*  if(mle==1){*/
         nberr++;    if (weightopt != 1) { /* Maximisation without weights*/
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      for(i=1;i<=n;i++) weight[i]=1.0;
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    }
         s[m][i]=-1;      /*-calculation of age at interview from date of interview and age at death -*/
       }    agev=matrix(1,maxwav,1,imx);
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){  
         nberr++;    for (i=1; i<=imx; i++) {
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);      for(m=2; (m<= maxwav); m++) {
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */          anint[m][i]=9999;
       }          s[m][i]=-1;
     }        }
   }        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
   for (i=1; i<=imx; i++)  {          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
     for(m=firstpass; (m<= lastpass); m++){          s[m][i]=-1;
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){        }
         if (s[m][i] >= nlstate+1) {        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           if(agedc[i]>0)          nberr++;
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
               agev[m][i]=agedc[i];          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
             else {        }
               if ((int)andc[i]!=9999){      }
                 nbwarn++;    }
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);  
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);    for (i=1; i<=imx; i++)  {
                 agev[m][i]=-1;      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
               }      for(m=firstpass; (m<= lastpass); m++){
             }        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
         }          if (s[m][i] >= nlstate+1) {
         else if(s[m][i] !=9){ /* Standard case, age in fractional            if(agedc[i]>0)
                                  years but with the precision of a month */              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                agev[m][i]=agedc[i];
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
             agev[m][i]=1;              else {
           else if(agev[m][i] <agemin){                if ((int)andc[i]!=9999){
             agemin=agev[m][i];                  nbwarn++;
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
           }                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
           else if(agev[m][i] >agemax){                  agev[m][i]=-1;
             agemax=agev[m][i];                }
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              }
           }          }
           /*agev[m][i]=anint[m][i]-annais[i];*/          else if(s[m][i] !=9){ /* Standard case, age in fractional
           /*     agev[m][i] = age[i]+2*m;*/                                   years but with the precision of a month */
         }            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
         else { /* =9 */            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
           agev[m][i]=1;              agev[m][i]=1;
           s[m][i]=-1;            else if(agev[m][i] <agemin){ 
         }              agemin=agev[m][i];
       }              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
       else /*= 0 Unknown */            }
         agev[m][i]=1;            else if(agev[m][i] >agemax){
     }              agemax=agev[m][i];
                  /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
   }            }
   for (i=1; i<=imx; i++)  {            /*agev[m][i]=anint[m][i]-annais[i];*/
     for(m=firstpass; (m<=lastpass); m++){            /*     agev[m][i] = age[i]+2*m;*/
       if (s[m][i] > (nlstate+ndeath)) {          }
         nberr++;          else { /* =9 */
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                agev[m][i]=1;
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                s[m][i]=-1;
         goto end;          }
       }        }
     }        else /*= 0 Unknown */
   }          agev[m][i]=1;
       }
   /*for (i=1; i<=imx; i++){      
   for (m=firstpass; (m<lastpass); m++){    }
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    for (i=1; i<=imx; i++)  {
 }      for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
 }*/          nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          goto end;
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        }
       }
   agegomp=(int)agemin;    }
   free_vector(severity,1,maxwav);  
   free_imatrix(outcome,1,maxwav+1,1,n);    /*for (i=1; i<=imx; i++){
   free_vector(moisnais,1,n);    for (m=firstpass; (m<lastpass); m++){
   free_vector(annais,1,n);       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   /* free_matrix(mint,1,maxwav,1,n);  }
      free_matrix(anint,1,maxwav,1,n);*/  
   free_vector(moisdc,1,n);  }*/
   free_vector(andc,1,n);  
   
        printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   wav=ivector(1,imx);    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   dh=imatrix(1,lastpass-firstpass+1,1,imx);  
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    agegomp=(int)agemin;
   mw=imatrix(1,lastpass-firstpass+1,1,imx);    free_vector(severity,1,maxwav);
        free_imatrix(outcome,1,maxwav+1,1,n);
   /* Concatenates waves */    free_vector(moisnais,1,n);
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */       free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
   Tcode=ivector(1,100);    free_vector(andc,1,n);
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  
   ncodemax[1]=1;     
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);    wav=ivector(1,imx);
          dh=imatrix(1,lastpass-firstpass+1,1,imx);
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of    bh=imatrix(1,lastpass-firstpass+1,1,imx);
                                  the estimations*/    mw=imatrix(1,lastpass-firstpass+1,1,imx);
   h=0;     
   m=pow(2,cptcoveff);    /* Concatenates waves */
      concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   for(k=1;k<=cptcoveff; k++){  
     for(i=1; i <=(m/pow(2,k));i++){    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
       for(j=1; j <= ncodemax[k]; j++){  
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    Tcode=ivector(1,100);
           h++;    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    ncodemax[1]=1;
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         }        
       }    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
     }                                   the estimations*/
   }    h=0;
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    m=pow(2,cptcoveff);
      codtab[1][2]=1;codtab[2][2]=2; */   
   /* for(i=1; i <=m ;i++){    for(k=1;k<=cptcoveff; k++){
      for(k=1; k <=cptcovn; k++){      for(i=1; i <=(m/pow(2,k));i++){
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        for(j=1; j <= ncodemax[k]; j++){
      }          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
      printf("\n");            h++;
      }            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
      scanf("%d",i);*/            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
              } 
   /*------------ gnuplot -------------*/        }
   strcpy(optionfilegnuplot,optionfilefiname);      }
   if(mle==-3)    } 
     strcat(optionfilegnuplot,"-mort");    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
   strcat(optionfilegnuplot,".gp");       codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       for(k=1; k <=cptcovn; k++){
     printf("Problem with file %s",optionfilegnuplot);       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
   }       }
   else{       printf("\n");
     fprintf(ficgp,"\n# %s\n", version);       }
     fprintf(ficgp,"# %s\n", optionfilegnuplot);       scanf("%d",i);*/
     fprintf(ficgp,"set missing 'NaNq'\n");      
   }    /*------------ gnuplot -------------*/
   /*  fclose(ficgp);*/    strcpy(optionfilegnuplot,optionfilefiname);
   /*--------- index.htm --------*/    if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */    strcat(optionfilegnuplot,".gp");
   if(mle==-3)  
     strcat(optionfilehtm,"-mort");    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
   strcat(optionfilehtm,".htm");      printf("Problem with file %s",optionfilegnuplot);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    }
     printf("Problem with %s \n",optionfilehtm), exit(0);    else{
   }      fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */      fprintf(ficgp,"set missing 'NaNq'\n");
   strcat(optionfilehtmcov,"-cov.htm");    }
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    /*  fclose(ficgp);*/
     printf("Problem with %s \n",optionfilehtmcov), exit(0);    /*--------- index.htm --------*/
   }  
   else{    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    if(mle==-3)
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      strcat(optionfilehtm,"-mort");
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\    strcat(optionfilehtm,".htm");
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
   }      printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \  
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\    strcat(optionfilehtmcov,"-cov.htm");
 \n\    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
 <hr  size=\"2\" color=\"#EC5E5E\">\      printf("Problem with %s \n",optionfilehtmcov), exit(0);
  <ul><li><h4>Parameter files</h4>\n\    }
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\    else{
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\  <hr size=\"2\" color=\"#EC5E5E\"> \n\
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
  - Date and time at start: %s</ul>\n",\            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\    }
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\  
           fileres,fileres,\    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
   fflush(fichtm);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   strcpy(pathr,path);  <hr  size=\"2\" color=\"#EC5E5E\">\
   strcat(pathr,optionfilefiname);   <ul><li><h4>Parameter files</h4>\n\
   chdir(optionfilefiname); /* Move to directory named optionfile */   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
     - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
   /* Calculates basic frequencies. Computes observed prevalence at single age   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
      and prints on file fileres'p'. */   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);   - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
   fprintf(fichtm,"\n");            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\            fileres,fileres,\
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\    fflush(fichtm);
           imx,agemin,agemax,jmin,jmax,jmean);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(pathr,path);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcat(pathr,optionfilefiname);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    chdir(optionfilefiname); /* Move to directory named optionfile */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* Calculates basic frequencies. Computes observed prevalence at single age
           and prints on file fileres'p'. */
        freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   /* For Powell, parameters are in a vector p[] starting at p[1]  
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    fprintf(fichtm,"\n");
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
   if (mle==-3){    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     ximort=matrix(1,NDIM,1,NDIM);      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     cens=ivector(1,n);      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     ageexmed=vector(1,n);      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     agecens=vector(1,n);      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
     dcwave=ivector(1,n);      
       
     for (i=1; i<=imx; i++){    /* For Powell, parameters are in a vector p[] starting at p[1]
       dcwave[i]=-1;       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
       for (m=firstpass; m<=lastpass; m++)    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
         if (s[m][i]>nlstate) {  
           dcwave[i]=m;    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/  
           break;    if (mle==-3){
         }      ximort=matrix(1,NDIM,1,NDIM);
     }      cens=ivector(1,n);
       ageexmed=vector(1,n);
     for (i=1; i<=imx; i++) {      agecens=vector(1,n);
       if (wav[i]>0){      dcwave=ivector(1,n);
         ageexmed[i]=agev[mw[1][i]][i];   
         j=wav[i];      for (i=1; i<=imx; i++){
         agecens[i]=1.;        dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
         if (ageexmed[i]> 1 && wav[i] > 0){          if (s[m][i]>nlstate) {
           agecens[i]=agev[mw[j][i]][i];            dcwave[i]=m;
           cens[i]= 1;            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
         }else if (ageexmed[i]< 1)            break;
           cens[i]= -1;          }
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)      }
           cens[i]=0 ;  
       }      for (i=1; i<=imx; i++) {
       else cens[i]=-1;        if (wav[i]>0){
     }          ageexmed[i]=agev[mw[1][i]][i];
              j=wav[i];
     for (i=1;i<=NDIM;i++) {          agecens[i]=1.; 
       for (j=1;j<=NDIM;j++)  
         ximort[i][j]=(i == j ? 1.0 : 0.0);          if (ageexmed[i]> 1 && wav[i] > 0){
     }            agecens[i]=agev[mw[j][i]][i];
                cens[i]= 1;
     p[1]=0.0268; p[NDIM]=0.083;          }else if (ageexmed[i]< 1) 
     /*printf("%lf %lf", p[1], p[2]);*/            cens[i]= -1;
              if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
                cens[i]=0 ;
     printf("Powell\n");  fprintf(ficlog,"Powell\n");        }
     strcpy(filerespow,"pow-mort");        else cens[i]=-1;
     strcat(filerespow,fileres);      }
     if((ficrespow=fopen(filerespow,"w"))==NULL) {      
       printf("Problem with resultfile: %s\n", filerespow);      for (i=1;i<=NDIM;i++) {
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        for (j=1;j<=NDIM;j++)
     }          ximort[i][j]=(i == j ? 1.0 : 0.0);
     fprintf(ficrespow,"# Powell\n# iter -2*LL");      }
     /*  for (i=1;i<=nlstate;i++)      
         for(j=1;j<=nlstate+ndeath;j++)      p[1]=0.0268; p[NDIM]=0.083;
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      /*printf("%lf %lf", p[1], p[2]);*/
     */      
     fprintf(ficrespow,"\n");      
          printf("Powell\n");  fprintf(ficlog,"Powell\n");
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);      strcpy(filerespow,"pow-mort"); 
     fclose(ficrespow);      strcat(filerespow,fileres);
          if((ficrespow=fopen(filerespow,"w"))==NULL) {
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);        printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for(i=1; i <=NDIM; i++)      }
       for(j=i+1;j<=NDIM;j++)      fprintf(ficrespow,"# Powell\n# iter -2*LL");
         matcov[i][j]=matcov[j][i];      /*  for (i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate+ndeath;j++)
     printf("\nCovariance matrix\n ");          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for(i=1; i <=NDIM; i++) {      */
       for(j=1;j<=NDIM;j++){      fprintf(ficrespow,"\n");
         printf("%f ",matcov[i][j]);      
       }      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       printf("\n ");      fclose(ficrespow);
     }      
          hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);  
     for (i=1;i<=NDIM;i++)      for(i=1; i <=NDIM; i++)
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));        for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
     lsurv=vector(1,AGESUP);      
     lpop=vector(1,AGESUP);      printf("\nCovariance matrix\n ");
     tpop=vector(1,AGESUP);      for(i=1; i <=NDIM; i++) {
     lsurv[agegomp]=100000;        for(j=1;j<=NDIM;j++){ 
              printf("%f ",matcov[i][j]);
     for (k=agegomp;k<=AGESUP;k++) {        }
       agemortsup=k;        printf("\n ");
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;      }
     }      
          printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
     for (k=agegomp;k<agemortsup;k++)      for (i=1;i<=NDIM;i++) 
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
      
     for (k=agegomp;k<agemortsup;k++){      lsurv=vector(1,AGESUP);
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;      lpop=vector(1,AGESUP);
       sumlpop=sumlpop+lpop[k];      tpop=vector(1,AGESUP);
     }      lsurv[agegomp]=100000;
          
     tpop[agegomp]=sumlpop;      for (k=agegomp;k<=AGESUP;k++) {
     for (k=agegomp;k<(agemortsup-3);k++){        agemortsup=k;
       /*  tpop[k+1]=2;*/        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       tpop[k+1]=tpop[k]-lpop[k];      }
     }      
          for (k=agegomp;k<agemortsup;k++)
            lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");      
     for (k=agegomp;k<(agemortsup-2);k++)      for (k=agegomp;k<agemortsup;k++){
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
            sumlpop=sumlpop+lpop[k];
          }
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      tpop[agegomp]=sumlpop;
          for (k=agegomp;k<(agemortsup-3);k++){
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \        /*  tpop[k+1]=2;*/
                      stepm, weightopt,\        tpop[k+1]=tpop[k]-lpop[k];
                      model,imx,p,matcov,agemortsup);      }
          
     free_vector(lsurv,1,AGESUP);      
     free_vector(lpop,1,AGESUP);      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
     free_vector(tpop,1,AGESUP);      for (k=agegomp;k<(agemortsup-2);k++) 
   } /* Endof if mle==-3 */        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
        
   else{ /* For mle >=1 */      
        replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      
     for (k=1; k<=npar;k++)      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
       printf(" %d %8.5f",k,p[k]);                       stepm, weightopt,\
     printf("\n");                       model,imx,p,matcov,agemortsup);
     globpr=1; /* to print the contributions */      
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      free_vector(lsurv,1,AGESUP);
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      free_vector(lpop,1,AGESUP);
     for (k=1; k<=npar;k++)      free_vector(tpop,1,AGESUP);
       printf(" %d %8.5f",k,p[k]);    } /* Endof if mle==-3 */
     printf("\n");    
     if(mle>=1){ /* Could be 1 or 2 */    else{ /* For mle >=1 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    
     }      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
          printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     /*--------- results files --------------*/      for (k=1; k<=npar;k++)
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        printf(" %d %8.5f",k,p[k]);
          printf("\n");
          globpr=1; /* to print the contributions */
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for (k=1; k<=npar;k++)
     for(i=1,jk=1; i <=nlstate; i++){        printf(" %d %8.5f",k,p[k]);
       for(k=1; k <=(nlstate+ndeath); k++){      printf("\n");
         if (k != i) {      if(mle>=1){ /* Could be 1 or 2 */
           printf("%d%d ",i,k);        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
           fprintf(ficlog,"%d%d ",i,k);      }
           fprintf(ficres,"%1d%1d ",i,k);      
           for(j=1; j <=ncovmodel; j++){      /*--------- results files --------------*/
             printf("%lf ",p[jk]);      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
             fprintf(ficlog,"%lf ",p[jk]);      
             fprintf(ficres,"%lf ",p[jk]);      
             jk++;      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
           }      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
           printf("\n");      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
           fprintf(ficlog,"\n");      for(i=1,jk=1; i <=nlstate; i++){
           fprintf(ficres,"\n");        for(k=1; k <=(nlstate+ndeath); k++){
         }          if (k != i) {
       }            printf("%d%d ",i,k);
     }            fprintf(ficlog,"%d%d ",i,k);
     if(mle!=0){            fprintf(ficres,"%1d%1d ",i,k);
       /* Computing hessian and covariance matrix */            for(j=1; j <=ncovmodel; j++){
       ftolhess=ftol; /* Usually correct */              printf("%lf ",p[jk]);
       hesscov(matcov, p, npar, delti, ftolhess, func);              fprintf(ficlog,"%lf ",p[jk]);
     }              fprintf(ficres,"%lf ",p[jk]);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");              jk++; 
     printf("# Scales (for hessian or gradient estimation)\n");            }
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");            printf("\n");
     for(i=1,jk=1; i <=nlstate; i++){            fprintf(ficlog,"\n");
       for(j=1; j <=nlstate+ndeath; j++){            fprintf(ficres,"\n");
         if (j!=i) {          }
           fprintf(ficres,"%1d%1d",i,j);        }
           printf("%1d%1d",i,j);      }
           fprintf(ficlog,"%1d%1d",i,j);      if(mle!=0){
           for(k=1; k<=ncovmodel;k++){        /* Computing hessian and covariance matrix */
             printf(" %.5e",delti[jk]);        ftolhess=ftol; /* Usually correct */
             fprintf(ficlog," %.5e",delti[jk]);        hesscov(matcov, p, npar, delti, ftolhess, func);
             fprintf(ficres," %.5e",delti[jk]);      }
             jk++;      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
           }      printf("# Scales (for hessian or gradient estimation)\n");
           printf("\n");      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
           fprintf(ficlog,"\n");      for(i=1,jk=1; i <=nlstate; i++){
           fprintf(ficres,"\n");        for(j=1; j <=nlstate+ndeath; j++){
         }          if (j!=i) {
       }            fprintf(ficres,"%1d%1d",i,j);
     }            printf("%1d%1d",i,j);
                fprintf(ficlog,"%1d%1d",i,j);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            for(k=1; k<=ncovmodel;k++){
     if(mle>=1)              printf(" %.5e",delti[jk]);
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              fprintf(ficlog," %.5e",delti[jk]);
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              fprintf(ficres," %.5e",delti[jk]);
     /* # 121 Var(a12)\n\ */              jk++;
     /* # 122 Cov(b12,a12) Var(b12)\n\ */            }
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */            printf("\n");
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */            fprintf(ficlog,"\n");
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */            fprintf(ficres,"\n");
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */          }
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */        }
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */      }
          
          fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     /* Just to have a covariance matrix which will be more understandable      if(mle>=1)
        even is we still don't want to manage dictionary of variables        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     */      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(itimes=1;itimes<=2;itimes++){      /* # 121 Var(a12)\n\ */
       jj=0;      /* # 122 Cov(b12,a12) Var(b12)\n\ */
       for(i=1; i <=nlstate; i++){      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
         for(j=1; j <=nlstate+ndeath; j++){      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
           if(j==i) continue;      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
           for(k=1; k<=ncovmodel;k++){      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
             jj++;      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
             ca[0]= k+'a'-1;ca[1]='\0';      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
             if(itimes==1){      
               if(mle>=1)      
                 printf("#%1d%1d%d",i,j,k);      /* Just to have a covariance matrix which will be more understandable
               fprintf(ficlog,"#%1d%1d%d",i,j,k);         even is we still don't want to manage dictionary of variables
               fprintf(ficres,"#%1d%1d%d",i,j,k);      */
             }else{      for(itimes=1;itimes<=2;itimes++){
               if(mle>=1)        jj=0;
                 printf("%1d%1d%d",i,j,k);        for(i=1; i <=nlstate; i++){
               fprintf(ficlog,"%1d%1d%d",i,j,k);          for(j=1; j <=nlstate+ndeath; j++){
               fprintf(ficres,"%1d%1d%d",i,j,k);            if(j==i) continue;
             }            for(k=1; k<=ncovmodel;k++){
             ll=0;              jj++;
             for(li=1;li <=nlstate; li++){              ca[0]= k+'a'-1;ca[1]='\0';
               for(lj=1;lj <=nlstate+ndeath; lj++){              if(itimes==1){
                 if(lj==li) continue;                if(mle>=1)
                 for(lk=1;lk<=ncovmodel;lk++){                  printf("#%1d%1d%d",i,j,k);
                   ll++;                fprintf(ficlog,"#%1d%1d%d",i,j,k);
                   if(ll<=jj){                fprintf(ficres,"#%1d%1d%d",i,j,k);
                     cb[0]= lk +'a'-1;cb[1]='\0';              }else{
                     if(ll<jj){                if(mle>=1)
                       if(itimes==1){                  printf("%1d%1d%d",i,j,k);
                         if(mle>=1)                fprintf(ficlog,"%1d%1d%d",i,j,k);
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                fprintf(ficres,"%1d%1d%d",i,j,k);
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);              }
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);              ll=0;
                       }else{              for(li=1;li <=nlstate; li++){
                         if(mle>=1)                for(lj=1;lj <=nlstate+ndeath; lj++){
                           printf(" %.5e",matcov[jj][ll]);                  if(lj==li) continue;
                         fprintf(ficlog," %.5e",matcov[jj][ll]);                  for(lk=1;lk<=ncovmodel;lk++){
                         fprintf(ficres," %.5e",matcov[jj][ll]);                    ll++;
                       }                    if(ll<=jj){
                     }else{                      cb[0]= lk +'a'-1;cb[1]='\0';
                       if(itimes==1){                      if(ll<jj){
                         if(mle>=1)                        if(itimes==1){
                           printf(" Var(%s%1d%1d)",ca,i,j);                          if(mle>=1)
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         if(mle>=1)                        }else{
                           printf(" %.5e",matcov[jj][ll]);                          if(mle>=1)
                         fprintf(ficlog," %.5e",matcov[jj][ll]);                            printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]);                          fprintf(ficlog," %.5e",matcov[jj][ll]); 
                       }                          fprintf(ficres," %.5e",matcov[jj][ll]); 
                     }                        }
                   }                      }else{
                 } /* end lk */                        if(itimes==1){
               } /* end lj */                          if(mle>=1)
             } /* end li */                            printf(" Var(%s%1d%1d)",ca,i,j);
             if(mle>=1)                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
               printf("\n");                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
             fprintf(ficlog,"\n");                        }else{
             fprintf(ficres,"\n");                          if(mle>=1)
             numlinepar++;                            printf(" %.5e",matcov[jj][ll]); 
           } /* end k*/                          fprintf(ficlog," %.5e",matcov[jj][ll]); 
         } /*end j */                          fprintf(ficres," %.5e",matcov[jj][ll]); 
       } /* end i */                        }
     } /* end itimes */                      }
                        }
     fflush(ficlog);                  } /* end lk */
     fflush(ficres);                } /* end lj */
                  } /* end li */
     while((c=getc(ficpar))=='#' && c!= EOF){              if(mle>=1)
       ungetc(c,ficpar);                printf("\n");
       fgets(line, MAXLINE, ficpar);              fprintf(ficlog,"\n");
       puts(line);              fprintf(ficres,"\n");
       fputs(line,ficparo);              numlinepar++;
     }            } /* end k*/
     ungetc(c,ficpar);          } /*end j */
            } /* end i */
     estepm=0;      } /* end itimes */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      
     if (estepm==0 || estepm < stepm) estepm=stepm;      fflush(ficlog);
     if (fage <= 2) {      fflush(ficres);
       bage = ageminpar;      
       fage = agemaxpar;      while((c=getc(ficpar))=='#' && c!= EOF){
     }        ungetc(c,ficpar);
            fgets(line, MAXLINE, ficpar);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        puts(line);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        fputs(line,ficparo);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      }
          ungetc(c,ficpar);
     while((c=getc(ficpar))=='#' && c!= EOF){      
       ungetc(c,ficpar);      estepm=0;
       fgets(line, MAXLINE, ficpar);      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       puts(line);      if (estepm==0 || estepm < stepm) estepm=stepm;
       fputs(line,ficparo);      if (fage <= 2) {
     }        bage = ageminpar;
     ungetc(c,ficpar);        fage = agemaxpar;
          }
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);      
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      
          while((c=getc(ficpar))=='#' && c!= EOF){
     while((c=getc(ficpar))=='#' && c!= EOF){        ungetc(c,ficpar);
       ungetc(c,ficpar);        fgets(line, MAXLINE, ficpar);
       fgets(line, MAXLINE, ficpar);        puts(line);
       puts(line);        fputs(line,ficparo);
       fputs(line,ficparo);      }
     }      ungetc(c,ficpar);
     ungetc(c,ficpar);      
          fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
          fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;      printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
          fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fscanf(ficpar,"pop_based=%d\n",&popbased);      
     fprintf(ficparo,"pop_based=%d\n",popbased);        while((c=getc(ficpar))=='#' && c!= EOF){
     fprintf(ficres,"pop_based=%d\n",popbased);          ungetc(c,ficpar);
            fgets(line, MAXLINE, ficpar);
     while((c=getc(ficpar))=='#' && c!= EOF){        puts(line);
       ungetc(c,ficpar);        fputs(line,ficparo);
       fgets(line, MAXLINE, ficpar);      }
       puts(line);      ungetc(c,ficpar);
       fputs(line,ficparo);      
     }      
     ungetc(c,ficpar);      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
          dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fscanf(ficpar,"pop_based=%d\n",&popbased);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fprintf(ficres,"pop_based=%d\n",popbased);   
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      
     /* day and month of proj2 are not used but only year anproj2.*/      while((c=getc(ficpar))=='#' && c!= EOF){
            ungetc(c,ficpar);
            fgets(line, MAXLINE, ficpar);
            puts(line);
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/        fputs(line,ficparo);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      }
          ungetc(c,ficpar);
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
          fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
            /* day and month of proj2 are not used but only year anproj2.*/
    /*------------ free_vector  -------------*/      
    /*  chdir(path); */      
        
     free_ivector(wav,1,imx);      /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     free_lvector(num,1,n);      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     free_vector(agedc,1,n);      
     /*free_matrix(covar,0,NCOVMAX,1,n);*/      printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
     /*free_matrix(covar,1,NCOVMAX,1,n);*/                   model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
     fclose(ficparo);                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
     fclose(ficres);        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/   
        free_ivector(wav,1,imx);
     strcpy(filerespl,"pl");      free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     strcat(filerespl,fileres);      free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {      free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;      free_lvector(num,1,n);
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;      free_vector(agedc,1,n);
     }      /*free_matrix(covar,0,NCOVMAX,1,n);*/
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);      /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);      fclose(ficparo);
     pstamp(ficrespl);      fclose(ficres);
     fprintf(ficrespl,"# Period (stable) prevalence \n");  
     fprintf(ficrespl,"#Age ");  
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     fprintf(ficrespl,"\n");    
        strcpy(filerespl,"pl");
     prlim=matrix(1,nlstate,1,nlstate);      strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
     agebase=ageminpar;        printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
     agelim=agemaxpar;        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
     ftolpl=1.e-10;      }
     i1=cptcoveff;      printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     if (cptcovn < 1){i1=1;}      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      fprintf(ficrespl,"# Period (stable) prevalence \n");
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficrespl,"#Age ");
         k=k+1;      for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      fprintf(ficrespl,"\n");
         fprintf(ficrespl,"\n#******");    
         printf("\n#******");      prlim=matrix(1,nlstate,1,nlstate);
         fprintf(ficlog,"\n#******");  
         for(j=1;j<=cptcoveff;j++) {      agebase=ageminpar;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      agelim=agemaxpar;
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      ftolpl=1.e-10;
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      i1=cptcoveff;
         }      if (cptcovn < 1){i1=1;}
         fprintf(ficrespl,"******\n");  
         printf("******\n");      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         fprintf(ficlog,"******\n");        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                  k=k+1;
         for (age=agebase; age<=agelim; age++){          /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          fprintf(ficrespl,"\n#******");
           fprintf(ficrespl,"%.0f ",age );          printf("\n#******");
           for(j=1;j<=cptcoveff;j++)          fprintf(ficlog,"\n#******");
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(j=1;j<=cptcoveff;j++) {
           for(i=1; i<=nlstate;i++)            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrespl," %.5f", prlim[i][i]);            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespl,"\n");            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }          }
       }          fprintf(ficrespl,"******\n");
     }          printf("******\n");
     fclose(ficrespl);          fprintf(ficlog,"******\n");
           
     /*------------- h Pij x at various ages ------------*/          for (age=agebase; age<=agelim; age++){
              prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);            fprintf(ficrespl,"%.0f ",age );
     if((ficrespij=fopen(filerespij,"w"))==NULL) {            for(j=1;j<=cptcoveff;j++)
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;              fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;            for(i=1; i<=nlstate;i++)
     }              fprintf(ficrespl," %.5f", prlim[i][i]);
     printf("Computing pij: result on file '%s' \n", filerespij);            fprintf(ficrespl,"\n");
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);          }
          }
     stepsize=(int) (stepm+YEARM-1)/YEARM;      }
     /*if (stepm<=24) stepsize=2;*/      fclose(ficrespl);
   
     agelim=AGESUP;      /*------------- h Pij x at various ages ------------*/
     hstepm=stepsize*YEARM; /* Every year of age */    
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
     /* hstepm=1;   aff par mois*/        printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
     pstamp(ficrespij);        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      }
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      printf("Computing pij: result on file '%s' \n", filerespij);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
         k=k+1;    
         fprintf(ficrespij,"\n#****** ");      stepsize=(int) (stepm+YEARM-1)/YEARM;
         for(j=1;j<=cptcoveff;j++)      /*if (stepm<=24) stepsize=2;*/
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");      agelim=AGESUP;
              hstepm=stepsize*YEARM; /* Every year of age */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/      fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           oldm=oldms;savm=savms;          k=k+1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficrespij,"\n#****** ");
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");          for(j=1;j<=cptcoveff;j++) 
           for(i=1; i<=nlstate;i++)            fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(j=1; j<=nlstate+ndeath;j++)          fprintf(ficrespij,"******\n");
               fprintf(ficrespij," %1d-%1d",i,j);          
           fprintf(ficrespij,"\n");          for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           for (h=0; h<=nhstepm; h++){            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)            /*      nhstepm=nhstepm*YEARM; aff par mois*/
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }            oldm=oldms;savm=savms;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"\n");            fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
         }            for(i=1; i<=nlstate;i++)
       }              for(j=1; j<=nlstate+ndeath;j++)
     }                fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);            for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
     fclose(ficrespij);              for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);                  fprintf(ficrespij," %.5f", p3mat[i][j][h]);
     for(i=1;i<=AGESUP;i++)              fprintf(ficrespij,"\n");
       for(j=1;j<=NCOVMAX;j++)            }
         for(k=1;k<=NCOVMAX;k++)            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           probs[i][j][k]=0.;            fprintf(ficrespij,"\n");
           }
     /*---------- Forecasting ------------------*/        }
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/      }
     if(prevfcast==1){  
       /*    if(stepm ==1){*/      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);  
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/      fclose(ficrespij);
       /*      }  */  
       /*      else{ */      probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       /*        erreur=108; */      for(i=1;i<=AGESUP;i++)
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */        for(j=1;j<=NCOVMAX;j++)
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */          for(k=1;k<=NCOVMAX;k++)
       /*      } */            probs[i][j][k]=0.;
     }  
        /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     /*---------- Health expectancies and variances ------------*/      if(prevfcast==1){
         /*    if(stepm ==1){*/
     strcpy(filerest,"t");        prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
     strcat(filerest,fileres);        /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
     if((ficrest=fopen(filerest,"w"))==NULL) {        /*      }  */
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;        /*      else{ */
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        /*        erreur=108; */
     }        /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);        /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);        /*      } */
       }
     
     strcpy(filerese,"e");  
     strcat(filerese,fileres);      /*---------- Health expectancies and variances ------------*/
     if((ficreseij=fopen(filerese,"w"))==NULL) {  
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      strcpy(filerest,"t");
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      strcat(filerest,fileres);
     }      if((ficrest=fopen(filerest,"w"))==NULL) {
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);        printf("Problem with total LE resultfile: %s\n", filerest);goto end;
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);        fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
     strcpy(fileresstde,"stde");      printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
     strcat(fileresstde,fileres);      fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {  
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);  
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);      strcpy(filerese,"e");
     }      strcat(filerese,fileres);
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);      if((ficreseij=fopen(filerese,"w"))==NULL) {
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);        printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     strcpy(filerescve,"cve");      }
     strcat(filerescve,fileres);      printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {      fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);  
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);      strcpy(fileresstde,"stde");
     }      strcat(fileresstde,fileres);
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);        printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
     strcpy(fileresv,"v");      }
     strcat(fileresv,fileres);      printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {      fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      strcpy(filerescve,"cve");
     }      strcat(filerescve,fileres);
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      if((ficrescveij=fopen(filerescve,"w"))==NULL) {
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */      }
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\      fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);  
     */      strcpy(fileresv,"v");
       strcat(fileresv,fileres);
     if (mobilav!=0) {      if((ficresvij=fopen(fileresv,"w"))==NULL) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){        fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      }
         printf(" Error in movingaverage mobilav=%d\n",mobilav);      printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       }      fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     }  
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
         k=k+1;          ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
         fprintf(ficrest,"\n#****** ");      */
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if (mobilav!=0) {
         fprintf(ficrest,"******\n");        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficreseij,"\n#****** ");          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficresstdeij,"\n#****** ");          printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficrescveij,"\n#****** ");        }
         for(j=1;j<=cptcoveff;j++) {      }
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         }          k=k+1; 
         fprintf(ficreseij,"******\n");          fprintf(ficrest,"\n#****** ");
         fprintf(ficresstdeij,"******\n");          for(j=1;j<=cptcoveff;j++) 
         fprintf(ficrescveij,"******\n");            fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
         fprintf(ficresvij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)          fprintf(ficreseij,"\n#****** ");
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficresvij,"******\n");          fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         oldm=oldms;savm=savms;            fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);              fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);            }
            fprintf(ficreseij,"******\n");
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(ficresstdeij,"******\n");
         oldm=oldms;savm=savms;          fprintf(ficrescveij,"******\n");
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);  
         if(popbased==1){          fprintf(ficresvij,"\n#****** ");
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);          for(j=1;j<=cptcoveff;j++) 
         }            fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
         pstamp(ficrest);  
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");          eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          oldm=oldms;savm=savms;
         fprintf(ficrest,"\n");          evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
         epj=vector(1,nlstate+1);   
         for(age=bage; age <=fage ;age++){          vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          oldm=oldms;savm=savms;
           if (popbased==1) {          varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
             if(mobilav ==0){          if(popbased==1){
               for(i=1; i<=nlstate;i++)            varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
                 prlim[i][i]=probs[(int)age][i][k];          }
             }else{ /* mobilav */  
               for(i=1; i<=nlstate;i++)          pstamp(ficrest);
                 prlim[i][i]=mobaverage[(int)age][i][k];          fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
             }          for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           }          fprintf(ficrest,"\n");
          
           fprintf(ficrest," %4.0f",age);          epj=vector(1,nlstate+1);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          for(age=bage; age <=fage ;age++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               epj[j] += prlim[i][i]*eij[i][j][(int)age];            if (popbased==1) {
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/              if(mobilav ==0){
             }                for(i=1; i<=nlstate;i++)
             epj[nlstate+1] +=epj[j];                  prlim[i][i]=probs[(int)age][i][k];
           }              }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
           for(i=1, vepp=0.;i <=nlstate;i++)                  prlim[i][i]=mobaverage[(int)age][i][k];
             for(j=1;j <=nlstate;j++)              }
               vepp += vareij[i][j][(int)age];            }
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          
           for(j=1;j <=nlstate;j++){            fprintf(ficrest," %4.0f",age);
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));            for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
           }              for(i=1, epj[j]=0.;i <=nlstate;i++) {
           fprintf(ficrest,"\n");                epj[j] += prlim[i][i]*eij[i][j][(int)age];
         }                /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              }
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);              epj[nlstate+1] +=epj[j];
         free_vector(epj,1,nlstate+1);            }
       }  
     }            for(i=1, vepp=0.;i <=nlstate;i++)
     free_vector(weight,1,n);              for(j=1;j <=nlstate;j++)
     free_imatrix(Tvard,1,15,1,2);                vepp += vareij[i][j][(int)age];
     free_imatrix(s,1,maxwav+1,1,n);            fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
     free_matrix(anint,1,maxwav,1,n);            for(j=1;j <=nlstate;j++){
     free_matrix(mint,1,maxwav,1,n);              fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
     free_ivector(cod,1,n);            }
     free_ivector(tab,1,NCOVMAX);            fprintf(ficrest,"\n");
     fclose(ficreseij);          }
     fclose(ficresstdeij);          free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     fclose(ficrescveij);          free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     fclose(ficresvij);          free_vector(epj,1,nlstate+1);
     fclose(ficrest);        }
     fclose(ficpar);      }
        free_vector(weight,1,n);
     /*------- Variance of period (stable) prevalence------*/        free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
     strcpy(fileresvpl,"vpl");      free_matrix(anint,1,maxwav,1,n); 
     strcat(fileresvpl,fileres);      free_matrix(mint,1,maxwav,1,n);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      free_ivector(cod,1,n);
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);      free_ivector(tab,1,NCOVMAX);
       exit(0);      fclose(ficreseij);
     }      fclose(ficresstdeij);
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);      fclose(ficrescveij);
       fclose(ficresvij);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      fclose(ficrest);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fclose(ficpar);
         k=k+1;    
         fprintf(ficresvpl,"\n#****** ");      /*------- Variance of period (stable) prevalence------*/   
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcpy(fileresvpl,"vpl");
         fprintf(ficresvpl,"******\n");      strcat(fileresvpl,fileres);
            if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         varpl=matrix(1,nlstate,(int) bage, (int) fage);        printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         oldm=oldms;savm=savms;        exit(0);
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);      }
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
       }  
     }      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     fclose(ficresvpl);          k=k+1;
           fprintf(ficresvpl,"\n#****** ");
     /*---------- End : free ----------------*/          for(j=1;j<=cptcoveff;j++) 
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresvpl,"******\n");
         
   }  /* mle==-3 arrives here for freeing */          varpl=matrix(1,nlstate,(int) bage, (int) fage);
   free_matrix(prlim,1,nlstate,1,nlstate);          oldm=oldms;savm=savms;
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      }
     free_matrix(covar,0,NCOVMAX,1,n);  
     free_matrix(matcov,1,npar,1,npar);      fclose(ficresvpl);
     /*free_vector(delti,1,npar);*/  
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      /*---------- End : free ----------------*/
     free_matrix(agev,1,maxwav,1,imx);      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);    }  /* mle==-3 arrives here for freeing */
     free_ivector(Tvar,1,15);    free_matrix(prlim,1,nlstate,1,nlstate);
     free_ivector(Tprod,1,15);      free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_ivector(Tvaraff,1,15);      free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_ivector(Tage,1,15);      free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_ivector(Tcode,1,100);      free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);      free_matrix(matcov,1,npar,1,npar);
     free_imatrix(codtab,1,100,1,10);      /*free_vector(delti,1,npar);*/
   fflush(fichtm);      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
   fflush(ficgp);      free_matrix(agev,1,maxwav,1,imx);
        free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
   if((nberr >0) || (nbwarn>0)){      free_ivector(ncodemax,1,8);
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);      free_ivector(Tvar,1,15);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);      free_ivector(Tprod,1,15);
   }else{      free_ivector(Tvaraff,1,15);
     printf("End of Imach\n");      free_ivector(Tage,1,15);
     fprintf(ficlog,"End of Imach\n");      free_ivector(Tcode,1,100);
   }  
   printf("See log file on %s\n",filelog);      free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      free_imatrix(codtab,1,100,1,10);
   (void) gettimeofday(&end_time,&tzp);    fflush(fichtm);
   tm = *localtime(&end_time.tv_sec);    fflush(ficgp);
   tmg = *gmtime(&end_time.tv_sec);    
   strcpy(strtend,asctime(&tm));  
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);    if((nberr >0) || (nbwarn>0)){
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);      printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      printf("End of Imach\n");
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      fprintf(ficlog,"End of Imach\n");
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);    }
   /*  printf("Total time was %d uSec.\n", total_usecs);*/    printf("See log file on %s\n",filelog);
 /*   if(fileappend(fichtm,optionfilehtm)){ */    /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);    (void) gettimeofday(&end_time,&tzp);
   fclose(fichtm);    tm = *localtime(&end_time.tv_sec);
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);    tmg = *gmtime(&end_time.tv_sec);
   fclose(fichtmcov);    strcpy(strtend,asctime(&tm));
   fclose(ficgp);    printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
   fclose(ficlog);    fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
   /*------ End -----------*/    printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
    printf("Before Current directory %s!\n",pathcd);    fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
    if(chdir(pathcd) != 0)    fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     printf("Can't move to directory %s!\n",path);    /*  printf("Total time was %d uSec.\n", total_usecs);*/
   if(getcwd(pathcd,MAXLINE) > 0)  /*   if(fileappend(fichtm,optionfilehtm)){ */
     printf("Current directory %s!\n",pathcd);    fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
   /*strcat(plotcmd,CHARSEPARATOR);*/    fclose(fichtm);
   sprintf(plotcmd,"gnuplot");    fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
 #ifndef UNIX    fclose(fichtmcov);
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);    fclose(ficgp);
 #endif    fclose(ficlog);
   if(!stat(plotcmd,&info)){    /*------ End -----------*/
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);  
     if(!stat(getenv("GNUPLOTBIN"),&info)){  
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);     printf("Before Current directory %s!\n",pathcd);
     }else     if(chdir(pathcd) != 0)
       strcpy(pplotcmd,plotcmd);      printf("Can't move to directory %s!\n",path);
 #ifdef UNIX    if(getcwd(pathcd,MAXLINE) > 0)
     strcpy(plotcmd,GNUPLOTPROGRAM);      printf("Current directory %s!\n",pathcd);
     if(!stat(plotcmd,&info)){    /*strcat(plotcmd,CHARSEPARATOR);*/
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);    sprintf(plotcmd,"gnuplot");
     }else  #ifndef UNIX
       strcpy(pplotcmd,plotcmd);    sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
 #endif  #endif
   }else    if(!stat(plotcmd,&info)){
     strcpy(pplotcmd,plotcmd);      printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
        if(!stat(getenv("GNUPLOTBIN"),&info)){
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);        printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);      }else
         strcpy(pplotcmd,plotcmd);
   if((outcmd=system(plotcmd)) != 0){  #ifdef UNIX
     printf("\n Problem with gnuplot\n");      strcpy(plotcmd,GNUPLOTPROGRAM);
   }      if(!stat(plotcmd,&info)){
   printf(" Wait...");        printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
   while (z[0] != 'q') {      }else
     /* chdir(path); */        strcpy(pplotcmd,plotcmd);
     printf("\nType e to edit output files, g to graph again and q for exiting: ");  #endif
     scanf("%s",z);    }else
 /*     if (z[0] == 'c') system("./imach"); */      strcpy(pplotcmd,plotcmd);
     if (z[0] == 'e') {    
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);    sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
       system(optionfilehtm);    printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
     }  
     else if (z[0] == 'g') system(plotcmd);    if((outcmd=system(plotcmd)) != 0){
     else if (z[0] == 'q') exit(0);      printf("\n Problem with gnuplot\n");
   }    }
   end:    printf(" Wait...");
   while (z[0] != 'q') {    while (z[0] != 'q') {
     printf("\nType  q for exiting: ");      /* chdir(path); */
     scanf("%s",z);      printf("\nType e to edit output files, g to graph again and q for exiting: ");
   }      scanf("%s",z);
 }  /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.125  
changed lines
  Added in v.1.126


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>